
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
Multi-UAV Coordination for Uncertainty Suppression of Natural Disasters

Permalink
https://escholarship.org/uc/item/20r8t0hc

Author
Rabinovich, Sharon

Publication Date
2018

Supplemental Material
https://escholarship.org/uc/item/20r8t0hc#supplemental

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/20r8t0hc
https://escholarship.org/uc/item/20r8t0hc#supplemental
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
SANTA CRUZ

MULTI-UAV COORDINATION FOR UNCERTAINTY
SUPPRESSION OF NATURAL DISASTERS
A dissertation submitted in partial satisfaction of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER ENGINEERING

by

Sharon Rabinovich

June 2018

The Dissertation of Sharon Rabinovich
is approved:

Professor Gabriel Elkaim, Chair

Professor Renwick Curry

Professor Qi Gong

Professor Vladimir Dobrokhodov

Tyrus Miller
Vice Provost and Dean of Graduate Studies

Copyright © by

Sharon Rabinovich

2018

Table of Contents

List of Figures vi

Abstract xvi

Dedication xviii

Acknowledgments xix

1 Introduction 1
1.1 Overview . 1
1.2 Motivation . 2
1.3 Existing Monitoring Systems . 3
1.4 Multi-UAV . 6

1.4.1 Coordination . 7
1.4.2 Observation . 9
1.4.3 Propagated Periphery Modeling 11

1.5 Contributions . 13
1.6 Structure of the Dissertation . 14

2 Periphery Estimation Methods 15
2.1 Introduction . 15

2.1.1 Overview of Estimation Approaches 16
2.1.2 Problem definition . 24

2.2 QKF Method . 28
2.2.1 Boundary Definition . 28
2.2.2 QKF Estimator . 29
2.2.3 QKF - Implementation . 32
2.2.4 Approximations Techniques 35
2.2.5 Simulation with a Single UAV 50

2.3 UAV Strategies . 55
2.3.1 Ellipse Steering . 55
2.3.2 Greedy Uncertainty Suppression Method 57

iii

2.3.3 Simulation and Results . 60
2.4 Conclusions . 77

3 System Design 81
3.1 Introduction . 81
3.2 SLUGS II AutoPilot Design . 87

3.2.1 Software Design . 87
3.2.2 Hardware Design . 88
3.2.3 Migration Process . 90

3.3 Ground Control Station . 93
3.4 Conclusions . 94

4 Simulation 96
4.1 Introduction . 96

4.1.1 Propagation Model . 97
4.1.2 Multi-UAV Simulation . 97
4.1.3 Verification and Validation 99

4.2 Simplified Simulation . 99
4.2.1 Propagation Model . 104

4.3 Multi-UAV Software in the loop 107
4.4 Multi-UAV Hardware in the loop 109

4.4.1 Flight Simulator . 110
4.5 Conclusions . 110

5 Results 111
5.1 Introduction . 111
5.2 Simulation Results . 113

5.2.1 SLUGS II Validation . 114
5.2.2 Monitoring System Validation 115

5.3 Flight Tests Results . 120
5.3.1 AUAV3 Flight Test I . 120
5.3.2 AUAV3 Flight Test II . 122
5.3.3 SLUGS II Flight Tests . 124
5.3.4 Multi-UAV System Validation 127

5.4 Conclusions . 129

6 Conclusions & Future Work 132
6.1 Conclusions . 132
6.2 Future Work . 134

iv

A Appendix 135
A.1 Methods . 135

A.1.1 Coordination . 135
A.1.2 Mission Planning . 136
A.1.3 Path Following . 137
A.1.4 Gaussian Transformation 139
A.1.5 Approximate Particle Filter Method 142
A.1.6 QKF - MMSE Approximation 144
A.1.7 MAP Parameters Approximation 148
A.1.8 MAP Conditional Covariance Approximation 152
A.1.9 The Unscented Transformation 154

A.2 System Design . 156
A.2.1 QGroundControl . 156
A.2.2 Bixler 2 Parameters . 158
A.2.3 Sensor . 159

A.3 Results . 159
A.3.1 Flight Tests . 159
A.3.2 Martin Incident . 160

Bibliography 163

v

List of Figures

1.1 Demonstration Elements for UAV Over-the-Horizon projects. An
example of an existing system from [1]. 4

1.2 A conceptual UAV-based forest fire monitoring system (from the
survey [99]). The concept covers the functions of monitoring: de-
tection, diagnosis, and prognosis 5

1.3 Conceptual diagram from [21]. (a) Latency profile for a single UAV
monitoring a static circular fire. The thickness of the path denotes
the latency of information at that point when it is transmitted to
the base station. (b) Latency profile with a pair of UAVs monitoring
a static circular fire in opposite directions. 8

1.4 UqH- (2 member) cooperation for forest fire surveillance from [3].
The goal of the cooperation is to track every point of the evolving
fire perimeter and update the location of the fire with the minimum
latency. 9

1.5 The progression of a wind-blown fire front from an initially circular
fire. The model is formulated as a two-dimensional Eulerian partial
differential equation (PDE) and solved with a level-set methodology
(imported from [84]).) . 12

1.6 Model results from [21]. Fire simulation of high wind conditions
with an elevation gradient. The fire is spreading in the direction of
the wind. Ecological Model for Burning in the Yellowstone Region
(EMBYR) . 13

vi

2.1 Setup of the boundary representation approach. CPi and CPj,
(square), are two of many grid points representing the close pre-
dicted periphery (in blue). The Origin (circle) is the starting point
of the propagated phenomenon, and the UAV is used to collect
observations. 25

2.2 The block diagram describes the major components involved in the
estimation problem. 26

2.3 Setup of the boundary representation approach. CPi, (square), is
one of many points representing the close predicted periphery (in
blue). The Origin, (circle), is the starting point of the propagated
phenomenon and the UAV is used to collect observations. 29

2.4 Basic coordinate-systems. The quantized measurement connected
along 1-D coordinate line (â) and the covariance of the prediction
represented with an ellipse. 31

2.5 The two possible configurations for measurement. The plot to the
left is for the case where observation is as expected. The plot to the
right is the case in which the observation conflicted with expected
measurement. The airplane in black means that the observation
is labeled OUT. The airplane in red is for IN labeled observation.
The control point (square) is within expected spreading direction.
The fire origin is represented as a circle, and the actual propagated
segment is in red with arrows toward the spread direction. Notice
that the probability density function attached to each configuration
consist interpreted boundaries (shaded in the graph) that should
be considered in the estimation step. 35

2.6 A comparison between the approximations methods and the QKF.
The estimated mean of the quantized measurement is evaluated
with distance for the non-conflicted case. 46

2.7 A comparison between the approximations methods and the QKF.
The estimation of the quantized covariance is evaluated with dis-
tance for the non-conflicted case. 48

vii

2.8 A comparison between the approximations methods and the QKF.
The estimated mean of the quantized measurement is evaluated
with normalized distance. Note that the case presented is the con-
flicted case where the conditional expectation is not the same as
the incorporated observation. 49

2.9 A comparison between the approximations methods and the QKF.
The estimation of the quantized covariance is evaluated with dis-
tance. Note that the case presented is the conflicted case where the
conditional expectation is not the same as the observation. 50

2.10 Single CP estimation with a single UAV. The UAV flies over the
explored area on a pre-planned trajectory. The arrows pointing to
the CP correspond to the UAV position. 52

2.11 Single CP estimation with a single UAV. The UAV flies over the
explored area on a pre-planned trajectory. The arrows pointing
to the ellipses correspond to the UAV position and illustrate the
directional effect of the covariance. Note how the ellipse starts large
and is flattened with time and the UAV position 53

2.12 An example of periphery estimation with a single UAV. The red
line represents the actual periphery, and the blue line represents
the predicted one. The UAV flies over the explored area on a pre-
planned trajectory. The line of sight to one CP illustrates the
directional effect of the covariance (represented as an ellipse) with
the QKF method. 54

2.13 A periphery estimation with a single UAV for an autonomous mis-
sion is illustrated. The red line represents the actual periphery, and
the blue line represents the estimated one. The UAV flies over the
explored area autonomously. The line of sight to one of the CPs
illustrates the directional effect of arbitrary CP. The QKF method
is employed on all the CPs simultaneously, and the UAVs identify
the current highest uncertainty to approach next. 55

viii

2.14 A periphery estimation with two UAVs. The UAVs fly over the
explored area. The green trace represents trajectory that is out-
side of the periphery. The QKF method is employed on all CPs
simultaneously, and the UAV identifies the current highest uncer-
tainty to approach next. The final result of each CP uncertainty is
represented here by an ellipse. 56

2.15 Initial setup. The UAVs are at the final stage of the deployment
phase and located on the opposite sides of the boundaries. The
actual periphery is a solid red line, and the predicted periphery is
a dashed blue line. The error bar associated with an arbitrary CP
represents its current perpendicular uncertainty (1σ). Note that
the error bar is equal and results in a predetermined prediction
that is based on a maximal spread rate. 62

2.16 The major axis of uncertainty over a number of times. The major
axis illustrated with an arrow. The crossbar represents the uncer-
tainty of the first and last CP locations. The UAVs move on reroute
trajectories. The direction and magnitude of the major axis changes
with the deployment of the UAVs and with the incorporation of the
observations. 64

2.17 Two set periods of time for GUS strategy. Subfigure (a) presents the
UAVs approach to the boundary from opposite sides. Subfigure (b)
includes an update of the last crossing points and the UAVs heading
to their assigned CPs. Note that the uncertainty of the close CP is
already reduced. 65

2.18 Two set periods of time for Periphery Tracking strategy. Subfigure
(a) presents the UAVs approach to the boundary from opposite
sides. Subfigure (b) includes an update of the last crossing points
and how the UAVs are directed to their assigned CPs. Note that
the uncertainty of the nearby CP decreases. 67

ix

2.19 The performance indicators are presented. The size of the error be-
tween actual and predicted boundary and the perpendicular vari-
ance are presented. 69

2.20 Performance analysis. The solid red line represents the perpendic-
ular standard deviation average, the dashed green line shows the
cumulative root mean squared error, and the dashed red line is the
combined performance measure. Note that the mean value of the
uncertainty is reduced during the mission, and the error increase
as the periphery evolves since the number of crosses per AOI get
smaller. 70

2.21 Estimation and Coordination with the GUS method. The UAVs
switched from the deployment phase to track the highest uncer-
tainties. The actual periphery is a red solid line, and the predicted
periphery a blue dashed line. The UAV trail is in green where the
UAV is OUT and in black where the UAV is IN. The error bar
associated with each CP represents its current uncertainty. Note
that the error bar decreases as the UAV approaches an arbitrary
CP and that the observations cause the directional uncertainty of
the other CPs to decrease. 71

2.22 A benchmark for periphery tracking. The UAVs fly evenly spaced
along the edges of the propagating perimeter. The actual periphery
is a red line, and the predicted periphery is a blue line. The error
bar associated with each CP represents its current uncertainty and
not its associated age. Note that the error bars grow with time and
are reduced to a minimum size as the UAV crosses a CP. 72

2.23 Two set periods of time for estimated periphery with southwest
wind. Subfigure (a) presents the UAVs approaching from oposite
sides of the boundary. Subfigure (b) includes an update of the last
CPs, and the UAVs are headed to their assigned CPs. 73

x

2.24 Estimated periphery with southwest wind (at a later time). The
plot presents the UAVs approaching from oposite sides of the bound-
ary, the updated CPs, and the lopsided periphery. 74

2.25 A performance analysis of the traditional Periphery Tracking with
a southwest wind. The solid red line represents the perpendicular
average standard deviation, the dashed green line shows the cumu-
lative RMSE, and the dotted red line is the combined performance
measure. 75

2.26 A comparison of the Greedy Uncertainty Suppression and the bench-
mark. The solid blue line and the dotted red line represent the
combined RMSE performance measure over time for the bench-
mark and the GUS strategies accordingly. 76

2.27 A comparison of strategies with a southwest wind. The solid blue
line and the dotted red line represent the combined RMSE perfor-
mance measure over time for the benchmark and the GUS strategies
accordingly. 77

3.1 Basic closed-loop block diagram. 82
3.2 SLUGS block diagram is shown. It describes the design of the

SLUGS Auto Pilot and all its components. The diagram is im-
ported from the ASL website. 84

3.3 SLUGS board . 85
3.4 SLUGS II code generation workflow. 87
3.5 SLUGS II Simulink Model is shown. The diagram includes the

configuration blocks, the main controller block on the right and the
sensor blocks on the left. The block diagram imported from SLUGS
II Simulink model development environment. 88

3.6 AUAV3 board . 89
3.7 SLUGS II basic components. 90

xi

3.8 The graphical user interface of the Ground Control Station (GCS) is
presented. The open-source software (Qt-Ground-Control - QGC)
is adopted and extended to support the design of a multi-UAV
monitoring system. The software supports the planning and visu-
alization of the UAVs‘ trajectories in real-time. 94

4.1 Simplified Simulation block diagram. 100
4.2 An example of Dubins Path is shown. The start point (in green)

is attached to two circles tangent to the desired direction. The
final point (in red) is attached to two circles tangent to the desired
direction. The resulting time-optimal path (in bold) starts with a
Left turn followed by a Straight line and finishing with a Right turn
to the final configuration. 102

4.3 Three admissible paths of a selected example of Dubins Path are
shown. Each path starts at the selected start configuration and
finishes at the desired configuration. The length of the path is
calculated and presented at the top of each figure. The shortest
path is shown on the previous figure. 102

4.4 An example scenario resulting from Dubins Path is shown. The
start point (in green) is attached to two circles tangent to the de-
sired direction. The final point (in red) is attached to two circles
tangent to the desired direction and the AOI (in yellow). The re-
sulting time-optimal path (in bold) starts with a short left turn,
continue with a straight line, and finishes with a short right turn
to the final configuration. 103

4.5 A follow up step of an example scenario is shown. The start point
(in green) is attached to two circles tangent to the desired direction.
The final point (in red) is attached to two circles tangent to the
desired direction and to the AOI (in yellow). The resulting time-
optimal path (in bold) includes only a right turn leading to the
final pointing and orientation. 103

xii

4.6 Various combinations of wind velocity and slope: (a) upslope head-
ing fire, (b) upslope backing fire, (c) downslope backing fire, (d)
downslope heading fire. Small arrows indicate direction of fire
spread, large arrows indicate wind direction. Figure adopted from
[96] . 105

4.7 Simple scenario of the propagated model outcome is presented. The
red circle lines are set periods of time for the simulated boundary.
The boundary expend in time with a spread rate of 2 [m/sec] . . . 106

4.8 Scenario of the propagated model with wind is presented. The red
circle lines are set periods of time for the simulated boundary. The
boundary expend in time with a spread rate of 2 [m/sec] and a
nominal wind velocity of 0.1 [m/sec] 107

4.9 MSIL block diagram. 108
4.10 MHIL block diagram. 109

5.1 RC model plane - EPO glider phoenix 1370mm. 112
5.2 RC model plane - Hobby King Bixler 2. 113
5.3 Simulated scenario with a single UAV is presented. The UAV tra-

jectory is in X Y Cartesian coordinate frame and is relative to the
Home position. The first segment of the trajectory started from
take-off controlled manually by the safety-pilot (RC) and switched
to autonomous mode after 23 seconds. Three laps were tested with
different PID gain for tuning the roll command. 115

5.4 Graphic user interface (GUI) of the GCS is presented. The first
mission plan for the first UAV is being uploaded. 116

5.5 The GUI of the GCS is presented. The first mission plan for the
first UAV is being uploaded. 117

5.6 The GUI of the GCS shows the execution of a simple deployment
mission plan. The deployment phase has started and UAVs are in
flight. 118

xiii

5.7 Performance measure of the deployment is presented. The com-
bined measure shows that the uncertainty does get reduced during
deployment before switching to autonomous allocation mode. . . . 119

5.8 Single UAV flight performing mission plan (as presented on the GCS)121
5.9 MHIL test setup is shown. On the left, QGC software runs on a

separate PC. In the middle, X-Plan simulator software runs on a
separate PC and communicates with the QGC software and AUAV3
through a serial link. On the right AUAV3 runs the test autopilot
software version and is connected through a serial port to the PC. 121

5.10 A test flight conducted with Phoenix fixed-wing UAV equipped
with an AUAV3 flight controller running the MatrixPilot autopilot
[31] . 123

5.11 Flight test with SLUGS autopilot configuration is presented. Ex-
ample of performance for flight test 1 from[37] 125

5.12 Flight test with a single UAV is presented. The UAV trajectory
is in X Y Cartesian coordinate frame and is relative to the home
position (36.989o,−122.0514o). 126

5.13 Flight test with a single UAV is presented. The body angles are
the relative attitude of the body. It verifies the results of the simple
scenario used to fly the previous version of SLUGS autopilot. . . . 127

5.14 A top level diagram of the Formation Testing System is shown.
Two UAVs which include an AutoPilot unit and a Telemetry unit
can communicate with the ground control station (GCS) and can
also be controlled by a remote-controller for a fail-safe procedure. 128

5.15 Experiment hardware is shown. On the left, three airplanes model
that have been used during the field test. In the middle, the AUAV3
board used for running the autopilot software. On the right, the
setup of the field . 129

5.16 Two UAVs in Leader-Follower configuration 129
5.17 Field Test in UCSC - Before and After 130

xiv

A.1 The transformation method for a non-significant case is presented.
The CP, (square marker in the figure), lies in the x̂, ŷ coordinate
system, the covariance plots as an ellipse and the drone in red fixed-
wing shape. The transformation probability densities of the original
covariance are projected along the local coordinate system x̂a, ŷb.
Notice that the location of the drone, in this case, is outbound and
therefore the observation is not significant. 140

A.2 The transformation method for a significant case is presented. The
CP, (the square point), lies in the x̂, ŷ coordinate system, the co-
variance draws as an ellipse and the drone in red fixed-wing shape.
The transformation probability densities of the original covariance
are projected along the local coordinate system x̂a, ŷb. Notice that
the location of the drone, in this case, is in boundaries (dashed red
line) and therefore the observation is significant and should influ-
ence the estimation process. 141

A.3 This is n example of numerical implementation of the Gradient
Descent optimization method. The indifference curves represent a
simple strongly-convex function. The process search is for the best
match of µ̂, σ̂, which tends to be on the minimal or maximal point. 150

A.4 Simulated scenario with a single UAV is presented. The UAV tra-
jectory is in X Y Cartesian coordinate frame and is relative to the
Home position. The first segment of the trajectory starts from
take-off controlled manually by the safety-pilot (with the RC), he
switched to autonomous mode after 30 seconds. Six laps were tested
with different gains setting for tuning the roll command. 160

A.5 Progression map of the Martin incident. The image is processed
after the incident and relies on number of sources (from Cal-Fire) 161

xv

Abstract

Multi-UAV Coordination for Uncertainty Suppression of Natural Disasters

by

Sharon Rabinovich

Containing a wildfire requires an efficient response and persistent monitoring.

A crucial aspect is the ability to search for the boundaries of the wildfire by

exploring a wide area. However, even as wildfires are increasing today, the number

of available monitoring systems that can provide support is decreasing, creating

an operational gap and slow response in such urgent situations. Many natural and

national security phenomena have a similar need for monitoring the propagating

periphery of a hazardous substance or security threat.

The objective of this thesis is to estimate a propagating boundary and create

a system that works in real time. It focuses on an autonomous system that sup-

presses uncertainty, investigating to what extent binary measurements away from

the periphery can be used to predict the boundary and its spread rate. It proposes

a coordination strategy with a new methodology for estimating the periphery of

a propagating phenomenon using quantized observations. The method is tested

in a simulation of an autonomous system with multiple unmanned aerial vehicle

models that gather local measurements and share the information with a central-

ized ground control system. The estimate the system generates then incorporated

into an allocation algorithm, weighing uncertainty and the rate of change of the

uncertainty, reassign the UAV trajectory in order to suppress the uncertainty.

The complete system design, tested on the high-fidelity simulation, demon-

strates that steering the vehicles towards the highest perpendicular uncertainty

generates the best predictions. The results indicate that the new coordination

xvi

scheme has a large beneficial impact on uncertainty suppression. By using the

developed coordination algorithm and the adopted flight control system, the ve-

hicles can follow the desired trajectory to reduce the uncertainty and the errors

in predicting the periphery across a range of wind and terrain conditions.

xvii

To my brothers

Shay

&

David

xviii

Acknowledgments

My research began with uncertainty followed by confusion, and it ended up

with joy and satisfaction. Learning, for me, was always a combination of success

and struggle, a mix of diligence with incompetence, a solution of friendship and

competition. I started that journey with people that I love and ended up with

more of them. I have met new people that have built-in goodness, where their

integrity comes first, and their personal interests come last. I was concerned about

the language barrier, and I was surprised to find out that friendship could still

emerge and becomes meaningful.

That study track is not a one-person recognition, I have been supported by

many, and all have influenced me. My Mom, who has pleaded for our education.

My Dad, who fought his lack of confidence by gaining an informal knowledge. My

family, with their drive to compete against the ignorance.

My wife, Maya, without whom I would never have had the opportunity to proceed

persistently.

The ladder that we use to climb up is not high enough for any roof. That

shouldn’t prevent us from rising. There will always be someone who reaches his

hands to us and pulls us higher.

I wish to thank my adviser, Gabriel Elkaim, for his support, for giving me the

chance to see his cleverness and his sensitivity. I am grateful to the members of my

dissertation committee: Ren Curry, Vlad Dobrokhodov, Dejan Milutinovic, and

Qi Gong, for their excellent assistance and professional advising. This dissertation

would not have been possible without the endless effort, priceless advice and

intellectual contribution of Ren.

Thank you very much, for pulling me higher.

xix

Chapter 1

Introduction

1.1 Overview

This thesis details the design of a multiple unmanned autonomous vehicle

(multi-UAV) monitoring system. The design includes processes for both moni-

toring particular missions as well as for testing and validating multi-UAV sys-

tems. The original autopilot developed for a single aircraft mission to support

the new framework has been redesigned, tested with newly integrated hardware

components, and implemented a new approach for high-level control on top of the

pre-existing Autonomous Systems Lab (ASL) navigation and control software.

Integrating this complex systems required developing a simulation for multi-

UAV as a verification and validation step before deploying the software onto real

hardware. Thus there was a need for designing multi-UAV software in the loop

simulation that could also be used to develop different mission designs.

Although some academic and commercial research has introduced related de-

sign aspects, there is no known work that looks specifically at the multi-UAV

problem with the rerouting approach developed in this work.

Beyond the theoretical contribution of this work, we developed a multi-UAV

1

monitoring system prototype. It provides all the functionality of operational pe-

riphery monitoring and enables testing of the design. The flight tests and simula-

tion results demonstrate effectiveness and the robustness of the design. A real-time

mock-up that includes a conceptual approach facilitates the primary setup needed

for developing fully operational system in the future.

In this work, we designed a system prototype with an adaptive multi-UAV

high-level controller and an associated simulation framework. Its design was based

on the following operational criteria: low cost, long endurance, low altitude, scal-

ability, and robust uncertainty suppression.

1.2 Motivation

In any region undergoing some form of environmental distress, it is very impor-

tant to detect changes occurring on the ground. In some cases, the environmental

incident has spatial changes, and the incident spreads steadily. In other cases, it

becomes difficult to follow the incident without knowing how it is evolving. Hav-

ing a system that follows the event helps rescue human lifes, monitor the incident,

and allow the human responders to take better actions (as well as deploy assets

in an optimal manner to mitigate the incident).

It is of great importance to monitor and respond to natural phenomena (e.g.,

fires) and national security disasters (e.g., emitting source). One needs to be able

to explore a wide area and search for the source of hazardous substance emmisions

or the expansion of a fire front. In 2016 alone, Federal agencies reported 67,595

fires and an estimated cost of fire suppression of approximately 2 billion U.S. dol-

lars [68]. In addition to financial loss and significant damage to the environment,

wildfires threaten the lives of firefighters during these fire extinguishing operations

[70].

2

There are two main reasons why a solution to fire tracking needs to be found.

The first relates to modeling; it is very challenging to predict the fire frontier

as a stochastic phenomenon dependent on weather conditions, terrain, and fuel

(flammable materials) [7]. Secondly, operational aspects are exposed to severe

limitations and constraints. The resources to respond to and monitor disasters

are still quite limited. In the aviation section of the National Interagency Fire

Center’s annual summary of wildfire activity in 2013, there were many requests

for large air tankers, which were Unable To be Filled (UTF). The number of

cases of firefighters needing air tankers that were unavailable reached a high of 48

percent in 2012 [69] 1.

An incident with a dangerous spread area requires immediate exploration.

Some examples are distributed fire spots and chemical threats, however there

are way others. This type of scenario requires surveillance to search for threats,

but human observers are likely difficult to use, because the task is dull, dirty,

and/or dangerous. Wildfire monitoring missions are a perfect example of why a

solution needs to be developed. Wildfires (and all natural and national threats

phenomena) require urgent attention and an efficient response to monitor and

contain their spread.

1.3 Existing Monitoring Systems

Previous studies have examined two different solutions: one on the ground

and one in the air. In the first case, ground vehicles are used to explore the area.

