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ABSTRACT OF THE DISSERTATION

Optimization Problems in Directed Graph Visualization

By

Juan Jos�e Besa Vial

Doctor of Philosophy in Computer Science

University of California, Irvine, 2019

Distinguished Professor Michael T. Goodrich, Chair

Drawing digraphs presents unique challenges that do not occur when drawing undirected

graphs. Many digraphs tend to represent transitive relationships; that is they have a ow, and

show a progression. When drawing digraphs the drawing style used must attempt to transmit

this structural characteristic. In this dissertation, we study several optimization problems

that are unique to drawing digraphs. First, we study the complexity thek-Modality

problem of planar digraphs. Second, we turn to the practical task of drawing minimum width

phylogenetic trees, which are used in the study of evolutionary relationships. Finally, we study

a classical graph drawing problem, theOne-Sided Crossing Minimization problem, in

the novel evolving data setting.

An embedding isk-modal if every vertex is incident to at mostk pairs of consecutive edges

with opposite orientations. We study thek-Modality problem, which asks for the existence

of a k-modal embedding of a planar digraph. This combinatorial problem is at the very

core of a variety of constrained embedding questions for planar digraphs and at clustered

networks. We characterize the complexity of �nding minimum modality embeddings, relate it

to other graph drawing problems, both directed and undirected, and present �xed-parameter

tractable algorithms for some important families.

We then study the problem of drawing small width phylogenetic trees. Phylogenetic trees are

xiv



rooted trees that describe the evolutionary relationships derived from a common ancestor. In

these the vertical distance represents the amount of time that passes; thus, the length of the

edges is �xed. ThePhylogenetic Tree Drawing problem asks for a minimum-width

orthogonal upward drawing of a phylogenetic tree. We show that �nding such a drawing is

NP-hard for binary trees with unconstrained combinatorial order and provide a linear-time

algorithm for ordered trees. We also study several heuristic algorithms for the unconstrained

case and show their e�ectiveness through experimentation.

Finally, we study a restricted version of theOne-Sided Crossing Minimization problem

in the evolving data setting. Algorithms that solve this problem attempt to minimize the

number of crossings between two adjacent layers when drawing layered graphs. We reduce the

problem to that of sorting a list in the evolving data setting and study it from this viewpoint.

In this model, a sorting algorithm maintains an approximation to the sorted order of a list of

data items while simultaneously, with each comparison made by the algorithm, an adversary

randomly swaps the order of adjacent items in the true sorted order. The experiments we

perform in this dissertation provide empirical evidence that some quadratic-time algorithms

such as insertion sort and bubble sort are asymptotically optimal for any constant rate of

random swaps. In fact, these algorithms perform as well as or better than algorithms such as

quicksort that are more e�cient in the traditional algorithm analysis model.

xv



Chapter 1

Introduction

A well-drawn diagram gives insight beyond the surface information to the hidden structure

beneath. By engaging our visual cortex, it enables us to see patterns and it improves

recall [79] compared to textual representation. Diagrams permit the visual exploration of

the relationships between data. As we are immersed in the era of Big Data, there is an

increasing need for techniques to visualize large and complex data sets. Such data sets cannot

be drawn by hand, so they require computers to decide where to place the objects and where

to draw the lines. Graph drawing is the research �eld dedicated to the automated generation

of diagrams. More broadly it \includes all aspects of visualizing structural relations between

objects" [70].

Formally, an (undirected) graph G = ( V; E) consists of a nonempty setV of objects called

vertices together with a setE of 2-element subsets ofV called edges. Adigraph is a

graph whose edges are ordered pairs. Drawings are an intuitive approach to understanding

graphs, for example, any textbook on graph theory will contain drawings of graphs in the

�rst few pages. A single graph can have many drawings emphasizing di�erent structural

aspects, for example symmetry or connectivity, or satisfying di�erent constraints. Graph

1



(a) (b)

Figure 1.1: (a) A useful ow chart1. (b) An orthogonal clustered digraph diagram of US
political system [1].

drawing combines aspects of graph theory, computational geometry and (sometimes) aesthetic

considerations.

The most common style of graph drawing is a node-link diagram where vertices are represented

as points and each edge is drawn as a line between two points, but this is not the only possible

representation. Vertices can be represented by many shapes such as rectangles (Fig. 1.1),

images, or a mixture of styles, while edges can be represented as straight lines, polylines,

curves, the intersection of objects, and many other ways. Even the notion of graph can be

expanded to include clusters or hierarchies of clusters of vertices, which can also be captured

in the drawings (Fig. 1.1b). .

Creating drawings of digraphs presents unique problems that do not occur when creating

drawings of undirected graphs. An edgee = ( u; v) in a digraph indicates that the edge is

oriented from vertex u to vertex v. Drawings must indicate the orientation of the edges

1With permission from "Piled Higher and Deeper" by Jorge Cham www.phdcomics.com

2



(a) (b) (c)

Figure 1.2: Illustration of a digraph in 3 styles (a) Node-link drawing. (b) Layered graph
drawing. (c) L-drawing.

clearly. The most common way of doing this is using arrowheads, but these are not always

clear and easy to follow due to occlusion problems and visual clutter [62]. An alternative is

to use a convention that implicitly indicates the orientation. Upward planar drawings (such

as those in Chapter 3) use the convention that every edge is oriented from a lower vertex to

a higher vertex. This is the natural style to draw rooted trees, where traditionally the root is

the highest node in the drawing and every child node lies below its parent. Unfortunately, the

digraphs that can be drawn in such a way are limited. We discuss an important property they

must have in Chapter 2. A more general approach is layered graph drawings where vertices

are drawn in horizontal rows, or layers, and edges mostly ow in the same direction. Such

drawings are e�ective at displaying more complex digraphs, for example remaining useful

in graphs with a limited quantity of cycles. Other styles include L-drawings [7], conuent

drawings [43], elastic hierarchies [105], and overloaded orthogonal drawings [75], see Fig. 1.2.

Once a representation has been decided then the question remains about what distinguishes

a good drawing from a bad one. Due to the multiplicity of graphs, structures, and purposes,

there can be no single optimization criterion. Over time, the graph drawing community

has focused on di�erent criteria which capture characteristics which tend to produce high

quality drawings in many di�erent settings. In fact, a good drawing typically ful�lls several of
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these optimization criteria. One class of graphs that is particularly relevant is planar graphs.

A planar graph is a graph that can be drawn in the plane without edge crossings. Many

times planarity is not a goal but a constraint that must be satis�ed before considering other

optimization goals. Such is the case in Chapters 2 and 3. Other criteria are minimizing the

number of edge crossings, area, total edge length, angle resolution (both at vertices and at

crossings), and number of bends, among many others.

1.1 K-Modality

Given a planar digraphG and a positive even integerk, a drawing of G in the plane is

k-modal if every vertex ofG is incident to at most k pairs of consecutive edges with opposite

orientations, i.e., the incoming and the outgoing edges at each vertex are grouped by the

drawing into at most k sets of consecutive edges with the same orientation. A necessary,

but not su�cient, condition for upward-planar drawings and level-planar drawings is for

the graph to be 2-modal. In an L-drawing (Fig. 1.2c) vertices are placed on an � n grid

so that each vertex is assigned a unique x-coordinate and a unique y-coordinate, and each

directed edge (uv) is represented as a 1-bend orthogonal polyline composed of a vertical

segment incident tou and a horizontal segment incident tov. It is known that 4-modality is

a necessary condition for L-drawings [35].

In Chapter 2 we study thek-Modality problem, which asks for the existence of ak-modal

embedding of a planar digraph. This combinatorial problem is at the very core of a variety

of constrained embedding questions for planar digraphs and at clustered networks.

First, since the 2-Modality problem can be easily solved in linear time, we consider the

generalk-Modality problem for any value ofk > 2 and show that the problem is NP-

complete for planar digraphs of maximum degree �� k +3. We then relate its computational
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(a) (b)

Figure 1.3: (a) Charles Darwin's 1837 sketch of an evolutionary tree. (b) The �nal drawing
he used in 1859 in "On the Origin of Species".

complexity to that of two notions of planarity for at clustered networks. On the positive

side, we provide a simple algorithm that runs inf (k)O(n) time for partial 2-trees of arbitrary

degree, whose running time is exponential ink and linear in the input size.

Second, we focus our attention onk = 4. On the algorithmic side, we show a complexity

dichotomy for the k-Modality problem with respect to �, by providing a linear-time

algorithm for planar digraphs with � � 6.

1.2 Phylogenetic Trees

A phylogenetic treeis a rooted tree that describes the relationships among evolutionary

lineages(Fig. 1.3b). The root is the common ancestor of all the species in the tree. Each

internal node is a speciation event, an event that produces two or more lineages. Such an

event is for example the rapid speciation of the Faroe Island house mouse,Mus musculus

faeroensis, which was introduced to the island by man less than 300 years ago [95].

There are many techniques to generate phylogenetic trees based upon similarities and

di�erences in physical or genetic characteristics [49]. In some phylogenetic tree drawings the
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vertical distance between two nodes represents the time between the two events: such trees

are also calledclock trees. For this reason, they are well suited to be drawn as orthogonal

upward-planar trees. There is extensive research on optimization problems related to planar

upward tree drawings without the edge-length constraints. Likewise, for phylogenetic trees,

there are many software applications for drawing them, but they either do not respect the

edge lengths or do not generate orthogonal drawings. We are not familiar with any previous

work on characterizing the complexity of the minimum-width orthogonal phylogenetic tree

drawing problem.

In Chapter 3 we show that �nding such drawings is NP-hard even for binary trees if the

ordering of the children of each node is unconstrained. On the other hand, if the order is

�xed, we provide a linear-time algorithm for �nding minimum width drawings. We also study

several heuristic algorithms for the unconstrained case and show their e�ectiveness through

experimentation.

1.3 Layered Drawings

In many cases directed graphs represent a hierarchy, or near hierarchy, and we want a drawing

that transmits this structure. Some notable applications are project management diagrams,

software program call graphs, and �le systems. The most popular method of drawing these

digraphs is theSugiyama frameworkwhich partitions the vertices of the digraph into discrete

layers. The layer of each vertex is chosen so that (most of) the edges of the digraph \ow" in

a uniform direction. One of the steps in this framework is thevertex ordering step. Consider

two layers of vertices drawn in two parallel lines, with edges only going from the top layer

to the bottom layer. The vertex ordering step attempts to minimize the number of edge

crossings by reordering the vertices of each layer.
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In Chapter 4 we study the vertex ordering step in the evolving data setting. In a traditional

setting an algorithm takes an input, runs for some amount of time, and produces an output.

The evolving data setting asks the question what happens if the data is changing at a speed

that is similar (or faster) than the computation speed, i.e.,what happens if the algorithm

can't keep up. The goal of the algorithm in this setting is to e�ciently maintain an output

instance that is \close" to the true output.

We experimentally study how to reduce the crossings between two adjacent layers in a layered

drawing in this setting. Our setup is as follows: we consider two adjacent layers where each

element in the top layer has a one-to-one correspondence to an element in the bottom layer.

The bottom layer mutates its order by performing random swaps on adjacent elements, while

the algorithm attempts to order the top layer so as to minimize edge crossings. Clearly,

at any single moment there is an order of the top layer that produces a drawing with no

crossings, when both are equally \sorted", but in practice this is never achieved. We show

that this constrained version can be reduced to maintaining a sorted list where the rank of

the elements is evolving and this is exactly the approach we take.

Previous work on sorting in the evolving data setting studies only two versions of quicksort,

and has a gap between the lower bound of 
(n) and the (then known) best upper bound

of O(n log logn). The experiments we present in Chapter 4 provide empirical evidence that

some quadratic-time algorithms such as insertion sort and bubble sort are asymptotically

optimal for any constant rate of random swaps per comparison. In fact, these algorithms

perform as well as or better than algorithms such as quicksort that are more e�cient in the

traditional algorithm analysis model. In a later paper Besaet al. [18] con�rmed that in fact

insertion sort can be optimal in this setting.

7



Chapter 2

Computing k-Modal Embeddings of

Planar Digraphs

2.1 Introduction

Computing k-modal embeddings of planar digraphs, for some positive even integerk called

modality, is an important algorithmic task at the basis of several types of graph visualizations.

