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Abstract 

This paper describes two recent innovations related to the classic Lanczos method for eigen­
value problems, namely the thick-restart technique and dynamic restarting schemes. Combining 
these two new techniques we are able to implement an efficient eigenvalue problem solver. This 
paper will demonstrate its effectiveness on one particular class of problems for which this method 
is well suited: linear eigenvalue problems generated from non-selfconsistent electronic structure 
calculations. 

1 Introd uction 

The Lanczos method is a very simple and yet effective algorithm for finding extreme eigenvalues 
of large matrices. Since it only needs to access the matrix through matrix-vector multiplications, 
the user has the flexibility of choosing the most appropriate matrix-vector multiplication scheme 
to reduce computer memory usage and the computation time. There is never any need to explic­
itly store the full matrix which can be prohibitively large in many electronic structure calculations. 
There are two common ways of implementing the Lanczos method depending on whether or not the 
Lanczos vectors are stored. When the Lanczos vectors are not stored, they have to be recomputed 
when needed for re-orthogonalization or computing eigenvectors. This scheme is usually used with­
out re-orthogonalization and only to compute eigenvalues. Since there is no re-orthogonalization, 
the Lanczos vectors will lose orthogonality after a number of steps and the Lanczos method may 
generate spurious solutions [3, 21]. Though spurious eigenvalues can be effectively identified, how­
ever, less Lanczos steps would be needed if the orthogonality is maintained. If the eigenvectors 
are also wanted, the Lanczos iterations are repeated after the eigenvalues are found. This is a 
significant amount of additional work. For the applications under consideration, both eigenval­
ues and eigenvectors are needed, therefore it is more appropriate to store the Lanczos vectors. 
When the Lanczos vectors are stored, the loss of orthogonality problem can be corrected by re­
orthogonalization [11, 12, 16] and no spurious eigenvalues are generated. Because each Lanczos 
step generates one vector, a large amount of computer me~ory may be required to store all the 
Lanczos vectors. If the re-orthogonalization if3 necessary, the time needed to carry out a Lanczos 
step increases as more Lanczos vectors are generated. For these reasons, the Lanczos algorithm 
that stores the Lanczos vectors is usually restarted after a certain number of steps. 

The restarted versions often use considerably more matrix-vector multiplications than the non­
restarted version to compute the same eigenvalues. In recent years, newly developed restarting 
strategies have significantly reduced the number of matrix-vector multiplications used for other 
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restarted eigenvalue methods. The two most successful ones are the implicitly restarted Arnoldi 
method [9, 17] and the dynamic thick-restart Davidson method [18, 27]. Compared to the Arnoldi 
method and the Davidson method, the Lanczos method uses less arithmetic operations per step. 
Therefore we would like to apply these restarting strategies on the Lanczos method. The implicitly 
restarted Lanczos method has been studied elsewhere [2] a?d implemented in ARPACK [9]. Here 
we describe a thick-restart Lanczos method. Because the thick-restart procedure is only a slight 
modification of the Rayleigh-Ritz procedure, it is easier to implement than the implicitly restarted 
Lanczos method. More importantly because we have conducted detailed analysis of exactly how 
many Ritz pairs to save during restarting, our implementation of the thick-restart Lanczos method 
is considerably more effective than ARPACK on most of the eigenvalue problems tested [30]. 

Many electronic structure calculations result in a non-linear eigenvalue problem where the 
lowest eigenvectors, corresponding to the electronic states of the physical system, are required. 
This problem is normally solved by iterating a linearized form of the non-linear problem, to self­
consistency. In these cases it is advantageous to extrapolate from previous steps to produce a good 
starting guess for the eigenvectors of the next step in the self-consistent iteration. For this reason 
iterative eigensolvers that can take advantage of a good starting guess such as the Davidson method 
[4] and the Conjugate Gradient (CG) method [19], are the most commonly used. Since the simple 
Lanczos method cannot take an arbitrary number of starting vectors, it is more appropriate for 
linear eigenvalue problems. The test problems chosen in this paper are calculations of quantum dot 

. structures with empirical pseudopotentials [22, 31] resulting in linear eigenvalue problems. 
The goal of this paper is to introduce two new innovations on the Lanczos method to the reader 

and show the effectiveness of the improved method through a number of examples. We will compare 
the new variations of the Lanczos method against the older variations and demonstrate that the 
new methods scale well as the number of required eigenvalues increases and as the matrix size 
increases. We will also discuss how the Lanczos method computes the eigenvectors associated with 
a degenerate eigenvalue and how to choose appropriate parameters in order to achieve the correct 
multiplicity. 

Because the algorithm used in this paper is not yet widely known, we state the algorithm and the 
restarting strategy so that the reader can implement their own version of the program. The main 
body of the algorithm is described in Section 2. A number of restarting strategies are discussed in 
Section 3. After describing the new algorithm, we present comparisons against other versions of 
the Lanczos method and the scaling properties of the new methods in Section 4, and discuss the 
question of computing degenerate eigenvalues and the workspace requirement in Section 5. Some 
concluding remarks are given in Section 6. 