Use of ground vehicles depends on how passable is the area which needs to be

explored. Ground vehicle capability is not necessarily suitable for scenarios with
1This means that in 2012, almost half of all requests for tankers to bomb fires were unanswered

due to limited resources

3

difficult terrain. In the second case, the deployment is in the air, the motion is

smooth and the area can be observed much more efficiently. In addition, most

of those scenarios have a critical time factor. The systems phenomena is dealing

with time, and because the existing system capabilities are limited, they cannot

collect all spatial/temporal information at once. Whenever the observing vehicle

is positioned in any one place, the system necessarily misses events in other places

within the search area.

[1] describes existing projects that support disaster management in real time

and mainly explore systems that are space based (e.g., GlobalStar), or high alti-

tude and long duration (e.g., Global Hawk).

Figure 1.1: Demonstration Elements for UAV Over-the-Horizon projects. An
example of an existing system from [1].

4

The project in Fig. 1.1 reinforces the importance of tracking events like floods

and earthquakes, and how the tracking events help to monitor the incidents and

handle them effectively from the ground control segment.

[99] describes remote sensing techniques and sensor packages that have been

used on UAVs. The author argues that these techniques can serve as the main

solution for various disasters. Reviewing the literature on the development of

UAVs, including projects with different types of sensors (IR/Visual) and platforms

(fixed-wing/rotary-wing), he concludes that Multi-UAVs can be used to avoid the

drawbacks of approaches that are based on either land or space.

Figure 1.2: A conceptual UAV-based forest fire monitoring system (from the
survey [99]). The concept covers the functions of monitoring: detection, diagnosis,
and prognosis

5

1.4 Multi-UAV

The ideal mission for a UAV is monitoring a wide area and searching for the

source of emission of a hazardous substance or expansion of a fire front. There has

been a rising interest in increasing UAV efficiency and reliability. Autonomous

vehicles have been used in a variety of applications for surveillance, search, and

exploration [73]. In surveillance problems, the target space needs to be surveyed

continuously. It differs from a coverage problem, which involves optimal deploy-

ment of the sensors for complete coverage of the target area. It also differs from

an exploration problem, which deals with gaining more information about the

bounded area [25]. This exploration research moves in two directions. The first

focuses on how to pinpoint the source of an odor [56], [83]. In this area of research,

robots are tasked with detecting, tracking and seeking the odor source efficiently.

The second direction of this exploration research focuses on how to establish

the boundary or perimeter of a spreading phenomenon in order to monitor the

area and prevent human exposure to risk [97]. Because of the spatial limitations

of a single UAV, most research currently focuses on how to monitor large areas

by operating multiple inexpensive simple UAVs simultaneously [15].

Though the studies mentioned above are significant, they focus on exploring

the environment using clues (e.g., aerosol diffusion) for tracing emission sources.

Moreover, the techniques used to detect the plume or periphery are strongly de-

pendent on the spatial gradient change of the underlying tracked phenomenon.

The research presented in this work proposes to explore the area by using approxi-

mate inference methods [85] and statistical reasoning [80]. The developed method

takes into consideration the operational aspect of the mission in addition to the

statistical characteristics of the underlying phenomenon.

6

1.4.1 Coordination

Most of the multi-UAV systems are designed to address problems related to

specific research in a particular environment of interest. The UAVs cooperate

and share data to obtain information on a certain aspect of the environment.

Regardless of the number of UAVs and size of the AOI (Area Of Interest), coop-

erative systems deliver an improved overall picture of the environment through

coordination.

There are many studies on multi-UAV cooperative control systems that address

coordination issues. These focus on designing a system to control and monitor a

region. One of the earliest studies proposed using aerial photographs to monitor

fires in order to combat them [5]. The objective was to use aerial photographs to

map the fire and then coordinate the team on the ground. In the past few years,

the literature has included more and more research of systems utilizing a team of

small cooperating UAVs to get better surveillance; that is, better response time

in missions where time is critical.

Recent studies have focused on special missions that can be efficiently per-

formed with multi-UAV systems. Some address the problems of formation flight

and some the problems of coordination. Fewer studies have been done on recon-

figuring the coordination [81], or on coordination where the assigned tasks have

uncertainty. This thesis demonstrates that if the guidance system accounts for

real-time events and is able to adjust the flight formation to incorporate changes,

then the trajectories are optimal in time.

Closely related is the work that has been done on multi-UAV coordination

for tracking missions for search and rescue or surveillance [21]. Fig. 1.3 presents

a concept that relies on low altitude and short endurance (UAVs). The work

explores tracking a fire line by using a team of UAVs following the perimeter of

7

the wildfire area. The UAVs return periodically to the ground station location

for downloading the collected data. The research focused on how to minimize the

latency associated with the fire perimeter measurement when it is transferred to

the ground station.

In [3], the design includes a coordination scheme to control a rotary wing plat-

form (Quadrotor) for a similar mission to the one above. Essentially the motion

of the UAV patrols the propagating perimeter. Whenever one UAV approaches

another UAV (rendezvous point), deconflict the rendezvous and resolve each UAV

next flight direction. This research assumes, however, that the perimeter of the

fire is circular.

Figure 1.3: Conceptual diagram from [21]. (a) Latency profile for a single UAV
monitoring a static circular fire. The thickness of the path denotes the latency of
information at that point when it is transmitted to the base station. (b) Latency
profile with a pair of UAVs monitoring a static circular fire in opposite directions.

An additional application [3] focuses on patrolling a fire front using quadro-

tors. They suggest that the path of the quadrotor can be updated by planning

rendezvous points for sharing tracked data and then assigning the next segments

of the perimeter. In a similar type of mission, [21] suggests a decentralized multi-

UAV approach to monitor the perimeter of a fire. These studies (and similar

ones), examine a specific scenario where the focus is on directly tracking the pe-

8

riphery point. This is limited however, by focusing on the connection between

the uncertainty of the spreading perimeter and the maneuverability of the fleet

needed to maintain knowledge of the complete perimeter.

Figure 1.4: UqH- (2 member) cooperation for forest fire surveillance from [3].
The goal of the cooperation is to track every point of the evolving fire perimeter
and update the location of the fire with the minimum latency.

1.4.2 Observation

In coordination, one of the basic operations is observation sharing. Most of

the recent studies in multi-UAV address the problem of partial information. It

reflects the “real-world” problem where the UAV has limited communications

(range or bandwidth). One UAV can communicate with one that is close by, but

not with another that is far away. [78] presents a variety of research problems

in which multi-vehicle systems agree on the value of observed data (consensus),

and explores control strategies and a set of solutions for implementing them. [14]

includes a chapter that suggests various deployment algorithms. They consider

a distributed algorithm to address the physical limitations of the communication

9

system for observation sharing.

If a coordination algorithm for an environment with uncertainty is available,

the overall system still relies on individual sensing capabilities. Even if the system

uses the best or most advanced sensors, the sensors can be restricted by environ-

mental conditions, i.e., the sensors carried by the UAV do not have suffecient

range [30], and the data measured can only be local and quantized.

Quantization is a well-studied topic for a broad range of applications, most

importantly overcoming the limited precision of electronics and computational

processes. When sensors have insufficient precision, the situation can lead to

ineffective decision-making; Quantized estimation was developed in order to re-

construct the data effectively [44].

The theorem of quantization [44] implies that the likelihood function can be

reconstructed from quantized sensor observations through various methods [8].

Studies also show that sensor networks sharing quantized data can reach a con-

sensus for estimating the state mean [12]. Multiple sensors, data sharing, and data

fusing are examples of a class of applications that try to solve the reconstruction

problem [8].

This thesis investigates data reconstruction with a new coordination scheme

where missions are facing uncertainty about the periphery in the AOI. The co-

ordination scheme takes into account the UAVs’ state, their observations, and

the overall mission, and allocates each UAV to a specific task. This coordination

scheme allows the multi-UAV system to act in a coordinated manner. In this

research, the coordination scheme is based on the assumption that there is no

communication limit and therefore no need to visit the ground station often. The

coordination algorithm considers the observations in the two phases of a tradi-

tional mission: the discovery phase and the tracking phase. Using the observed

10

information in both phases generates a better prediction of the periphery, reducing

time lost and maximizing performance.

Current multi-UAV high-level-control systems have an inefficient use of re-

sources (i.e., number of UAVs to AOI) for observations [73]. By wasting time

and resources (e.g., hovering, loitering or long period of searching), the tracking

mission performance is low, the system has a low-rate of significant detected data,

and the current coordination algorithm makes the AOI less predictable.

The inefficiency of current systems with high level control creates significant

timing difficulties for achieving the mission objectives. The ongoing mission can

leave one vehicle loitering, resulting in a high latency of updates. Based on dif-

ferent studies [21], this represents a big time loss during a mission, with fewer

updates, which in some cases can cause the mission to fail in its tracking objec-

tive.

1.4.3 Propagated Periphery Modeling

Disaster phenomena growth models, which predict the spatial and temporal

dynamic spread rate, may help in evaluating the situation and deciding on a

suitable response in a real-time deployment [7]. Appropriate representation and

estimation of the spatial uncertainty can improve the prediction or help in devel-

oping a simplified model [89]. A mission with an uncertainty model for the AOI

stands to benefit substantially from the predicted confidence envelope approach.

For example, in expected high rate of spread (ROS) segments along the AOI

perimeter, the allocation can use the availability and priority of the segment to

get better results than if it were to assume that all segments along the perimeter

are identical. Available UAVs can be redirected to new areas instead of merely

11

loitering.

In one of the biggest wildfire research projects done by the Joint Fire Science

Program, the researchers developed fire behavior models for operational use. Their

main objective was to develop a detailed dynamic model to predict the physical

behavior of the ground phenomenon. They considered two simple fire modeling

approaches. In both models, the assumption was that the local spread at a point

on the perimeter is perpendicular to the fire perimeter into an unburned envi-

ronment, and that the fire has a local rate of spread (ROS) normal to the fire

line.

Figure 1.5: The progression of a wind-blown fire front from an initially circular
fire. The model is formulated as a two-dimensional Eulerian partial differential
equation (PDE) and solved with a level-set methodology (imported from [84]).)

There could be a variety of phenomena on the ground. This thesis deals with

uncertainty from different sources, so that the detected phenomenon is represented

as unknown dynamics, which is almost impossible to predict. However, the motion

of the fire can be limited to reasonable boundaries with randomly changing motion.

The future position of the measured object on the ground depends only on its

12

current position and not on its history; thus a simplified model is feasible.

Figure 1.6: Model results from [21]. Fire simulation of high wind conditions
with an elevation gradient. The fire is spreading in the direction of the wind.
Ecological Model for Burning in the Yellowstone Region (EMBYR)

1.5 Contributions

This thesis contributes new results on mission-level control of multiple agents.

The primary objective of the research is to minimize the uncertainty of a monitored

closed boundary with dynamical changes in a large-scale area with stochastic

environmental factors.

Much work has been done on patrolling missions of a stochastic propagated

boundary [21]. Some researchers reported on utilizing variational methods for

multi-agent guidance systems. This paper proposes a solution for deploying mul-

tiple agents for monitoring a propagating boundary in sub-optimal conditions.

The results of this research introduce a new factor, Uncertainty Rate of Change

(URoC), which can serve as a performance criterion for operational multi-agent

systems. The URoC criterion considers the dynamical process model, number of

agents, agent dynamics, and the agents’ relative path orientation.

In particular, the contributions include the following developments:

13

• A methodology to estimate a propagated boundary with quantized measure-

ments.

• A scheme for optimal deployment of a fleet of agents in an exploration

mission.

• Methodology to dynamically assign a fleet of agents based on uncertainty

distribution in a monitoring mission.

• Design and implementation of experimental demonstration for quick deploy-

ment of a low-cost, low-power fleet of UAVs with a high-level ground control

system.

• Design and implementation of rapidly reconfigurable multi-UAV simulation

(MSIL & MHIL).

1.6 Structure of the Dissertation

This research presents a multi-UAV coordination approach for reducing the un-

certainty of a propagating periphery. Chapter 2 develops and presents our novel

approach to periphery monitoring and compares its key performance character-

istics with some existing methods. Chapter 3 develops the system architecture

based on past projects. Chapter 4 describes the simulation as part of the system

development process. Chapter 5 demonstrates a case study utilizing the complete

developed algorithms, the implemented software, and the new MSIL simulation.

Chapter 6 presents the conclusions of the research and suggests future work on

multi-UAV high level control.

14

Chapter 2

Periphery Estimation Methods

2.1 Introduction

A necessary condition for monitoring a propagating boundary is precise estima-

tion. That is, minimizing the deviation from the actual periphery in the presence

of disturbances such as wind, 3D terrain features (such as slopes and vegetation),

and sensor noise. Precise estimation is achieved through the development of a

mathematical model that accurately responds to external observations so as to

converge upon a predictive model [35]. The process of estimation is conditioned

on having a mathematical model of what is being estimated (referred to as the

dynamical phenomenon). This is because the estimator must be able to predict

the boundary of the propagated phenomenon and adjust that prediction based on

available sensor data. Estimation techniques are used to extract the statistical

properties required to improve the model accuracy from the raw measurements

gathered by the sensors.

15

2.1.1 Overview of Estimation Approaches

In dynamic system models there are often unknown or uncertain parameters

that should be estimated along with the state itself. For example, in stochas-

tic propagated phenomena, the spread rate of the boundary might be unknown.

Similarly, the variances might only be known approximately, or not at all.

The estimation problem is not feasible in a situation where there are no avail-

able sensors. It is practical only where a dynamics model exists. Modeling the

propagation of a ground phenomenon is complex because the model needs to

include multiple dynamic and environmental factors [91]. Deriving an accurate

model that considers all of those factors leads to an extremely complicated model.

Usually, the solution is to utilize a dynamic model that is computationally feasible

and is well-supported by observation.

The purpose of estimation is to extract the required information and often

missing or unobserved measurements from the incoming measurement data. The

estimator performs this task by using a cost function. That cost function can be

an error over a period of time or more rigorous derivation of the system properties

using probability tools.

Bayes’ Rule

In a Bayesian setting, the proper way to estimate a parameter is by setting a

prior distribution on the parameter P (A) and treating it as an additional random

variable in the model ([88]).

Bayes’ theorem describes the probability of an event based on initial knowledge

(also called the prior) and by accounting for evidence (the measurement) [63].

P (B|A) = P (A|B)P (B)
P (A) (2.1)

16

Equation (2.1) is the simple form of Bayes’ rule where, according to the common

interpretation, the event A has been observed and its impact on event B is being

evaluated. P (B|A) is the posterior probability and it is proportional to the prior,

P (B), times the conditional probability (or likelihood), P (A|B).

The Bayesian interpretation for the case study in this thesis can be made by

applying Bayes’ rule. In equation (2.2), z describes the measurement of relative

location of each agent in a binary representation, IN or OUT. The probability

that the observation is in a bounded region A is P (z ∈ A), and the conditional

sampled event is, therefore:

P (B|z ∈ A) = P (z ∈ A|B)P (B)
P (z ∈ A) (2.2)

Maximum Likelihood Estimation

The Gaussian distribution has two adjustable parameters: the mean value, µ,

and the standard deviation σ. The question is: What choice of these parameters

makes the observations “most likely”?

In principle, an optimal estimate of a state variable may be obtained from the

probability density function. The maximum likelihood optimization method relies

on the measured set of observations. Maximum Likelihood Estimation (MLE) can

be utilized to estimate the state in any time-step when there is a new observation

(Sequential method) or after collecting a number of observations (Batch method).

The formal notation of the likelihood function is a conditional probability of the

measurement z given a particular value of x:

L , p(z|x) (2.3)

17

Since the definition of the likelihood focuses on an observation and an associated

pdf, it is a function of x. To find the maximum likelihood one should vary x until

the probability is maximized:

x̂MLE = arg max
x

p(z|x) (2.4)

Maximum A-Posteriori Estimation

The Maximum A-Posteriori (MAP) estimator differs from the MLE estimator.

The a-priori information can be regarded as an additional measurement. When

there is prior knowledge of the probability distribution of x, the estimator in-

corporates that information in the estimation process to get better accuracy. In

MLE the parameters are assumed to be unknown. The Bayesian inference used

to determine MAP formally considers the parameters to be random variables.

By using the Bayes rule to come up with the posterior pdf that incorporates the

observation and the prior information, we get the following formal formula:

p(x|z) = p(z|x)p(x)
p(z) (2.5)

where p(x) is the prior distribution that denotes the prior beliefs of the param-

eter before we consider the observation, and p(z) is a normalization term that

is independent of the parameter and therefore is often left out of the estimator.

To find the MAP estimator one should vary x until the probability p(z|x)p(x) is

maximized:

x̂MAP = arg max
x

p(z|x)p(x) (2.6)

18

Kalman Filter

The Kalman filter is regarded as the optimal linear solution to signal tracking

and data estimation. The Kalman filter estimator is a practical use of some

of the statistical techniques and is constructed as a mean squared error (MSE)

minimizer. For minimization of the MSE, it employs a model for the Gaussian

distribution errors. The process model is:

xk+1 = Φ xk + w (2.7)

and the observation model,

z = H x + v (2.8)

where x is the state, Φ is the state transition matrix, z is the measurement,

H is the noiseless connection between the state vector and z, w and v are the

uncorrelated associated process and observation noise accordingly. Both models

of noise are assumed to be Gaussian:

x = N{E(x|z), P (0)} (2.9)

v = N(0, R) (2.10)

where, R is the covariance, P (0) is the error covariance matrix and the state and

the measurement noises are independent:

E(xvT) = 0 (2.11)

The estimator process follows a well known recursive method resulting in a mini-

mum variance unbiased estimator (Linear Kalman Filter). The conditional mean

19

time propagation relation can be written as:

x̄ = Φ · x(−) (2.12)

P (−) = Φ · P (+)
k−1 · ΦT +Q (2.13)

where Φ is the transition matrix, Q is the process noise covariance, x(−) is the

prior state vector and P
(+)
k−1 is the process a-priori covariance. The conditional

mean, (a-posteriori), of x is:

E(x|z) = x̄+K(z − Hx̄) (2.14)

where, H is the observation matrix and K is time-varying weighting matrix (the

minimum variance gain) for Gaussian random variables:

K = P (−)HT (HP (−)HT +R)−1 (2.15)

The conditional covariance of x is:

P
(+)
k = P (−) − P (−)HT (HP (−)HT +R)−1HP (−) (2.16)

and after substituting the variance gain, K:

P
(+)
k = [I −KH]P (−) (2.17)

Unscented Kalman Filter

The Unscented Kalman Filter (UKF) has become a standard technique used in

many nonlinear applications [49]. It introduces improvements where the Extended

20

Kalman Filter (EKF) fails, and the estimator outcome diverges [95]. The origi-

nal Kalman Filter approach proposes to propagate the Gaussian random variable

through linear system dynamics, where the Gaussian random variable represents

the state probability distribution. Furthermore, the EKF offers an approxima-

tion method when the system model is nonlinear, in which the Gaussian random

variable is being propagated through a linearized version of state equation.

The first-order linearization of a nonlinear system can introduce significant er-

rors and may cause reduced performance for state or parameters estimation [51]

(i.e., mean and covariance). The UKF addresses the problems of state distribution

approximation and uses pre-calculated sample points that capture the probability

distribution of the approximated state [50].

Truncation

In engineering, many quantities that cannot be modeled accurately are as-

sumed to follow a normal distribution. In some applications, however, there are

physical reasons to set the probability to zero on specific bounds of the sampled

data. If the normal distribution fits the data strongly, it may be preferable to

work with a truncated normal distribution. The data is truncated in cases when

it is known that the data can never be out of certain bounds. An example is if

one wishes to consider data within a particular range of interest, sometimes noted

as [a, b], or [a,+∞), or (−∞, b), depending on the truncation applied.

It is possible to establish a truncated normal distribution by first assuming the

existence of a “prior” normal distribution, with mean µ and standard deviation

σ. One may then derive a modified distribution which is zero outside the region

of interest, and inside the region has the same “bell shape” as the original normal

distribution. The derived distribution must support the fact that the integral of

21

the new region should be 1, so it should be scaled by a constant [43]. Following

the definition of conditional probability, the truncated normal distribution is:

f(x|x > a) = f(x)
Prob(x > a) (2.18)

where, f(x) is the pdf (probability density function) of a random variable x, and

a is the lower bound of the range. The denominator is the quantity needed to

scale the density such that it will integrate to 1.

Censoring

In some applications, the data is not fully accessible or has been masked. The

measured quantities are, therefore, censored where there is not enough information

and the different values of these quantities (in a specific region) are assumed to

have the same value. The new distribution is a mixture of discrete and continuous

parts. The original distribution is assigned to the uncensored region, and the full

probability of the censored region is assigned to the censoring point. That way

there is no need to scale up the uncensored part [43].

The expected value, E[y], is then a mixture of a discrete censored part and a

continuous part:

E[y] = Prob(y = a)× E[y|y = a] + Prob(y > a)× E[y|y > a] (2.19)

The truncation and censoring methods assume that a normal distribution can

represent the uncertainty of a given state variable. Each incorporated sample

would update the distribution. The truncation approach scales up the distribu-

tion. The censoring keeps the scale at the last censoring point. Nevertheless, the

resulted distribution in both is associated with the last updated region.

22

For the sequential process, when there is a new observation in each time step,

implementing those methods becomes difficult. The observations being incorpo-

rated are from different drones with different distances (along with local compass

directions), and they do not necessarily have common regions, nor monotonically

decreasing distances.

Quantization

Digital components are frequently incorporated into most modern systems.

Digital devices are limited to a certain number of quantum intervals in their

outputs. The quantization of measurement is a process where a digital device

outputs the proper interval according to where the measured quantity lies. The

information can be recovered accurately if digital devices are either upgraded

or improve their computational performance, such as by a sophisticated data

processing algorithm.

In the research problem presented herein, there are only two quantum intervals

which are considered as coarsely quantized measurements. The sensor measures

the status of its current location accurately. The measurements represent the

inside of boundaries or outside of boundaries status relative to the explored phe-

nomenon, which is also equivalent to a quantized measurement. Moreover, where

improving the sensor capabilities is not a feasible solution an alternate approach is

to use the information, that a measurement on the boundary has not yet occurred,

to improve knowledge of its current expected value.

In [27], the author describes methods to evaluate the mean and covariance of

the measurement vector conditioned on the fact that the components have been

quantized. The method is combined with the Kalman filter predictor-corrector

approach. It determines the conditional mean and covariance of an estimated

23

state with quantized measurements. For convenience, Quantized Kalman Filter

will be noted as QKF. The following section lays out an analytic derivation of

the expectation for the state vector conditioned on quantized measurements. It

concludes with the general equations that have been adapted to the periphery

estimation problem under discussion.

2.1.2 Problem definition

The problem is one of optimization with respect to time with sparse measure-

ments detected by a fleet of UAVs. The UAVs have a dynamic process to monitor,

as quickly as possible, a periphery represented by a set of Control Points (CPs).

The region of the phenomenon is in R2, and the payload carried by each UAV

fleet member includes an onboard sensor to distinguish between inside and outside

areas (the quantized measurements). The observations are binary:

z ∈ A (2.20)

where A is a bounded region (inside or outside).

Figure 2.1 illustrates the approach taken to represent the boundary with a set

of CPs connected by straight lines. Each CP has a nominal spread rate that is

considered relative to the origin point of the propagated phenomenon. That is,

the spread rate is always pointed outward. The information is being gathered by

a UAV to provide the observations that are noted as IN or OUT relative to the

enclosed periphery. The optimum policy is derived from the decision of which CP

the UAV should approach first.

24

CPi

CPj

Origin

Figure 2.1: Setup of the boundary representation approach. CPi and CPj,
(square), are two of many grid points representing the close predicted periphery
(in blue). The Origin (circle) is the starting point of the propagated phenomenon,
and the UAV is used to collect observations.

The estimation problem accounts for the dynamics properties of the problem,

where vehicles are mobile and the environment domain changes.

25

Multi-UAV
Controller

UAV
Kinematics

MATLAB

Propagation
Model

Environment

Wind
Model

Figure 2.2: The block diagram describes the major components involved in the
estimation problem.

Figure 2.2 illustrates the the major components involved in the estimation

process. The propagation model accounts for the dominant factors of a fire line

(i.e., wind and terrain slope).

The model used for the UAV assumes that the speed (v) and altitude are

constants, and the UAV is limited to a minimum turn radius of R:

ẋ = vcos(θ)

ẏ = vsin(θ)

θ̇ = ω

(2.21)

where the angular velocity ω is bounded, (ω ≤ |v/R|), and x, y are the position

26

of the UAV.

The primary goal of the research is to design a method that achieves the

minimal cumulative uncertainty of the periphery. The method should persistently

monitor the uncertainty over all CPs and over a long span of time. The problem

can be viewed as an evaluation of a ground phenomenon where the state periphery

is propagated and sparse measurements are detected by a fleet of UAVs. The

particular surface of the phenomenon is a large-scale area, and the payload on

each UAV fleet member includes an onboard sensor to distinguish between inside

and outside areas (quantized measurements).

The problem involves three research areas: i) representation of the continu-

ous phenomenon, ii) model-based prediction of a propagated periphery, and iii)

estimation of the front based on quantized measurements. The primary goal of

the research is to design a method that achieves the minimal uncertainty of the

front based on the quantized measurements, such that in the following stage of

the mission the guidance logic updates the fleet members’ tasks and reroutes the

fleet members to further suppress the uncertainty.