In 2-modal embeddings, also calledbimodal embeddings, the outgoing and the incoming edges

(a) (b) (c)

Figure 2.1: (a) A planar L-drawing, which determines a 4-modal embedding. (b) A planar
NodeTrix representation. (c) A planar intersection-link representation using comb-shaped
polygons.
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at each vertex form two disjoint sequences. Bimodal embeddings are ubiquitous in Graph

Drawing. For instance, level planar drawings [39, 68] and upward-planar drawings [17, 53]|

two of the most deeply-studied graph drawing standards|determine bimodal embeddings.

4-modal embeddings, where the outgoing and the incoming edges at each vertex form up to

four disjoint sequences with alternating orientations, arise in the context of planarL-drawings

of digraphs. In anL-drawing of an n-vertex digraph, introduced by Angeliniet al. [7], vertices

are placed on then � n grid so that each vertex is assigned a uniquex-coordinate and a

unique y-coordinate and each edgeuv (directed from u to v) is represented as a 1-bend

orthogonal polyline composed of a vertical segment incident tou and of a horizontal segment

incident to v. Recently, Chaplicket al. [35] addressed the question of deciding the existence

of planar L-drawings, i.e., L-drawings whose edges might possibly overlap but do not cross

and observe that the existence of a 4-modal embedding is a necessary condition for a digraph

to admit such a representation (Fig. 2.1a).

To the best of our knowledge, no further relationships have been explicitly pointed out in

the literature between modal embeddings and notable drawing models for modality values

greater than four, yet they do exist.Da Lozzoet al. [37] and Di Giacomoet al. [54] study

the planarity of NodeTrix representationsof at clustered networks, a hybrid representational

model introduced by Henry, Fekete, and McGu�n [61], where clusters and intra-cluster

edges are represented as adjacency-matrices, with rows and columns for the vertices of each

cluster, and inter-cluster edges are Jordan arcs connecting di�erent matrices (Fig. 2.1b). For

clusters containing only two vertices, it is possible to show that the problem of computing

planar NodeTrix representations coincides with the one of testing whether a special digraph,

called thecanonical digraph, associated to the network admits a 6-modal embedding. For

higher values of modality,k-modal embeddings occur in the context of Intersection-Link

representations of at clustered networks. In anintersection-link representation [9, 11],

vertices are represented as translates of the same polygon, intra-cluster edges are represented

via intersections between the polygons corresponding to their endpoints, and inter-cluster
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edges|similarly to NodeTrix representations|are Jordan arcs connecting the polygons

corresponding to their endpoints. For any modalityk � 2, it can be shown that testing the

existence of ak-modal embedding of the canonical digraph of a at clustered network with

clusters of size two is equivalent to testing the existence of an intersection-link representation

in which the curves representing inter-cluster edges do not intersect, when vertices are drawn

as comb-shaped polygons (Fig. 2.1c).

Related Work. It is common knowledge that the existence of bimodal embeddings can be

tested in linear time: Split each vertexv that has both incoming and outgoing edges into two

verticesvin and vout , assign the incoming edges tovin and the outgoing edges tovout , connect

vin and vout with an edge, and test the resulting (undirected) graphfor planarity using any of

the linear-time planarity-testing algorithms [27, 64]. Despite this, most of the planarity

variants requiring bimodality are NP-complete; for instance, upward planarity [53], windrose

planarity [12], partial-level planarity [29], clustered-level planarity andT-level planarity [10,

73], ordered-level planarity and bi-monotonicity [73]. In this scenario, a notable exception is

represented by the classic level planarity problem, which can be solved in linear time [68], and

its generalizations on the standing cylinder [13], rolling cylinder and the torus [8]. Although

the existence of a bimodal embedding is easy to test, Binucci, Didimo, and Giordano [23]

prove that the related problem of �nding the maximum bimodal subgraph of an embedded

planar digraph is an NP-hard problem. Moreover, Binucci, Didimo, and Patrignani [24] show

that, given a mixed planar graph, i.e., a planar graph whose edge set is partitioned into a

set of directed edges and a set of undirected edges, orienting the undirected edges in such a

way that the whole graph admits a bimodal embedding is an NP-complete problem. On the

other hand, the question regarding the computational complexity of constructingk-modal

embedding fork � 4 has not been addressed, although the related problem of testing the

existence of planar L-drawings has been recently proved NP-complete [35].

Our results. We study the complexity of the k-Modality problem, which asks for
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the existence ofk-modal embeddings of planar digraphs|with an emphasis onk = 4.

Our results are as follows:

- We demonstrate a complexity dichotomy for the4-Modality problem with respect to the

maximum degree � of the input digraph. Namely, we show NP-completeness when �� 7

(Theorem 2.12) and give a linear-time testing algorithm for � � 6 (Theorem 2.8). Further,

we extend the hardness result to any modality value larger than or equal to 4, by proving

that the k-Modality problem is NP-complete fork � 4 when � � k + 3.

- We provide an FPT-algorithm for k-Modality that runs in f (k)O(n) time for the class

of directed partial 2-trees (Theorem 2.7), which includes series-parallel and outerplanar

digraphs.

- In Section 2.3, we relatek-modal embeddings with hybrid representations of at clustered

graphs, and exploit this connection to give new complexity results (Theorems 2.2 and 2.4)

and algorithms (Theorems 2.1 and 2.3) for these types of representations. In particular,

our NP-hardness results allow us to answer two open questions. Namely, we settle in the

strongest possible way an open question, posed by Di Giacomoet al. [54, Open Problem (i)],

about the complexity of computing planar NodeTrix representations of at clustered graphs

with clusters of size smaller than 5. Also, we address a research question by Angeliniet al. [9,

Open Problem (2)] about the representational power of intersection-link representations

based on geometric objects that give rise to complex combinatorial structures, and solve it

when the considered geometric objects arek-combs.

- Finally, in Section 2.10, we show that not every outerplanar digraph admits a bimodal

embedding, whereas any outerplanar (multi-)digraph admits a 4-modal embedding.

The algorithms presented in this chapter employ the SPQ- and SPQR-tree data structures to

succinctly represent the exponentially-many embeddings of series-parallel and biconnected
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planar digraphs, respectively, and can be easily modi�ed to output an embedding of the input

digraph in the same time bound. In particular, our positive result for � � 6 is based on a

set of simple reduction rules that exploit the structure of the rigid components of bounded-

degree planar digraphs. These rules allow us to tackle the algorithmic core of the problem,

by enabling a �nal reduction step to special instances of Not-All-Equal SAT (NAESAT ),

previously studied by Porschenet al. [86]. NAESAT is a variant of the boolean satis�ability

problem SAT , which asks for a truth assignment such that evey clause contains both a true

and a false literal. If such a truth assignment exists then the instance isNAE -satis�able.

We prove that the special instance we construct is alwaysNAE -satis�able in Section 2.7.1

2.2 De�nitions and Preliminaries

In this section we give preliminaries and de�nitions that will be useful throughout.

Planar digraphs and embeddings. Let G = ( V; E) be a digraph. We also denote the sets

V and E by V(G) and E(G), respectively. Theunderlying graphof G is the undirected graph

obtained from G by disregarding edge directions. Letv be a vertex, we denote byE(v) the

set of edges ofG incident to v and by deg(v) = jE(v)j the degreeof v. If uv is an edge, then

vertex v is a successorof u in G and vertex u is a predecessorof v in G. For an edgee = uv

directed from u to v and an end-pointx 2 f u; vg of e, we de�ne the orientation � (e; x) of e

at x as � (e; x) = �� , if x = u, and � (e; x) = �� , if x = v, and we say thatuv is outgoing fromu

and incoming at v. Also, we de�ne � (e; x) = �� , if � (e; x) = �� , and � (e; x) = �� , if � (e; x) = �� .

1In \ Stefan Porschen, Bert Randerath, Ewald Speckenmeyer: Linear Time Algorithms for Some Not-All-
Equal Satis�ability Problems. SAT 2003: 172-187" [ 86], the authors state in the abstract \First we show that
a NAESAT model (if existing) can be computed in linear time for formulas in which each variable occurs at
most twice.". We give a strengthening of this result by showing that the only negative formulas with the
above properties are those whose variable-clause graph contains components isomorphic to a simple cycle.
Then, we provide a recursive linear-time algorithm for computing aNAE -truth assignment for formulas with
those properties, when one exists. Our algorithm is also considerably simpler than the one presented in [86].
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A digraph is planar if it admits a drawing in the plane without edge crossings. Acombinatorial

embedding(for short, embedding) is an equivalence class of planar drawings, where two drawings

of a (di)graph areequivalentif they determine the same circular ordering of the edges around

each vertexv, called rotation at v, and the same relative positions of connected components

to one another. A planar drawing partitions the plane into topologically connected regions,

called faces. The bounded faces are theinner faces, while the unbounded face is theouter

face. A combinatorial embedding together with a choice for the outer face de�nes aplanar

embedding.

Out de�nition does not allow the existence of multi-edges, although alternative de�nitions

may allow them. A multi-edge is a set of edges with the same end-points and the same

orientation; thus, edgesuv and vu do not form a multi-edge. All the digraphs considered in

this chapter aresimple, i.e., their edge set does not contain neither multi-edges nor loops,

planar, and connected. Observe that, requiring the digraph to be simple is not a loss of

generality. In fact, it is possible to modify a digraphG, by removing loops and replacing

multi-edges with a single directed edge, while preserving the possibility of having ak-modal

embedding, for anyk > 0, if any such an embedding ofG exists.

Let E be a combinatorial embedding (planar embedding) of a planar digraphG and let H be

a subgraph ofG, that is, H � G. Also, let EH be the embedding ofH obtained by restricting

E to the vertices and edges ofH . We say that embeddingE inducesembeddingEH .

Connectivity. A graph G = ( V; E) is connected, if there is a path between any two vertices,

and it is disconnected, otherwise. A digraph isconnectedor disconnected, if its underlying

graph is connected or disconnected. Acutvertexis a vertex whose removal disconnects the

graph. A separating pairf u; vg is a pair of vertices whose removal disconnects the graph. A

split pair is a separation pair or a pair of adjacent vertices. A connected digraph isbiconnected

if it does not have a cutvertex and a biconnected graph istriconnected if it does not have a

separating pair. Theblocksof a connected digraphs are its maximal biconnected subgraphs. A
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block is trivial , if it consists of a single-edge, andnon-trivial , otherwise. Clearly, a non-trivial

block contains a cycle. We remark that, by the above de�nition, the connectivity of a digraph

as the same as the connectivity of its underlying graph.

BC-trees. To handle the decomposition of a connected digraph into its biconnected com-

ponents, we useblock-cutvertextrees|usually referred to as BC-trees, a data structure

introduced by Harary and Prins [60]. The BC-tree T of a connected digraphG = ( V; E) is a

tree with a B-node for each block ofG and a C-node for each cutvertex ofG. Edges inT

connect each B-node� to the C-nodes associated with the cutvertices in the block of� .

SPQR-trees. To handle the decomposition of a biconnected digraph into its triconnected

components we use SQPR-trees. Triconnected components, also known asTutte components,

was independently considered by Tutte [99], Hopcroft and Tarjan [63], and Mac Lane [78].

Later such a decomposition was named by Di Battista and Tamassia [40] as SPQR-trees.

Although not in their current formalization, SPQR-trees were already exploited by Bienstock

and Monma [21, 22].

A graph is st-biconnectibleif adding the edge (s; t) yields a biconnected graph. LetG be an

st-biconnectible graph. Aseparation pair of G is a pair of vertices whose removal disconnects

the graph. A split pair of G is either a separation pair or a pair of adjacent vertices. A

maximal split componentof G with respect to a split pair f u; vg (or, simply, a maximal split

component off u; vg) is either an edge (u; v) or a maximal subgraphG0 of G such that G0

contains u and v, and f u; vg is not a split pair of G0. A vertex w 6= u; v belongs to exactly

one maximal split component off u; vg. We call split componentof f u; vg the union of any

number of maximal split components off u; vg.

In this chapter, we will assume that a SPQR-tree of a graphG is rooted at one edge ofG,

called its reference edge.
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Figure 2.2: (left) A 4-modal embedding of a simply-connected planar digraphG; the part
of each edge that is incoming at (outgoing from) a vertex is drawn blue (red). The three
blocksB, B0, and B00of G are enclosed in gray shaded regions. (right) SPQRT of block B
(considered as undirected) rooted at the edgee = uv. The extended skeletons of all non-leaf
nodes ofT are shown; virtual edges corresponding to edges ofG are thin, whereas virtual
edges corresponding to S-, P-, and R-nodes are thick. Dashed arrowed curves connect the
(dotted) parent edge in the skeleton of a child node with the virtual edge representing the
child node in the skeleton of its parent.

