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Selective attention in the acquisition of the past tense

Dan Jackson

University of California, San Diego
La Jolla, CA 92093
jackson@ling.ucsd.edu

Abstract

It is well known that children generally exhibit a "“U-
shaped” pattern of development in the process of acquiring
the past tense. Plunkett & Marchman (1991) showed that a
connectionist network, trained on the past tense, would
exhibit U-shaped leaming effects. This network did not
completely master the past tense mapping, however.
Plunkett & Marchman (1993) showed that a network
trained with an incrementally expanded training set was
able to achieve acceptable levels of mastery, as well as
show the desired U-shaped pattern. In this paper, we point
out some problems with using an incrementally expanded
training set. We propose a model of selective attention
that enables our network to completely master the past
tense mapping and exhibit U-shaped learning effects
without requiring external manipulation of its training set.

Introduction

It is well known that in the process of acquiring the past
tense, children generally exhibit a “U-shaped™ pattern of
development. The first past tense forms produced are
generally correct, regardless of whether or not those forms
are regular. After this period of correct performance, children
go through a period of overgeneralization in which irregular
forms are incorrectly inflected (e.g. goed). Finally, children
seem to identify some forms as exceptions to the general
regular pattern, and the overgeneralization errors decrease.
Plunkett & Marchman (1991) (P&M hereafter) showed that
U-shaped learning effects can emerge in connectionist
networks in the absence of any discontinuities in the
training regime. P&M showed that such networks go
through “micro U-shaped development.” This is contrasted
with the idealized vision of “macro U-shaped development”
that predominates in anecdotal descriptions of children’s
patterns of acquisition. Macro U-shaped development refers
to a rapid and sudden change from the memorization stage,
where regular and irregular forms are reproduced with
relatively equal levels of error, to a stage where the /-ed/
suffix is applied indiscriminately, resulting in
overgeneralization for all irregular verbs. Micro U-shaped

' See Pinker and Prince’s (1988) critique of Rumelhart &
McClelland (1986). They argue that Rumelhart & McClelland’s
model exhibited U-shaped learning effects because of
discontinuities in its training set.
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development, on the other hand, is characterized by selective
application of the /-ed/ suffix, resulting in a period in which
some irregular verbs are regularized, while others are
produced correctly. Although most anecdotal descriptions of
children’s acquisition of the past tense have implied macro
U-shaped development, studies of naturalistic past tense
production (e.g. Marcus et al. (1992)) and studies using
elicitation procedures (e.g. Marchman (1988)) show that
micro U-shaped development is a better description of how
children learn the past tense.

Although P&M (1991) were successful in showing that
connectionist networks go through a micro U-shaped pattern
of development, none of the networks they trained achieved
mastery of all of the past tense mappings. In particular, the
mean performance on the regular (add /-ed/) mapping was
84% (P&M (1991), p. 71), which is well below the
percentage of regulars that most adult humans are able to
inflect correctly (near 100%).

P&M (1993) demonstrated that networks can achieve
acceptable levels of mastery and still show U-shaped
learning effects if their training set is expanded
incrementally. Unlike Rumelhart & McClelland (1986),
they did not introduce a discontinuity in the training regime.
Rather, they trained their networks on a small number of
verbs at first, and then gradually expanded the training set.
Trained in this way, the networks described by P&M (1993)
were able to master the given vocabulary (correctly
inflecting 97-98% of the regulars) after a period of micro U-
shaped development.

This is an interesting result, but the use of an
incrementally expanding training set must be justified.
P&M (1993) note that “verb acquisition in children is a
gradual process which follows an incremental learning
trajectory (p. 27),” and go on to mention Elman’s (1991)
application of incremental training to the acquisition of
simple and complex syntactic forms. There are, however,
some crucial differences between the account of language
acquisition implied by Elman's model and that implied by
P&M (1993).

Elman’s recurrent network was unable to learn adequately
if it was trained on the entire set of simple and complex
sentences at once. He showed that it could learn if it was
trained on an incrementally expanded training set, beginning
with the simple sentences, and working up to the complex
ones. Nevertheless, he argued explicitly against using an
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incrementally expanded training set in models of language
acquisition, claiming that “children hear exemplars of all
aspects of the adult language from the beginning (p. 6).” He
then tried expanding his network’s memory capacity, rather
than incrementally expanding its training set. During the
first phase of training, the recurrent feedback was eliminated
after every third or fourth word. As training progressed, the
network's memory window was gradually increased until the
feedback was no longer interfered with at all.