27

2.2 QKF Method

This section presents a method to estimate the uncertainty along the periph-

ery of a stochastic phenomenon. The technique analytically computes the frontier

that is conditioned on UAV measurements and uses the Quantized Estimation

method [27] to update the expected location and spread-rate of a propagated

boundary. The methodology utilizes a Quantized Estimation to improve the pre-

dicted spread of a periphery and decrease the uncertainty of its current state. It

follows the procedure to construct the boundary and estimate the rate of spread.

After the Quantized Estimator is determined, the algorithm is incorporated in a

UAV dynamic simulation to prove the concept of uncertainty suppression with var-

ious deployment schemes for a single UAV. The section concludes with a detailed

numerical analysis of the derived algorithm and extensive simulation results.

2.2.1 Boundary Definition

In dynamic systems models, there are often unknown or uncertain parame-

ters that should be estimated along with the state of dynamics. For example,

in stochastic propagated phenomena, the spread rate of the boundary might be

unknown, and the variances of the spread-rate could be known approximately or

not known at all.

Figure 2.3 illustrates the approach taken to represent the boundary with a

set of control points (CPs) connected by straight lines. Each CP has a nominal

spread rate that is relative to the origin (O) of the propagated phenomenon. That

is, the observed spread rate is always pointed outward. The information is being

gathered by a UAV to provide the observations that are noted as IN or OUT

relative to the enclosed periphery.

28

CPi

Origin

Figure 2.3: Setup of the boundary representation approach. CPi, (square), is
one of many points representing the close predicted periphery (in blue). The
Origin, (circle), is the starting point of the propagated phenomenon and the UAV
is used to collect observations.

2.2.2 QKF Estimator

In many estimation methods the principle solution is to obtain the pdf (p(xk|z1:k)),

where xk is the state vector at time k, z1:k are all the measurements from initial

time step to current time step (k) and zk = Hxk + vk is measurement at time

k. The standard implementation is a two-step procedure: prediction and update.

Assuming that the pdf from the last time-step (k− 1) is available the probability

of the state vector (x) conditioned on measurements (z) is, p(xk−1|z1:k−1), the

system model xk = fk(xk−1, vk−1) (where, v is the process noise) is used to obtain

the predicted pdf p(xk|z1:k−1) in the prediction stage.

The update stage utilizes the measurement zk to modify the prior pdf to obtain

the posterior pdf p(xk|z1:k) of the current state xk.

In [27] the author includes a full derivation of the expectation of state vector con-

ditioned on quantized measurements, then concludes with the following equations:

E[f(x)|z ∈ A] = E{E[f(x)|z]|z ∈ A} (2.22)

29

where the mean of some function of x, f(x), conditioned on measurement z which

is bounded in some region A, can be evaluated by finding the conditional mean

of f(x) given a measurement and then averaging this function, f(z) = E[f(x)|z],

conditioned on the bounded region (z ∈ A). These results are useful for quan-

tized random variables and can be used to formulate the estimation problem with

a proper interpretation of the type of dynamic system that is the focus of this re-

search. The method that has been adopted and further developed in this research

is based on the following [27]:

The conditional mean of the state,

E(x|z ∈ A) = x̄+K(E(z|z ∈ A)− Hx̄) (2.23)

and the conditional covariance of the state,

cov(x|z ∈ A) = P (+) +Kcov(z|z ∈ A)KT (2.24)

where K is a time-varying weighting matrix (the minimum variance gain) for

Gaussian random variables, x̄ is the predicted state, P (+) is a-posteriori covari-

ance, A (A ⊂ R2) and cov(z|z ∈ A) are the bounded region and the conditional

covariance of the measurements, respectively.

The resulting formulas include two new terms, the mean and covariance of the

measurement conditioned on the fact that the measurement vector has been quan-

tized. Although the quantized region A can be more than one dimensional, the

approximation methods are usually impractical. Tractable formulas, however, do

exist for one dimension.

30

ŷ

x̂
Origin

pCP (x, y)b̂

â

Figure 2.4: Basic coordinate-systems. The quantized measurement connected
along 1-D coordinate line (â) and the covariance of the prediction represented
with an ellipse.

31

2.2.3 QKF - Implementation

The literature on this topic shows that there is no existing general analytic

solution for the conditional mean and conditional covariance terms in equations

2.23 and 2.24. However, in the scalar case, there is a known relationship ([27])

if the a-priori measurement, z, is assumed to be Gaussian and lies in the region

r 6 z 6 s [27]:

E(z|z ∈ A) = z̄ + σz
P (z ∈ A) ×

1√
2π

e
−

(r − z̄)2

2σ2
z − e

−
(s− z̄)2

2σ2
z

 (2.25)

cov(z|z ∈ A) = σ2
z [1 + (r − z̄

σz
)
exp{−1

2[r − z̄/σz]2}
(2π)1/2P (z ∈ A)

− (s− z̄
σz

)
exp{−1

2[s− z̄/σz]2}
(2π)1/2P (z ∈ A)

− σz
P (z ∈ A) × (

exp{−1
2[r − z̄/σz]2}
(2π)1/2

−
exp{−1

2[r − z̄/σz]2}
(2π)1/2)]

(2.26)

where

P (z ∈ A) = 1
2

[
erf

(
r − z̄√

2σz

)
− erf

(
s− z̄√

2σz

)]
(2.27)

where z̄, σz are the mean and variance of the one dimensional measurement re-

spectively, the quantities r and s define the region A. The scalar case yields the

result for a one-dimensional system representation (see Fig. 2.4) and for that rea-

32

son, captures the distribution along a line that connects the measurement location

with the predicted boundary (control points).

There is a complementary sequence of steps to set the approximated bound-

aries in the scalar closed form solution. It is first and foremost based on the UAV

position and the estimated boundary. To compare the estimate of the IN or OUT

of the periphery to the measurement, a relative coordinate system needs to be de-

termined. That coordinate system should be oriented such that the measurement

can directly influence the estimate and the measurement can be expected based

on the prediction.

The virtual line being used to evaluate the region is always directed from

the observation toward the CP. The bearing of that line is used to compute the

transformation matrix (T) and to transform the covariance (Eq. 2.28), and derive

the one-dimensional variance (σz). It then translates the origin of the coordinate

system to the location of the observation. The mean value (µ̂a) can then be

evaluated based on probability reasoning for the region: [0,∞] if the measurement

is as expected or [−∞, 0] if it differs from the expectation. The covariance of the

predicted point is projected by using a transformation matrix to the line-of-sight

coordinate system [a, b]:

Pa,b =

σaa σab

σab σbb

 = T · Px,y · T T (2.28)

The evaluated variance associated with the explored CP is the same variance as at

the measurement location (along the line-of-sight). Hence, the projected variance

(σz) can be used as part of the evaluation step of the conditional covariance of

the scalar measurement (in Eq. 2.26).

Figure 2.4 shows the basic transformation that the algorithm employs to project

33

the covariance and find the current variance for the current observation.

Algorithm 1 Estimation with QKF.
Given a CP state vector xCPi and observations yi
repeat
1. Predict. xCPx,y

(+) := Φ · xCPx,y
(−)

2. Transformation. T = T a,bx,y .
3. Translation. xCPa := Dist(xCPx,y , xDPx,y).
4. Covariance Evaluation. PCP

a,b := T · PCP
x,y · T T .

5. 1D Evaluation. µa := xCPa , σa := PCP
a,b (1, 1).

6. Set Bounds. (bac, dbe).
7. QKF (scalar evaluation). E(z|z ∈ A), cov(z|z ∈ A).
8. QKF Update. xCPa := E(x|z ∈ A), PCP

a,b = cov(x|z ∈ A).
9. Inverse Transformation. PCP

x,y := T T · PCP
a,b · T .

10. Inverse Translation. x̂CPx,y := xCPx,y
(+) + T T · (µ̂a − xCPx,y

(+))
until stopping criterion is satisfied.

Algorithm 1 presented here describes a step-by-step procedure to determine the

estimated state of each CP. The superscript (+) describes the a-posteriori value,

and (−) describes the prior value. Also, Φ is the transition function, representing

the dynamic model. The first four steps are similar to the classic Kalman Filter.

The following steps are part of the newly developed method. Step 5 and 6 are

the core of the quantization interpretation. To set the boundaries of the interval,

the method evaluates different configurations that the system would interpret in

a nominal scenario. Before incorporating the measurement, it estimates what the

expected state (IN/OUT) should be for the UAV’s current location. The observa-

tions are either IN or OUT (relative to the periphery). If the observation is as the

expected measurement, the interval is set to [0,∞]. If there is a conflict between

the observation and the expected measurement, the heuristic interpretation is that

the predicted spreading rate is either slower than it should be or too fast. In the

case where there is a conflict, the estimator sets the interval for evaluation to

[−∞, 0], meaning that the predicted mean value will likely be behind the location

34

where the observation has been taken.

(i.)

p(xcpâ)

a (ii.)

p(xcpâ)

b

Figure 2.5: The two possible configurations for measurement. The plot to the
left is for the case where observation is as expected. The plot to the right is
the case in which the observation conflicted with expected measurement. The
airplane in black means that the observation is labeled OUT. The airplane in
red is for IN labeled observation. The control point (square) is within expected
spreading direction. The fire origin is represented as a circle, and the actual
propagated segment is in red with arrows toward the spread direction. Notice that
the probability density function attached to each configuration consist interpreted
boundaries (shaded in the graph) that should be considered in the estimation step.

Figure 2.5 presents the two possible configurations the measurements can be in

(confirm or disagree with prediction). The integration limits are determine based

on the interpretation of the current configuration: ‘a’ is lower integration limit for

non-conflicted, ‘b’ is upper integration limit for conflicted observation.

2.2.4 Approximations Techniques

In the following sections, the closed form solution of the conditioned mean

and variance is replaced with approximations. The new techniques combine QKF

approach with classical estimators. It then modifies the update step to include

approximated mean and covariance of the quantized measurements and examine

its robustness.

35

MLE Approximation

This section addresses the general approach for the maximum likelihood (ML)

with quantized measurements. The MLE estimator determines the most probable

parameters Hkxk. Consider the linear measurement equation:

zk = Hkxk + vk (2.29)

For convenience, the estimated measurement is denoted by z∗k , Hkxk, where

the state vector xk varies over time (subscript k) according to a known dynamic

model, zk is the measurement vector before quantization, and H is the linear

observation model. Given an observation z ∈ A, the ML estimator finds the value

of z∗ that maximizes the likelihood

P (z ∈ A|z∗) (2.30)

or,

z∗MLE = arg max
z∗

P (z ∈ A|z∗) (2.31)

Ref. [27] describes the MLE estimates of z in Eqs. 2.4 and 2.5. The equations

derivation assumes that the measurements are bounded ([a, b]) and that the noise

components vi are independent:

L(a, b, x) = P (a ≤ z < b)

= P (a−Hkxk ≤ v < b−Hkxk)

=
∏
i

P [ai − (Hkxk)i ≤ vi < bi − (Hx)i]

(2.32)

The probability for each quantized observation is given by integrating the noise

36

density function, pv(u):

P = P [a− z∗k ≤ v < b− z∗k] =
∫ b−z∗

k

a−z∗
k

pv(u)du (2.33)

The integral is the probability, which is the area under the pdf curve. The like-

lihood is maximized for wider bounds. Assuming that the probability density

function of the measurement noise is known, the MLE is that value of xk that

maximizes the likelihood of the measurement zk.

To find the optimal parameters, the estimator sets arbitrary bounds based

on statistical reasoning associated with the relative location of the measurement.

Assuming that x can take any value and that [a, b] are arbitrary bounds, there are

two possible pairs of bounds, which leads to the integral lower and upper bounds.

In both cases, the maximum likelihood obtained is as high as x goes, hence Pi ≈

1. A practical or engineering perspective, however, restricts the solution to a

Gaussian random variable that is feasible and properly limited. Hence, referring

to Fig. 2.5 the approximated state statistical properties used in the simulation for

the MLE case are:

z∗MLE = a+ 2σv (2.34)

and for the conflicted case:

z∗MLE = b− 2σv (2.35)

where a and b are the lower and upper integration limits for non-conflicted and

conflicted measurement, (see Fig. 2.5).

Covariance Approximation The approximation for the conditional covari-

ance, covMLE, is developed by analyzing the expected error and deriving the

analytical formula. The detailed derivation is described for the MLE approxima-

37

tion; however it is also applied to the next two approximation methods (MAP and

UKF).

cov∗MLE(z|z ∈ A) = E{(z − z∗)}2 (2.36)

The covariance integral is by definition an integral of the product of squared errors

and the PDF of the prior (p(z)):

cov∗MLE(z|z ∈ A) =
∫ ∞
a

(z − z∗)2 · p(z)
P (z ∈ A)dz (2.37)

The presented case in Eq. 2.37 is for the non-conflicted observation where a is the

lower bound and the upper bound is ∞. The term P (z ∈ A) is used for scaling

the density so that it integrates to one over the range of A and is described in

Eq. 2.27. By expanding the equation to three integrals :

cov∗MLE(z|z ∈ A) =
∫ ∞
a

z2 · p(z)
P (z ∈ A)dz

− 2z∗
∫ ∞
a

z · p(z)
P (z ∈ A)dz

+ z∗2 ·
∫ ∞
a

p(z)
P (z ∈ A)dz

(2.38)

Note that the integral of the second term is the conditional mean E(z|z ∈ A) and

that the integral in the third term is by definition one. By using basic exponential

integral solutions: ∫
z · e−c·z2

dz = − 1
2ce

−c·z2 (2.39)

∫
z2 · e−c·z2

dz = 1
4

√
π

c3 erf(z
√
c)− z

2ce
−c·z2 (2.40)

38

where, the variable of integration is z and c is a constant variable. Utilizing the

formulas and substituting the limits of the first two terms in Eq. 2.38 is given by:

cov∗MLE = 1
P (z ∈ A) · d ·


∫ ∞
a

z2 · e
−
z2

2σ2
z dz − 2z∗

∫ ∞
a

z · e
−
z2

2σ2
z dz

+ z∗2

= 1
P (z ∈ A) · d ·

[1
4

√
π

c3 · (1− erf(a
√
c)) + a

2ce
−c·a2 − z∗MLE ·

1
c
e−ca

2
]

+ z∗MLE
2

(2.41)

where, c, d are constant variables which represent the scaling factors for the

normal pdf : c ≡ 1
2σ2

z

and d ≡ 1√
2πσz

.

In the conflicted case, where the expected measurement is not as been observed,

the truncation is at the upper limit b, and the resulting covariance is:

cov∗MLE = 1
P (z ∈ A) · d ·

[
1
4

√
π

c3 · (1 + erf(b
√
c))− b

2ce
−c·b2 + z∗MLE ·

1
c
e−cb

2
]

+ z∗MLE
2

(2.42)

MAP Approximation

The theoretical formulas (2.4,2.6) can be hard to apply in real-time situations.

Applying the formulas directly would require infinite samples and result in a high

computational load.

The key in a real-time estimator implementation is to use a recursive estimator

to incrementally update the posterior probability distribution of the state vector

based on the most recent data. MAP estimation fuses both the a priori observation

and the new one to come up with an estimate. It repeats that process by using

the previous estimate as a priori and incorporating it with a fresh observation.

Assuming the observations produced by the sensor sequentially, it would compute

the estimate values in each time step.

39

One can find a closed form solution for the general MAP equations, but it

cannot be employed here since the observations are bounded. It is discussed

before that the measurements and the parameters be related through the linear

measurement equation:

z = Hx+ v = z∗ + v (2.43)

Where v is the measurement noise and z∗ is the transformed state. MAP esti-

mator finds the best measurement z∗ = Hx to use in place of E(z|z ∈ A). The

joint probability P (z∗, z ∈ A), can be expanded by using the the chain-rule of

conditional probabilities

P (z∗, z ∈ A) = P (z∗|z ∈ A) · P (z ∈ A) = P (z ∈ A|z∗) · P (z∗) (2.44)

The probability is conditioned on measurement z, which is bounded on the region

A ([a, b]). Following the general description in Eq. 2.44, the posterior probability

is a product of the conditional probability and the prior:

P (z∗|z ∈ A) = P (z ∈ A|z∗) · P (z∗)
P (z ∈ A) (2.45)

The denominator is the normalizing factor from the formal Bayes rule which keeps

the a-posteriori distribution normalized. It fuses both the a-priori observation and

the new one to come up with an estimate:

z∗MAP = arg max
z∗

P (z ∈ A|z∗)p(z∗) (2.46)

It is assumed that the measurements are Gaussian distributed:

p(z∗) ∼ N (Hx̄, HP (−)HT) (2.47)

40

where E{x} = x̄, cov{x} = P (−) and for a special case of Eq. 2.47 the mean is

zero and the variance is, σ2
z∗ ,

p(z∗) ∼ N (0, σz∗) (2.48)

The first case to consider is the non-conflicted case, where the expected mea-

surement is the same as the observation. The lower bound is represented by the

parameter a. For all scenarios where the measurement is bigger than the left side

bound of the distribution it can be reformulated as follows:

p(z∗|z > a) ∼ P (z > a|z∗)p(z∗) (2.49)

The denominator term of Eq. 2.45 can be ignored. That term is a constant

multiply function that does not change with z∗. Therefore, when computing the

maximum a-posterior of the mean, the best z∗ can be found by searching for the

maximal probability:

z∗MAP = arg max
z∗

∫ ∞
a−z∗

pv(u)du · e
−

1
2
z∗2

σ2
z∗ (2.50)

where, pv(u) is the pdf of the measurement noise. The integral is re-scaled and

reformulated to be in σz units. By using the substitution ν = u

σz
, convert dν = du

σz
and convert the limits, this transforms the integral term:

z∗MAP = arg max
z∗

∫ ∞
lb

e
−

1
2
σ2
z∗ν2

σ2
v dν · e

−
1
2
z∗2

σ2
z∗ (2.51)

where, lb ≡ a− z∗

σz
is the integral lower bound for the non-conflicted case. By

using the basic integrals with exponentials solution:

41

∫
e−cx

2
dx =

√
π

2
√
c
erf(x

√
c) (2.52)

z∗MAP = arg max
z∗

[1− erf((a− z∗)√
2σv

)] · e
−
z∗2

2σ2
z∗ (2.53)

A similar process may be derive for the MAP when the observation is conflicted

with the expected measurement. The upper bound, b, appears in the equation and

the lower limit of the integral is now −∞. The derived formula for the conflicted

case is then:

z∗MAP = arg max
z∗

[erf((b− z∗)√
2σv

) + 1] · e
−
z∗2

2σ2
z∗ (2.54)

The approximation for the conditional covariance, cov∗MAP (z|z ∈ A), is treated

in the same way as the derivation of the approximated covariance for the MLE.

cov∗MAP = 1
P (z ∈ A) · d ·

[1
4

√
π

c3 · (1− erf(a
√
c)) + a

2ce
−c·a2 − z∗MAP ·

1
c
e−ca

2
]

+ z∗MAP
2

(2.55)

where, c, d are constant variables which represent the scaling factors for the

normal pdf : c ≡ 1
2σ2

z

and d ≡ 1√
2πσz

.

In the conflicted case, where expected is not as been observed, thus the trun-

cation is at the upper limit, b, and the covariance is:

cov∗MAP = 1
P (z ∈ A) · d ·

[
1
4

√
π

c3 · (1 + erf(b
√
c))− b

2ce
−c·b2 + z∗MAP ·

1
c
e−cb

2
]

+ z∗MAP
2

(2.56)

The major different of algorithm 2 compared with algorithm 1 lies in the fact

that it utilizes the MAP approximation step. Eqs. 2.53 and 2.53 are employed in

step 7 of the following detailed approximation method:

42

Algorithm 2 Estimation with MAP Approximation.
Given a CP state vector xCPi and observations yi

repeat

1. Predict. xCPx,y
(+) := Φ · xCPx,y

(−)

2. Transformation. T = T a,bx,y .

3. Translation. xCPa := Dist(xCPx,y , xDPx,y).

4. Covariance Evaluation. PCP
a,b := T · PCP

x,y · T T .

5. 1D Evaluation. µa := xCPa , σa := PCP
a,b (1, 1).

6. Set search Bounds. (bac, dbe).

7. MAP (scalar approximation). z∗MAP , cov∗MAP .

8. Update (QKF). xCPa := E(x|z ∈ A), PCP
a,b = cov(x|z ∈ A).

9. Inverse Transformation. PCP
x,y := T T · PCP

a,b · T .

10. Inverse Translation. x̂CPx,y := xCPx,y
(+) + T T · (µa − x̂a,b)

until stopping criterion is satisfied.

The first steps in the algorithm are the prediction and the transformation

from the general coordinate system to the one-dimensional representation. The

last three steps include the QKF update and the inverse-transformation.

UKF Approximation

The UKF approximation process involves determining a nonlinear mapping of

a given observation that is parametrized by mean and variance variables. The

nonlinear mapping is used to interpret the statistical properties of the unobserved

state from the observed one. The goal involves solving for the parameters in order

to minimize the expected square error, ek = ẑk − h(xk), where ẑk is the predicted

measurement and h(xk) is the nonlinear observation transformation. Hence, the

parameter estimation corresponds to estimating the Gaussian statistical proper-

43

ties, for example, µz and σz.

The complete derivation of the UKF estimator is described in [50]. This re-

search adapts the UKF method to approximate nonlinear mapping functions (see

A.1.9). To calculate the statistics of the nonlinear measurement zk, the method

determines a matrix Y that includes 2L + 1 candidate points, where L is the

dimension of the measurement zk. The candidate points are also known as the

sigma points, and each one of them is a scalar (ith entry) in the matrix Y (i). The

sigma points are sent through the observation heuristic:

Y
(i)
k|k−1 = z

(i)
k|k−1, i = 1, ..., 2L (2.57)

Note, the subscript k|k − 1 means that this is the predicted value based on the

information from the last time step.

The observation heuristic adapts the UKF technique. It is adjusted and ex-

tended based on the main idea of considering the a, b limits. The sigma points

are chosen with the prior variance, however since the sigma points are statistical

distribution representation of the bounded region they should be shifted to the

updated region when measurements are being incorporated. The sigma points are

set to be in-between the limits, for the conflicted case or the non-conflicted case.

A sigma point is reevaluated and replaced with the upper or lower limit when it

is out of the bounded region.

z∗UKF =
∑

Wm
i Y

(i)
k|k−1 (2.58)

where Wm
i are the sigma points corresponding weights.

The approximation for the conditional covariance, cov∗UKF (z|z ∈ A), is treated

in the same way as the derivation of the approximated covariance for the MLE or

44

MAP.

cov∗UKF = 1
P (z ∈ A) · d ·

[1
4

√
π

c3 · (1− erf(a
√
c)) + a

2ce
−c·a2 − z∗UKF ·

1
c
e−ca

2
]

+ z∗UKF
2

(2.59)

In the conflicted case, where expected is not as been observed, the truncation

is on the upper limit b, and the covariance is:

cov∗UKF = 1
P (z ∈ A) · d ·

[
1
4

√
π

c3 · (1 + erf(b
√
c))− b

2ce
−c·b2 + z∗UKF ·

1
c
e−cb

2
]

+ z∗UKF
2

(2.60)

The final step in the UKF approximation is the update step. This involves

calculating the estimated output based on the estimated covariance (cov∗UKF).

By applying the UKF approximation on the mean of the state conditioned with

quantized measurements:

x̂UKF (x|z ∈ A) = x̄+K(z∗UKF (z|z ∈ A)− Hx̄) (2.61)

where, z∗UKF (z|z ∈ A) is the mean value of the selected sigma-points, and the

approximated conditioned state covariance is:

covUKF (x|z ∈ A) = P (+) +Kcov∗UKF (z|z ∈ A)KT (2.62)

where, cov∗UKF (z|z ∈ A) evaluated by substituting the approximated mean value,

z∗UKF (z|z ∈ A), in the general formulation of approximated covariance and P (+)

and K are the state covariance and Kalman gain from QKF estimator.

45

Approximation Techniques Comparison

The previous section formulate the mean and covariance of the measurement

conditioned on the fact that the measurement vector has been quantized: E(z|z ∈

A), cov(z|z ∈ A). Different known estimation methods were adopted to estimate

the state conditioned on quantized measurement.

This section compares the estimators that come from a single measurement

with quantization limits as shown in Fig. 2.5

a/σz

-3 -2.5 -2 -1.5 -1 -0.5 0

E
(z
|Z

∈
A
)/
σ
z

-2.5

-2

-1.5

-1

-0.5

0

0.5

1
MAP, MLE, UKF & QKF Comparison - Fixed Boundary

QKF

MLE

MAP

UKF

Figure 2.6: A comparison between the approximations methods and the QKF.
The estimated mean of the quantized measurement is evaluated with distance for
the non-conflicted case.

Fig. 2.6 compares the approximation methods to the QKF estimator. The

46

expectation is fixed for the presented sequence (µ = 0), the variance remains the

same for each distance evaluation, and the observations are sampled in the range

of three standard deviations.

