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The Soave-Redlich-Kwong cubic equation of state (EoS) was used in real-gas investiga-

tions for a mixture of species. An algorithm for a direct solution using a modified version of

the Cardanos method is described in order to solve the cubic EoS more efficiently compared

to previous methods. Isentropic, choked flow through a convergent-divergent nozzle was

investigated using classical mixing rules and compared to flow with the ideal-gas law. Two

novel methods were described to solve for the downstream conditions of a normal shock and

the results compared to ideal-gas solutions. A computer script was written to solve the cubic

EoS. A wide range of stagnation pressure and stagnation temperatures were investigated to

analyze the effects on the real-gas solutions. Upon tabulation of results, it was concluded

that most solutions with lower stagnation temperatures and higher stagnation pressures are

furthest in value to ideal-gas solutions. However, the range of agreement is dependent upon

the species present as well as the concentration of those species in a gas.
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1 Introduction

The calculation for ideal-gas is well known and requires straightforward equations to

solve. However, ideal-gas behavior is significantly different from real-gas behavior. Thus,

the need for solving for real-gas properties motivated numerous investigative studies. While

there are a number of methods that provides close approximations to real-gas behavior, with

the increasing accuracy of the models also comes an increasing difficulty of calculations. In

1948, Redlich and Kwong developed a method to give an accurate approximation dependent

on an algebraic relation for a two-parameter equation of state (EoS) [1]. This relation, (listed

below), made it possible to solve for the thermal and volumetric properties of compounds,

for both single species and mixtures of gases:

P =
RT

v − b
− a/T 0.5

v(v + b)
(1)

Still, Equation (1) was not able to accurately model the dependency on temperature.

Thus, attempts were made to find a model that was more temperature dependent and to

rectify its inaccuracies. While not an extensive list, the book The Properties of Gases and

Liquids by Poling et al., gives a number of variations of the above equation’s dependencies

on temperature [2]. One of the more popular models to study real-gas was developed by

Soave [3]. By replacing the a/T 0.5 term with a(T ), then rewriting Equation (1), the Soave-

Redlich-Kwong (SRK) equation becomes:

P =
RT

v − b
− a(T )

v(v + b)
(2)

The compressibility factor Z is defined as follows for normalized values used in this study:

Z =
P

TR
(3)
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In the above equation, R is a normalized density which will be addressed later in this

study. A and B are defined as:

A = − aP

R2
uT

2
(4)

B =
bP

RuT
(5)

Ru is the universal gas constant and is not specific to any species of gas. The SRK

equation can now be turned into a cubic EoS:

Z3 − Z2 + (A−B −B2)Z − AB = 0 (6)

The SRK EoS was an improvement compared to the Redlich-Kwong equations, but still

had issues with polar compounds, hydrogen mixtures and carbon dioxide. Soave recognized

that the future studies can expand upon more temperature dependent parameters such as

the specific heat ratio [4].

Since Soave’s original paper, multiple studies have improved the accuracy for such com-

pounds by altering the binary interaction coefficient in the mixture rules. (Further expla-

nation of the binary interaction coefficient is provided in Section 2.1). With these improve-

ments, modeling polar molecules has become more accurate and the SRK EoS is no longer

associated with a large inability to perform this function.

This study utilizes the classic mixing rules when dealing with gases of multiple species.

However, there are several different approaches to modeling the interaction of species. One

such method of mixing is the one generally accepted by Huron-Vidal mixing rules [5]. The

Huron-Vidal method assumes that at infinite pressures the excess properties of the mixtures

have finite limits. An advantage to this method is the exclusion of the binary interaction

coefficient. Instead of accounting for multiple species reaction, an interaction parameter

is created and can be determined by the type of species involved. Meanwhile, the binary
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interaction parameter relies upon experimental data. It was noted in the investigation that

the mixing rules fail to model polar compounds with enough fidelity, but this is probably

due to the binary interaction coefficients used at that time.

Soave, Gamba and Pellegrini in 2010 investigated the use of the SRK equations but

instead of using the classical mixing rules, they used Huron-Vidal mixing rules [4]. In

the investigation it outlined how to solve for the interaction parameter seen and using this

equation was proposed to solve for the binary interaction parameter in classical mixing rules.

The resulting binary interaction parameter was shown to hold for a number of CO2-aromatic

systems. Using the Huron-Vidal mixing rules to solve for binary interaction coefficient

would lead to a cumbersome equation. This results because of the temperature-dependent

Huron-Vidal equation, the additional temperature-dependent interaction parameter, and the

temperature-dependent equation proposed in the paper. Thus, efficiency of computation will

be lacking, but binary interaction coefficients of species yet to be found experimentally can

be deduced.

Graboski and Daubert demonstrated a few useful tendencies with the interaction between

multiple species of gas [6] [7] [8]. This study included vapors and gases, however, it only

focuses on gases. Additionally, Graboski and Daubert noticed that it was unnecessary to

give kij a value for interactions between hydrogen and hydrocarbon species. Furthermore,

it was also found that interactions between two hydrocarbon species can also be neglected.

Meanwhile, temperature dependent interactions were given, mainly for species involved in

fracking or industrial energy related endeavors. Graboski and Daubert concluded that more

empirical data between species would improve binary interaction coefficient and thus the

SRK EoS.

Fewer studies have been done to calculate or estimate the real-gas conditions, downstream

of a normal shock, than studies of isentropic flow. All papers have agreed that there is no

direct solution and a numerical/iterative method is needed for finding these conditions.

These solutions, along with experimental data, have shown that conditions after a normal
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shock vary significantly in real-gases compared to calculating ideal-gases. Thus, studies that

use real-gas equations for most of the flow, and then utilize ideal-gas relations for normal

shocks are not valid solutions such as that proposed by Wilson and Regan [9].

Knowledge of downstream conditions of a shock are not required in order to fully solve

for state variables. Kourmonos developed two methods for calculating real-gas effects of a

shock using the Redlich-Kwong EoS. The first focused on Mach number and the second on

specific volume [10]. The first method utilized is more computationally efficient but requires

some knowledge of downstream conditions. The second method requires more effort but

does not need downstream information; instead, only critical values are necessary.

Two methods have proven valid in finding these downstream flow properties. The first

involves calculating an analytical solution by using the EoS. The second relies on finding two

non-linear curves that relate two parameters of downstream condition, (such as temperature

and volume) and then finding the point where each curve intersects. The EoS can then be

used to find the remaining parameters [11]. Kourememnos-Antonopoulos has shown that

use of the Redlich-Kwong equations can be made, concluding that ideal-gas and real-gas

behavior differ widely with normal shock. They demonstrated showed that it has decent

accuracy for more moderate temperature ranges, but it also demonstrates deviation at high

pressures and near critical values. Passman showed similar results by taking a different

mathematical approach using Novec 649 as the observed fluid [12].