Using this schedule of expanding memory, Elman was
able to get the network to learn the entire training set. This
is a reasonable account of language acquisition because we
know that children have limited memory capacity early in
development, and that this capacity increases as development
continues. Furthermore, the network is exposed to the
entire adult language, which is more realistic than using a
subset of the language for training.

P&M’s (1993) model did not have a limited memory--it
was not a recurrent network, and did not have a memory in
the sense that Elman’s (1991) model did. P&M had to
resort to limiting its training set, which was then gradually
expanded. P&M (1993) claim that it is “unlikely that
children attempt to learn an entire lexicon all of a piece (p.
27)." Perhaps what they had in mind was that children have
access to the entire vocabulary, but only pay attention to a
limited number of words. In this case, the way they have
modeled attention is questionable. At the outset of training,
the network was given 20 verbs, on which it is trained to
100% accuracy before expansion began. In effect, the
network was being told which verbs to pay attention to at
the outset, and trained on them to perfection before it could
start attending to other verbs. By the end of training, the
network had the entire vocabulary in ils training set--it was
paying attention to each element of the vocabulary to the
same degree. Clearly, we need a better way to model
attention.

In this paper, we examine the effect of selective attention
on a network’s ability to learn the past tense mappings. We
do not specify the examples to which the network should
pay attention, and we do not restrict the set of examples to
which the network can be exposed. Like Elman, we believe
that in order for our model to be realistic, the entire
vocabulary must be accessible to the network from the start.
We show that networks with this mechanism of selective
attention master the past tense mapping and exhibit micro
U-shaped learning effects in the absence of any external
manipulation of their training set.

Selective Attention Model

Our model of selective attention is based on the method of
active selection (Plutowski & White (1993)). This method
was originally used for incrementally growing a training set
by using a partially trained network to guide the selection of
new examples. Plutowski et al (1993) introduced the idea of
using maximum error as the criterion for selection. In our
implementation, this criterion is used for selecting examples
for weight adjustment (cf. Baluja & Pomerleau (1994),
whose network ignores sections of the input with high
prediction error). Instead of using active selection for
incrementally growing the training set, we assume a fixed

size training queue of size N corresponding to the child's
working or perhaps episodic memory. As the child samples
the environment, we assume the child computes his error on
any verb, and then compares this error with what is currently
in the training queue. If the error on the sampled example is
worse than what is currently in the queue, the example is
inserted in the queue and the best example in the queue is
"forgotten." We may view this error as a measure of the
novelty or salience of the verb.

To simulate this, at the beginning of an epoch the
simulator randomly selects a window of W examples from
the vocabulary and tests the network on them. The
likelihood of any particular example being chosen for the
sample window depends on its frequency in the vocabulary.
The above procedure is applied to update the queue. Thus,
the entire set of examples may change from one epoch to the
next depending on N, W, and the error on the samples.

The network’s initial exposure to a form results in its
being placed in the sample window. Weight adjustment
does not occur until the form has been put into the training
queue. Training on a verb is therefore “off-line” in the sense
that it occurs some time after the verb is initially
encountered.

It is reasonable to suppose that children are not able to
cycle through every verb in the language in order to choose
the ones they need to pay attention to for the purposes of
synaptic adjustment, so it was important to limit the size of
the sample window. We might think of the window as the
network’s short-term memory (for recently heard verbs). It
needs to hold a limited number of items in memory so that
it can compare them to choose the queue elements when
updating the queue.

Methods

Our input-output pairs were taken from the database used by
P&M. The interested reader should refer to P&M (1991,
1993) for details about the representations. The network is
given a verb stem as input and must produce the inflected
verb as its output. The transformations from the stems to
the past tense forms are classified into four possible classes:
arbitrary, identity, vowel change, and regular. Each of these
corresponds to a possible English past tense transformation.