2 The thick-restart Lanczos algorithm 

The thick-restart Lanczos algorithm combines the Lanczos algorithm with the thick-restart tech­
nique to form a new restarted eigenvalue method. It is designed to solve symmetric or Hermitian 
eigenvalue problems of the form, 

Ax = AX, 

where A is the matrix, A is an eigenvalue of A and X is the corresponding eigenvector. The Lanczos 
eigenvalue method computes approximate values of A and X which will also be denoted by A and 
x. Typically as more Lanczos steps are performed, the approximate values become closer to the 
exact values. The effectiveness of the method can be measured by the time it needs to compute 
the solutions to a desired level of accuracy. 

2 



The Lanczos method for eigenvalue problems has two conceptually distinct parts, one to con­
struct the Lanczos basis and the other to compute the approximate solutions using a projection 
method usually the Rayleigh-Ritz projection [12]. The approximate eigenvalues and eigenvectors 
computed using the Rayleigh-Ritz projection are commonly referred to as the Ritz values and the 
Ritz vectors [12] and the vectors of the Lanczos basis are also known as the Lanczos vectors. In 
the restarted Lanczos algorithm the two basic steps of constructing a basis and performing the 
projection are carried out as usual. However, after a specified number of Lanczos vectors are built, 
a linear combination of the basis veCtors is selected to start the Lanczos algorithm again by using 
the same workspace to store the new basis vectors. The thick-restart Lanczos algorithm [29] is a 
particular version of the restarted Lanczos method. It differs from the simple restarted Lanczos 
method in that it can save an arbitrary portion of the current Lanczos basis. This flexibility can be 
effectively used to enhance the performance of the restarted Lanczos method as demonstrated by 
the implicitly restarted Lanczos method [2] which is mathematically equivalent to the thick-restart 
Lanczos method[29]. Compared to the implicitly restarted Lanczos method, the thick-restart Lanc­
zos method is simpler in two ways. The thick-restart procedure is only a slight modification of the 
Rayleigh-Ritz procedure and therefore it is simpler than the implicit restart procedure. The im­
plicitly restarted Lancz~s method needs a post-processing step to compute the eigenvectors after 
the eigenvalues are computed. The thick-restart Lanczos method does not need this step [17, 29]. 

The thick-restart Lanczos method described next is suitable for floating-point arithmetic im­
plementation. The main difference between this one and the one for exact arithmetic is that this 
one has a re-orthogonalization step. The re-orthogonalization scheme shown here includes a local 
re-orthogonalization and a global re-orthogonalization. It guarantees that the Lanczos vectors are 
orthogonal to machine precision (E) and coefficients ai and f3i are accurate to the order of EIIAII. 
This ensures no spurious solutions are computed and it allows us to compute both eigenvalues and 
eigenvectors simultaneously. 

Assuming there is enough computer memory to store m + 1 Lanczos vectors, the thick-restart 
Lanczos algorithm progressively builds its basis vectors as follows. 

ALGORITHM 1 Initialization 

To start solving a new eigenvalue problem, take a starting vector, normalize it and store the 
result in ql (k = 0). 

When restarting, the quantities al,"" ak, f31,"" f3k, ql,.·., qk and qk+l shall satisfy 

Iterate 

For i = k + 1, ... ,m, 

1. qi+1 = Aqi, 

2. ai = q[ qi+l, 

3. orthogonalization: 
Ifi>k+l, 

else 

i = 1, ... ,k. 

, k 

qi+1 ~ qi+l - aiqi - L {3jqj. 
j=l 
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4. re-orthogonalization: 

• Ifi > k + 1, 'rJ = a~ + fJr-l' else'rJ = a~ + 2:j=l fJJ. 

• If qrt-l qi+1 ::::: 'rJ, perform the local re-orthogonalization 

T T qi+1 +- qi+1 - qiqi qi+1 - qi-l qi-l qi+1, 

else if q'ft 1 qi+ 1 ::::: ~2'rJ, perform the global re-orthogonalization 

i 

qi+1 +- qi+l - L qjqJ qi+l, 
j=l 

else, replace qi+1 with a random vector that is orthogonal to [ql, ... ,qi]. 

(4) 

(5) 

• Before updating qi+l using Equation 4 or 5, replace ai by Ui + qr qi+l· However, do 
not modify Ui if qi+1 is replaced by a random vector. 

5. normalization: fJi = IIqi+1l1, qi+1 +- qi+1/fJi. 
If qi+1 is a random vector, set fJi to zero after qi+1 is normalized. 