Sirignano described a third method in order to find downstream conditions. By varying

the density ratio, a system of equations can be established to find downstream Pd and Td [13].

In an earlier paper, Sirignano used an approximate version of the SRK EoS to find results

for both isentropic flow and shock flows. The approximation described was valid when both

A and B where very small (A << 1 and B << 1). This specific instance gave rise to the

following relation:

Z ≈ 1 +B − A (7)
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This approximation was proven to hold for a wide range of values and is compared to

this study in Section 4.2.4.

While certain mixtures such as air or CO2 and H2O are more relevant to this paper,

the original work for developing the Redlich-Kwong equations was for use in fracking. The

Redlich-Kwong study was in part for an energy company and their studies were more focused

on compounds found in natural gas.

Both Lujan et al. and Passmann’s study with different working fluids demonstrated the

usefulness of cubic EoS in power cycles, organic ranking cycles, heat transfer and thermal

management [14] [12]. An advantage to using the SRK EoS is how it models vapor-liquid

mixtures. Modeling certain cycles that use a combination of vapor-liquid and gas phases

ordinarily requires more complex planning when creating the program. The original Redlich-

Kwong EoS proved that their EoS can be used to model the vapor-liquid properties with

relatively decent accuracies. The original Soave model was able to improve upon it further

with more accurate computational results when compared to the experimental data found

in Sage and Lacey [3] [15]. Even further improvement has been made upon the SRK EoS for

investigation into vapor-liquid calculations. For example, Fuller (1976) modified the SRK

EoS to give more accurate results than Soave’s equation did [16]. Ultimately, Fuller noted

that his modified SRK EoS can be implemented to produce Pressure-Volume-Temperature

tables.

While the SRK EoS and similar cubic equations are good at modeling real-gas equations,

given a limited number of information about the properties of the flow and species, a more

precise EoS has been developed and designed for modeling specific compounds. Twu et al.

developed a modified version of the Redlich-Kwong EoS that was developed specifically for

predicting hydrogen in hydrocarbons for a cubic EoS [17]. It has a similar approach as the

SRK EoS in that it utilizes a more general dependency on temperature to replace the a/T 0.5

with a more general term, α(T ). The α term used in Twu et al. is able to make more

accurate predictions at lower vapor pressures. Their paper demonstrated that while the
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SRK is a very useful tool, a modified Redlich-Kwong EoS specifically designed for a species

or mixture would prove to model the gas/ vapor more effectively. However, development of

these models does take extensive time and resources, while the resulting increase in accuracy

might not be worth the effort expended into the model, or even necessary for the range of

temperature and pressure investigated.

For this study, on a wide range of temperatures and pressures, the focus is upon fluid

flow through a jet or rocket engine nozzle. Thus, this study does not investigate vapor-liquid

mixtures. The previous studies mentioned never investigated temperatures above 1000 K

because the accuracy was considered too low with experimental data. On the contrary, higher

pressure values have been investigated in some papers, such as Sirignano’s investigation

[18]. While binary interaction parameters of certain species have yet to be investigated for

temperature ranges seen in jet nozzle or rocket engines, it is still important to understand

its relationship to an ideal-gas.

This thesis study demonstrates a direct solution using Cardano’s method for solving real-

gas calculations using a cubic EoS. Compared to previous studies that rely upon utilizing

root functions, this will decrease the time of computation. Also, while other investigations

were focused on vapor equilibrium calculations, turbomachinery or other systems, this in-

vestigation applies the cubic EoS to convergent-divergent nozzles as seen in rocket or jet

engines. The normal shock calculations use a method not previously described in literature

and are combined with the method for direct solutions.

Since rocket engines experience a large pressure and temperature range, this thesis study

investigates the stagnation pressure at 10 bar, 30 bar, 50 bar, 100 bar, 200 bar, and 500 bar.

Meanwhile, 500 K, 1000 K, 2000 K, 4000 K are utilized as total values for temperature in

isentropic flow. For normal shock calculations, only 500 K and 1000 K are considered, while

the pressures remain the same.
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1.1 Literature Review

The goal of Redlich-Kwong’s study was to derive a two-parameter EoS to make simplistic

calculations for real-gas modeling [1]. Note however, this was prior to the first computers

becoming readily available to the public. (At the time, they were only available to gov-

ernment agencies, universities or large private companies). The need for a simple algebraic

method for modeling real-gas was legitimate. Redlich and Kwong utilized many different

calculations, which ultimately led to what is known today as the Redlich-Kwong EoS. The

investigators discovered this calculation based on a trial-and-error method.

This equation is a modification of the original Johannes Diderik van der Waals equation

which models ideal-gas [19]. This new Redlich and Kwong EoS was met with a wide range

of acceptance and is still used a foundation to build other equations. Also, this was not

the first time that a set of equations was proposed to model real-gas effects, but it was

generally accepted because of its accuracy. These two equations were vital building blocks

to understanding the prior research completed, and thus necessary to complete this thesis

study.

Unfortunately, as the paper notes, the pair only covered a limited range of temperatures

and pressures. These were heavily focused on vapor-equilibrium. Note that this paper was

published under the Shell Development Company; thus, much of its focus was on energy-

industry-related hydrocarbons.

Sage and Laceys literature piece covers experimental results from studies utilized in

various media [15]. It is well cited for comparing the different authors works. Thus, I did

not a significant amount of time reviewing it.

Wilson and Regan describe a method for calculating real-gas flow inside a wind tunnel

[9]. However, it utilizes ideal-gas laws for different parts of the flow. Wilson and Regan

give an example of using the ideal-gas equation for entropy, claiming it holds for certain

temperature and pressure regions, but otherwise uses correction factors to improve accuracy
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elsewhere. However, it has been established through other pieces that using the ideal-gas

law across a shock with real-gas conditions is generally considered to be highly inaccurate.

When describing the method used for correcting ideal-gas flow, the authors simply took an

experimental table and placed a best fit curve based upon a relation between temperature

and the desired correlated value. It even described how the accuracy only depended on the

validity of the tables from which they utilized to correct ideal-gas law. The given range was

not accurate past smaller Mach numbers. This might be useful for a wind tunnel, (which

the paper points out was its primary purpose) for a small set of range of values.