Fig. 2.7 illustrates the effectiveness of the different variants and how the sta-

tistical properties have been influenced by them. The observations impact the

expectation more as the measurements get closer to the current predicted mean

value. The MLE, MAP and QKF estimation methods incorporate the observa-

tions by truncating the distribution. The truncated part is relative to the distance

from the mean value and the current known distribution (i.e., the variance). QKF

introduces bigger displacements to the expectation value at a much closer distance,

and the MAP estimator is bounded by the MLE which sets the expectation by

the previous determine heuristic rule (Eq. 2.34).

Assuming that the observation is reliable, the expectation update is significant.

MLE uses the truncation, but it is bounded by the size of the standard deviation

of the observation noise. MAP relies on MLE and considers the prior which

improves its effectiveness. UKF implementation is limited to two sigma points

only. The attempt to describe the distribution with only two sigma-points induces

less influence and worse performance than the other techniques.

47

a/σz

-3 -2.5 -2 -1.5 -1 -0.5 0

√

co
v
(z
|Z

∈
A
)/
σ
z

0.5

1

1.5

2

2.5

3
MAP, MLE, UKF & QKF Comparison - Fixed Boundary

QKF

MLE

MAP

UKF

Figure 2.7: A comparison between the approximations methods and the QKF.
The estimation of the quantized covariance is evaluated with distance for the
non-conflicted case.

Fig. 2.6 shows that when the truncation is on the lower bound of the distri-

bution, then the mean of the truncated variable increases compare to the mean

of the original distribution. Moreover, Fig. 2.7 shows that the truncation reduces

the variance compared with the variance in the untruncated distribution.

48

b/σz

-3 -2.5 -2 -1.5 -1 -0.5 0

E
(z
|Z

∈
A
)/
σ
z

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0
MAP, MLE, UKF & QKF Comparison - Fixed Boundary

QKF

MLE

MAP

UKF

Figure 2.8: A comparison between the approximations methods and the QKF.
The estimated mean of the quantized measurement is evaluated with normalized
distance. Note that the case presented is the conflicted case where the conditional
expectation is not the same as the incorporated observation.

Figure 2.8 and 2.9 illustrate the same running setting however in cases where

the expected status is conflicted with the the observation (IN versus OUT). The

truncation is bigger when the measurements are farther away from the mean value,

and therefore the displacements are negative, which means that the expected

value should be shifted behind the observer. The variance starts very small since

the current expected value is conflicted from the beginning of that sequence of

measurements. The variance gets larger as the measurements get closer. Hence

the area under the density curve of the new bounds gets wider.

49

The UKF overestimate the results. The main reason is that the estimator

additionally incorporates the observation error as can be seen in Eq. 2.59.

b/σz

-3 -2.5 -2 -1.5 -1 -0.5 0

√

co
v
(z
|Z

∈
A
)/
σ
z

0

0.5

1

1.5

2

2.5

3

3.5
MAP, MLE, UKF & QKF Comparison - Fixed Boundary

QKF

MLE

MAP

UKF

Figure 2.9: A comparison between the approximations methods and the QKF.
The estimation of the quantized covariance is evaluated with distance. Note that
the case presented is the conflicted case where the conditional expectation is not
the same as the observation.

2.2.5 Simulation with a Single UAV

The simulation is designed to include all major components that are involved

in the exploration mission. It simulates the propagation of a wildfire with a ran-

dom and bounded spread rate along a wildfire periphery. The estimation of the

periphery and its spread rate from quantized observations of the UAV is carried

50

out on a ground control system that fuses the observations based on the derived

QKF method. A set of simple test cases are examined first. The performance is

qualitatively examined with the help of the spatial uncertainty attached to each

CP and is expected to improve as the number of measurements increases, or when

the observations get closer and closer to the actual CP. Any detected observation,

from inside or outside the periphery, could support the prediction. The new es-

timator interprets that situation as a conflicted observation or a non-conflicted

observation. The initial setup chosen here is similar to an operational scale and

is based on the recorded data received from the CAL FIRE (San Mateo Santa

Cruz Unit for the Martin Incident). One can assume that the initial uncertainty

is considerable at the time the UAVs are deployed (∼ 1Km). The variation of the

initial location of the CP is due to the uncertainty of the predicted spread rate,

(±180[m] after 30 minutes of when the phenomenon started).

The results are then based on an initial displacement of ±180[m] between the

actual and initial CP locations. Moreover, the spreading rate is noisy, with addi-

tional ±0.1[m/sec] error.

Figures 2.10 and 2.11 illustrate the propagation of a single CP. As the obser-

vations get closer to the CP, the variance reduces along the line of sight, and the

CP is shifted away from the UAV’s position. The figure shows data only every ten

time-steps along a pre-planned path, and for each time step Fig. 2.11 shows the

ellipse that exists after incorporating the measurement. The ellipse represents the

50% uncertainty of a CP with the associated estimated covariance. In Fig. 2.10

the way the CP moves away from the observer is characteristic of any estimator

of truncated data.

51

Figure 2.10: Single CP estimation with a single UAV. The UAV flies over the
explored area on a pre-planned trajectory. The arrows pointing to the CP corre-
spond to the UAV position.

52

Figure 2.11: Single CP estimation with a single UAV. The UAV flies over the
explored area on a pre-planned trajectory. The arrows pointing to the ellipses
correspond to the UAV position and illustrate the directional effect of the covari-
ance. Note how the ellipse starts large and is flattened with time and the UAV
position

Figure 2.12 illustrates the propagated periphery and the predicted boundary.

As the observations get closer to the CP, the variance reduces, and the CP shifts

away from the UAV’s observations. Notice that since the CPs start away from

the actual periphery, there is a small displacement. When the UAV crosses the

boundary, it enables an immediate correction to the closest CP to help reduce

the displacement even more. The predicted boundary gradually converges to a

value where the observations do not affect the CP since the projected variance is

very tight and the evaluated probability is meaningless. The ellipse plotted in the

figure is the last estimated outcome in the tested scenario.

53

-2000 -1500 -1000 -500 0 500 1000 1500 2000
-2000

-1500

-1000

-500

0

500

1000

1500

2000

Figure 2.12: An example of periphery estimation with a single UAV. The red
line represents the actual periphery, and the blue line represents the predicted
one. The UAV flies over the explored area on a pre-planned trajectory. The line
of sight to one CP illustrates the directional effect of the covariance (represented
as an ellipse) with the QKF method.

54

2.3 UAV Strategies

2.3.1 Ellipse Steering

To improve the results even more, one can use a new approach to further

suppress uncertainty. The UAV trajectory is changed to continuously reduce the

uncertainty in the biggest covariance among all CPs, by flying directly to the tip of

the major axis of that ellipse. Figure 2.13 illustrates the basic concept for reducing

the uncertainty autonomously. Each associated uncertainty is represented as an

ellipse (of 95% of confidence area).

-2000 -1500 -1000 -500 0 500 1000 1500 2000
-2000

-1500

-1000

-500

0

500

1000

1500

2000

Figure 2.13: A periphery estimation with a single UAV for an autonomous mis-
sion is illustrated. The red line represents the actual periphery, and the blue line
represents the estimated one. The UAV flies over the explored area autonomously.
The line of sight to one of the CPs illustrates the directional effect of arbitrary
CP. The QKF method is employed on all the CPs simultaneously, and the UAVs
identify the current highest uncertainty to approach next.

If resources are not limited, the monitoring mission can be accomplished by

55

more than one UAV. Figure 2.14 illustrates the next level for reducing the uncer-

tainty with two UAVs. The system coordinates their flight trajectories by assign-

ing them to the closest and highest uncertainty. This method avoids creating a

situation where it takes a long time to reach an unexplored area.

-2000 -1500 -1000 -500 0 500 1000 1500 2000
-2000

-1500

-1000

-500

0

500

1000

1500

2000

Figure 2.14: A periphery estimation with two UAVs. The UAVs fly over the ex-
plored area. The green trace represents trajectory that is outside of the periphery.
The QKF method is employed on all CPs simultaneously, and the UAV identifies
the current highest uncertainty to approach next. The final result of each CP
uncertainty is represented here by an ellipse.

In addition to the QKF estimator employed in this example, the simulation

includes a heuristic for crossing the actual boundary and switching the assigned

CP. The logic of crossing enables updating the closest CP to the crossing point.

The logic of switching is simple as well. The UAV switches from CP to CP any

time the major axis of any other ellipse grows more than the one the UAV is

currently assigned to. The concept of switching will be explored further.

56

2.3.2 Greedy Uncertainty Suppression Method

This section focuses on a methodology for monitoring the periphery of prop-

agating phenomena with multi-UAVs. The methodology utilizes a coordination

policy on top of a boundary estimator to decrease the aggregate uncertainty of the

monitored periphery. The estimator reconstructs the boundary and improves the

knowledge of its current expected value. The strategy to directly assign the UAVs

to track a periphery is compared with a policy that considers directional uncer-

tainties. After the coordination policy is determined, the algorithm is tested in

a multi-UAV dynamic simulation. A detailed numerical analysis of the proposed

algorithm and extensive simulation results are presented.

The new class of one-dimensional quantized estimator [76] lays the ground-

work for the Greedy Uncertainty Suppression (GUS) strategy. The monitoring

application involves large numbers of possibly randomly distributed inexpensive

sensors, with limited sensing and processing. The estimator incorporates obser-

vations gathered by multiple observers and uses the QKF estimation method [27]

to update the expected location and unobserved spread rate.

The main objective of the method is to find trajectories that improve the esti-

mated boundary of a propagated phenomenon. The estimation is meaningless in a

situation where the available sensors are located inefficiently (e.g., considerably far

or colocated). Other methods for online look-ahead approaches to re-routing the

UAVs are computationally intractable [73]. The GUS method utilizes a proactive

monitoring approach supplemented by a QKF estimator and a simplified propa-

gation model. The system relies on a rapidly deployable fleet of UAVs designed

to detect limited information, generate an uncertainty map, and incorporate that

information into new allocation tasks.

57

GUS - Coordination

Previous results in this chapter have suggested that reducing uncertainty is

related to distance as well as the line of sight to a CP. Moreover, uncertainty

depends on the availability of measurements. Hence uncertainty grows with time

when no significant new observations have been incorporated. The UAV can

approach a CP along the direction of its maximal uncertainty axis (direction of

major axis of the covariance) and reduce the one-dimensional uncertainty.

The coordination addresses the monitoring problem by adopting common prin-

ciples. The first principle is sorting. The mission controller keeps track of rep-

resentative quantities of interest; the predicted variance and the variance rate of

change. The QKF estimator evaluates the first and the second is a derivative of

the two last evaluations (numerical gradient). These quantities are used later on

to assign the UAVs to the target space (i.e., the CPs).

The GUS strategy accounts for the uncertainty by evaluating the uncertainty

perpendicular to the boundary. The component along the periphery does not

affect boundary position uncertainty to first order. The CPs are being sorted

by their associated cost. The goal of the GUS strategy is to coordinate between

UAVs and assign a UAV to one of the CPs to reduce the uncertainty accordingly.

J = σCPi
+ σ̇CPi

· tgo (2.63)

Eqn. 2.63 is the cost function. It combines two components and gives the total

value of any feasible assignment, the current associated uncertainty (σCPi
) and

the uncertainty rate of change (σ̇CPi
). The higher the uncertainty, the higher is

the cost. When the rate is taken into consideration, the dynamics of the UAVs are

considered as well. The cost function accounts for the time it takes the selected

58

UAV to reach an arbitrary variance aim point and time-to-go (tgo) helps predict

the size of the uncertainty when a UAV flies by an assigned CP. Time-to-go refers

to the time it takes for a UAV to fly toward the perpendicular point along a 50%

error ellipse (i.e., the target point).

Deploying the UAVs is based on the number of available UAVs. For example,

for two UAVs, the deployment is to two different CPs, where one UAV is assigned

to the highest look-ahead uncertainty, J , and the second direction is the highest

cost (J) of the remaining CPs.

There are three benefits from this allocation policy. First, the solution avoids

flyby trajectories and potential collisions. Second, UAVs are not allocated to the

same or even a close area. Third, the trajectories are being evaluated for dynamic

trajectory feasibility to be carried out by the assigned UAV.

GUS strategy tends to minimize the maximum uncertainty over all CPs by

incorporating observations over a long period. The policy achieves longer look-

ahead with an on-line re-routing logic for the fleet members’ task.

GUS - Implementation

The implementation includes two main parts: coordination and allocation.

The basic operation leading to coordination involves sharing information for the

assigned tasks. The UAVs share their observations with a centralized entity. The

observations are incorporated sequentially in the estimation process. GUS algo-

rithm is a step-by-step procedure to determine the best task for each UAV. The

notation uses superscript j to label the UAV and i as an index of an arbitrary

CP.

The first step relies on a previously developed algorithm (QKF). This pro-

cedure includes system coordinates transformation, scalar probability evaluation,

59

and Kalman Filter to estimate the state (x̂CPi
x,y) and covariance (P̂CPi

x,y) of the CPs

in the original coordinate frame.

The following steps determine the new policy. The second step runs Dubin’s

Vehicle algorithm to evaluate all the trajectory alternatives, which also provides

the length of feasible trajectories and evaluates the time-to-go for each UAV. The

associated trajectory for UAVj, evaluated by the cost function in the fourth step,

assigns the UAV to its best feasible task (that is, the CP with the highest cost).

The values of the cost function address the need to consider additional restrictions

or tasks (for example, deploying the UAVs to one side of the periphery).

The third step, sorts the CPs’ estimation by their cost, J . After correcting

the state (x̂CPi
x,y) and updating the covariances (P̂CPi

x,y), the procedure continues by

evaluating the perpendicular component of the major axes of the uncertainties.

It provides a list of variances with their associated waypoints. Each waypoint is

a candidate target which lies along a different line of sight.

The propagation of the error between the predicted and actual boundary can

increase without control. An additional objective of the GUS technique is to

reduce the errors. It enforces boundary crossing where the UAV had not crossed

the actual boundary for a set duration. In that special allocation mode, the

UAV is rerouted by setting the origin point as the target, and after crossing the

boundary, it switches back to default allocation mode.

2.3.3 Simulation and Results

The simulation is designed to include all major components which are involved

in the GUS strategy. The environmental conditions are being simulated based on

a model of a propagated wildfire with a random and bounded spread rate (3 ±

0.1[m/sec]). The UAV allocation is being implemented in a separate component

60

that incorporates the observations gathered by the simulated UAVs.

The UAV dynamics model is subject to a constant speed of 20 [m/sec], the

approximate speed of the UAV that has been developed and examined for the

experimental stage of this thesis. Moreover, the centralized controller is the QKF

estimator, that fuses the observations and is based on a previously derived tech-

nique. The following simulated scenarios explore the efficiency of the GUS algo-

rithm.

61

x [m]
-2500 -2000 -1500 -1000 -500 0 500 1000 1500 2000 2500

y
[m

]

-2500

-2000

-1500

-1000

-500

0

500

1000

1500

2000

2500
Greedy Uncertainty Suppression - Setup

Actual Periphery
Estimated Periphery

Figure 2.15: Initial setup. The UAVs are at the final stage of the deployment
phase and located on the opposite sides of the boundaries. The actual periphery
is a solid red line, and the predicted periphery is a dashed blue line. The error bar
associated with an arbitrary CP represents its current perpendicular uncertainty
(1σ). Note that the error bar is equal and results in a predetermined prediction
that is based on a maximal spread rate.

The initial setup attempts to adhere to conditions similar to the real problem

and therefore uses real-time data of a known wildfire incident (Martin incident

2008). For example, the initial AOI (area of interest) is large (1Km × 1Km),

and the time scale is long (i.e., hours). Fig. 2.15 shows the actual periphery with

two UAVs deployed from both sides of it.

The propagation model used in the simulation is simplified. However, it still

62

allows investigating the major properties of fire spreading. The dynamic expansion

of the boundary, the environmental effects (i.e., wind and slope) and the feasibility

are all considered in the implementation and are utilized for different scenarios.

The simulation presents a qualitative evaluation of the GUS strategy com-

pared to the traditional periphery tracking strategy as an obvious benchmark. In

previous studies ([20],[21],[92]), the strategies explored are either that the UAV

moves in a spiral pattern along the perimeter, or that the target space is divided

between UAVs (Partition).

The core of the GUS strategy relies on the fact that the major influence of the

uncertainty is along the line of sight. Fig. 2.16 demonstrates the relative orienta-

tion of the UAVs and the changes of magnitude and direction of the major axis.

Conceptually, rerouting the UAVs based on the uncertainty, or the instantaneous

largest uncertainty affects the rate of change of that uncertainty.

63

Figure 2.16: The major axis of uncertainty over a number of times. The major
axis illustrated with an arrow. The crossbar represents the uncertainty of the first
and last CP locations. The UAVs move on reroute trajectories. The direction and
magnitude of the major axis changes with the deployment of the UAVs and with
the incorporation of the observations.

64

x [m]
-2500 -2000 -1500 -1000 -500 0 500 1000 1500 2000 2500

y
[m

]

-2500

-2000

-1500

-1000

-500

0

500

1000

1500

2000

2500
Greedy Uncertainty Suppression(@t=15)

Actual Periphery
Estimated Periphery

(a)

x [m]
-2500 -2000 -1500 -1000 -500 0 500 1000 1500 2000 2500

y
[m

]

-2500

-2000

-1500

-1000

-500

0

500

1000

1500

2000

2500
Greedy Uncertainty Suppression(@t=60)

Actual Periphery
Estimated Periphery

(b)

Figure 2.17: Two set periods of time for GUS strategy. Subfigure (a) presents
the UAVs approach to the boundary from opposite sides. Subfigure (b) includes
an update of the last crossing points and the UAVs heading to their assigned CPs.
Note that the uncertainty of the close CP is already reduced.

65

The GUS strategy reduces the uncertainty as the observations get closer to

the grid points. This is a result of the truncation step, which is incorporated in

the one-dimensional probability distribution. Any temporary deployment of the

UAVs influences the uncertainty of an arbitrary CP. Fig. 2.17 shows two periods of

time of a propagated boundary, estimated boundary, and employed UAVs. When

a UAV crosses the boundary, the estimator incorporates the measurement and

updates the closest CP properties (for location and covariance).

66

x [m]
-2500 -2000 -1500 -1000 -500 0 500 1000 1500 2000 2500

y
[m

]

-2500

-2000

-1500

-1000

-500

0

500

1000

1500

2000

2500
Periphery Tracking Benchmark(@t=15)

Actual Periphery
Estimated Periphery

(a)

x [m]
-2500 -2000 -1500 -1000 -500 0 500 1000 1500 2000 2500

y
[m

]

-2500

-2000

-1500

-1000

-500

0

500

1000

1500

2000

2500
Periphery Tracking Benchmark(@t=60)

Actual Periphery
Estimated Periphery

(b)

Figure 2.18: Two set periods of time for Periphery Tracking strategy. Subfigure
(a) presents the UAVs approach to the boundary from opposite sides. Subfigure
(b) includes an update of the last crossing points and how the UAVs are directed
to their assigned CPs. Note that the uncertainty of the nearby CP decreases.

67

In the traditional periphery tracking strategy, the UAVs are allocated opti-

mally and follow the edge of the periphery continuously. Spacing UAVs evenly

along the circumference minimizes the maximum associated age, which is the time

elapsed since it was last observed. There has been thorough work done with a

similar objective to this study [20]. That work, used here as a benchmark, has

shown that by deploying multiple UAVs the propagated periphery can be followed

autonomously. The simulated procedure of the benchmark predicts the covariance

and sets it to a minimal value when a UAV crosses the CP.

Assessment of strategies outputs

The performance measure can be used to evaluate each method. The results

are achieved by taking each estimated CP and comparing it to the actual periph-

ery.

The performance measure accounts for two performance indicators: errors

and uncertainty. The errors indicator comprises the mean-square-error, where

the errors are between the predicted and the actual periphery. The uncertainty

indicator is simply taking the mean of the CPs’ variances perpendicular to the

boundary.

Perf =

√√√√ N∑
i

(err2
CPi

+ σ2
⊥CPi

) (2.64)

Both indicators are weighted equally in the combined performance measure.

Fig. 2.19 demonstrate the calculated parameters of the performances measure.

68

errCP

Predicted Periphery

Actual Periphery

σ

σ
┴

Figure 2.19: The performance indicators are presented. The size of the er-
ror between actual and predicted boundary and the perpendicular variance are
presented.

69

Figure 2.20: Performance analysis. The solid red line represents the perpendic-
ular standard deviation average, the dashed green line shows the cumulative root
mean squared error, and the dashed red line is the combined performance mea-
sure. Note that the mean value of the uncertainty is reduced during the mission,
and the error increase as the periphery evolves since the number of crosses per
AOI get smaller.

Figure 2.20 shows the combined performance measure with its two perfor-

mance indicators. If there were no errors and no uncertainty, then the traditional

periphery tracking was an optimal approach. In practice, the uncertainty grows

with time, and although errors are reduced to a minimum when the UAV crosses

by the CP, the spread rate is not observable, and the errors continue to grow

shortly after updating the location with the nearby CP.

Fig. 2.21 demonstrates the scenario with running GUS. A local error-bar rep-

resents the uncertainty of each CP. The size of an error-bar is correlated with the

size of the perpendicular and tangential variances. The resulting trajectories are

different from the benchmark, presented in Fig. 2.22.

70

x [m]
-2500 -2000 -1500 -1000 -500 0 500 1000 1500 2000 2500

y
[m

]

-2500

-2000

-1500

-1000

-500

0

500

1000

1500

2000

2500
Greedy Uncertainty Suppression(@t=399)

Actual Periphery
Estimated Periphery

Figure 2.21: Estimation and Coordination with the GUS method. The UAVs
switched from the deployment phase to track the highest uncertainties. The actual
periphery is a red solid line, and the predicted periphery a blue dashed line. The
UAV trail is in green where the UAV is OUT and in black where the UAV is IN.
The error bar associated with each CP represents its current uncertainty. Note
that the error bar decreases as the UAV approaches an arbitrary CP and that the
observations cause the directional uncertainty of the other CPs to decrease.

71

x [m]
-2500 -2000 -1500 -1000 -500 0 500 1000 1500 2000 2500

y
[m

]

-2500

-2000

-1500

-1000

-500

0

500

1000

1500

2000

2500
Periphery Tracking Benchmark(@t=399)

Actual Periphery
Estimated Periphery

Figure 2.22: A benchmark for periphery tracking. The UAVs fly evenly spaced
along the edges of the propagating perimeter. The actual periphery is a red line,
and the predicted periphery is a blue line. The error bar associated with each CP
represents its current uncertainty and not its associated age. Note that the error
bars grow with time and are reduced to a minimum size as the UAV crosses a CP.

Fig. 2.23 shows two periods of time of a propagated boundary, estimated

boundary, and employed UAVs for a scenario with wind. When a UAV crosses the

boundary, the estimator incorporates the measurement and updates the closest

CP properties (for location and covariance).

72

x [m]
-2500 -2000 -1500 -1000 -500 0 500 1000 1500 2000 2500

y
[m

]

-2500

-2000

-1500

-1000

-500

0

500

1000

1500

2000

2500
Greedy Uncertainty Suppression(@t=15)

Actual Periphery
Estimated Periphery

(a)

x [m]
-2500 -2000 -1500 -1000 -500 0 500 1000 1500 2000 2500

y
[m

]

-2500

-2000

-1500

-1000

-500

0

500

1000

1500

2000

2500
Greedy Uncertainty Suppression(@t=60)

Actual Periphery
Estimated Periphery

(b)

Figure 2.23: Two set periods of time for estimated periphery with southwest
wind. Subfigure (a) presents the UAVs approaching from oposite sides of the
boundary. Subfigure (b) includes an update of the last CPs, and the UAVs are
headed to their assigned CPs.

73

x [m]
-2500 -2000 -1500 -1000 -500 0 500 1000 1500 2000 2500

y
[m

]

-2500

-2000

-1500

-1000

-500

0

500

1000

1500

2000

2500
Greedy Uncertainty Suppression(@t=120)

Actual Periphery
Estimated Periphery

Figure 2.24: Estimated periphery with southwest wind (at a later time). The
plot presents the UAVs approaching from oposite sides of the boundary, the up-
dated CPs, and the lopsided periphery.

Fig. 2.24 shows a later period of time of the propagated boundary, estimated

boundary, and employed UAVs for a scenario with wind. The periphery with

a constant wind is expected to have a backing fire segment and a heading fire

segment (see Fig. 4.6) and the entire periphery to be more lopsided.

The performances in Fig. 2.25 are evaluated relative to the perpendicular com-

ponent of the local predicted periphery.

74

Figure 2.25: A performance analysis of the traditional Periphery Tracking with a
southwest wind. The solid red line represents the perpendicular average standard
deviation, the dashed green line shows the cumulative RMSE, and the dotted red
line is the combined performance measure.

Figure 2.25 demonstrates a scenario which includes two UAVs. The estimator

reduces the uncertainty as long as the UAVs are visiting or approaching different

parts of the periphery often. When the periphery growth is above a certain limit,

and the number of assigned UAV is too small, the performance measure indicates

a necessity of more resources.

75

Figure 2.26: A comparison of the Greedy Uncertainty Suppression and the
benchmark. The solid blue line and the dotted red line represent the combined
RMSE performance measure over time for the benchmark and the GUS strategies
accordingly.