The second part of the algorithm performs the Rayleigh-Ritz projection. As in the usual 
projection step of any eigenvalue method, it computes the Ritz values and the Ritz vectors. The 
main difference is that it also prepares the quantities involved in Equation 1 to allow the thick­
restart Lanczos algorithm to restart with an arbitrary number of vectors. We will only give the 
basic procedure in this section and leave the discussion on exactly how may vectors to save, i.e., the 
restarting strategies, to the next section. For convenience of describing the restarting procedure, 
we define Qm == [ql, ... , qm] and Tm == Q'!:tAQm. No computation is required to generate Tm 
because it can be assembled from al, ... ,am and fJl, ... ,fJm-l. Because the Lanczos vectors Q m 
are orthogonal to machine precision in the proceeding algorithm, the matrix T m is accurate as well. 
This in turn ensures the Ritz values and the Ritz vectors are accurate and Equation 1 is satisfied 
to machine precision. 

fJl 

Uk fJk 
fJk Uk+l fJk+l (6) 

fJk+1 Uk+2 

ALGORITHM 2 Restarting scheme 

1. Find all eigenvalues and eigenvectors ofTm, TmY = Y D, where the columns ofY are eigenvec­
tors and the diagonal elements of D are the eigenvalues. The Ritz values are di,i, i = 1, ... m. 

2. Choose k Ritz values to be saved, denote the Ritz values as AI, ... , Ak and renumber the 
corresponding eigenvectors of T m as Yl, ... , Yk. 

3. Let Yk == [Yl, ... , Yk], qk+l = qm+1 and replace the first k columns of Qm with QmYk, i.e., 
Qk = QmYk· The corresponding iii and /Ji are defined as: 

iii = Ai, /Ji = fJmYm,i, i = 1, ... ,k. (7) 
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In the actual implementation, the quantities Qk+l, C¥i and /Ji, occupy the same storage as the 
corresponding quantities Qk+1, ai and Ik We distinguish them here only to make clear what are 
new quantities to be used in the next Lanczos iteration and what are old quantities to be discarded. 
It is easy to verify that Qk+1, C¥i and /Ji satisfy Equation 1 [29], which means that they 'can be 
used to restart Algorithm 1. When entering Algorithm 1 for the first time, it is hard to satisfy 
Equation 1 with k > O. Thus the thick-restart Lanczos method is usually started initially with only 
one vector. It is easy to implement a block version of the above algorithm, in which case, a block 
of starting vectors can be used. 

What makes the above algorithm different from the naive explicit restarted Lanczos method 
is that k is significantly larger than one. When k is set to one during the restarting phase, the 
thick-restart Lanczos algorithm reduces to a simple explicitly restarted Lanczos algorithm. The 
explicitly restarted Lanczos algorithm is usually effective in finding one extreme eigenvalue. On 
the other hand, saving a large number of vectors when restarting as in the thick-restart Davidson 
method and the implicitly restarted Arnoldi method have been shown to be effective in finding a 
few eigenvalues [2, 18, 27]. Methods that save a large portion of the existing basis also work well 
when the maximum basis size m is close to the number of eigenvalues computed. For this reason, 
the ability torestart with an arbitrary number of Ritz vectors is an important property of the new 
method. 

So far we have described all implementation details of the new algorithm except step 2 of 
the restarting procedure and how to perform convergence tests. Typical convergence tests for 
symmetric eigenvalue problems use either residual norms or estimated errors in the eigenvalues. In 
the experiment reported later, we declare a Ritz pair converged if its residual norm is less than 
10-6 , II1'ill = I/Jil < 10-6 • The restarting strategies will be discussed in the next section. 

3 Restarting strategies 

Two of the crucial decisions to be made during the thick-restart Lanczos algorithm are which Ritz 
pairs to save and exactly how many. Based on the analyses of Morgan [10], saving the Ritz values 
near the wanted eigenvalues could enhance the convergence rate of the restarted methods. The 
saved Ritz vectors may not be accurate approximations to their corresponding eigenvectors, but 
they approximately deflate the spectrum, increase the separation between the wanted eigenvalue 
and the rest of the spectrum and increase the convergence rate of the restarted Lanczos method. 
Since we only use the Lanczos method to compute extreme eigenvalues, the Ritz pairs saved are 
those with the largest Ritz values and the smallest Ritz values. The remainder of this section 
describes our attempt to identify exactly how many Ritz pairs should be saved. There are other 
arguments that can be used to guide the design of restarting schemes. A comprehensive review 
can be found elsewhere [30], in this section we will only describe two restarting strategies based on 
approximate deflation. 

The research work that is more closely related to this one is the dynamic thick-restart scheme 
used in the dynamic thick-restart Davidson method [18]. In this paper the decision of how many 
vectors to save is based on maximizing the effective gap ratio. Assuming the m Ritz pairs are in 
ascending order of the Ritz values, if we are to save Ritz pairs 1, ... , k[ and kr + 1, ... ,m, the 
effective gap ratio for computing the smallest eigenvalue is defined to be 

),k
l 
-),1 ,= . 