Soave’s original paper used a modified version of the Redlich-Kwong equation in vapor

pressure calculations [3]. Calculations were done using pure components and compared with

the previous Redlich-Kwong equation. The Redlich-Kwong EoS was accepted at the time for

being easy to use. At this point in time, computer resources were still scarce; so the need for

a model with a small amount of calculations was necessary. Soave changed the dependency

on temperature to a form that gave more accurate results for real-gas calculations. Soave

continued the research on hydrocarbons, some of which are often seen in the use of energy

companies today.

Soave worked as a design engineer for an energy company in Italy. He used the generalized

mixing rules in his study, which is essentially the same methodology used in this thesis study.

It was unclear how the cubic EoS was solved. Since his paper gave rise to large amounts of

information used in this thesis study, it is important to note that a few differences are used

in the calculations. First, Soave’s study mentioned the use of binary interaction coefficients

but since it only investigated pure species, it was never used. Second, the species used in his

paper were different. The paper concluded having greater accuracy over the Redlich-Kwong

EoS, but is not very accurate when approaching polar molecules.

Fuller’s paper begins by stating that he used a modified version of SRK to model satu-

rated liquids with more accuracy than the original SRK [16]. Fuller improved upon Soave’s

work by adding a more generalized term for temperature with the acentric factor in the
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term. Again, the study was used for single species with each compound being modeled

over a different temperature range. The highest temperature was 647 K. However, there

were a reasonably large range of pressure that mainly focused on covering pressures that

would be seen in a pressure-volume-temperature table. Fuller claims that cases with polar

molecules have a reasonable accuracy when using this method. While the range of temper-

ature, compressibility, and phase regions are off, it should be demonstrated that there have

been multiple papers trying to improve the accuracy of the equations to model real-gas.

The Peng Robinson equation of state is another cubic EoS that relies upon an iterative

method for finding real-gas values [20]. The proposed EoS has gain wide acceptance alongside

the SRK EoS and is often compared together in later works with each other. It is similar in

the respect that it uses a more generalized approach for a temperature dependence as the

SRK EoS but adds another term from the original ideal-gas EoS. Peng and Robinson noted

that the original van der Waal EoS was broken down into two separate pressure terms, the

attractive pressure and the repulsive pressure. These pressures model the interaction between

the molecules in a gas with the focus of Redlich-Kwong and the SRK EoS modifying the

attractive pressure.

In addition to adding a term in the denominator, the a, b and α(T ) equations have

modified constants. This leads to a different cubic EoS than the SRK for finding the com-

pressibility. Note that the binary interaction coefficient in Peng and Robinson was not stated

anywhere in the paper; thus, it is not clear whether these are the same values used in Soave’s

investigation into different mixtures of species. Peng and Robinson ultimately state that it

has more accuracy in the region seen in pressure-volume-temperature tables. However, it is

only able to compare results from pure substances, since in neither paper, binary interaction

coefficient values were mentioned. Thus, it might show more favorable results with single

species, however, it is not conclusive which method shows better results for mixtures or for

higher pressure outside the saturated value ranges.

In addition to this concern, comparison was shown over a small number of species, all
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hydrocarbons. It is unclear if the same conclusion can be drawn for a different group of

gases, such as oxygen or nitrogen. The paper also does not discuss the accuracy of polar

molecules, but later works such as Huron-Vidal, point out the issue with it [5].

Graboski and Daubert state that the American Petroleum Institutes Technical Databook

Petroleum Refining adopted a modified Soave method for use in vapor-liquid equilibria cal-

culations [6]. There were three works published in succession and all generally related to

each other. The first was focused on demonstrating the use of the SRK equations for mix-

tures of hydrocarbons. Again, note that the limited amount of information needed for these

calculations, along with the simplicity of the procedure, makes it very useful for models.

The second publication demonstrates the use of SRK with non-hydrocarbon molecules in

mixtures [7]. The third work in this series investigated the reaction of hydrogen with other

gases [8].

In one paper, a list of experimentally tested binary interaction coefficients is tested for

a number of nonhydrocarbon- hydrocarbon interactions. It was concluded in this work that

binary interaction coefficients greatly improve the accuracy of the SRK equations. The third

publication focused instead on the use of hydrogen and its interaction with other species.

The reason for keeping the discussion of hydrogen separate was because contrary to the range

of pressure and temperature for other species interaction, hydrogen exhibits super critical

values at much lower temperatures and pressures. Thus, most of useful modeling (at least

for the use in energy companies) will be done in the super-critical region.

In the final conclusion of the paper, Graboski and Daubert stated that hydrocarbon-

hydrocarbon and hydrogen-hydrocarbon interactions do not require a binary interaction

coefficient for decent accuracy. When non-hydrocarbons appeared in the mixture, it became

necessary. This makes the SRK equations useful when modeling different hydrocarbon that

have yet to be fully tested, only needing a small amount of information to calculate. Since

this study only focused on the subcritical, it is not apparent if binary interaction values

are needed for supercritical hydrocarbon relations or whether these values are valid for
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supercritical use. Later works demonstrated that kij has a temperature dependence to allow

SRK to more accurately model.

The main purpose of Huron and Vidals work was to introduce another method for cal-

culating the mixture of species [5]. The general approach, (which is also used in this thesis

study,) is to use the classical mixing rules and is described in Section 2. This approach uses

a different interaction coefficient similar to a binary interaction coefficient, but does not need

experimental data to calculate and can then be used to solve for the binary reaction coeffi-

cient if needed. Coined the Huron-Vidal mixing rules, it is not as explored as the classical

mixing rules, but still proves to be a useful tool and alternative method for mixing species.

Later works still tend to use the classical mixing rules, whether it be for better comparison

to previously accepted works or simply because it was utilized first.

Saad’s Compressible Fluid Flow is a widely accepted textbook on compressible flow that

is used often in university courses [21]. A large part of the book discusses compressible

flow and normal shock related to this study. It does have a limited amount of information

on computational fluid dynamics, but it does provide several examples of calculations for

nozzle design using various computer techniques. While the discussion is related to ideal-

gas equations, Saad goes through the derivations for these equations which serves reference

material for deriving some of the real-gas equations in this study.

Twu et al. noted that both the Soave-Redlich-Kwong and Peng-Robinson EoS have less

accuracy at values far above supercritical [17]. While this seems not to contradict previous

works, Twu et al.’s definition of far above super-critical values differs from other works. The

temperatures and pressures investigated, using their proposed modified Redlich-Kwong EoS,

are still in the range of vapor-equilibrium calculations. The stated goal of the paper was to

investigate hydrogen-hydrocarbon interactions and like previous works before, follow Soave’s

approach of modifying the dependency on temperature.

