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ABSTRACT OF THE DISSERTATION

Optimization Problems in Directed Graph Visualization

By

Juan José Besa Vial

Doctor of Philosophy in Computer Science

University of California, Irvine, 2019

Distinguished Professor Michael T. Goodrich, Chair

Drawing digraphs presents unique challenges that do not occur when drawing undirected

graphs. Many digraphs tend to represent transitive relationships; that is they have a flow, and

show a progression. When drawing digraphs the drawing style used must attempt to transmit

this structural characteristic. In this dissertation, we study several optimization problems

that are unique to drawing digraphs. First, we study the complexity the k-Modality

problem of planar digraphs. Second, we turn to the practical task of drawing minimum width

phylogenetic trees, which are used in the study of evolutionary relationships. Finally, we study

a classical graph drawing problem, the One-Sided Crossing Minimization problem, in

the novel evolving data setting.

An embedding is k-modal if every vertex is incident to at most k pairs of consecutive edges

with opposite orientations. We study the k-Modality problem, which asks for the existence

of a k-modal embedding of a planar digraph. This combinatorial problem is at the very

core of a variety of constrained embedding questions for planar digraphs and flat clustered

networks. We characterize the complexity of finding minimum modality embeddings, relate it

to other graph drawing problems, both directed and undirected, and present fixed-parameter

tractable algorithms for some important families.

We then study the problem of drawing small width phylogenetic trees. Phylogenetic trees are

xiv



rooted trees that describe the evolutionary relationships derived from a common ancestor. In

these the vertical distance represents the amount of time that passes; thus, the length of the

edges is fixed. The Phylogenetic Tree Drawing problem asks for a minimum-width

orthogonal upward drawing of a phylogenetic tree. We show that finding such a drawing is

NP-hard for binary trees with unconstrained combinatorial order and provide a linear-time

algorithm for ordered trees. We also study several heuristic algorithms for the unconstrained

case and show their effectiveness through experimentation.

Finally, we study a restricted version of the One-Sided Crossing Minimization problem

in the evolving data setting. Algorithms that solve this problem attempt to minimize the

number of crossings between two adjacent layers when drawing layered graphs. We reduce the

problem to that of sorting a list in the evolving data setting and study it from this viewpoint.

In this model, a sorting algorithm maintains an approximation to the sorted order of a list of

data items while simultaneously, with each comparison made by the algorithm, an adversary

randomly swaps the order of adjacent items in the true sorted order. The experiments we

perform in this dissertation provide empirical evidence that some quadratic-time algorithms

such as insertion sort and bubble sort are asymptotically optimal for any constant rate of

random swaps. In fact, these algorithms perform as well as or better than algorithms such as

quicksort that are more efficient in the traditional algorithm analysis model.

xv



Chapter 1

Introduction

A well-drawn diagram gives insight beyond the surface information to the hidden structure

beneath. By engaging our visual cortex, it enables us to see patterns and it improves

recall [79] compared to textual representation. Diagrams permit the visual exploration of

the relationships between data. As we are immersed in the era of Big Data, there is an

increasing need for techniques to visualize large and complex data sets. Such data sets cannot

be drawn by hand, so they require computers to decide where to place the objects and where

to draw the lines. Graph drawing is the research field dedicated to the automated generation

of diagrams. More broadly it “includes all aspects of visualizing structural relations between

objects” [70].

Formally, an (undirected) graph G = (V,E) consists of a nonempty set V of objects called

vertices together with a set E of 2-element subsets of V called edges. A digraph is a

graph whose edges are ordered pairs. Drawings are an intuitive approach to understanding

graphs, for example, any textbook on graph theory will contain drawings of graphs in the

first few pages. A single graph can have many drawings emphasizing different structural

aspects, for example symmetry or connectivity, or satisfying different constraints. Graph

1



(a) (b)

Figure 1.1: (a) A useful flow chart1. (b) An orthogonal clustered digraph diagram of US
political system [1].

drawing combines aspects of graph theory, computational geometry and (sometimes) aesthetic

considerations.

The most common style of graph drawing is a node-link diagram where vertices are represented

as points and each edge is drawn as a line between two points, but this is not the only possible

representation. Vertices can be represented by many shapes such as rectangles (Fig. 1.1),

images, or a mixture of styles, while edges can be represented as straight lines, polylines,

curves, the intersection of objects, and many other ways. Even the notion of graph can be

expanded to include clusters or hierarchies of clusters of vertices, which can also be captured

in the drawings (Fig. 1.1b). .

Creating drawings of digraphs presents unique problems that do not occur when creating

drawings of undirected graphs. An edge e = (u, v) in a digraph indicates that the edge is

oriented from vertex u to vertex v. Drawings must indicate the orientation of the edges

1With permission from ”Piled Higher and Deeper” by Jorge Cham www.phdcomics.com
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Figure 1.2: Illustration of a digraph in 3 styles (a) Node-link drawing. (b) Layered graph
drawing. (c) L-drawing.

clearly. The most common way of doing this is using arrowheads, but these are not always

clear and easy to follow due to occlusion problems and visual clutter [62]. An alternative is

to use a convention that implicitly indicates the orientation. Upward planar drawings (such

as those in Chapter 3) use the convention that every edge is oriented from a lower vertex to

a higher vertex. This is the natural style to draw rooted trees, where traditionally the root is

the highest node in the drawing and every child node lies below its parent. Unfortunately, the

digraphs that can be drawn in such a way are limited. We discuss an important property they

must have in Chapter 2. A more general approach is layered graph drawings where vertices

are drawn in horizontal rows, or layers, and edges mostly flow in the same direction. Such

drawings are effective at displaying more complex digraphs, for example remaining useful

in graphs with a limited quantity of cycles. Other styles include L-drawings [7], confluent

drawings [43], elastic hierarchies [105], and overloaded orthogonal drawings [75], see Fig. 1.2.

Once a representation has been decided then the question remains about what distinguishes

a good drawing from a bad one. Due to the multiplicity of graphs, structures, and purposes,

there can be no single optimization criterion. Over time, the graph drawing community

has focused on different criteria which capture characteristics which tend to produce high

quality drawings in many different settings. In fact, a good drawing typically fulfills several of
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these optimization criteria. One class of graphs that is particularly relevant is planar graphs.

A planar graph is a graph that can be drawn in the plane without edge crossings. Many

times planarity is not a goal but a constraint that must be satisfied before considering other

optimization goals. Such is the case in Chapters 2 and 3. Other criteria are minimizing the

number of edge crossings, area, total edge length, angle resolution (both at vertices and at

crossings), and number of bends, among many others.

1.1 K-Modality

Given a planar digraph G and a positive even integer k, a drawing of G in the plane is

k-modal if every vertex of G is incident to at most k pairs of consecutive edges with opposite

orientations, i.e., the incoming and the outgoing edges at each vertex are grouped by the

drawing into at most k sets of consecutive edges with the same orientation. A necessary,

but not sufficient, condition for upward-planar drawings and level-planar drawings is for

the graph to be 2-modal. In an L-drawing (Fig. 1.2c) vertices are placed on a n × n grid

so that each vertex is assigned a unique x-coordinate and a unique y-coordinate, and each

directed edge (uv) is represented as a 1-bend orthogonal polyline composed of a vertical

segment incident to u and a horizontal segment incident to v. It is known that 4-modality is

a necessary condition for L-drawings [35].

In Chapter 2 we study the k-Modality problem, which asks for the existence of a k-modal

embedding of a planar digraph. This combinatorial problem is at the very core of a variety

of constrained embedding questions for planar digraphs and flat clustered networks.

First, since the 2-Modality problem can be easily solved in linear time, we consider the

general k-Modality problem for any value of k > 2 and show that the problem is NP-

complete for planar digraphs of maximum degree ∆ ≥ k+3. We then relate its computational
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(a) (b)

Figure 1.3: (a) Charles Darwin’s 1837 sketch of an evolutionary tree. (b) The final drawing
he used in 1859 in ”On the Origin of Species”.

complexity to that of two notions of planarity for flat clustered networks. On the positive

side, we provide a simple algorithm that runs in f(k)O(n) time for partial 2-trees of arbitrary

degree, whose running time is exponential in k and linear in the input size.

Second, we focus our attention on k = 4. On the algorithmic side, we show a complexity

dichotomy for the k-Modality problem with respect to ∆, by providing a linear-time

algorithm for planar digraphs with ∆ ≤ 6.

1.2 Phylogenetic Trees

A phylogenetic tree is a rooted tree that describes the relationships among evolutionary

lineages(Fig. 1.3b). The root is the common ancestor of all the species in the tree. Each

internal node is a speciation event, an event that produces two or more lineages. Such an

event is for example the rapid speciation of the Faroe Island house mouse, Mus musculus

faeroensis, which was introduced to the island by man less than 300 years ago [95].

There are many techniques to generate phylogenetic trees based upon similarities and

differences in physical or genetic characteristics [49]. In some phylogenetic tree drawings the
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vertical distance between two nodes represents the time between the two events: such trees

are also called clock trees. For this reason, they are well suited to be drawn as orthogonal

upward-planar trees. There is extensive research on optimization problems related to planar

upward tree drawings without the edge-length constraints. Likewise, for phylogenetic trees,

there are many software applications for drawing them, but they either do not respect the

edge lengths or do not generate orthogonal drawings. We are not familiar with any previous

work on characterizing the complexity of the minimum-width orthogonal phylogenetic tree

drawing problem.

In Chapter 3 we show that finding such drawings is NP-hard even for binary trees if the

ordering of the children of each node is unconstrained. On the other hand, if the order is

fixed, we provide a linear-time algorithm for finding minimum width drawings. We also study

several heuristic algorithms for the unconstrained case and show their effectiveness through

experimentation.

1.3 Layered Drawings

In many cases directed graphs represent a hierarchy, or near hierarchy, and we want a drawing

that transmits this structure. Some notable applications are project management diagrams,

software program call graphs, and file systems. The most popular method of drawing these

digraphs is the Sugiyama framework which partitions the vertices of the digraph into discrete

layers. The layer of each vertex is chosen so that (most of) the edges of the digraph “flow” in

a uniform direction. One of the steps in this framework is the vertex ordering step. Consider

two layers of vertices drawn in two parallel lines, with edges only going from the top layer

to the bottom layer. The vertex ordering step attempts to minimize the number of edge

crossings by reordering the vertices of each layer.
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In Chapter 4 we study the vertex ordering step in the evolving data setting. In a traditional

setting an algorithm takes an input, runs for some amount of time, and produces an output.

The evolving data setting asks the question what happens if the data is changing at a speed

that is similar (or faster) than the computation speed, i.e.,what happens if the algorithm

can’t keep up. The goal of the algorithm in this setting is to efficiently maintain an output

instance that is “close” to the true output.

We experimentally study how to reduce the crossings between two adjacent layers in a layered

drawing in this setting. Our setup is as follows: we consider two adjacent layers where each

element in the top layer has a one-to-one correspondence to an element in the bottom layer.

The bottom layer mutates its order by performing random swaps on adjacent elements, while

the algorithm attempts to order the top layer so as to minimize edge crossings. Clearly,

at any single moment there is an order of the top layer that produces a drawing with no

crossings, when both are equally “sorted”, but in practice this is never achieved. We show

that this constrained version can be reduced to maintaining a sorted list where the rank of

the elements is evolving and this is exactly the approach we take.

Previous work on sorting in the evolving data setting studies only two versions of quicksort,

and has a gap between the lower bound of Ω(n) and the (then known) best upper bound

of O(n log log n). The experiments we present in Chapter 4 provide empirical evidence that

some quadratic-time algorithms such as insertion sort and bubble sort are asymptotically

optimal for any constant rate of random swaps per comparison. In fact, these algorithms

perform as well as or better than algorithms such as quicksort that are more efficient in the

traditional algorithm analysis model. In a later paper Besa et al. [18] confirmed that in fact

insertion sort can be optimal in this setting.

7



Chapter 2

Computing k-Modal Embeddings of

Planar Digraphs

2.1 Introduction

Computing k-modal embeddings of planar digraphs, for some positive even integer k called

modality, is an important algorithmic task at the basis of several types of graph visualizations.

In 2-modal embeddings, also called bimodal embeddings, the outgoing and the incoming edges

(a) (b) (c)

Figure 2.1: (a) A planar L-drawing, which determines a 4-modal embedding. (b) A planar
NodeTrix representation. (c) A planar intersection-link representation using comb-shaped
polygons.
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at each vertex form two disjoint sequences. Bimodal embeddings are ubiquitous in Graph

Drawing. For instance, level planar drawings [39, 68] and upward-planar drawings [17, 53]—

two of the most deeply-studied graph drawing standards—determine bimodal embeddings.

4-modal embeddings, where the outgoing and the incoming edges at each vertex form up to

four disjoint sequences with alternating orientations, arise in the context of planar L-drawings

of digraphs. In an L-drawing of an n-vertex digraph, introduced by Angelini et al. [7], vertices

are placed on the n × n grid so that each vertex is assigned a unique x-coordinate and a

unique y-coordinate and each edge uv (directed from u to v) is represented as a 1-bend

orthogonal polyline composed of a vertical segment incident to u and of a horizontal segment

incident to v. Recently, Chaplick et al. [35] addressed the question of deciding the existence

of planar L-drawings, i.e., L-drawings whose edges might possibly overlap but do not cross

and observe that the existence of a 4-modal embedding is a necessary condition for a digraph

to admit such a representation (Fig. 2.1a).

To the best of our knowledge, no further relationships have been explicitly pointed out in

the literature between modal embeddings and notable drawing models for modality values

greater than four, yet they do exist. Da Lozzo et al. [37] and Di Giacomo et al. [54] study

the planarity of NodeTrix representations of flat clustered networks, a hybrid representational

model introduced by Henry, Fekete, and McGuffin [61], where clusters and intra-cluster

edges are represented as adjacency-matrices, with rows and columns for the vertices of each

cluster, and inter-cluster edges are Jordan arcs connecting different matrices (Fig. 2.1b). For

clusters containing only two vertices, it is possible to show that the problem of computing

planar NodeTrix representations coincides with the one of testing whether a special digraph,

called the canonical digraph, associated to the network admits a 6-modal embedding. For

higher values of modality, k-modal embeddings occur in the context of Intersection-Link

representations of flat clustered networks. In an intersection-link representation [9, 11],

vertices are represented as translates of the same polygon, intra-cluster edges are represented

via intersections between the polygons corresponding to their endpoints, and inter-cluster
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edges—similarly to NodeTrix representations—are Jordan arcs connecting the polygons

corresponding to their endpoints. For any modality k ≥ 2, it can be shown that testing the

existence of a k-modal embedding of the canonical digraph of a flat clustered network with

clusters of size two is equivalent to testing the existence of an intersection-link representation

in which the curves representing inter-cluster edges do not intersect, when vertices are drawn

as comb-shaped polygons (Fig. 2.1c).

Related Work. It is common knowledge that the existence of bimodal embeddings can be

tested in linear time: Split each vertex v that has both incoming and outgoing edges into two

vertices vin and vout, assign the incoming edges to vin and the outgoing edges to vout, connect

vin and vout with an edge, and test the resulting (undirected) graph for planarity using any of

the linear-time planarity-testing algorithms [27, 64]. Despite this, most of the planarity

variants requiring bimodality are NP-complete; for instance, upward planarity [53], windrose

planarity [12], partial-level planarity [29], clustered-level planarity and T -level planarity [10,

73], ordered-level planarity and bi-monotonicity [73]. In this scenario, a notable exception is

represented by the classic level planarity problem, which can be solved in linear time [68], and

its generalizations on the standing cylinder [13], rolling cylinder and the torus [8]. Although

the existence of a bimodal embedding is easy to test, Binucci, Didimo, and Giordano [23]

prove that the related problem of finding the maximum bimodal subgraph of an embedded

planar digraph is an NP-hard problem. Moreover, Binucci, Didimo, and Patrignani [24] show

that, given a mixed planar graph, i.e., a planar graph whose edge set is partitioned into a

set of directed edges and a set of undirected edges, orienting the undirected edges in such a

way that the whole graph admits a bimodal embedding is an NP-complete problem. On the

other hand, the question regarding the computational complexity of constructing k-modal

embedding for k ≥ 4 has not been addressed, although the related problem of testing the

existence of planar L-drawings has been recently proved NP-complete [35].

Our results. We study the complexity of the k-Modality problem, which asks for
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the existence of k-modal embeddings of planar digraphs—with an emphasis on k = 4.

Our results are as follows:

- We demonstrate a complexity dichotomy for the 4-Modality problem with respect to the

maximum degree ∆ of the input digraph. Namely, we show NP-completeness when ∆ ≥ 7

(Theorem 2.12) and give a linear-time testing algorithm for ∆ ≤ 6 (Theorem 2.8). Further,

we extend the hardness result to any modality value larger than or equal to 4, by proving

that the k-Modality problem is NP-complete for k ≥ 4 when ∆ ≥ k + 3.

- We provide an FPT-algorithm for k-Modality that runs in f(k)O(n) time for the class

of directed partial 2-trees (Theorem 2.7), which includes series-parallel and outerplanar

digraphs.

- In Section 2.3, we relate k-modal embeddings with hybrid representations of flat clustered

graphs, and exploit this connection to give new complexity results (Theorems 2.2 and 2.4)

and algorithms (Theorems 2.1 and 2.3) for these types of representations. In particular,

our NP-hardness results allow us to answer two open questions. Namely, we settle in the

strongest possible way an open question, posed by Di Giacomo et al. [54, Open Problem (i)],

about the complexity of computing planar NodeTrix representations of flat clustered graphs

with clusters of size smaller than 5. Also, we address a research question by Angelini et al. [9,

Open Problem (2)] about the representational power of intersection-link representations

based on geometric objects that give rise to complex combinatorial structures, and solve it

when the considered geometric objects are k-combs.

- Finally, in Section 2.10, we show that not every outerplanar digraph admits a bimodal

embedding, whereas any outerplanar (multi-)digraph admits a 4-modal embedding.

The algorithms presented in this chapter employ the SPQ- and SPQR-tree data structures to

succinctly represent the exponentially-many embeddings of series-parallel and biconnected
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planar digraphs, respectively, and can be easily modified to output an embedding of the input

digraph in the same time bound. In particular, our positive result for ∆ ≤ 6 is based on a

set of simple reduction rules that exploit the structure of the rigid components of bounded-

degree planar digraphs. These rules allow us to tackle the algorithmic core of the problem,

by enabling a final reduction step to special instances of Not-All-Equal SAT (NAESAT),

previously studied by Porschen et al. [86]. NAESAT is a variant of the boolean satisfiability

problem SAT, which asks for a truth assignment such that evey clause contains both a true

and a false literal. If such a truth assignment exists then the instance is NAE-satisfiable.

We prove that the special instance we construct is always NAE-satisfiable in Section 2.7.1

2.2 Definitions and Preliminaries

In this section we give preliminaries and definitions that will be useful throughout.

Planar digraphs and embeddings. Let G = (V,E) be a digraph. We also denote the sets

V and E by V (G) and E(G), respectively. The underlying graph of G is the undirected graph

obtained from G by disregarding edge directions. Let v be a vertex, we denote by E(v) the

set of edges of G incident to v and by deg(v) = |E(v)| the degree of v. If uv is an edge, then

vertex v is a successor of u in G and vertex u is a predecessor of v in G. For an edge e = uv

directed from u to v and an end-point x ∈ {u, v} of e, we define the orientation σ(e, x) of e

at x as σ(e, x) = ◦�, if x = u, and σ(e, x) = �◦, if x = v, and we say that uv is outgoing from u

and incoming at v. Also, we define σ(e, x) = �◦, if σ(e, x) = ◦�, and σ(e, x) = ◦�, if σ(e, x) = �◦.

1In “Stefan Porschen, Bert Randerath, Ewald Speckenmeyer: Linear Time Algorithms for Some Not-All-
Equal Satisfiability Problems. SAT 2003: 172-187” [86], the authors state in the abstract “First we show that
a NAESAT model (if existing) can be computed in linear time for formulas in which each variable occurs at
most twice.”. We give a strengthening of this result by showing that the only negative formulas with the
above properties are those whose variable-clause graph contains components isomorphic to a simple cycle.
Then, we provide a recursive linear-time algorithm for computing a NAE-truth assignment for formulas with
those properties, when one exists. Our algorithm is also considerably simpler than the one presented in [86].
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A digraph is planar if it admits a drawing in the plane without edge crossings. A combinatorial

embedding (for short, embedding) is an equivalence class of planar drawings, where two drawings

of a (di)graph are equivalent if they determine the same circular ordering of the edges around

each vertex v, called rotation at v, and the same relative positions of connected components

to one another. A planar drawing partitions the plane into topologically connected regions,

called faces. The bounded faces are the inner faces, while the unbounded face is the outer

face. A combinatorial embedding together with a choice for the outer face defines a planar

embedding.

Out definition does not allow the existence of multi-edges, although alternative definitions

may allow them. A multi-edge is a set of edges with the same end-points and the same

orientation; thus, edges uv and vu do not form a multi-edge. All the digraphs considered in

this chapter are simple, i.e., their edge set does not contain neither multi-edges nor loops,

planar, and connected. Observe that, requiring the digraph to be simple is not a loss of

generality. In fact, it is possible to modify a digraph G, by removing loops and replacing

multi-edges with a single directed edge, while preserving the possibility of having a k-modal

embedding, for any k > 0, if any such an embedding of G exists.

Let E be a combinatorial embedding (planar embedding) of a planar digraph G and let H be

a subgraph of G, that is, H ⊆ G. Also, let EH be the embedding of H obtained by restricting

E to the vertices and edges of H. We say that embedding E induces embedding EH .

Connectivity. A graph G = (V,E) is connected, if there is a path between any two vertices,

and it is disconnected, otherwise. A digraph is connected or disconnected, if its underlying

graph is connected or disconnected. A cutvertex is a vertex whose removal disconnects the

graph. A separating pair {u, v} is a pair of vertices whose removal disconnects the graph. A

split pair is a separation pair or a pair of adjacent vertices. A connected digraph is biconnected

if it does not have a cutvertex and a biconnected graph is triconnected if it does not have a

separating pair. The blocks of a connected digraphs are its maximal biconnected subgraphs. A
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block is trivial, if it consists of a single-edge, and non-trivial, otherwise. Clearly, a non-trivial

block contains a cycle. We remark that, by the above definition, the connectivity of a digraph

as the same as the connectivity of its underlying graph.

BC-trees. To handle the decomposition of a connected digraph into its biconnected com-

ponents, we use block-cutvertex trees—usually referred to as BC-trees, a data structure

introduced by Harary and Prins [60]. The BC-tree T of a connected digraph G = (V,E) is a

tree with a B-node for each block of G and a C-node for each cutvertex of G. Edges in T

connect each B-node β to the C-nodes associated with the cutvertices in the block of β.

SPQR-trees. To handle the decomposition of a biconnected digraph into its triconnected

components we use SQPR-trees. Triconnected components, also known as Tutte components,

was independently considered by Tutte [99], Hopcroft and Tarjan [63], and Mac Lane [78].

Later such a decomposition was named by Di Battista and Tamassia [40] as SPQR-trees.

Although not in their current formalization, SPQR-trees were already exploited by Bienstock

and Monma [21, 22].

A graph is st-biconnectible if adding the edge (s, t) yields a biconnected graph. Let G be an

st-biconnectible graph. A separation pair of G is a pair of vertices whose removal disconnects

the graph. A split pair of G is either a separation pair or a pair of adjacent vertices. A

maximal split component of G with respect to a split pair {u, v} (or, simply, a maximal split

component of {u, v}) is either an edge (u, v) or a maximal subgraph G′ of G such that G′

contains u and v, and {u, v} is not a split pair of G′. A vertex w 6= u, v belongs to exactly

one maximal split component of {u, v}. We call split component of {u, v} the union of any

number of maximal split components of {u, v}.

In this chapter, we will assume that a SPQR-tree of a graph G is rooted at one edge of G,

called its reference edge.
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Figure 2.2: (left) A 4-modal embedding of a simply-connected planar digraph G; the part
of each edge that is incoming at (outgoing from) a vertex is drawn blue (red). The three
blocks B, B′, and B′′ of G are enclosed in gray shaded regions. (right) SPQR T of block B
(considered as undirected) rooted at the edge e = uv. The extended skeletons of all non-leaf
nodes of T are shown; virtual edges corresponding to edges of G are thin, whereas virtual
edges corresponding to S-, P-, and R-nodes are thick. Dashed arrowed curves connect the
(dotted) parent edge in the skeleton of a child node with the virtual edge representing the
child node in the skeleton of its parent.

The rooted SPQR-tree T of a biconnected graph G, with respect to its reference edge e,

describes a recursive decomposition of G induced by its split pairs. The nodes of T are of

four types: S, P, Q, and R. Their connections are called arcs, in order to distinguish them

from the edges of G.

Each node µ of T has an associated st-biconnectible multigraph, called the skeleton of µ and

denoted by skel(µ). Skeleton skel(µ) shows how the children of µ, represented by “virtual

edges”, are arranged into µ. The virtual edge in skel(µ) associated with a child node ν, is

called the virtual edge of ν in skel(µ).

The subgraph of G that can be obtained in the following manner is denoted the pertinent

graph of µ. For each virtual edge ei of skel(µ), recursively replace ei with the skeleton skel(µi)

of its corresponding child µi.

Let G be a biconnected graph. Given the reference edge e = (u′, v′) ∈ E, the SPQR-tree T is

recursively defined as follows. At each step, a split component G∗, a pair of vertices {u, v},

15



and a node ν in T are given. A node µ corresponding to G∗ is introduced in T and attached

to its parent ν. Vertices u and v are the poles of µ and denoted by uµ and vµ, respectively.

The decomposition possibly recurs on some split components of G∗. At the beginning of the

decomposition G∗ = G− {e}, {uµ, vµ} = {u′, v′}, and ν is a Q-node corresponding to e.

Base Case: If G∗ consists of exactly one edge between uµ and vµ, then µ is a Q-node whose

skeleton is G∗ itself.

Parallel Case: If G∗ is composed of at least two maximal split components G1, . . . , Gk

(k ≥ 2) of G with respect to {uµ, vµ}, then µ is a P-node. The graph skel(µ) is a

multigraph consisting of k virtual edges between uµ and vµ, denoted by e1, . . . , ek and

corresponding to G1, . . . , Gk, respectively. The decomposition recurs on G1, . . . , Gk,

with {uµ, vµ} as pair of vertices for every graph, and with µ as parent node.

Series Case: If G∗ is composed of exactly one maximal split component of G with respect

to {uµ, vµ} and if G∗ has cut vertices c1, . . . , ck−1 (k ≥ 2), appearing in this order on a

path from uµ to vµ, then µ is an S-node. Graph skel(µ) is the path e1, . . . , ek, where

virtual edge ei connects ci−1 with ci (i = 2, . . . , k − 1), e1 connects uµ with c1, and ek

connects ck−1 with vµ. The decomposition recurs on the split components corresponding

to each of e1, e2, . . . , ek−1, ek with µ as parent node, and with {uµ, c1}, {c1, c2}, . . . ,

{ck−2, ck−1}, {ck−1, vµ} as pair of vertices, respectively.

Rigid Case: If none of the above cases applies, the purpose of the decomposition step is

that of partitioning G∗ into the minimum number of split components and recurring on

each of them. We need some further definition. Given a maximal split component G′

of a split pair {s, t} of G∗, a vertex w ∈ G′ properly belongs to G′ if w 6= s, t. Given

a split pair {s, t} of G∗, a maximal split component G′ of {s, t} is internal if neither

uµ nor vµ (the poles of G∗) properly belongs to G′, external otherwise. A maximal

split pair {s, t} of G∗ is a split pair of G∗ that is not contained in an internal maximal
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split component of any other split pair {s′, t′} of G∗. Let {u1, v1}, . . . , {uk, vk} be the

maximal split pairs of G∗ (k ≥ 1) and, for i = 1, . . . , k, let Gi be the union of all the

internal maximal split components of {ui, vi}. Observe that each vertex of G∗ either

properly belongs to exactly one Gi or belongs to some maximal split pair {ui, vi}. The

node µ is an R-node. The graph skel(µ) is the graph obtained from G∗ by replacing

each subgraph Gi with the virtual edge ei between ui and vi. The decomposition recurs

on each Gi with µ as parent node and with {ui, vi} as pair of vertices.

For each node µ of T with poles uµ and vµ, the construction of skel(µ) is completed by adding

a virtual edge (u, v) representing the rest of the graph, that is, the graph obtained from G by

removing all the vertices of pertµ, except for its poles, together with their incident edges.

The skeleton graph equipped with edge uµvµ, called the parent edge, is the extended skeleton

of µ. Refer to Fig. 2.2(right). Each edge of skel(µ), called virtual edge, is associated with a

child of µ in T . The skeleton of µ describes how the pertinent graphs of the children of µ

have to be “merged” via their poles to obtain pert(µ). The extended skeleton of an S-, P-, R-,

and Q-node is a cycle, parallel, triconnected graph, and a multigraph with two edges and two

vertices, respectively. It follows that skeleton and pertinent graphs are always biconnected

once the parent edge is added.