),kr +1 - ),1 

When computing more than one eigenvalue, the gap ratio is initially computed with the outermost 
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Ritz value as the reference. After the outermost eigenvalue has reached convergence, the effective 
gap ratio , is computed with the next eigenvalue as the reference. For example, if the smallest 
Ritz value has converged, the effective gap ratio is computed as , = (Ak/ - A2)/(Akr - A2). The 
reference Ritz value serves a similar role as the target in the Davidson method [5] and we shall also 
call it the target in this paper. 

Typically, the computed Ritz values are never exactly identical even if the corresponding eigen­
values are identical. In these cases, , is a monotonic function if either kl or kr is fixed. The effective 
gap ratio increases as the difference between kl and kr decreases. For this reason, the maximum, is 
always achieved when kr = kl + 1. This is usually not a good choice since it requires one to perform 
Rayleigh-Ritz projection and compute m -1 Ritz pairs after every matrix-vector multiplication. In 
practice, saving m - 1 Ritz vectors often yields smaller residual norm reduction per matrix-vector 
multiplication than saving m/2 Ritz pairs. To understand this, we notice that the definition of 
the effective gap ratio, is only accurate if the Ritz values AI, . .. , Ak/ are close to the kl smallest 
eigenvalues and Akr +1' ... , Am are close to the m - kr largest eigenvalues. Since m is much smaller 
than the size of matrix A as kl becomes close kr, the above conditions are not satisfied and, is 
significantly larger than the actual effective gap ratio. 

To prevent an over-aggressive choice of 'kl or kr, researchers have previously chosen to enforce 
the condition of kr 2::kl+3 [18]. After extensive testing, we found that the following restriction gives 
much better timing results for the restarted Lanczos method, kr 2:: kl + min( m - neig, 2 (m - nc) /5), 
where m is the maximum basis size, neig is the number of eigenvalues to be computed, nc is the 
number of desired eigenvalues that have converged already. In actual implementation, we only need 
to consider kr = kl + min(m - neig, 2(m - nc)/5) when performing the search for the best ,. This 
leads to a simpler searching algorithm than in the previous implementation. 

If the effective gap ratio, is accurate, after each Lanczos step, the residual norm of the target 
eigenvalue should decrease by a factor that is proportion to e-1' [10]. Based on this, the above 
dynamic restarting scheme maximizes the expected residual norm reduction during each Lanczos 
step. An alternative approach is to consider maximizing the residual norm reduction for the entire 
restarted loop. If k Ritz pairs are saved, the Lanczos algorithm can proceed m - k step before 
restarting. The residual norm is expected to decrease by a factor proportional to e-(m-kh. To 
maximize the residual norm reduction of the next restarted loop, we need to maximize /-l, 

/-l=(m-kh· 

Since /-l is not a monotonic function like " to find its maximum value, we need to compare all 
possible choices of kl and kr . Our tests show that kr 2:: kl + min(m - neig, 2(m - nc)/5) is also a 
reasonable restriction on the search range for this scheme. 

It is possible to construct more dynamic restarting schemes based on either empirical observation 
or other heuristics. However, through our tests, we have found that the above two schemes work 
well for the eigenvalue problems from electronic structure calculations studied in this paper. More 
detailed studies of various dynamic restarting heuristics can be found elsewhere [30]. 

4 Timing results 

In this section, we will use electronic structure calculations of semiconductor nanosystems to demon­
strate the effectiveness of our new method. The systems contain 512 to 250,000 atoms, thus far 
beyond the range of ab initio calculations. To describe the electronic structures' of such large sys­
tems, the empirical pseudopotential has been used. In this scheme [24], the total potential of the 
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name 
InGaP512 
InGaAs9k 
InGaAs93k 
InGaAs250k 

Table 1: Test problems. 

# of # of 
atoms 

512 
9000 

93000 
250000 

plane-waves 
6603 

137919 
1342479 
3683087 

description 
512-atom InGaP semiconductor alloy 
9000-atom InAs quantum dot system 
93000-atom InAs quantum dot system 
250000-atom InAs quantum dot system 

system is constructed from the superposition of atomic screened pseudopotentials Va: (r) of atom 
type (X. As a result, the Hamiltonian of the system can be written as: 

if = _!\72 + LVa:(r - Ra:) 
2 Ra 

(8) 

where {Ra:} are the atomic positions of atom type (x, which are obtained via a valence force field 
.calculation [14]. The empirical pseudopotential va:(r) is fitted to bulk band structures and defor­
mation potentials. The electronic structure of the system is obtained by solving the Schrodinger's 
equation 

if'lj;(r) = E'Ij;(r), (9) 

where the wavefunction 'Ij;(r) is expanded using a plane wave basis. 
This non-selfconsistent empirical pseudopotential scheme has been used to study quantum wells, 

superlattices, disordered superlattices, quantum wires, colloidal quantum dots, embedded quantum 
dots and composition modulations in alloys. Excellent agreements with the experiment have been 
obtained for single particle levels [25], exchange splitting [7], optical absorption spectra [23] and 
the magnitudes of r-x coupling [20]. 