The rooted SPQR-treeT of a biconnected graphG, with respect to its reference edgee,

describes a recursive decomposition ofG induced by its split pairs. The nodes ofT are of

four types: S, P, Q, and R. Their connections are calledarcs, in order to distinguish them

from the edges ofG.

Each node� of T has an associatedst-biconnectible multigraph, called theskeletonof � and

denoted byskel(� ). Skeletonskel(� ) shows how the children of� , represented by \virtual

edges", are arranged into� . The virtual edge in skel(� ) associated with a child node� , is

called thevirtual edge of� in skel(� ).

The subgraph ofG that can be obtained in the following manner is denoted thepertinent

graphof � . For each virtual edgeei of skel(� ), recursively replaceei with the skeletonskel(� i )

of its corresponding child� i .

Let G be a biconnected graph. Given the reference edgee = ( u0; v0) 2 E, the SPQR-treeT is

recursively de�ned as follows. At each step, a split componentG� , a pair of verticesf u; vg,
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and a node� in T are given. A node� corresponding toG� is introduced in T and attached

to its parent � . Vertices u and v are the polesof � and denoted byu� and v� , respectively.

The decomposition possibly recurs on some split components ofG� . At the beginning of the

decompositionG� = G � f eg, f u� ; v� g = f u0; v0g, and � is a Q-node corresponding toe.

Base Case: If G� consists of exactly one edge betweenu� and v� , then � is a Q-node whose

skeleton isG� itself.

Parallel Case: If G� is composed of at least two maximal split componentsG1; : : : ; Gk

(k � 2) of G with respect to f u� ; v� g, then � is a P-node. The graphskel(� ) is a

multigraph consisting ofk virtual edges betweenu� and v� , denoted bye1; : : : ; ek and

corresponding toG1; : : : ; Gk , respectively. The decomposition recurs onG1; : : : ; Gk ,

with f u� ; v� g as pair of vertices for every graph, and with� as parent node.

Series Case: If G� is composed of exactly one maximal split component ofG with respect

to f u� ; v� g and if G� has cut verticesc1; : : : ; ck� 1 (k � 2), appearing in this order on a

path from u� to v� , then � is an S-node. Graphskel(� ) is the path e1; : : : ; ek , where

virtual edge ei connectsci � 1 with ci (i = 2; : : : ; k � 1), e1 connectsu� with c1, and ek

connectsck� 1 with v� . The decomposition recurs on the split components corresponding

to each ofe1; e2; : : : ; ek� 1; ek with � as parent node, and withf u� ; c1g; f c1; c2g; : : : ;

f ck� 2; ck� 1g; f ck� 1; v� g as pair of vertices, respectively.

Rigid Case: If none of the above cases applies, the purpose of the decomposition step is

that of partitioning G� into the minimum number of split components and recurring on

each of them. We need some further de�nition. Given a maximal split componentG0

of a split pair f s; tg of G� , a vertex w 2 G0 properly belongsto G0 if w 6= s; t. Given

a split pair f s; tg of G� , a maximal split componentG0 of f s; tg is internal if neither

u� nor v� (the poles ofG� ) properly belongs toG0, external otherwise. A maximal

split pair f s; tg of G� is a split pair of G� that is not contained in an internal maximal
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split component of any other split pairf s0; t0g of G� . Let f u1; v1g; : : : ; f uk ; vkg be the

maximal split pairs of G� (k � 1) and, for i = 1; : : : ; k, let Gi be the union of all the

internal maximal split components off ui ; vi g. Observe that each vertex ofG� either

properly belongs to exactly oneGi or belongs to some maximal split pairf ui ; vi g. The

node� is an R-node. The graphskel(� ) is the graph obtained fromG� by replacing

each subgraphGi with the virtual edge ei betweenui and vi . The decomposition recurs

on eachGi with � as parent node and withf ui ; vi g as pair of vertices.

For each node� of T with poles u� and v� , the construction ofskel(� ) is completed by adding

a virtual edge (u; v) representing therest of the graph, that is, the graph obtained fromG by

removing all the vertices of pert� , except for its poles, together with their incident edges.

The skeleton graph equipped with edgeu� v� , called theparent edge, is the extended skeleton

of � . Refer to Fig. 2.2(right). Each edge ofskel(� ), called virtual edge, is associated with a

child of � in T . The skeleton of� describes how the pertinent graphs of the children of�

have to be \merged" via their poles to obtainpert(� ). The extended skeleton of an S-, P-, R-,

and Q-node is a cycle, parallel, triconnected graph, and a multigraph with two edges and two

vertices, respectively. It follows that skeleton and pertinent graphs are always biconnected

once the parent edge is added.

A digraph G is planar if and only if the skeleton of each R-node in the SPQR-tree ofG

is planar. Any planar embeddingE of G in which the reference edgee is incident to the

outer face induces aregular embeddingE� of pert(� ), for each node� of T , that is, a planar

embedding in which the poles of� are incident to the outer face ofE� . Symmetrically,

by selecting regular embeddings for the skeletons of the nodes ofT , we can construct any

embedding ofG with edgee on the outer face, where the choices for the embeddings of the

skeletons are all and only the (i) ips of the R-nodes and the (ii)permutations of the P-nodes.

The SPQR-treeT of a graphG with n vertices andm edges hasm Q-nodes andO(n) S-,
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P-, and R-nodes. Also, the total number of vertices of the skeletons stored at the nodes

of T is O(n). Finally, SPQR-trees can be constructed and handled e�ciently. Namely,

given a biconnected planar graphG, the SPQR-treeT of G can be computed in linear

time [41, 42, 59, 63].

Partial 2-trees and Series-Parallel Digraphs. Recall that we have de�ned the con-

nectivity of a digraph according to the connectivity of its underlying graph, i.e. ignoring

the orientation of its edges. A 2-tree is a digraph that can be obtained from an edge by

repeatedly adding a new vertex connected to two adjacent vertices. Every 2-tree is planar

and biconnected. Apartial 2-tree is a subgraph of a 2-tree. Aseries-parallel digraphis

a biconnected partial 2-tree. Equivalently, aseries-parallel digraphcan be de�ned as a

biconnected planar digraph whose SPQR-tree only contains S-, P-, and Q-nodes; this is

why we speak ofSPQ-treesof series-parallel digraphs. A digraph isouterplanar if it can be

embedded in the plane so that all its vertices are incident to a common face. Outerplanar

digraphs are partial 2-trees. The SPQ-treeT of a biconnected outerplanar digraph rooted

at any Q-node has the following property: Each P-node� of T has exactly one S-node

child (and at least one and at most two Q-node children, corresponding to opposite edges

between the poles of� ).

Modality. Let G be a planar digraph and letE be an embedding ofG. A pair of edges

e1; e2 that appear consecutively in the circular order around a vertexv of G is alternating

if they do not have the same orientation atv, i.e., they are not both incoming at or both

outgoing from v. Also, we say that vertexv is k-modal, or that v has modality k, or that the

modality of v is k in E, if there exist exactly k alternating pairs of edges incident tov in E.

Clearly, the valuek needs to be a non-negative even integer. An embedding of a digraphG

is k-modal, if each vertex is at mostk-modal.

The following observation follows immediately from the fact that in any embedding the
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number of alternating pairs at a vertex is bounded by its degree and must be even.

Observation 2.1. In any embedding, the modality of a vertexv is at most 2bdeg(v)
2 c.

By Observation 2.1, vertices of degree at most 5 are at most 4-modal. Therefore, determining

the existence of a 4-modal embedding is a non-trivial task only if the digraph contains vertices

of degree at least 6. In fact, we will determine a tight border of tractability for the problem,

by showing that there exist instances of maximum degree � for every � � 7 that cannot

be treated e�ciently, unless P = NP , while instances of maximum degree 6 can be tested

e�ciently.

We now de�ne an auxiliary problem, calledk-MaxModality (where k is a positive even

integer), which will be useful to prove our algorithmic results. We denote the set of non-

negative integers byZ � and the set of non-negative even integers smaller than or equal tok

as E+
k = f b : b = 2a; b� k; a 2 Z � g. Given a graphG, we call maximum-modality function

an integer-valued functionm : V(G) ! E+
k . We say that an embeddingE of G satis�es m at

a vertexv, if the modality of v in E is at most m(v). Also, we say that an embeddingE of G

satis�es m, if it satis�es m at every vertex ofG.

Problem: k-MaxModality

Input: A pair hG; mi , whereG is a digraph andm is a maximum-modality function.

Question: Is there an embeddingE of G that satis�es m?

2.3 Implications on Hybrid Representations

A at clustered graph (for short, c-graph) is a pair C = ( G = ( V; E); P = ( V1; V2; : : : ; Vc)),

whereG is a graph andP is a partition of V into setsVi , for i = 1; : : : ; c, calledclusters2. An
2The more general notion ofclustered graphis obtained by allowing the set of clusters to form a laminar

set family, which is better described by a rooted treeT whose leaves are the vertices ofG and whose every
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(a) (b) (c)

Figure 2.3: (a) Illustrations for the duality between the canonical digraph and the canon-
ical c-graph. Correspondence (b) between 6-modal embeddings and planar NodeTrix
representations, and (c) between 4-modal embeddings and clique-planar representations
using 2-combs as geometric objects.

edge (u; v) 2 E with u 2 Vi and v 2 Vj is an intra-cluster edge, if i = j , and is aninter-cluster

edge, if i 6= j . The problem of visualizing such graphs so to e�ectively convey both the relation

information encoded in the setE of edges ofG and the hierarchical information given by the

partition P of the clusters has attracted considerable research attention. As crossing-free

graph drawings are universally considered more readable [87, 88], this e�ort has culminated

in several notions of planarity for c-graphs. The most celebrated of such notions, introduced

by Feng, Cohen, and Eades [50], goes by the name ofClustered Planarity and asks for

the existence of ac-planar drawingof a c-graph, that is, a planar drawing ofG together with

a representation of each clusterVi as a region of the plane homeomorphic to a closed disk that

contains the drawing of the subgraph ofG induced by clusterVi ; additionally, clusters may not

intersect each other and edges may cross the boundary of each cluster at most once. Alongside

the classical notion of c-planar drawings, new hybrid models for the visualization of at

clustered networks (and corresponding planarity notions) have recently received considerable

attention. In a hybrid representationof a graph di�erent conventions are used to represent the

dense and the sparse portions of the graph [9, 11, 37, 54, 61, 77, 102]. We present important

implications of our results on some well-knownmodels for hybrid-representations of c-graphs.

internal node � represents the cluster containing the leaves of the subtree ofT rooted at � . However, since a
at clustering is more naturally described by a partition, rather then by a tree, we de�ne c-graphs using P
rather then T .
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Let C be a c-graph whose every cluster forms a clique of size at most 2, that is, each cluster

contains at most two vertices connected by an intra-cluster edge. Starting fromC we de�ne

an auxiliary digraph G� , called the canonical digraphfor C, as follows. Without loss of

generality, assume that, fori = 1; : : : ; c, each clusterVi contains two vertices denoted asvi [�� ]

and vi [�� ]. The vertex set ofG� contains a vertexvi , for i = 1; 2; : : : ; c, and a dummy vertex

de, for each inter-cluster edgee 2 E. The edge set ofG� contains two directed edges, for each

inter-cluster edgee = ( vi
x ; vj

y) 2 E, with x; y 2 f �� ; �� g and i 6= j ; namely, E(G� ) contains (i)

either the directed edgesvi
xde, if x = �� , or the directed edgedevi

x , if x = �� , and (ii) either the

directed edgesvi
yde, if y = �� , or the directed edgedevi

y, if y = �� .

Now let D = ( V; E) be a digraph. We construct a c-graphC� = ( G� = ( V � ; E � ); P � ) from

D whose every cluster forms a clique of size at most 2, called thecanonical c-graphfor D,

as follows. For each vertexvi 2 V, G� contains two verticesvi [�� ] and vi [�� ], which form the

cluster Vi = f v[�� ]; v[�� ]g in P � . For each (directed) edgevi vj of D, G� contains an (undirected)

edge (vi [�� ]; vj [�� ]); that is, each directed edge inE that is incoming (outgoing) at a vertexvi

and outgoing (incoming) at a vertexvj corresponds to an inter-cluster edge inE � incident

to vi [�� ] (to vi [�� ]) and to vj [�� ] (to vj [�� ]). Finally, for each vertex vi 2 V, G� contains an

intra-cluster edge (vi [�� ]; vi [�� ]). The canonical digraph and the canonical c-graph form dual

concepts, as illustrated in Fig. 2.3a; the canonical c-graph ofG� is the original c-graphC

(neglecting clusters originated by dummy vertices) and the canonical digraph ofC� is the

original digraph D (suppressing dummy vertices).