Twu et al.’s conclusion is a modified Reldlich-Kwong EoS that is tailored for a set of

species so that there is no need to include any binary interaction parameters. Referring
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back to the previously mentioned works by Graboski and Daubert, their paper concluded

that it was already not necessary to use binary interaction parameters for use with the SRK

EoS because of its already strong accuracy for the range of temperatures and pressures [6].

Twu et al. was sponsored by Simulation Science Inc., a software simulation company for

processing petroleum, oil and other chemicals. It is unclear the level of increased accuracy

needed for this paper or whether the resources were worth the added accuracy or not.

Another question arises, why the binary interaction coefficient was simply not added to

the mixing rules for increased fidelity of the already proven SRK equation. There might be

an undisclosed need for the level of accuracy greater than what is reached, but the amount

of resources to obtain such an equation for a specific set of species might not be worth it for

general research.

Poling et al. has a large collection of different topics pertaining to fluids [2]. Since it

was cited often as a reference in papers of varying topics, I sought it as a reference. It

does contain a number of cubic EoS for real-gas, including SRK, Redlich-Kwong and Peng-

Robinson. In addition to containing the general idea for each equation, it also defines other

useful properties specifically for each cubic EoS, such as entropy or enthalpy.

John Anderson’s Modern Compressible Flow: With Historical Perspectives is a standard

textbook used at universities for teaching compressible flow [22]. Anderson’s book is very

similar to Saad’s work, but approaches some topics uniquely and in a different order of

discussion. While both Anderson’s and Saad’s books roughly cover the same areas, one

derived equation or approach might be more convenient to use for a given application. Note

that for both Saad and Anderson’s works, each give little to no mention of compressibility

factors or calculations of real-gas.

After Soave’s original paper, he continued his work, but used the Huron-Vidal mixing

rules instead of the classical mixing rules [4] [5]. The paper was largely focused on deriving

interaction parameters from vapor-liquid-equilibrium data. However, a relation was derived

between interaction parameters and binary interaction parameters so that the binary inter-
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action parameters can be solved for. There has not been as many investigations into using

the Huron-Vidal mixing rules as there have been for the classical mixing rules. Even if the

Huron-Vidal mixing rules are not used as frequently, their use to derive classical mixing rules

binary interaction parameter without experimental data is valuable.
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2 Isentropic One Dimensional, Compressible Flow For

A Real-Gas

The concept for this method is that given the P and T values the Cubic EoS, Equation

6 can be solved directly using only initial conditions where P0, T0, and u0 (initial velocity)

are required. The flow is assumed to be initially at rest, but for practical applications u0 will

not be zero. If the velocity is not initially zero, both the static and stagnation temperature

and pressure must be known for that velocity. Solving for the velocity will not be used until

Section 2.3.

For ease of comparison, a non-dimensional form is used such that the relations are:

P =
Pd
P0

(8)

T =
Td
T0

(9)

Note that the subscript d signifies a variable with a dimensional value, while a variable

without a subscript d signifies a non-dimensional variable.

Recalling the only variables in the Cubic EoS are A,B, and Z, Equations 4 and 5, Z can

be solved using Cardano’s method for a depressed cubic equation. However, both Equations

4 and 5 need to be modified slightly to account for a mixture of species, as well as, to

normalize the values:

A =
aPd

(RuTd)2
=
âP

T 2
(10)

B =
bPd
RuTd

=
b̂P

T
(11)

Referring back to Equation 2, Soave defines a more general relation between a(T ) and

temperature. Equation 12 is the classical mixing rules being applied to a while Equation 13
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is the definition of a for a single species of gas. Note, these are still in the dimensional form.

Essentially, a is changed to â and b to b̂, where the circumflex denotes a normalized value. To

avoid confusion the equations are stated below in normalized form and the dimensionalized

form:

a =
N∑
i=1

N∑
j=i

√
aiaj(1− kij)XiXj (12)

ai = 0.42748
(RuTci,d)

2

Pci,d

[
1 + Si

(
1−

√
Td
Tci,d

)]2
(13)

N denotes the number of species. For the case of a single species, where N=1, ai is equal to

a. Both i and j correspond to a specific species within the index of species being calculated.

This implies, if there are two species in a gas mixture, i and j will denote whichever species

is being calculated at that given time. For example, given the case of air, there are oxygen

and nitrogen present in the index. Utilizing the equation for a, there should be four terms

added together. The first term is when O2 corresponds to both i and j. Second, when i

corresponds to O2 and j to N2. Third, when i denotes N2 and j O2. Finally, the fourth for

when both i and j correspond to N2. Now the â value can be found by solving the equation

below:

â =
aP0

(RuT0)2
=

N∑
i=1

N∑
j=1

√
âiâj(1− kij)XiXj (14)

where âi is for the species i, and kij is the binary reaction coefficient that will be explained

further in Section 2.1.

âi =
aPd

(RuTd)2
= 0.42748

T 2
ci

Pci
[1 + Si(1−

√
T

Tci
)]2 (15)

Tci is the critical temperature of species i and is normalized by T0 so that:
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Tci =
Tci,d
T0

(16)

Pci is also normalized in a similar manner:

Pci =
Pci,d
P0

(17)

Si = 0.48508 + 1.5517ωi − 0.15613ω2
i (18)

Note wi is the acentric factor and can be found in many textbooks. Soave defines b as

follows [3]

bi = 0.08664
RuTci
Pci

(19)

b =
N∑
i=1

Xibi (20)

Further, in the non-dimensional form:

b̂i =
biP0

RuT0
= 0.08664

Tci
Pci

(21)

b̂ =
bP0

RuT0
=

N∑
i=1

Xib̂i (22)

At this point it is convenient to calculate dA
dT

and d2A
dT 2 which will be required later:

A′ =
dA

dT
= T

dâ

dT
=

N∑
i=1

N∑
j

1− kij
2

XiXjT

[√
âi
âj

dâj
dT

+

√
âj
âi

dâi
dT

]
(23)
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A′′ =
d2A

dT 2
= T 2 d

2â

dT 2
=

N∑
i=1

N∑
j=1

1− kij
2

T 2XiXj

[√
âi
âj

d2âj
dT 2

+
1

âiâj

dâi
dT

dâj
dT
− 1

2

âi
0.5

âj
1.5

dâj
2

dT 2
+

√
âj
âi

d2âj
dT 2

− 1

2

âj
0.5

âi
1.5

d2âi
dT 2

]
(24)

With dâi
dT

and d2âi
dT 2 defined by:

dâi
dT

= 0.42748
T 1.5
ci

PciT 0.5
Si

[
1 + Si(1−

√
T

Tci
)

]
(25)

d2âi
dT 2

= −0.21374

Pci

(
Tci
T

)1.5

Si(1 + Si) (26)

2.1 Interaction Coefficient kij

The binary interaction coefficient relates the interaction of two species from each species

enthalpy and entropy. Each pair of species has a unique coefficient that is ordinarily tem-

perature dependent and its range varies depending on the type of molecular bonds of the

species.