A digraph G is planar if and only if the skeleton of each R-node in the SPQR-tree of G

is planar. Any planar embedding E of G in which the reference edge e is incident to the

outer face induces a regular embedding Eµ of pert(µ), for each node µ of T , that is, a planar

embedding in which the poles of µ are incident to the outer face of Eµ. Symmetrically,

by selecting regular embeddings for the skeletons of the nodes of T , we can construct any

embedding of G with edge e on the outer face, where the choices for the embeddings of the

skeletons are all and only the (i) flips of the R-nodes and the (ii) permutations of the P-nodes.

The SPQR-tree T of a graph G with n vertices and m edges has m Q-nodes and O(n) S-,
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P-, and R-nodes. Also, the total number of vertices of the skeletons stored at the nodes

of T is O(n). Finally, SPQR-trees can be constructed and handled efficiently. Namely,

given a biconnected planar graph G, the SPQR-tree T of G can be computed in linear

time [41, 42, 59, 63].

Partial 2-trees and Series-Parallel Digraphs. Recall that we have defined the con-

nectivity of a digraph according to the connectivity of its underlying graph, i.e. ignoring

the orientation of its edges. A 2-tree is a digraph that can be obtained from an edge by

repeatedly adding a new vertex connected to two adjacent vertices. Every 2-tree is planar

and biconnected. A partial 2-tree is a subgraph of a 2-tree. A series-parallel digraph is

a biconnected partial 2-tree. Equivalently, a series-parallel digraph can be defined as a

biconnected planar digraph whose SPQR-tree only contains S-, P-, and Q-nodes; this is

why we speak of SPQ-trees of series-parallel digraphs. A digraph is outerplanar if it can be

embedded in the plane so that all its vertices are incident to a common face. Outerplanar

digraphs are partial 2-trees. The SPQ-tree T of a biconnected outerplanar digraph rooted

at any Q-node has the following property: Each P-node µ of T has exactly one S-node

child (and at least one and at most two Q-node children, corresponding to opposite edges

between the poles of µ).

Modality. Let G be a planar digraph and let E be an embedding of G. A pair of edges

e1, e2 that appear consecutively in the circular order around a vertex v of G is alternating

if they do not have the same orientation at v, i.e., they are not both incoming at or both

outgoing from v. Also, we say that vertex v is k-modal, or that v has modality k, or that the

modality of v is k in E , if there exist exactly k alternating pairs of edges incident to v in E .

Clearly, the value k needs to be a non-negative even integer. An embedding of a digraph G

is k-modal, if each vertex is at most k-modal.

The following observation follows immediately from the fact that in any embedding the

18



number of alternating pairs at a vertex is bounded by its degree and must be even.

Observation 2.1. In any embedding, the modality of a vertex v is at most 2bdeg(v)
2
c.

By Observation 2.1, vertices of degree at most 5 are at most 4-modal. Therefore, determining

the existence of a 4-modal embedding is a non-trivial task only if the digraph contains vertices

of degree at least 6. In fact, we will determine a tight border of tractability for the problem,

by showing that there exist instances of maximum degree ∆ for every ∆ ≥ 7 that cannot

be treated efficiently, unless P = NP , while instances of maximum degree 6 can be tested

efficiently.

We now define an auxiliary problem, called k-MaxModality (where k is a positive even

integer), which will be useful to prove our algorithmic results. We denote the set of non-

negative integers by Z∗ and the set of non-negative even integers smaller than or equal to k

as E+
k = {b : b = 2a, b ≤ k, a ∈ Z∗}. Given a graph G, we call maximum-modality function

an integer-valued function m : V (G)→ E+
k . We say that an embedding E of G satisfies m at

a vertex v, if the modality of v in E is at most m(v). Also, we say that an embedding E of G

satisfies m, if it satisfies m at every vertex of G.

Problem: k-MaxModality

Input: A pair 〈G,m〉, where G is a digraph and m is a maximum-modality function.

Question: Is there an embedding E of G that satisfies m?

2.3 Implications on Hybrid Representations

A flat clustered graph (for short, c-graph) is a pair C = (G = (V,E),P = (V1, V2, . . . , Vc)),

where G is a graph and P is a partition of V into sets Vi, for i = 1, . . . , c, called clusters2. An

2The more general notion of clustered graph is obtained by allowing the set of clusters to form a laminar
set family, which is better described by a rooted tree T whose leaves are the vertices of G and whose every
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Figure 2.3: (a) Illustrations for the duality between the canonical digraph and the canon-
ical c-graph. Correspondence (b) between 6-modal embeddings and planar NodeTrix
representations, and (c) between 4-modal embeddings and clique-planar representations
using 2-combs as geometric objects.

edge (u, v) ∈ E with u ∈ Vi and v ∈ Vj is an intra-cluster edge, if i = j, and is an inter-cluster

edge, if i 6= j. The problem of visualizing such graphs so to effectively convey both the relation

information encoded in the set E of edges of G and the hierarchical information given by the

partition P of the clusters has attracted considerable research attention. As crossing-free

graph drawings are universally considered more readable [87, 88], this effort has culminated

in several notions of planarity for c-graphs. The most celebrated of such notions, introduced

by Feng, Cohen, and Eades [50], goes by the name of Clustered Planarity and asks for

the existence of a c-planar drawing of a c-graph, that is, a planar drawing of G together with

a representation of each cluster Vi as a region of the plane homeomorphic to a closed disk that

contains the drawing of the subgraph of G induced by cluster Vi; additionally, clusters may not

intersect each other and edges may cross the boundary of each cluster at most once. Alongside

the classical notion of c-planar drawings, new hybrid models for the visualization of flat

clustered networks (and corresponding planarity notions) have recently received considerable

attention. In a hybrid representation of a graph different conventions are used to represent the

dense and the sparse portions of the graph [9, 11, 37, 54, 61, 77, 102]. We present important

implications of our results on some well-known models for hybrid-representations of c-graphs.

internal node µ represents the cluster containing the leaves of the subtree of T rooted at µ. However, since a
flat clustering is more naturally described by a partition, rather then by a tree, we define c-graphs using P
rather then T .
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Let C be a c-graph whose every cluster forms a clique of size at most 2, that is, each cluster

contains at most two vertices connected by an intra-cluster edge. Starting from C we define

an auxiliary digraph G�, called the canonical digraph for C, as follows. Without loss of

generality, assume that, for i = 1, . . . , c, each cluster Vi contains two vertices denoted as vi[�◦]

and vi[◦�]. The vertex set of G� contains a vertex vi, for i = 1, 2, . . . , c, and a dummy vertex

de, for each inter-cluster edge e ∈ E. The edge set of G� contains two directed edges, for each

inter-cluster edge e = (vix, v
j
y) ∈ E, with x, y ∈ {�◦, ◦�} and i 6= j; namely, E(G�) contains (i)

either the directed edges vixde, if x = ◦�, or the directed edge dev
i
x, if x = �◦, and (ii) either the

directed edges viyde, if y = ◦�, or the directed edge dev
i
y, if y = �◦.

Now let D = (V,E) be a digraph. We construct a c-graph C∗ = (G∗ = (V ∗, E∗),P∗) from

D whose every cluster forms a clique of size at most 2, called the canonical c-graph for D,

as follows. For each vertex vi ∈ V , G∗ contains two vertices vi[�◦] and vi[◦�], which form the

cluster Vi = {v[�◦], v[◦�]} in P∗. For each (directed) edge vivj of D, G∗ contains an (undirected)

edge (vi[◦�], vj[�◦]); that is, each directed edge in E that is incoming (outgoing) at a vertex vi

and outgoing (incoming) at a vertex vj corresponds to an inter-cluster edge in E∗ incident

to vi[�◦] (to vi[◦�]) and to vj[◦�] (to vj[�◦]). Finally, for each vertex vi ∈ V , G∗ contains an

intra-cluster edge (vi[�◦], vi[◦�]). The canonical digraph and the canonical c-graph form dual

concepts, as illustrated in Fig. 2.3a; the canonical c-graph of G� is the original c-graph C

(neglecting clusters originated by dummy vertices) and the canonical digraph of C∗ is the

original digraph D (suppressing dummy vertices).

NodeTrix Planarity. A NodeTrix representation of a c-graph C = (G,P) is a drawing of

C such that: (i) Each cluster Vi ∈ P is represented as a symmetric adjacency matrix Mi

(with |Vi| rows and columns), drawn in the plane so that its boundary is a square Qi with

sides parallel to the coordinate axes. (ii) No two matrices intersect, that is, Qi ∩Qj = ∅, for

all 1 ≤ i < j ≤ c. (iii) Each intra-cluster edge is represented by the adjacency matrix Mi.

(iv) Each inter-cluster edge (u, v) with u ∈ Vi and v ∈ Vj is represented as a simple Jordan
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arc connecting a point on the boundary of Qi with a point on the boundary of Qj , where the

point on Qi (on Qj) belongs to the column or to the row of Mi (resp. of Mj) associated with

u (resp. with v). A NodeTrix representation is planar if no inter-cluster edge intersects a

matrix or another inter-cluster edge, except possibly at a common end-point; see Figs. 2.1b

and 2.3b. The NodeTrix Planarity problem asks whether a c-graph admits a planar

NodeTrix representation. NodeTrix Planarity has been proved NP-complete for c-graphs

whose clusters have size larger than or equal to 5 [54].

We are ready to establish our main technical lemmas.

Lemma 2.1. C-graph C is planar NodeTrix if and only if G� admits a 6-modal embedding.

Lemma 2.2. Digraph D admits a 6-modal embedding if and only if C∗ is planar NodeTrix.

Proof for Lemmas 2.1 and 2.2. Let Mi be the matrix representing cluster Vi = {vi[�◦], vi[◦�]}.

We have that, independently of which of the two possible permutations for the rows and

columns of Mi is selected, the boundary of Qi is partitioned into three maximal portions

associated with vi[�◦] and three maximal portions associated with vi[◦�]; that is, they form

the pattern [1, 2, 1, 2, 1, 2], see Fig. 2.3b. Therefore, any planar NodeTrix representation

of C (of C∗) can be turned into a 6-modal embedding of G� (of D) via a local redrawing

procedure which operates in the interior of Qi; also, any 6-modal embedding of G� (of D) can

be turned into a planar NodeTrix representation of C (C∗) via a local redrawing procedure

which operates in a small disk centered at vi that contains only vi and intersects only edges

incident to vi.

SinceG� can be constructed in linear time from C, Lemma 2.1 and the algorithm of Theorem 2.7

for solving k-Modality of directed partial 2-trees give us the following.

Theorem 2.1. NodeTrix Planarity can be solved in linear time for flat clustered graphs

whose clusters have size at most 2 and whose canonical digraph is a directed partial 2-tree.
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Note that (i) C∗ can be constructed in polynomial time from D, (ii) C∗ only contains clusters

of size 2 (although clusters corresponding to vertices of D incident to incoming or outgoing

edges only could be simplified into clusters of size 1), and (iii) each cluster Vi ∈ P∗, with

vi ∈ V (D), is incident to α inter clusters edges, where α is the degree of vi in D. These

properties and the fact that in Theorem 2.12 we prove the k-Modality problem to be

NP-complete for digraphs of maximum degree ∆ ≥ k + 3 give us the following.

Theorem 2.2. NodeTrix Planarity is NP-complete for flat clustered graphs whose

clusters have size at most 2, even if each cluster is incident to at most 9 inter-cluster edges.

We remark that the above NP-completeness result is best possible in terms of the size of

clusters, as clusters of size 1 do not offer any advantage to avoid intersections between

inter-cluster edges. Also, it solves [54, Open Problem (i)], which asks for the complexity of

NodeTrix Planarity for c-graphs whose clusters have size between 2 and 5.

Clique Planarity. Hybrid representations have also been recently studied in the setting in

which clusters are represented via intersections of geometric objects. In particular, Angelini

et al. [9] introduced the following type of representations. Suppose that a c-graph (G,P) is

given, where P is a set of cliques that partition the vertex set of G. In an intersection-link

representation, the vertices of G are represented by geometric objects that are translates

of the same rectangle. Consider an edge (u, v) and let R(u) and R(v) be the rectangles

representing u and v, respectively. If (u, v) is an intra-cluster edge (called intersection-edge

in [9]), we represent it by drawing R(u) and R(v) so that they intersect, otherwise if (u, v) is

an intra-cluster edge (called link-edge in [9]), we represent it by a Jordan arc connecting R(u)

and R(v). A clique-planar representation is an intersection-link representation in which no

inter-cluster edge intersects the interior of any rectangle or another inter-cluster edge, except

possibly at a common end-point. The Clique Planarity problem asks whether a c-graph

(G,P) admits a clique-planar representation.
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Angelini et al. proved the Clique Planarity problem to be NP-complete, when P contains

a cluster V ∗ with |V ∗| ∈ O(|G|), and asked, in [9, Open Problem (2)], about the implications

of using different geometric objects for representing vertices, rather than translates of the

same rectangle. We address this question by considering k-combs as geometric objects, where

a k-comb is the simple polygon with k spikes illustrated in Fig. 2.3c. We have the following.

Lemma 2.3. C-graph C is a positive instance of Clique Planarity using k-combs as

geometric objects if and only if G� admits a 2k-modal embedding.

Lemma 2.4. Digraph D admits an 4-modal embedding if and only if C∗ is a positive instance

of Clique Planarity using 2-combs as geometric objects.

Proof for Lemmas 2.3 and 2.4. Let Ai be an arrangements of 2-combs representing cluster

Vi = {vi[�◦], vi[◦�]}. We have that, the boundary of Ai is partitioned into at most two maximal

portions associated with vi[�◦] and at most two maximal portions associated with vi[◦�]; that is,

they form the pattern [1, 2, 1, 2], see Fig. 2.3c. Therefore, as for Lemmas 2.1 and 2.2, we can

exploit a local redrawing procedure to transform a clique-planar representation of C (of C∗)

into a 4-modal embedding of G� (of D), and vice versa.

Combining Lemma 2.3 and the algorithm of Theorem 2.7 gives us the following positive

result.

Theorem 2.3. Clique Planarity using r-combs, with r ≥ 1, as geometric objects can be

solved in linear time for flat clustered graphs whose clusters have size at most 2 and whose

canonical digraph is a directed partial 2-tree.

Finally, Lemma 2.4 and the discussion preceding Theorem 2.2 imply the following.

Theorem 2.4. Clique Planarity using 2-combs as geometric objects is NP-complete, even

for flat clustered graphs with clusters of size at most 2 each incident to at most 7 inter-cluster

edges.
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Algorithm 1 Function TestSimplyConnected implements the reduction of Theorem 2.5
by exploiting function TestBiconnected to solve 4-MaxModality for biconnected
instances. BinarySearch(f, β,m, v) exploits a binary search and function f to compute
the minimum modality for cut-vertex v in an embedding of β satisfying m at every vertex
different from v.

1: function TestSimplyConnected((〈G,m〉))
2: if G is biconnected then
3: return TestBiconnected(〈G,m〉)
4: β ← leaf-block of G with parent cut-vertex v
5: `← BinarySearch(TestBiconnected,β,m, v)
6: if ` ≤ m(v) then
7: m(v)← min(m(v),m(v)− `+ 2)
8: return TestSimplyConnected(〈G−β ,m〉)
9: return NO

2.4 Polynomial-time Algorithms

In this section, we present an algorithmic framework to devise efficient algorithms for the

k-Modality problem for notable families of instances. First, in Section 2.4.1, we show how to

efficiently reduce the k-Modality problem in connected digraphs to the k-MaxModality

problem in biconnected digraphs. Then, in Section 2.4.2, we introduce preliminaries and

definitions concerning SPQR-trees and k-modal embeddings of biconnected digraphs.

2.4.1 Simply-Connected Graphs

We first observe that the k-MaxModality problem is a generalization of the k-Modality

problem. In fact, a directed graph G = (V,E) admits a k-modal embedding if and only if

the pair 〈G,m〉, with m(v) = k,∀v ∈ V (G), is a positive instance of the k-MaxModality

problem.

Observation 2.2. k-Modality reduces in linear time to k-MaxModality.

Let 〈G,m : V (G)→ E+
4 〉 be an instance of 4-MaxModality; also, let β be a leaf-block of
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the BC-tree T of G and let v be the parent cut-vertex of β in T . We denote by G−β the

subgraph of G induced by v and the vertices of G not in β, i.e., G−β = G− (β − {v}). Also,

let B(T ) be the set of blocks in T . We show that k-MaxModality (and k-Modality,

by Observation 2.2) in connected digraphs is Turing reducible to k-MaxModality in

biconnected digraphs.

Theorem 2.5. Given a subroutine TestBiconnected that tests k-MaxModality for

biconnected instances, there exists a procedure TestSimplyConnected that tests

k-MaxModality for connected digraphs. Further, given an instance 〈G,m〉 of k-MaxModality,

the runtime of TestSimplyConnected(〈G,m〉) is

O
(
|G|+ log k

∑
β∈B(T )

r(β)
)
,

where r(β) is the runtime of TestBiconnected(〈β,m〉) and T is the BC-tree of G.

Proof. We present procedure TestSimplyConnected in Algorithm 1. The key idea in the

algorithm is the following. Consider a leaf-block β of T with parent cut-vertex v. If E is an

embedding of G, then it induces two embeddings, one for β and one for G−β , and v belongs

to both subgraphs. If E satisfies m, then it holds that (i) both induced embeddings satisfy m

and (ii) the sum of the modality of v in these embeddings is at most m(v) + 2. We show that

in fact verifying properties (i) and (ii) is also sufficient to test if G admits an embedding that

satisfies m.

The algorithm works recursively as follows. It selects a leaf-block β of T with parent cut-

vertex v and computes the minimum modality ` at v for which β admits an embedding that

satisfies m. To achieve this goal the algorithm exploits a binary search using subroutine

TestBiconnected. Depending on the minimum modality at v it either rejects the instance

if no embedding of β satisfying m exists, or sets m(v) = min(m(v),m(v)− `+ 2) for G−β and

recurs on it, otherwise.
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To prove the correctness of the algorithm we simply need to show that any pair of embeddings

B of β (computed at line 5) and B− of G−β (computed at line 8) that satisfy m such that the

modality of v in B is at most ` and the modality of v in B− is at most min(m(v),m(v)− `+ 2)

can be composed together to obtain an embedding E of G that satisfies m.

By rerouting the edges of β to select a different outer face and (possibly) flipping the resulting

embedding, we can assume that B is such that: 1. cut-vertex v lies on the outer face of B,

2. if v is incident to both incoming and outgoing edges, then there exist both an incoming

edge w1 and an outgoing edge w2 incident to v and to the outer face of B such that the edges

incident to v different from w1 and w2 appear after w1 (and before w2) in the clockwise order

around v.

We construct E by setting the rotation of every vertex as follows. Observe that, the modality

of every vertex u 6= v is at most m(u), by hypothesis. So we set the rotation of each vertex

different from v in E to the same as in B−, if it belongs to G−β , or in B, if it belongs to β.

What remains is setting the rotation of vertex v in such a way that the modality of v in E is

at most m(v).

It is useful to think that we are embedding B in a face of H incident to v. Ideally, the two

edges incident to the face have a different orientation but if no such face exists then the

modality of v in H is 0 and embedding in any face will satisfy m.

We first set the rotation of v in E in such a way that (i) the clockwise order of the edges

incident to v and belonging to β (to G−β ) is the same as determined by B (by H) and (ii) the

edges of β (of G−β ) incident to v are consecutive around v. We then distinguish two cases

which further constrain the ordering of the edges incident to v.

In the first case, at least one of β and G−β , say β, only contains edges with the same orientation

incident to v, say incoming at v. Let e1 be an incoming edge in G−β incident to v, or any edge

in G−β incident to v if no incoming edge exists. Then, we additionally constrain the rotation
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at v so that an edge incident to v and to the outer face of B follows e1 around v. Observe

that, this corresponds to inserting a drawing of β whose embedding is B inside the face of B−

incident to e1, and “merging” the two copies of v in β and G−β . The case in which β contains

only outgoing edges incident to v is symmetric. As for the modality of v in E , if the modality

of v is 0 in both B and B− then the modality of v in E is at most 2. Otherwise, the modality

of v in E is the same as the modality γ of v in B−, as no alternation has been introduced

when composing B and B− to obtain E . Therefore, since γ ≤ min(m(v),m(v)− `+ 2) (line

7) and ` = 0, the modality of v in E is at most m(v).

In the second case, both β and G−β contain incoming and outgoing edges incident to v; refer

to Fig. 2.4. First, consider an alternating pair in B− consisting of edges e1 and e2 of G−β

incident to v (observe that such a pair always exists). Assume, without loss of generality,

that e1 is incoming at v and that e2 is outgoing from v and e1 precedes e2 clockwise around

v. Also consider similar alternating edges w1 and w2 of β incident to v.

Then, we additionally constrain the rotation at v so that e1 precedes clockwise w1 (w2

precedes clockwise e2) around v. Observe that, by construction, the modality of v in E is

equal to γ + `− 2, where γ is the modality of v in B− and ` is the modality of v in B. This is

due to the fact that, the above selection of embedding B avoids introducing an unnecessary

alternation when composing B and B− to obtain E . Also, since ` ≥ 2, vertex v has modality

γ ≤ m(v)− `+ 2 in B−. Thus, the modality of v in E is at most m(v).

Finally, we discuss the running time of Algorithm 1. The non recursive work of the algorithm

only consists of constant time operations and of at most dlog(k)e calls to the subroutine

TestBiconnected, while the recursive work consists of at most one call to the function

TestSimplyConnected. Therefore, since the total number of calls to subroutine TestBi-

connected is bounded by the number of blocks of G, which is O(|T |) = O(|G|) multiplied

by log k, the overall running time is O(|G|+ log k
∑

β∈B(T ) r(β)). This concludes the proof.
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Figure 2.4: Illustration for the proof of Theorem 2.5. The embedding of G−β contains a
face (in grey) with an alternating pair (e1, e2) incident to the cutvertex v; block β can be
reconnected to v inside such a face without introducing unnecessary alternations.

2.4.2 Biconnected Graphs

Consider a pair 〈G,m〉 such that G is biconnected and let E be a planar embedding of G.

Also, let T be the SPQR-tree of G rooted at an edge e of G incident to the outer face of E .

We will assume that the virtual edges of the skeletons of the nodes in T are oriented so that

the extended skeleton of each node µ is a DAG with a single source uµ and a single sink

vµ. This implies that the virtual edges belonging to the extended skeleton of a P-node have

the same orientation, from uµ to vµ, and that the virtual edges of the skeleton of an S-node

form a directed path from uµ to vµ. Let µ be a node of T and let Eµ be the planar (regular)

embedding of skel(µ) induced by E . For an oriented edge d = uv of skel(µ), the left and

right face of d in Eµ is the face of Eµ seen to the left and to the right of d, respectively, when

traversing this edges from u to v. We define the outer left (right) face of Eµ as the left (right)

face of the edge uµvµ in Eµ.

Embedding tuples. An embedding tuple (for short, tuple) is a 4-tuple 〈σ1, a, σ2, b〉, where

σ1, σ2 ∈ {◦�, �◦} are orientations and a, b ∈ N are non-negative integers. Consider two tuples

t = 〈σ1, a, σ2, b〉 and t′ = 〈σ′1, a′, σ′2, b′〉. We say that t dominates t′, denoted as t � t′,

if σ1 = σ′1, σ2 = σ′2, a ≤ a′, and b ≤ b′. Also, we say that t and t′ are incompatible, if

none of them dominates the other. Since the relationship � is reflexive, antisymmetric,
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Figure 2.5: Illustration for the proof of Lemma 2.5. The parity of t and t′ is the same at uµ
and different at vµ; in particular, even if a new alternation is introduced between the pair
(e, e′) at vµ, the different parity guarantees that the modality at vµ does not increase from E
to E ′.

and transitive, it defines a poset (T,�), where T is the set of embedding tuples. A subset

S ⊆ T is succinct or an antichain, if the tuples in S are pair-wise incompatible. Consider two

subsets S, S ′ ⊆ T of tuples. We say that S dominates S ′, denoted as S � S ′, if for any tuples

t′ ∈ S ′ there exists at least one tuple t ∈ S such that t � t′. Also, S reduces S ′ if S � S ′ and

S ⊆ S ′. Finally, S is a gist of S ′, if S is succinct and reduces S ′.

Let eu and ev be the edges of pert(µ) incident to the outer left face of Eµ and to uµ and vµ,

respectively, possibly eu = ev. Also, let a and b be non-negative integers. We say that the

embedding Eµ realizes tuple 〈σ1, a, σ2, b〉, if σ1 = σ(eu, uµ), σ2 = σ(ev, vµ), and a and b are

the number of inner faces of Eµ whose (two) edges incident to uµ and to vµ, respectively, form

an alternating pair. A tuple t = 〈σ1, a, σ2, b〉 is realizable by µ, if there exists an embedding

of pert(µ) satisfying m that realizes t, and admissible, if a ≤ m(u) and b ≤ m(v). A tuple

is good for µ if it is both admissible and realizable by µ. We denote by S(µ) the gist of the

set of good tuples for a node µ. Let eµ be the virtual edge representing µ in the skeleton

of the parent of µ in T , with a small overload of notation, we also denote S(µ) by S(eµ).

For a tuple t = 〈σ1, a, σ2, b〉 ∈ S(eµ), where e = uµvµ, the pair (σ1, a) is the embedding pair

of t at uµ; likewise, the pair (σ2, b) is the embedding pair of t at vµ. We have the following

substitution lemma.

Lemma 2.5. Let E be a planar embedding of G satisfying m. Let µ be a node of T and let

Eµ be the embedding of pert(µ) induced by E. Also, let E ′µ 6= Eµ be an embedding of pert(µ)

satisfying m. Then, G admits an embedding E ′ satisfying m in which the embedding of pert(µ)
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is E ′µ, if t′ � t, where t and t′ are the embedding tuples realized by Eµ and by E ′µ, respectively.

Proof. We show how to construct a drawing Γ′G of G satisfying m in which the embedding

of pert(µ) is E ′µ; see Fig. 2.5. Let ΓG be a drawing of G whose embedding is E . Remove from

ΓG the drawing of all the vertices of pert(µ) different from uµ and vµ and the drawing of all

the edges of pert(µ). Denote by f the face of the resulting embedded graph G− that used

to contain the removed vertices and edges. We obtain Γ′G by inserting a drawing of pert(µ)

whose embedding is E ′µ in the interior of f so that vertices uµ and vµ are identified with their

copies in G−.

We claim that the embedding E ′ of Γ′G satisfies m. First, the modality of each vertex of G not

in pert(µ) is the same in E ′ as in E . Second, the modality of each vertex in pert(µ) different

from uµ and vµ is the same in E ′ as in E ′µ.

We only need to show that uµ and vµ satisfy m in E ′. We have that t = 〈σ1, a, σ2, b〉 and

t = 〈σ′1, a′, σ′2, b′〉. We show that the modality of uµ in E ′ is smaller than or equal to the

modality of uµ in E ; analogous arguments hold for vµ. We distinguish two cases. If a and

a′ have the same parity, as shown at vertex u in Fig. 2.5, then E ′ contains an alternating

pair consisting of an edge in G′ and of an edge in pert(µ) incident to uµ only if E contains

an alternating pair consisting of an edge in G′ and of an edge in pert(µ) incident to uµ.

Therefore, since a′ ≤ a, the modality of uµ in E ′ is smaller than or equal to the modality of

uµ in E . Otherwise, if a and a′ have the different parity, as shown at vertex v in Fig. 2.5,

then E ′ may contain an alternating pair consisting of an edge in G′ and of an edge in pert(µ)

incident to uµ and to the right outer face of pert(µ) even if E does not contain an alternating

pair consisting of an edge in G′ and of an edge in pert(µ) incident to uµ. However, in this

case, it holds that a′ < a, therefore the modality of uµ in E ′ is again smaller than or equal to

the modality of uµ in E .

Let T be the SPQR-tree T of G rooted at a reference edge e. In the remainder of the section,
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we show how to compute the gist S(µ) of the set of good tuples for µ, for each non-root node

µ of T . In the subsequent procedures to compute S(µ) for S-, P-, and R-nodes, we are not

going to explicitly avoid set S(µ) to contain dominated tuples. In fact, this can always be

done at the cost of an additive O(k2) factor in the running time, by maintaining an hash

table that stores the tuples that have been constructed (possibly multiple times) by the

procedures and by computing the gist of the constructed set as a final step.

Property 2.1. For each node µ ∈ T , it holds that |S(µ)| ∈ O(k).

Proof. By the definition of gist, any embedding pair (σ, a) has at most two tuples t′, t′′ ∈ S(µ)

such that (σ, a) is the embedding pair of t′ and t′′ at uµ; also, the embedding pairs (σ′, a′)

of t′ and (σ′′, a′′) of t′′ at vµ are such that σ′ 6= σ′′. Since there exist at most 2k realizable

embedding pairs (σ, a) at uµ (as σ ∈ {�◦, ◦�}, a ∈ {0, 1, . . . , k}, and the existence of tuple whose

embedding pair at uµ is (σ, 0) implies that all tuples have such an embedding pair at uµ), we

have |S(µ)| ≤ 4k.