NodeTrix Planarity. A NodeTrix representationof a c-graphC = ( G; P) is a drawing of

C such that: (i) Each clusterVi 2 P is represented as a symmetric adjacency matrixM i

(with jVi j rows and columns), drawn in the plane so that its boundary is a squareQi with

sides parallel to the coordinate axes.(ii) No two matrices intersect, that is,Qi \ Qj = ; , for

all 1 � i < j � c. (iii) Each intra-cluster edge is represented by the adjacency matrixM i .

(iv) Each inter-cluster edge (u; v) with u 2 Vi and v 2 Vj is represented as a simple Jordan
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arc connecting a point on the boundary ofQi with a point on the boundary of Qj , where the

point on Qi (on Qj ) belongs to the column or to the row ofM i (resp. ofM j ) associated with

u (resp. with v). A NodeTrix representation isplanar if no inter-cluster edge intersects a

matrix or another inter-cluster edge, except possibly at a common end-point; see Figs. 2.1b

and 2.3b. TheNodeTrix Planarity problem asks whether a c-graph admits a planar

NodeTrix representation. NodeTrix Planarity has been proved NP-complete for c-graphs

whose clusters have size larger than or equal to 5 [54].

We are ready to establish our main technical lemmas.

Lemma 2.1. C-graph C is planar NodeTrix if and only if G� admits a 6-modal embedding.

Lemma 2.2. Digraph D admits a 6-modal embedding if and only ifC� is planar NodeTrix.

Proof for Lemmas 2.1 and 2.2. Let M i be the matrix representing clusterVi = f vi [�� ]; vi [�� ]g.

We have that, independently of which of the two possible permutations for the rows and

columns ofM i is selected, the boundary ofQi is partitioned into three maximal portions

associated withvi [�� ] and three maximal portions associated withvi [�� ]; that is, they form

the pattern [1; 2; 1; 2; 1; 2], see Fig. 2.3b. Therefore, any planar NodeTrix representation

of C (of C� ) can be turned into a 6-modal embedding ofG� (of D) via a local redrawing

procedure which operates in the interior ofQi ; also, any 6-modal embedding ofG� (of D) can

be turned into a planar NodeTrix representation ofC (C� ) via a local redrawing procedure

which operates in a small disk centered atvi that contains only vi and intersects only edges

incident to vi .

SinceG� can be constructed in linear time fromC, Lemma 2.1 and the algorithm of Theorem 2.7

for solving k-Modality of directed partial 2-trees give us the following.

Theorem 2.1. NodeTrix Planarity can be solved in linear time for at clustered graphs

whose clusters have size at most2 and whose canonical digraph is a directed partial2-tree.
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Note that (i) C� can be constructed in polynomial time fromD, (ii) C� only contains clusters

of size 2 (although clusters corresponding to vertices ofD incident to incoming or outgoing

edges only could be simpli�ed into clusters of size 1), and (iii) each clusterVi 2 P � , with

vi 2 V(D), is incident to � inter clusters edges, where� is the degree ofvi in D. These

properties and the fact that in Theorem 2.12 we prove thek-Modality problem to be

NP-complete for digraphs of maximum degree �� k + 3 give us the following.

Theorem 2.2. NodeTrix Planarity is NP-complete for at clustered graphs whose

clusters have size at most2, even if each cluster is incident to at most9 inter-cluster edges.

We remark that the above NP-completeness result is best possible in terms of the size of

clusters, as clusters of size 1 do not o�er any advantage to avoid intersections between

inter-cluster edges. Also, it solves [54, Open Problem (i)], which asks for the complexity of

NodeTrix Planarity for c-graphs whose clusters have size between 2 and 5.

Clique Planarity. Hybrid representations have also been recently studied in the setting in

which clusters are represented via intersections of geometric objects. In particular, Angelini

et al. [9] introduced the following type of representations. Suppose that a c-graph (G; P) is

given, whereP is a set of cliquesthat partition the vertex set of G. In an intersection-link

representation, the vertices ofG are represented by geometric objects that are translates

of the same rectangle. Consider an edge (u; v) and let R(u) and R(v) be the rectangles

representingu and v, respectively. If (u; v) is an intra-cluster edge (calledintersection-edge

in [9]), we represent it by drawingR(u) and R(v) so that they intersect, otherwise if (u; v) is

an intra-cluster edge (calledlink-edgein [9]), we represent it by a Jordan arc connectingR(u)

and R(v). A clique-planarrepresentation is an intersection-link representation in which no

inter-cluster edge intersects the interior of any rectangle or another inter-cluster edge, except

possibly at a common end-point. TheClique Planarity problem asks whether a c-graph

(G; P) admits a clique-planar representation.
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Angelini et al. proved theClique Planarity problem to be NP-complete, whenP contains

a cluster V � with jV � j 2 O(jGj), and asked, in [9, Open Problem (2)], about the implications

of using di�erent geometric objects for representing vertices, rather than translates of the

same rectangle. We address this question by consideringk-combs as geometric objects, where

a k-combis the simple polygon withk spikes illustrated in Fig. 2.3c. We have the following.

Lemma 2.3. C-graph C is a positive instance ofClique Planarity using k-combs as

geometric objects if and only ifG� admits a 2k-modal embedding.

Lemma 2.4. Digraph D admits an 4-modal embedding if and only ifC� is a positive instance

of Clique Planarity using 2-combs as geometric objects.

Proof for Lemmas 2.3 and 2.4. Let A i be an arrangements of 2-combs representing cluster

Vi = f vi [�� ]; vi [�� ]g. We have that, the boundary ofA i is partitioned into at most two maximal

portions associated withvi [�� ] and at most two maximal portions associated withvi [�� ]; that is,

they form the pattern [1; 2; 1; 2], see Fig. 2.3c. Therefore, as for Lemmas 2.1 and 2.2, we can

exploit a local redrawing procedure to transform a clique-planar representation ofC (of C� )

into a 4-modal embedding ofG� (of D), and vice versa.

Combining Lemma 2.3 and the algorithm of Theorem 2.7 gives us the following positive

result.

Theorem 2.3. Clique Planarity using r -combs, withr � 1, as geometric objects can be

solved in linear time for at clustered graphs whose clusters have size at most2 and whose

canonical digraph is a directed partial2-tree.

Finally, Lemma 2.4 and the discussion preceding Theorem 2.2 imply the following.

Theorem 2.4. Clique Planarity using2-combs as geometric objects is NP-complete, even

for at clustered graphs with clusters of size at most2 each incident to at most7 inter-cluster

edges.
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Algorithm 1 Function TestSimplyConnected implements the reductionof Theorem 2.5
by exploiting function TestBiconnected to solve 4-MaxModality for biconnected
instances.BinarySearch( f; �; m; v ) exploits a binary search and functionf to compute
the minimum modality for cut-vertex v in an embedding of� satisfying m at every vertex
di�erent from v.

1: function TestSimplyConnected ((hG; mi ))
2: if G is biconnectedthen
3: return TestBiconnected (hG; mi )

4: �  leaf-block ofG with parent cut-vertex v
5: `  BinarySearch (TestBiconnected ,�; m; v )
6: if ` � m(v) then
7: m(v)  min(m(v); m(v) � ` + 2)
8: return TestSimplyConnected (hG�

� ; mi )

9: return NO

2.4 Polynomial-time Algorithms

In this section, we present an algorithmic framework to devise e�cient algorithms for the

k-Modality problem for notable families of instances. First, in Section 2.4.1, we show how to

e�ciently reduce the k-Modality problem in connected digraphs to thek-MaxModality

problem in biconnected digraphs. Then, in Section 2.4.2, we introduce preliminaries and

de�nitions concerning SPQR-trees andk-modal embeddings of biconnected digraphs.

2.4.1 Simply-Connected Graphs

We �rst observe that the k-MaxModality problem is a generalization of thek-Modality

problem. In fact, a directed graphG = ( V; E) admits a k-modal embedding if and only if

the pair hG; mi , with m(v) = k; 8v 2 V(G), is a positive instance of thek-MaxModality

problem.

Observation 2.2. k-Modality reduces in linear time tok-MaxModality .

Let hG; m : V(G) ! E+
4 i be an instance of4-MaxModality ; also, let � be a leaf-block of
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the BC-tree T of G and let v be the parent cut-vertex of� in T . We denote byG�
� the

subgraph ofG induced by v and the vertices ofG not in � , i.e., G�
� = G � (� � f vg). Also,

let B(T ) be the set of blocks inT . We show that k-MaxModality (and k-Modality ,

by Observation 2.2) in connected digraphs is Turing reducible tok-MaxModality in

biconnected digraphs.

Theorem 2.5. Given a subroutineTestBiconnected that tests k-MaxModality for

biconnected instances, there exists a procedureTestSimplyConnected that tests

k-MaxModality for connected digraphs. Further, given an instancehG; mi of k-MaxModality ,

the runtime of TestSimplyConnected( hG; mi ) is

O
�
jGj + log k

X

� 2 B (T )

r (� )
�
;

wherer (� ) is the runtime of TestBiconnected( h�; m i ) and T is the BC-tree ofG.

Proof. We present procedureTestSimplyConnected in Algorithm 1. The key idea in the

algorithm is the following. Consider a leaf-block� of T with parent cut-vertex v. If E is an

embedding ofG, then it induces two embeddings, one for� and one forG�
� , and v belongs

to both subgraphs. IfE satis�es m, then it holds that (i) both induced embeddings satisfym

and (ii) the sum of the modality of v in these embeddings is at mostm(v) + 2. We show that

in fact verifying properties (i) and (ii) is also su�cient to test if G admits an embedding that

satis�es m.

The algorithm works recursively as follows. It selects a leaf-block� of T with parent cut-

vertex v and computes the minimum modality` at v for which � admits an embedding that

satis�es m. To achieve this goal the algorithm exploits a binary search using subroutine

TestBiconnected . Depending on the minimum modality atv it either rejects the instance

if no embedding of� satisfying m exists, or setsm(v) = min(m(v); m(v) � ` + 2) for G�
� and

recurs on it, otherwise.
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To prove the correctness of the algorithm we simply need to show that any pair of embeddings

B of � (computed at line 5) andB� of G�
� (computed at line 8) that satisfy m such that the

modality of v in B is at most ` and the modality of v in B� is at most min(m(v); m(v) � ` +2)

can be composed together to obtain an embeddingE of G that satis�es m.

By rerouting the edges of� to select a di�erent outer face and (possibly) ipping the resulting

embedding, we can assume thatB is such that: 1. cut-vertexv lies on the outer face ofB,

2. if v is incident to both incoming and outgoing edges, then there exist both an incoming

edgew1 and an outgoing edgew2 incident to v and to the outer face ofB such that the edges

incident to v di�erent from w1 and w2 appear afterw1 (and beforew2) in the clockwise order

around v.

We construct E by setting the rotation of every vertex as follows. Observe that, the modality

of every vertexu 6= v is at most m(u), by hypothesis. So we set the rotation of each vertex

di�erent from v in E to the same as inB� , if it belongs to G�
� , or in B, if it belongs to � .

What remains is setting the rotation of vertexv in such a way that the modality of v in E is

at most m(v).

It is useful to think that we are embeddingB in a face ofH incident to v. Ideally, the two

edges incident to the face have a di�erent orientation but if no such face exists then the

modality of v in H is 0 and embedding in any face will satisfym.

We �rst set the rotation of v in E in such a way that (i) the clockwise order of the edges

incident to v and belonging to� (to G�
� ) is the same as determined byB (by H) and (ii) the

edges of� (of G�
� ) incident to v are consecutive aroundv. We then distinguish two cases

which further constrain the ordering of the edges incident tov.

In the �rst case, at least one of� and G�
� , say� , only contains edges with the same orientation

incident to v, say incoming atv. Let e1 be an incoming edge inG�
� incident to v, or any edge

in G�
� incident to v if no incoming edge exists. Then, we additionally constrain the rotation
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at v so that an edge incident tov and to the outer face ofB follows e1 around v. Observe

that, this corresponds to inserting a drawing of� whose embedding isB inside the face ofB�

incident to e1, and \merging" the two copies ofv in � and G�
� . The case in which� contains

only outgoing edges incident tov is symmetric. As for the modality ofv in E, if the modality

of v is 0 in both B and B� then the modality of v in E is at most 2. Otherwise, the modality

of v in E is the same as the modality of v in B� , as no alternation has been introduced

when composingB and B� to obtain E. Therefore, since � min(m(v); m(v) � ` + 2) (line

7) and ` = 0, the modality of v in E is at most m(v).