The initial Soave paper stated that polar molecules, such as H2O, were not able to be

accurately accounted for; however, it has been determined since that a more appropriate

value of kij negates this limitation [3]. For use in a computational environment, kij can be

written as a matrix where each i,j element corresponds to a specific interaction:

O2 N2

O2 0 -.003

N2 -.003 0

Note, the interaction between two different molecules of the same species equals zero.

Thus, when i=j, (1 − kij) becomes 1 and then the XiXj terms become X2
i . Studies have

been done to calculate the value of kij for various hydrocarbon and non-hydrocarbon species,
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but most of these specific species are not typically seen in the exhaust gas of a convergent-

divergent nozzle. Since much of the initial research was done by energy companies, the

researched species correspond to interactions found in fracking and boilers [6]. Regarding the

interaction of O2 and N2, for use in this study Peng-Robinson was used with kij = −0.00978,

(from Stoll et. al.). [23] A more useful list of kij values are found in Appendix B.

2.2 Cardano’s Method and Other Necessary Steps

It should be noted here that when solving for the exact value of Z in the cubic EoS,

a numerical solution is used, meaning a computational program runs a subroutine to find

the correct fitting zero of a cubic EoS. This was true for the other papers that have been

mentioned. On the other hand, this study utilizes Cardano’s method to find the solutions

of a cubic equation explicitly.

Now that A and B can be calculated, the coefficients of the Cubic EoS can be found and

Z solved for. For the exact solution, a variation of Cardano’s method must be used to solve

for a polynomial equation of degree 3. For convenience sake, each leading coefficient will be

assigned a new variable to reduce the number of variables required in Cardano’s method:

N1 = −1;N2 = A−B −B2;N3 = −AB (27)

Now, the cubic equation becomes:

Z3 −N1Z
2 +N2Z −N3 = 0 (28)

From here a reduced cubic equation is necessary. Thus, substituting Z = r − N1

3
the

cubic equation will become:

r3 + q1r + q2 = 0 (29)

where q1 and q2 are as follows:
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q1 = N2 −
N2

1

3
(30)

q2 = N3 +
2N3

1 − 9N1N2

27
(31)

The goal here is to find a solution for the depressed cubic equation (Equation 29). In

order to do so, two new variables u and v, where r = u+ v:

u3 + v3 + (u+ v)(3uv + q1) + q2 = 0 (32)

In order for the above equation to be satisfied, the following relation is defined:

3uv + q1 = 0 (33)

This allows another relation to occur:

u3 + v3 + q2 = 0 (34)

With Equation 33 and 34, both u and v can be solved for. Next utilizing algebra, u and

v become:

u3 =
−q2

2
+ v

q22
4

+
q31
27

(35)

v3 =
−q2

2
− vq

2
2

4
+
q31
27

(36)

By substituting the above equations into each other and solving for u now yields:

u =
3

√
q2
2

+
2

√
q22
4

+
q31
27

(37)

Note that a few different computational errors might occur at this point. First, solving

the square root term might yield an imaginary number that is very close to zero. For this
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study, any occurrences have been on a small magnitude of 10−5 or less. Second, certain

programs have difficulty calculating cubic roots that have values near 1, thus other methods

are necessary. In the case of the program Matrix Laboratory, the nthroot command fixed

this issue of giving erroneous answers near the number 1. Details on the use of this built in

function can be found here: (https://www.mathworks.com/help/matlab/ref/nthroot.html)

Since u has been solved for, v is found by rearranging Equation 33 and substituting

Equation 37 into it. Next, the first and most important root of the cubic EoS can be solved

for:

Z1 = v − u− N1

3
(38)

The other two roots can be found by stating a new variable w as the cubic root of 1.

These other two roots are never the correct solution to the Cubic EoS. Either the other two

roots are imaginary or not closer to 1 than Z1. If only the roots can be given, the correct

root would be the number closest to 1 that is positive. While most Z values are greater than

1, in low temperature and low pressure environments, Z can dip below 1, but never below

zero.

For reference, the other two roots are found using ω1 (the cubic root of 1) and the

following equations:

ω1 = −1

2
+ (

√
3

2
)i (39)

Z2 = vω2
1 − uω1 −

N1

3
(40)

Z3 = vω1 − uω2
1 −

N1

3
(41)

These method can be written as a subroutine in a code and be called upon with a

relatively small amount of clutter. In addition this modified Cardano’s method is applicable

to all cubic EoS. The only difference would be the leading coefficients of Z terms.
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2.3 Solving for Density, Temperature, Velocity and Sound Speed

Now that Z has been solved for the exact solution, the EoS can be used to solve for R

giving the three most valuable variables (P, T,R). While R represents the density term and

is called the normalized density in this study, it should be noted that R is not equal to ρ
ρ0

,

rather R is defined as:

R =
ρRT0
P0

(42)

This study changes the deviation in pressure (dP ) and relates the change in pressure to

the change in the rest of the calculated properties. If a relation between T and P can be

found, then a new value of A, B and thus Z can be solved for by the previous mentioned

equations. Sirignano derived in his investigation a relation between dT and dP based on

variables of the flow [13]:

dT

T
= β

dρ

ρ
+

1

cv + k
ds (43)

dP

P
= (f + gβ)

dρ

ρ
+

1

cv + k
ds (44)

In the case of isentropic flow the change in entropy, ds, will become zero so the entire

second term will cancel out in both Equations 43 and 44.

dρ

ρ
=

1

f + gβ

dP

P
(45)

By substituting Equation 43 into Equation 45 a relation between the change in pressure,

dP , and the change in temperature, dT , can be found:

dT

dP
=

βT

P (f + gβ)
(46)
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The terms f, g and β in Equation 46 are defined as [13]:

f =
2Z3 − Z2 + AB

Z3 −B2Z
(47)

g =
1

Z −B
− A′

Z(Z +B)
(48)

β =
(γ − 1)Zg

1 + k
cv

(49)

k

cv
= (γ − 1)

A′′

B
ln

(
Z +B

Z

)
(50)