Figure 2.26 demonstrates that the GUS and the benchmark have similar per-

formance and the same trend over time of the mission. The GUS estimator reduces

the uncertainty based on the algorithmically derived (non-constant) visiting pe-

riod of the selected CPs. The benchmark has a fixed visiting period when the

UAVs move along the periphery.

76

Figure 2.27: A comparison of strategies with a southwest wind. The solid blue
line and the dotted red line represent the combined RMSE performance measure
over time for the benchmark and the GUS strategies accordingly.

Figure 2.27 demonstrates that the GUS and the benchmark have very different

performance for a scenario with a wind. The GUS reduces the uncertainty much

more over the time of the mission.

2.4 Conclusions

Several characteristics are common to the implementation of the methods in

this work. First, the methods are implemented such that they can work recur-

sively. Hence, the output of one iteration becomes the input to the next. The

alternative is to process all the past observations in each time-step, although this

is not recommended and sometimes it is not even possible in real-time systems.

Second, the initial covariance is based on previous knowledge of the system and

good judgment. The results show that even if the initial guess is too high, the

77

variance will converge to some reasonable value over time. Third, the prediction

step applies to all of the monitoring techniques (both GUS and the traditional

Periphery Tracking). The prediction model for the spread of the periphery is

(knowingly) inaccurate and includes an additional term which represents the dif-

ferences relative to truth dynamics which causes the variance to inflate without

new measurement updates.

The QKF is similar to Kalman filter architecture (predictor-corrector). Data

fusion corrects the prediction step. One should notice that the first term in the

innovation (E(z|z ∈ A) − Hx̄) is similar to the usual distribution method. The

truncation, although with an optimization approach, is also utilized in MLE and

MAP approximations. This explains the reason why the approximations have

similar trends as QKF. The MAP technique, however, compared with the QKF

estimator deflates the variance much more slowly as each update step is a product

of the resulting ML distribution and the prior distribution.

Usually the update step in the KF deflates the covariance matrix (Eq. 2.17)

but QKF inflates the covariance matrix (Eq. 2.24) relative to no quantization.

Each incorporated observation contains new information, and it is combined with

the state estimate in the update step. The measurement observed by the sensor

is binary information (either inside or outside the periphery). Although the ob-

servation state does not comprise the complete state vector, the QKF approach

and the alternative approximation techniques update the state vector completely.

The estimation process of the QKF estimator updates the covariance ma-

trix. The diagonal entries represent the principal uncertainties where each one is

associated with a state vector element. The off-diagonals represent the relation-

ship between elements of the estimated vector or how correlated they are. QKF

and MAP approach implicitly use these correlations to update the unobserved

78

state. For example, the relative distance to the boundary is effectively measured,

since the location and the spread rate are correlated in the dynamic model any

changes of one affect the other. Fusing spatial measurements in the estimators

also changes the spread rate of the CPs in addition to updating their location.

Moreover, even in the one-dimensional update step, data incorporation affects the

correlated states that are codependent (for instance, xa with va).

Although the data is quantized and the information is partial, methods that use

multi-sensor and fit the observation to distribution properties help reconstruct the

data, especially if the sensors are spatially distributed. A multi-sensor application

can mitigate the quantization effects, and it is expected to achieve more accurate

results by using multiple sensors (deployed on multi-UAV platforms).

The periphery is defined by a set of CPs where their state is continuously

estimated. The QKF method estimates their position with binary observations.

The results show that even though initial uncertainties can be significantly large,

the QKF can significantly reduce the variance. Although it reduces the variance

from one direction, it is shown that by adding more UAVs that move in different

directions, the growing variance can be limited. By altering the trajectory toward

the highest major axis of the ellipse (the uncertainty), the UAV can continuously

reduce the uncertainty of the periphery.

The traditional monitoring problems follow the least visited point of interest

and try to minimize the maximum visited points. It is argued that the best way to

monitor the perimeter is by following the CPs. However, tracking the periphery

to update the CPs misses one of the primary objectives of monitoring problems

which is the uncertainty. A UAV fly-by CP can utilize the additional observation

to improve the accuracy of CPs, which need frequent visits (for example, in a

windy scenario where the heading fire moves fast).

79

When the allocation process assigns a task to a UAV, it should consider the

contribution to the periphery along with the assigned UAV path. CPs that are

on the way can be influenced and therefore the uncertainty can be reduced.

Previous research has de-emphasized sensing issues. The GUS strategy presents

the use of degenerate sensor capabilities to improve the estimation method. The

target space derives from unexpected changes that cannot always be predicted

by a dynamic model. It is essential to deploy part of the UAVs to validate any

deterministic models. The results show that estimation based on the observation

adjusts the unobserved state (i.e., spread rate).

The more UAVs are involved in the mission, the more accurate are the es-

timation results. If the periphery expands and there are not enough UAVs to

travel to the CPs and reduce the visiting time, the error increases continuously.

Since the obvious approach to monitoring the fire is by following its perimeter,

that implementation is examined and compared quantitatively. The deployment

setup explored here starts at equidistant points around the perimeter. The initial

deployment of UAVs is idealized for the benchmark, and it is expected to worsen

in different deployment setups. Future work will elaborate more on different, un-

equal deployment around the perimeter, which will degrade the performance of

the periphery tracking benchmark but does not affect the performance of the GUS

strategy.

It is expected that QKF will be the best estimator if the measurements are

Gaussian, and if it is not the best, this is likely because the measurements are not

Gaussian.

80

Chapter 3

System Design

3.1 Introduction

For many experimental applications, UAVs can enable or enhance the efforts

available to researchers. Much work has been done to make UAVs useful in myriad

scenarios. In some scenarios, operating in the environment requires special skills or

training that the researchers do not have; here an autonomous system can enable

access that was previously difficult to obtain. In recent years, there has been

rapidly increasing interest in UAVs where the scientific question or the research

project requires an airborne platform.

Technological progress has made it possible to use inexpensive autopilots on

small UAVs. The development of high-density batteries, long-range and low-

power radios, cheap airframes, high-performance microprocessors, and powerful

electrical motors all make experimental research with UAVs more practical than

ever [22]. The availability of UAVs as a lab resource allows researchers to explore

many new kinds of scientific questions such as control or estimation problems.

The flexibility of the system design further allows for quick changes, reducing the

project workload.

81

A modern UAV system consists of an on-board control system (i.e.: auto-pilot)

and Ground Control Station (GCS). The autopilot utilizes various sensors, com-

munication modules, a power supply unit, and embedded software to control the

UAV. The autopilot software is the real-time implementation of the guidance, nav-

igation and control algorithm; one of the demands on designing a rapid prototype

testbed is to enable control algorithms, discussed briefly below.

Autopilots control and guide the UAVs in flight. They rely on data gathered

by various sensors and on a central processing unit (CPU), which carries out the

instructions of the program. The objective of an autopilot system is to consistently

guide the UAVs to follow reference paths or navigate through several waypoints.

A UAV autopilot system is a closed-loop control system comprising of two parts:

the state observer and the controller. A typical observer is designed to estimate

the state (e.g., attitude) from flaure sensor measurements (gyro, accel); advanced

control techniques are used in the UAV autopilot systems to guarantee smooth,

desirable trajectory navigation.

Controller
CMD

+
-

Observer

Figure 3.1: Basic closed-loop block diagram.

This chapter focuses on the design of a multi-UAV system that is used in this

research and future projects. The emphasis is on the need for Guidance Navigation

and Control (GNC) research; the primary objective of this research is to design an

efficient process to develop and test new GNC algorithms. This chapter provides

a review of the existing autopilot, and the migration process from the previous

82

successful rapid prototyping concept to a new design; it also includes an analysis

of how to migrate to the new SLUGS II design.

Off-the-shelf Autopilots

Many popular autopilots are available on the general market today (Pixhawk,

MatrixPilot, Kestrel, Picolo, and Vector to name a few). There are also ones that

are government or military and thus are not available to the public for evalua-

tion. A typical commercial off-the-shelf UAV autopilot system comprises a GPS

receiver, an IMU (inertial measurement unit), and an onboard processor (state

estimator and flight controller). The autopilots can be compared in terms of

their sensor configurations, state estimations, and controller performances, where

sensors, processors and peripheral circuits are all integrated into a single PCB

(Printed circuit board). A complete comparison of the software implementation

is not feasible. However, the information gathered from open-source autopilot de-

velopment is critical to understanding the benefits of an in-house R&D autopilot.

Open-Source Autopilots

The advantage of open-source autopilots are their flexibility in both hardware

and software. The open-source autopilot is available to all customers, and experi-

enced users can adapt it to their own needs. Furthermore, due to a large number

of contributors, the open source autopilot evolves quickly. Researchers can easily

modify the autopilot based on their own special requirements. On the other hand,

the quality control of the open source autopilot can be unreliable at best if not

consistently maintained.

83

SLUGS AutoPilot Design

SLUGS (Santa Cruz Low-cost Unmanned Aerial Vehicle Guidance, Navigation

& Control System) is a platform that includes autopilot software and hardware

components that enable a flexible environment for research in GNC applications

[37]. The SLUGS was designed primarily for GNC research, and it has already

been used in many flight-tests. It is also part of the experimentation with fixed-

wing UAV systems, presented in the following section.

Figure 3.2: SLUGS block diagram is shown. It describes the design of the
SLUGS Auto Pilot and all its components. The diagram is imported from the
ASL website.

The SLUGS autopilot is an open-source system like several other commercially

available autopilots. The key advantage of the SLUGS autopilot over the com-

mercial autopilots is in the easy modifications of its essential components. First,

the computations are done with two separate Digital Signal Controllers (DSC),

84

one for the GNC tasks and one for sensors computations. Second, the software is

auto-generated from a Simulink/Matlab integration; the IDE (Integrated devel-

opment environment) of the GNC algorithms. This create a smooth simulation

to flight deployment.

Figure 3.3: SLUGS board

Off-the-shelf Simulators

Although the hardware design has a tremendous benefit in commercial prod-

ucts, it is a burden for R&D autopilots. The first step following the development

of new GNC algorithm is to test it on a high-fidelity simulation [40]. Thorough

testing for most types of autopilots is handled by running numerous simulations.

System simulation involves testing the algorithm with all the components of the

system. Most of the components, however, are replaced with models at different

levels of fidelity. By simplifying the models, the simulation design is guaranteed to

decrease the computational load, while the use of highly accurate models ensures

high fidelity.

85

Fixed-wing UAV

A fixed-wing UAV and rotorcraft both have advantages and disadvantages

compare with each other . Fixed-wing UAV tend to be more benign in the air with

respect to piloting and technical errors, as they have natural gliding capabilities.

Fixed-wing UAV can also carry greater payloads for longer distances on less power.

There are many kinds of fixed-wing UAVs from electric battery powered small

foam planes to large-scale wooden replicas with multi liquid fuel engines, and

everything in between. An aircraft that suits the mission profile and the research

needs for this project is a small electrical foam UAV.

When precision missions are required, fixed-wing aircraft are at a disadvantage,

since they must have air moving over their wings to generate lift. They must

constantly remain in forward motion, which means that they cannot hover in one

spot the way a helicopter or quadrotor can, and as a result cannot provide the

same level of precise camera positioning. A fixed-wing, however, is the best choice

for longer missions and larger payloads.

86

3.2 SLUGS II AutoPilot Design

The SLUGS II design improves on previous SLUGS design because it provides

rapid prototyping control for multi-UAV systems. The control design process

is made up of many iterations that can be verified and validated through both

simulation in the Simulink environment and with auto code generation.

3.2.1 Software Design

The complete autopilot algorithm is implemented in Simulink using block di-

agrams and Matlab toolboxes. Simulink blocks and Matlab routines are effective

software that can be used to modify the algorithm and verify the design. Once

the model is updated in the Simulink environment, it then generates the new code

with the updated features. The R&D work in a model based environment makes

Generated
C

AUAV3
(dsPIC33E)

MPLAB X

PICkit3

Simulink

Figure 3.4: SLUGS II code generation workflow.

the programming phase easier. Simulink includes tools that automatically gen-

erate and compile the code. The code is then deployed directly to the autopilot

hardware [41].

87

Figure 3.5: SLUGS II Simulink Model is shown. The diagram includes the con-
figuration blocks, the main controller block on the right and the sensor blocks on
the left. The block diagram imported from SLUGS II Simulink model development
environment.

3.2.2 Hardware Design

The literature on COTS autopilots suggests that the minimum research autopi-

lot requirements are: robustness and attitude accuracy, enough for a low altitude

flight surveillance. Hardware must includes sensors on-board and software for an

attitude solution [40]. This hardware design makes an important contribution to

the research framework because it introduces a new design. The SLUGS embed-

ded system features two Microchip dsPIC33F microcontrollers. That design allows

SLUGS to implement more complex and effective GNC algorithms. It provides a

high level of safety and fault tolerance features, and it is designed such that the

autopilot system would have more than enough processing power. However, it

means more maintenance for the research autopilot IDE, and increased cost.

88

Figure 3.6: AUAV3 board

SLUGS II simplifies the existing design by using on a reliable commercial-off-

the-shelf (COTS) hardware. The AUAV3 is a commercial open-hardware devel-

opment board (all PCB layouts are provided) [6]. It features a single Microchip

dsPIC33EP with twice the clock rate of the dsPIC33F. The AUAV3 board (see

fig. 3.6) comprises peripheral circuits for IMU, Magnetometer, Barometer and the

standard communication interfaces (SPI, CAN, UART and I2C). Researchers

have examined using the AUAV3 to replace the in-house SLUSG hardware. The

following sections discuss the SLUGS II Simulink model migration process in more

detail, and the steps for verifying and validating the performance with a series of

flight-tests.

The design of SLUGS II is such that it can be adapted to various different

scales. It provides a solution for multiple UAVs in the testing environment when

they are needed for research. The major challenges of research in multi-UAV are

handling duplicate systems with low maintenance cost, reliability, and researchers’

insufficient skills. The UAV is linked with continually changing technology so

that new infrastructure needs to be assessed and adopted in order to improve the

existing system. The system migration process can help with this maintenance

89

by enhancing the new R&D autopilot environment. Furthermore, eliminating the

need to maintain multiple platforms can reduce overhead costs, and development

difficulties.

SLUGS II

AUAV3

GPS
Receiver

3DR
Radio

RC
Receiver

GCS

3DR
Radio

Logger

Figure 3.7: SLUGS II basic components.

3.2.3 Migration Process

The AUAV3 addresses the issue of the skills needed to develop or maintain in-

house hardware. Commercial hardware is constantly being updated, and for the

90

R&D autopilot, this is an opportunity to put all the efforts into developing GNC

algorithms and utilizing low-cost COTS hardware. The old hardware is difficult to

integrate with newer sensors and sensing technology. Complex applications require

a flexible and adaptive R&D autopilot to keep up with a dynamic environment.

The simulator integrated within the Simulink development model is another

challenging component. It needs specialized skills to tune and adjust to differ-

ent platforms. Porting the X-Plane simulator improves the development effort

and further reduces costs. Different airplane models can be found on the local

simulator database instead of tuning the aerodynamic coefficients of a six-degree-

of-freedom (6DOF) model by hand.

Two components are migrated as part of SLUGS II design. The benchmark

configuration takes the MatrixPilot open-source autopilot and deploys the code on

the AUAV3 board. Performance benchmarking ensures that the migrated compo-

nents perform as well as or better than the old components. The new configuration

is then evaluated in multi-UAV software in the loop (MSIL) simulation and in real

flight-tests.

Once the assessment of the AUAV3 board is completed, the Simulink model is

then modified. The model adjusts to the new dsPic configuration. This integration

phase includes eliminating the blocks that handle communication between the

separate processors, improving the modeling style, optimization, removing dead

code, and identifying incompatible porting issues. Configuring the Simulink model

to the new AUAV3 board is based on the Microchip dsPIC toolbox (a new revision

of the Lubins Blockset [52]). Although the complete process requires significant

manual work, the main intellectual property (IP) of the R&D autopilot remains

almost untouched.

In the final phase, the newly migrated autopilot is subjected to rigorous testing

91

using test cases applied on the original design (SLUGS) and MatrixPilot [62].

Apart from the functional load testing, testing is carried out to ensure that the

necessary performance level is achieved. The migrated auto-generated code is

deployed, and parameters are fine tuned for the new airframe (BixlerII).

92

3.3 Ground Control Station

The Ground Control Station (GCS) is one of the most important components

in a UAV system. It provides an operational interface to monitor and control

the assigned task to the multiple UAVs. It presents any additional information

that does not require the autopilot to complete its task, however it supports the

user who monitors the mission to coordinate with other systems for better decision

making. The GCS includes indications for the mission showing the relevant spatial

data (i.e., geodetic coordinates) associated with the map of the area of interest.

The GCS communicate with the UAVs using a bi-directional data link (X-Bees

transceivers). It runs on a mobile laptop computer that can easily be transported

to the test site.

93

Figure 3.8: The graphical user interface of the Ground Control Station (GCS) is
presented. The open-source software (Qt-Ground-Control - QGC) is adopted and
extended to support the design of a multi-UAV monitoring system. The software
supports the planning and visualization of the UAVs‘ trajectories in real-time.

3.4 Conclusions

Autonomous control is being increasingly employed on UAVs to support re-

search application. The SLUGS autopilot IDE provides a flexible and rapid pro-

totyping environment for UAV GNC algorithms [37]. With series of iterative

modifications, driven both by control theory and the results from field tests. The

SLUGS II demonstrates the effectiveness of the development process [28]. The

hardware implemented for CPU redundancy provides a high level of safety and

fault tolerance features, and is designed so the autopilot system can have sufficient

94

processing power. The downside, however, is that it adds a large maintenance bur-

den for the research autopilot IDE. Supporting multi-UAV configuration makes

it necessary that SLUGS II simplify the old design based on different COTS and

expanded IDE functionalities. SLUGS II modifies the design process to add a

verification step for the generated code in a flexible and friendly environment that

is committed to the sequence of events in the software rather than to guaran-

tee strong real-time performance execution of the code. The design validation is

discussed in details in 5.

95

Chapter 4

Simulation

4.1 Introduction

Simulation allows for the safe testing of experimental hardware, software, and

trying parameters. Crashing a virtual UAVs requires only a reset of the simulator,

in contrast to the expense of crashing (and rebuilding) a real one. Applications

that are capable of simulating multi-UAV are typically developed and utilized in-

house; very few commercial products are availabble that can simulate multi-UAV,

in real-time [53]. Developing UAV models (e.g., aerodynamic and dynamics mod-

els) and environment models (e.g., wind, atmosphere, etc.) is a time-consuming

task that requires domain specific expertise. Off-the-shelf simulators are designed

to use various types of models and provide a database of models.

This chapter addresses the challenges in verifying and validating a new simu-

lation approach, specifically when developing a new control algorithm for UAVs’

guidance.

96

4.1.1 Propagation Model

Developing a propagation model for known dynamics allows for prediction and

to upcoming event locations. Some studies show the benefit of considering the

uncertain environment during mission planning and how to formulate a stochastic

process as part of the overall UAV coordination plan. [11] presents the decom-

position method for solving the UAV coordination and control problem. The

algorithm is implemented in an approximate decomposition approach that uses

straight-line paths to estimate the time-of-flight and risk for each mission. They

then show how to extend that formulation to capture the stochastic effects of an

uncertain environment.

Significant research activity exists and modeling undertaking wildfire scenarios.

For example, [84] develops model of fire-front propagation and [61] develops a

wildland fire model.

4.1.2 Multi-UAV Simulation

The unmanned autonomous vehicle (UAV) is a compelling research area be-

cause it can dramatically lower the cost of the experiment phase of a research

project; this is especially true where the tests are dull or dangerous to humans.

Sometimes the research requires having special skills for working in that environ-

ment that the researcher might lack, and so replace this experimental phase with

simulation. In recent years, there has been a rapidly increasing interest in the

UAV in work where the scientific question or research project requires an airborne

platform.

The first step following the development of new GNC algorithm for a UAV is to

test it in a system simulation [40]. Thorough testing for most types of autopilots

is handled initially by running simulations. System simulation involves testing

97

the algorithm with all the components of the system. Most of the components,

however, are replaced with models it differing levels of fidelity. By simplifying the

models, the simulation design is guaranteed to decrease the computational load,

while the use of highly accurate models ensures high fidelity.

Applications that are capable of simulating multi-UAV are typically devel-

oped and deployed in-house. Very few of them are commercial products that can

potentially simulate multi-UAV in real-time [53]. Developing UAV models (e.g.,

aerodynamic and dynamics models) and environment models (e.g., wind, atmo-

sphere, etc.) is a time-consuming task that requires domain specific expertise.

Off-the-shelf simulators are designed to use various types of models and provide

a database of developed and validated models.

This chapter addresses the challenges in developing a new control concept for

UAV, specifically verifying and validating the new approach. In a real-time envi-

ronment with real-time dynamical conditions, the difficulty becomes even greater.

The process is very tedious if it is done by reprogramming the autopilot and fol-

lowing the conventional software development process. It can be faster and more

efficient if the integrated development environment (IDE) uses the latest methods

and control theory, especially if the IDE supports automatic code generation and

rigorous code verification.

98

4.1.3 Verification and Validation

Verification and Validation are two independent procedures that are used in

system development to check that the system meets the requirements. Verifica-

tion focuses on the software specifications, and validation ensures that the system

meets the operational needs (e.g., real-time, frequency, etc.). Most generated

code fails at the interface between the generated modules. In fact, system inte-

gration (handling the interface between subsystems) is often a very difficult task

in human-generated code. Unfortunately, that cannot be detected in the Simulink

environment, since Simulink does not execute the generated code.

A complete process that supports a multi-UAV configuration is needed to be

considered by the autopilot system for real-time identification and task allocation.

To support a multi-UAV configuration, the SLUGS II design extended the tools for

software verification. The multi-UAV IDE offers code verification with a complete

software in the loop (SIL) simulation.

4.2 Simplified Simulation

The simplified simulation main goal is to support the development of coor-

dination algorithm. Designing the coordination scheme and the UAV guidance

laws fully depends on the simulation fidelity. As long as the simulation represents

all the physical processes details of the system it will expose the pitfalls of the

proposed solution beforehand. If the design is focused on the control part of the

airplane model it should be adequate for developing a dynamic model [10]. The

dynamic model is derived from Newton’s laws and defines the relation between

forces and moments. In this simulation a steady state flight and leveled flight is

assumed, therefore the focus is on the relationship between position and velocity

99

(Kinematics, see Fig. 4.1).

Multi-UAV
Controller

UAV
Kinematics

MATLAB

Simplified Simulation

Propagation
Model

Environment

Wind
Model

Figure 4.1: Simplified Simulation block diagram.

The simplified simulation introduces the first order constraints of a dynami-

cal system where the vehicles are mobile and the environment domain changes.

Two types of models are included: the physical models and the discrete models.

Both type are software oriented implementations in which the execution processes

guarantees to reconstruct the outcome, hence, the process is deterministic.

The physical models simulate continuous processes. A continuous process can

model the uncertainties of sensors, actuators, and the working environment. Sen-

sors are involved in the process by measuring the parts of state with associated

noise. The implemented sensors modules are responsible for simulating the de-

tected state variables and to introduce the additional (modelled) uncertainty in

100

to the observations.

UAV Model

The UAV model in the simulation is a mathematical representation of the

actual motion of non-holonomic systems. The following equations show the trans-

lational kinematics. Six states (pn, pe, pd, u, v, w) out of a total of 12 states in

a complex flight model. The UAV is assumed to hold constant altitude and the

wind is planar: 
ṗn

ṗe

ḣ

 = Va


cosψ

sinψ

0

+


wn

we

0

 (4.1)

where ṗn, ṗe, ḣ are the inertial velocity vector, Va is the airspeed, wn, we are com-

ponents of the planar wind velocity and ψ is the azimuth angle.

Figures 4.2, 4.3 show the feasible trajectories in the development environment.

The UAV switched between two configurations whenever it planned to move from

one waypoint to other waypoint.

101

Figure 4.2: An example of Dubins Path is shown. The start point (in green)
is attached to two circles tangent to the desired direction. The final point (in
red) is attached to two circles tangent to the desired direction. The resulting
time-optimal path (in bold) starts with a Left turn followed by a Straight line and
finishing with a Right turn to the final configuration.

Figure 4.3: Three admissible paths of a selected example of Dubins Path are
shown. Each path starts at the selected start configuration and finishes at the
desired configuration. The length of the path is calculated and presented at the
top of each figure. The shortest path is shown on the previous figure.

102

Figure 4.4: An example scenario resulting from Dubins Path is shown. The
start point (in green) is attached to two circles tangent to the desired direction.
The final point (in red) is attached to two circles tangent to the desired direction
and the AOI (in yellow). The resulting time-optimal path (in bold) starts with a
short left turn, continue with a straight line, and finishes with a short right turn
to the final configuration.

Figure 4.5: A follow up step of an example scenario is shown. The start point
(in green) is attached to two circles tangent to the desired direction. The final
point (in red) is attached to two circles tangent to the desired direction and to
the AOI (in yellow). The resulting time-optimal path (in bold) includes only a
right turn leading to the final pointing and orientation.

103

4.2.1 Propagation Model

The propagation model helps anticipate and simulate the boundary location in

time. The developed model represents the fire-front propagation of a wildland fire.