In the second case, both� and G�
� contain incoming and outgoing edges incident tov; refer

to Fig. 2.4. First, consider an alternating pair inB� consisting of edgese1 and e2 of G�
�

incident to v (observe that such a pair always exists). Assume, without loss of generality,

that e1 is incoming at v and that e2 is outgoing fromv and e1 precedese2 clockwise around

v. Also consider similar alternating edgesw1 and w2 of � incident to v.

Then, we additionally constrain the rotation at v so that e1 precedes clockwisew1 (w2

precedes clockwisee2) around v. Observe that, by construction, the modality ofv in E is

equal to  + ` � 2, where is the modality of v in B� and ` is the modality of v in B. This is

due to the fact that, the above selection of embeddingB avoids introducing an unnecessary

alternation when composingB and B� to obtain E. Also, since` � 2, vertex v has modality

 � m(v) � ` + 2 in B� . Thus, the modality of v in E is at most m(v).

Finally, we discuss the running time of Algorithm 1. The non recursive work of the algorithm

only consists of constant time operations and of at mostdlog(k)e calls to the subroutine

TestBiconnected , while the recursive work consists of at most one call to the function

TestSimplyConnected . Therefore, since the total number of calls to subroutineTestBi-

connected is bounded by the number of blocks ofG, which is O(jT j) = O(jGj) multiplied

by logk, the overall running time isO(jGj + log k
P

� 2 B (T ) r (� )) . This concludes the proof.
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Figure 2.4: Illustration for the proof of Theorem 2.5. The embedding ofG�
� contains a

face (in grey) with an alternating pair (e1; e2) incident to the cutvertex v; block � can be
reconnected tov inside such a face without introducing unnecessary alternations.

2.4.2 Biconnected Graphs

Consider a pairhG; mi such that G is biconnected and letE be a planar embedding ofG.

Also, let T be the SPQR-tree ofG rooted at an edgee of G incident to the outer face ofE.

We will assume that the virtual edges of the skeletons of the nodes inT are oriented so that

the extended skeleton of each node� is a DAG with a single sourceu� and a single sink

v� . This implies that the virtual edges belonging to the extended skeleton of a P-node have

the same orientation, fromu� to v� , and that the virtual edges of the skeleton of an S-node

form a directed path fromu� to v� . Let � be a node ofT and let E� be the planar (regular)

embedding ofskel(� ) induced by E. For an oriented edged = uv of skel(� ), the left and

right face of d in E� is the face ofE� seen to the left and to the right ofd, respectively, when

traversing this edges fromu to v. We de�ne the outer left (right) face of E� as the left (right)

face of the edgeu� v� in E� .

Embedding tuples. An embedding tuple(for short, tuple) is a 4-tuple h� 1; a; � 2; bi , where

� 1; � 2 2 f �� ; �� g are orientations anda; b2 N are non-negative integers. Consider two tuples

t = h� 1; a; � 2; bi and t0 = h� 0
1; a0; � 0

2; b0i . We say that t dominates t0, denoted ast � t0,

if � 1 = � 0
1, � 2 = � 0

2, a � a0, and b � b0. Also, we say that t and t0 are incompatible, if

none of them dominates the other. Since the relationship� is reexive, antisymmetric,
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Figure 2.5: Illustration for the proof of Lemma 2.5. The parity oft and t0 is the same atu�

and di�erent at v� ; in particular, even if a new alternation is introduced between the pair
(e; e0) at v� , the di�erent parity guarantees that the modality at v� does not increase fromE
to E0.

and transitive, it de�nes a poset (T; � ), where T is the set of embedding tuples. A subset

S � T is succinct or an antichain, if the tuples in S are pair-wise incompatible. Consider two

subsetsS; S0 � T of tuples. We say thatS dominatesS0, denoted asS � S0, if for any tuples

t0 2 S0 there exists at least one tuplet 2 S such that t � t0. Also, S reducesS0 if S � S0 and

S � S0. Finally, S is a gist of S0, if S is succinct and reducesS0.

Let eu and ev be the edges ofpert(� ) incident to the outer left face ofE� and to u� and v� ,

respectively, possiblyeu = ev. Also, let a and b be non-negative integers. We say that the

embeddingE� realizestuple h� 1; a; � 2; bi , if � 1 = � (eu; u� ), � 2 = � (ev; v� ), and a and b are

the number of inner faces ofE� whose (two) edges incident tou� and to v� , respectively, form

an alternating pair. A tuple t = h� 1; a; � 2; bi is realizable by� , if there exists an embedding

of pert(� ) satisfying m that realizes t, and admissible, if a � m(u) and b � m(v). A tuple

is good for� if it is both admissible and realizable by� . We denote byS(� ) the gist of the

set of good tuples for a node� . Let e� be the virtual edge representing� in the skeleton

of the parent of � in T , with a small overload of notation, we also denoteS(� ) by S(e� ).

For a tuple t = h� 1; a; � 2; bi 2 S(e� ), where e = u� v� , the pair (� 1; a) is the embedding pair

of t at u� ; likewise, the pair (� 2; b) is the embedding pairof t at v� . We have the following

substitution lemma.

Lemma 2.5. Let E be a planar embedding ofG satisfying m. Let � be a node ofT and let

E� be the embedding ofpert(� ) induced byE. Also, let E0
� 6= E� be an embedding ofpert(� )

satisfying m. Then, G admits an embeddingE0 satisfying m in which the embedding ofpert(� )
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is E0
� , if t0 � t, wheret and t0 are the embedding tuples realized byE� and byE0

� , respectively.

Proof. We show how to construct a drawing �0G of G satisfying m in which the embedding

of pert(� ) is E0
� ; see Fig. 2.5. Let �G be a drawing ofG whose embedding isE. Remove from

� G the drawing of all the vertices ofpert(� ) di�erent from u� and v� and the drawing of all

the edges ofpert(� ). Denote by f the face of the resulting embedded graphG� that used

to contain the removed vertices and edges. We obtain �0
G by inserting a drawing ofpert(� )

whose embedding isE0
� in the interior of f so that verticesu� and v� are identi�ed with their

copies inG� .

We claim that the embeddingE0 of � 0
G satis�es m. First, the modality of each vertex ofG not

in pert(� ) is the same inE0 as in E. Second, the modality of each vertex inpert(� ) di�erent

from u� and v� is the same inE0 as in E0
� .

We only need to show thatu� and v� satisfy m in E0. We have that t = h� 1; a; � 2; bi and

t = h� 0
1; a0; � 0

2; b0i . We show that the modality of u� in E0 is smaller than or equal to the

modality of u� in E; analogous arguments hold forv� . We distinguish two cases. Ifa and

a0 have the same parity, as shown at vertexu in Fig. 2.5, then E0 contains an alternating

pair consisting of an edge inG0 and of an edge inpert(� ) incident to u� only if E contains

an alternating pair consisting of an edge inG0 and of an edge inpert(� ) incident to u� .

Therefore, sincea0 � a, the modality of u� in E0 is smaller than or equal to the modality of

u� in E. Otherwise, if a and a0 have the di�erent parity, as shown at vertexv in Fig. 2.5,

then E0 may contain an alternating pair consisting of an edge inG0 and of an edge inpert(� )

incident to u� and to the right outer face ofpert(� ) even if E does not contain an alternating

pair consisting of an edge inG0 and of an edge inpert(� ) incident to u� . However, in this

case, it holds thata0 < a , therefore the modality ofu� in E0 is again smaller than or equal to

the modality of u� in E.

Let T be the SPQR-treeT of G rooted at a reference edgee. In the remainder of the section,
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we show how to compute the gistS(� ) of the set of good tuples for� , for each non-root node

� of T . In the subsequent procedures to computeS(� ) for S-, P-, and R-nodes, we are not

going to explicitly avoid setS(� ) to contain dominated tuples. In fact, this can always be

done at the cost of an additiveO(k2) factor in the running time, by maintaining an hash

table that stores the tuples that have been constructed (possibly multiple times) by the

procedures and by computing the gist of the constructed set as a �nal step.

Property 2.1. For each node� 2 T , it holds that jS(� )j 2 O(k).

Proof. By the de�nition of gist, any embedding pair (�; a ) has at most two tuplest0; t002 S(� )

such that (�; a ) is the embedding pair oft0 and t00at u� ; also, the embedding pairs (� 0; a0)

of t0 and (� 00; a00) of t00at v� are such that � 0 6= � 00. Since there exist at most 2k realizable

embedding pairs (�; a ) at u� (as � 2 f �� ; �� g, a 2 f 0; 1; : : : ; kg, and the existence of tuple whose

embedding pair atu� is (�; 0) implies that all tuples have such an embedding pair atu� ), we

have jS(� )j � 4k.

If � is a leaf Q-node inT , then S(� ) = fh� (u� v� ); 0; � (u� v� ); 0ig . If � is an internal node

of T , we visit T bottom-up and compute the setS(� ) for � assuming to have already

computed the setsS(� 1); : : : ; S(� k) for the children � 1; : : : ; � k of � (where � i is the child of

� corresponding to the edgeei in skel(� )). Let � be the unique child of the root ofT . Once

the set S(� ) has been determined, we can e�ciently decide whetherG admits an embedding

satisfying m in which the reference edgee is incident to the outer face by means of the

following lemma.

Lemma 2.6. Given S(� ), we can test whetherG has an embedding that satis�esm in O(k2)

time.

Proof. Let t = h� 1; a; � 2; bi be a realizable tuple inS(� ) and let Et be the embedding ofG

obtained by inserting the reference edgee in the outer face of a regular embeddingE� of
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(a) (b) (c)

Figure 2.6: Illustrations for the proof of Claim 2.1. (a) The root edgee and � (where the
orientation of � being arbitrary). (b) A 4-modal embedding ofG, whereu has 2 alternations
and v has 4 alternations. (b) A 6-modal embedding ofG, whereu has 4 alternations andv
has 6 alternations.

pert(� ) realizing t that satis�es m. Let u and v be the poles of� . We have the following

claim.

Claim 2.1. EmbeddingEt satis�es m if and only if:

(i) (a) m(u) � a + 1, if a is odd, or (b) m(u) � a, if a is even and� 1 = � (e),

or (c) m(u) � a + 2, if a is even and� 1 6= � (e), and

(ii) (a) m(v) � b + 1, if b is odd, or (b) m(v) � b, if b is even and � 2 = � (e),

or (c) m(v) � b+ 2, if b is even and� 2 6= � (e).

Proof. To prove the statement for vertexu, we just need to observe that, ifa is odd, then

the edgese0
u and e00

u incident to u and to the left and to the right outer face ofE� , respectively,

have opposite orientations, while ifa if even, then these edges have the same orientation

(in this case, possiblye0
u = e00

u). Also, sincea is the number of alternations between edges

incident to u and to the internal faces ofE� , the modality at u in E� is equal toa + 1, if a is

odd, while it is equal toa, otherwise. Therefore, since edgee appears betweene0
u and e00

u in

embeddingEt obtained from E� , we have that the number of alternations aroundu in Et is

the same as inE� , if a is odd or if a is even and� (e) = � 1, and it is equal to the modality of

33



u in E� plus 2, if a is even and� (e) 6= � 1. Refer to Fig. 2.6. The proof of the statement for

vertex v is analogous.

By Claim 2.1, for each realizable tuplet 2 S(� ), we can test whether embeddingEt satis�es

m in constant time. Also, jS(� )j 2 O(k2), by Property 2.1. Therefore, we can test inO(k2)

time whether there exists an embedding ofpert(� ) that can be extended to an embedding of

G that satis�es m in which e is incident to the outer face.

We remark that the choice of the reference edge does not a�ect the existence of a 4-modal

embedding. In fact, a change of the outer face such that edgee is incident to such a face can

always be performed while preserving the rotation at any vertex.

2.5 Partial 2-trees

In the following, we describe how to computeS(� ), if � is an S-node (Lemma 2.7) and a

P-node (Lemma 2.8) inO(f (k)j skel(� )j) time, where f is a computable function.

Lemma 2.7. Set S(� ) can be constructed inO(k2j skel(� )j) time for an S-node� .

Proof. Let � be an S-node with skeletonskel(� ) = ( e1; e2; : : : ; eh), where ei = u� i v� i

is the i -th virtual edge of skel(� ). We de�ne � i as the S-node obtained by the series

composition of � 1; � 2; : : : ; � i . Clearly, pert(� i ) � pert(� ) and skel(� i ) = ( e1; e2; : : : ; ei ).