If µ is a leaf Q-node in T , then S(µ) = {〈σ(uµvµ), 0, σ(uµvµ), 0〉}. If µ is an internal node

of T , we visit T bottom-up and compute the set S(µ) for µ assuming to have already

computed the sets S(µ1), . . . , S(µk) for the children µ1, . . . , µk of µ (where µi is the child of

µ corresponding to the edge ei in skel(µ)). Let ρ be the unique child of the root of T . Once

the set S(ρ) has been determined, we can efficiently decide whether G admits an embedding

satisfying m in which the reference edge e is incident to the outer face by means of the

following lemma.

Lemma 2.6. Given S(ρ), we can test whether G has an embedding that satisfies m in O(k2)

time.

Proof. Let t = 〈σ1, a, σ2, b〉 be a realizable tuple in S(ρ) and let Et be the embedding of G

obtained by inserting the reference edge e in the outer face of a regular embedding Eρ of
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Figure 2.6: Illustrations for the proof of Claim 2.1. (a) The root edge e and ρ (where the
orientation of ρ being arbitrary). (b) A 4-modal embedding of G, where u has 2 alternations
and v has 4 alternations. (b) A 6-modal embedding of G, where u has 4 alternations and v
has 6 alternations.

pert(ρ) realizing t that satisfies m. Let u and v be the poles of ρ. We have the following

claim.

Claim 2.1. Embedding Et satisfies m if and only if:

(i) (a) m(u) ≥ a + 1, if a is odd, or (b) m(u) ≥ a, if a is even and σ1 = σ(e),

or (c) m(u) ≥ a+ 2, if a is even and σ1 6= σ(e), and

(ii) (a) m(v) ≥ b + 1, if b is odd, or (b) m(v) ≥ b, if b is even and σ2 = σ(e),

or (c) m(v) ≥ b+ 2, if b is even and σ2 6= σ(e).

Proof. To prove the statement for vertex u, we just need to observe that, if a is odd, then

the edges e′u and e′′u incident to u and to the left and to the right outer face of Eρ, respectively,

have opposite orientations, while if a if even, then these edges have the same orientation

(in this case, possibly e′u = e′′u). Also, since a is the number of alternations between edges

incident to u and to the internal faces of Eρ, the modality at u in Eρ is equal to a+ 1, if a is

odd, while it is equal to a, otherwise. Therefore, since edge e appears between e′u and e′′u in

embedding Et obtained from Eρ, we have that the number of alternations around u in Et is

the same as in Eρ, if a is odd or if a is even and σ(e) = σ1, and it is equal to the modality of
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u in Eρ plus 2, if a is even and σ(e) 6= σ1. Refer to Fig. 2.6. The proof of the statement for

vertex v is analogous.

By Claim 2.1, for each realizable tuple t ∈ S(ρ), we can test whether embedding Et satisfies

m in constant time. Also, |S(ρ)| ∈ O(k2), by Property 2.1. Therefore, we can test in O(k2)

time whether there exists an embedding of pert(ρ) that can be extended to an embedding of

G that satisfies m in which e is incident to the outer face.

We remark that the choice of the reference edge does not affect the existence of a 4-modal

embedding. In fact, a change of the outer face such that edge e is incident to such a face can

always be performed while preserving the rotation at any vertex.

2.5 Partial 2-trees

In the following, we describe how to compute S(µ), if µ is an S-node (Lemma 2.7) and a

P-node (Lemma 2.8) in O(f(k)| skel(µ)|) time, where f is a computable function.

Lemma 2.7. Set S(µ) can be constructed in O(k2| skel(µ)|) time for an S-node µ.

Proof. Let µ be an S-node with skeleton skel(µ) = (e1, e2, . . . , eh), where ei = uµivµi

is the i-th virtual edge of skel(µ). We define τi as the S-node obtained by the series

composition of µ1, µ2, . . . , µi. Clearly, pert(τi) ⊆ pert(µ) and skel(τi) = (e1, e2, . . . , ei).

Initially S(τ1) = S(µ1). We show how to construct S(τi), for i = 2, . . . , h. Since τk = µ,

this gives us S(µ). The key idea is that when doing the series composition we only need to

consider the embedding pairs at the shared vertex.

Consider two adjacent virtual edges ej = vj−1vj and ej+1 = vjvj+1 in skel(µ) sharing the

internal vertex vj, and let t1 = (σ′1, a, σ
′
2, b) ∈ S(µj) and t2 = (σ′′1 , c, σ

′′
2 , d) ∈ S(µj+1). We

define a function g(σ′2, b, σ
′′
1 , c) on the embedding pairs of t1 and of t2 at vj which determines
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the modality at vj when an embedding of µj realizing t1 and an embedding of µj+1 realizing

t2 are composed. The value of function g(·) can easily be computed in O(1) time for any pair

of tuples t1 ∈ S(µj) and t2 ∈ S(µj+1).

For any 2 ≤ j ≤ h, we obtain S(τj) from S(τj−1) and S(µj) as follows. For each tuple

t1 = (σ′1, a, σ
′
2, b) ∈ S(τj−1) and t2 = (σ′′1 , c, σ

′′
2 , d) ∈ S(µj), we add tuple 〈σ′1, a, σ′′2 , d〉 to

S(τj), if g(σ′2, b, σ
′′
1 , c) ≤ m(vj). It is clear that the set S(τj) computed in the above fashion

contains all and only all the tuples realizable by some embedding of pert(τj). Since both

|S(τj−1)| and |S(µj)| are in O(k), by Property 2.1, and since for each pair of tuples (t1, t2)

with t1 ∈ S(τj−1) and t2 ∈ S(µj) we only perform constant-time operations, we have that

S(τj) can be computed in O(k2) time (from S(τj−1) and S(µj)), for any 1 < j ≤ h. Therefore,

the overall running time for computing S(µ) is O(k2| skel(µ)|).

Lemma 2.8. Set S(µ) can be constructed in O((2k + 4)!k3 + | skel(µ)|) time for a P-node µ.

Proof. Let µ be a P-node with poles uµ and vµ, whose skeleton skel(µ) consists of h parallel

virtual edges e1, e2, . . . , eh. Consider two children µ1 and µ2 of µ such that: (i) all the

edges incident to uµ in pert(µ1) and in pert(µ2) have the same orientation σu and (ii) all

the edges incident to vµ in pert(µ1) and in pert(µ2) have the same orientation σv. Clearly,

S(µ1) = S(µ2) = {〈σu, 0, σv, 0〉}. We have the following claim.

Claim 2.2. Let τ ′ be the P-node such that skel(τ ′) = skel(µ)− e2. Then, S(τ ′) = S(µ).

Proof. Let µ1, . . . , µh be the children of µ associated with e1, . . . , eh, respectively.

We prove that a tuple t belongs to S(τ ′) if and only if it belongs to S(µ).

Let t be an embedding tuple in S(τ ′), and let E ′ be an embedding of pert(τ ′) realizing t.

The embedding E ′ is defined by a permutation πτ ′ of the virtual edges of skel(τ ′) and by

a choice for an embedding of the pertinent graphs of all the children of τ ′. We construct

35



an embedding E of pert(µ) realizing t, by selecting a permutation πµ of the virtual edges of

skel(µ) and an embedding of the pertinent graphs of all the children of µ, as follows. First,

we initialize πµ = πτ ′ , and then we insert the virtual edge e2 in πµ so that it immediately

follows e1. Second, we set the embedding of the pertinent graphs of the children of µ that

are also children of τ ′ to the one they have in E ′, and we set the embedding of pert(µ2) to be

any embedding of such a pertinent graph that satisfies m. Clearly, the resulting embedding

of pert(µ) satisfies m. Also, since the edges incident to uµ (resp., to vµ) have the same

orientation both in pert(µ1) and in pert(µ2) at uµ (resp., at vµ), and since such edges appear

consecutively around uµ (resp., around vµ), by construction, we have that the embedding

type of E is the same at the one of E ′. This concludes the proof that t ∈ S(µ).

Let t = 〈σ1, a, σ2, b〉 be an embedding tuple in S(µ), and let E be an embedding of pert(µ)

realizing t. The embedding E is defined by a permutation πµ of the virtual edges of skel(µ)

and by a choice for an embedding of the pertinent graphs of all the children of µ.

First, we show that we may assume that e1 immediately precedes e2 in πµ. Suppose, without

loss of generality by a possible renaming of such virtual edges, that e1 precedes e2 in πµ,

and that e1 and e2 are not consecutive in πµ. Let E∗ be the embedding of pert(µ) obtained

by moving e2 right after e1 in πµ, while keeping unchanged the embedding of each of the

pertinent graphs of the children of µ. Clearly, the embedding tuple t∗ of E∗ is of the form

〈σ1, c, σ2, d〉, as the edges incident to the left outer face of E∗ and to uµ (resp., and to vµ) are

the same edges incident to the left outer face of E and to uµ (resp., and to vµ). Also, c ≤ a

and d ≤ b holds, since the edges incident to uµ (resp., to vµ) have the same orientation both

in pert(µ1) and in pert(µ2) at uµ (resp., at vµ). Further, neither c < a nor d < b holds, as

otherwise t∗ would dominate t, which contradicts t ∈ S(µ). Therefore, we have t∗ = t.

Then, by the above assumption, we obtain an embedding E ′ of pert(τ ′) with the same

embedding type as the one of E , by simply restricting E to
⋃
i 6=2 pert(µi). This concludes the

proof that t ∈ S(τ ′) and the proof of the claim.

36



By Claim 2.2, we can exploit the preprocessing step that precedes the claim to reduce in

O(| skel(µ)|) time the computation of S(µ) to the computation of S(τ), where τ is a P-node

whose skeleton consists of at most 2k + 4 virtual edges of skel(µ). The P-node τ contains

at most four children each of which has the property that its pertinent graph contains only

edges with the same orientation at uµ and only edges with the same orientation at vµ. Also,

every other child of τ contributes with at least one alternating pair of edges incident to uµ

or to vµ in any planar embedding of pert(τ). Therefore, in order for pert(τ) to admit an

embedding that satisfies m, there must exist at most 2k such children of µ (and of τ). Thus,

if skel(τ) contains more that 2k + 4 virtual edges after the preprocessing described above,

then we can immediately determine that S(µ) = S(τ) = ∅. Otherwise, τ contains at most

2k + 4 virtual edges and we construct S(τ) as follows.

For a permutation π of the virtual edges of pert(τ), let τπi be the P-node obtained by

restricting τ to the first i virtual edges in π. Set the embedding of skel(τπi ) so that the virtual

edges of skel(τπi ) are ordered according to π. Then, in a fashion similar to the S-node case,

we can compute S(τπi ) for the given embedding of skel(τπi ) by combining S(τπi−1) and S(ei)

in O(k2) time (recall that both these sets have size O(k), by Property 2.1). Clearly, for any

fixed π, we can compute S(τhπ ) in O(k3) time. Thus, by performing the above computation

for all the (2k + 4)! possible permutations for the virtual edges of pert(τ), we can construct

S(τ) in O((2k + 4)!k3 + | skel(µ)|) time.

Altogether, Lemmas 2.7 and 2.8 yield the following main result.

Theorem 2.6. k-MaxModality can be solved in O((2k + 4)!k3n) for series-parallel di-

graphs.

Observation 2.2, Theorem 2.5, and Theorem 2.6 immediately imply the following.

Corollary 2.1. k-Modality can be solved in O(((2k + 4)!k3 log k)n) for directed partial

2-trees.
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Due to the special algorithmic framework we are employing, we can however turn the

multiplicative O(log k) factor in the running time into an additive O(k) factor by modifying

Algorithm 1 as follows. When considering a cut-vertex v (line 4), we will execute “only

once” the function TestBiconnected (line 5) by rooting the SPQ-tree at a Q-node η

corresponding to an edge incident to v. This will allow us to compute the minimum modality

for cut-vertex v in an embedding that satisfies m, by simply scanning the set S(η), which

takes O(k) time by Property 2.1, rather than by exploiting a logarithmic number of calls to

TestBiconnected.

Theorem 2.7. k-Modality can be solved in O((2k + 4)!k3n) for directed partial 2-trees.

2.6 A Linear-time Algorithm for 4-MaxModality when

∆ ≤ 6

In this section, we show that in the special case when k = 4 and G has maximum degree ∆ ≤ 6,

it is possible to compute the set S(µ) when µ is an R-node in linear time in the size of skel(µ).

Our strategy to compute S(µ) is as follows. We select a single tuple from the admissible set

of each virtual edge incident to uµ and vµ, in every possible way. Each selection determines

a “candidate tuple” t for S(µ). First, we check if t is admissible at both u and v. Second,

we restrict the tuples of the edges incident to the poles to only the tuples that form t and

check if there is a way of satisfying m at the (inner) vertices of skel(µ). If both the poles

and the inner vertices are satisfiable, then we add t to S(µ). Since the degrees of the poles

are bounded, there is at most a constant number of candidate tuples which must be checked.

The complexity lies in this check.

We now formally describe how to compute S(µ). First, for each virtual edge ei of skel(µ)

incident to the poles of µ, we select a tuple ti from S(µi). That is, we allow only embedding
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realizing ti for the pertinent graph of child µi. Let Tu = [tu,1, tu,2, . . . , tu,`] be the list

of tuples selected for the virtual edges eu,1, eu,2, . . . , eu,` of skel(µ) incident to uµ and let

Tv = [tv,1, tv,2, . . . , tv,h] be the list of tuples selected for the virtual edges ev,1, ev,2, . . . , ev,h of

skel(µ) incident to vµ. Without loss of generality, we assume virtual edges eu,1 and ev,1 are

the virtual edges of skel(µ) incident to uµ and to vµ, respectively, and to the left outer face

of the unique (up to a flip) embedding of skel(µ); possibly eu,1 = ev,1.

Each pair of lists Tu and Tv yields a candidate tuple t = 〈σ1, a, σ2, b〉 for µ, where σ1 is the

orientation of tu,1 at u, a is the number of alternations at u determined by Tu, σ2 is the

orientation of tv,1 at v, and b is the number of alternations at v determined by Tv. Observe that

the same tuple t might originate from different pairs of lists for uµ and vµ. The tuples selected

to construct Tu and in Tv allow for an embedding of pert(µ) realizing tuple t if and only if:

Condition 1: tuple t satisfies m at uµ and at vµ, and

Condition 2: it is possible to select tuples for each of the remaining virtual edges of skel(µ)

that satisfy m at every internal vertex of skel(µ).

Let P(µ) be the set of candidate tuples for µ constructed as described above. By Property 2.1,

the admissible set of any virtual edge has at most O(1) tuples and there are at most 5 virtual

edges in skel(µ) incident to each pole of µ (since ∆ ≤ 6), so |P(µ)| ∈ O(1). Thus, we can

easily filter out the candidate tuples that do not satisfy Condition 1 in total constant time.

Therefore, in the following we assume that all the candidate tuples in set P(µ) satisfy such a

condition.

In the remainder of this section, for each pair of lists Tu and Tv yielding a tuple t ∈ P(µ), we

will show how to test Condition 2 for µ in linear time. This and the fact that |P(µ)| ∈ O(1)

imply the following.

Lemma 2.9. Set S(µ) can be constructed in O(| skel(µ)|) time for an R-node µ, if ∆ ≤ 6.
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Altogether, Lemmas 2.7, 2.8 and 2.9 yield the following main result.

Lemma 2.10. 4-MaxModality can be solved in linear time for biconnected digraphs with

∆ ≤ 6.

Observation 2.2, Theorem 2.5, and Lemma 2.10 immediately imply the following.

Theorem 2.8. 4-Modality can be solved linear time for digraphs with ∆ ≤ 6.

To prove Lemma 2.9, we show how to solve the following auxiliary problem for special

instances.

Problem: 4-MaxSkelModality

Input: A triple 〈G = (V,E),S = {S(e1), . . . , S(e|E|)},m〉 where G is an embedded

directed graph, each S(ei) is a set containing embedding tuples for the virtual edge

ei ∈ E, and m : V → E+
4 is the maximum-modality function.

Question: Can we select a tuple from each set S(ei) in such a way that the modality at

each vertex v ∈ V is at most m(v)?

For each pair of lists Tu and Tv yielding a candidate tuple in P(µ), we will construct an instance

Iµ(Tu, Tv) = (G,S,m) of 4-MaxSkelModality as follows. 1. We set G = skel(µ) and we fix

the embedding of G to be equal to the unique regular embedding of skel(µ); 2. for each virtual

edge eu,i incident to uµ, with i = 1, . . . , `, we set S(eu,i) = {tu,i}; for each virtual edge ev,j inci-

dent to vµ, with j = 1, . . . , h, we set S(ev,j) = {tv,j}; for each of the remaining virtual edges ed

of skel(µ), we set S(ed) = S(µd); finally, 3. the maximum-modality function of Iµ coincides with m.

Clearly, Iµ(Tu, Tv) is a positive instance of 4-MaxSkelModality if and only if, given the con-

strains imposed by the tuples in Tu and in Tv, there exists a selection of tuples for the edges of G

not incident to uµ or vµ that satisfiesm at all the internal vertices of G, i.e., Condition 2 holds.
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Let v be a vertex of G and let e be an edge in E(v), we denote by Av(e) the maximum

number of alternations at v over all the tuples in S(e).

Definition 2.1 (Good instances). An instance of 4-MaxSkelModality is good if, for

any vertex v in G, it holds
∑

e∈E(v)(Av(e) + 1) ≤ 6.

Note that, for each edge e in ske(µ) incident to a vertex v, the pertinent graph He of the

child of µ associate with e contributes at least Av(e) + 1 edges to dHe(v). Thus, we have∑
e∈E(v)(Av(e) + 1) ≤

∑
e∈E(v) dHe(v) ≤ 6. Therefore, instance Iµ(Tu, Tv) is good. Although

4-MaxSkelModality turns out to be NP-complete in general (Theorem 2.12), we are now

going to show the following main positive result.

Theorem 2.9. 4-MaxSkelModality is linear-time solvable for good instances.

The outline of the linear-time algorithm to decide whether a good instance I = 〈G =

(V,E),S = {S(e1), . . . , S(e|E|)},m〉 of 4-MaxSkelModality is a positive instance is a

follows; see also Algorithm 2.

- We process I by means of a set of reduction rules applied locally at the vertices of G and

their incident edges. Each of these rules, if applicable, either detects that the instance I is a

negative instance or transforms it into an equivalent smaller instance I ′ = 〈G′,S ′,m′〉. Each

rule can be applied when specific conditions are satisfied at the considered vertex. A rule

may additionally set a vertex as marked. Any marked vertex v has the main property that

any selection of tuples from the admissible sets of the edges incident to v satisfies m′ at v.

- Let I∗ be the instance of 4-MaxSkelModality obtained when no reduction rule may

be further applied. We prove that instance I∗ has a special structure that allows us to

reduce the problem of testing whether I∗ is a positive instance of 4-MaxSkelModality

to that of verifying the NAE-satisfiability of a constrained instance of NAESAT, in

fact, of Planar NAESAT. Since Planar NAESAT is in P [82], this immediately
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implies that 4-MaxSkelModality is also in P. However, in Section 2.7, by strength-

ening a result of Porschen et al. [86], we are able to show that the constructed instances

of NAESAT are always satisfiable and that a satisfying NAE-truth assignment can

be computed in linear time.

Consider an unmarked vertex v of G. We provide three reduction rules that, if applicable,

turn a good instance I into an equivalent smaller good instance I ′. Each rule consists of a

condition for the rule to be applied and of a reduction describing how instance I ′ is obtained

from I.

We further assume the rules to be applied according to the order of priority given below (see

Algorithm 2). Notice that as a side-effect of applying a reduction rule, a neighbor of v in G′

may now satisfy the condition of a reduction rule.

We now clarify what we mean by a “smaller” instance. Let U(G) be the set of unmarked

vertices of G. Let φ(I) =
∑

v∈U(G)

∑
e∈E(v) |S(e)| and let ξ(I) = 32 · |E(G)|. Let π(I) =

φ(I) + ξ(I) be a function that associates an integer to instance I. We say that φ(I) is

the potential of I. Observe that, π(I) is always positive and π(I) ∈ O(|V (G)|). The

latter is due to the fact that (i) φ(I) ∈ O(|V (G)|), since G has bounded degree and since

|S(e)| ∈ O(1) for any edge e ∈ E(G), by Property 2.1, and that (ii) ξ(I) ∈ O(|V (G)|), since

O(|E(G)|) ∈ O(|V (G)|) due to the fact that G is planar. We shall say that an instance I ′ is

smaller than an instance I if π(I ′) < π(I).

Let u of G be a vertex and let e1, . . . , eh be the edges incident to u. By selecting a single

tuple from each set S(ei), we generate a combination of tuples for u. Since the rotation of u

is fixed, each combination determines a specific modality at v. Thus, it is natural to talk of

a satisfying combination, if m is satisfied by the combination at u, and of an unsatisfying

combination, otherwise Let Nu(e) ⊆ S(e) be the set containing all the tuples of e that do not

appear in any satisfying combination for u, where e is an edge incident to u.
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Algorithm 2 Procedure ReduceInstance

1: procedure ReduceInstance(I = 〈G,S,m〉)
2: Q = [ ] . Q is the queue of vertices to be processed
3: V ← V (G)
4: Set vertices in V to unmarked
5: while V 6= ∅ do
6: u← extract a vertex from V
7: Q ← Q∪ u
8: while Q 6= ∅ do
9: v ← extract a vertex from Q

10: for i = 1, 2, 3 do . Rule 1 may reject I; Rule 2 sets v as marked
11: Apply, if possible, Rule i at v

12: if Rules 1 or 3 have been applied then . Only Rules 1 and 3 modify I
13: Uv ← unmarked neighbors of v
14: Q ← Q∪ Uv
15: V ← V \ Uv

B Rule 1:

Condition: Let e1, . . . , eh be the edges of G incident to v. There exists i ∈ {1, . . . , h} such

that Nv(ei) 6= ∅.

Reduction: If Nv(ei) = S(ei), for any i ∈ {1, . . . , h}, then reject I. Otherwise, initialize

I ′ = I and set S ′(ei) = S(ei) \Nv(ei), for i = 1, . . . , h. —End of Rule 1

It is clear that, since no tuple t ∈ Nv(ei) appears in any valid solution for I, removing the

tuples in Nv(ei) from S(ei) yields an equivalent instance I ′. Also, for an unmarked vertex v,

we can compute I ′ from I in constant time. This is due to the fact that since v has maximum

degree 6 in G and since, by Property 2.1, each edge incident to v contains a constant number

of tuples, it is possible to test whether a tuple t ∈ S(ei) belongs to Nv(ei) in constant time.

Finally, π(I ′) < π(I), since ξ(I ′) = ξ(I) and φ(I ′) ≤ φ(I)− |Nv(ei)|.

B Rule 2:
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Condition: Every combination of tuples for v satisfies m at v.

Reduction: We initialize I ′ = I and mark v. —End of Rule 2

Clearly, I ′ is equivalent to I. Observe that, verifying the Condition of Rule 2 at v coincides

with verifying that Nv(ei) = ∅, for each edge ei incident to v. The fact that this can be done

in constant time can be proved analogously to Rule 1. Also, π(I ′) < π(I), since ξ(I ′) = ξ(I)

and φ(I ′) = φ(I)−
∑

e∈E(v) |S(ei)|.

If after applying, if possible, Rule 1 and 2, vertex v remains unmarked, then there must be

at least two edges incident to v whose admissible sets contain a tuple that participates in

both a satisfying and an unsatisfying combination of tuples for v.

B Rule 3:

Condition: For each edge ei = uiv incident to v, except for two edges e1 and e2, the variety

of ei at v is 1. That is, only e1 and e2 have variety at v larger than 1.

Reduction: We obtain instance I ′ from I as follows. For simplicity of description we will

consider the edges incident to v to be oriented in the following manner: e1 = u1v,

e2 = vu2, and ei = uiv, for each edge ei ∈ E(v) with i 6= {1, 2}; the other orientations

can be treated similarly. Refer to Fig. 2.7.

We initialize G′ to the embedded directed graph obtained from G by removing v and its

incident edges. We set S ′(e) = S(e), for each edge e ∈ E(G′), and we set m′(u) = m(u),

for each vertex u ∈ V (G′).

Let C be the cycle of G′ whose boundary used to contain vertex v and its incident edges,

and no other edges; refer to Fig. 2.7a.

1. For each edge ei incident to v in G with i 6= {1, 2}, we insert a marked vertex vi

inside C, set m(vi) = m(v), and introduce a new edge e′i = uivi with S ′(e′i) = S(ei).
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Figure 2.7: Illustration for the transformation of Rule 3. (a) Part of I in the interior of the
cycle C containing vertex v, and (b) part of I ′ in the interior of cycle C.

2. Then, we embed a new edge e′1,2 = u1u2 inside C, thus splitting the interior of C

into two faces f1 and f2 of G′; refer to Fig. 2.7b.

3. We add the following tuples to S ′(e′1,2). For each tuple t1 = 〈σ1, a, σ2, b〉 ∈ S(e1)

and for each tuple t2 = 〈σ3, c, σ4, d〉 ∈ S(e2), we test whether the embedding pair

of t1 at v and the embedding pair of t2 at v together with the (unique) embedding

pairs at v of the remaining edges incident to v form a satisfying combination of

tuples for v. If this is the case, then we add tuple 〈σ1, a, σ4, d〉 to S ′(e′1,2).

4. We set S ′(e′1,2) to its gist, by removing all dominated tuples.

—End of Rule 3

The reduction of Rule 3 can clearly be performed in constant time, since v has bounded

degree and since |S(e1)|, |S(e2)| ∈ O(1), by Property 2.1. Also, since vertices vi, with i 6= 1, 2,

are marked, φ(I ′) ≤ φ(I)−
∑

ei∈E(v) |S(ei)|+ 2|S(e1,2)|. The subtractive term of the previous

formula is due to the fact e1, e2 /∈ E(G′) and that each edge uiv in G, with i 6= {1, 2},

corresponds to an edge uivi in G′ and vi is marked. The last additive term instead is due

to the fact that, if both u1 and u2 are unmarked in I (and hence in I ′), then they both

contribute |S(e1,2)| to φ(I ′). Further, since |E(G′)| = |E(G)| − 1, we have ξ(I ′) = ξ(I)− 32.

Finally, |S ′(e′1,2)| ≤ 16, by (the proof of) Property 2.1. Thus, π(I ′) < π(I). Next, we now

show the correctness of Rule 3.
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Lemma 2.11. Let I ′ be the instance obtained from instance I = 〈G,S,m〉 by applying the

transformation of Rule 3 to some vertex v of G. Then, instances I ′ and I are equivalent.

Proof. (I ⇒ I ′) Suppose that I is a positive instance of 4-MaxSkelModality, that is,

there exist tuples t(e) ∈ S(e), for each edge e in E(G), that satisfy m at every vertex in

V (G). We show that I ′ is also a positive instance, by selecting a tuple t′(e) ∈ S ′(e), for each

edge e in E(G′), such that m′ is satisfied at every vertex in V (G′).

First, for each edge e ∈ E(G) ∩ E(G′), we set t′(e) = t(e). Observe that, this selection of

tuples already satisfies m′ at every vertex of V (G′) different from ui, where ui is a neighbor

of v in G. Then, for each edge uiv ∈ E(G), with i 6= 1, 2, we set t′(uivi) = t(uiv). It is

easy to see that the constructed assignment satisfies now m′ at each vertex ui ∈ V (G′), with

i 6= 1, 2, and that m′ is trivially satisfied at vi, with i 6= 1, 2, since each of these vertices is

only incident to edge uivi. Thus, we only need to show that there exists a tuple in S ′(e′1,2)

for edge e′1,2 that allows us to satisfy m′ at u1 and u2. We set t′(e′1,2) = 〈σ1, a, σ3, c〉, if

t1 = 〈σ1, a, ·, ·〉 and t2 = 〈·, ·, σ4, d〉 are the tuples of u1v and vu2 in the solution of I. Note

that, tuple t′(e′1,2) ∈ S ′(e′1,2), by construction, since t1 and t2 appear in a valid solution for

I (and thus in a satisfying combination of tuples for v in I). To see that m′ is satisfied at

u1 and u2, it is sufficient to observe that (i) the embedding pair of edge u1v at u1 and the

embedding pair of edge vu2 at u2 in I are the same as the embedding pair of edge u1u2 at u1

and at u2, respectively, in I ′, and that (ii) all the remaining edges incident to u1 and to u2

belong to both G and to G′ and therefore contribute with the same embedding pair at u1

and u2 in I and I ′.