For consideration of velocity, an initial velocity can be defined as u0. The algorithm

developed was specifically developed to accommodate the possibility of u0=0, even though

in practical application this should not occur. When dealing with nozzle flow, when velocity

is zero at the beginning of a nozzle, where the area ratio is at infinity, the fluid will still have

some initial velocity and finite area, even if the final velocity at the end of the nozzle is a

few order of magnitudes larger. Like the rest of the variables, velocity is normalized, but

this time by
√
RT0 so that R is the specific gas constant of a species. This means that the

final solution to the calculations will depend on the specific properties of the gas:

U =
ud√
RT0

(51)

Unfortunately this means that U would be solved for a given specific pressure and tem-

perature, where the dimensional velocity is also known. This gradient equation is required

to solve for velocity through the flow:

dU2

dP
= − 2

R
(52)
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While it is possible to find the gradient dU
dP

, it is inversely proportional to U , thus near

very small or large values the derivative gives either very small or large dU
dP

values. This also

means that there must always be an initial velocity in the beginning of the flow. This may

not prove to be a hindrance in practical applications, but used in theoretical studies will

prove to be problematic. However, it is needed later for solving for area, thus so it is listed

below:

dU

dP
= − 2

RU
(53)

The same term is applied to normalize the initial value of the sound speed, so that the

normalization is:

C =
cd√
RT0

(54)

A partial derivative could be derived for the change of the normalized sound speed with

respect to pressure, but at very small changes in the values of C it is not that convenient

to use. The gradient equation closely resembles that of dU
dP

. Also, with a small change in P

there are larger changes in C. Thus, the following equation was derived and used to find the

sound speed, (for inviscid fluids):

C =
√
TZ
(
f + gβ) (55)

Equation 55 is derived from the general definition of sound speed:

C2 =

(
∂P

∂ρ

)∣∣∣∣
Entropy

(56)

Equation 45 can be rearranged and then substituted into Equation 56 to yield Equation

55.
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2.4 Application to Nozzle Flow

This section is for the application of a Quasi-One-Dimensional Flow as seen in a basic

nozzle calculation. The basic mapping of P, T, C, U is required, which is found utilizing the

prior steps taken to calculate these parameters. Once this is complete, the variables of state

for the throat of the nozzle must be found. This can be done by finding where Mach number,

M , is 1 or where C and U are equal. However, since a computational method is used, there

will not be a point where C exactly equals U , so an interpolation is necessary.

When the interpolation of the properties are found, the flow can be distinguished between

the convergent portion of a nozzle and the divergent portion. This is important in calculation

of the area. While the exact area cannot be found based on properties at an exact location

in a nozzle, a gradient equation can be found for the area ratio, α, or the area of the

location in the nozzle to that of the throat. Using the throat as a new starting point,

the isentropic calculation can be re-done in either the direction of the convergent part of

the nozzle (increasing P ) or the divergent part of the nozzle (decreasing P ). The relation

between change in α to that of P is derived from continuity and is defined as:

dα

dP
= −α[

1

P (f + gβ)
− 1

RU2
] (57)

Starting with a form of the continuity equation a derivative with respect to pressure is

taken and divided by ρdudα. Equation 58 is the form of the continuity equation used and

Equation 59 is the normalized version. Both can be used to derive Equation 57, but it easier

to follow in the normalized form. Equation 60 is formed after derivation with respect to dP

and division of RUα.

ρdudα = constant (58)

RUα = constant (59)
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1

R

dR

dP
+

1

U

dU

dP
+

1

α

dα

dP
= 0 (60)

Now isolate dα
dP

:

dα

dP
= −α[

1

R

dR

dP
+

1

U

dU

dP
] (61)

Referring back to Equation 45, the term dR
dP

is already known and can be substituted

into the Equation 61 after it has been normalized. In addition, the second term is already

known from Equation 53 and can be immediately substituted into Equation 61. With both

the described substitutions and some simplification the derivation of Equation 57 will be

complete.

Through the diverging part of the nozzle, the pressure will continue to drop but will

dramatically drop when nearing the exit of the nozzle where α is much larger. This dramatic

pressure drop requires a small step size of dP in order to accurately calculate the expansion

of the nozzle. A non-uniform mesh-grid might be appropriate here for efficient calculations.

If the shape of the nozzle is already known and a correlation of axial distance is required,

this relationship can be found with a change in P and the α. A function of axial distance

could be substituted in for α and Equation 57 rearranged so that a change P can be found

for a change in distance across the nozzle:

dP =
dα

−α

[
1

P (f + gβ)
− 1

RU2

]−1
(62)

2.5 Critical Value For ai

A sudden jump in ai
aj

values causes the calculations to have a variation in the curve’s

trends for all variables versus pressure. For coarse meshes, the effects of this will be un-

detectable for properties such as normalized temperature or velocity. Fine meshes can be

used to isolate the jump to a small number of points on the grid. Techniques can be used to
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”smooth” out this region, if necessary. This issue should not appear in rocket engine nozzles

because of the higher temperature range, but it should appear in jet engine nozzles due to

the lower temperature range. These critical values have been found to be related to where

the temperature crosses the Si values.

Figure 1: ai
aj

jump example

At a certain temperature for each species a, as defined in Equation 15, it will come to

zero and for a short time be close to zero. During these range of values the ratio ai
aj

will

become extremely large. Referring back to Equation 15, the only part that is able to make

the entire equation a zero value is the squared term:

[1 + Si(1−
√

T

Tci
)]2 (63)

Solving for Si will lead to the following:

Si =
−1

1−
√

T
Tci

(64)

When Si reaches the value described in Equation 64, the ratio ai
aj

, will become very large
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because aj will either become zero or pass very close to it.

2.6 Real versus Ideal-Gas One Dimensional Comparison

Using the isentropic flow equations for ideal-gases, the flow is independent of initial

temperature. Rather the Mach number, M , dictates the ratios P0

P
and T0

T
. From P0

P
and T0

T
,

P and T can be found respectively. However, changing P0 and T0 will not affect P0

P
and T0

T
.

The different species of the gas will change γ, thus slightly taking into account the specific

properties.

Meanwhile, utilizing the SKR method, changing P0 and T0 will affect the value of P0

P
and

T0
T

, at a given Mach number. The effects of a species individual characteristics are taken into

account due to most of the equations and variables stated in Section 2, and are dependent

on specific heat capacities, γ, Tci, Pci, MW and ωi. This will provide a more accurate

representation of the flow for various temperature and pressure ranges.