Initially S(� 1) = S(� 1). We show how to constructS(� i ), for i = 2; : : : ; h. Since� k = � ,

this gives usS(� ). The key idea is that when doing the series composition we only need to

consider the embedding pairs at the shared vertex.

Consider two adjacent virtual edgesej = vj � 1vj and ej +1 = vj vj +1 in skel(� ) sharing the

internal vertex vj , and let t1 = ( � 0
1; a; � 0

2; b) 2 S(� j ) and t2 = ( � 00
1 ; c; � 00

2 ; d) 2 S(� j +1 ). We

de�ne a function g(� 0
2; b; � 00

1 ; c) on the embedding pairs oft1 and of t2 at vj which determines
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the modality at vj when an embedding of� j realizing t1 and an embedding of� j +1 realizing

t2 are composed. The value of functiong(�) can easily be computed inO(1) time for any pair

of tuples t1 2 S(� j ) and t2 2 S(� j +1 ).

For any 2 � j � h, we obtain S(� j ) from S(� j � 1) and S(� j ) as follows. For each tuple

t1 = ( � 0
1; a; � 0

2; b) 2 S(� j � 1) and t2 = ( � 00
1 ; c; � 00

2 ; d) 2 S(� j ), we add tuple h� 0
1; a; � 00

2 ; di to

S(� j ), if g(� 0
2; b; � 00

1 ; c) � m(vj ). It is clear that the set S(� j ) computed in the above fashion

contains all and only all the tuples realizable by some embedding ofpert(� j ). Since both

jS(� j � 1)j and jS(� j )j are in O(k), by Property 2.1, and since for each pair of tuples (t1; t2)

with t1 2 S(� j � 1) and t2 2 S(� j ) we only perform constant-time operations, we have that

S(� j ) can be computed inO(k2) time (from S(� j � 1) and S(� j )), for any 1 < j � h. Therefore,

the overall running time for computingS(� ) is O(k2j skel(� )j).

Lemma 2.8. Set S(� ) can be constructed inO((2k + 4)! k3 + j skel(� )j) time for a P-node� .

Proof. Let � be a P-node with polesu� and v� , whose skeletonskel(� ) consists ofh parallel

virtual edges e1; e2; : : : ; eh. Consider two children� 1 and � 2 of � such that: (i) all the

edges incident tou� in pert(� 1) and in pert(� 2) have the same orientation� u and (ii) all

the edges incident tov� in pert(� 1) and in pert(� 2) have the same orientation� v. Clearly,

S(� 1) = S(� 2) = fh� u; 0; � v; 0ig . We have the following claim.

Claim 2.2. Let � 0 be the P-node such thatskel(� 0) = skel( � ) � e2. Then, S(� 0) = S(� ).

Proof. Let � 1; : : : ; � h be the children of� associated withe1; : : : ; eh, respectively.

We prove that a tuple t belongs toS(� 0) if and only if it belongs to S(� ).

Let t be an embedding tuple inS(� 0), and let E0 be an embedding ofpert(� 0) realizing t.

The embeddingE0 is de�ned by a permutation � � 0 of the virtual edges ofskel(� 0) and by

a choice for an embedding of the pertinent graphs of all the children of� 0. We construct
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an embeddingE of pert(� ) realizing t, by selecting a permutation� � of the virtual edges of

skel(� ) and an embedding of the pertinent graphs of all the children of� , as follows. First,

we initialize � � = � � 0, and then we insert the virtual edgee2 in � � so that it immediately

follows e1. Second, we set the embedding of the pertinent graphs of the children of� that

are also children of� 0 to the one they have inE0, and we set the embedding ofpert(� 2) to be

any embedding of such a pertinent graph that satis�esm. Clearly, the resulting embedding

of pert(� ) satis�es m. Also, since the edges incident tou� (resp., to v� ) have the same

orientation both in pert(� 1) and in pert(� 2) at u� (resp., at v� ), and since such edges appear

consecutively aroundu� (resp., aroundv� ), by construction, we have that the embedding

type of E is the same at the one ofE0. This concludes the proof thatt 2 S(� ).

Let t = h� 1; a; � 2; bi be an embedding tuple inS(� ), and let E be an embedding ofpert(� )

realizing t. The embeddingE is de�ned by a permutation � � of the virtual edges ofskel(� )

and by a choice for an embedding of the pertinent graphs of all the children of� .

First, we show that we may assume thate1 immediately precedese2 in � � . Suppose, without

loss of generality by a possible renaming of such virtual edges, thate1 precedese2 in � � ,

and that e1 and e2 are not consecutive in� � . Let E� be the embedding ofpert(� ) obtained

by moving e2 right after e1 in � � , while keeping unchanged the embedding of each of the

pertinent graphs of the children of� . Clearly, the embedding tuplet � of E� is of the form

h� 1; c; � 2; di , as the edges incident to the left outer face ofE� and to u� (resp., and tov� ) are

the same edges incident to the left outer face ofE and to u� (resp., and tov� ). Also, c � a

and d � b holds, since the edges incident tou� (resp., to v� ) have the same orientation both

in pert(� 1) and in pert(� 2) at u� (resp., at v� ). Further, neither c < a nor d < b holds, as

otherwiset � would dominate t, which contradicts t 2 S(� ). Therefore, we havet � = t.

Then, by the above assumption, we obtain an embeddingE0 of pert(� 0) with the same

embedding type as the one ofE, by simply restricting E to
S

i 6=2 pert(� i ). This concludes the

proof that t 2 S(� 0) and the proof of the claim.
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By Claim 2.2, we can exploit the preprocessing step that precedes the claim to reduce in

O(j skel(� )j) time the computation of S(� ) to the computation of S(� ), where � is a P-node

whose skeleton consists of at most 2k + 4 virtual edges of skel(� ). The P-node � contains

at most four children each of which has the property that its pertinent graph contains only

edges with the same orientation atu� and only edges with the same orientation atv� . Also,

every other child of� contributes with at least one alternating pair of edges incident tou�

or to v� in any planar embedding ofpert(� ). Therefore, in order forpert(� ) to admit an

embedding that satis�esm, there must exist at most 2k such children of� (and of � ). Thus,

if skel(� ) contains more that 2k + 4 virtual edges after the preprocessing described above,

then we can immediately determine thatS(� ) = S(� ) = ; . Otherwise, � contains at most

2k + 4 virtual edges and we constructS(� ) as follows.

For a permutation � of the virtual edges ofpert(� ), let � �
i be the P-node obtained by

restricting � to the �rst i virtual edges in� . Set the embedding ofskel(� �
i ) so that the virtual

edges ofskel(� �
i ) are ordered according to� . Then, in a fashion similar to the S-node case,

we can computeS(� �
i ) for the given embedding ofskel(� �

i ) by combining S(� �
i � 1) and S(ei )

in O(k2) time (recall that both these sets have sizeO(k), by Property 2.1). Clearly, for any

�xed � , we can computeS(� h
� ) in O(k3) time. Thus, by performing the above computation

for all the (2k + 4)! possible permutations for the virtual edges ofpert(� ), we can construct

S(� ) in O((2k + 4)! k3 + j skel(� )j) time.

Altogether, Lemmas 2.7 and 2.8 yield the following main result.

Theorem 2.6. k-MaxModality can be solved inO((2k + 4)! k3n) for series-parallel di-

graphs.

Observation 2.2, Theorem 2.5, and Theorem 2.6 immediately imply the following.

Corollary 2.1. k-Modality can be solved inO(((2k + 4)! k3 logk)n) for directed partial

2-trees.
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Due to the special algorithmic framework we are employing, we can however turn the

multiplicative O(logk) factor in the running time into an additive O(k) factor by modifying

Algorithm 1 as follows. When considering a cut-vertexv (line 4), we will execute \only

once" the function TestBiconnected (line 5) by rooting the SPQ-tree at a Q-node�

corresponding to an edge incident tov. This will allow us to compute the minimum modality

for cut-vertex v in an embedding that satis�esm, by simply scanning the setS(� ), which

takes O(k) time by Property 2.1, rather than by exploiting a logarithmic number of calls to

TestBiconnected .

Theorem 2.7. k-Modality can be solved inO((2k + 4)! k3n) for directed partial 2-trees.

2.6 A Linear-time Algorithm for 4-MaxModality when

� � 6

In this section, we show that in the special case whenk = 4 and G has maximum degree � � 6,

it is possible to compute the setS(� ) when � is an R-node in linear time in the size ofskel(� ).

Our strategy to computeS(� ) is as follows. We select a single tuple from the admissible set

of each virtual edge incident tou� and v� , in every possible way. Each selection determines

a \ candidate tuple" t for S(� ). First, we check if t is admissible at bothu and v. Second,

we restrict the tuples of the edges incident to the poles to only the tuples that formt and

check if there is a way of satisfyingm at the (inner) vertices of skel(� ). If both the poles

and the inner vertices are satis�able, then we addt to S(� ). Since the degrees of the poles

are bounded, there is at most a constant number of candidate tuples which must be checked.

The complexity lies in this check.

We now formally describe how to computeS(� ). First, for each virtual edgeei of skel(� )

incident to the poles of� , we select a tuplet i from S(� i ). That is, we allow only embedding
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realizing t i for the pertinent graph of child � i . Let Tu = [ tu;1; tu;2; : : : ; tu;` ] be the list

of tuples selected for the virtual edgeseu;1; eu;2; : : : ; eu;` of skel(� ) incident to u� and let

Tv = [ tv;1; tv;2; : : : ; tv;h ] be the list of tuples selected for the virtual edgesev;1; ev;2; : : : ; ev;h of

skel(� ) incident to v� . Without loss of generality, we assume virtual edgeseu;1 and ev;1 are

the virtual edges ofskel(� ) incident to u� and to v� , respectively, and to the left outer face

of the unique (up to a ip) embedding of skel(� ); possibly eu;1 = ev;1.

Each pair of listsTu and Tv yields a candidate tuplet = h� 1; a; � 2; bi for � , where� 1 is the

orientation of tu;1 at u, a is the number of alternations atu determined by Tu, � 2 is the

orientation of tv;1 at v, and bis the number of alternations atv determined byTv. Observe that

the same tuplet might originate from di�erent pairs of lists for u� and v� . The tuples selected

to construct Tu and in Tv allow for an embedding of pert(� ) realizing tuple t if and only if:

Condition 1: tuple t satis�es m at u� and at v� , and

Condition 2: it is possible to select tuples for each of the remaining virtual edges ofskel(� )

that satisfy m at every internal vertex of skel(� ).

Let P(� ) be the set of candidate tuples for� constructed as described above. By Property 2.1,

the admissible set of any virtual edge has at mostO(1) tuples and there are at most 5 virtual

edges inskel(� ) incident to each pole of� (since � � 6), so jP (� )j 2 O(1). Thus, we can

easily �lter out the candidate tuples that do not satisfy Condition 1 in total constant time.

Therefore, in the following we assume that all the candidate tuples in setP(� ) satisfy such a

condition.

In the remainder of this section, for each pair of listsTu and Tv yielding a tuple t 2 P (� ), we

will show how to test Condition 2 for � in linear time. This and the fact that jP (� )j 2 O(1)

imply the following.

Lemma 2.9. Set S(� ) can be constructed inO(j skel(� )j) time for an R-node� , if � � 6.
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Altogether, Lemmas 2.7, 2.8 and 2.9 yield the following main result.

Lemma 2.10. 4-MaxModality can be solved in linear time for biconnected digraphs with

� � 6.

Observation 2.2, Theorem 2.5, and Lemma 2.10 immediately imply the following.

Theorem 2.8. 4-Modality can be solved linear time for digraphs with� � 6.

To prove Lemma 2.9, we show how to solve the following auxiliary problem for special

instances.

Problem: 4-MaxSkelModality

Input: A triple hG = ( V; E); S = f S(e1); : : : ; S(ejE j)g; mi where G is an embedded

directed graph, eachS(ei ) is a set containing embedding tuples for the virtual edge

ei 2 E, and m : V ! E+
4 is the maximum-modality function.

Question: Can we select a tuple from each setS(ei ) in such a way that the modality at

each vertexv 2 V is at most m(v)?