As in most electronic structure calculations of semiconductor materials, the eigenvalues of the 
matrices fall into two distinct groups, the smaller ones form a group known as the valence band 
and the larger ones the conduction band. Typically, the eigenvalues of interests are those near 
the band gap because they are directly related to observable electronic properties [8]. Using the 
empirical pseudopotential schemes, it is possible to directly compute these eigenvalues and their 
corresponding eigenvectors without computing all the valence band states. Since the goal of this 
paper is demonstrate the capability of the eigenvalue method, we have decided to only report the 
timing results for computing a number of lowest conduction band states. In the cases where the 
valence band states are also computed, we observe similar performance characteristics as reported 
here. 

Brief descriptions of the test problems used are list in Table 1. All InAs quantum dots listed 
are embedded in a GaAs lattice matrix. Let H denote the discrete form of the Hamiltonian given 
by the empirical pseudopotential method. We compute the conduction band states by computing 
the smallest eigenvalues of (H - Ere!)2 [22] with Ere! chosen to be -4.4eV which is in the band 
gap and is near the top of the gap. The matrix H is Hermitian. The eigenvectors are represented 
as plane-waves and all calculations are done at the gamma point. Because of the gamma point 
symmetry, only half of the plane-wave coefficients need to be stored. The number of plane-waves 
reported in Table 1 are the number of plane-wave coefficients that are actually stored in computer 
memory. 
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Table 2: Time (seconds) used to find 5 lowest conduction states of InGaP512. 

method MATVEC time (sec) 
PLAN SO 2578 473.6 

PLANSO-Iock > 20000 > 530 
max ,-3 3512 109.7 

max , 2936 84.3 
max J.L 2737 78.0 

Timing results report here are obtained on a massively parallel computer, the Cray T3E 900, 
located at National Energy Research Supercomputer Centerl. The matrix-vector multiplication 
uses parallel, three dimensional FFTs optimized for the Cray T3E [26]. 

Our first set of tests is performed on the smallest test problem, InGaP512. It is used to 
identify the restarting scheme that works well for this type of problems. Table 2 shows the time 
(seconds) used by a number of different Lanczos methods on 8 Processing Elements (PE) of the 
T3E. In addition to the thick-restart Lanczos method, we also used a package called PLANSO 
[28] in two different ways. The PLANSO package implements the Lanczos method with partial re­
orthogonalization [12, 16]. The row headed by PLANSO uses PLANSO without restarting. Because 
this is a very small test problem, we are able to store as many (2578) Lanczos vectors as necessary 
to compute the five smallest eigenvalues of (H - Ere!)2. For larger matrices, the non-restarted 
Lanczos method usually requires more memory than is available on the T3E thus, it is not a widely 
available option. The other four methods each store 25 Lanczos vectors. PLANSO-Iock represents 
a common way of restarting the Lanczos algorithm. The program has allocated enough space to 
store 25 Lanczos vectors. When this workspace is filled, the Rayleigh-Ritz projection is invoked 
to compute five approximate solutions. If any of them have converged, it will be locked and only 
used in orthogonalizing· new Lanczos vectors. We can either restart the Lanczos method by taking 
one of the Ritz vectors or taking a linear combination of the Ritz vectors. However, neither of 
the two were successful in reaching desired accuracies within 20000 matrix-vector multiplications. 
The 530 seconds recorded in Table 2 is the time used to run the algorithm for 20000 steps (20000 
matrix-vector mUltiplications). 

The last three rows of Table 2 are from using the thick-restart Lanczos method with different 
restarting strategies. Row three (max ,-3) uses the dynamic restarting scheme used earlier [18] 
which always saves m-3 vectors when restarting. Row four (max ,) shows the time used when the 
thick-restart Lanczos method uses our new implementation to maximize the effective gap ratio ,. 
The main difference between these two is that less Ritz pairs are saved in the latter one. Because it 
computes less Ritz vectors, the restarting process is cheaper than before. In addition, each restart 
loop can carry out more matrix-vector multiplications and therefore generate more new information 
for the subsequent Rayleigh-Ritz projection. This leads to better approximate solutions with the 
newer scheme. In this particular example, 3512 Lanczos steps are taken with the former restarting 
strategy and 2936 steps, or, 16% less steps, are used with the latter strategy, and 23% less time is 
needed using the latter one. The time used by the Lanczos method with the strategy of maximizing 
residual norm reduction of the whole restarted loop (max J.L), see last row of Table 2, is the smallest 
in the table. It uses almost 30% less time than restarting with the (max, - 3) method and it is 
significantly better than the naive restart 'scheme (PLANSO-Iock). 

INERSC can be accessed through the web at http://VII1l.nersc.gov. 
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Figure 1: Time (seconds) used to compute different numbers of conduction band states ofInGaAs9k. 