Although the adopted modeling approach is a simple representation it considers

two factors that been known to be most influenced on the spread rate. It assumes

that the local spread at any given point on the perimeter is perpendicular to the

fire perimeter into the unburned environment and that the fire has a local rate of

spread (ROS) normal to the fire-line.

The implementation of this model is a greedy evaluation; each point out of a

set of grid points along the periphery is evaluated. Wind velocity and slope are

incorporated into the propagation model. The model combines the wind velocity

directly to each grid point of the boundary. The slope is relative factor which

scales from 0 to 1 where 0 is the case where the terrain has no-slope and 0.3 is for

30% slope of the terrain. Fig. 4.6 demonstrates the effect of wind, terrain slope

and the combination of both in propagation. Wind sets the dominant direction of

spread. If the wind and the terrain start in a gully (i.e.: upslope) then combined

factors causes the fire to spread even faster.

104

Figure 4.6: Various combinations of wind velocity and slope: (a) upslope heading
fire, (b) upslope backing fire, (c) downslope backing fire, (d) downslope heading
fire. Small arrows indicate direction of fire spread, large arrows indicate wind
direction. Figure adopted from [96]

The propagation model employs the wind effect on each grid point (i) of the

discritized boundary:

ṗiN
ṗiE

 = VSR

cosψi

sinψi

+

VWN

VWE

 (4.2)

where, VSR is the nominal spread rate, VW is the wind velocity vector and ψ is

the heading angle of the grid point compare to the origin of the fire.

105

X Position [m]
-40 -30 -20 -10 0 10 20 30 40

Y
P
os
it
io
n
[m

]

-40

-30

-20

-10

0

10

20

30

40
Simulated Periphery

Figure 4.7: Simple scenario of the propagated model outcome is presented. The
red circle lines are set periods of time for the simulated boundary. The boundary
expend in time with a spread rate of 2 [m/sec]

Fig. 4.7 and 4.8 show examples for 60 grid points to represent the propagated

boundary in a 35 second scenario. The first case spreads out equally in time with

constant spread rate. The second example includes small wind of 0.1 [m/sec]; the

effect is noticeably dominant.

106

X Position [m]
-10 0 10 20 30 40 50 60

Y
P
os
it
io
n
[m

]

-10

0

10

20

30

40

50

60
Simulated Periphery

Figure 4.8: Scenario of the propagated model with wind is presented. The red
circle lines are set periods of time for the simulated boundary. The boundary
expend in time with a spread rate of 2 [m/sec] and a nominal wind velocity of 0.1
[m/sec]

4.3 Multi-UAV Software in the loop

Further simulation for a higher level of fidelity testing during the final steps of

developing the coordination scheme. MSIL simulation allows running the SLUGS

II research autopilot on a computer before running it on the target processor.

It communicates with a simulator for simulating high fidelity flight dynamics (X-

Plane). The MSIL simulation is meant to run a single or multi-UAV configuration

and support the external interfaces and built-in internal calls (for example, mem-

ory, timing and peripheral libraries) of every instance of the SLUGS II autopilot

code.

The MSIL software includes the generated code, which is compiled together

with a handling layer (a real-time wrapper software). The RT Wrapper interfaces

with the external software through a User Datagram Protocol (UDP) socket or

a serial port. The MSIL simulation controls the simulated GPS, telemetry and

107

Multi-UAV
Controller

UAV Models
& Environment

MATLAB

SLUGS II
Autopilots

UAV Models
& Environment

X-Plane

MSIL Simulation

Mission
Controller

GCS

RT Wrapper

SLUGS II
Autopilots

Figure 4.9: MSIL block diagram.

remote-control (RC) inputs for a real RC controller (training mode). The autopilot

researcher benefits from the ease of integrating the original generated code and

having an easy, friendly environment for debugging.

The GCS unit controls the UAVs through a communication bridge to ensure

a two way communication between the GCS and the SLUGS II autopilot. The

autopilot can directly managed information from the serial port (or in case of MSIL

from the buffer of the serial port). The RT Wrapper (in fig. 4.9) is responsible

for managing the buffers and for distributing the MAVlink messages between real

UAVs or simulated modules.

The coordination algorithm is executed in Matlab and works as an extension

of the GCS. The RT Wrapper creates a tunnel between Matlab and the SLUGS

II software through a physical communication link (UDP) using the MAVlink

protocol.

108

4.4 Multi-UAV Hardware in the loop

The Multi-UAV hardware In the Loop (MHIL) simulation runs the SLUGS II

software stack on the AUAV3 flight controller using raw sensor data fed in from

the simulated environment running on the desktop PC. HIL simulation replaces

the UAV and the environment with a simulator (the simulator has a high-fidelity

aircraft dynamics model and environment model for wind, turbulence, etc.) The

physical autopilot hardware (AUAV3) is configured exactly as for flight, and con-

nects to a computer running the simulator rather than the aircraft. In this sense,

the AUAV3 does not know it is flying a simulation.

AUAV3
Autopilots

Multi-UAV
Controller

UAV Models
& Environment

MATLAB

AUAV3
Autopilots

UAV Models
& Environment

X-Plane

MHIL Simulation

Mission
Controller

GCS

Figure 4.10: MHIL block diagram.

Figure 4.10 shows the MHIL setup. The involved units in the MHIL config-

uration are depicted along with their associated interfaces. The AUAV3 and the

GCS are connected physically by a telemetry link. The autopilot is connected to

109

a computer running the simulator. The simulator is fed by the servo commands

and responds with sensory values from the simulated airplane model. The gener-

ated sensor values are similar to the IMU output and injected to the navigation

algorithm as the UAV autopilot flies the high fidelity flight situation.

4.4.1 Flight Simulator

X-Plane is a COTS flight simulator. Its framework allows researchers to study

UAV control algorithms using realistic UAV models in real-world modeled envi-

ronments. The simulator database provides a large number of UAV models that

are widely available for the R&D autopilot and a rich networking interface that

allows it to be interfaced to other software (e.g., GCS). It interfaces with the

SLUGS II MSIL software, allowing SLUGS II to simulate flying a wide variety of

aircraft.

Using X-Plane with SLUGS II MSIL or MHIL is a good way to validate a

flying SLUGS II and evaluate its performance with the use of the GCS. It can

also be used to test SLUGS II in unusual situations and to develop support for

UAV features not available in other simulators.

4.5 Conclusions

SLUGS II modifies the design process to add a verification step for the gener-

ated code in a flexible and friendly environment that is committed to the sequence

of events in software rather than to guarantee valid real-time performance execu-

tion of the code.

110

Chapter 5

Results

5.1 Introduction

In the end, all of the various functionalities must work both as individual

subsystems, but also integrated as part of the entire system: experiment with the

UAV design, the basic multi-UAV flight formation, and the monitoring system.

Each one is a step in validating the complete system design which addresses the

full multi-UAV monitoring problem.

The system architecture can be utilized in a centralized or a decentralized

scheme of operation to enable coordination and information sharing. In a cen-

tralized system configuration, the UAVs relay real-time information between each

other through the GCS. Alternatively, the UAVs could transmit real-time infor-

mation between group members (a decentralized scheme configuration).

The platform used for the first flight tests was a Phoenix R/C aircraft; later

the platform was changed to a Hobby King Bixler 2. Both of the planes are low-

cost foam kits and have a flying weight of approximately 2 lbs. The Phoenix and

the Bixler 2 both feature a pusher propeller configuration that reduces vibration

and increases overall robustness for a belly landing (nigther aircraft has landing

111

gear). The wings and fuselage are reinforced with carbon fiber tubes that provide

ample rigidity to the airframe [57]. The aircraft is hand launched for take-off.

Figure 5.1: RC model plane - EPO glider phoenix 1370mm.

The Bixler 2 wings are almost an elliptical platform with curved winglets for

increased flight efficiency. The power plant for the Bixler 2 aircraft is a 1200

kV brushless DC electric motor. The power source used is a 2200mAh Lithium

Polymer battery. This battery provides sufficient current for the electric motor,

servo, and the AUAV3 autopilot board, through the Electronic Speed Controller

(ESC). The ESC provides a 5.0 volt supply to the servos and the AUAV3 autopilot

through the Battery Eliminator Circuit (BEC), and also provides a control signal

and power to the brushless motor. The BEC is designed to keep servos R/C

receiver running while the baking has dropped too far in voltage to power the

motor.

112

Figure 5.2: RC model plane - Hobby King Bixler 2.

5.2 Simulation Results

The SLUGS II autopilot, like most other autopilots, uses a Proportional-

Integral-Derivative (PID) control method for the low-level control loops [37]. The

flight controller is developed as a Simulink model, and although it is relatively

easy to alter its structure, it requires extensive knowledge about the inner and

outer loop structure to redesign the controls. The simulation tests were devoted to

validating the viability of the flight controller as flyable. This part of the testing

covers the tuning process of the PID gains for the various autopilot control loops.

113

5.2.1 SLUGS II Validation

The goal of the SLUGS II validation is to support the R&D monitoring system

development. The validation relies on several factors, including flight controller

and path following performances. The flight controller has been extensively tested

within the simulation. The environment supports parameter tuning which can

accommodate hardware changes and flight mode extensions.

The most important feature of the SLUGS II autopilot for the R&D monitoring

system is its autonomous waypoint navigation capabilities. The ground operator,

through the GCS interface, can specify a sequence of waypoints to define the path

the vehicle should follow. Fig. 5.3 describes an example of a running scenario with

four waypoints and shows how the vehicle follows the desired path while tuning

PID gain parameters.

Fig. 5.3 shows that initially, the gains were too low, and the system had a slow

response.

114

Y (m)
-1000 -800 -600 -400 -200 0 200 400 600

X
 (

m
)

-600

-400

-200

0

200

400

600

Simulation Tests Results - X Y Plots

UAV Trajectory
Waypoints

Figure 5.3: Simulated scenario with a single UAV is presented. The UAV tra-
jectory is in X Y Cartesian coordinate frame and is relative to the Home position.
The first segment of the trajectory started from take-off controlled manually by
the safety-pilot (RC) and switched to autonomous mode after 23 seconds. Three
laps were tested with different PID gain for tuning the roll command.

5.2.2 Monitoring System Validation

The nominal scenario to operate the monitoring system starts with deploying

a fleet of UAVs. The GCS has been utilized for planning the paths for the de-

ployment phase based on the deployment scheme. The simple deployment scheme

includes a fixed heading path mission plan. That path allows the sensor to detect

the boundary crossing and switch to the next phase of the coordination policy:

115

the autonomous allocation phase.

Two UAVs deployed on a preplanned mission (a transect line in fig. 5.4, 5.5):

Figure 5.4: Graphic user interface (GUI) of the GCS is presented. The first
mission plan for the first UAV is being uploaded.

116

Figure 5.5: The GUI of the GCS is presented. The first mission plan for the
first UAV is being uploaded.

The dynamics of the UAVs is simulated in the MSIL configuration by the X-

Plane simulator and thus closer to real dynamics of the vehicles. Fig. 5.6 shows the

GCS during a simulated flight. At the same time, the animation of the simulation

can be visualized in X-Plane while the UAVs follow preplanned trajectories.

117

Figure 5.6: The GUI of the GCS shows the execution of a simple deployment
mission plan. The deployment phase has started and UAVs are in flight.

The dynamics of the UAVs is simulated in the MSIL configuration by the X-

Plane simulator, hence closer to the real dynamics of the flight vehicles. Fig. 5.7

demonstrates the performance during deployment of the UAVs. The estimator

works in the background and improves the predicted periphery while the UAVs

follow fixed heading paths.

118

time[sec]
0 10 20 30 40 50 60 70 80 90 100

a
v
e
r
a
g
e
[m

]

0

50

100

150

200

250

300

350
Periphery Estimation with Uncertainty Suppression (Statistical Analysis)

Combined measure

Uncertainty measure

RMSE

Figure 5.7: Performance measure of the deployment is presented. The combined
measure shows that the uncertainty does get reduced during deployment before
switching to autonomous allocation mode.

119

5.3 Flight Tests Results

This section is a brief description of a very long process of redesigning the R&D

autopilot framework. The SLUGS II autopilot (a new design) is being employed

in both a simulated environment and a real-time environment. The development

process includes many experiments to verify that the new hardware and software

design keeps the waypoint-following performance and can achieve the requirements

of the multi-UAV monitoring system.

The main objective of the flight tests was to validate the development environ-

ment workflow: MSIL, MHIL and flight test. The AUAV3 board was the required

first step for hardware validation. As the AUAV3 is a new hardware design, re-

quiring it to work is a very significant step for validating the full configuration.

The AUAV3 has been tested with an open-source autopilot (MatrixPilot). Next,

the SLUGS II autopilot code was deployed to the AUAV3 with adjustments to

the new hardware configuration. With that setup, the flight test was simulated in

MSIL and MHIL configuration where the actual flight code is the generated code

from the SLUGS II autopilot Simulink model.

Presented here are selected field tests result from more than twelve field tests.

5.3.1 AUAV3 Flight Test I

The first field-test was conducted to examine the real-time performance of

different levels of autonomous control with the AUAV3 board. To have a consistent

benchmark, the same mission plan for a single UAV was uploaded. The mission

plan included four way-points and was executed by the MatrixPilot autopilot

software whenever the autopilot is switched to stabilized or autonomous mode.

Fig. 5.8 shows snapshots from the GCS while performing the flight. The UAV

(Bixler2) executed the mission plan and followed the given way-points on the

120

resulting trajectory from the guidance algorithm in the MatrixPilot software.

Figure 5.8: Single UAV flight performing mission plan (as presented on the
GCS)

Because multi-UAV systems are complicated to debug during a development

process and a cooperative mission is hard to analyze after executing a test, the

testing procedure includes a critical step through the developed MHIL simulation.

Figure 5.9: MHIL test setup is shown. On the left, QGC software runs on a
separate PC. In the middle, X-Plan simulator software runs on a separate PC and
communicates with the QGC software and AUAV3 through a serial link. On the
right AUAV3 runs the test autopilot software version and is connected through a
serial port to the PC.

Fig. 5.9 shows the integrated development environment used for MHIL. The

MHIL executes the full configuration of the UAVs’ hardware without actually

flying the platforms. All the hardware components (AUAV3 board[6], servos,

power supply, telemetry and radio control) in this specific configuration have

been tested. In MHIL mode, the X-Plane simulator (which provides the dynamic

environment of the airplane model) is utilized. The physical parameters (e.g.:

position and attitude) output are sent from X-Plane to another software module,

121

which translates and injects them into the real-time autopilot software under test

(MatrixPilot[62]).

5.3.2 AUAV3 Flight Test II

Two flight tests were flown to examine the features of the path planning tool

developed as part of the mission coverage described in [31]. The test was to

verify the use of the algorithm for both a point-to-point tour scenario and an

area coverage scenario. The test was also utilized for validating the new setup.

The vehicle used for these experiments was the Phoenix fixed-wing UAV equipped

with an AUAV3 flight controller running the MatrixPilot autopilot. Both flights

consisted of the aircraft flying multiple passes through a series of waypoints [31].

122

Figure 5.10: A test flight conducted with Phoenix fixed-wing UAV equipped
with an AUAV3 flight controller running the MatrixPilot autopilot [31]

The AUAV3 based MatrixPilot directly processes the pilot‘s control commands

from the radio receiver and sends out servo signal commands, using the built-in

pulse-width modulation (PWM) features of the dsPIC33F microcontroller. The

123

AUAV3 module also hosts peripheral components that combine the MPU6050 gy-

roscope and accelerometer, a HMC5883L magnetometer and a BMP-180 barom-

eter. The AUAV3 module hosts a custom add-on SD card module (SLOGGER)

used as a data-logging device.

Figure 5.10 shows the UAV’s flight path. The autopilot struggled to track

the trajectory. The path became oscillatory in-between waypoints. There was a

difference between traversing the downwind leg or when traveling upwind. These

effects are mainly caused by the wind and are accounted for in the SLUGS II

autopilot (based on the previous implementation). It is clear from the performance

that MatrixPilot does not compensate for ground-speed changes.

The resulting path is a measure of the autopilot’s guidance performance and of

how well the autopilot can follow waypoints. These results are important because

they show how a real aircraft with an AUAV3 autopilot performs in real-time and

that its onboard sensors provide enough information to stabilize and control the

aircraft.

5.3.3 SLUGS II Flight Tests

The goal of the SLUGS II flight tests was to achieve acceptable stability and

quick response time. The SLUGS II R&D autopilot has been designed so that it

can steer the UAV to a destination and follow a trajectory defined by multiple

waypoints.

The SLUGS II parameters were known for the simulation configuration and

were tuned to give good simulated flight properties. However, in a real flight

test configuration, these parameters need to be modified for stable flight. It

is essential to re-tune the PID gain parameters for any change in the system

hardware. The tuning procedure involves setting the UAV into autonomous mode.

124

The UAV executes the mission consisting of multiple waypoints. The path is

repeated continuously, and the UAV returns to the first waypoint after visiting

the last waypoint. During the flight tests, the PID gains have been changed to

examine the autopilot control response.

Figure 5.11: Flight test with SLUGS autopilot configuration is presented. Ex-
ample of performance for flight test 1 from[37]

125

Figure 5.11 shows a mission plan with four waypoints executed by the SLUGS

autopilot with the Mentor airplane as a benchmark for the new revision of the

autopilot.

Figure 5.12 shows two laps executed by the UAV after completing the tuning

procedure for the SLUGS II R&D autopilot.

Y (m)
-200 -150 -100 -50 0 50 100 150 200

X
 (

m
)

-350

-300

-250

-200

-150

-100

-50

Flight Test Results - X Y Plots

UAV Trajectory
Waypoints

Figure 5.12: Flight test with a single UAV is presented. The UAV trajec-
tory is in X Y Cartesian coordinate frame and is relative to the home position
(36.989o,−122.0514o).

126

0 20 40 60 80 100 120 140

R
ol

l (
de

g)

-10

0

10

20

30
Flight Test Results - Roll, Pitch and Yaw comparison

0 20 40 60 80 100 120 140

P
itc

h
(d

eg
)

-5

0

5

10

15

Time (s)
0 20 40 60 80 100 120 140

Y
aw

 (
de

g)

0

100

200

300

400

Figure 5.13: Flight test with a single UAV is presented. The body angles are
the relative attitude of the body. It verifies the results of the simple scenario used
to fly the previous version of SLUGS autopilot.

5.3.4 Multi-UAV System Validation

The Multi-UAV system was built with three components: two UAVs and a

GCS. The basic multi-UAV flight formation takes into account the communication

aspects of the deployed system. The goal of this set of flight tests was to examine

different strategies and major challenges for formation flight testing.

The system architecture utilized a centralized scheme of operation to enable

coordination and information sharing. The implementation included a manual

127

mechanism that allowed one UAV to be in “Leader” mode and assigned the other

as the “Follower” UAV. The mode of operation of the UAVs could be set dynami-

cally. That is, their role could be changed during the field test. More specifically,

in the field test data shown, the GCS handles the mission and the two UAVs were

using a predetermined trajectory for the flight test.

Fig. 5.14 shows the top level integration design. Two UAVs utilized commu-

nication through the GCS or directly between them (using XBees transceivers).

Since the flight includes manual remote control, RC controllers and receivers were

also integrated within the UAVs.

Figure 5.14: A top level diagram of the Formation Testing System is shown. Two
UAVs which include an AutoPilot unit and a Telemetry unit can communicate with
the ground control station (GCS) and can also be controlled by a remote-controller
for a fail-safe procedure.

Fig. 5.15 shows the outcome of the integration with the basic real-time com-

ponents; autopilot, the UAV platforms and the GCS a moment before performing

a field-test.

A field-test demonstrating basic flight formation was used to examine the

128

Figure 5.15: Experiment hardware is shown. On the left, three airplanes model
that have been used during the field test. In the middle, the AUAV3 board used
for running the autopilot software. On the right, the setup of the field

integrated system. The system was switched to Autonomous mode immediately

after launch and after the UAVs were far away from each other, the formation

configuration was initiated. Fig. 5.16 shows a sequence of positions for each UAV.

The “Leader” (in red color), tracks the default trajectory and the “Follower” (in

blue color) updates the mission plan with a new waypoint sent from the current

“Leader” position at 1Hz. The updates are transmitted by the GCS to all the

“Follower” members.

Figure 5.16: Two UAVs in Leader-Follower configuration

5.4 Conclusions

The SLUGS II autopilot obtains the same functionality in the migrated Simulink

model as found in the original model. It uses average CPU loading that does not

exceed 60%. The reserve computation time leaves enough resources for further

129

enhancement and evolution.

The design architecture for local data-sharing and for a centralized control

scheme have been explored. The Leader-Follower preliminary tests demonstrate

communication difficulties. Only a few low-cost communication components that

support Mesh-protocol were found, and most of the transceivers tended to fail.

These transceivers support a decentralized configuration through their mesh pro-

tocol feature. They are, however, not robust. The final field test in that configu-

ration was set to work in a centralized configuration although single point failures

could cause a centralized system to be non-functional [78].

The system experienced communication dropouts, and that is one of the rea-

sons why the estimator has been designed to work sequentially. Traditionally there

are two stages for a recursive estimator; predict and update. Thus, the estimator

considers cases where observations are not available. At any arbitrary time step,

it executes the predicting step only, with no update step until a measurement is

available.

Figure 5.17: Field Test in UCSC - Before and After

From the field-tests one can conclude the following results:

• The developed test-bed permits examination of different types of communi-

cations topologies and guidance systems to obtain UAVs formation flight.

130

• The developed setup offers fast and satisfactory integration of COTS: Air-

plane models (Bixler2), Auto-Pilot board (AUAV3), Auto-Pilot open source

software (MatrixPilot & SLUGS II) and GCS open source software (QGC).

The AUAV3 board comprises an MPU6050 gyroscope and accelerometer, a

HMC5883L magnetometer and a BMP-180 barometer. The barometer gave noisy

measurements which required designing a new robust altitude sensor filter in the

Simulink model. Moreover, the differential pressure sensor and airspeed sensor

used in SLUGS are not available in SLUGS II setup. It is strongly recommended

to integrate a differential pressure sensor to get a better altitude keeping and

speed control.

131

Chapter 6

Conclusions & Future Work

6.1 Conclusions

In summary, this thesis has presented the core methodology for coordinating

a fleet of UAVs to suppress the uncertainty of a generic ground phenomenon. The

coordination technique integrated with an R&D monitoring system which was

designed carefully to improve the estimation of a propagated periphery supports

decision making in an operational scenario.

The periphery estimation method shows that it is essential to deploy a number

of the UAVs to validate the accuracy of the deterministic models of the phenomena.

The results show that estimation based on the spatial observations adjusts the

unobserved state (i.e., spread rate). It also facilitates a preceding step based on

approximation estimators to show whether the developed solution (QKF & GUS)

is robust.

The coordination technique reduces the variance from more than one direction;

it is shown that by adding more UAVs that move in a different direction, the

growing variance can be bounded. The prediction can point to the necessity for

more resources (UAVs) in real-time.

132

The system design comprises the major components of a R&D monitoring

system: high-level-controller, flight control, and ground control. The development

process of the UAV flight controller (autopilot) has been improved with COTS

board and a new development environment for software validation. The SLUGS II

autopilot obtains the same functionality in the migrated Simulink model as found

in the original model. The generated code uses on average a 60% CPU loading.

The reserve computation time leaves enough computational resources for further

enhancement and evolution.

MSIL simulation tests the generated code in a flexible and friendly environ-

ment that is committed to the sequence of events in the software rather than to

guarantee valid real-time performance execution of the code. The system is de-

signed to be agnostic as to the type of phenomenon that is being tracked, and can

be made to work well for a number of different scenarios.

Wildfire incidents are an example of a stochastic phenomenon, and knowing the

fire boundary with high certainty would improve decision-making by the ground

team. The variety of sensors available today is enormous, but sometimes the

environmental conditions are so severe that it is impossible to benefit from the

best sensors. This research shows that even if the sensor is binary, the QKF

estimator can achieve high performance estimation of the periphery. It shows that

the quantized information can improve the prediction with the right deployment

and with a coordination scheme for multiple sensors. This approach relies on a

fast deployable fleet of UAVs designed to detect limited information, generate an

uncertainty map, and incorporate the information into a new mission plan.

The developed estimation technique examines how the initial covariance (or

uncertainty) of the CP evolves while the CP state vector is predicted based on the

dynamic model of the propagation. In any operational application, the dynamic

133

model is by definition an approximation and therefore will drift away from the

actual boundary. To represent inaccuracy in the model the derived model assumes

it has a process noise. One would expect a gross accumulation of error as the time

passes in “open loop” to increase.

6.2 Future Work

The deployment stage helps achieve less uncertainty while the UAV search for

their first periphery crossing points. Extending this stage with different deploy-

ment schemes for a fleet of UAVs can both improve uncertainty convergence and

error convergence.

The propagated phenomenon can have different process probability distribu-

tions. Extending the deterministic model to account for vegetation type and ridge

orientation can improve the prediction when observations are not available or do

not have enough influence on the boundary.

The sensing capabilities are assumed to be poor. The QKF method is not

limited to only one type of sensor, and it should then be explored and adjusted

to other sensing capabilities with different noise distributions.