(I ′ ⇒ I) Suppose now that I ′ is a positive instance of 4-MaxSkelModality, that is, there

exists tuples t′(e) ∈ S ′(e), for every e in E(G′), that satisfy m′ at each vertex in V (G′). We

show that I is also a positive instance, by selecting a tuple t(e) ∈ S(e), for each edge e in

E(G), such that m is satisfied at each vertex in V (G).
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First, for each edge e ∈ E(G)∩E(G′), we set t(e) = t′(e). Similarly to the previous direction,

this selection of tuples satisfies m at every vertex in V (G) different from v or not adjacent to

v. Then, we set t(uiv) = t′(uivi), if i 6= 1, 2. It is easy to see that the constructed assignment

satisfies now m at each vertex ui 6= v ∈ V (G), with i 6= 1, 2. Observe that, u1v and vu2 are the

only remaining edges whose tuples have not been selected and that tuples t(uiv), with i 6= 1, 2,

determine constraints on such a selection. Nevertheless, for each i 6= 1, 2, all the tuples in

S(uiv) impose the same embedding constrains at v, as each of them contributes with a unique

embedding pair (σi, ai) at v. Observe that, for each tuple t′(e′1,2) = 〈σ1, a, σ3, c〉 in S ′(e′1,2),

there exists (at least) a pair of tuples t1 ∈ S(u1v) and t2S(vu2) such that t1 = 〈σ1, a, σ2, b〉

and t2 = 〈σ3, c, σ4, d〉 satisfy m at v together with pairs (σi, ai), with i 6= 1, 2. It follows that,

by setting t(u1v) = t1 and t(vu2) = t2 we satisfy m at v, by the definition of S ′(e′1,2). Also,

m is satisfied at u1 and at u2 since the embedding pair of edge u1v at u1 and the embedding

pair of edge vu2 at u2 in I is the same as the embedding pair of edge u1u2 at u1 and at u2 in

I ′, respectively, and since all the remaining edges incident to u1 and to u2 belong to both G

and to G′ and therefore contribute with the same embedding pair at u1 and u2 in I and I ′.

This concludes the proof of the lemma.

We remark that each instance I ′ obtained from I by applying any of the reductions of

Rules 1, 2, and 3 is also a good instance. This is trivial for Rules 1 and 2. In fact, for every

edge e ∈ G′ (e ∈ G), we either have that S ′(e) ⊂ S(e) (Rule 1) or S ′(e) = S(e) (Rule 2).

As for Rule 3, this follows from the fact that (i) A′vi(uivi) = Av(ei), for every edge ei = uiv

with i 6= 1, 2, and (ii) A′u1(e1,2) = Au1(e1) and A′u2(e1,2) = Au2(e2); where A′x(e) denotes the

maximum number of alternations at x in a tuple in S ′(e), with e being an edge incident to x.

Let I∗ = 〈G∗,S∗,m∗〉 be the good instance, equivalent to I, produced by applying a maximal

sequence of reduction rules to I. We say that I∗ is irreducible. The fact that (i) each of

the transformations of Rules 1, 2, and 3 can be performed in constant time and decreases

π(I) and that (ii) π(I) ∈ O(|G|) immediately imply that we can construct instance I∗ in
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O(|G|2) time. However, by processing the vertices in a guided way as described in the

listing of Algorithm 2, we can achieve an O(|G|)-time speed-up. The key idea here is that of

maintaining a queue that contains the unmarked neighbors of vertices to which rules that

modify the structure of the instance have been previously applied, namely, Rules 1 and 3

(Lines 12− 14 of the algorithm). Only when the queue is emptied and there exist unvisited

(unmarked) vertices, then an unvisited vertex is added to the queue (Line 9). The running

time is thus bounded by the number of times the queue is filled with O(1) new vertices

(Line 9 and 14); recall that |N(v)| ∈ O(1) for each vertex v at each step of the algorithm.

Since, the instruction at Line 9 is performed at most |V (G)| times and the instruction at

Line 14 is performed at most π(I) times, we get the claimed linear speed-up. We formalize

this in the following.

Lemma 2.12. Given a good instance I = 〈G,S,m〉, Algorithm 2 either detects that I is

negative or returns an irreducible good instance I∗ = 〈G∗,S∗,m∗〉 in O(|G|) time equivalent

to I.

The following lemma will prove useful.

Lemma 2.13. For each unmarked vertex v ∈ V (G∗), it holds that: (i) v has degree 3,

(ii) m∗(v) = 4, and (iii) there exist tuples t1, t2 ∈ S∗(e) such that the embedding pair of t1

and of t2 at v are (�◦, 1) and (◦�, 1), respectively, for each edge e incident to v.

Proof. Let v be an unmarked vertex of G∗. Since I∗ is irreducible, none of the conditions of

Rules 1, 2, and 3 apply at v. We denote by A∗x(e) the maximum number of alternations of

the embedding tuples of S∗(e), where x is a vertex incident to the edge e.

We first show that |E∗(v)| = 3 by contradiction. Suppose first that A∗v(e) = 0 for all the edges

incident in E∗(v), then the variety of these edges at v is 1 and there is only one combination

of tuples at v. Therefore, either Rule 1 would have rejected the instance, or Rule 2 would

have marked v, contradicting to the fact that I∗ is irreducible. Suppose now that E∗(v)
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contains exactly one edge e with A∗v(e) > 0, then each tuple of S∗(e) participates in a single

combination. It follows that either one of the combinations is unsatisfying and Rule 1 would

have applied, or they are all satisfying and Rule 2 would have marked v, contradicting to

the fact that I∗ is irreducible. Finally, suppose that E∗(v) contains exactly two edges e1 and

e2 with A∗v(e1) > 0 and A∗v(e2) > 0, then the rest of the edges of E∗(v) have variety 1 at v

so Rule 3 would have applied. As I∗ is irreducible, however, this yields a contradiction.

Therefore, E∗(v) must contains at least 3 edges e1, e2, e3 with A∗v(e1), A
∗
v(e2), A

∗
v(e3) ≥ 1.

Furthermore, since I∗ is a good instance
∑

e∈E∗(v)(A
∗
v(e) + 1) ≤ 6, so there can be at most 3

such edges, proving Property (i) of the statement.

The arguments above also imply that A∗v(e1) = A∗v(e2) = A∗v(e3) = 1. This, there must be at

least 3 alternations at v, and since v is still unmarked and the maximum-modality is even,

m∗(v) must be 4, proving Property (ii) of the statement.

Finally, we prove Property (iii) of the statement. First, using the same arguments used to

prove Property (i), we have that if all or all but one of these edges have variety 1 at v then

Rule 1 or Rule 2 apply. Likewise, if exactly one of these edges has variety 1 at v, then the

other two edges have variety greater than 1 at v and Rule 3 applies. Thus, all three edges

must have a variety of at least 2 at v. In fact, as they contribute with exactly one alternation

at v, by Property (ii), they must have variety exactly 2. Since (�◦, 1) and (◦�, 1) are the only

two embedding pairs with a single alternation, this proves Property (iii).

Our next and final tool is the following, quite surprising, result.

Lemma 2.14. Any irreducible good instance I∗ is a positive instance.

Theorem 2.9 immediately follows from Lemma 2.14. Section 2.7 presents a key result on the

NAE-satisfiability problem of certain CNF-formulas, which we then exploit in Section 2.8

where we prove Lemma 2.14.
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2.7 NAE-Satisfiability of CNF(≤2)-Formulas

A literal is either a boolean variable x (positive literal) or a negated boolean variable x

(negative literal). A CNF formula is a propositional formula consisting of a conjunction

of clauses, i.e., disjunctions of literals. For the sake of succinctness, we also denote each

formula φ = c1 ∧ c2 ∧ · · · ∧ ck by the set φ = {c1, c2, . . . , ck} of its clauses, and each clause

cj = `1 ∨ `2 ∨ · · · ∨ `h by the set cj = {`1, . . . , `h} of its literals.

An instance of the Not-all-Equal Satisfiability (NAESAT) problem consists of a CNF

formula φ = {c1, . . . , ck} defined on the set Xφ = {x1, . . . , xn} of variables. The problem asks

for the existence of a NAE-truth assignment for φ, i.e., a truth assignment for the variables

in Xφ such that each clause in φ contains both a true and a false literal. If such an assignment

exists, then we say that the formula φ is NAE-satisfiable. The NAESAT problem is known

to be NP-complete [90] even when each clause contains at most three literals (NAE-3-SAT).

The variableclause graph Gφ of a CNF formula φ is the undirected bipartite graph whose

vertices are the variables in Xφ and the clauses of φ, and whose edges represent the membership

of a variable in a clause; see, e.g., Fig. 2.8. Clearly, Gφ has size linear in the size of φ. We denote

the set of variables and clauses of Gφ by V ar(Gφ) = Xφ and by Cl(Gφ), respectively. The

Planar NAESAT problem is the restriction of NAESAT to instances whose variableclause

graph is planar. Planar NAESAT can be solved efficiently3, by means of a linear-time

reduction to the MaxCut problem in planar graphs [82], for which an O(n1.5 log n) algorithm

exists [91]. We denote a NAE-truth assignment for the variables of Gφ by means of a

function A : V ar(Gφ) → {true, false}, and the opposite NAE-truth assignment by the

function A : V ar(Gφ)→ {true, false}, where A(x) = ¬A(x), for each variable x ∈ V ar(Gφ).

3In [82] Moret presented a reduction for instances of Planar NAESAT in which each clause contains
exactly three literals (Planar NAE-3-SAT). However, the same reduction also implies the existence of a
polynomial-time algorithm for general instances of Planar NAESAT with the same running time, as a
linear-time reduction from NAE-3-SAT to NAESAT, which also preserves the planarity of the variable-clause
graph, is known [93].
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Observe that, if A is a NAE-truth assignment, then so is A. We now present two simple

observations concerning the variable-clause graph Gφ, which will be exploited in the remainder.

Observation 2.3. A CNF-formula φ is NAE-satisfiable if and only if each of the CNF-

formulas corresponding to the connected components of Gφ is NAE-satisfiable.

Observation 2.3 will allow us, in some of the proofs of the technical lemmas that follow, to

assume that graph Gφ is connected.

Observation 2.4. A clause containing both the positive literal x and the negative literal x,

for some variable x ∈ V ar(Gφ), is always NAE-satisfiable.

By Observation 2.4, in the following we will always consider formulas φ whose clauses contain

literals corresponding to different variables. In particular, this implies that Gφ is simple.

Using the notation of [86], we say that a CNF formula φ is a CNF (2)-formula if each variable

appears in exactly two clauses of φ, i.e., deg(x) = 2, for each variable x ∈ V ar(Gφ); similarly,

a CNF formula φ is a CNF (≤ 2)-formula if each variable appears in at most two clauses of

φ, i.e., deg(x) ≤ 2, for each variable x ∈ V ar(Gφ). Further, we say that a CNF formula φ is

a CNF ∗(≤ 2)-formula if each variable appears in at most two clauses of φ and there exists at

least a free variable, that is, a variable that appears (negated or unnegated) in a single clause.

Clearly, every CNF (≤ 2)-formula is either a CNF (2)-formula or a CNF ∗(≤ 2)-formula.

The next observation immediately follows from the fact that the variable-clause graph Gφ of

a CNF (2)-formula φ has minimum degree δ(Gφ) = 2.

Observation 2.5. The variable-clause graph Gφ of a CNF (2)-formula φ contains at least a

non-trivial block; variable and clause vertices are yellow and blue circles, respectively.

It is easy to see that there exist CNF (2)-formulas that do not admit any NAE-truth

assignment even when Gφ is a cycle. For example, the simple formula φ = {c1 = {x, y}, c2 =
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c1 = x ∨ y

c2 = x ∨ y

x y

Figure 2.8: The variable-clause graph of a CNF (2)-formula that is not NAE-satisfiable.

{y, x}} whose variable-clause graph Gφ is the cycle (x, c1, y, c2, x) illustrated in Fig. 2.8 is not

NAE-satisfiable. However, for this special class of instances, once a truth assignment for a

variable has been decided, then the decision for all the remaining variables is completely fixed

and, in fact, in this case NAESAT can be trivially decided in linear time. In the remainder

of the section, we prove the rather surprising result that the only CNF (2)-formulas that may

not admit a NAE-truth assignment are exactly those whose variable-clause graph contains

at least a connected component isomorphic to a simple cycle. Our result improves on the

result of Porschen et al. [86], who presented a previous linear-time algorithm to test whether

a CNF (2)-formula is NAE-satisfiable.

The rest of the section is devoted to the proof of the following main result.

Theorem 2.10. Given a CNF (≤ 2) formula φ, it is possible to compute a NAE-truth

assignment for φ, if any, in linear time. Also, if Gφ does not contains a component isomorphic

to a simple cycle, then φ is always NAE-satisfiable

Concerning Theorem 2.10, we remark that when Gφ is connected, than Gφ may contain a

cycle component only if φ is a CNF (2) formula.
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2.7.1 Proof of Theorem 2.10

Let φ be a CNF (≤ 2)-formula. Without loss of generality, by Observation 2.3, we are

going to assume that Gφ is connected. We have that φ is either a CNF ∗(≤ 2)-formula or

a CNF (2)-formula. In the former case, we show in Lemma 2.15 that φ always admits a

NAE-truth assignment, which can also be computed in linear time. In the latter case, we

further distinguish two cases based on whether the variable-clause graph Gφ is a cycle or

not. If Gφ is a cycle, then we can easily verify whether φ admits a NAE-truth assignment

in linear time and compute it, if any, as discussed before. If Gφ is a not a cycle, then let

β∗ be a non-trivial block of Gφ, which exists by Observation 2.5. Also, let c∗ be a clause

in β∗ such that deg(c∗) ≥ 3, which exists since Gφ is not a cycle. Let φ− = φ \ c∗. Clearly,

φ− is CNF ∗(≤ 2)-formula, as all the variables incident to c∗ are free in φ−. Therefore, by

Lemma 2.15, φ− admits a NAE-truth assignment, which can be computed in linear time.

Finally, in Lemma 2.16, we show that if φ− admits a NAE-truth assignment, than so does φ

and that a NAE-truth assignment for φ can be computed in linear time given any NAE-truth

assignment for φ−. This concludes the proof of the theorem.

We now present the two lemmas for the proof of Theorem 2.10.

Lemma 2.15. Let φ be a CNF ∗(≤ 2)-formula whose variable-clause graph Gφ is connected.

Then, a NAE-truth assignment for φ always exists and can be computed in linear time.

Proof. We will prove the statement by strong induction on the number n = |Cl(Gφ)| of

clauses in φ. At the end of the proof, we will discuss how the proof can be used to define an

algorithm that computes a NAE-truth assignment for φ in linear time.

In the following, for a literal l, we denote by var(l) the corresponding variable.

Base case. If n = 1, then φ = {c} is a CNF formula containing a single clause c; necessarily,

clause c contains at least two literals and all the variables corresponding to the literals in
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c are free. Let l∗ ∈ c be a distinguished literal and assume, without loss of generality, that

l∗ is a positive literal, that is, l∗ = var(l∗). We write c = (l∗ ∨ l1 ∨ l2 ∨ · · · ∨ lk) with k ≥ 1.

We define a NAE-truth assignment A for φ as follows. For i = 1, . . . , k, we set A(var(li)) to

either true or false arbitrarily. Then, if the clause φ′ = (l1 ∨ l2 ∨ · · · ∨ lk) is satisfied by A, we

set A(var(li)) = false, otherwise we set A(var(li)) = true. Thus, by construction, clause c

contains both a true and a false literal, and thus it is NAE-satisfied.

Inductive case. Let φ be a CNF ∗(≤ 2)-formula with n + 1 clauses. Suppose that every

CNF ∗(≤ 2)-formula with n clauses is NAE-satisfiable. We will show that φ is also NAE-

satisfiable.

Let x be a free variable of φ, and let c ∈ φ be the clause containing a literal l∗ corresponding

to x. As in the base case, without loss of generality, we assume that l∗ is a positive literal.

Let φ′ = φ − {c}. Since x is free in φ, there exists no clause in φ′ containing either the

positive literal x or the negated literal x.

The variable-clause graph Gφ′ of φ′ consist of one or more connected components Gφ′1
, Gφ′2

,

. . . , Gφ′h
, with h ≥ 1, corresponding to clauses φ′1, φ

′
2, . . . , φ

′
h, respectively, each containing at

most n clauses.

We have that each clause φ′i contains at least a free variable, for i = 1, . . . , h. In fact, all the

variables that are incident to c and to a clause of φ′i Gφ are incident to exactly a clause in φ′i,

and therefore such variables are free in φ′i; refer to Fig. 2.9.

Let A′i be a NAE-truth assignment for φ′i, which exists, by our inductive hypothesis, since

φ′i contains at least a free variable and at most n clauses. We construct a truth assignment

A′ for φ− as follows. For each variable y ∈ V ar(Gφ′), we set A′(y) = A′i(y), if v ∈ V ar(Gφ′i
).

Note that, this uniquely determines a truth assignment for all the variables of φ′, since

V ar(Gφ′) =
⋃h
i=1 V ar(Gφ′i

) and since V ar(Gφ′i
) ∩ V ar(Gφ′j

) = ∅ for any 1 ≤ i < j ≤ h.

Clearly, A′ is a NAE-truth assignment for φ′. However, the truth value defined by A′ for
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Gφ′1

Gφ′2

Gφ′3

x

c

Gφ′

Gφ

Figure 2.9: Illustration for the inductive case in the proof of Lemma 2.15; variable and clause
vertices are yellow and blue circles, respectively. The graph Gφ′ corresponding to the formula
φ′ = φ \ {c} consists of three connected components Gφ′1

, Gφ′2
, and Gφ′3

. The free variables
created by the removal of c are the ones incident to the dashed edges.

the literals in c different from x might be such that c contains only literals with the same

truth value. Nonetheless, since x /∈ V ar(φ′), as in the base case, we can extend A′ to a

NAE-truth assignment for φ, by appropriately assigning a truth value to x so that c is also

NAE-satisfied. This concludes the proof that a NAE-truth assignment for φ always exists.

We conclude the proof by discussing how it can be turned into a linear-time algorithm to

actually construct a NAE-truth assignment for φ. In the following, we denote an instance of

the NAESAT problem, i.e., a CNF formula, by the corresponding variable-clause graph.

The inductive arguments described above immediately yield a divide-and-conquer recursive

algorithm for this task: Find a free variable x, remove x and its unique incident clause c to

split the instance Gφ into the smaller instances Gφ′1
, Gφ′2

, . . . , Gφ′h
, apply recursion to solve

them, and finally recover a solution for Gφ from the solutions for the smaller instances as

described in the inductive case. Clearly, all the non-recursive work can be performed in time

linear in the size of Gφ. Therefore, this immediately gives us a quadratic-time algorithm. In

order to get linear time, however, we can improve this procedure as follows. First, there is no

need to actively search for free variables in each instance Gφ′i
on which recursion must be

applied. In fact, as described in the proof of the inductive case, each instance Gφ′i
contains
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at least a free variable incident to the removed clause c and, thus, such a variable can be

passed as a parameter to the recursive call. Second, removing x and c, splitting the instance,

and recovering a global solution from the solutions for Gφ′1
, Gφ′2

, . . . , Gφ′h
can clearly be done

in time proportional to the degree of c in Gφ. The two previous arguments clarify that the

non-recursive work of the algorithm can in fact be done in linear time. However, for the

algorithm to be actually linear, we need one more resource. In particular, we cannot afford to

compute all the Gφ′i
’s explicitly, as this would require time linear to the size of Gφ′ . Instead,

we exploit the free variables incident to c as the “entrance points” for the instances Gφ′i
’s and

keep track of which of them has already been solved recursively. To this aim, we modify the

algorithm so that is also labels the vertices as processed whenever the instance containing

them has already been dealt with, and invoke recursion only on free variables incident to c

that are not labeled as processed. In this way, we avoid actually constructing each instance

and we never apply recursion on the same instance twice. This concludes the proof.

Recall that φ− = φ \ c∗. We have the following.

Lemma 2.16. Any NAE-truth assignment for φ− can be extended in linear time to a

NAE-truth assignment for φ.

Proof. Let A− : V ar(Gφ−) → {true, false} be a NAE-truth assignment for φ−. We

show how to construct a NAE-truth assignment A : V ar(Gφ)→ {true, false} for φ. We

distinguish two cases based on whether clause c∗ is a cut-vertex of Gφ (Case 1) or it is

not (Case 2).

We use the following notation. Let H1, . . . , Hk be connected subgraphs of the variable-clause

graph Hφ of a formula CNF φ. Clearly, each variable of φ belongs to exactly one of the

Hi’s, that is, it holds (i) V ar(Hφ) =
⋃k
i V ar(Hi) and (ii) V ar(Hi) ∩ V ar(Hj) = ∅ with

1 ≤ i < j ≤ k. Also, for i = 1, . . . , k, let φi be the CNF formula corresponding to Hi and

let Ai : V ar(Hi)→ {true, false} be a truth assignment for φi. We denote by A =
⋃k
i=1A

−
i
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the truth assignment for φ obtained by setting A(x) = Ai(x), for each variable x ∈ V ar(Gφ),

where i is the unique index such that x ∈ V ar(Hi).

Proof for Case 1. If c∗ is a cut-vertex of Gφ, then Gφ− is disconnected. Let Gφ−1
, Gφ−2

,

. . . , Gφ−k
, with k ≥ 2, be the connected components of Gφ− and let φ−i be the CNF formula

corresponding to Gφ−i
, for i = 1, . . . , k. Observe that, each variable in V ar(Gφ) belongs to

exactly one of the Gφ−i
’s. Let A−i be the truth assignment obtained by restricting A− to the

variables in V ar(Gφ−i
), for i = 1, . . . , k. Clearly, A−i (and A−i ) is a NAE-truth assignment

for φ−i .

Let `1 ∈ c∗ be a literal corresponding to a variable x1 of Gφ−1
and let `2 ∈ c∗ be a literal

corresponding to a variable x2 of Gφ−2
. If A−1 (x1) and A−2 (x2) are such that `1 and `2 have

different truth values, then A =
⋃k
i=1A

−
i is a NAE-truth assignment for φ. Otherwise,

A = A−1 ∪
⋃k
i=2A

−
i is a NAE-truth assignment for φ.

Proof for Case 2. If c∗ is not a cut-vertex of Gφ, then Gφ− is connected. Let β∗ be the block

of Gφ to which c∗ belongs and let C = (x1, c1, x2, c2, . . . , xm, cm = c∗) be a cycle belonging

to β∗ passing through c∗, where m + 1 = 1, the ci’s are clauses, and the xi’s are variables.

Observe that, by construction, V ar(Gφ−) = V ar(Gφ). We initialize A = A−. If clause c∗ is

NAE-satisfied by A, then A is a NAE-truth assignment for Gφ and we are done. Otherwise,

A is such that all the literals of c∗ have the same truth value, say true. We then modify A

as follows. For i = 1, . . . ,m, we set previ = ci−1, vari = xi, and nexti = ci, where i− 1 = m

if i = 1. Note that, since φ is a CNF (2)-formula, clauses previ and nexti are the only two

vertices of Gφ the variable vari is incident to. For i = 1, . . . ,m, we perform the following

operations. First, if clause previ is not NAE-satisfied, then we set A(vari) = A(vari).

Observe that, this modification only affects the two clauses incident to vari, that is, previ

and nexti. In particular, previ is now NAE-satisfied. If nexti is NAE-satisfied after this

step, then we are done and A is a NAE-truth assignment for Gφ. Otherwise, we (increment

i and) repeat the previous steps. It might be the case that all the variables of cycle C be
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changed their value, that is, we reach i = m. The fact that A is a NAE-truth assignment

also in this case is due to the fact that, when i = m, the literals in nextm = c∗ corresponding

to variables varm and var1 are both false, by construction, that clause c∗ used to contain

three or more true literals, and that the value of these remaining literals has not changed.

As for the running time, in Case 1 we just need to negate the value in A−1 of the variables

in G−φ1 , which takes O(|G−φ1|) ∈ O(|Gφ|) time; whereas Case 2 requires a simple visit of C,

which takes O(m) ∈ O(|β∗|) ∈ O(|Gφ|) time. This concludes the proof of the lemma.

2.8 Proof of Lemma 2.14

This section is devoted to proving that an irreducible good instance I∗ produced by Algorithm 2

is always a positive instance. Although we assumed that G was connected, due to the

transformation done by Rule 3, G∗ may now contain several disconnected components.

However, if G∗ is disconnected, then I∗ is a positive instance if and only if each “subinstance”

of I∗ associated with each connected component of G∗ is a positive instance. Therefore,

without loss of generality, in the following we will assume that G∗ is connected. Moreover, if

every vertex of G∗ is marked, then I∗ is trivially positive. In fact, if a vertex v is marked

(that is, Rule 2 has been applied at v), then any selection of a tuple from the admissible

sets of the edges incident to v satisfies m∗ at v. Therefore, we can construct, in linear time,

a solution for I∗ by arbitrarily selecting a tuple from the admissible set of each edge of G∗.

Thus, in the following, we will further assume that G∗ contains unmarked vertices.

We say that a pair (t1, t2) of tuples in S∗(e) is a mirrored pair for e if t1 = (σ1, a, σ2, b) and

t2 = (σ1, a, σ2, b), with σ1, σ2 ∈ {�◦, ◦�}; observe that a and b need to be odd integers. The

following observation is a consequence of Property (iii) of Lemma 2.13, if there are only two

elements in the set, and of Property (iii) of Lemma 2.13 and the pigeon hole principle, if
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there are more.

Observation 2.6. Let e = uv be an edge of G∗ whose endpoints are both unmarked. There

exists a mirrored pair (t1, t2) for e in S∗(e) such that t1 = (σ1, 1, σ2, 1) and t2 = (σ1, 1, σ2, 1),

with σ1, σ2 ∈ {�◦, ◦�}.

We are now ready to prove Lemma 2.14. We first process instance I∗, and set S∗(e) = {t1, t2}

for each edge e in G∗ with both endpoints unmarked, where (t1, t2) is a mirrored pair for

e, which exists by Observation 2.6. Observe that this corresponds to arbitrarily selecting a

mirrored pair for e and removing all tuples from S∗(e) except for the two tuples belonging

to the selected pair for e. Likewise, for each edge e with a single unmarked endpoint, we

constrain its admissible set S∗(e) to only two tuples with embedding pairs (�◦, 1) and (◦�, 1),

respectively, at the unmarked endpoint of e. By Property (iii) of Lemma 2.13 such tuples

must exist, and as the other endpoint of e is marked, m remains satisfiable at it. Although

this might seem unwary, we will show that instance I∗ is still a positive instance after the

above pruning. For simplicity of notation, we continue to call such a pruned instance I∗.

2.8.1 Reduction to NAESAT

Before proceeding, we recall important properties of I∗ that we are going to exploit (see also

Lemma 2.12). Applying the reduction rules (and pruning) has produced a good irreducible

instance I∗ = 〈G∗,S∗,m∗〉, with unmarked vertices (at least one, by our initial assumption)

and perhaps some marked vertices. If a vertex v is marked then any combination of tuples

selected from the admissible sets of its incident edges will satisfy m∗(v), while if v is unmarked

then it has degree 3 in G∗, m∗(v) = 4, and the “pruned” admissible sets of all its incident edges

have each exactly 2 embedding pairs at v, namely, the two embeddings pairs {(�◦, 1), (◦�, 1)}. In

particular, if an edge has two unmarked endpoints then its admissible set is a mirrored pair.

We are going to show that I∗ is a positive instance by creating an instance of NAESAT that
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Figure 2.10: A complete example for the NAESAT reduction for the proof of Theorem 2.9.
(a) An irreducible good instance I∗. (b) The CNF (≤ 2)-formula φ produced from I∗. (c)
The variable-clause graph Gφ of φ. (d) A NAE-truth assignment for φ and the corresponding
selection of tuples.

is satisfiable if and only if I∗ is a positive instance. In particular, we are going to create CNF

formulas in which each variable appears in at most two clauses (called CNF (≤ 2)-formulas

in Section 2.8.1) whose variable-clause graph contains no component isomorphic to a simple

cycle. Lemma 2.14 then follows, since such CNF formulas are always NAE-satisfiable, by

Theorem 2.10. We provide a complete example for the reduction of a good instance in

Fig. 2.10.

Let v be an unmarked vertex, let e be an edge incident to v, and let p = (σ, 1) be an
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embedding pair of e at v. We define the normalized embedding pair p̂ for p as p̂ = (σ, 1), if e

is incoming at v, or as p̂ = (σ, 1), if e is outgoing from v. This normalization allows us to

disregard the orientation of the edges of G∗ in what follows.

Lemma 2.17. Let v ∈ V ∗ be an unmarked vertex with incident edges e1, e2, e3. Let p1, p2, p3

be the embedding pairs at v of some combination of tuples T = (t1 ∈ S∗(e1), t2 ∈ S∗(e2), t3 ∈

S∗(e3)). Then, T is an unsatisfying combination of tuples at v if and only if p̂1 = p̂2 = p̂3.

Proof. Each embedding pair contributes with one internal alternation to the modality at v.

We prove the statement by arguing about the effect that the selection of tuples in T has on

the total modality at v.