The following are the ideal-gas, isentropic relations that are commonly found in books

discussing compressible flow. Taken from Anderson [21] [22]:

T0
T

= 1 +
γ − 1

2
M2 (65)

P0

P
= (1 +

γ − 1

2
M2)

γ
γ−1 (66)

ρ0
ρ

= (1 +
γ − 1

2
M2)

1
γ−1 (67)

α2 =
1

M2

[ 2

γ + 1
(1 +

γ − 1

2
M2)

] γ+1
γ−1

(68)

As seen in the Equations 65 to 68, the ideal-gas ratios are only affected by a single

property of the flow field, M , and γ, a property of the composition.
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3 Normal Shock Calculation

For an ideal-gas, solutions generally contain ratios across the shock and are easily found.

We require upstream values for pressure and temperature, and Mach number (or velocity).

From the conservation equations, downstream pressure, temperature, and Mach number (or

velocity) can easily be found in terms of ratios for both static and stagnation conditions.

However, for the case of a real-gas, the static and stagnation values need to be solved

separately. In addition, simple relations for pressure ratios and temperature ratios are not

found and thus, a numerical or iterative approach is necessary.

Analysis of static values begins with the fundamental equations of fluid dynamics: Con-

tinuity (Equation 69), Momentum (Equation 70) and Energy (Equation 71). Until this

point, the calculations have been done using normalized values, but for the equations used

to find downstream conditions of a normal shock, dimensional values must be used. Note,

these equations are already in their constant area form and are greatly simplified from their

original form:

ρ1u1 = ρ2u2 (69)

ρ1u
2
1 + P1 = ρ2u

2
2 + P2 (70)

h1 +
u21
2

= h2 +
u22
2

(71)

In the energy equation, h is the specific enthalpy, with the total enthalpy being held

constant. Following, is the equation for direct calculation of the static enthalpy (Equation

72) as well as the equation for total enthalpy (Equation 73) [2]:
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h = hideal +
1

MW

[
RuT (Z − 1) +

T da
dT
− a
b

ln
Z +B

Z

]
hideal = CpT

(72)

H = h+
u2

2
(73)

Equation 73 is essentially the same as 71, but instead of a conservation equation it

calculates the constant value. This is used later in the Normal Shock calculations to converge

to a solution. Note that the terms da
dT

, b, and a are not from the normalized terms, (B is the

same for both normalized and dimensional values). Cp is the specific heat capacity of the

gas and for this investigation is held constant, not varying with temperature or pressure. In

addition, when investigating multiple species, the mixing rules need to be properly accounted

for. The specific heat capacity is defined as:

Cp =
γR

γ − 1
(74)

In this study there are two algorithms that are identified. The first algorithm does not

require knowledge of the upstream velocity, u1. The second relies upon complete knowledge

of the upstream conditions including: P1, T1, h1, u1, and ρ1. This is more convenient for

calculating downstream conditions of a shock inside a nozzle.

3.1 Method 1 of Normal shock

Even with manipulations and substituting Equations 69, 70, 71, 72 and the Cubic EoS,

there is still is no equation that will be able to directly solve for any single downstream

variable. Thus, choosing a ratio across the shock for a variable over a range was necessary.

Choosing a ratio for Z would not give any useful information. An enthalpy ratio, again

would not reveal very useful information. Previous studies have used a density ratio that

worked well, especially considering the relationship between a density ratio and the velocity
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ratio, which are just reciprocals of each other. However, the density ratio saturates to a

constant and will not go past that ratio no matter how strong the shock. Thus, knowledge

of the saturated density ratio is needed beforehand when indexing the range of density to

be calculated. This makes it more challenging to calculate shock conditions at high pressure

or temperature ratios because the iteration between density ratio values will be consistently

smaller.

The remaining options are to choose between a pressure ratio (pr = p2
p1

) or temperature

ratio (Tr = T2
T1

). When dealing with a mixture of species the dependencies on temperature

become very cumbersome and are prone to errors in the calculation. Thus, if one were

to choose a pressure ratio, a number of temperature-dependent equations would first still

be required to be solved in order to figure out the correct density ratio. For dealing with

multiple species it was more convenient to choose a temperature ratio then use it to solve

for a,b, and da
dT

.

Up to this point, the only downstream condition of a shock that is known is T2. Even

with this knowledge, the rest of the variables can not be directly solve for. Another variable

must be chosen, this time as a ”guess” in order to find the correct value corresponding to T2.

Choosing a pressure ratio as this guess will allow use of the cubic EoS to solve for a Z2 and

thus ρ2. However, a guess where p2 = p1 will result in multiple undefined equations later.

In order to avoid this, an initial guess for p2 should be slightly above p1. A guess where

pr = 1 + (1)−9 would suffice. With knowledge of T2,p2,ρ2, and Z2, then h2 can be solved for

using Equation 72.

Manipulating and substituting Equation 69 into Equation 70 results in a relationship

between p2,p1,ρ1, and u1:

u21 =

(
p1
ρ1

)
1− p2

p1
ρ1
ρ2
− 1

(75)

With the velocity u1 and the density ratio ρ2
ρ1

known, the velocity ratio can be found

easily and consequently u2 is determined.
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With T2 known and P2, u2, ρ2 and h2 found, the total enthalpy downstream and upstream

can be found utilizing Equation 73. Note that besides the chosen Tr (T2
T1

) value, the rest of the

calculations are found based of a guess of p2 and thus still need to be verified that it satisfies

all conservation equations. Thus the total enthalpy of both upstream and downstream will

be compared to make certain that they are equal to each other. At this point a tolerance

must be chosen to decide whether the solution is ”good enough.” For most of the range

of temperatures, a tolerance investigated of 10−5 is used to produce smooth curves when

graphing the final values.

When comparing H1 and H2, if the tolerance is acceptable, the values that were calculated

for p2, u2, ρ2, and h2 correctly correspond to the chosen T2. If the error is larger than the

designated tolerance, then pr must be adjusted depending on whether H1 or H2 is bigger.

When H2 is bigger than H1, that means the guessed shock is not strong enough and pr (and

in turn p2) must be increased. When H2 is lower than H1, then the proposed value pr must

be decreased, (a weaker shock). From here the calculations for the following Tr values can

be found, using the previously described method.

3.2 Method 2 of Normal Shock

The second method for calculating normal shock relies upon knowing the value for

upstream velocity u1. With this additional knowledge, the exact position inside a nozzle

can be taken into account versus having a random P1 and T1 with no way to determine

the correct downstream conditions. Basically u1 gives precise information that can be used

to determine exact downstream conditions, rather than having a large amount of possible

conditions.