Arbitrary | Identity Vowel Regular
Change
Type 2 20 68 410
Frequency
Token 100 2 5 1
Frequency
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Table 1: Type and Token frequencies of the past tense
mappings

For the arbitraries, there is no relation between the stem
and the past tense form, e.g. "go—went." For the identities,
the past tense form is identical to the verb stem. This
mapping requires that the verb stem end in a dental
consonant (/t/ or /d/), e.g. ‘hit—hit.” For the vowel
changes, a vowel in the stem may be replaced by a different



Window Size 8

—O0— Window Size 4
—&—— Window Size 2
—@®— Window Size 1
1.00
- )
-]
- 0.92 1
8 E
0.84 4
p I
2o 0.76
° |
= eed
- 0.
o60t+rTrrrTrTr T T T
0 1 2 8 4 5.6 7 8 9

Queue Size

Figure 1: Performance on regular verbs after 120,000 weight
updates as a function of queue and window size.

vowel in the inflected form of the verb, depending on the
original vowel and the consonant that follows. We had 10
different types of vowel changes in our vocabulary,
analogous to ‘ring—rang,” ‘blow—blew,’ etc. Finally, for
the regulars, a suffix is appended to the verb stem. The
form of the suffix depends upon the final vowel/consonant
in the stem. If the stem ends in a dental (/t/ or /d/), then the
suffix is /-id/, e.g. 'pat—pat-id.” If the stem ends in a voiced
consonant or vowel, then the suffix is voiced /d/, e.g.
‘dam—dam-d.’ If the stem ending is unvoiced, the suffix is
unvoiced /t/, e.g. 'pak—pak-t.’

The type and token frequencies of each of these classes in
our vocabulary are shown in Table 1. The type frequencies
are identical to those used by P&M (1991), but the token
frequencies are somewhat different. For each type of past
tense mapping, we took the averages of a small, but
representative sample of verb frequencies from Kucera &
Francis (1967), and then normalized them by the frequency
of the regulars.

Our networks were trained with the back propagation
algorithm. The network architecture consisted of 18 input
units (each verb stem was formed from 3 phonemes each
requiring 6 units to represent), 30 hidden units and 20 output
units (2 suffix units were needed in addition to the
transformed stem). The choice of 30 hidden units was made
to parallel the architecture used by P&M (1993). The
learning rate and momentum were also set according to the
values used by P&M (1993), namely a learning rate of 0.1
and a momentum of 0.0. To evaluate network performance,
the output for each phoneme in the stem was mapped to the
closest legal phoneme (using Euclidean distance). Then the
output was compared with the target.
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We investigated the effects of different sample window and
training queue sizes by letting W and N take on the values
1, 2, 4 or 8 and training networks with all sixteen possible
combinations. Five sets of networks were trained, with
initial weight values the same within each set, but varying
between them.

Results

Figure 1 shows the effect of using different training queue
and sample window sizes. The average performance for each
combination of W and N is plotted in Figure 1, with
standard deviation indicated by error bars. The networks that
performed best were the ones that had large sample windows
and small training queues. The larger the sample window,
the more examples the network has to choose from. Once
an example is chosen and trained on, however, the network's
error will change not only for that verb, but for other verbs
as well. If the network trains on a regular verb, for
example, we expect its error on other regular verbs to go
down slightly, as well. Thus, it is better for the network to
"pay attention to one thing at a time," because this allows it
to choose its training example based on its error on that
example immediately prior to training, rather than using an
error value that may have changed due to training on another
verb in the queue.

Figure 2 shows the average performance of 5 networks
trained using the selective attention mechanism with sample
windows of size 8 and training queues of size 1. Because of
the method of training we are using, it is more meaningful
to analyze the networks according to the number of weight
updates they have undergone. This makes it difficult to
compare our results with those of P&M, however, because
they graph results in terms of epochs, and the size of the
training set changes with each epoch. For the purposes of
comparison, therefore, we ran 5 networks using the
traditional method for selecting training examples (the one
used by P&M (1991)) on the same data. The average
performance of these networks on regular verbs is shown in
figure 3.

The networks with selective attention performed very
well. By 125,000 weight updates, all 5 networks had
mastered all of the past tense mappings (with a standard
deviation of 0.0). When the networks without selective
attention had reached 125,000 weight updates, they only
inflected an average of 85% of the regulars correctly (with a
standard deviation of 0.013). This is the level of
performance reached by P&M'’s (1991) best network at the
end of training (p. 71). Even after 500,000 weight updates,
these networks only got an average of 95% correct (with a
standard deviation of 0.007). In summary, the network with
selective attention was better both in final performance and
learning speed.

Figure 4 shows the networks' ability to generalize. The
first graph shows the average performance of the five
networks on novel verbs that did not fall into any of the
vowel change classes or end in a dental consonant--the
indeterminates. The error bars indicate standard deviation.
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Figure 2: Average fraction correct and standard deviation for the five selective attention networks tested on all of the regular,
arbitrary, vowel change and identity verbs in the training set.