Since any two edges e′, e′′ ∈ {e1, e2, e3} are consecutive around v, having the same normalized

embedding pair for e′ and e′′ introduces an additional alternation at v between e′ and e′′.

In particular, since e1, e2, and e3 are pairwise consecutive around v, if T contains tuples

having the same normalized embedding pair at v, then this introduces 3 such alternations

and therefore, since m∗(v) = 4, we have that T is an unsatisfying combination of tuples for v.

On the other hand, if T is such that p̂1 6= p̂2 and p̂1 6= p̂3, that is, not all the tuples in T have

the same normalized embedding pair at v. Then, no additional alternation is formed by the

pairs (p̂1, p̂2) and (p̂1, p̂3), while, as in the previous case, exactly one alternation is provided

by the pair (p̂2, p̂3). This concludes the proof that a combination of tuples satisfies m∗(v) if

and only if the normalized embedding pairs of the tuples at v are not all equal.

We now describe how to obtain a CNF-formula φ from I∗ that is NAE-satisfiable if and only

if I∗ is a positive instance. The formula φ is defined on a set X of boolean variables. Set X

contains a variable for each incidence between an edge and an unmarked vertex, whose two

truth values are in one-to-one correspondence with the two possible embedding pairs (�◦, 1)

and (◦�, 1) of the edge at the vertex. The formula φ contains two types of (NAESAT) clauses.
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Edge clauses (square vertices in Fig. 2.10) ensure that the two variables associated with the

two incidences of the same edge with its (unmarked) endpoints assume (simultaneously)

only truth values that correctly represent one of the two tuples in the admissible set of

the edge.

Vertex clauses (circle vertices in Fig. 2.10) ensure that a combination of embedding pairs at

an unmarked vertex v of G∗, determined by the truth values of the variables associated

with the edges incident to v, satisfies m∗(v).

We construct φ, by processing each edge and vertex of G∗ as follows. Initialize φ = ∅.

Edges. For each edge e = uv ∈ E∗, we update φ as follows.

• If both u and v are marked, any tuple selected from S(e) will satisfy m∗ at both vertices,

so we these edges do not contribute to the construction of φ.

• If only one of u and v is marked, say u is marked and v is unmarked, then we add a

boolean variable xev to X (associated with the incidence between e and v).

• If both u and v are unmarked, then we add two boolean variables xeu and xev to X . Note

that, in this case, by Observation 2.6, the admissible set S∗(e) of e contains a mirrored

pair, that is, either S∗(e) = SA or S∗(e) = SB, where SA = {〈�◦, 1, �◦, 1〉, 〈◦�, 1, ◦�, 1〉}

and SB = {〈◦�, 1, �◦, 1〉, 〈�◦, 1, ◦�, 1〉}. If S∗(e) = SA, then we add to φ an edge clause

ce = (xeu ∨ xev). Otherwise, if S∗(e) = SB, we add to φ an edge clause ce = (xeu ∨ xev).

Vertices. For each vertex v ∈ V ∗, we update φ as follows.

• If v is marked, it has no representation in φ, and we do nothing.

• If v is unmarked, we add to φ a vertex clause cv defined as follows. Let e1, e2, and e3

be the three edges of G∗ incident to v. For i = 1, 2, 3, let xiv be the variable associate
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with the incidence of edge ei and v. For i = 1, 2, 3, we add to cv the following literals:

If ei is incoming at v, then xiv appears as a positive literal in cv; otherwise, if ei is

outgoing from v, then xiv appears as a negative literal in cv. For example, if the all

these edges are incoming at v then cv = (x1v ∨ x2v ∨ x3v), if only e2 is outgoing from v

then cv = (x1v ∨ x2v ∨ x3v).

This concludes the construction of φ, which can clearly be performed in linear time by visiting

all the vertices and edges of G∗. In the next lemma, we show the correctness of the above

reduction.

Lemma 2.18. Let I∗ be an irreducible good instance and let φ be the CNF-formula constructed

from I∗ as described above. Then, I∗ is a positive instance if and only if φ is NAE-satisfiable.

Proof. (φ ⇒ I∗) Suppose that φ is NAE-satisfiable, then there exists a truth assignment

A : X → {true, false} for the set X of variables that NAE-satisfies φ. We show how to

create a selection of tuples for each edge in E∗ that satisfies m∗ at every vertex starting from

A as follows.

First, if both the endvertices of an edge are marked, then we select any tuple from its

admissible set.

Second, for each edge e = uv of G∗, we select a tuple te whose embedding pair at u is (�◦, 1) if

and only if A(xeu) = true and whose embedding pair at v is (�◦, 1) if and only if A(xev) = true.

See Fig. 2.10d for an example. We claim that such a tuple must exist. In fact, if e has

only one unmarked endpoint, then Lemma 2.13 guarantees it. Otherwise, if both endpoints

are unmarked, then e has a mirrored pair, by Observation 2.6, and its admissible set S∗(e)

corresponds to either SA or to SB. If S∗(e) = SA, then because ce = (xeu ∨ xev) and ce is

NAE-satisfied by A, then A(xev) = A(xeu), thus tuple te ∈ SA. Otherwise, if S∗(e) = SB,

then because ce = (xeu ∨ xev) and ce is NAE-satisfied by A, then A(xev) 6= A(xeu), thus tuple

te ∈ SB.
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We now show that our selection satisfies m∗ at every vertex. Clearly, m∗ is satisfied at every

marked vertex. To show that the selection also satisfies m∗ at every unmarked vertex, we

prove that for each such a vertex not of all of its incident edges have been assigned tuples

with the same normalized embedding pair (Lemma 2.17). By construction, a variable xev

appears in a variable clause cv as a positive literal, if e is incoming to v, and as a negative

literal, if e is outgoing from v. In particular, the edges incident to a vertex v have been

selected the same normalized embedding pair if and only if the literals corresponding to these

edges in cv have the same truth value. Since the truth assignment NAE-satisfies cv, one of

literal truth values must be different from the other truth values, and likewise one of the

normalized embedding pairs at v for the selected tuples must be different from the other

normalized embedding pairs, so by Lemma 2.17, m∗(v) must be satisfied. Therefore, since

the selection of tuples satisfies m∗ at every vertex, I∗ is a positive instance.

(I∗ ⇒ φ) Suppose that I∗ is a positive instance, then there exists a selection of tuples

that satisfies m∗ at every vertex. For one such selection, we construct a truth assignment

A : X → {true, false} for φ as follows. For each edge e incident to an unmarked vertex v,

we set A(xev) = true if and only if the embedding pair for e at v in the selection is (�◦, 1). We

will show that A is a NAE-truth assignment for φ.

First consider the edge clauses. Let ec be an edge clause of an edge e = uv and let te be its

selected tuple. Since the two endpoints of e are unmarked in G∗, its admissible set S∗(e) is a

mirrored pair, either SA or SB. If S∗(e) = SA, then the embedding pairs of t at u and at v

must be the same. Thus, in the truth assignment A, we have A(xeu) = A(xev). It follows that

ce = (xeu ∨ xev) is NAE-satisfied by A. If S∗(e) = SB, then the embedding tuples of t at u

and at v must be different. Thus, in the truth assignment A, we have that A(xeu) 6= A(xev). It

follows that ce = (xeu ∨ xev) is NAE-satisfied.

Next consider the variable clauses. For an unmarked vertex v, since the selected tuples

satisfies m∗(v) = 4 (Lemma 2.13), we have that the normalized embedding pairs of the edges
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incident to v must not all be the same (Lemma 2.17). Recall that, a variable xev appears in a

variable clause cv as a positive literal, if e is incoming to v, and as a negative literal, if e is

outgoing from v. In particular, since v is not incident to edges with the same normalized

embedding pairs, the literals corresponding to these edges do not have the same truth value

in cv , which implies that cv is NAE-satisfied by A. This concludes the proof that A is a

NAE-truth assignment for φ.

Recall that the variable-clause graph Gφ of φ is the undirected bipartite graph whose vertices

are the variables and clauses of φ and in which there is an edge between a variable vertex

and a clause vertex if and only if the variable appears in the clause. Notably, the planarity of

G∗ implies that the variable-clause graph of the formula φ constructed from I∗ is also planar,

which in turn implies that the NAE-satisfiability of φ can be tested in polynomial-time by [82].

In what follows, however, we show that φ has the properties required by Theorem 2.10, which

allow us to construct a NAE-truth assignment for φ and determined that I∗ is a positive

instance in linear time.

If I∗ has marked nodes, then Gφ may be disconnected. By Observation 2.3, each of the

connected components if Gφ can be handled separately, so in the following we will assume

that Gφ is connected.

Lemma 2.19. Let I∗ be an irreducible instance, let φ be the CNF-formula obtained from I∗

and let Gφ be the variable-clause graph of φ. Then it holds that:

1. φ is a CNF (≤ 2)-formula, that is, each variables appears in at most 2 clauses,

2. Gφ is simple, and

3. Gφ is not isomorphic to a cycle graph.

Proof. Fist, by construction, each variable is associated with the incidence of an edge and an

65



unmarked vertex, and appears in at most two clauses, namely, a vertex clause and, possibly,

and edge clause. Therefore, formula φ is a CNF (≤ 2) formula.

Since G∗ is simple it has no loops. Thus, we have that no variable in φ appears twice in a

vertex clause. Therefore, Gφ is also simple.

Finally, for a graph to be a isomorphic to a cycle graph every vertex must have degree 2.

However, since there is at least one unmarked vertex in G∗, by assumption, formula φ has at

least one vertex clause, which contains three literals. Therefore, graph Gφ contains at least

one vertex of degree 3, and therefore it is not a cycle graph.

We have shown that finding selection of tuples that satisfies m∗ for I∗ can be reduced in linear

time to the problem of finding a NAE-satisfying truth assignment for a CNF (≤ 2)-formula

φ. Since φ fulfills the requirements of Theorem 2.10 it is always NAE-satisfiable. Thus,

I∗ is always a positive instance. We remark that this also means that we do not need to

actually compute a NAE-truth assignment for φ to prove it is a positive instance, that is, if

Algorithm 2 does not reject the instance, then such an instance is always positive.

2.9 NP-Completeness for ∆ ≥ k + 3

In this section, we show that the k-Modality problem does not admit a polynomial-time

algorithm for all planar digraphs with maximum degree ∆ ≥ k + 3, k ≥ 4, unless P = NP .

Clearly, the k-Modality problem is in NP, since it is possible to verify in polynomial time

whether a given embedding is k-modal, by inspecting the rotation at each vertex. We first

present a reduction for the k-Modality problem when k = 4 and ∆ = 7, and then extend

it to k ≥ 4 and ∆ ≥ k + 3.

In order to prove the NP-hardness, we reduce from 4-Bounded Planar 3-Connected 3-SAT,
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a restricted version of Planar 3-SAT which is known to be NP-complete [76].

Problem: 4-Bounded Planar 3-Connected 3-SAT

Input: A CNF-formula φ = {c1, . . . , cm} defined on a set Xφ = {x1, . . . , xn} of variables,

where every variable appears in at most 4 clauses and the vertex-clause graph Gφ of

φ is planar and vertex 3-connected.

Question: Is there a truth assignment for the variables in Xφ such that each clause in φ

is satisfied?

Whitney [101] proved that any 3-connected planar graph admits a unique combinatorial

embedding (up to a flip). Therefore, we have the following simple observation.

Observation 2.7. Gφ has a unique combinatorial embedding Eφ (up to a flip).

We show how to construct, in polynomial time, an instance G = (V,E) of 4-Modality

starting from the planar embedding Eφ of Gφ in two steps. First, we transform Gφ into

an embedded undirected graph Fφ, which we call the frame of G. Then, we replace every

(undirected) edge in Fφ with one of several different gadgets consisting of directed edges. The

resulting planar digraph G has a 4-modal embedding if and only if the formula φ is satisfiable.

Further, our reduction generates a digraph with maximum degree ∆ = 7.

2.9.1 The Frame Fφ

We first describe how to create Fφ from a planar embedding Eφ of the vertex-clause graph Gφ.

Note that, since Gφ is vertex 3-connected and every variable appears in at most 4 clauses, it

follows that every variable vertex in V ar(Gφ) has degree 3 or degree 4. To obtain Fφ, we

will exploit special plane graphs, called variable and clause frames; refer to Fig. 2.11. More

formally, we construct Fφ in two steps as follows.
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Figure 2.11: Replacements for the frame graph Fφ. (a) The variable frame for a degree-3
variable vertex. (b) FThe variable frame for a degree-4 variable vertex. (c) The clause frame
for a clause vertex c incident to the variable vertices x, y, and z. The merging edges are
thick.

– First, for each variable vertex x ∈ V ar(Gφ) incident to the clause vertices ci, cj , and ck, we

replace x in Eφ with a copy of the variable frame depicted in Fig. 2.11a; similarly, for each

variable vertex x ∈ V ar(Gφ) incident to the clause vertices ci, cj, ck, and ch, we replace x

in Eφ with a copy of the variable frame depicted in Fig. 2.11b. Also, for each clause vertex

ci in Cl(Gφ) incident to the variable vertices x, y, and z, we replace ci in Eφ with a copy

of the clause frame depicted in Fig. 2.11c. Note that, for each (x, ci) of Gφ, where x is a

variable vertex and ci is a clause vertex, the variable frame for x and the clause frame for

ci both contain the edge (uix, v
i
x), called merging edge.

All the variable and clause frames are embedded in the plane in a small disk centered

at the variable vertex and at the clause vertex they stem from, respectively, in Eφ. By

selecting the radii of such disks so that they do not overlap with each other, we have that

all the variable and clause frames lie in the outer face of each other.

– Then, we identify the pairing merging edges in each variable and clause frame. By adhering

to the planar embedding Eφ, the resulting embedded graph Fφ is also planar; refer to

Fig. 2.12.

The following observations follows from Observation 2.7 and from the fact that the variable

and clause frames become 3-connected if the endpoints of their merging edges are joined to a
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Figure 2.12: Illustration for the construction of Fφ from Eφ focuses on the clause vertex ci
incident to the variable vertices x, y, and z. The variables x and z participate in 4 clauses,
while the variable y participates in only 3 clauses.

new vertex placed in their outer face.

Observation 2.8. Fφ is 3-vertex-connected and, thus, it has a unique combinatorial embed-

ding EF (up to a flip).

2.9.2 The Graph G

After constructing Fφ, we transform it into the final digraph G by replacing every edge (u, v)

of Fφ with either a directed edge or a diamond component with poles u and v. Diamond

components are digraphs that come in two types, called DA and DB; each original endpoint

in V (Fφ) of the edge that a diamond component replaces is a pole of the component.

DA The edges are oriented to form a directed acyclic graph where the two non-pole vertices

a and b are the only sink and source vertices, respectively; see Fig. 2.13a.

DB The edges in the outer face form a directed cycle (a, u, b, v), the edge joining the

vertices a and b is oriented from a to b so that a directed cycle (a, b, v, a) is formed; see

Fig. 2.13b.
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Figure 2.13: Illustrations of the diamond components. (a) The diamond component DA; in
the shown embedding of DA, the component has a negative flip at u and a positive flip at v.
(b) The diamond component DB; ; in the shown embedding, the component has a negative
flip at both u and v.

Note that each diamond component has only two possible combinatorial embeddings in which

the poles lie on the outer face (this is due to the fact that adding the edge connecting the

poles of a diamond components results in a 3-connected graph). These embeddings can be

obtained one from the other, by a flip of the embedding.

Let x ∈ {u, v} be a pole of a diamond component D, then we shall say that D has a positive

(negative) flip at x in an embedding of G, if the incoming edge of D immediately precedes

the outgoing edge of D incident to x in the clockwise (counterclockwise) ordering of these

edges around x. We have the following.

Observation 2.9. Let D be a diamond component planarly embedded such that its poles u

and v lie on the outer face. Then, the following hold:

1. If D = DA, then D has a positive flip at u if and only if it has a negative flip at v.

2. If D = DB, then D has a positive flip at u if and only if it has a positive flip at v.

For instance, the diamond component DA depicted in Fig. 2.13a has a positive flip at v and

a negative flip at u, while the diamond component DB depicted in Fig. 2.13b has a negative

flip at both u and v.
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Next, we will exploit the diamond components to turn the variable and clause frames in Fφ

into digraphs, called variable and clause gadgets, respectively, so to obtain the digraph G.

Variable Gadget. The variable gadget for a variable vertex x incident to clauses c1, c2, . . . , cl,

3 ≤ l ≤ 4, is the digraph obtained from the variable frame for x as follows; refer to Fig. 2.14

for an example when l = 4.

u1
x v1x

u2
x

v2x

v3x u3
x

v4x

u4
x

p1

p2

p3

p4

v4x

(a)

u1
x v1x

u2
x

v2x

v3x u3
x

v4x

u4
x

p1

p2

p3

p4

(b)

Figure 2.14: Illustration for the construction of digraph G from Fφ: The replacement to
obtain the variable gadget (b) from the variable frame (a) in the case of a variable x incident
to 4 clauses c1, c2, c3, and c4.

1. For i = 1, . . . , `, the merging edge (uix, v
i
x) is replaced with a DA diamond component.

2. For i = 1, . . . , `, the edge (vix, u
i+1
x ) is replaced with a DA diamond component (where

`+ 1 = 1).

3. For i = 1, . . . , `, the edge (pi, pi+1) is replaced with the directed edge pipi+1 (where

`+ 1 = 1).

4. For i = 1, . . . , `, the edge (uix, pi) is replaced with the directed edge uixpi and the edge

(vix, pi) is replaced with the directed edge piv
i
x.

The clause gadget for a clause ci = (lx∨ ly∨ lz), where lx, ly, and lz are literals for the variables
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x, y, and z, respectively, is the digraph obtained from the clause frame for ci as follow; refer

to Fig. 2.15.

wi
xy

wi
xyz

w1

w2 w3

w4

wi
yz

uix vix uiy viy uiz viz

wi

(a)

DB/ADA/B

DB/A DA/B DB/A DA/B

wi
xy wi

yz

wi
xyz

w1

w2 w3

w4

uix vix uiy viy uiz viz

Dxyz

Dxy Dyz

wi

(b)

Figure 2.15: Illustration for the construction of digraph G from Fφ: The replacement to
obtain the clause gadget (b) from the clause frame (a) for a clause ci containing literals
corresponding to the variables x, y, and z. Diamond components labeled with DA/B and
DB/A may be either DA or DB components, depending on whether the variable to whose
merging edge the components are incident to appears as a positive or a negative literal in ci.

1. Replace the edges (wixy, w
i
xyz), (wiyz, w

i
xyz), and (wixyz, w

i) with a DA diamond component

Dxy, Dyz, and Dxyz, respectively;

2. Replace the edge (w1, w
i) with the directed edge wiw1, the edge (w2, w

i) with the

directed edge w2w
i, the edge (w3, w

i) with the directed edge wiw3, and the edge (w4, w
i)

with the directed edge w4w
i.

3. Replace the path (w1, w2, w3, w4) with the directed path (w1, w2, w3, w4)

4. If lx is a positive (negative) literal, then replace the edge (uix, w1) with a DA (DB)

diamond component and replace the edge (vix, w
i
xy) with a DB (DA) diamond component.

5. If ly is a positive (negative) literal, then replace the edge (uiy, w
i
xy) with a DA (DB) dia-

mond component, and replace the edge (viy, w
i
yz) with a DB (DA) diamond component.

6. If lz is a positive (negative) literal, then replace the edge (uiz, w
i
yz) with a DA (DB)

diamond component, and replace the edge (viz, w4) with a DB (DA) diamond component.
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The construction of the digraph G described above can be clearly performed in polynomial

time. Also, G has maximum degree 7. In fact, the only degree-7 vertices are the vertices uix

and vix of the variable gadgets, for each variable x participating in a clause ci. Also, all the

vertices wi, wixyz, w
i
xy, and wiyz, for each clause ci defined on literals for the variables x, y,

and z, have degree 6. Since all the remaining vertices of G have degree smaller than or equal

to 5, it follows from Observation 2.1 that the modality at these vertices is always at most 4.

Therefore, the only embedding choices in a 4-modal embedding of G are those that happen

at the vertices of degree greater than or equal to 6 listed above.

In the following, we show that G admits a 4-modal embedding if and only if φ is satisfiable.

Since Fφ is 3-connected and since we replaced each edge of Fφ with either a directed edge

or a diamond component (which becomes 3-connected, if the poles are joined by an edge),

we can easily see that G is biconnected and that the SPQR-tree T of G (considered as

undirected) is, in fact, an RQ-tree T . In particular, T contains an R-node whose skeleton

is Fφ and it contains an R-node, for each diamond component, where both the skeleton

and the pertinent graph of these R-nodes are isomorphic to the corresponding diamond

component. Also, the pertinent graph of each DA diamond component admits the embedding

tuples SA = {〈�◦, 1, �◦, 1〉, 〈◦�, 1, ◦�, 1〉}, while the pertinent graph of each DB diamond component

admits the embedding tuples SB = {〈◦�, 1, �◦, 1〉, 〈�◦, 1, ◦�, 1〉}. (Note that, since these embedding

tuples are symmetric, we do not need to assign an orientation to the virtual edges of the

nodes of T for these tuples to be well-defined). Furthermore, fixing the flip of the R-node

whose skeleton is Fφ does not affect the possibility that G admits a 4-modal embedding (as

the flip of a 4-modal embedding is still 4-modal). Therefore, we have the following.

Observation 2.10. The only possible embedding choices for G are the flips of its diamond

components.

By Observation 2.10, the modality of each vertex in an embedding of G is only determined
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by the flip of the diamond components incident to it.

Next, we prove two key lemmas concerning the embeddings of the variable gadgets and of

the clause gadgets in a 4-modal embedding of G.

u1
x v1x

u2
x

v2x

v3x u3
x

p1

p2

p3

p1

edge-diamond

D1

D2

D3

D′1

D′2

D′3

DA DB

DB

DA

DADB

interior-diamond

positive flip

O+(x)

O−(x)

O+(x)

fixed edge

Figure 2.16: Illustration of the extended variable gadget Ex of a variable x ∈ Xφ that
participates to the three clause c1, c2, and c3 of φ. The variable x appears as a positive
literal in c1 and c3, and as a negative literal in c2. The embedding of the Ex is True, as the
edge-diamonds incident to the vertices u1x and u3x have a positive flip at their clause pole, and
the edge-diamond incident to the vertex u2x has a negative flip at its clause pole.

For each variable x ∈ Xφ whose literals participate to the set of clauses C(x) = c1, . . . , cl,

l ∈ {3, 4}, let the extended variable gadget Ex of x be the subgraph of G composed of the

variable gadget for x and the diamond components belonging to the clause gadgets for ci,

with i ∈ {1, 2, 3, 4}, that are incident to Gx; refer to Fig. 2.16. We call edge-diamonds of x

the diamond components belonging to Ex and not to the variable gadget for x. We denote

the set of edge-diamonds for x as O(x). Also, the pole of each such a diamond component D

belonging to the variable gadget is the variable pole of D, while the pole in a clause gadget
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is the clause pole of D. We define C+(x) ⊆ C(x) as the set of clauses where x appears as

a positive literal and C−(xi) ⊆ C(x) as the set of clauses where x appears as a negative

literal. We define O+(x) ⊆ O(x) as the set of edge-diamonds that belong to clause gadgets

for clauses in C+(x), and O−(xi) ⊆ O(xi) as the set of edge-diamonds that belong to clause

gadgets for clauses in C−(xi).

Let H be a planar embedding of G and let Hx be the embedding of Ex induced by H. Note

that, the embedding Hx is completely determined by the flips of the diamond components

belonging to Ex. We say that Hx is True (False), if the flip of every edge-diamond in O+(x) is

positive (negative) at its clause pole and the flip of every edge-diamond in O−(x) is negative

(positive) at its clause pole. For instance, the embedding of the extended variable gadget

depicted in Fig. 2.16 is True; in fact, the edge-diamonds incident to the vertex u1x and u3x

have a positive flip at their clause poles and x participates as a positive literal in both c1 and

c3, while the edge-diamond incident to the vertex u2x has a negative flip at its clause pole and

x participates as a negative literal in c2.

Lemma 2.20. Let E be a 4-modal embedding of G and let Ex be the embedding of Ex induced

by E. Then, the embedding Ex is either True or False.

Proof. Consider the vertices uix and vix of Ex. Each of these vertices is a pole of three

diamond components. Two of these diamond components are DA diamond components

also belonging to the variable gadget for x; we call them interior-diamonds of x. The third

diamond component is either a DA or a DB diamond component which is an edge-diamond

for x. Moreover, each vertex uix and vix is the endpoint of an edge whose other endpoint is pi,

we call fixed edge such an edge.

First, we will prove that the embedding Ex of Ex induced by E is completely determined by

the choice of a flip for any of its interior-diamonds; refer to Fig. 2.16. Namely, let Di denote

the interior-diamond components with poles uix and vix and let D′i denote the interior-diamond
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components with poles vix and ui+1
x , with l + 1 = 1. We will show that a choice of a flip for

Di completely determines the flip of all the interior-diamonds of x and all the edge-diamonds

of x.

The poles of the interior-diamond component Di are incident to a fixed edge, either the edge

uixpi and the edge piv
i
x. Also, in any planar embedding of G, and thus in E , we have that in

the rotation at uix all the edges belonging to the edge-diamond component incident to uix are

consecutive and precede the edges of Di, all the edges of Di are consecutive and precede the

edge uixpi, and all the edges of D′i−1 are consecutive and follow the edge uixpi. Analogously, in

E , we have that in the rotation at vix all the edges belonging to the edge-diamond component

incident to vix are consecutive and precede the edges of D′i, all the edges of D′i are consecutive

and precede the edge piv
i
x, and all the edges of Di are consecutive and follow the edge piv

i
x.

Since the fixed edges incident to each interior-diamond D have a different orientation at each

pole of D and the interior-diamonds are DA diamond components, at least one of the fixed

edges must form an alternation with with an edge of D in E . Which of the two fixed edge

has an alteration, depends on the flip of D.

Suppose that Di has a negative flip at vix; the case in which Di has a positive flip at vix is

symmetric. Then, the edge piv
i
x form an alternating pair at vix with an edge of Di. Since all

the three diamond components incident to vix already contribute with an alternating pair

of edges, we have that the flip of in a 4-modal embedding of G the flips of these diamond

components is fixed. Namely, the edge-diamond incident to vix has a positive flip at vix and

the diamond component D′i has a negative flip at vix. Since, the edge of the interior-diamond

component D′i can not form an additional alternation with the fixed edge piv
i
x, it must form a

alternation with the fixed edge pi+1u
i+1
x . Therefore, the embedding choice for Di propagates

throughout all the diamond components of Ex.

Altogether, we have proved that Ex admits exactly two possible 4-modal embeddings. Next,
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we will prove that one of them is True and that the other is False.

Let Di be the internal diamond of x with poles uix and vix and let D′i be the internal diamonds

of x with poles uix and ui+1
x , where l + 1 = 1. We will prove that Ex is True if and only if the

flip of the Di’s at ui is positive. Since each edge-diamond is incident to at least a diamond

Di, with i ≤ l, and since all the diamonds Di, with i ≤ l, have the same flip at their ui poles,

the statement follows.

By the arguments above, we have that all the diamonds Di have the same, positive or negative

flip, at their poles vix, and that all the diamonds D′i have the same, positive or negative flip,

at their poles vix. Also, a diamond D′i has a positive flip at vix if and only if the diamond Di

has a positive flip at vix.

Suppose now that a diamond Di has positive flip at uix, and thus a negative flip at vix. Then,

the edge-diamond incident to vix has a positive flip at vix. We have the following two cases. If

ci ∈ C+(x), then the edge-diamond incident to vix is a DB diamond component and therefore

it has a positive flip at its clause pole. Symmetrically, if ci ∈ C−(x), then the edge-diamond

incident to vix is a DA diamond component and therefore it has a negative flip at its clause

pole. Finally, for i = 1, . . . , l, the edge-diamonds incident to ui and vi have distinct types,

either DA or DB. This implies that such diamond components have the same flip at their

clause vertex, and concludes that proof that Ex is either True or False.

Lemma 2.21. In any 4-modal embedding E of G, for each clause ci of φ, the clause gadget

for ci contains at least one edge-diamond with a positive flip at wixy or at wiyz.

Proof. First, observe that the DA diamond component Dxyz must have a positive flip at

wi in E ; see Fig. 2.15. In fact, since the rotation of the remaining edges incident to wi is

fixed, and since every two consecutive such edges form an alternating pair at wi, a negative

flip of Dxyz at wi would imply a modality equal to 6 at this vertex.
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However, the flip of Dxyz also affects the modality at wixyz. We use this property to prove the

statement in two steps.

(i) For the modality at wixyz to be 4 when Dxyz has a positive flip at wi, we shall show

that at least one of Dxy or Dyz must have a positive flip at wixyz.

(ii) Moreover, for one of Dxy or Dyz to have a positive flip at wixyz, we shall show that at

least one of the edge-diamonds incident to wixy or to wiyz must have a positive flip at

wixy or at wiyz, respectively.
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xyz

(a) m(w) = 4
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xyz

(b) m(w) = 4

++

−

+

wi
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+
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xyz

(d) m(w) = 6

Figure 2.17: Illustration for the situation at the vertex wixyz.