The high-level-controller was developed and tested entirely within Matlab en-

vironment. In a final design, the controller should be deployed on the GCS for

centralized architecture or on the AUAV3 for decentralized architecture.

134

Appendix A

Appendix

A.1 Methods

A.1.1 Coordination

The definition of coordination has much diversity [60]. All the definitions

include a resource that needs to be shared by a group of entities. In the study on

coordination([60]) the author offers the following definition:

’Coordination is managing dependencies between activities’.

The multi-UAVs in the proposed research are intended to track a reference line by

coordinating assigned segments between them. The UAVs shared resource is the

target space at a specific time, meaning that there are dependencies requiring a

solution. This is due to the fact that the paths will likely cross.

The process of coordination connects tasks and resources. The basic task is

to employ an allocated segment for a limited time while another is to assign the

same type of task but with a different segment. The completed step produces

additional information to the next step of the coordination scheme. The timing

of broadcasting this information is very crucial.

135

Solving the task assignment problem is possible using two architectures that

are connected to the fact that information is sometimes unknown. A Centralized

System assumes that clients and servers share their information with a central

entity. In this architecture, the decision will be made by one authority, and

allocation to the server will be sent from it. The other side of the spectrum is

a client that can send new information to potential servers. The one who holds

new information can possibly decide on the right task allocation for the potential

servers. That type of architecture is closer to the definition of a Distributed

Controller.

Another interesting research subject in the coordination topic is how to ap-

proach the analysis of coordination([60]). Bases on the definition of coordination

it is clear that a good analysis depends on the critical parameters that might

influence the performance of activities. Identifying parameters for evaluation will

be the most important part of the analysis itself. In the proposed research, for in-

stance, an uncovered segment of the AOI will have a high cost, a small cross-track

error (relative to the actual perimeter) will have a small cost.

A.1.2 Mission Planning

Mission planning is widely used for UAV applications. Mission planning gener-

ates the overall mission properties for a given scenario. Classical mission planner

constructs the plans based on deterministic models or predictors and re-plan in

real-time to capture environmental adjustments. Another type of mission planner

prepares the mission plans based on stochastic models and re-plan in real-time

after adjusting the model’s statistical properties.

Search, exploration, and coverage problems have been investigated extensively

136

in robotics and aerial literature [72]. Those tasks depend upon target properties

(e.g., area, size, dynamics, etc.). Exploration problems detect the target space and

explore it with no particular demand related to the past visited regions. Coverage

problems find the optimal deployment of the sensors such that target space is

covered continuously and completely.

Monitoring problems, however, differ from all three. The sensing capability

is utilized for additional regions and therefore work more efficiently. The vehicle

carries the sensor, moves continuously, and surveys the target space repeatedly.

Monitoring missions maintain the updated “Map” of the area while trying to

minimize the visiting time between current and oldest regions.

The main difference between the mission planning and mission controlling

processes is that one is an offline process and the second is a real-time process.

This work focuses on the challenging stage of mission control. The system updates

the mission plan according to data collected in real-time. Any new measurement

is additional information that is added to the offline planning. If the system has

benefited from planning based on starting information, it surely has an advantage

from information updates.

A.1.3 Path Following

In path following the objective is to be on the path rather than at a point at

a particular time([10]). There are different techniques to follow a path by a small

unmanned aircraft, and they are all based on a reference trajectory. The desired

trajectory output from the mission planning stage is the reference trajectory, and

the path-following scheme uses it. Path following points at a candidate waypoint

to which the guidance system should point. The traditional guidance laws work

with two types of data structure primitives which represent the planned trajectory:

137

straight-line and circular orbit.

The main reason why a UAV turn should have a circular orbit results from

physical constraints. Fixed wing airplanes must keep their airspeed, hence, must

keep moving while changing direction (i.e., turning). The formal definition for that

type of dynamical systems is a nonholonomic system. Such a system is described

by a set of parameters that vary continuously when the system is moving along a

path.

Several studies present guidance logic for a terminal phase or trajectory-

following [32]. The method adopted by most implementations is trajectory-following

by using a point, (sometimes called ’virtual target’), along with the desired flight

path. By moving that point and aiming the line of sight to it, proportional navi-

gation provides decent and robust performance [86].

The authors [86] show that the guidance system uses the guidance strategy to

follow a set of waypoints and sometimes switching between the mode of opera-

tions as the UAV reaches its capability to follow the track is required. Whenever

the path includes a sharp turn, the guidance system should work to close the

gap between a pair of configurations. The authors suggest adding an element of

anticipatory control that enables tight path tracking when following curved paths.

A Dubins path is a known representation of the transition from one config-

uration (direction and position) to another [58]. Dubins paths based on specific

kinematics resolve a time-optimal path between two configurations. The path

connecting two configurations consists of a turn (i.e., circular arc), a straight line

(straight and leveled) and another turn into the final configuration.

138

A.1.4 Gaussian Transformation

The observations are distributed in space (R2), and each one of them is part

of the predicted distribution of the CPs state. To incorporate that information

we should relate the observation to the CPs distribution with a spatial measure.

That should be based on their relative position in space. One way to do it is by

using the distance as a measure of impact on the examined CP.

In an attempt to address the transformation of probability densities (mapping

problem) we rely on a related theorem from the literature. The theorem states

that any random variable X with a multivariate Gaussian distribution can be

interpreted as the result of applying a linear transformation (X = BZ + µ) to

some collection of n independent standard normal random variables (Z).

It is reasonable then to connect a line between the observation and the predic-

tion CP location to provide, although partial, but additional information to the

estimation process. We obtain a one-dimensional variance by transformation from

original coordinates of the prior covariance. The projected variance is an accurate

partial measure of the related estimated CP and its associated covariance.

The expected value is a second measure that should be evaluated in the new co-

ordinate system, and it would be relative to the distance between the observation

and between the predicted point, (the CP). Because of the relationship within the

original coordinates system (x, y) implied by the covariance, knowing the distant

class label (yi) along the connected line reduces the uncertainty on both of the

original coordinates.

Moreover, the observations are distributed in space, and therefore the general

proposed method would incorporate the class labels according to their associated

distance to the predicted CP. We propose a local transformation to solve for the

139

o
b
se
rv
at
io
n
d
is
ta
n
ce

-
y
a

probability density - p(ya) ŷ

x̂

pCP (x, y)
b̂

â

pr
o
b
ab

ili
ty

d
en
si
ty

-
p
(x

a
)

observation distance - xa

Figure A.1: The transformation method for a non-significant case is presented.
The CP, (square marker in the figure), lies in the x̂, ŷ coordinate system, the
covariance plots as an ellipse and the drone in red fixed-wing shape. The trans-
formation probability densities of the original covariance are projected along the
local coordinate system x̂a, ŷb. Notice that the location of the drone, in this case,
is outbound and therefore the observation is not significant.

140

o
b
se
rv
at
io
n
d
is
ta
n
ce

-
y
a

probability density - p(ya) ŷ

x̂

pCP (x, y)
b̂

â

pr
o
b
ab

ili
ty

d
en
si
ty

-
p
(x

a
)

observation distance - xa

Figure A.2: The transformation method for a significant case is presented. The
CP, (the square point), lies in the x̂, ŷ coordinate system, the covariance draws as
an ellipse and the drone in red fixed-wing shape. The transformation probability
densities of the original covariance are projected along the local coordinate system
x̂a, ŷb. Notice that the location of the drone, in this case, is in boundaries (dashed
red line) and therefore the observation is significant and should influence the
estimation process.

141

probability of a random variable, assuming the CP location is Gaussian distribu-

tion, and also the projection of it is, xa ∼ N(µ, σ2) takes values less or equal than

a given real number xCPa ∈ <.

A.1.5 Approximate Particle Filter Method

Particle Filters are heuristic algorithms which rely on a statistical model of the

examined process. The algorithms perform a two-stage transition sequentially and

form the basis for Sequential Monte Carlo (SMC) methods. The typical problem

that demonstrates the Particle Filter method is the localization problem (e.g.,

Terrain-Based Positioning). In this type of operational problem, the robot travels

with an uncertainty of its actual location, and a reference map holds the surround-

ing environment. For example, when the reference is a terrain map, by measuring

only the altitude above ground (in addition to noise), the reference map becomes

useful information for localization. The main concept is to find the similarity be-

tween current measurement and any possible virtual location represented by the

particles. Each particle is weighted relative to the error between the actual mea-

surement and a randomly sampled measurement. A likelihood function evaluates

the weight (e.g., pdf for a normal distribution). The smaller the difference, the

higher the importance of that particle. The second stage in the algorithm is the

resampling. The resample step adds random particles in between the existing list

of the dominant particles.

One of the questions in this research is how to use that method when we do not

have a reference map?

The practice shows that a moving agent can predict the boundary simply by choos-

ing a set of distant particles (i.e., samples), which are uniformly distributed, and

by evaluating the similarity between the observation and the particles it can map

142

the environment ([77]). The similarity suggests that particle’s relative-location

can either support or oppose the predicted boundary. If the particle is outbound

and the measurement is also outbound, then the particle is less likely to represent

the boundary. If the evaluated particle is inbound relative to the predicted bound-

ary, it is more likely to represent the boundary distribution. The only information

that we have in our problem is the Reported Location, which is the initial point

of the propagated phenomenon. For simplicity, we assume that the measurements

are only from outbound (represent the deployment phase of the mission). We

assume that prior probability of the bounded area is proportional to the explored

region. The second interesting question that arises is when is the best time to

update the predicted boundary (the discrete control points) ?

The following equation averages the dominant particles according to their evalu-

ated weights to find out the suggested update of a point on the boundary:

x̂ = Σw[i]x[i]

Σw[i] (A.1)

The likelihood function is used for statistical inference. It describes the function

of a parameter for a given outcome and is only used after data are available. In

contrast to likelihood function, the probability function is used before data are

available and describes possible future outcomes for a given value of the parameter.

In estimation methods, we apply the likelihood function to evaluate the measure

of some attribute of a sample (statistic) from a set of measurements. In this work,

the inference of the current distribution is based on indirect measurement of the

propagated phenomenon. The observation is either inside the boundaries or out of

boundaries and based on the location of the measurement the estimation process

evaluate how to affect a currently predicted boundary (grid points).

143

A.1.6 QKF - MMSE Approximation

The overall objective of an estimation process is to estimate x̂ . To evaluate

the parameters or the state of interest in terms of error we would usually compare

it to the actual state x. The difference between the estimate and actual state,

(which is unknown), is the error: e = x− x̂. A function of the error that considers

the ability of the filter to estimate data over a period of time is the expected value

of the squared errors: E{(x − x̂)2}. From all possible set of filters, the optimal

filter is defined as the one that minimizes the mean squared estimate (MSE), or

the Minimum MSE (MMSE).

Linear Observations

For the case of non-quantized measurement, assuming that the actual measure-

ments are linear. The measurements are equal to sum of the state transformed

into observation space and an associated measurement noise. Hence, observations

can be modeled in the form:

z = Hx+ v (A.2)

Also, the new estimate of the state is a linear combination of the old estimate,

(the prior), with the measurement residual:

x̂ = x− +K(z −Hx−) (A.3)

Substituting A.2 into A.3:

x̂ = x− +K(Hx+ v −Hx−) (A.4)

144

By subtracting x from both side of the equation:

x− x̂ = x− x− −K(Hx+ v −Hx−) = [I −KH][x− x−] (A.5)

and by deriving the error covariance we get:

P = E[eeT] = E[(x− x̂)(x− x̂)T] =

E[[(I −KH)(x− x−)−Kv][(I −KH)(x− x−)−Kv]T]
(A.6)

This equation is difficult to calculate in practice as we would not know the True

state x, however the linear estimator recursive approach assumes that (x− x−) is

the error of the prior estimate.

P = (I −KH)P−(I −KH)T +KRKT (A.7)

Expansion of A.7 gives:

P =

= [I −KH]P (−)[I −KH]T +KRKT =

= P (−) −KHP (−) − P (−)HTKT

+K(HP (−)HT +R)KT

(A.8)

The equation is the error covariance update equation. The diagonal of the co-

variance matrix contains the mean squared errors. MMSE is also minimization of

the sum of the MSE, hence the trace, (noted in the equations as Trace), of the

145

covariance matrix P .

Trace[P] =

Trace[P (−)]

−2Trace[KHP (−)]

+Trace[K(HP (−)HT +R)KT]

(A.9)

To find the minimum condition we would differentiate the trace of cov(x|z ∈ A)

with respect to K and set the equation to zero:

dTrace[P]
dK

= −2(HP (−))T + 2K(HP (−)HT +R) (A.10)

Solving for K gives:

K = P (−)HT
(
HP (−)HT +R

)−1
(A.11)

where K is the same time-varying weighting matrix (the minimum variance gain)

for Gaussian random variables in 2.15 and that been used by the author in the

[27].

Quantized Observations

The derivation of the Kalman filter type estimator in [27] devised that the op-

timal gain, K, remains the same for the quantized measurements as it is originally

derived for linear Kalman filter. In this section, we propose to examine the MSE

146

(Mean Squared Error) followed by the QKF derivation. Expansion of 2.24 gives:

cov(x|z ∈ A) =

= [I −KH]P (−)[I −KH]T

+KRKT +Kcov(z|z ∈ A)KT =

= P (−) −KHP (−) − P (−)HTKT

+K(HP (−)HT +R)KT

+Kcov(z|z ∈ A)KT

(A.12)

The equation is the error covariance update equation. The diagonal of the co-

variance matrix contains the mean squared errors. MMSE is also minimization of

the sum of the MSE, hence the trace,(noted in the equations as Trace), of the

covariance matrix cov(x|z ∈ A).

Trace[cov(x|z ∈ A)] = Trace[P (−)]

−2Trace[KHP (−)]

+Trace[K(HP (−)HT +R)KT]

+Trace[Kcov(z|z ∈ A)KT]

(A.13)

To find the minimum condition we would differentiate the trace of cov(x|z ∈ A)

with respect to K and set the equation to zero:

dTrace[cov(x|z ∈ A)]
dK

= −2(HP (−))T + 2K(HP (−)HT +R)

+2Kcov(z|z ∈ A)

(A.14)

147

Solving for K gives:

K = P (−)HT
(
HP (−)HT +R + cov(z|z ∈ A)

)−1
(A.15)

Notice that the innovation has an associated measurement prediction covariance

and now an additional associated quantized measurement prediction covariance.

A.1.7 MAP Parameters Approximation

The the theoretical formulas (2.4,2.6) can be hard to apply in real-time situ-

ations. Applying them directly would require infinite samples and a high compu-

tational load.

The key in a real-time estimator implementation is to use a recursive estimator

to incrementally update the posterior probability distribution of the state vector

based on most recent data. MAP estimation fuses both the a-priori observation

and the new one to come up with an estimate. It repeats that process by using

the previous estimate as a-priori and incorporating it with a fresh observation.

Assuming the observations produced by the sensor sequentially, it would compute

the estimate values in each time step.

One can find a closed form solution for the general MAP equations, but it

cannot be applied in here since the observation is bounded.

The probability is conditioned on measurement z, which is bounded on the

region [a, b]. Following the general description in equation A.16, the parameters

for the posterior probability are a product of the conditional probability and the

prior:

P+(θ|z ∈ [a, b]) = P (z ∈ [a, b]|θ)× P−(θ) (A.16)

The first term on the left side is the likelihood (also the CDF), and the second

148

term is the prior:

P (z ∈ [a, b]|θ) = Φ(b− µ√
2σ

)− Φ(a− µ√
2σ

) (A.17)

where Φ is the CDF bounded from left or right ([a, b]), and the difference between

them is the probability mass contained in the interval µ± σ. Equation A.16 may

be expended to give:

P+(θ|z ∈ [a, b]) =

=
(

Φ(b− µ√
2σ

)− Φ(a− µ√
2σ

)
)
× φ(z − µ√

2σ
)

(A.18)

where, φ is the pdf and z is our current measurement.

To find the maximum a-posteriori one would vary the parameters θ until it

reaches maximum probability. Alternately, this can be done by using optimiza-

tion methods to search effectively, differentiating the cost function, setting the

derivative to zero, and solving the partial derivatives of the posterior probability,

P+(θ|z ∈ [a, b]), for the best parameters θ.

∂

∂σ
P+(θ̂|z ∈ [a, b]) = 0 (A.19)

∂

∂µ
P+(θ̂|z ∈ [a, b]) = 0 (A.20)

∂

∂σ
P+(θ̂|z ∈ [a, b]) = ∂

∂σ
P (z ∈ [a, b]|θ)× P−(θ) + P (z ∈ [a, b]|θ)× ∂

∂σ
P−(θ)

(A.21)

149

∂

∂µ
P+(θ̂|z ∈ [a, b]) = ∂

∂µ
P (z ∈ [a, b]|θ)× P−(θ) + P (z ∈ [a, b]|θ)× ∂

∂µ
P−(θ)

(A.22)

∂

∂σ
P+(θ̂|z ∈ [a, b]) =

1
2σ

{
Φ(b− µ√

2σ
)− Φ(a− µ√

2σ
)
}
φ(a− µ√

2σ
)+{

Φ(b− µ√
2σ

)− Φ(a− µ√
2σ

)
}{
− 1
σ
φ(a− µ√

2σ
) + (z − µ)2

σ3 φ(a− µ√
2σ

)
} (A.23)

where φ is the standard normal pdf.

∂

∂µ
P+(θ̂|z ∈ [a, b]) =

1
2µ

{
Φ(b− µ√

2σ
)− Φ(a− µ√

2σ
)
}
φ(a− µ√

2σ
)+{

Φ(b− µ√
2σ

)− Φ(a− µ√
2σ

)
}{

(z − µ)
σ2 φ(a− µ√

2σ
)
} (A.24)

µ1, σ1

µ2, σ2

µ3, σ3

µ4, σ4

µ5, σ5

Figure A.3: This is n example of numerical implementation of the Gradient
Descent optimization method. The indifference curves represent a simple strongly-
convex function. The process search is for the best match of µ̂, σ̂, which tends to
be on the minimal or maximal point.

Where the models are non-linear and have no closed-form solution, a general

optimization search problem in a continuous space is advisable. Such problems

can be addressed by a Gradient Descent/Ascent algorithm that follows the gra-

150

dient of the function to be optimized. After applying the transformation to the

local coordinates system of the candidate CP state vector, it chooses the resulted

predicted parameters as a starting-point for the parameters µ, σ search. Next,

the algorithm moves to a neighboring point that is uphill, repeating that process

until it converges on a maximum probability value for the given new interval. The

Algorithm 3 Gradient descent method.
Given a starting point x ∈ domf
repeat
1. ∆x := −∇f (x).
2. Line search. Choose step size t.
3. Update. x := x+ t∆x

until stopping criterion is satisfied.

Gradient descent algorithm 3, as it has been applied, starts from the predicted CP

statistical characteristics. In step 2 of the Gradient Descent method, it chooses

a constant increment to seek along the line search. Figure A.3 explains how the

algorithm works, reaching the minimal point.

In this implementation, the cost function is the CDF (cumulative distribution

function) defined on the interval [a, b] between the observation and the CP. The

interval is determined from interpreting the observation in the local coordinate

system. The algorithm evaluates the probability for each iteration of updated pa-

rameters. The gradient ∇f (x) shall be the partial derivatives determine in A.23

and A.24.

151

Algorithm 4 Estimation with MAP Approximation.
Given a CP state vector xCPi and observations yi

repeat

1. Predict. xCPx,y
(+) := Φ · xCPx,y

(−)

2. Transformation. T = T a,bx,y .

3. Translation. xCPa := Dist(xCPx,y , xDPx,y).

4. Covariance Evaluation. PCP
a,b := T · PCP

x,y · T T .

5. 1D Evaluation. µa := xCPa , σa := PCP
a,b (1, 1).

6. Set search Bounds. (bac, dbe).

7. MAP. [µ̂a, σ̂a] := arg max
µa,σa

p(z|x)p(x).

8. 1D Update. xCPa := µ̂a, P
CP
a,b (1, 1) = σ̂a.

9. Correlation Correction. PCP
a,b = PCP

a,b · σ̂a

σa
.

10. Inverse Transformation. PCP
x,y := T T · PCP

a,b · T .

11. Inverse Translation. x̂CPx,y := xCPx,y
(+) + T T · (µ̂a − xCPx,y

(+))

until stopping criterion is satisfied.

A.1.8 MAP Conditional Covariance Approximation

The approximation for the conditional covariance, covMAP , is treated in the

same way as the deriving the approximated mean value.

covMAP = E(z − z∗)2 (A.25)

The covariance integral is by definition an integral of the product of squared errors

and the PDF of the prior (p(z)):

covMAP =
∫ ∞
a

(z − z∗)2 · p(z)
P (z ∈ A)dz (A.26)

152

The presented case in Eq. A.26 is for the non-conflicted observation where a is

the lower bound and the upper bound is∞. The term P (z ∈ A) is used to scaling

the density so that it integrates to one over the range of A and it evaluated in

Eq. 2.27. By expanding the equation to three integrals :

covMAP =
∫ ∞
a

z2 · p(z)
P (z ∈ A)dz − 2z∗

∫ ∞
a

z · p(z)
P (z ∈ A)dz + z∗2 ·

∫ ∞
a

p(z)
P (z ∈ A)dz

(A.27)

Note that the integral of the second term is the conditional mean E(z|z ∈ A) and

that the integral in the third term is by definition one. By using basic exponential

integral solutions: ∫
z · e−c·z2

dz = − 1
2ce

−c·z2 (A.28)

∫
z2 · e−c·z2

dz = 1
4

√
π

c3 erf(z
√
c)− z

2ce
−c·z2 (A.29)

where, the variable of integration is z and c is a constant variable. Utilizing the

formulas and substituting the limits of the first two terms in Eq. A.27 is given by:

covMAP = 1
P (z ∈ A) · d ·


∫ ∞
a

z2 · e
−
z2

2σ2
z dz − 2z∗

∫ ∞
a

z · e
−
z2

2σ2
z dz

+ z∗2

= 1
P (z ∈ A) · d ·

[1
4

√
π

c3 · (1− erf(a
√
c)) + a

2ce
−c·a2 − z∗ · 1

c
e−ca

2
]

+ z∗2

(A.30)

where, c, d are constant variables which represent the scaling factors for the

normal pdf : c ≡ 1
2σ2

z

and d ≡ 1√
2πσz

.

In the conflicted case, where expected is not as been observed, the truncation

153

for upper limit, b, is:

covMAP = 1
P (z ∈ A) · d ·

[
1
4

√
π

c3 · (1 + erf(b
√
c))− b

2ce
−c·b2 + z∗ · 1

c
e−cb

2
]

+ z∗2

(A.31)

A.1.9 The Unscented Transformation

The unscented transformation described in [50] is founded on the understand-

ing that it is easier to estimate Gaussian statistical properties than to approximate

nonlinear mapping function. To calculate the statistics of the mapping output yk,

the method determines a matrix χ that includes 2L + 1 candidate points, where

L is the dimension of the state vector xk. The candidate points are also known as

the sigma points, and each of them is a vector and the ith row in the matrix χ(i):

χ0 = x̂k−1

χ
(i)
k−1 = x̂k−1 + (

√
(L+ λ)Px,k−1)i, i = 1, ..., L

χ
(i)
k−1 = x̂k−1 − (

√
(L+ λ)Px,k−1)i−L, i = L+ 1, ..., 2L

(A.32)

where λ, α and β are scaling parameters, x̂ is the prior state estimate, and Px,k−1

is prior state covariance.

Next, the sigma points are propagated through the state prediction function:

χ
(i)
k|k−1 = f(χ(i)

k−1), i = 1, ..., 2L (A.33)

and the transformed sigma points sent through the observation model:

Y
(i)
k|k−1 = h(χ(i)

k|k−1), i = 1, ..., 2L (A.34)

154

Note, the subscript k|k−1 means that this is the predicted value based on the infor-

mation from the last step. To evaluate the relative contribution of the sigma points

to the current time-step, the method determines their corresponding weights Wi:

Wm
0 = λ/(L+ λ)

W c
0 = λ/(L+ λ) + (1− α2 + β)

W c
i = Wm

i = 1/2(L+ λ)

(A.35)

The weights and their associated scale parameters (λ, α, β) are used to incor-

porate prior knowledge of the distribution of the state or the parameter being

estimated.

x̂k|k−1 ≈
∑

Wm
i χ

(i)
k|k−1 (A.36)

ȳ ≈
∑

Wm
i Y

(i)
k|k−1 (A.37)

To calculate the Kalman gain matrix, the procedure is to evaluate the covariance

matrices. The innovation covariance is:

P yy
k ≈ R +

∑
W c
i (Y (i)

k|k−1 − ȳi)(Y
(i)
k|k−1 − ȳi)

T (A.38)

where Yi is the outcome of the nonlinear function that maps the sigma point to the

observation space, and R is the noise covariance matrix (assuming the observation

noise is additive and independent).