For each pair of listsTu and Tv yielding a candidate tuple inP(� ), we will construct an instance

I � (Tu; Tv) = ( G; S; m) of 4-MaxSkelModality as follows. 1. We setG = skel(� ) and we �x

the embedding ofG to be equal to the unique regular embedding ofskel(� ); 2. for each virtual

edgeeu;i incident to u� , with i = 1; : : : ; `, we setS(eu;i ) = f tu;i g; for each virtual edgeev;j inci-

dent to v� , with j = 1; : : : ; h, we setS(ev;j ) = f tv;j g; for each of the remaining virtual edgesed

of skel(� ), we setS(ed) = S(� d); �nally, 3. the maximum-modality function of I � coincides withm.

Clearly, I � (Tu; Tv) is a positive instance of 4-MaxSkelModality if and only if, given the con-

strains imposed by the tuples inTu and in Tv, there exists a selection of tuples for the edges ofG

not incident to u� or v� that satis�es m at all the internal vertices ofG, i.e., Condition 2 holds.
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Let v be a vertex ofG and let e be an edge inE(v), we denote byAv(e) the maximum

number of alternations atv over all the tuples in S(e).

De�nition 2.1 (Good instances). An instance of 4-MaxSkelModality is good if, for

any vertexv in G, it holds
P

e2 E (v)(Av(e) + 1) � 6.

Note that, for each edgee in ske(� ) incident to a vertex v, the pertinent graph He of the

child of � associate withe contributes at least Av(e) + 1 edges todH e(v). Thus, we have
P

e2 E (v)(Av(e) + 1) �
P

e2 E (v) dH e(v) � 6. Therefore, instanceI � (Tu; Tv) is good. Although

4-MaxSkelModality turns out to be NP-complete in general (Theorem 2.12), we are now

going to show the following main positive result.

Theorem 2.9. 4-MaxSkelModality is linear-time solvable for good instances.

The outline of the linear-time algorithm to decide whether a good instanceI = hG =

(V; E); S = f S(e1); : : : ; S(ejE j)g; mi of 4-MaxSkelModality is a positive instance is a

follows; see also Algorithm 2.

- We processI by means of a set ofreduction rulesapplied locally at the vertices ofG and

their incident edges. Each of these rules, if applicable, either detects that the instanceI is a

negative instance or transforms it into an equivalent smaller instanceI 0 = hG0; S0; m0i . Each

rule can be applied when speci�c conditions are satis�ed at the considered vertex. A rule

may additionally set a vertex asmarked. Any marked vertex v has the main property that

any selection of tuples from the admissible sets of the edgesincident to v satis�es m0 at v.

- Let I � be the instance of 4-MaxSkelModality obtained when no reduction rule may

be further applied. We prove that instanceI � has a special structure that allows us to

reduce the problem of testing whetherI � is a positive instance of 4-MaxSkelModality

to that of verifying the NAE -satis�ability of a constrained instance ofNAESAT , in

fact, of Planar NAESAT . Since Planar NAESAT is in P [82], this immediately

41



implies that 4-MaxSkelModality is also in P. However, in Section 2.7, by strength-

ening a result of Porschenet al. [86], we are able to show that the constructed instances

of NAESAT are always satis�able and that a satisfyingNAE -truth assignment can

be computed in linear time.

Consider an unmarked vertexv of G. We provide three reduction rules that, if applicable,

turn a good instanceI into an equivalent smaller good instanceI 0. Each rule consists of a

condition for the rule to be applied and of areduction describing how instanceI 0 is obtained

from I .

We further assume the rules to be applied according to theorder of priority given below (see

Algorithm 2). Notice that as a side-e�ect of applying a reduction rule, a neighbor ofv in G0

may now satisfy the condition of a reduction rule.

We now clarify what we mean by a \smaller" instance. LetU(G) be the set of unmarked

vertices ofG. Let � (I ) =
P

v2 U(G)

P
e2 E (v) jS(e)j and let � (I ) = 32 � jE(G)j. Let � (I ) =

� (I ) + � (I ) be a function that associates an integer to instanceI . We say that � (I ) is

the potential of I . Observe that, � (I ) is always positive and� (I ) 2 O(jV(G)j). The

latter is due to the fact that (i) � (I ) 2 O(jV(G)j), sinceG has bounded degree and since

jS(e)j 2 O(1) for any edgee 2 E(G), by Property 2.1, and that (ii) � (I ) 2 O(jV(G)j), since

O(jE(G)j) 2 O(jV(G)j) due to the fact that G is planar. We shall say that an instanceI 0 is

smaller than an instanceI if � (I 0) < � (I ).

Let u of G be a vertex and lete1; : : : ; eh be the edges incident tou. By selecting a single

tuple from each setS(ei ), we generate acombination of tuplesfor u. Since the rotation ofu

is �xed, each combination determines a speci�c modality atv. Thus, it is natural to talk of

a satisfying combination, if m is satis�ed by the combination at u, and of anunsatisfying

combination, otherwise LetNu(e) � S(e) be the set containing all the tuples ofe that do not

appear in any satisfying combination foru, wheree is an edge incident tou.
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Algorithm 2 ProcedureReduceInstance

1: procedure ReduceInstance (I = hG; S; mi )
2: Q = [ ] . Q is the queue of vertices to be processed
3: V  V(G)
4: Set vertices inV to unmarked
5: while V 6= ; do
6: u  extract a vertex from V
7: Q  Q [ u
8: while Q 6= ; do
9: v  extract a vertex from Q

10: for i = 1; 2; 3 do . Rule 1 may reject I ; Rule 2 setsv as marked
11: Apply, if possible, Rule i at v
12: if Rules 1 or 3 have been appliedthen . Only Rules 1 and 3 modifyI
13: Uv  unmarkedneighbors ofv
14: Q  Q [ U v

15: V  V n U v

B Rule 1:

Condition: Let e1; : : : ; eh be the edges ofG incident to v. There existsi 2 f 1; : : : ; hg such

that Nv(ei ) 6= ; .

Reduction: If Nv(ei ) = S(ei ), for any i 2 f 1; : : : ; hg, then reject I . Otherwise, initialize

I 0 = I and setS0(ei ) = S(ei ) n Nv(ei ), for i = 1; : : : ; h. |End of Rule 1

It is clear that, since no tuplet 2 Nv(ei ) appears in any valid solution forI , removing the

tuples in Nv(ei ) from S(ei ) yields an equivalent instanceI 0. Also, for an unmarked vertexv,

we can computeI 0 from I in constant time. This is due to the fact that sincev has maximum

degree 6 inG and since, by Property 2.1, each edge incident tov contains a constant number

of tuples, it is possible to test whether a tuplet 2 S(ei ) belongs toNv(ei ) in constant time.

Finally, � (I 0) < � (I ), since� (I 0) = � (I ) and � (I 0) � � (I ) � j Nv(ei )j.

B Rule 2:
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Condition: Every combination of tuples forv satis�es m at v.

Reduction: We initialize I 0 = I and mark v. |End of Rule 2

Clearly, I 0 is equivalent to I . Observe that, verifying the Condition ofRule 2 at v coincides

with verifying that Nv(ei ) = ; , for each edgeei incident to v. The fact that this can be done

in constant time can be proved analogously toRule 1. Also, � (I 0) < � (I ), since� (I 0) = � (I )

and � (I 0) = � (I ) �
P

e2 E (v) jS(ei )j.

If after applying, if possible,Rule 1 and 2, vertexv remains unmarked, then there must be

at least two edges incident tov whose admissible sets contain a tuple that participates in

both a satisfying and an unsatisfying combination of tuples forv.

B Rule 3:

Condition: For each edgeei = ui v incident to v, except for two edgese1 and e2, the variety

of ei at v is 1. That is, only e1 and e2 have variety at v larger than 1.

Reduction: We obtain instanceI 0 from I as follows. For simplicity of description we will

consider the edges incident tov to be oriented in the following manner:e1 = u1v,

e2 = vu2, and ei = ui v, for each edgeei 2 E(v) with i 6= f 1; 2g; the other orientations

can be treated similarly. Refer to Fig. 2.7.

We initialize G0 to the embedded directed graph obtained fromG by removingv and its

incident edges. We setS0(e) = S(e), for each edgee 2 E(G0), and we setm0(u) = m(u),

for each vertexu 2 V(G0).

Let C be the cycle ofG0 whose boundary used to contain vertexv and its incident edges,

and no other edges; refer to Fig. 2.7a.

1. For each edgeei incident to v in G with i 6= f 1; 2g, we insert a marked vertexvi

insideC, set m(vi ) = m(v), and introduce a new edgee0
i = ui vi with S0(e0

i ) = S(ei ).
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(a) (b)

Figure 2.7: Illustration for the transformation of Rule 3. (a) Part of I in the interior of the
cycle C containing vertex v, and (b) part of I 0 in the interior of cycle C.

2. Then, we embed a new edgee0
1;2 = u1u2 inside C, thus splitting the interior of C

into two facesf 1 and f 2 of G0; refer to Fig. 2.7b.

3. We add the following tuples toS0(e0
1;2). For each tuple t1 = h� 1; a; � 2; bi 2 S(e1)

and for each tuplet2 = h� 3; c; � 4; di 2 S(e2), we test whether the embedding pair

of t1 at v and the embedding pair oft2 at v together with the (unique) embedding

pairs at v of the remaining edges incident tov form a satisfying combination of

tuples for v. If this is the case, then we add tupleh� 1; a; � 4; di to S0(e0
1;2).

4. We setS0(e0
1;2) to its gist, by removing all dominated tuples.

|End of Rule 3

The reduction of Rule 3 can clearly be performed in constant time, sincev has bounded

degree and sincejS(e1)j; jS(e2)j 2 O(1), by Property 2.1. Also, since verticesvi , with i 6= 1; 2,

are marked,� (I 0) � � (I ) �
P

ei 2 E (v) jS(ei )j + 2 jS(e1;2)j. The subtractive term of the previous

formula is due to the fact e1; e2 =2 E(G0) and that each edgeui v in G, with i 6= f 1; 2g,

corresponds to an edgeui vi in G0 and vi is marked. The last additive term instead is due

to the fact that, if both u1 and u2 are unmarked inI (and hence inI 0), then they both

contribute jS(e1;2)j to � (I 0). Further, since jE(G0)j = jE(G)j � 1, we have� (I 0) = � (I ) � 32.

Finally, jS0(e0
1;2)j � 16, by (the proof of) Property 2.1. Thus,� (I 0) < � (I ). Next, we now

show the correctness ofRule 3.
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Lemma 2.11. Let I 0 be the instance obtained from instanceI = hG; S; mi by applying the

transformation of Rule 3 to some vertexv of G. Then, instancesI 0 and I are equivalent.

Proof. (I ) I 0) Suppose thatI is a positive instance of 4-MaxSkelModality , that is,

there exist tuplest(e) 2 S(e), for each edgee in E(G), that satisfy m at every vertex in

V(G). We show that I 0 is also a positive instance, by selecting a tuplet0(e) 2 S0(e), for each

edgee in E(G0), such that m0 is satis�ed at every vertex in V(G0).

First, for each edgee 2 E(G) \ E(G0), we set t0(e) = t(e). Observe that, this selection of

tuples already satis�esm0 at every vertex ofV(G0) di�erent from ui , whereui is a neighbor

of v in G. Then, for each edgeui v 2 E(G), with i 6= 1; 2, we sett0(ui vi ) = t(ui v). It is

easy to see that the constructed assignment satis�es nowm0 at each vertexui 2 V(G0), with

i 6= 1; 2, and that m0 is trivially satis�ed at vi , with i 6= 1; 2, since each of these vertices is

only incident to edgeui vi . Thus, we only need to show that there exists a tuple inS0(e0
1;2)

for edgee0
1;2 that allows us to satisfy m0 at u1 and u2. We set t0(e0

1;2) = h� 1; a; � 3; ci , if

t1 = h� 1; a; �; �i and t2 = h�; �; � 4; di are the tuples ofu1v and vu2 in the solution of I . Note

that, tuple t0(e0
1;2) 2 S0(e0

1;2), by construction, sincet1 and t2 appear in a valid solution for

I (and thus in a satisfying combination of tuples forv in I ). To see that m0 is satis�ed at

u1 and u2, it is su�cient to observe that (i) the embedding pair of edgeu1v at u1 and the

embedding pair of edgevu2 at u2 in I are the same as the embedding pair of edgeu1u2 at u1

and at u2, respectively, inI 0, and that (ii) all the remaining edges incident tou1 and to u2

belong to both G and to G0 and therefore contribute with the same embedding pair atu1

and u2 in I and I 0.