(i) The modality at wixyz is determined by the flips of Dxy, Dyz and Dxyz. Since Dxyz has a

positive flip at wi, by hypothesis, it has a negative flip at wixyz; see Fig. 2.17.

Note that, if Dxy and Dyz have the same flip at wixyz, then there is an alternation at wixyz

between an edge of Dxy and an edge of Dyz. On the other hand, if they have different flips at

wixyz, then there is no alternation.

If both Dxy and Dyz have different flips at wixyz, then one of them has to be positive, and (i)

trivially holds. Note that, in this case, the modality at wixyz is 4 in E , independently of which

of Dxy and Dyz has a positive flip at wixyz; refer to Figs. 2.17a and 2.17b. This is indeed

the case as Dxy, Dyz, and Dxyz each contribute with one pair of alternating edges at wixyz,

however no edge in Dxy forms an alternating pair with an edge of Dyz at wixyz, and one edge

of Dxyz incident to wixyz forms an alternating pair at wixyz with an edge of Dxy if and only if
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the other edge of Dxyz incident to wixyz does not form an alternating pair at wixyz with an

edge of Dyz.

On the other hand, if both Dxy and Dyz have the same flip at wixyz, then there are already at

least 4 alternations at wixyz. Namely, one formed by the edges of each diamond component

incident to wixyz, and one between Dxy and Dyz. Therefore, since the flip of Dxyz is negative

at wixyz, we have that for the modality at wixyz to be 4, the diamond components Dxy and

Dyz must both have a positive flip at wixyz; refer to Figs. 2.17c and 2.17d.

(ii) We now show that at least one of the edge-diamonds incident to wixy or to wiyz must

have a positive flip at wixy or at wiyz, respectively. By (i), we know that at least one of Dxy

or Dyz must have a positive flip at wixyz. We show that if Dxy has a positive flip at wixyz,

then one of the edge-diamonds incident to wixy must have a positive flip at wixy; the proof

that if Dyz has a positive flip at wixyz, then one of the edge-diamonds incident to wiyz must

have a positive flip at wiyz is symmetric. The proof is identical to the one for (i); here, the

diamond component Dxy plays the role of Dxyz in the proof of (i) and the two edge-diamonds

incident to wixy play the role of Dxy and Dyz in the proof of (i). In particular, since the flip

of Dxy at wixyz is positive, it is negative at wixy, and therefore a negative flip of both its two

incident edge-diamonds at wixy would imply a modality of 6 at wixy (analogously to the case

in Fig. 2.17d for (i)). This concludes the proof.

Theorem 2.11. 4-Modality is NP-complete even for biconnected digraphs of maximum

degree 7.

Proof. We have already shown that the digraph G can be constructed in polynomial time

from the formula φ, and that G is biconnected and has maximum degree 7. We now prove

that G admits a 4-modal embedding E if and only if φ is satisfiable.

(φ ⇒ E) Suppose that φ is satisfiable, i.e., there exists a truth assignment A : Xφ →

{True, False} for the variables in Xφ satisfying each clause in φ. Recall that, by Observa-
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tion 2.10, the only embedding choices that affect the modality of an embedding of G are the

flips of its diamond components. Next, we show how to select such flips, based on the truth

assignment A, so that the resulting embedding E of G is 4-modal.

For each variable x ∈ Xφ, we set the embedding of the extended variable gadget Ex of x

to be A(x) in E , i.e., we set the embedding of Ex to be True if and only if A(x) = True.

Thus, we have set the flips of all the diamond components of Ex. Note that, in a True or

False embedding of Ex the modality of all the vertices of Ex, except for the clause poles, is

at most 4; in fact, the modality at the clause poles of the edge-diamonds of Ex also depends

on the embedding choices in the rest of G. The only diamond components of G whose flips

have not yet been fixed are the three diamond components incident to the vertices wixyz’s of

the clause gadgets contained in G. In the following, for each clause ci of φ, we show how to

set the flip of its diamond components Dxy, Dyz, and Dxyz incident to wixyz in such a way

that the modality at wixy, w
i
yz, and wixyz is 4 in E .

Since the truth assignment satisfies φ, at least one the edge-diamonds of the clause gadget for

ci has a positive flip at its corresponding clause pole. Assume, without loss of generality, that

one of the two edge-diamonds incident to wixy has a positive flip at wixy. Then, the flip of

Dxy can be selected so that it is negative at wixy, while ensuring that the modality at wixy is 4

in E . In fact, the modality at wixy is 4 as long as the the three diamond components incident

to wixy have not all the same flip at wixy. Further, since the flip of Dxy is negative at wixy,

it is positive at wixyz. Also, since the flip of Dxyz must be set to be positive at wi, in order

for the modality at wi to be at most 4, the modality of Dxyz at wixyz is negative. Therefore,

since the modality at wixyz is 4 as long as the the three diamond components incident to wixyz

have not all the same flip at wixyz, we immediately get that (i) the modality of wixyz is 4 in E ,

independently of the flip of Dyz, and that (ii) we can select a flip of Dyz so that the modality

of wiyz is 4 in E , by simply ensuring that the flip of Dyz at wiyz is different from that of at

least one of the two edge-diamonds incident to wiyz. This concludes the proof that the flips
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Figure 2.18: Illustration of the thickening gadget T (u, v) for the proof of Theorem 2.12.

of the diamond components of G can be selected so that the resulting embedding E of G is

4-modal.

(E ⇒ φ) Suppose that G admits a 4-modal embedding E . We show how to infer from E

a truth assignment A : Xφ → {True, False} for the variables Xφ of φ that satisfies each

clause of φ. By Lemma 2.20, the embedding Ex of each extended variable gadget Ex induced

by E is either True or False, for every variable x ∈ Xφ. We set A(x) to be True if and only if

the embedding Ex of Ex is True.

Next, we show that A satisfies each clause of φ. Let ci be a clause of φ. By Lemma 2.21, at

least one edge-diamond incident to either wixy or wiyz must have a positive flip at wixy or wiyz,

respectively. Assume, without loss of generality, that an edge-diamond D incident to wixy

has a positive flip at wixy. Let x be the variable whose extended variable gadget Ex contains

the edge-diamond D. Clearly, x participates to ci either as a positive literal or as a negative

literal. In the former case, since D ∈ O+(x) and since wixy is the clause pole of D, we have

that Ex is True, and thus ci is satisfied by A(x) = True. In the latter case, since D ∈ O−(x)

and since wixy is the clause pole of D, we have that Ex is False, and thus ci is satisfied by

A(x) = False. This concludes the proof of the theorem.

In the following, we show how to extend the proof of Theorem 2.11 to k > 4 and ∆ ≥ k + 3.
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For any k > 4, let the thickening gadget T (u, v) be the digraph defined as follows; refer to

Fig. 2.18. The vertex set of T (u, v) consists of the vertices u, v and of the vertices pi, for

i = 1, . . . , k − 4 + 1. The edge set of T (u, v) consists of the directed edges upi and piv, for

i = 1, . . . , k − 4 + 1, and of the directed edges pipi+1, for i = 1, . . . , k − 4.

First, we perform the same reduction as in the proof of Theorem 2.11. Let G be the resulting

digraph. Second, we replace each edge uv of G with the three directed edges uu′, u′v′, and

v′v, that is, we replace the edge with a directed path of length 3 between its endpoints. Let

G′ be the resulting digraph. Finally, for every vertex v in V (G), we select an edge e of G′

incident to it. If e = uv, we replace e with T (u, v), otherwise we replace e with T (v, u). Let

G∗ be the resulting digraph.

Clearly, the construction of G∗ can be performed in polynomial time and G∗ is biconnected

(since G is biconnected). Further, ∆(G′) = ∆(G) and the thickening gadgets have degree

k − 4 + 1 at their endpoints. Moreover, no two thickening edges are adjacent, as any two

vertices of V (G) have distance at least 3 in G′. Therefore, ∆(G∗) = ∆(G) + k − 4 = k + 3.

We claim that G∗ admits a k-modal embedding if and only if G admits a 4-modal embedding.

The key property of the thickening gadgets is that, in any k-modal embedding of G∗, they

contribute with k− 4 unavoidable alternations to the modality of the vertex of V (G) they are

incident to. Moreover, since the thickening gadgets are 3-connected, in any planar embedding

E∗ of G∗, the edges up1, p1v, up(k−4+1), and p(k−4+1)v of a thickening gadget T (u, v) bound a

face of the embedding E ′ of T (u, v) induced by E∗. Therefore, in E∗, the number of alternations

at a vertex v of V (G) that are not those determined by pairs of edges of a thickening gadget

incident to v, is independent of which of the two possible embeddings of the thickening gadget

is selected (as both such embeddings offer edges with the same orientation at u and at v

at their interface with the rest of the graph). Therefore, we can obtain a drawing Γ∗ of G∗

determining a k-modal embedding from a drawing Γ′ of G′ determining a 4-modal embedding,

by replacing the drawing of an edge (u, v) of G′ in Γ′ with any planar drawing of T (u, v)
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with u and v on its outer face. Clearly, the drawing Γ∗ has maximum modality equal to

k, as no two thickening gadgets are incident to a common vertex and since each thickening

gadget contributes with k − 4 pairs of alternating edges at its endvertices. Symmetrically, we

can obtain a drawing Γ′ of G′ determining a 4-modal embedding from a drawing Γ∗ of G∗

determining a k-modal embedding, by replacing the drawing of a thickening gadget T (u, v) of

G∗ in Γ∗ with a drawing of the edge uv that resembles the drawing in Γ∗ of the path (u, p1, v)

of T (u, v). The fact that G′ admits a 4-modal embedding if and only if G admits one, then

implies that G∗ has a k-modal embedding if and only if G has a 4-modal embedding, which

in turn yields the following.

Theorem 2.12. k-Modality is NP-complete with k ≥ 4 even for biconnected digraphs of

maximum degree ∆ ≥ k + 3.

2.10 k-Modal Embeddings of Outerplanar Digraphs

In this section, we consider k-modal embeddings of outerplanar digraphs.

It is easy to see that any directed tree always admits a bimodal embedding. In fact, it suffices

to observe that, when applied to trees, the simple reduction presented in Section 2.1 from

the problem of testing for the existence of a bimodal embedding to the one of testing the

planarity of a suitably-defined auxiliary graph, produces again trees, and that trees are planar.

We thus have the following.

Fact 2.1. Any directed tree has a bimodal embedding.

On the other hand, we can prove that this result does not extend further to the class of

outerplanar graphs, which includes the trees. For instance, Fig. 2.19 provides an example

of an outerplanar graph O, which is also simple and biconnected, that does not admit any

bimodal embedding.
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Figure 2.19: A simple biconnected outerplanar digraph O that does not admit a bimodal
embedding.

Theorem 2.13. There exists an infinity family F of simple biconnected outerplanar digraphs

that are not bimodal.

Proof. First, we prove that the digraph O depicted in Fig. 2.19 does not admit any bimodal

embedding. Consider the SPQR-tree T of O rooted at edge (u, v). We can easily see that

S(ν1) = S(ν2) = S(µ1) = S(µ2) = {〈�◦, 1, ◦�, 1〉, 〈◦�, 1, �◦, 1〉}. The parent node of nodes ν1 and ν2

is the S-node ν. We have that S(ν) = {〈�◦, 1, �◦, 1〉, 〈◦�, 1, ◦�, 1〉}. This is due to the fact that each

good embedding of pert(ν1) and pert(ν2) already contributes with an alternation at their

shared vertex and that, in order for such a vertex to be bimodal in an embedding of pert(ν),

the good embeddings of the pertinent graphs of ν1 and ν2 have to be combined so not to

create any additional alternation at the vertex. The proof that S(µ) = {〈�◦, 1, �◦, 1〉, 〈◦�, 1, ◦�, 1〉}

is symmetric. Further, the parent node of nodes ν and µ is the P-node ρ. We have that

S(ρ) = {〈�◦, 2, �◦, 2〉, 〈◦�, 2, ◦�, 2〉}. This is due to the fact that each good embedding of pert(ν)

and pert(µ) contributes with an alternation at the poles u and v of ρ and that, in order for

the such vertices to be bimodal in an embedding of pert(ρ), the good embeddings of the

pertinent graphs of ν and µ have to be combined so not to create any additional alternation

at u and v. Finally, since inserting edge uv in any of the good embeddings of pert(ρ) so to

construct an embedding of O would create an additional alternation at either u or v, we have

that O does not have any bimodal embedding.
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The graphs in F are recursively defined as follows. For each integer i ≥ 0, family F contains a

graph Gi on 8+i vertices. Graph G0 coincides with O. Observe that, O is simple, outerplanar,

and biconnected. For i > 0, let vz be any edge of Gi that is incident to the outerface of any

outerplanar embedding of Gi. Graph Gi+1 is constructed from Gi by introducing a new vertex

x and edges vx and xz. It is easy to see that Gi+1 is simple, outerplanar, and biconnected, if

Gi is simple, outerplanar, and biconnected, which holds by induction, and that Gi+1 does

not admits a bimodal embedding as it contains G0 = O as a subgraph.

In view of the above negative result, we consider k-modal embeddings of outerplanar digraphs

with k > 2. We remark that the next algorithmic results hold even for outerplanar digraphs

containing multi-edges.

Lemma 2.22. Let G be a biconnected outerplanar digraph and let c be a vertex of G. Then,

G admits a 4-modal embedding in which c is at most bimodal.

Proof. Let T be the SPQR-tree of G. By the next claim, we assume that T is rooted at a

Q-node ω that corresponds to an edge e incident to c and that is adjacent to an S-node σ

in T .

Claim 2.3. There exists an edge of G incident to c whose corresponding Q-node is adjacent

to an S-node of T .

Proof. Consider an outerplanar embedding E of G and let (u, c) be and edge of G incident

to c and to the outer face f∞ of E . Observe that, since G is biconnected, f∞ is a simple cycle

containing edge (u, c) and passing through all the vertices of G. We prove that (u, c) is not

the intra-pole edge of any P-node of T , which in turn implies the statement. Suppose, for a

contradiction, that vertices u and c are the poles of some P -node θ of T . Then, let µ1 and µ2

be the two S-nodes adjacent to θ in T , and let ω be the Q-node adjacent to θ corresponding

to edge (u, c). Clearly, u and v are also the poles of µ1, µ2, and ω. Assume, for the sake
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Figure 2.20: Illustrations for the proof of Claim 2.4. (a) An embedding of the pertinent
graph of a node µ realizing tuple 〈�◦ , 1, ◦� , 1〉. (b) An S-node µ with three children µ1, µ2,
and µ3. Combining the embeddings of the pertinent graphs of the children of µ yields new
4-modal vertices (shared by the different children). (c) An embedding of the pertinent graph
of a P-node µ that realizes tuple 〈�◦ , 1, ◦� , 1〉; the three intra-pole edges uµvµ and the two
intra-pole edges vµuµ are embedded in the left and in the right outer face of an embedding of
the pertinent graph of the S-node child ν of µ that realizes tuple 〈�◦ , 1, ◦� , 1〉.

of properly defining the pertinent graphs of the nodes of T , that T is rooted at ω. Since

(u, c) belongs to f∞, a vertex of the pertinent graph of either µ1 or µ2 different from their

poles must lie in the interior of f∞. We thus obtain a contradiction to the fact that E is

outerplanar.

The proof of the lemma is based on the following claim.

Claim 2.4. Let µ be a non-root node of T . Then, pert(µ) admits a 4-modal embedding Eµ

realizing either tuple 〈�◦, a, ◦�, b〉 or 〈◦�, a, �◦, b〉, with a, b ≤ 1; see Fig. 2.20a.

Proof. The proof is based on a bottom-up traversal of T ; when considering a non-root

node µ of T with children µ1, . . . , µk, we show that pert(µ) admits an embedding satisfying

the conditions of the claim, assuming that the pertinent graphs pert(µ1), . . . , pert(µk) of

µ1, . . . , µk also satisfy such conditions.

Q-nodes. Suppose that µ is a Q-node with poles {uµ, vµ}. If µ corresponds to the directed

edge uµvµ, then pert(µ) admits a unique embedding, which realizes tuple 〈◦�, 0,∈, 0〉; otherwise,
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if µ corresponds to the directed edge vµuµ, then pert(µ) admits a unique embedding, which

realizes tuple 〈�◦, 0, ◦�, 0〉.

S-nodes. Suppose that µ is a Q-node and let (u1 = uµ, . . . , uk = vµ) be the path representing

the skeleton of µ. Also, let µi be the children of µ corresponding to the virtual edge (ui, ui+1)

of skel(µ), for i = 1, . . . , k − 1. Suppose that pert(µ1) and pert(µ2) contain edges with

different orientations incident to uµ and to vµ, respectively; the other cases being simpler.

We show how to construct an embedding Eµ of pert(µ) realizing tuple 〈�◦, 1, ◦�, 1〉; refer

to Fig. 2.20b. We obtain Eµ by selecting for each child µi of µ an embedding Eµi realizing

tuple 〈�◦, 1, ◦�, 1〉; observe that such embeddings exist by hypothesis. Clearly, Eµ realizes the

embedding tuple 〈�◦, 1, ◦�, 1〉, as the embedding pair of pert(µ1) at µ is (�◦, 1) and the embedding

pair of pert(µk) at vµ is (◦�, 1), by construction. We now show that Eµ is 4-modal at any vertex

v of pert(µ). If v ∈ {u1 = uµ, uk = vµ}, then, by the above arguments, v is bimodal in Eµ. If

v /∈ {u2, . . . , uk−1}, then v is an internal node of the pertinent graph of some children µi of µ,

and thus v is 4-modal in Eµ since it is 4-modal in Eµi by hypothesis. Finally, if v = ui, with

i ∈ {2, . . . , k − 1}, then v is at most 4-modal in v as it is at most bimodal in both Ei and

Ei+1 by hypothesis. An embedding of pert(µ) realizing tuple 〈◦�, 1, �◦, 1〉 can be obtained as a

horizontal flip of Eµ.

P-nodes. Suppose now that µ is a P-node. Recall that, since the unique child σ of the root

Q-node ω is an S-node and since G is outerplanar, node µ has exactly one non-Q-node child

ν. Suppose that pert(ν) contains edges with different orientations incident to uµ = uν and to

vµ = vν , respectively; the other cases being simpler.

We show how to construct an embedding Eµ of pert(µ) realizing tuple 〈�◦, 1, ◦�, 1〉; refer to

to Fig. 2.20c. We obtain Eµ by selecting an embedding Eν of pert(ν) realizing tuple 〈�◦, 1, ◦�, 1〉

(such embeddings exist by hypothesis) and by embedding each directed edge e corresponding

to a Q-node child in the left or in the right face of Eν depending on whether e = uµvµ or

87



e = vµuµ, respectively. Clearly, Eµ realizes the embedding tuple 〈�◦, 1, ◦�, 1〉, as the embedding

pair of pert(µ1) at µ is (�◦, 1) and the embedding pair of pert(µk) at vµ is (◦�, 1), by construction.

Also, vertices uµ and vµ are bimodal in Eµ and any internal vertex of pert(µ) is also an

internal vertex of pert(ν) and thus it is 4-modal in Eµ since it is 4-modal in Eν . As for the

S-node case, an embedding of pert(µ) realizing tuple 〈◦�, 1, �◦, 1〉 can be obtained as a horizontal

flip of Eµ. This concludes the proof of the claim.

By Claim 2.4, we have that pertσ admits a 4-modal embedding Eµ that has at most an

alternation at both its poles. Thus, by placing edge e in the outer face of Eµ, we obtain a

4-modal embedding of G that is bimodal at the poles of ω, one of which is c. This concludes

the proof of the lemma.

We are now ready to present the main result of the section.

Theorem 2.14. Every outerplanar multigraph admits a 4-modal embedding.

To prove Theorem 2.14, we are going to need the following simple observation, which follows

from the proof of Theorem 2.5.

Observation 2.11. For any modality k ≥ 2, every digraph whose blocks admit a k-modal

embedding in which the modality of a specified vertex is at most 2 also admits a k-modal

embedding.

Proof of Theorem 2.14. Lemma 2.22 and Observation 2.11 allow us to prove Theorem 2.14

as follows. Let G be an outerplanar multigraph. For each block βi of G, by Lemma 2.22, we

can compute a 4-modal embedding of βi in which the modality of the parent cut-vertex ci of

βi is at most 2. Then, by Observation 2.11, all such embeddings can be composed together

to obtain a 4-modal embedding of G. This concludes the proof.
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Figure 2.21: Arrangements or pairs of rotated convex k-gons are in one to one correspondence
with 2k-modal embeddings.

2.11 Conclusions and Open Problems

In this chapter, we studied the complexity of the k-Modality problem, with special emphasis

on k = 4. We provided complexity, algorithmic, and combinatorial results. Our main

algorithmic contribution for k = 4 and ∆ ≤ 6 leverages an elegant connection with the

NAE-satisfiability of special CNF formulas, whose study allowed us to strengthen a result

in [86].

Moreover, we showed notable applications of the previous results to some new interesting em-

bedding problems for clustered networks, some of which solve open problems in this area [9, 54].

In this side of the spectrum, it is work pointing out that the connection between modal em-

beddings and intersection-link representations can be exploited to show NP-hardness results

and polynomial-time algorithms analogous to those proved in Theorem 2.4 and Theorem 2.3,

respectively. In particular, by allowing the geometric objects that represent vertices to be

rotations of the same convex k-gon, we can construct arrangements of pairs of geometric

objects such that, traversing the boundary of the arrangements clockwise, we encounter each

object k times along such a boundary; Fig. 2.21 illustrates the example of segments, triangles,

and squares, which correspond to 4-, 6- and 8-modal embeddings, respectively. The above

observation allows to extend the positive and negative results mentioned above also to this

extended setting for Clique Planarity.
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Several interesting open questions arise from our research: Q1: What is the relationship

between k-modality and maximum degree? In particular, is there a non-trivial function

f such that, given any digraph G of maximum degree ∆, deciding whether G admits an

f(∆)-modal embedding can be done in polynomial-time? Q2: Is there a polynomial-time

algorithm for computing k-modal embeddings of partial 2-trees, whose running time does

not depend on k? Q3: It is easy to see that any directed tree always admits a 2-modal

embedding. In Section 2.10, we showed that this result does not extend to every outerplanar

digraph. Despite this, we proved that every outerplanar digraph is 4-modal. Along this

line, are there relevant families of planar digraphs that always admit a k-modal embedding,

for some non-negative even integer k?
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Chapter 3

Minimum Width Drawings of

Phylogenetic Trees

3.1 Introduction

A phylogenetic tree is a rooted tree that represents evolutionary relationships among a group of

organisms. The branching represents how species are believed to have evolved from common

ancestors and the vertical height difference represents genetic difference or, in “clock trees”,

time estimates for when the species diverged. In this chapter, we study the algorithmic

complexity of producing minimum-width orthogonal upward drawings of phylogenetic trees.

We consider vertices as extending horizontally and edges as extending vertically, making

edge-length equal to vertical distance.1 See Fig. 3.1.

Given a phylogenetic tree, T , with a length, Le, defined for each edge, e ∈ T , the min-width

orthogonal phylogenetic tree drawing problem is to produce an upward planar orthogonal

1To consider a node-link representation with 1-bend edges, edge-lengths does not coincide with vertical
distance so special considerations must be taken.
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A new leptocleidid (Sauropterygia, Plesiosauria) 9

Figure 5. Phylogenetic results. A, time-calibrated strict reduced consensus of trees derived from analysis of the modified dataset of
Ketchum & Benson (2010, 2011). Vectocleidus was recovered as a wildcard taxon (Wilkinson 2003), occupying multiple possible
positions within Leptocleididae. Hastanectes was recovered as a pliosaurid. Bootstrap support values >50% are given below nodes.
Silhouettes indicate common approximate body proportions within selected clades. B–D, summary of previous hypotheses on leptocleidid
affinities showing relationships among major plesiosaurian clades recovered by: B, O’Keefe (2001, 2004a); C, Druckenmiller & Russell
(2008a) and D, Kear & Barrett (2011). All previous authors considered leptocleidids as pliosauroids.

alternative phylogenetic analyses have not recovered a clade
comprising all four of these families (Fig. 5B–D; O’Keefe
2001; Druckenmiller & Russell 2008a; Smith & Dyke 2008;
Kear & Barrett 2011)). The transversely narrow anterior

processes of the coracoids of Vectocleidus are uniquely
shared with cryptoclidids, polycotylids, leptocleidids and
the basal elasmosaurid Wapuskanectes (Druckenmiller &
Russell 2006). In cryptoclidids the process is dorsoventrally
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Figure 3.1: An orthogonal upward drawing of a phylogenetic tree, from [25].

drawing of T that satisfies each edge-length constraint (so the drawn vertical length of

each edge e is Le)
2 and minimizes the width of the drawing of T . The motivation for this

problem is to optimize the area of an orthogonal drawing of a phylogenetic tree, since the

height of such a drawing is fixed by the sum of lengths of the edges on a longest root-to-leaf

path. From an algorithmic complexity perspective, note that this problem is trivial in clock

trees since all leaves represent non-extinct species, implying the edge length sum for every

root-to-leaf path is the same and all the leaves should be drawn on the same level in this

case. Thus, we are interested in the general case, as shown in Fig. 3.1, for this implies that

width improvement is possible by allowing subtrees of extinct species to have overlapping

x-coordinates with species that evolved after extinction events. In this chapter, we show that

min-width orthogonal phylogenetic tree is NP-hard if the ordering of leaves is unconstrained

2Without loss of generality, each node is embedded below its parent; other orientations, such as drawing
nodes above their parents, are equivalent to this one via rotation.
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and we give a linear-time algorithm for ordered trees. Also, we describe several heuristic

algorithms for the unconstrained case and show their effectiveness by experimentation.

3.1.1 Related work

There is considerable prior work on methods for producing combinatorial representations of

phylogenetic trees, that is, to determine the branching structures and edge lengths for such

trees, e.g., see [81, 94, 66, 58, 100]. For this chapter, we assume that a phylogenetic tree is

given as input.

Existing software systems produce orthogonal drawings of phylogenetic trees, e.g., see [32, 67,

83, 26, 84, 103], however we are not familiar with any previous work on characterizing the

algorithmic complexity of the minimum-width orthogonal phylogenetic tree drawing problem.

Bachmaier et al. [14] present linear-time algorithms producing other types of drawings of

ordered phylogenetic trees, including radial and circular drawings, neither of which are

orthogonal drawings.

Although we are not aware of prior work on the min-width orthogonal phylogenetic tree

drawing problem, there is prior related work on orthogonal tree drawing and drawing graphs

with fixed edge lengths. Several researchers have studied area optimization problems for planar

upward tree drawing without edge-length constraints, e.g., see [52, 92, 72, 34, 33, 51, 89, 3, 38].

For example, Chan et al. [34] show that every n-node binary tree has a planar upward

orthogonal straight-line grid drawing with O(n log n) area for a wide range of aspect ratios,

and this result was recently improved by Chan [33]. Also, Kim [72] shows that every n-node

ternary tree has a planar upward orthogonal straight-line grid drawing with O(n log n) area.

In addition, Frati [51] studies order-preserving straight-line orthogonal drawings of binary

trees and ternary trees, showing that subquadratic area drawings are possible, but if such
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drawings must be upward, then there is a quadratic area lower bound. (See also Rusu and

Fabian [89].) Alam et al. [3, 4] study the problem of upward planar orthogonal drawings

of binary trees with a minimum number of edge segments. Di Battista et al. [38] study

orthogonal and quasi-upward drawings of graphs with vertices of prescribed sizes.

In terms of hardness, Biedl and Mondal [20] show it is NP-hard to decide whether a tree has a

strictly upward straight-line drawing in a given W ×H grid. Bhatt and Cosmadakis [19] show

that it is NP-complete to decide whether a degree-4 tree has a straight-line (non-upward)

orthogonal grid drawing where every edge has length 1. Gregori [57] extends their result to

binary trees and Brunner and Matzeder [30] extend their result to ternary trees.

Eades and Warmald [47] show that it is NP-hard to determine whether one can produce a

straight-line drawing of a graph, G, with given edge lengths and without crossings, even if G

is 2-connected and all edge lengths are 1 (i.e., for 2-connected matchstick graphs). Cabello et

al. [31] show that this problem is solvable in linear-time for planar 3-connected triangulations,

but it is NP-hard for planar 3-connected infinitesimally rigid graphs. More recently, Abel et

al. [2] show that this decision problem is ∃R-complete.

In addition, Brandes and Pampel [28] show that several order-constrained orthogonal graph

drawing problems are NP-hard, and Bannister and Eppstein [16] show that compacting certain

nonplanar orthogonal drawings is difficult to approximate in polynomial time unless P = NP .

These previous hardness proofs do not apply to the min-width orthogonal phylogenetic tree

drawing problem, however.