The state measurement cross correlation matrix is:

P xy
k ≈

∑
W c
i (χ(i)

k|k−1 − x̂k|k−1)(Y (i)
k|k−1 − ȳi)

T (A.39)

The final step in UKF is the update step. This involves calculating the estimated

output based on the covariance and the cross-covariance matrices:

155

Kk = Pxy(Pyy)−1 (A.40)

This Kalman gain (Kk) is then used to update the state and covariance matrix:

x̂k|k = x̂k|k−1 +Kk(yk − ȳ) (A.41)

Pk|k = Pk|k−1 −KkP
yy
k KT

k (A.42)

A.2 System Design

The implemented autopilot is AUAV3 board with the SLUGS II software. This

board became popular amongst research applications and is new compared to the

SLUGS board or the APM board. The AUAV3 board runs 16-bit software archi-

tecture compared to the limited 8-bit used by the APM. Moreover, the AUAV3

board is compatible with the MatrixPilot software and with the SLUGS II soft-

ware. The SLUGS II is tailored for a 16-bit platform, and it is compatible to use

the full capacity of the AUAV3 board.

The advantage of the SLUGS II software is that it supports rapid redesign

process. The downside of using the SLUGS II software is that it is relatively

new software developed and used only in the ASL lab. Hence, it is not tested as

MatrixPilot software or ArduPilot software, and therefore the software is tending

to make errors.

A.2.1 QGroundControl

The SLUGS II is responsible for stabilizing the UAV toward a planned desti-

nation. The destination is generated by the GCS software, which is part of the

156

overall generated mission plan. The GCS support the users in generating the

requested path and communicating with the UAV software. Most of the GCS uti-

lizes the MAVlink (Micro Air Vehicle Communication) protocol to communicate

with the UAV. The QGroundControl is an open-source of a popular GCS which

support customized MAVlink messages, and since Mavlink protocol is suited for

SLUGS II autopilot, the communication layer has been tailored for the specific

messages.

The QGroundControl includes many features that have been adopted and

others that have been added to support the Monitoring System. The GCS provides

information about the location of fire origin and location of the predicted periphery

in real-time. In simulated scenario, it also presents the animated propagated

boundary.

The GUI architecture of the QGroundControl includes c++ classes that are

called widgets. For the Monitoring System, a widget is customized to present the

deployment phase and the pre-planned path for the fleet of UAVs. The customized

widget send the measured status to the UAVs, according to there location. In a

simulated configuration the measurement is based on the location relative to the

polygon of the simulated periphery, in real-time the widget receive a customized

message that includes the measured information.

The executed background process is an implementation of the estimation tech-

nique and the coordination method. This process is embedded in the QGround-

Control. The predicted periphery is presented based on the estimation results,

and the UAVs’ updated mission plan is being sent as MAVlink messages based on

the coordination method calculation.

The connection between the QGroundControl and the SLUGS II software and

between QGroundControl and the multi-UAV controller is initially established

157

when the QGroundControl receive heartbeat messages from the UAV (SLUGS II)

and the multi-UAV controller. The heartbeat messages specify which UDP port

is open for response message and continuous communication.

A.2.2 Bixler 2 Parameters

The physical parameters of Bixler 2 aircraft are described in Table A.1

Wingspan 59.05 inches

Flying Weight 2 lbs.

Material EPO Foam

Motor 1400 kV, 160 W

Battery 11.1 V, 2200 mAh, LiPo

Wing Area 2.65 ft2

Table A.1: RC model plane - the physical parameters of Bixler 2 aircraft.

The wingspan is almost 1 meter, elliptical wings. The electric motor is brush-

less with a power of 1200kV. The power source battery used is a 2200mAh Lithium

Polymer. It provides sufficient current for the power plant, servo motors and the

AUAV3 board, through the Electronic Speed Controller (ESC). The ESC pro-

vides a 5.0 volt supply to the servos and the AUAV3 autopilot and also provides a

control signal and power to the motor. An additional Battery Eliminator Circuit

(BEC) is added in parallel to the ESC, to introduce redundancy.

158

A.2.3 Sensor

An essential part of the system design is the sensing capability. The sensor

need the ability to obtain visual information from the environment quickly (e.g.,

distant temperature changes, local gradient, etc.)

A.3 Results

A.3.1 Flight Tests

After successful completion of the MSIL and MHIL Simulations, flight testing

of the coordination algorithm begins. For testing the GUS controller, the airplanes

are first stabilized and trimmed for level flight. The safety-pilot then turns on the

autonomous mode. In this flight mode, the radio control transmitter works in

pass-through mode, enables the pilots to keep controlling the airplanes. The GSC

is used to send flight path updates (next WP), while the airplane headed to there

on-board destinations (current mission).

The first stage of autonomous flight mode the SLUGS II autopilot gains need

to be tuned for changes caused in preparing the hardware from the last tuned

configuration. The key tuning parameters for the SLUGS II autopilot are the

Proportional, Integral and Derivative (PID) gains of the longitudinal and latitu-

dinal channels (roll, yaw, and pitch).

159

Y (m)
-300 -200 -100 0 100 200 300

X
 (

m
)

-350

-300

-250

-200

-150

-100

-50

0

50

Simulation Tests Results - X Y Plots

UAV Trajectory
Waypoints

Figure A.4: Simulated scenario with a single UAV is presented. The UAV tra-
jectory is in X Y Cartesian coordinate frame and is relative to the Home position.
The first segment of the trajectory starts from take-off controlled manually by the
safety-pilot (with the RC), he switched to autonomous mode after 30 seconds. Six
laps were tested with different gains setting for tuning the roll command.

A.3.2 Martin Incident

The Martin fire occurred in 2008, and the recorded data were analyzed. The

goal was to study the dynamics of the propagated phenomenon thoroughly, iden-

tify the dominant factors and their relation. Based on the analyzed boundaries

of the map the models employed in this thesis were verified and tuned to have

closer dynamics properties. For instance, the spreading rate is bounded, and it is

160

a function of terrain slope, wind direction, and the vegetation type.

!

!

?§

!

!

!

!

Fire Origin - June 11 - 1454 hours

June 11 - 1530 hours

June 11 - 1630 hours

June 11 - 1700 hours

June 11 - 1800 hours

June 11 - 2000 hours

June 12 - 1900 hours

June 13 - 1900 hours

M A R T I N I N C I D E N T
CA-CZU-005238 Progression Map

µ
0 0.25 0.5 0.75 10.125

Miles NAD 27 CA teale Albers

Figure A.5: Progression map of the Martin incident. The image is processed
after the incident and relies on number of sources (from Cal-Fire)

Figure A.5 shows the progression map of the Martine incident. The periphery

grows up in time, and the boundary of the wildfire spreads. Knowing that the

terrain is a dominant factor helps to understand the outcome in relation to the

vegetation type, knowing the actual weather explains the direction of propagation.

161

The incident last for almost two days and spread out over a distance of 2km in a

spreading rate of 0.2m/sec.

162

Bibliography

[1] UAV Over-the-Horizon Disaster Management Demonstration Projects
Project Manager : Steve Wegener February 2000 Contents. (February),
2000.

[2] D Adalsteinsson and J.a Sethian. The Fast Construction of Extension Ve-
locities in Level Set Methods. J. Comput. Phys., 148(1):2–22, 1999.

[3] K Alexis, G Nikolakopoulos, A Tzes, and L Dritsas. Coordination of Heli-
copter UAVs for Aerial Forest-Fire Surveillance. Applications of Intelligent
Control to Engineering Systems, 39:169–193, 2009.

[4] K Alexis, G Nikolakopoulos, a Tzes, and L Dritsas. Coordination of He-
licopter UAVs for Aerial Forest-Fire Surveillance. Appl. Intell. Control to
Eng. Syst., 39:169–193, 2009.

[5] Keith. Arnold. Uses of aerial photographs in control of forest fires. Journal
of Forestry, 49:26–31, 1951.

[6] Nick Arsov. AUAV3.

[7] a Nalyses P Art, Forest Service, Martin E Alexander, David a Thomas, and
Dale Bosworth. Fire Management W ILDLAND F IRE S TUDIES AND.
Management, 63(3):1–96, 2003.

[8] Tuncer Can Aysal, Mark J Coates, and Michael G Rabbat. With Dithered
Quantization. October, 56(10):4905–4918, 2008.

[9] Randal W Beard. Cooperative forest fire surveillance using a team of small
unmanned air vehicles . Int . J . 37(April 2016):351–360, 2006.

[10] W. Randal Beard and W. Timothy Mclain. Small Unmanned Aircraft: The-
ory and Practice. 2012.

[11] J S Bellingham, M Tillerson, M Alighanbari, and J P How. Cooperative
path planning for multiple UAVs in dynamic and uncertain environments.
Proc. 41st IEEE Conf. Decis. Control 2002, 3(December):2816–2822, 2002.

163

[12] S. Boyd and S. Lall. A scheme for robust distributed sensor fusion based on
average consensus. IPSN 2005. Fourth International Symposium on Infor-
mation Processing in Sensor Networks, 2005., pages 63–70, 2005.

[13] Arthur Earl Bryson. Applied optimal control: optimization, estimation and
control. CRC Press, 1975.

[14] Fancesco Bullo, Jorge Cortés, and Sonia Martínez. Distributed Control of
Robotic Networks : A Mathematical Approach to Motion Coordination Al-
gorithms. 2009.

[15] Wolfram Burgard, Mark Moors, and Frank Scheider. Collaborative Explo-
ration of Unknown Environments with Teams of Mobile Robots. Advances
in Plan-Based Control of Robotic Agents, 2466:52–70, 2002.

[16] CAL FIRE. Cal fire aviation program. Technical Report September, 2007.

[17] CAL FIRE. Strategic Plan Goals. Technical report, 2010.

[18] CAL FIRE. Firefighting Aircraft. Technical report, 2016.

[19] Y.U. Cao, A.S. Fukunaga, A.B. Kahng, and F. Meng. Cooperative mobile
robotics: antecedents and directions. Proceedings 1995 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems. Human Robot Inter-
action and Cooperative Robots, 1:226–234, 1997.

[20] David W Casbeer, Randal W Beard, Timothy W Mclain, Randal W Beard,
and Timothy W Mclain. Forest fire monitoring with multiple small UAVs
Vehicles. 2005.

[21] David W Casbeer, Derek B Kingston, Randal W Beard, and Timothy W
Mclain. Cooperative Forest Fire Surveillance Using a Team of Small Un-
manned Air Vehicles. 00(00):1–18, 2005.

[22] Haiyang Chao, Yongcan Cao, and Yangquan Chen. Autopilots for small
unmanned aerial vehicles: A survey. International Journal of Control, Au-
tomation and Systems, 8(1):36–44, 2010.

[23] Rama Chellappa, Ashok Veeraraghavan, and Gaurav Aggarwal. Pat-
tern Recognition in Video. Pattern Recognition and Machine Intelligence,
3776:11–20, 2005.

[24] Jongeun Choi and Dejan Milutinovic. Tips on Stochastic Optimal Feedback
Control and Bayesian Spatiotemporal Models: Applications to Robotics. J.
Dyn. Syst. Meas. Control, 137(3):30000, 2014.

164

[25] X Cui, T Hardin, R K Ragade, and a S Elmaghraby. A swarm-based fuzzy
logic control mobile sensor network for hazardous contaminants localization.
Mobile Ad-hoc and Sensor Systems, 2004 IEEE International Conference
on, pages 194–203, 2004.

[26] Renwick Curry, Mariano Lizarraga, Bryant Mairs, and Gabriel Hugh
Elkaim. L+2, an improved line of sight guidance law for uavs. Am. Control
Conf. (ACC), 2013, pages 1–6, 2013.

[27] Renwick E Curry. Estimation and control with quantized measurements.
MIT press, 1970.

[28] Renwick E Curry, Mariano Lizarraga, and Gabriel Hugh Elkaim. The Design
of Rapidly Reconfigurable Filters for Attitude and Position Determination.
(April):3509, 2010.

[29] Jurek Czyzowicz, Leszek GaÌğsieniec, Adrian Kosowski, and Evangelos
Kranakis. Boundary patrolling by mobile agents with distinct maximal
speeds. Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 6942
LNCS:701–712, 2011.

[30] Navid Dadkhah and Bérénice Mettler. Survey of motion planning literature
in the presence of uncertainty: Considerations for UAV guidance. Journal of
Intelligent and Robotic Systems: Theory and Applications, 65(1-4):233–246,
2012.

[31] David A. Goodman. DUBINS PATH PLANNER PROJECT REPORT.
(December), 2015.

[32] D.J. Yost J.E. Kain. Command to line-of-sight guidance: A stochastic op-
timal control problem,. Journal of Spacecraft,14(7):438444,, 1977.

[33] Drone Deploy. Preparing for Takeoff Table of Contents. pages 1–44, 2017.

[34] Zhansheng Duan, Vesselin P. Jilkov, and X. Rong Li. State estimation with
quantized measurements: Approximate MMSE approach. Proceedings of
the 11th International Conference on Information Fusion, FUSION 2008,
pages 1067–1072, 2008.

[35] Gabriel Hugh Elkaim. System identification for precision control of a
wingsailed GPS-guided catamaran. ProQuest Dissertations and Theses,
3040012(December):323–323 p., 2002.

[36] Wilfried Elmenreich. An introduction to sensor fusion. Austria: Vienna
University Of Technology, (February):1–28, 2002.

165

[37] Mariano I. Lizarraga Fernandez. DESIGN, IMPLEMENTATION AND
FLIGHT VERIFICATION OF A VERSATILE AND RAPIDLY RECON-
FIGURABLE UAV GNC RESEARCH PLATFORM. 2009.

[38] João Fortuna. Search Patterns. 2012.

[39] Walter Gander, Gene H Golub, and Rolf Strebel. Least-squares fitting of
circles and ellipses. Bit, 34(4):558–578, 1994.

[40] Richard Garcia and Laura Barnes. Multi-UAV simulator utilizing x-plane.
Journal of Intelligent and Robotic Systems: Theory and Applications, 57(1-
4):393–406, 2010.

[41] Edward Geaney. UC Santa Cruz Electronic Theses and Dissertations. 2012.

[42] A.R. Girard, A.S. Howell, and J.K. Hedrick. Border patrol and surveillance
missions using multiple unmanned air vehicles. 2004 43rd IEEE Conference
on Decision and Control (CDC) (IEEE Cat. No.04CH37601), pages 620–625
Vol.1, 2004.

[43] W. H. Greene. Limited dependent variables - truncation, censoring, and
sample selection. Econometric Analysis, pages 833–902, 2011.

[44] Fredrik Gustafsson and Rickard Karlsson. Generating dithering noise
for maximum likelihood estimation from quantized data. Automatica,
49(2):554–560, 2013.

[45] Adam Hoover. Analysis of Tracking Systems - lecture-notes, 2015.

[46] Syed a. Imtiaz, Kallol Roy, Biao Huang, Sirish L. Shah, and Phanindra
Jampana. Estimation of States of Nonlinear Systems using a Particle Filter.
2006 IEEE International Conference on Industrial Technology, (5):2432–
2437, 2006.

[47] Isabel Ribeiro. Autonomous Systems - class notes, 2004.

[48] Lucas Janson, Edward Schmerling, and Marco Pavone. Monte Carlo Motion
Planning for Robot Trajectory Optimization Under Uncertainty.

[49] Simon Julier, Jeffrey Uhlmann, and Hugh F. Durrant-whyte. Technical
Notes and Correspondence. IEEE Transactions on Automatic Control,
45(3):477–482, 2000.

[50] Simon J Julier and Jeffrey K Uhlmann. A New Extension of the Kalman
Filter to Nonlinear Systems. Spie, 3068:182–193, 1985.

166

[51] Simon J. Julier and Jeffrey K. Uhlmann. A general method for approxi-
mating nonlinear transformations of probability distributions. Upublished,
pages 1–27, 1996.

[52] Lubin Kerhuel. Simulink - embedded target for pic.

[53] Do-Myung Kim. Development of near-real-time simulation environment for
multiple UAVs. In Automation and Systems, 2007. ICCAS’07. International
Conference on. IEEE, 2007., 2007.

[54] Jongrae Kim and Yoonsoo Kim. Moving ground target tracking in dense
obstacle areas using UAVs. IFAC Proc. Vol., 17(1 PART 1), 2008.

[55] V. I. Kortunov, O. V. Mazurenko, A. V. Gorbenko, Watheq Mohammed,
and Ali Hussein. Review and comparative analysis of mini- and micro-
UAV autopilots. 2015 IEEE 3rd International Conference Actual Problems
of Unmanned Aerial Vehicles Developments, APUAVD 2015 - Proceedings,
pages 284–289, 2015.

[56] G. Kowadlo and R. A. Russell. Robot Odor Localization: A Taxonomy and
Survey. The International Journal of Robotics Research, 27(8):869–894,
2008.

[57] Parth Kumar and James E. Steck. System Identification, HIL and Flight
Testing of an Adaptive Controller on a Small Scale Unmanned Aircraft.
AIAA Modeling and Simulation Technologies Conference, (January):1–10,
2015.

[58] L. E. Dubins. On curves of minimal length with a constraint on average
curvature, and with prescribed initial and terminal positions and tangents.
American Journal of Mathematics,, vol. 79, n, 1957.

[59] Jonathan Las Fargeas, Pierre Kabamba, and Anouck Girard. Cooperative
surveillance and pursuit using unmanned aerial vehicles and unattended
ground sensors. Sensors (Switzerland), 15(1):1365–1388, 2015.

[60] Thomas W Malone and Kevin Crowston. The interdisciplinary study of
coordination. ACM Computing Surveys, 26(1):87–119, 1994.

[61] Jan Mandel, Jonathan D Beezley, Lynn S Bennethum, Soham Chakraborty,
Janice L Coen, Craig C Douglas, Jay Hatcher, Minjeong Kim, and An-
thony Vodacek. A dynamic data driven wildland fire model. Computational
Science, 4487(1):1042–1049, 2007.

[62] MatrixPilot. MatrixPilot Auto-Pilot, 2016.

167

[63] P S Maybeck. Stochastic models, estimation, and control, volume 1. 1979.

[64] Ivan Maza and Anibal Ollero. Multiple UAV cooperative searching operation
using polygon area decomposition and efficient coverage algorithms. Distrib.
Auton. Robot. Syst. 6, pages 221–230, 2007.

[65] K McGrattan, S Hostikka, Je Floyd, H Baum, R Rehm, W Mell, and R Mc-
Dermott. Fire dynamics simulator (version 5), technical reference guide.
Volum1: Mathematical Model. NIST Spec. . . . , 3(Version 5):92, 2004.

[66] William Mell, Anthony Bova, and Glenn Forney. Models for Fire Spread in
the Wildland-Urban Interface. pages 1–61, 2012.

[67] J Melorose, R Perroy, and S Careas. No Title No Title, volume 1. 2015.

[68] National Interagency Fire Center. Federal Firefighting Costs (Suppression
only). page 1987, 2016.

[69] NIFC. National Interagency Coordination Center Wildland Fire Summary
and Statistics. Technical report, 2013.

[70] NIFC. Fire Initial Attack. Technical report, NIFC, 2016.

[71] NIFC. Interagency Standards for Fire and Fire Aviation Interagency Stan-
dards for Fire. Technical Report January, NIFC, 2016.

[72] N Nigam and I Kroo. Persistent Surveillance Using Multiple Unmanned Air
Vehicles. In IEEE Aerospace Conference, pages 1–14. IEEE, 2008.

[73] Nikhil Nigam. The Multiple Unmanned Air Vehicle Persistent Surveillance
Problem: A Review. Machines, 2(1):13–72, 2014.

[74] John Porrill. Fitting ellipses and predicting confidence envelopes using a
bias corrected Kalman filter. Image Vis. Comput., 8(1):37–41, 1990.

[75] Sharon Rabinovich. Doctoral Thesis Proposal Multi-UAV Coordination for
Uncertainty Suppression. Technical report, UCSC, 2016.

[76] Sharon Rabinovich. A Methodology for Estimation of Ground Phenomena
Propagation. 2018.

[77] Ioannis Rekleitis. Cooperative localization and multi-robot exploration.
McGill University, Montreal, Que.,, 2003.

[78] Wei Ren and Randal W Beard. Distributed consensus in multi-vehicle co-
operative control. 2008.

168

[79] Mi Ribeiro. Gaussian probability density functions: Properties and er-
ror characterization. Institute for Systems and Robotics, Technical Report,
(February):1–30, 2004.

[80] Elaine. Rich, Kevin. Knight, and Shivashankar B. Nair. Artificial
Intelligence-Rich-Knight-Nair.pdf, 2009.

[81] Arthur Richards and John Bellingham. Coordination and control of multiple
UAVs. AIAA Guidance, Navigation, and Control Conference and Exhibit,
(August):1–11, 2002.

[82] Arthur Richards and John Bellingham. Coordination and control of multiple
UAVs. AIAA Guid. Navig. Control Conf. Exhib., (August):1–11, 2002.

[83] Branko Ristic, Daniel Angley, Bill Moran, and Jennifer L. Palmer. Au-
tonomous multi-robot search for a hazardous source in a turbulent environ-
ment. Sensors (Switzerland), 17(4):1–17, 2017.

[84] G Ronald. A111D7 IDhnD Technical Note 1611 Fire-Front Propagation
Using the Level Set Method VIm7I.

[85] Stuart Russell and Peter Norvig. Artificial Intelligence A Modern Approach.
2013.

[86] S. Park, J. Deyst and J. P. How. Performance and Lyapunov stability of a
nonlinear path- following guidance method,. Journal of Guidance, Control
and Dynamics, vol. 30, no. 6, p. 1718, 2007.

[87] K Sain. Book reviews. Prometheus, 21(1):120–139, 2003.

[88] Simo Sarkka. Bayesian Filtering and Smoothing. 2013.

[89] Randall C Smith and Peter Cheeseman. On the Representation and Estima-
tion of Spatial Uncertainty. The International Journal of Robotics Research,
5(4):56–68, 1986.

[90] H. W. Sorenson. Parameter Estimation, Principles and Problems. 1980.

[91] Alexander Stepanov and James Mac Gregor Smith. Modeling wildfire propa-
gation with Delaunay triangulation and shortest path algorithms. European
Journal of Operational Research, 218(3):775–788, 2012.

[92] a. L. Sullivan. A review of wildland fire spread modelling, 1990-present 3:
Mathematical analogues and simulation models. International Journal of
Wildland Fire, pages 1–42, 2009.

169

[93] Yang Tang, Huijun Gao, Wenbing Zhang, and Jürgen Kurths. Leader-
following consensus of a class of stochastic delayed multi-agent systems with
partial mixed impulses. Automatica, 53:346–354, 2015.

[94] Victoria State. Fire and Emergency Response Procedures and Training
Framework. Technical Report December, 2001.

[95] Eric Wan and Rudolph van der Merwe. The unscented Kalman filter for
nonlinear estimation. Adaptive Systems for Signal Processing, Communica-
tions, and Control Symposium 2000. AS-SPCC. The IEEE 2000, 2000.

[96] David R. Weise and Gregory S Biging. Effects of Wind Velocity and Slope
on Fire Behavior. Fire Safety Science, 4:1041–1051, 1994.

[97] Brian Yamauchi. Frontier-based exploration using multiple robots. Pro-
ceedings of the second international conference on Autonomous agents -
AGENTS ’98, (May):47–53, 1998.

[98] Angela J. Yu. Natural Computation - lecture-notes, 2010.

[99] Chi Yuan, Youmin Zhang, and Zhixiang Liu. A survey on technologies for
automatic forest fire monitoring, detection, and fighting using unmanned
aerial vehicles and remote sensing techniques. Can. J. For. Res., 45(7):783–
792, 2015.

[100] Zhengyou Zhang. Parameter estimation techniques: a tutorial with appli-
cation to conic fitting. Image Vis. Comput., 15(1):59–76, 1997.

170

	List of Figures
	Abstract
	Dedication
	Acknowledgments
	Introduction
	Overview
	Motivation
	Existing Monitoring Systems
	Multi-UAV
	Coordination
	Observation
	Propagated Periphery Modeling

	Contributions
	Structure of the Dissertation

	Periphery Estimation Methods
	Introduction
	Overview of Estimation Approaches
	Problem definition

	QKF Method
	Boundary Definition
	QKF Estimator
	QKF - Implementation
	Approximations Techniques
	Simulation with a Single UAV

	UAV Strategies
	Ellipse Steering
	Greedy Uncertainty Suppression Method
	Simulation and Results

	Conclusions

	System Design
	Introduction
	SLUGS II AutoPilot Design
	Software Design
	Hardware Design
	Migration Process

	Ground Control Station
	Conclusions

	Simulation
	Introduction
	Propagation Model
	Multi-UAV Simulation
	Verification and Validation

	Simplified Simulation
	Propagation Model

	Multi-UAV Software in the loop
	Multi-UAV Hardware in the loop
	Flight Simulator

	Conclusions

	Results
	Introduction
	Simulation Results
	SLUGS II Validation
	Monitoring System Validation

	Flight Tests Results
	AUAV3 Flight Test I
	AUAV3 Flight Test II
	SLUGS II Flight Tests
	Multi-UAV System Validation

	Conclusions

	Conclusions & Future Work
	Conclusions
	Future Work

	Appendix
	Methods
	Coordination
	Mission Planning
	Path Following
	Gaussian Transformation
	Approximate Particle Filter Method
	QKF - MMSE Approximation
	MAP Parameters Approximation
	MAP Conditional Covariance Approximation
	The Unscented Transformation

	System Design
	QGroundControl
	Bixler 2 Parameters
	Sensor

	Results
	Flight Tests
	Martin Incident

	Bibliography