(I 0 ) I ) Suppose now thatI 0 is a positive instance of 4-MaxSkelModality , that is, there

exists tuplest0(e) 2 S0(e), for every e in E(G0), that satisfy m0 at each vertex inV(G0). We

show that I is also a positive instance, by selecting a tuplet(e) 2 S(e), for each edgee in

E(G), such that m is satis�ed at each vertex inV(G).
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First, for each edgee 2 E(G) \ E(G0), we sett(e) = t0(e). Similarly to the previous direction,

this selection of tuples satis�esm at every vertex in V(G) di�erent from v or not adjacent to

v. Then, we sett(ui v) = t0(ui vi ), if i 6= 1; 2. It is easy to see that the constructed assignment

satis�es nowm at each vertexui 6= v 2 V(G), with i 6= 1; 2. Observe that,u1v and vu2 are the

only remaining edges whose tuples have not been selected and that tuplest(ui v), with i 6= 1; 2,

determine constraints on such a selection. Nevertheless, for eachi 6= 1; 2, all the tuples in

S(ui v) impose the same embedding constrains atv, as each of them contributes with a unique

embedding pair (� i ; ai ) at v. Observe that, for each tuplet0(e0
1;2) = h� 1; a; � 3; ci in S0(e0

1;2),

there exists (at least) a pair of tuplest1 2 S(u1v) and t2S(vu2) such that t1 = h� 1; a; � 2; bi

and t2 = h� 3; c; � 4; di satisfy m at v together with pairs (� i ; ai ), with i 6= 1; 2. It follows that,

by setting t(u1v) = t1 and t(vu2) = t2 we satisfym at v, by the de�nition of S0(e0
1;2). Also,

m is satis�ed at u1 and at u2 since the embedding pair of edgeu1v at u1 and the embedding

pair of edgevu2 at u2 in I is the same as the embedding pair of edgeu1u2 at u1 and at u2 in

I 0, respectively, and since all the remaining edges incident tou1 and to u2 belong to both G

and to G0 and therefore contribute with the same embedding pair atu1 and u2 in I and I 0.

This concludes the proof of the lemma.

We remark that each instanceI 0 obtained from I by applying any of the reductions of

Rules 1, 2, and 3 is also a good instance. This is trivial for Rules 1 and 2. In fact, for every

edgee 2 G0 (e 2 G), we either have thatS0(e) � S(e) (Rule 1) or S0(e) = S(e) (Rule 2).

As for Rule 3, this follows from the fact that (i) A0
vi

(ui vi ) = Av(ei ), for every edgeei = ui v

with i 6= 1; 2, and (ii) A0
u1

(e1;2) = Au1 (e1) and A0
u2

(e1;2) = Au2 (e2); where A0
x (e) denotes the

maximum number of alternations atx in a tuple in S0(e), with e being an edge incident tox.

Let I � = hG� ; S� ; m� i be the good instance, equivalent toI , produced by applying a maximal

sequence of reduction rules toI . We say that I � is irreducible. The fact that (i) each of

the transformations ofRules 1, 2, and 3 can be performed in constant time and decreases

� (I ) and that (ii) � (I ) 2 O(jGj) immediately imply that we can construct instanceI � in
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O(jGj2) time. However, by processing the vertices in a guided way as described in the

listing of Algorithm 2, we can achieve anO(jGj)-time speed-up. The key idea here is that of

maintaining a queue that contains the unmarked neighbors of vertices to which rules that

modify the structure of the instance have been previously applied, namely,Rules 1 and 3

(Lines 12� 14 of the algorithm). Only when the queue is emptied and there exist unvisited

(unmarked) vertices, then an unvisited vertex is added to the queue (Line 9). The running

time is thus bounded by the number of times the queue is �lled withO(1) new vertices

(Line 9 and 14); recall that jN (v)j 2 O(1) for each vertexv at each step of the algorithm.

Since, the instruction at Line 9 is performed at mostjV(G)j times and the instruction at

Line 14 is performed at most� (I ) times, we get the claimed linear speed-up. We formalize

this in the following.

Lemma 2.12. Given a good instanceI = hG; S; mi , Algorithm 2 either detects thatI is

negative or returns an irreducible good instanceI � = hG� ; S� ; m� i in O(jGj) time equivalent

to I .

The following lemma will prove useful.

Lemma 2.13. For each unmarked vertexv 2 V(G� ), it holds that: (i) v has degree 3,

(ii) m� (v) = 4 , and (iii) there exist tuples t1; t2 2 S� (e) such that the embedding pair oft1

and of t2 at v are (�� ; 1) and (�� ; 1), respectively, for each edgee incident to v.

Proof. Let v be an unmarked vertex ofG� . SinceI � is irreducible, none of the conditions of

Rules 1, 2, and 3 apply atv. We denote byA �
x (e) the maximum number of alternations of

the embedding tuples ofS� (e), where x is a vertex incident to the edgee.

We �rst show that jE � (v)j = 3 by contradiction. Suppose �rst that A �
v(e) = 0 for all the edges

incident in E � (v), then the variety of these edges atv is 1 and there is only one combination

of tuples at v. Therefore, eitherRule 1 would have rejected the instance, orRule 2 would

have markedv, contradicting to the fact that I � is irreducible. Suppose now thatE � (v)
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contains exactly one edgee with A �
v(e) > 0, then each tuple ofS� (e) participates in a single

combination. It follows that either one of the combinations is unsatisfying andRule 1 would

have applied, or they are all satisfying andRule 2 would have markedv, contradicting to

the fact that I � is irreducible. Finally, suppose thatE � (v) contains exactly two edgese1 and

e2 with A �
v(e1) > 0 and A �

v(e2) > 0, then the rest of the edges ofE � (v) have variety 1 at v

so Rule 3 would have applied. AsI � is irreducible, however, this yields a contradiction.

Therefore, E � (v) must contains at least 3 edgese1; e2; e3 with A �
v(e1); A �

v(e2); A �
v(e3) � 1.

Furthermore, sinceI � is a good instance
P

e2 E � (v)(A
�
v(e) + 1) � 6, so there can be at most 3

such edges, proving Property (i) of the statement.

The arguments above also imply thatA �
v(e1) = A �

v(e2) = A �
v(e3) = 1. This, there must be at

least 3 alternations atv, and sincev is still unmarked and the maximum-modality is even,

m� (v) must be 4, proving Property (ii) of the statement.

Finally, we prove Property (iii) of the statement. First, using the same arguments used to

prove Property (i), we have that if all or all but one of these edges have variety 1 atv then

Rule 1 or Rule 2 apply. Likewise, if exactly one of these edges has variety 1 atv, then the

other two edges have variety greater than 1 atv and Rule 3 applies. Thus, all three edges

must have a variety of at least 2 atv. In fact, as they contribute with exactly one alternation

at v, by Property (ii), they must have variety exactly 2. Since (�� ; 1) and (�� ; 1) are the only

two embedding pairs with a single alternation, this proves Property (iii).

Our next and �nal tool is the following, quite surprising, result.

Lemma 2.14. Any irreducible good instanceI � is a positive instance.

Theorem 2.9 immediately follows from Lemma 2.14. Section 2.7 presents a key result on the

NAE -satis�ability problem of certain CNF-formulas, which we then exploit in Section 2.8

where we prove Lemma 2.14.
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2.7 NAE-Satis�ability of CNF( � 2)-Formulas

A literal is either a boolean variablex (positive literal) or a negated boolean variablex

(negative literal). A CNF formula is a propositional formula consisting of a conjunction

of clauses, i.e., disjunctions of literals. For the sake of succinctness, we also denote each

formula � = c1 ^ c2 ^ � � � ^ ck by the set � = f c1; c2; : : : ; ckg of its clauses, and each clause

cj = `1 _ `2 _ � � � _ `h by the set cj = f `1; : : : ; `hg of its literals.

An instance of theNot-all-Equal Satisfiability (NAESAT ) problem consists of a CNF

formula � = f c1; : : : ; ckg de�ned on the setX� = f x1; : : : ; xng of variables. The problem asks

for the existence of aNAE -truth assignmentfor � , i.e., a truth assignment for the variables

in X� such that each clause in� contains both a true and a false literal. If such an assignment

exists, then we say that the formula� is NAE -satis�able. The NAESAT problem is known

to be NP-complete [90] even when each clause contains at most three literals (NAE -3-SAT).

The variableclause graphG� of a CNF formula � is the undirected bipartite graph whose

vertices are the variables inX� and the clauses of� , and whose edges represent the membership

of a variable in a clause; see, e.g., Fig. 2.8. Clearly,G� has size linear in the size of� . We denote

the set of variables and clauses ofG� by V ar(G� ) = X� and by Cl(G� ), respectively. The

Planar NAESAT problem is the restriction ofNAESAT to instances whose variableclause

graph is planar. Planar NAESAT can be solved e�ciently3, by means of a linear-time

reduction to the MaxCut problem in planar graphs [82], for which anO(n1:5 logn) algorithm

exists [91]. We denote aNAE -truth assignment for the variables ofG� by means of a

function A : V ar(G� ) ! f true ; false g, and the oppositeNAE -truth assignment by the

function A : V ar(G� ) ! f true ; false g, whereA(x) = : A(x), for each variablex 2 V ar(G� ).

3In [82] Moret presented a reduction for instances ofPlanar NAESAT in which each clause contains
exactly three literals (Planar NAE-3-SAT ). However, the same reduction also implies the existence of a
polynomial-time algorithm for general instances ofPlanar NAESAT with the same running time, as a
linear-time reduction from NAE-3-SAT to NAESAT , which also preserves the planarity of the variable-clause
graph, is known [93].
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Observe that, if A is a NAE -truth assignment, then so isA. We now present two simple

observations concerning the variable-clause graphG� , which will be exploited in the remainder.

Observation 2.3. A CNF-formula � is NAE -satis�able if and only if each of the CNF-

formulas corresponding to the connected components ofG� is NAE -satis�able.

Observation 2.3 will allow us, in some of the proofs of the technical lemmas that follow, to

assume that graphG� is connected.

Observation 2.4. A clause containing both the positive literalx and the negative literalx,

for some variablex 2 V ar(G� ), is alwaysNAE -satis�able.

By Observation 2.4, in the following we will always consider formulas� whose clauses contain

literals corresponding to di�erent variables. In particular, this implies that G� is simple .

Using the notation of [86], we say that a CNF formula� is a CNF (2)-formula if each variable

appears in exactly two clauses of� , i.e., deg(x) = 2, for each variablex 2 V ar(G� ); similarly,

a CNF formula � is a CNF (� 2)-formula if each variable appears in at most two clauses of

� , i.e., deg(x) � 2, for each variablex 2 V ar(G� ). Further, we say that a CNF formula � is

a CNF � (� 2)-formula if each variable appears in at most two clauses of� and there exists at

least afree variable, that is, a variable that appears (negated or unnegated) in a single clause.

Clearly, everyCNF (� 2)-formula is either aCNF (2)-formula or a CNF � (� 2)-formula.

The next observation immediately follows from the fact that the variable-clause graphG� of

a CNF (2)-formula � has minimum degree� (G� ) = 2.

Observation 2.5. The variable-clause graphG� of a CNF (2)-formula � contains at least a

non-trivial block; variable and clause vertices are yellow and blue circles, respectively.

It is easy to see that there existCNF (2)-formulas that do not admit any NAE -truth

assignment even whenG� is a cycle. For example, the simple formula� = f c1 = f x; yg; c2 =
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Figure 2.8: The variable-clause graph of aCNF (2)-formula that is not NAE -satis�able.

f y; xgg whose variable-clause graphG� is the cycle (x; c1; y; c2; x) illustrated in Fig. 2.8 is not

NAE -satis�able. However, for this special class of instances, once a truth assignment for a

variable has been decided, then the decision for all the remaining variables is completely �xed

and, in fact, in this caseNAESAT can be trivially decided in linear time. In the remainder

of the section, we prove the rather surprising result that the onlyCNF (2)-formulas that may

not admit a NAE -truth assignment are exactly those whose variable-clause graph contains

at least a connected component isomorphic to a simple cycle. Our result improves on the

result of Porschen et al. [86], who presented a previous linear-time algorithm to test whether

a CNF (2)-formula is NAE -satis�able.

The rest of the section is devoted to the proof of the following main result.

Theorem 2.10. Given a CNF (� 2) formula � , it is possible to compute aNAE -truth

assignment for� , if any, in linear time. Also, if G� does not contains a component isomorphic

to a simple cycle, then� is alwaysNAE -satis�able

Concerning Theorem 2.10, we remark that whenG� is connected, thanG� may contain a

cycle component only if� is a CNF (2) formula.
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