Earlier, we mentioned that the restarted Lanczos methods use more iterations than the non­
restarted versions that perform re-orthogonalization. Since each Lanczos iteration needs one matrix­
vector multiplication, the data shown in Table 2 confirms the observation: However, the Lanczos 
method using the new restarting strategies needs less iterations than using the older strategies. 
In fact, the thick-restart Lanczos method that maximizes J.L only uses six per cent more iterations 
than PLANSO. However, it only uses one sixth of the time of PLANSO. This difference in time 
is mostly due to the difference in time spend in re-orthogonalization. PLANSO saves all Lanczos 
vectors it ever computed, when it performs a re-orthogonalization it orthogonalize's against all of 
them. Each re-orthogonalization is very expensive near the end of the iterations. The restarted 
Lanczos method only saves a small number of vectors so that each re-orthogonalization is much 
cheaper. Even though it uses more matrix-vector multiplications and more re-orthogonalizations it 
still uses significantly less time. . 

The timing results shown in Table 2 are fairly representative of other tests we have conducted 
on this type of eigenvalue problems. In many cases, the new restarting scheme of maximizing J.L is 
more effective than others. For this reason, we will only show results using this restarting strategy 
with the thick-restart Lanczos method, in the rest of this paper. Next, we will show how the new 
method scales with the number of eigenvalues and the matrix sizes. 

Figure 1 shows the time used to compute different numbers of conduction band states of the 
InGaAs9k test problem on 32 processors of the Cray T3E. The eigenvalues and eigenvectors of 
(H - Ere!)2 are computed using the thick-restart Lanczos method that tries to maximize J.L when 
restarting. When computing neig eigenv~lues, the Lanczos basis size is m = neig + 50. In other 
words, the timing results shown in Figure 1 are generated by allowing the Lanczos method to use 
the fixed amount of workspace in addition to the space required to store the eigenvectors. The line 
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Figure 2: Aggregate time (seconds) used to compute conduction band states of different size test 
problems. 

Table 3: Elapsed time (seconds) used to compute five conduction band states of the test problems. 

name m # ofPE MATVEC time 
InGaP512 25 8 2737 78.0 
InGaAs9k 50 32 5458 1096.2 
InGaAs93k 100 64 4021 8021.8 
InGaAs250k 200 256 3107 3782.4 

going through the data points represents a linear regression of the log of time versus the log of neig 

and the slope indicates that to compute twice as many eigenvalues and eigenvectors the restarted 
Lanczos method used about 60 per cent more time (t ex: n~i~). The exact . difference in time is 
a function of the spectrum distribution as well as the method used to compute the eigenvalues. 
Given a differ~nt type of eigenvalue problem, the exact scaling factor may change. Here we offer 
an intuitive explanation for the sub-linear scaling observed here and a more precise analysis can be 
found elsewhere [10]. While computing Al and Xl, the thick-restart scheme also saves the nearby 
Ritz pairs. When Al and Xl reach convergence, A2 and X2 are nearly converged too. After the first 
eigenvalue is computed, much less time may be needed in order to compute the second one. 

The second type of scaling studied here is to see how the new method behaves when the problem 
size increases. Figure 2 shows the aggregate time used by the thick-restart Lanczos method to solve 
the different sized empirical pseudopotential calculations. All four problems listed in Table 1 are 
used. The time shown in the figure is the aggregate time used by Cj.ll processors to compute the five 
lowest conduction band states. Table 3 shows the number of processors and the elapsed time. As 
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the problem size increases, we use more processors and larger Lanczos bases. The line in Figure 2 
is a linear regression of the data, more precisely, the log of time versus the log of problem size, and 
its slope indicates a scaling factor of roughly of 1.2, i.e., the aggregate time used is proportional to 
n1.2, where n is the number of plane-wave bases used. The time used by the Lanczos method grows 
faster than linear because most of its components scale super-linearly. For example, the time to 
apply the Hamiltonian on a vector scales as nlog(n), the Gram-Schmidt procedure used to perform 
re-orthogonalization scales as mn, and the time needed to compute k Ritz vectors during restarting 
procedure scales as kmn. In addition, as more processors are used there is more communication 
overhead which is also contributing to the total time growing faster than linear. Of course, as 
the problem size changes, the spectrum also changes which affects the total time because different 
numbers of Lanczos steps are needed. Typically, as problem size increases, more steps are needed 
to compute the same number of eigenvalues, and therefore more time will be used. 

We have also performed a series of tests by directly computing .the smallest eigenvalues of H. 
The scaling factors observed for these calculations were close to those observed for computing the 
conduction band edge states. On this set of test problems, the thick-restart Lanczos method scales 
well with both the number of eigenvalues and the matrix size. Many eigenvalue problems from 
electronic structure calculations have similar characteristics to the test problems and we expect the 
thick-restart Lanczos method to work well for these cases. 

5 Quality of solutions and workspace requirement 

In the previous section we have demonstrated that the new method uses less time than some of the 
older versions of the Lanczos method and the new one scales well as the problem size increases. This 
section addresses two issues that worry the application programmers particularly those who perform 
electronic structure calculations: the Lanczos method is not able to compute all eigenvectors of a 
degenerate eigenvalue and it requires more workspace than other methods such as eG. 