As can be seen in the graph, the networks generalize fairly
well. The dashed line shows the fraction of indeterminate
novel verbs the networks inflected with a suffix (around
90%), irrespective of whether the form of the stem was
correct. The dashed line shows the fraction of indeterminate
novel verbs the networks inflected as regulars with no
changes to the stem (around 70%).

The novel dental and vowel change graphs show that the
regular mapping is not applied indiscriminately to novel
forms--the fraction of verbs inflected as regulars is lower in
these graphs. The networks have learned something about
the phonological regularities inherent in the vocabulary. In
particular, the novel vowel change graph shows that verbs
that are phonologically similar to the vowel change verbs in
the training set are as likely to be inflected with a vowel
change as they are to be regularized.

Figure 5 shows the number of times each verb token was
in the training queue for a particular simulation. Note that
some regular verbs never make it into the queue, i.e. are
never trained on. Since we happen to know all verbs were
sampled, the network must have had low error on these
verbs when they were in the window. This is further
evidence that the network has learned the regular rule, and
shows that our procedure avoids unnecessary computation.
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Discussion

We have presented a model of selective attention which
chooses training examples from a random sample of the
training set. The size of the window from which the
training example can be chosen is limited and the training
queue itself is limited. Whether only one or both of these
should be considered "memory" is a question of
interpretation, but here we have suggested that the queue can
be considered the memory. One could also break the
processing down into two stages, one where samples are put
into memory for later processing, and then a stage in which
they are organized according to salience, and then practiced.
The idea that children process a significant amount of the
linguistic input they receive after the fact is corroborated by
data concerning crib speech--monologues and language
practice (including grammatical modifications and
imitation/repetition) that children engage in when they are
alone in their bed before going to sleep (Jespersen (1922),
Weir (1962), Kuczaj (1983)). Crib speech is characterized
by a freedom (because of the lack of communicative intent)
to use free association to generate sequences of sounds and
words, the associations being either phonological, syntactic
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Figure 3: Average fraction correct and standard deviation for
five networks without selective attention tested on regular
verbs.

or semantic (Britton (1970)). Probably because of this
freedom, children are more likely to engage in language
practice in crib speech than in social-context speech (in
terms of relative frequency) (Black (1979), Britton (1970),
Kuczaj (1983)).

As Kuczaj writes:

...children process linguistic information at (at least)
two levels: (a) the level of initial processing, which occurs
in short-term memory shortly after children have been
exposed to the input, and (b) the level of post-initial
processing, which occurs at some later time when children
are attempting to interpret, organize, and consolidate
information that they have experienced over some longer
period of time...children are most likely to notice
discrepancies between their knowledge of language and
linguistic input at the level of post-initial processing,
and...crib speech is a context in which children may freely
engage in overt behaviors that facilitate both post-initial
processing and the successful resolution of moderately
discrepant events. Although older children and adults may
be able to notice discrepancies during the initial
processing of linguistic information, it is unlikely that
young children are able to do so...Children may initially
store new forms and new meanings and later compare these
new acquisitions with previous ones in post-initial
processing (Kuczaj (1983), pp. 167-168).

The model we have presented is completely compatible
with these observations, if one assumes both the queue and
the window are part of the memory. The “discrepancies” in
this case are the error signals the network generates for each
verb in the sample window. The network can generate the
form it expects to see in a particular context, and compare
this with what it actually heard. In this way, the network
supplies itself with indirect negative evidence (Elman
(1991)), which is used in the adjustments of its weights. As
Kuczaj suggests is true for children, our networks could not
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“notice” the discrepancies during the initial processing of the
linguistic information. The initial processing occurs when
the verb is put into the sample window. Later, when the
time comes to update a network's weights, the mechanism
of selective attention comes into play. At this point, the
network generates error signals and chooses the verb with
the highest error for the purposes of weight adjustment.

In future work, we may try to develop a connectionist
implementation of the training queue. We would also like
to investigate other strategies for deciding what the network
should pay attention to. Finally, we plan to use our model
of selective attention in more primary tasks, such as
learning word meaning.

Conclusion

The mechanism of selective attention we introduced allowed
the networks to guide their own training. The networks
focused on the examples for which they needed the most
training. As a result, they performed extremely well. They
completely mastered the regular, identity, vowel change and
arbitrary past tense mappings and showed the ability to
generalize. They also showed micro U-shaped learning
effects. Most importantly, our networks achieved their high
level of performance without requiring us to externally
manipulate their training sets.
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