3.2 Min-Width Phylogenetic Tree Drawing is NP-hard

In this section, we prove the following theorem:

Theorem 3.1. Computing the minimum width required for an upward planar orthogonal
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drawing of a binary tree with fixed vertical edge lengths is NP-hard.

We prove this via a reduction from NAE-3-SAT, a variant of NAESAT where each clause

consists of exactly 3 literals. We remind the reader that in NAESAT an assignment is

considered satisfying when each clause’s boolean values are not all the same. An instance, φ,

of NAE-3-SAT is defined by n variables X = {x1, ..., xn} and m clauses C = {c1, ..., cm}.

Given a truth assignment, a literal is considered satisfied if the literal evaluates to true. A

truth assignment A satisfies φ when each clause contains only one or two satisfied literals.

Each clause must therefore also have one or two unsatisfied literals.

Given a truth assignment, A, we define A to be the truth assignment where each assigned

truth value is the negation of the truth value assigned in A. If A satisfies φ each clause

must contain a satisfied literal, l1, and an unsatisfied literal, l2, then A must also contain

an unsatisfied literal, l1, and a satisfied literal, l2. Thus for any A satisfying φ, A must also

satisfy φ.

We use this property to create a combinatorial phylogenetic tree T from an instance φ such

that T admits an upward orthogonal drawing of width 4n+ 4 if and only if φ is satisfiable.

Since the vertical length of each edge is fixed, each node in T has a fixed level or height at

which it needs to be drawn. We say that two nodes are horizontally aligned when they lie

at the same level. Our reduction follows the general structure shown in Fig. 3.2a. The top

part of the tree forms a truth-assignment gadget, where each variable has two branches, one

corresponding to a true value (shown in green) and the other corresponding to a false value

(shown in red). The truth-assignment gadget’s combinatorial order therefore defines truth

assignments for A and A, on the left and right, respectively. Fig. 3.2a illustrates all true and

all false truth assignments (respectively) whereas Fig. 3.2b illustrates a satisfying assignment

for a two-clause formula. The middle part comprises a sequence of clause gadgets, with 3

rows for each clause gadget, plus rows of alignment nodes, separating the clause gadgets. The
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gadgets

gadget

(a)

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4)

2n + 2

2n + 3

5m

2n + 2 2n + 2

(b)

Figure 3.2: Overview of Theorem 3.1 (a) General structure. (b) Drawing of reduction
corresponding to a satisfying assignment, x = {true, true, false, false}

w3

w2

w1

(a) (b)

Figure 3.3: Construction pieces: (a) wk substructures (b) Pyramidal embedding of bridge
and base for n = 3

bottom parts of the tree comprise bridge and base gadgets, which ensure that the pair of

branches corresponding to the true and false values for each variable must be on opposite

sides (see Lemma 3.2).

Let P (k) be a path of k nodes with unit edge-lengths, where p1 is the root of the path and

pi ∈ P, 2 ≤ i ≤ k is the i-th node along the path. A node pi may have two children, the node

pi+1 (if it exists) and some other new node (or two if i = k). We define the substructures
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w1, w2, and w3 (Fig. 3.3a), consisting of the minimal tree with 1, 2, and 3 leaves at the same

height.

We proceed from top to bottom to describe the structure of T . The tree, T , is rooted on

the first node of a path P (2n), called the variable path. We first add a w2 component to

p2n a unit-length away as its first child, which we use to root the base. We then add a w2

component as the second child of each node pi, 1 ≤ i ≤ 2n so the 2n new w2 components lay

in horizontal alignment with the one rooting the base. These 2n w2 components connect each

node in the variable path to a branch. Of the 2n branches, there are two for each of the n

variables in φ. We label the branch originating from pi with the truth assignment setting

xb(i+1)/2c to ‘true’ if i is odd and ‘false’ if i is even. These branches are now called assignment

branches.

Each assignment branch consists of m clause components connected in a path by unit-length

edges, where the j-th component (for 1 ≤ j ≤ m) belongs to the clause gadget of clause

cj. Each clause component has the same height so each clause, cj, occupies a distinct

horizontal band of space in the tree. Each clause component consists of a wk component

and two surrounding alignment nodes, one above the wk component and one below. Each

wk component has height 3 and for clause components corresponding to the same clause the

leaves of all wk are horizontally aligned.

Recall that each variable has two assignment branches associated to it, one corresponding

to setting the variable to true and one to false. A clause component is defined by both the

clause, cj, and the branch’s labeled truth assignment, xi = {true, false}. If xi does not

participate in clause cj then its clause component has a w2 substructure. If xi appears as

a literal in cj and evaluating it with the assigned truth value satisfies the literal then the

clause component has a w3 substructure. However, if the literal is unsatisfied then it contains

a w1 substructure. For example, in Fig. 3.2b clause c1 = (x1 ∨ x2 ∨ x3), the branch labeled

x1 = true contains w3, whereas x1 = false contains w1 and both x4 assignment branches
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contain w2.

Top alignment nodes have incoming edges connecting from the bottom alignment nodes of

the previous clause. These two consecutive rows of alignment nodes enable the clause gadgets

along an assignment branch to be shifted left or right to efficiently align into the available

space within that gadget (see Section 3.2.1).

After the last clause component in each branch (labeled with xi) we attach a node one unit

away from the last shifter and give it two children, one 2n− 2i+ 1 units away and the other

2n− 2i+ 2. These nodes together form the bridge gadget.

To build the base, we set a path P (2n+ 2) as a child 5m+ 2 units away for each of the two

leaves in the remaining copy of w2 attached to p2n. For each non-leaf node in the path we just

connected, we set their remaining child to be a single node horizontally aligned with the leaf.

Lemma 3.1. At minimal width, the base and bridge can only assume a pyramidal embedding.

We define a pyramidal embedding as the embedding of the base in which nodes closer to the

root lie closer to the center and nodes further from the root approach the outer sides, as shown

in Fig. 3.3b.

Proof. We define the filled area of a drawing as the sum of the space used by each node

(equal to its width), and the space used by each edge (equal to its length). The length of

the edges is fixed, but we can change the filled area by changing the layout to minimize the

width of the non-leaf nodes. When the base is in the pyramidal embedding, it fills the least

possible area, since every non-leaf node must have width equal to its number of children. We

now show that this is the only configuration with minimal area.

We begin from the parents of the base gadget, which belong to a copy of w2 (Fig. 3.3a). The

two incoming edges from this structure must be next to one another, with no gap between

them. The two nodes at the top level of the base each then have both a leaf and a large
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subtree attached.

The width of each of these top-level nodes must be two, and the only way to achieve this

is that each node’s leaf must lie on the inside and its subtree on the outside. Similarly, for

each subsequent node along the path, the same argument shows that its leaf must lie on the

inside. This proves by induction that the base needs to be in a pyramidal embedding. The

bridge then must fit against the base. The bridge nodes with the lowest leaves must be on

the outside, with the next lowest leaves next to them, and so on by induction back to the

center. This shows that the pyramidal embedding is the unique embedding that minimizes

the filled area. Since the levels containing the base and bridge nodes are completely packed

with no gaps, this also implies that the pyramidal embedding is the unique embedding that

minimizes the width of these levels.

Lemma 3.2. The embedding of the truth-assignment gadget defines assignments A and A.

Proof. As a consequence of Lemma 3.1, the two edges coming into the base must be centered.

We refer to these two edges as ‘the split’. The base takes up width 2n+ 1 on either side of

these two edges, and each branch needs width two, so at most n can fit on either side.

Furthermore, in order for the bridge to assume the pyramidal embedding, each leaf on the

left side must have a corresponding leaf at the same level on the right side. Note that the

height of the leaves in the bridge gadget depends on which variable branch they are attached

to, so that leaves on the same level correspond to the two assignments of the same variable.

Therefore, there is one assignment branch for each variable on each side, so the assignments

labeling the branches on one side must all be of different variables and thus describe a truth

assignment. The branches on the opposite side have the opposite assignment for each variable.

Let the truth assignment on the left side be A, and the one on the right side be A.

Lemma 3.3. Given truth assignments A and A, a clause in φ is satisfied if and only if the

width used by the clause gadget is at most 2n+ 1 on both sides of the split.
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Proof. The maximum number of horizontally aligned nodes on the left side of the clause

gadget is equal to the sum of the width of the wk’s, k ∈ {1, 2, 3}, in each assignment branch for

assignment A. Recall that within a clause gadget each assignment branch has an embedded

copy of either w1, w2 or w3. We define function pi,j , which describes the width of an embedded

copy wk, and Sj(A), which describes the sum of all the embedded element’s widths, as follows:

Sj(A) =
n∑
i=1

pi,j(A), where pi,j(A) =


3 if Adoes satisfy the literal of xi in cj

1 if Adoesn’t satisfy the literal of xi in cj

2 if cj has no literal of xi

By definition, a clause can only be satisfied if one or two of the clause’s literals are satisfied

and the remaining one or two literals must be unsatisfied. Without loss of generality we can

assume that each clause consists of two or three literals from distinct variables.3 For clauses

with literals from three distinct variables, any clause cj satisfied by a truth assignment A

must have only one or two satisfied literals. If A satisfies only one literal in clause, cj, then

Sj(A) evaluates to 3 + 1 + 1 + 2(n− 3) = 2n− 1, since only 3 of the n variables participate

in a clause. If it satisfies two literals, it evaluates to 3 + 3 + 1 + 2(n− 3) = 2n+ 1 instead. If

A satisfies cj, then A also satisfies cj implying Sj(A) and Sj(A) are both at most 2n + 1.

On the other hand, if A doesn’t satisfy cj , then it either satisfies all three literals, and Sj(A)

evaluates to 3 + 3 + 3 + 2(n− 3) = 2n+ 3, or A satisfies all three literals and Sj(A) = 2n+ 3.

Therefore if A doesn’t satisfy cj, Sj(A) or Sj(A) will exceed 2n+ 1.

For clauses with literals from two distinct variables, any A can only satisfy cj with one satisfied

literal and one unsatisfied literal. Sj(A) and Sj(A) both evaluate to 3 + 1 + 2(n− 2) = 2n,

both remaining strictly less than 2n+1. However if A doesn’t satisfy cj then either A satisfies

both literals, and Sj(A) = 3 + 3 + 2(n− 2) = 2n+ 2, or A satisfies both literals. Therefore if

3 Degenerate cases to consider include cases when a variable contributes multiple literals to a single clause.
We can safely ignore cases when all three identical literals are present (which is not satisfiable) and when
positive and negated literals of the same variable are present (since the clause is always satisfied). When a
literal is repeated exactly twice, we handle it as a clause of only the two distinct literals.
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x2 x3x4x1 x2x3 x4x1 x2 x4x1 x3

11 9 77

x3 x2 x4x1

A0 = {true, true, true, true} A0 A1 = {true, true, false, true} A1

c2

c1

x2 x3x4x1 x2x3 x4x1

11 7

A0

x2 x3x4x1 x2x3 x4x1

11 7

A0

c1

Figure 3.4: Original and satisfied clause gadgets for φ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4)

A doesn’t satisfy cj , Sj(A) or Sj(A) will exceed 2n+ 1. We have now proved that Sj(A) and

Sj(A) are both at most 2n+ 1 if and only if A and A both satisfy cj . If the clause gadget is

able to assume a dense embedding, then the width needed by the wk components on opposite

sides should be exactly equal to Sj(A) and Sj(A). What remains is to prove that a dense

embedding is possible, we prove this using the alignment nodes.

3.2.1 Alignment Nodes

+0 +1 +2 +2

−1 −1 −1 −1

+1

-0

Figure 3.5: Impossible consecutive set of clauses, c1 = x2 ∨ x3 ∨ x6 and c2 = x1 ∨ x2 ∨ x6,
with satisfying assignment x = {false, true, true, ...}

Alignment nodes only need to be able to fully realign satisfied clauses; therefore within the

three structures at least one must be of width three and at least one of width one. It follows
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that if we consider the periodicity of the column at which the edge drops, the maximum

possible phase difference in these periods is shown in Fig. 3.5. Considering this order as an

extreme case is sufficient because after using both satisfied literal structures (after x3 in c1)

the only remaining widths could be two (which maintains the phase difference) or one (which

reduces the phase difference). The same argument can be made after using both unsatisfied

literal structures after x2.

Without alignment nodes it would be impossible to connect x2 and x3 to the next clause,

but adding the two row of alignment nodes (shown in blue) between clauses enable them to

remain connected. This allows us to maintain the tightness of each clause and not artificially

widen the drawing because of interactions between adjacent clauses.

Wrapping up the main proof, if any clause is not satisfied the clause gadget will exceed the

allowable space of 2n+ 1 and increase the width to at least 4n+ 5. Therefore only a satisfying

assignment A would retain a width of 4n+ 4, proving that if a satisfying assignment for φ

exists then there exists an embedding of T with width 4n+ 4.

On the other hand, if a tree T has a drawing of width 4n+ 4 then every clause was satisfied

(following Lemma 3.3), and thus A must describe a satisfying assignment for φ. This proves

that T can be embedded with width 4n+ 4 if and only if φ is satisfiable.

Furthermore, our reduction features a multi-linear number of nodes: the variable gadget has

8n+3 nodes, the clause gadgets exactly 5mn nodes, the bridge gadget 6n and the base gadget

8n+ 6 totaling exactly 22n+ 5mn+ 12 nodes. This completes our proof of Theorem 3.1.
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3.3 Linearity for Fixed-Order Phylogenetic Trees

Theorem 3.2. A minimum width upward orthogonal drawing of a fixed-order n-node phylo-

genetic tree can be computed in O(n) time.

We provide an algorithm that computes a minimum width drawing. The key idea is to

construct a directed acyclic graph (DAG) of the positional constraints between nodes and

edges. The DAG can then be processed efficiently to determine a positioning of each node

and edge that ensures the minimum width. Let S be a set of non-intersecting orthogonal

objects (e.g., rectangles and segments) in the plane. Two objects s and s′ are horizontally

visible if there exists a horizontal segment that intersects s and s′ but no other object of S.

Since the height of each object of our drawing is fully determined by the edge lengths of the

tree, determining which objects are horizontally visible is essential to construct a minimum

width drawing. For a fixed order combinatorial phylogenetic tree T = (V,E), the Constraint

Graph D = (U,A) of T is a directed graph with a vertex for each left and right side (of the

rectangle representing the node in the drawing) of each node of T and one for each edge of T .

(See Fig. 3.6.) An arc e = uv ∈ A if the objects corresponding to u and v are horizontally

visible and u precedes v as determined by the fixed order.

Lemma 3.4. The constraint graph D of the fixed order n-node phylogenetic tree T = (V,E)

Figure 3.6: The constraint graph of Lemma 3.4

103



is a DAG with 3n− 1 vertices and O(n) edges, where n = |V |.

Proof. Our objects are the left and right sides of each vertex in T , and the edges in T . This

gives us two vertices in D for each vertex in T , and one for each edge. Since T is a tree,

it must have n− 1 edges, so D has 3n− 1 vertices. If two objects are horizontally visible,

then there is a segment between them that crosses only those two objects. We will use these

segments to build a planar embedding of D, which will imply that D has O(n) edges.

Let the collection of segments connecting our objects be S. We first construct a larger planar

graph D′, in which the vertices are the endpoints of S. The edges of D′ include all of the

segments in S. We also add edges connecting each vertex to the vertices immediately above

and below it that represent the same object. By the definition of horizontally visible, each

segment in S can only intersect two objects, so none of the segments in S can intersect. The

additional edges also cannot intersect, since they are ordered by the height of the vertices.

Therefore, D′ is planar.

We then contract all of the edges that connect two vertices in D′ corresponding to the same

object. This produces the DAG D. Since D is a contraction of a planar graph, it must also

be planar.

The algorithm has two main steps. First, we construct the constraint graph D, and then we

process the constraint graph to find a minimum-width drawing. As we have mentioned, the

vertices of D can be constructed directly from the vertices and edges of T . We now show

that the arcs in D can be created using a single pre-order (node, then children left to right)

traversal of the tree, while growing a frontier indicating the rightmost object seen at each

height. We maintain the frontier efficiently as an ordered list of height ranges. Whenever

we update the frontier we have found a new rightmost object. If we are not extending the

frontier (i.e. adding to the end of the list), then we have covered or partially covered some
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object. The two objects must be horizontally visible so we add a new directed arc from the

left object to the right.

For a linear algorithm, we must avoid searching in the frontier for the position of each object.

The key observation is that, while processing a node v of T , the edges and nodes of the

subtree rooted at v only affect the frontier below v. In other words, the position of v in the

frontier doesn’t change while processing its subtree. When a child is completely processed we

can find the next sibling’s position in the frontier by looking at the position of their parent.

Once the constraint graph is constructed, it must be processed to find the positions at which

to draw each object. We process the vertices of D in topological order. Vertices that have

no incoming arcs, which are the sources of the constraint graph, must be the left side of

vertices of T and can be positioned at x-coordinate 0. At each remaining vertex, we check

its incoming arcs and assign it the leftmost position that is to the right of every vertex in

its in-neighborhood. Because the arcs represent the necessary order at each height and the

sources of the DAG are positioned as far left as possible, a simple inductive argument proves

that the resulting drawing has minimum width.

Traversing the tree to construct our DAG requires us to update the frontier once for every arc,

source, and sink of the DAG. Each update takes constant time, so by Lemma 3.4 determining

the arcs of the constraint DAG takes a total of O(n) time. The time taken for the processing

step includes the topological sort and the time to check each incoming arc at each vertex.

Both of these are bounded by the number of arcs, so by Lemma 3.4 processing the DAG also

takes O(n) time. In conclusion both steps take O(n) time so the algorithm takes O(n) in

total. This completes the proof of Theorem 3.2.

A Note On Improving The Drawing. The above algorithm produces excessively wide

nodes, since some nodes may be extended further to the left than necessary. The aesthetic

quality of the tree can be improved by making each node as small as possible, without
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affecting the minimum width, by doing an extra tree traversal and moving edges and node

sides to the right.

3.4 Heuristics and Experiments

In this section we evaluate different heuristics for generating small width drawings of real-world

phylogenetic trees, see for example Fig. 3.9. First, we introduce the heuristics evaluated and

show that two natural greedy heuristics give a bad approximation guarantee (Section 3.4.1)

Then, we describe the conditions used for the experiments (Section 3.4.2).

3.4.1 Heuristics Evaluated

Let T be a combinatorial phylogenetic tree. Once the order of the children of each vertex is

determined, we can use Theorem 3.2 to find a minimum width drawing that respects the edge

lengths. Consequently, a heuristic only needs to define the ordering of the children in each

vertex. We define the flip of a tree (or subtree) rooted at v as the operation of reversing the

order of the children of v and every descendant of v. Flipping a tree corresponds to flipping

its drawing and does not affect its minimum width.

Greedy Heuristic. The greedy heuristic proceeds bottom up from the leaves to the tree’s

root. For each vertex v with children c0, . . . , ck this heuristic assumes that the order of the

subtrees rooted at its children are fixed and finds the way to arrange its children to minimize

width. To do so it considers every possible permutation and combination of flipped children.

In general, for a degree d vertex, the greedy heuristic checks O(d!3d−1) possible orderings,

bounded degree trees therefore take O(1) time per vertex. Because the algorithm calculates

the minimum width drawing using the O(n) algorithm from Theorem 3.2, and runs it O(1)

times per vertex, the total running time of the heuristic is O(n2) for bounded degree trees.
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wk
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wk−6

Figure 3.7: Tree structures causing worst case performance for the greedy heuristic.

Theorem 3.3. The greedy heuristic has an approximation ratio of at least Ω(
√
n), even for

binary phylogenetic trees.

Proof. Recall the structures for wk as described in Fig. 3.3a and consider equivalent structures

for larger values of k where all k leaves lie in horizontal alignment. Using this definition of wk,

Fig. 3.7 shows a tree structure where a minimum width embedding of the subtree in yellow

makes it impossible for the entire drawing to admit minimum width. For a minimum width

subtree, the greedy heuristic must choose the smallest width possible (k + 2) thus placing

the long edges on opposite sides. In an optimal ordering the subtree’s embedding would

need to be a unit wider (k + 3) and place both of long edges adjacent to each other, making

the space below wk available for other subtrees. Label each subtree with the size of the wk

structure inside it, and consider the tree structure with k/2− 1 subtrees wk, wk−2...w2. This

structure will have an optimal width of (k + 3) + (k/2− 2) where the first term accounts for

the top-most subtree for wk (in yellow) and the second from the number of edges connecting

to remaining subtrees underneath. The greedy heuristic must instead place each subtree,

enclosed by the long edges, side-by-side forcing most leaves into distinct columns. Only one

pair of leaves per subtree share their column, therefore the width is equal to the number of

leaves (n+ 1)/2 minus the k/2− 1 overlapping leaves (where n is the total number of nodes).

In total, there are n =
∑k/2−1

i=0 (7 + 2(k − 2i) + 1)− 1 = k2/2 + 3k nodes, from which we find
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k. We find that k ≈
√

2n, and therefore the approximation ratio achieved by the greedy

heuristic for this tree is (n+1)/2−k/2−1
3k/2+1

≈ n−
√
2n)

3
√
2n

= Ω(
√
n).

Minimum Area Heuristic. Similar to the greedy heuristic, the minimum area heuristic

proceeds bottom up from leaves to root and finds the best way of arranging its children

assuming their sub-trees have a fixed order. While the greedy heuristic minimizes the area

of the tree’s bounding rectangle, the minimum area heuristic minimizes the area of the

orthogonal y-monotone bounding polygon at the expense of a potential larger total width.

We first describe the running time of the heuristic. For each ordering of the children, the

minimum width drawing is calculated using the algorithm from Theorem 3.2 and the bounding

polygon is calculated by traversing the tree once to find the extreme-most branches, running

in O(n) time. We repeat this O(1) times per vertex for a total running time of O(n2) for

bounded degree trees.

Theorem 3.4. The minimum area heuristic has an approximation ratio of at least Ω(
√
n).

Proof. Recall, the structures for wk as defined in Theorem 3.3 and further constrain it to be

a complete binary tree with all its k leaves in horizontal alignment. Recall the subtrees used

in Theorem 3.3 and note the subtrees used in this tree instead increase the size of their wk

by 3 each time (with the exception of the first two which have the same wk). Furthermore

each subtree’s nodes end immediately before the first node in the subtree two subtrees away,

and the latter subtree also has a node aligned with the former’s wk leaves. The leaves in wk

are horizontally aligned with the top node in the next subtree.

Using these definitions Fig. 3.8 demonstrates a tree structure where a minimum area em-

bedding of the two subtrees in yellow makes it impossible for the entire drawing to admit

minimum width and minimum area. The heuristic achieves the right embedding for the

subtree but fails to choose the right embedding for the two sibling subtrees. Although the

optimal’s embedding uses a larger area for the combination of both siblings with wk, it
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occupies an almost rectangular space resulting in a really small area (and width) increase

when adding the next subtree.

Define each subtree by the size of the wk structure inside it, consider the tree with 2k/3

subtrees wk, wk+3...w3k. This structure will have an optimal width of 3k + 6. The minimum

area heuristic would instead have two subtrees with their wk on opposite sides and the

wk+3 overlapping the bottom-most wk and every next pair of subtrees overlapping in the

same way. The total width achieved by the minimum area heuristic would therefore be∑2k/6
i=0 k+6i+5 = 2k2/6+10k/6+k/6(2k/6+1) = 7k2/18+11k/6. The total number of nodes is

n =
∑2k/3

i=0 (7+2(k−2i)+1)+6+k = 4k2/3+19k/3−(2k/3)(k/3−1)+6+k = 2k2+19k/3, which

we can use to find k in terms of n. We find that k ≈
√
n/2, and therefore the approximation

ratio achieved by the greedy heuristic for this tree is 7k2/18+11k/6
3k+6

≈ 7k
54

= Ω(
√
n).

Hill Climbing and Simulated Annealing The hill climbing algorithm is a standard

black-box optimization approach. Beginning from an initial configuration, it repeatedly tests

small changes and keeps them if they do not hurt the quality of the solution. The quality

of the solution is exactly equal to the width of the resulting drawing of the tree, and each

change tested corresponds to reordering one node’s children.

wk+3

wk+6

wk+9

wk+6

wk

wk wk

wk

wk+3

wk+9

Optimal Embedding Min. Area Heuristic

Figure 3.8: Tree structures causing worst case performance for minimum area heuristic.
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Our simulated annealing algorithm is another black-box optimization approach [80], with the

same procedure as hill climbing. The main difference is that changes hurting the solution’s

quality are kept with probability inversely related to both the difference in quality and the

number of steps taken so far. Once the number of steps is large enough, simulated annealing

mimics the behavior of the hill climbing algorithm. Compared to hill climbing, simulated

annealing has the advantage of not being trapped in a local minimum when a poor starting

point was chosen.

Input Ordered The order defined by the description of the tree in its original source file.

3.4.2 Experiments

We evaluate five data sets of real phylogenetic trees obtained from the online phylogenetic tree

database TreeBase [85]. The size and compositions of the datasets can be seen in Table 3.1.

Each tree in TreeBase originates from a scientific publication, which unfortunately means

there are too many for us to list on this dissertation; we instead provide a complete list of

the studies associated with phylogenetic trees used in the data sets and complete experiment

source code at github.com/UC-Irvine-Theory/MinWidthPhylogeneticTrees.

Each dataset is read using Dendropy [97], an open source Python library for phylogenetic

computing. Each tree is read with an induced order from the source file, which we will serve

as the initial configuration. The datasets are filtered to contain only trees with existing

edge-lengths and maximum degree 3. Edge-lengths are normalized into discrete values that

preserve nodes’ original vertical ordering. For trees with few missing edge-lengths we assume

missing edges are of unit length. These normalized datasets are used to evaluate the heuristics

and produce easily comparable drawings.
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(a) (b) (c)

Figure 3.9: Drawings of a tree with 93 nodes (a) Input order, width = 37 (b) Greedy order,
width = 33 (c) Simulated annealing order, width = 26

Data Set Sizes Avg. Width Diff. from Anneal.
Name #Trees Min Max Average Input Greedy MinArea Hill Anneal.
Small 363 85 100 92 +26% +4% +13% ±0 ±0

Medium 1026 188 399 271 +26% +4% +12% -1% ±0
Large 28 2151 3305 2541 +40% +5% +9% -6% ±0
Plant 80 195 3305 754 +57% +11% +19% -3% ±0

Preferred 175 21 2387 192 +21% +5% +10% -1% ±0

Table 3.1: Results. The left side shows the composition of the data sets, while the right side
compares the width obtained versus the simulated annealing.

3.4.3 Results

The first thing that stands out from our results is that all of our proposed approaches improve

on the original input order. A typical example is shown in Fig. 3.9, where the input width is

improved by the greedy heuristic and simulated annealing. Secondly, although the greedy and

minimum area heuristics have a bad approximation ratio guarantee, this does not translate

to real world trees. As can be seen in Table 3.1, both heuristics performed well for trees

regardless of size. For example, in the Preferred data set the greedy heuristic achieved the

same width as the Simulated Annealing in 50% of the trees (Fig. 3.10). However, a few cases

exist where the greedy heuristic significantly under-performs, such as in Fig. 3.11 and Fig. 3.12.
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This is notable for two reasons: the first is that the greedy heuristic produces a drawing 60%

wider than hill climbing, and the second is that the greedy heuristic is outperformed by the

minimum area heuristic.

Finally, it is clear that blackbox approaches are useful to find small-width drawings as

they rarely produce drawings wider than those from the heuristics. However the width

decrease achieved by the black box algorithms comes at a cost in running time, since in our

implementation they took around 40 times longer to converge on average.

Figure 3.10: Percent width difference between the greedy heuristic and simulated annealing
depending on tree size for Preferred dataset.
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Chapter 4

Layered Drawings: Minimizing

Crossings in the Evolving Data

Setting

4.1 Introduction

In the traditional Knuthian model [74], an algorithm takes an input, runs for some amount of

time, and produces an output. Characterizing an algorithm in this model typically involves

providing a function, f(n), such that the running time of the algorithm can be bounded

asymptotically as being O(f(n)) on average, with high probability (w.h.p.), or in the worst

case. Although this has proven to be an extremely useful model for general algorithm design

and analysis, there are nevertheless interesting scenarios where it doesn’t apply.
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4.1.1 The Evolving Data Model

One scenario where the Knuthian model doesn’t apply is for applications where the input

data is changing while an algorithm is processing it, which has given rise to the evolving data

model [5]. In this model, input changes are coming so fast that it is hard for an algorithm to

keep up, much like Lucy in the classic conveyor belt scene1 in the TV show, I Love Lucy.

Thus, rather than producing a single output, as in the Knuthian model, an algorithm in the

evolving data model dynamically maintains an output instance over time. The goal of an

algorithm in this model is to efficiently maintain its output instance so that it is “close” to

the true output at that time. Therefore, analyzing an algorithm in the evolving data model

involves defining a distance metric for output instances, parameterizing how input mutations

occur over time, and characterizing how well an algorithm can maintain its output instance

relative to this distance and these parameters for various types of input mutations.