Electronic structure calculations often give rise to degenerate or near degenerate eigenvalues 
and it is crucial that all eigenvectors are found. In exact arithmetic, the Lanczos method can only 
compute one eigenpair from each degenerate set. In Drder to reliably compute multiple eigenvectors 
of a degenerate eigenvalue, one either uses a block version of the Lanczos method or adds locking to 
the standard Lanczos method. To see how the thick-restart Lanczos method computes degenerate 
eigenvalues, we start by examining its convergence history. 

Figure 3 shows the convergence history of solving the InGaP512 test problem which has higher 
degeneracy than the others. The top plot shows the five smallest Ritz values of (H - Ere!)2 (in 
natural units: Rydberg2 ) and the bottom plot shows their corresponding residual norms. Initially, 
the five smallest Ritz values are distinct. After about 700 Lanczos steps, the two smallest Ritz 
values have converged to the two smallest eigenvalues but the residual norms are only of the order 
of 10-5 . After about -1400 steps, the third Ritz value drops below the second one and approaches the 
smallest one. This indicates that the second eigenvector corresponding to the smallest eigenvalue 
of (H - Ere!)2 has been identified. After about 2200 steps, the third smallest Ritz value converges. 
to the first two and the third eigenvector of the smallest eigenvalue appears. It takes roughly the 
same number of Lanczos steps to identify one eigenvector corresponding to the smallest eigenvalue 
of (H - Ere! )2. In this case, about 700 Lanczos steps are needed to identify each eigenvector. Similar 
observation have also been made in the case where the Lanczos algorithm is used with the partial 
re-orthogonalization but without restart, ~see Figure 4. Previously, similar convergence history has 
been observed in Lanczos methods without re-orthogonalization [6, 21]. However, the difference is 
that without re-orthogonalization the Lanczos method repeatedly generates the same eigenvector 
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Figure 3: The convergence history of the thick-restart Lanczos method. 

while with re-orthogonalization the eigenvectors computed are distinct. Our explanation of the 
similarities is as follows. Because of the floating-point round-off error, the Lanczos basis is likely to 
contain a small component in the direction of any eigenvector. It takes the Lanczos method about 
the same number Of steps to compute each eigenvector because the convergence rates are dictated 
by the eigenvalues which are the same for different eigenvectors of a degenerate eigenvalue. In 
addition, the initial starting points can be regarded as the same for most eigenvectors since every 
one, except the first, starts as a round-off error. Note that locking is not used in generating either 
Figure 3 or 4. 

The above arguments show that the thick-restart Lanczos method is almost certain to find all 
eigenvectors of a degenerate eigenvalue. To ensure that no eigenvector is missed in the solution, we 
suggest two strategies, to compute more eigenvalues than needed and to ask for more accuracy than 

Table 4: The smallest five Ritz values of (H - Ere!)2 computed when asking for different neig 
(I!rill < 10-5 , m = 25). .' 

neig MATVEC time Al A2 A3 A4 A5 
(sec) (xlO-4) 

5 2144 60.8 4.1 4.1 5.1 5.1 5.7 
8 2123 63.4 4.1 4.1 5.1 5.1 5.7 
9 3575 .107.4 4.1 4.1 4.1 5.1 5.1 
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Figure 4: The convergence history of the Lanczos method without restart. 

needed. From Figure 3 and 4, we can identify five distinct horizontal lines in the Ritz value history 
and each of the lines represents an eigenvalue of (H - Ere!)2. If they were simple eigenvalues, the 
five smallest eigenvalues would be 4.1 x 10-4 , 5.1 X 10-4 , 5.7 X 10-4 , 6.1 X 10-4 , and 9.7 x 10-4 . 

Table 4 shows the five smallest Ritz values computed when different number of eigenvalues are 
requested. As more and more eigenvalues are requested, the five smallest Ritz values become closer 
and closer to the five smallest eigenvalues. When requesting nine eigenvalues, the five smallest 
ones displays the correct degeneracy. Table 5 shows how the five smallest Ritz values change as 
the tolerance changes. In this particular case, we need to set T to something less than 10-5 in 
order to get the correct solutions. The time to generate the solutions with the correct degeneracy 
are within 20% of each other in Table 4 and 5. This indicates that the two schemes are almost 
equally effective. Both schemes need additional research to make them more rigorous. We offer the 
following rule-of-thumb for choosing parameters: 

• when choosing the option of computing more eigenvalues than needed, compute at least five 
more eigenvalues or if computing a large number of eigenvalues compute 10% more; 

• when using the residual tolerance as the control, make sure the value of T is less than VEIIAII, 
where € is the machine precision and IIAII is the two-norm or Frobenius norm of the matrix. 

Between the two schemes, we believe the second one, controlling T, is more effective. This is 
based on the observation that when all eigenvectors of a degenerate eigenvalue are identified the 
residual norms decrease rapidly and monotonically. This means that requiring addition accuracy 
does not cost a significant amount of extra time. In Table 5, T = 10-7 and T = 10-8 both lead to 
the correct solutions, but requiring T = 10-8 only takes 5% more time than requiring T = 10-7 , 

13 



Table 5: The smallest five Ritz values of (H - Eref)2 computed when different residual tolerances 
are used (!!rill < T, m = 25). 