4.1.2 Layered Drawings of Digraphs

A common technique for drawing directed graphs that are hierarchical or nearly hierarchical

is layered drawings. These drawings try to capture the transitivity that hierarchies represent

by having the edges “flow” in a uniform direction. One of the most popular methods for

drawing directed graphs is the Sugiyama Framework [96] which separates the drawing into

layers. The steps in the Sugiyama framework try to create drawings that meet the following

aesthetic considerations [98]:

• Edges should point in a uniform direction

• Short edges are more readable

• Uniformly distributed nodes avoid clutter

1E.g., see https://www.youtube.com/watch?v=8NPzLBSBzPI.
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• Edge crossings obstruct comprehension

• Straight edges are more readable

Achieving all these criteria is in general impossible, since some of them contradict each other.

A successive refinement technique is used where each step addresses some of these concerns.

1. Cycle Removal Although the graph is assumed to be almost acyclic, there may be

some cycles. So that the edges are directed uniformly, any directed cycles are broken

by reversing a subset of the edges.

2. Layer Assignment Each vertex is assigned to a layer. The layering must ensure

that every edge is pointed in the same uniform directions. Dummy vertices can be

introduced so that “long” edges can be replaced by shorter edges

3. Crossing Reduction For each layer an ordering of the vertices is computed. The goal

is to minimize the number of crossings.

4. Assign X-coordinate Each vertex is assigned an x-coordinate so that no overlaps

occur and long edges are straightened out.

In this chapter, we will study the crossing reduction step in the evolving data setting, that

is a well-studied problem in the Knuthian model. A first observation is that we are only

concerned about the relative order of the vertices, not their exact position, it follows that

we care only about the order of vertices in the layers. Few systems attempt to optimize the

crossings globally, so instead most use a heuristic layer-by-layer sweep method. Such an

approach tries to solve the one sided crossing minimization problem at each layer.

First we need a few definitions. A bipartite-graph is an undirected graph G = (V,E) in which

V can be partitioned into two sets V1 and V2 and each every edge connects a vertex in V1

with a vertex in V2. An ordering of Vi is a permutation πi of the vertices is Vi.
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Problem: One Sided Crossing Minimization Problem

Input: Given a bipartite graph G = (V1, V2, E) and a permutation π1 of V1.

Question: Find a permutation π2 of V2 that minimizes the edge crossings in the drawing

of G where the vertices of V1 are placed on a layer L1 in the order defined by π1 and

the vertices of V2 are placed on a second layer paralled to L1.

The minimization problem of the one-sided general crossing minimization problem is NP-

hard [48], although fixed-parameter tractable algorithms exist to find a k-crossing [45]. There

are many heuristics approaches to this problem [46] [96] a recent survey can be found in [98].

In this chapter, we study a restricted version of the problem. We assume that every vertex

l1

l1

l1

l2

l2

l2

t = 0

t = 1

t = 2

?

?

5 crossings

6 crossings

4 crossings

5 inversions

6 inversions

4 inversions

Figure 4.1: Examples of the two layers, l1, l2, with the crossings and inversions. In the first
step the green and red elements are compared in l1 and the red and yellow elements are
swapped in l2. In the second step the red and yellow elements are compared and swapped in
l1 and the blue and yellow elements are swapped in l2.
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has degree one, in other words that E is a one-to-one mapping of the vertices in V1 to the

vertices in V2. The data that is evolving is the order of π2, and the algorithm is attempting

to keep up by reordering π1, see Fig. 4.1. This restricted setting allows us to consider the

problem from another angle, mainly sorting. A crossing in the drawing corresponds exactly

to an inversion between the two orderings. Because sorting is the original problem studied in

the evolving data setting, we will now mainly discuss the problem in that setting.

4.1.3 Sorting in the Evolving Data Setting

The goal of a sorting algorithm in the evolving data model, then, is to maintain an output

order close to the true total order even as it is mutating. For example, the list could be an

ordering of political candidates, tennis players, movies, songs, or websites, which is changing

as the ranking of these items is evolving, e.g., see [55]. In such contexts, performing a

comparison of two elements is considered somewhat slow and expensive, in that it might

involve a debate between two candidates, a match between two players, or an online survey or

A/B test [44] comparing two movies, songs, or websites. In this model, a comparison-based

sorting algorithm would therefore be executing at a rate commensurate with the speed in

which the total order is changing, i.e., its mutation rate. Formally, to model this phenomenon,

each time an algorithm performs a comparison, we allow for an adversary to perform some

changes to the true ordering of the elements.

There are several different adversaries one might consider with respect to mutations that

would be anticipated after a sorting algorithm performs a comparison. For example, an

adversary (who we call the uniform adversary) might choose r > 0 consecutive pairs of

elements in the true total order uniformly at random and swap their relative order. Indeed,

previous work [5] provided theoretical analyses for the uniform adversary for the case when r

is a constant. Another type of adversary (who we call the hot spot adversary) might choose
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an element, x, in the total order and repeatedly swap x with a predecessor or successor each

time a random “coin flip” comes up “tails,” not stopping until the coin comes up “heads.”

A natural distance metric to use in this context is the Kendall tau distance [71], which counts

the number of inversions between a total ordering of n distinct elements and a given list of

those elements. That is, a natural goal of a sorting algorithm in the evolving data model is

to minimize the Kendall tau distance for its output list over time. In our restricted version of

the one sided crossing minimization problem this corresponds exactly to the number of edge

crossings in the drawing.

Here, we consider the empirical performance of sorting algorithms in the evolving data model.

Whereas previous work looked only at quicksort with respect to theoretical analyses against

the uniform adversary, we are interested in this chapter in the “real-world” performance of a

variety of sorting algorithms with respect to multiple types of adversaries in the evolving data

model. Of particular interest are any experimental results that might be counter-intuitive or

would highlight gaps in the theory.

4.1.4 Previous Work on Evolving Data

The evolving data model was introduced by Anagnostopoulos et al. [5], who study sorting

and selection problems with respect to an evolving total order. They prove that quicksort

maintains a Kendall tau distance of O(n log n) w.h.p. with respect to the true total order,

against a uniform adversary that performs a small constant number of random swaps for

every comparison made by the algorithm. Furthermore, they show that a batched collection

of quicksort algorithms operating on overlapping blocks can maintain a Kendall tau distance

of O(n log log n) against this same adversary. Additionally they proved that there is a Ω(n)

lower bound to this problem. Later, inspired by the experimental work shown in this chapter,

Besa et al. [18] give an optimal algorithm (against the same adversary) based on repeated
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passes of insertion sort. They show that their approach maintains an (optimal) O(n) Kendall

tau distance with high probability between a list of n items and an underlying order where a

swap in the order occurs after every comparison made by the algorithm.

In addition to this work on sorting, several papers have considered other problems in the evolv-

ing data model. Kanade et al. [69] study stable matching with evolving preferences. Huang

et al. [65] present how to select the top-k elements from an evolving list. Zhang and Li [104]

consider how to find shortest paths in an evolving graph. Anagnostopoulos et al. [6] study

(s, t)-connectivity and minimum spanning trees in evolving graphs. Bahmani et al. [15] give

several PageRank algorithms for evolving graphs and they analyze these algorithms both

theoretically and experimentally. We are not aware of previous experimental work on sorting

in the evolving data model. We are also not aware of previous work, in general, in the

evolving data model for other sorting algorithms or for other types of adversaries.

4.1.5 Our Results

In this chapter, we provide an experimental investigation of sorting in the evolving data

model. The starting point for our work is the previous theoretical work [5] on sorting in

the evolving data model, which only studies quicksort. Thus, our first result is to report on

experiments that address whether these previous theoretical results actually reflect real-world

performance.

In addition, we experimentally investigate a number of other classic sorting algorithms to

empirically study whether these algorithms lead to good sorting algorithms for evolving

data and to study how sensitive they are to parameters in the underlying evolving data

model. Interestingly, our experiments provide empirical evidence that quadratic-time sorting

algorithms, including bubble sort, cocktail sort, and insertion sort, can outperform more

sophisticated algorithms, such as quicksort and even the batched parallel blocked quicksort
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algorithm of Anagnostopoulos et al. [5], in practice. Later this was confirmed by Besa et

al. [18] for insertion sort, but no theoretical results are known for other quadratic-time

sorting algorithms. Furthermore, our results also show that even though these quadratic-time

algorithms perform compare-and-swap operations only for adjacent elements at each time

step, they are nevertheless robust to increasing the rate, r, at which random swaps occur in

the underlying list for every comparison done by the algorithm. That is, our results show

that these quadratic-time algorithms are robust even in the face of an adversary who can

perform many swaps for each of an algorithm’s comparisons. Moreover, this robustness holds

in spite of the fact that, in such highly volatile situations, each element is, on average, moved

more often by random swaps than by the sorting algorithm’s operations.

We also introduce the hot spot adversary and study sorting algorithms in the evolving data

model with respect to this adversary. Our experiments provide evidence that these sorting

algorithms have similar robustness against the hot spot adversary as they do against the

uniform adversary. Finally, we show that the constant factors in the Kendall tau distances

maintained by classic quadratic-time sorting algorithms appear to be quite reasonable in

practice. Therefore, we feel our experimental results are arguably surprising, in that they

show the strengths of quadratic-time algorithms in the evolving data model, in spite of

the fact that these algorithms are much maligned because of their poor performance in the

traditional Knuthian model.

With respect to the organization of the chapter, Section 4.2 formally introduces the evolving

sorting model as well as the algorithms we consider. Section 4.3 describes the experiments

we performed and presents our results.
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4.2 Preliminaries

Let us begin by formally defining the evolving data model for sorting, based on the pioneering

work of Anagnostopoulos et al. [5]. We assume that there are n distinct elements that belong

to a total order relation, “<”. During each time step, a sorting algorithm is allowed to

perform one comparison of a pair of elements and then an adversary is allowed to perform

some random swaps between adjacent elements in the true total order. We consider two

types of adversaries:

1. The uniform adversary. This adversary performs a number, r > 0, of swaps between

pairs of adjacent elements in the true total order, where these pairs are chosen uniformly

at random and independently for each of the r swaps.

2. The hot spot adversary. This adversary chooses an element, x, in the total order and

then randomly chooses a direction, up or down. The adversary then randomly chooses

a bit, b. If this bit is 0, it swaps x with its predecessor (resp., successor), depending on

the chosen direction, and repeats this process with a new random bit, b. If b = 1, it

stops swapping x.

We denote the state of the list the algorithm maintains at time t with `t and the state of

the unknown true ordering with `′t. If the time step is clear from the context or is the most

current step, then we may drop the subscript, t. The main type of adversary that we consider

is the same as that considered in Anagnostopoulos et al. [5]; namely, what we are calling the

uniform adversary. Note that with this adversary, after each comparison, a uniformly random

adjacent pair of elements in `′ exchange positions and this process is repeated independently

for a total of r > 0 swaps. We call each such change to `′ a swap mutation. With respect to

the hot spot adversary, we refer to the change made to `′ as a hot spot mutation, i.e., where

an element is picked uniformly at random and flips an unbiased coin to pick left or right, and
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then an unbiased coin is flipped until it comes up heads and the element is swapped in the

chosen direction that many times.

Note that with either adversary, a sorting algorithm cannot hope to correctly maintain the

true total order at every step, for at least the reason that it has no knowledge of how the

most recent mutation affected the underlying order. Instead, a sorting algorithm’s goal is to

maintain a list of the n elements that has a small Kendall tau distance, which counts the

number of inversions2 relative to the underlying total order.

We abuse the names of the classical sorting algorithms to refer to evolving sorting algorithms

that repeatedly run that classical algorithm. For instance, the insertion sort evolving sorting

algorithm repeatedly runs the classical in-place insertion sort algorithm. We refer to each

individual run of a classical sorting algorithm as a round.

In this chapter, we consider several classical sorting algorithms, which are summarized in

simplified form below (see [36, 56] for details and variations on these algorithms):

• Bubble sort. For i = 1, . . . , n− 1, repeatedly compare the elements at positions i and

i+ 1, swapping them if they are out of order. Repeat n− 1 times.

• Cocktail sort. For i = 1, . . . , n− 1, repeatedly compare the elements at positions i and

i+ 1, swapping them if they are out of order. Then do the same for i = n− 1, . . . , 1.

Repeat (n− 2)/2 times.

• Insertion sort. For i = 2, . . . , n, compare the element, x, at position i with its

predecessor, swapping them if they are out of order. Then repeat this process again

with x (at its new position) until it reaches the beginning of the list or isn’t swapped.

Repeat n− 2 times.

• Quicksort. Randomly choose a pivot, x, in the list and divide the list in place as the

2Recall that an inversion is a pair of elements u and v such that u comes before v in a list but u > v.
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elements that are less than or equal to x and the elements that are greater than x.

Recursively process each sublist if it has at least two elements.

We also consider the following algorithm due to Anagnostopoulos et al. [5]:

• Block sort.3 Divide the list into overlapping blocks of size O(log n). Alternate between

steps of quicksort on the entire list and steps of quicksort on each block.

There are no theoretical results on the quality of bubble or cocktail sort in the evolving

data model. Besa et al. [18] proved that insertion sort maintains O(n) inversions w.h.p. if

r = 1. For larger values of r nothing is known. Anagnostopoulos et al. [5] showed that

quicksort achieves Θ(n log n) inversions w.h.p. for any small constant, r, of swap mutations.

Anagnostopoulos et al. [5] also showed that block sort achieves Θ(n log log n) inversions

w.h.p. for any small constant rate, r, of swap mutations.

These algorithms can be classified in two ways. First, they can be separated into the worst-

case quadratic-time sorting algorithms (bubble sort, cocktail sort, and insertion sort) and

the more efficient algorithms (quicksort and block sort), with respect to their performance

in the Knuthian model. Second, they can also be separated into two classes based on the

types of comparisons they perform and how they update `. Bubble sort, cocktail sort,

and insertion sort consist of compare-and-swap operations of adjacent elements in ` and

additional bookkeeping, while quicksort and block sort perform comparisons of elements that

are currently distant in ` and only update ` after the completion of some subroutines.

During the execution of these algorithms, the Kendall tau distance does not converge to

a single number. For example, the batch update behavior of quicksort causes the Kendall

tau distance to oscillate each time a round of quicksort finishes. Nevertheless, for all of the

3The quicksorts of the entire list guarantee that no element is more than O(log n) positions from its proper
location in the true sorted order. The quicksorts of the blocks account for elements of the list drifting away
from their original positions.
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algorithms, the Kendall tau distance empirically reaches a final repetitive behavior. We call

this the steady behavior for the algorithm and judge algorithms by the average number of

inversions once they reach their steady behavior. We call the time it takes an algorithm to

reach its steady behavior its convergence time. Every algorithm’s empirical convergence time

is at most n2 steps.

4.3 Experiments

The main goal of our experimental framework is to address the following questions:

1. Do quadratic-time algorithms actually perform as well as or better than quicksort

variants on evolving data using swap mutations, e.g., for reasonable values of n?

2. What is the nature of the convergence of sorting algorithms on evolving data, e.g., how

quickly do they converge and how much do they oscillate once they converge?

3. How robust are the algorithms to increasing the value of r for swap mutations?

4. How much does an algorithm’s convergence behavior and steady behavior depend on

the list’s initial configuration (e.g., randomly scrambled or initially sorted)?

5. How robust are the algorithms to a change in the mutation behavior, such as with the

hot spot adversary?

6. What is the fraction of random swaps that actually improve Kendall tau distance?

We present results below that address each of these questions.
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4.3.1 Experimental Setup

We implemented the various algorithms that we study in C++11 and our software is available

on Github.4 Randomness for experiments was generated using the C++ default engine

and in some cases using the C random engine. In the evolving data model, each time

step corresponds to one comparison step in an algorithm, which is followed by a mutation

performed by an adversary. Therefore, our experiments measure time by the number of

comparisons performed. Of course, all the algorithms we study are comparison-based; hence,

their number of comparisons correlates with their wall-clock runtimes. To measure Kendall

tau distances, we sample the number of inversions every n/20 comparisons, where n is the

size of a list. We terminate a run after n2 time steps and well after the algorithm has reached

its steady behavior. The experiments primarily used random swap mutations; hence, we omit

mentioning the mutation type unless we are using hot spot mutations.

Anagnostopoulos et al. [5] does not give an exact block size for their block sort algorithm

except in terms of several unknown constants. In our block sort implementation, the block

size chosen for block sort is the first even number larger than 10 lnn that divides n. Because

all of the n in our experiments are multiples of 1000, the block size is guaranteed to be

between 10 lnn and 100 lnn.

4.3.2 General Questions Regarding Convergence Behavior

We begin by empirically addressing the first two questions listed above, which concern the

general convergence behavior of the different algorithms. Fig. 4.2 shows Kendall tau distance

achieved by the various algorithms we studied as a function of the algorithm’s execution time,

against the uniform adversary (i.e., with random swap mutations), for the case when r = 1

and n = 1000 starting from a uniformly shuffled list.

4See code at https://github.com/UC-Irvine-Theory/SortingEvolvingData.
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Figure 4.2: Behavior of the algorithms starting from a shuffled list. The plot shows Kendall
tau distance as a function of an algorithm’s execution, i.e., number of comparisons, with
random swap mutations for r = 1. We also show an enlarged portion of the tail-end steady
behaviors.

The quadratic time algorithms run continuous passes on the list and every time they find two

elements in the wrong order they immediately swap them. That is, they are local in scope, at

each step fixing inversions by swapping adjacent elements. They differ in their approach, but

once each such algorithm establishes a balance between the comparisons performed by the

algorithm and the mutations performed by the uniform adversary, their Kendall tau numbers

don’t differ significantly. These algorithms have very slow convergence because they only

compare adjacent elements in the list and so fix at most one inversion with each comparison.

The Kendall tau behavior of the quicksort algorithms, on the other hand, follow an oscillating

pattern of increasing Kendall tau distance until a block (or recursive call) is finished, at which

point ` is quickly updated, causing a large decrease in Kendall tau distance.

As can be seen, the convergence behavior of the algorithms can be classified into two groups.

The first group consists of the two quicksort variants, which very quickly converge to steady

behaviors that oscillate in a small range. The second group consists of the quadratic-time

algorithms, which converge more slowly, but to much smaller Kendall tau distances and with

no clear oscillating behavior. More interestingly, the quadratic-time algorithms all converge
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to the same tight range and this range of values is better than the wider range of Kendall

tau distances achieved by the quicksort algorithms. Thus, our first experimental result

already answers our main question, namely, that these quadratic-time algorithms appear to

be optimal for sorting evolving data and this behavior is actually superior in the limit to the

quicksort variants.

Given enough time, however, all three quadratic-time algorithms maintain a consistent

Kendall tau distance in the limit. Of the three quadratic-time algorithms, the best performer

is insertion sort, followed by cocktail sort and then bubble sort. The worst algorithm in our

first batch of experiments was block quicksort. This may be because n = 1000 is too small

for the theoretically proven O(n log log n) Kendall tau distance to hold.

4.3.3 Convergence Behavior as a Function of r

Regardless of the categories, after a sufficient number of comparisons, all the algorithms

empirically reach a steady behavior where the distance between ` and `′ follows a cyclic

pattern over time. This steady behavior depends on the algorithm, the list size, n, and

the number of random swaps, r, per comparison, but it is visually consistent across many

different runs and starting configurations.

Our next set of experiments, therefore, are concerned with studying convergence behavior as

a function of n and r. We show in Fig. 4.3 the convergence values comparing insertion sort

and quicksort, as a ratio, K/n, of the steady-state Kendall tau distance, K (averaged across

multiple samples once an algorithm has reached its steady behavior), and the list size, n.

As can be seen from the plots, for these values of r, insertion sort consistently beats quicksort

in terms of the Kendall tau distance it achieves, and this behavior is surprisingly robust

even as n grows. Moreover, all of the quadratic-time algorithms that we studied achieved
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Figure 4.3: Convergence ratios as a function of list size, n, and number of random swaps,
r, per comparison. The vertical axis shows the ratio, K/n, where K is the average Kendall
tau value (number of inversions) in the steady behavior, and the horizontal axis shows the
number of elements, n. The curves show the behaviors of insertion sort and quicksort for
r ∈ {1, 2, 10}.

similar Kendall-tau-to-size ratios that were consistently competitive with both quicksort

and block sort. In Table 4.1, we show the ratios of the number of inversions to list size for

various values of r, with respect to the uniform adversary and multiple algorithms. Note that

the ratios grow slowly as a function of r and that the quadratic time algorithms are better

than the quicksort variants for values of r up to around 50. After that threshold, standard

quicksort tends to perform better than the quadratic-time algorithms, but the quadratic-

time algorithms nevertheless still converge and perform reasonably well. Interestingly, the

quadratic algorithms still beat block sort even for these large values of r.

Our results show that for values of r larger than 50, the quicksort variants tend to perform

better than the quadratic-time algorithms, but the quadratic time algorithms nevertheless

still converge to reasonable ratios. We show in Table 4.2 specific convergence values for

different values of r, from 0 to 10, for insertion sort and quicksort. As can be seen, this

table highlights the expected result that quicksort reaches its steady behavior much more

quickly than insertion sort. Thus, this table provides empirical evidence supporting a hybrid

algorithm where one first performs a quicksort round and then repeatedly performs insertion
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r Insertion Cocktail Bubble Quicksort Block Quicksort
1 0.51 0.54 0.54 2.17 4.03
2 0.98 0.98 1.13 3.40 5.78
3 1.45 1.42 1.64 4.24 7.19
4 1.84 1.76 2.17 4.51 8.58
5 2.28 2.04 2.69 5.03 9.85
6 2.72 2.46 3.05 5.83 10.11
7 3.16 2.83 3.40 6.62 11.39
8 3.49 3.20 3.89 7.15 12.06
9 4.03 3.63 4.50 7.04 12.74
10 4.37 3.87 4.96 7.45 14.09
11 4.64 4.09 5.58 7.44 14.60
12 5.07 4.61 5.79 8.12 15.91
13 5.32 4.92 6.17 7.96 15.89
14 5.91 5.14 6.73 9.35 16.36
15 6.21 5.76 6.94 9.75 17.55
16 6.52 5.98 7.33 9.91 17.54
17 7.06 6.05 7.74 10.03 18.21
18 7.56 6.43 8.13 10.02 18.59
19 7.79 6.94 8.56 10.38 19.73
20 8.25 7.51 8.68 10.89 20.93
. . .
40 14.98 13.53 17.12 15.05 25.18
41 15.32 14.27 17.86 15.19 25.24
42 15.79 14.11 17.77 15.46 25.00
43 16.26 14.36 17.79 15.34 26.85
44 16.42 14.74 18.05 15.79 26.39
45 16.45 15.11 18.73 15.60 27.81
46 17.09 15.40 19.31 16.09 27.47
47 17.37 15.70 19.73 16.36 27.32
48 17.42 16.02 19.97 16.21 28.55
49 17.87 16.22 20.08 16.46 28.08
50 18.55 16.57 20.66 16.72 29.23
. . .
100 32.67 30.36 35.18 23.83 43.18
256 65.20 61.30 66.20 38.10 74.53

Table 4.1: Ratio of inversions relative to list size for different values of r

sort rounds after that.

131



r Insertion Quicksort
0 500000 12000
1 510000 16000
2 513000 16000
3 516000 15000
4 516000 16000
5 521000 16000
6 523000 16000
7 521000 17000
8 525000 17000
9 524000 17000
10 527000 16000

Table 4.2: Number of comparisons needed to converge to steady behavior for different values
of r.

4.3.4 Starting Configurations

The quadratic time algorithms all approach their steady behavior in a similar manner, namely,

at an approximately constant rate attenuated by r. Thus, we also empirically investigated

how long each algorithm requires to reach a steady behavior starting from a variety of different

start configurations.

Because both quicksort and block sort begin with a quicksort round, their Kendall tau

distance drops quickly after O(n log n) comparisons. The other algorithms require a number

of comparisons proportional to the initial distance from the steady-state value. For example,

see Table 4.1, which shows that insertion sort’s steady behavior when r = 1 is roughly n/2

inversions. When the initial state of a list has I inversions, the number of comparisons that

insertion sort requires to reach the steady behavior is approximately 4|I − n/2|. Thus, if

the list is initially sorted, insertion sort will take approximately 2n comparisons to reach

its steady behavior. Moreover, increasing r does not seem to affect the convergence rate

significantly. Fig. 4.4 shows a plot illustrating the convergence behavior of insertion sort and

quicksort for a variety of different starting configurations.

Our experiments show that, as expected, the convergence of insertion sort is sensitive to the

132



0 500000 1000000
Number of Compares

0

72000

250000

500000

K
e
n
d
a
ll-

T
a
u
 D

is
ta

n
ce

Quicksort

Insertion

Convergence from different starting configurations

Figure 4.4: Even for a large r = 256 over only 1000 elements the algorithms quickly converge
to a steady behavior. The plots show the Kendal tau distances achieved for insertion sort
and quicksort for four starting configurations of increasing complexity: (i) initially sorted, (ii)
random shuffle, (iii) half cyclical shift of a sorted list, and (iv) a list in reverse order.

starting configuration, whereas quicksort is not. Primed with this knowledge, these results

justify our starting from a sorted configuration in our subsequent experiments, so as to

explore convergence values without having to wait as long to see the steady behavior. Still, it

is surprising that the quadratic algorithms converge at all for r = 256 in these experiments,

since for each inversion fixed by a quadratic algorithm the adversary gets to swap 256 pairs

in a list of 1000 elements.

In general, these early experiments show that, after converging, the quadratic time algorithms

perform significantly better than the more efficient algorithms for reasonable values of r

and that they are competitive with the quicksort values even for larger values of r. But in

an initial state with many inversions, the more efficient algorithms require fewer compares

to quickly reach a steady behavior. Thus, to optimize convergence time, it is best to run

an initial round of quicksort and then switch to repeated rounds consisting of one of the

quadratic-time algorithms.
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4.3.5 Hot spot mutations

Recall that hot spot mutations simulate an environment in which, instead of a pair of elements

swapping with each other, an element changes its rank based on a geometric distribution.

Fig. 4.5 shows the convergence behavior of the various algorithms against the hot spot

adversary. Comparing Fig. 4.5 to Fig. 4.2, we see that the quadratic algorithms are twice

as affected by hot spot mutations as by uniform mutations, although the total number of

adversarial swaps is the same in expectation.
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Figure 4.5: Impact of hotspot mutations. We plot Kendall tau distance as a function of an
algorithm’s number of comparisons. We also show an enlargement of the tail-end steady
behaviors.

A possible explanation for this behavior is that a large change in rank of a single element in

a hot spot mutation can block a large number of other inversions from being fixed during a

round of a quadratic algorithm. For example, in insertion sort, during a round, the element

at each position, 0 ≤ i ≤ n, is expected to be moved to its correct position with respect to

0, . . . , i− 1 in l. To do so, an element x is swapped left until it reaches a smaller element y.

But if y has mutated to become smaller, then all the elements left of y in l, which remain

larger than x, will stay inverted with respect to x until the end of the round (unless some other

mutation fixes some of them). Bubble and cocktail sort have a similar problem. An element
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x which mutates can block other local, smaller inversions involving elements in between x’s

starting and ending position. When these inversions are not be fixed, hot spot mutations

make each pass of these algorithms coarser. Batch algorithms on the other hand are not

affected as strongly by hot spot mutations, because their behavior depends on non-local

factors such as pivot selection and the location at which the list was partitioned. Therefore,

the movement of a single element has a smaller effect on their behavior. Thus, we find it

even more surprising that the quadratic algorithms still beat the quicksort variants even for

the hot spot adversary (albeit by a lesser degree than the amount they beat the quicksort

variants for the uniform adversary).

4.3.6 Beneficial Swaps Performed by an Adversary

Note that our quadratic-time algorithms compare only adjacent elements, so they can only

fix one inversion at each step. Therefore, they will not reach a steady state until the random

swaps fix inversions almost as often as they introduce inversions. Fig. 4.6 shows that the

proportion of good swaps (those that fix inversions) to bad swaps (those that introduce

inversions) approaches 1 as r increases. This behavior might be useful to exploit, therefore,

in future work that would provide theoretical guarantees for the performance of bubble sort

and cocktail sort in the evolving data model.

4.4 Conclusion

We studied a restricted case of the one-sided crossing minimization problem in the evolving

data model and related it to sorting. Thus, we have given an experimental evaluation of

sorting in the evolving data model. Our experiments provide empirical evidence that, in this

model, quadratic-time algorithms can be superior to algorithms that are otherwise faster in
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Figure 4.6: As r increases, the number of inversions increases, but so does the number of
beneficial mutations.

the traditional Knuthian model. In fact, later work proved that Insertion Sort does behave

optimally for a random adversary and swap rate of 1 [18]. We have also studied a number of

additional questions regarding sorting in the evolving data model. Given the surprising nature

of many of our results, it would be interesting in the future to empirically study algorithms

for other problems besides sorting in the evolving data model. Alternatively, it would also

be interesting to provide theoretical analyses for more of the experimental phenomena that

we observed for sorting in the evolving data model, such as the performance of algorithms

against the hot spot adversary.
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