T MATVEC time Al A2 A3 A4 A5 
(sec) (x 10-4 ) 

10 .j 712 20.3 4.1 5.1 6.1 9.7 15.0 
10-4 1979 56.5 4.1 4.1 5.1 5.1 5.7 
10-5 2144 60.8 4.1 4.1 5.1 5.1 5.7 
10-6 2737 78.0 4.1 4.1 4.1 5.1 5.1 
10-7 2956 84.4 4.1 4.1 4.1 5.1 5.1 
10-8 3109 88.5 4.1 4.1 4.1 5.1 5.1 

Table 6: Time (seconds) used to compute the five lowest conduction band states ofInGaAs9k using 
different size bases. 

50 60 75 100 200 
1096.2 1040.5 1063.1 1107.2 1299.2 

similarly requiring T = 10-7 only needs 8% more time than requiring T = 10-6 • There are many 
cases where two eigenvalues are distinct but are near to each other, e.g., eigenvalue 5.7 x 10-4 

and 6.1 x 10-4 , where the Lanczos method may have similar difficulty to computing degenerate 
eigenvalues. The two schemes suggested here should be reasonable approaches to deal with this 
case as well. 

One parameter the user needs to choose when using a restarted Lanczos . method is the basis 
size, m. Next we will show that it is reasonably easy to pick a good value for m. Table 6 shows 
the time required with different m to compute the five lowest conduction band states. From the 
table we see that the difference in time caused by different m is relatively small compared to 
the difference between using the thick-restart Lanczos method and other versions of the Lanczos 
method, see Table 2. Typically, when m is small, as m increases, the time decreases. After m 

increases to the optimal value, the minimum time is achieved. If m increases further, the time 
increases slowly as shown in Table 6. The user usually has to perform a small number of tests 
in order to identify a reasonable m to use. For computing neig eigenvalues and eigenvectors, we 
suggest testing m = neig + 10 and m = neig + 20. If one of the two test cases fail to compute 
the solutions in a reasonable amount of time or the larger basis size works considerably better 
than the smaller one, a even larger m should be used. The basis sizes reported in table 3 can be 
used as a reference for solving similar types of problems. However, the values reported here are 
probably larger than necessary if one is to compute the smallest eigenvalues of H rather than those 
of (H - Eref)2. 

One of the common complaints against the Lanczos method is that it uses more workspace than 
eG. This is true in some cases. However, because a larger workspace, i.e., a larger m, often leads to a 
faster convergence rate, it is worthwhile to use more workspace if there is enough memory available. 
In addition, the thick-restart Lanczos method works well with a constant amount of workspace as 
the number of eigenvalues increases as shown Figure 1. If a large number of eigenvalues and 
eigenvectors are required, the thick-restart Lanczos method may still need more workspace than 
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some ban:d-by-band versions of the CG method, however, it may actually need less workspace than 
some implementations of all-band CG methods. 

6 Concluding remarks 

In this paper, we have given a practical version of the thick-restart Lanczos method for symmet­
ric and Hermitian eigenvalue problems and described two restarting strategies that we found to 
be effective. Through numerical examples, we have demonstrated that the thick-restart Lanczos 
method uses less time than older versions of the Lanczos method and the new method scales well as 
the problem size increases. This method is well suited for computing a large number of eigenvalues 
and eigenvectors of very large matrices. 

Many electronic structure calculations need to compute solutions of a set of related eigenvalue 
problems [13]. In these cases, it is important to take advantage of the existing solutions when 
solving the next eigenvalue problem. One way to do this is to use a linear combination of the 
eigenvectors from the previous step as the starting vector for the Lanczos method [1, 15]. However, 
a version of dynamic thick-restart Davidson method [18] might be more appropriate than the thick­
restart Lanczos method. Even in this case, the restarting strategies described in this paper are still 
useful for the Davidson method. 

Through the study of the convergence history, we conclude that the thick-restart Lanczos 
method can compute all eigenvectors of degenerate eigenvalues. There is no easy way to detect that 
all eigenvectors are found, however, the two strategies, computing more eigenvalues and requiring 
more accuracy, appear to work well in practice. 

The Lanczos method often needs more workspace than some versions of the CG method. How­
ever, if there is a large amount of computer memory available, it is worthwhile to let the thick-restart 
Lanczos method use more workspace as this often leads to less time being used. Clearly, the thick­
restart Lanczos method is not for every type of eigenvalue problem. However, in the cases where it 
is appropriate, for example, when tens of eigenvalues are required, when there is reasonable amount 
of space to store some extra vectors (m - neig > 10), or when there isn't a large number of good 
starting vectors, we have demonstrated that the thick-restart Lanczos is an effective method. 
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