Initially it might be tempting to consider using the knowledge of u1 to quicken the

calculations. While it is possible to get some of the state variables more easily, such as the

density ratio or velocity ratio, it is more cumbersome to find the exact solution that satisfies

all downstream conditions, not just possible solutions. While the downstream Mach number
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decreases as the upstream velocity increases, the velocity downstream does not monotonically

increase or decrease. Thus, when numerically solving for the normal shock solution it is not

certain if the strength of the shock needs to increase or decrease for the next guess.

Starting the calculations of the normal shock solution by guessing the velocity ratio would

work based upon previous studies that demonstrated success of using the density ratio and

Equation 69. However, this will run into the same issue as choosing the density ratio to

start out with, because both the density ratio and velocity ratio eventually converge to a set

value at infinite Mach number. This is the same issue as choosing the density ratio in the

beginning as described in Section 3.1.

Thus, the solution that was used in this thesis study evidently resembles Method 1 of

solving for normal shock, but with a slight difference. Method 1 solved for a long list of

solutions to normal shock, each with a different upstream flow velocity and Mach number.

The solution of Method 2 needs to result in a single solution, thus for the first iteration of

the normal shock solution, only one set of downstream conditions is solved for.

As previously a Tr will be chosen, but this time as a guess. The rest of the downstream

conditions will be found the same as Method 1 and a correlating pseudo upstream velocity

found. The velocity that was found using the guessed Tr is compared to the actual upstream

velocity. If the actual upstream velocity is greater than the guessed velocity, then the guessed

Tr needs to be decreased. If the actual upstream velocity is lower than the guessed velocity,

then the guessed Tr needs to be increased. The actual Tr can be solved for and thus the

downstream conditions using the difference in actual velocity and guessed velocity as an

error analysis. For this thesis study, a 0.001 m
s

error between the actual upstream velocity

and velocity based on a guessed Tr is considered acceptable.

32



4 Results

4.1 Computational Cost

One reason for this thesis study is to identify a method of increasing the computational

efficiency of solving for real-gas calculations. The typical method for solving a cubic equation

is using the built in roots function of the computer language being utilized to write the

script. The cost of computation using the root function will dramatically increase over a

large amount of points found. Thus, it was necessary to investigate the actual cost of the

roots function versus the described Cardano’s Method. Note that MatLab was used for the

script and other languages or packages are going to have varying degrees of computational

efficiency.

In addition, Sirignano described an approximate solution to the EoS that sacrifices ac-

curacy for an extreme increase in computational efficiency [18]. In order to measure the

impact of these calculations on computer cost, the cubic EoS was solved over a large range

of pressure and temperature for fifty times. The reason for repeating the same calculation

over is for the computer’s re-allocation of memory, central processing unit (CPU), pausing

background tasks, etc., when focused on a specific task versus a quick one second run of

script. Each time a point was calculated, the time needed was stored and at the end of the

fifty runs, the results were averaged. The comparison of the time of computation results as

expected and is tabulated below. Cardano’s Method was over twice as efficient as using the

roots function. On the other hand the approximate solution only took on average 3.27% of

the time of Cardanos Method.

Root Function Approximate Solution

Computational Cost 2.0454 0.0327

Table 1: Since each computer will give different times for computations it was necessary to
normalize the computational time by the time it took for Cardano’s Method to be completed.
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The cost of computation between the real-gas calculations and ideal-gas calculations was

done in the same manner with repeating all of the calculations relatively. While it may

seem trivial, if the ideal-gas calculations provide a ”good enough” solution for a particular

application, it may be more beneficial to run a large amount of code using the ideal-gas

calculations instead of real-gas. The only discrepancy was a line of code used to create the

matrix of the normalized pressure, or in the case of the ideal-gas, the pressure ratio. On

average it took the same PC 3 ∗ 10−6 seconds to create the matrix. However, this small

discrepancy is not inconsequential considering that the cost of computation for ideal-gas is

0.28% to that of the script developed in this thesis study for real-gas.

4.2 Isentropic Flow

Real-gas calculations of Air were compared to ideal-gas using the multi-species SRK

equations. For these calculations, the specific heat ratio γ is 1.4 and is constant. For a

more accurate model that might expand upon this work, temperature-dependent specific

heat capacities should be included. The composition of air, 20% 02 and 80% N2. This way

XO2 = 0.2 and XN2 = 0.8. The constants used that are specific to each species of gas are

listed in Appendix B. The general arrangement for most of the investigated flow properties

is to first display the graphs where P0 is held constant and examine the variation of T0 over a

wide range. Then, after demonstrating how T0 affects the flow, T0 is held constant while P0

varies over a wide range. For most of the flow the species and mixtures investigated are well

inside the super-critical range. However, some calculations are done in the gaseous region of

a phase diagram. No calculations were done near pressure or temperature values that would

result in a phase change.

All species of gases exhibited the same trend as air but with different levels of agreement

with the ideal-gas law. Generally, the model derived in this thesis study showed the most

agreement to ideal-gas equations when the P0 is at a lower value and T0 is higher in nature.

The range of T0 investigated was 500 K to 4000 K, while the P0 range was from 10 bar to
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500 bar. When discussing the differences between real-gas solutions and ideal-gas solutions,

it should be noted that in the case of isentropic flow, there is no difference in the trends of

the properties. When pressure changes, the real-gas still increases or decreases how ideal-gas

would in turn. However, the actual values of the solutions do differ from each other. When

proceeding through Section 4.2, when ”divergence” or ”difference” is discussed comparing

the real-gas and ideal-gas, it is referring to the difference in values of the solution. For

example, at a given P , the U for real and ideal-gas would still be decreasing or increasing in

the same direction, but Ureal 6= Uideal at that specific P .

The kij value for air was taken from Peng-Robinson so that kij for the interaction between

O2 and N2 is -.00978. Stoll-Vrabec-Hasse propose other values for this kij, and the difference

in real-gas calculations between different kij values is very small [23]. This is likely because

the binary interaction coefficient is so small between diatomic species.

Other species and mixtures were investigated in addition to air and their results are

shown in the Appendix D. This thesis study was mainly concerned with modeling air using

the SRK EoS because air has a wide use in other investigations and its ease of study for

future experimental studies in control laboratory environments, such as a wind tunnel.

Originally, when the graphs were compiled there was a noticeable jump in compressibility,

Z, at certain P values for the highest pressure, P0 = 500 bar, and lowest temperature,

T0 = 500 K. Upon considerable review of the code, the jump was thought to have been

related to a limitation of the software used. MatLab has trouble calculating Equation 37 as

already mentioned in Section 2.2, but has further trouble calculating a few of the terms in

the same equation at the temperature and pressure values mentioned above. Thus, instead

of using Cardano’s method for the described temperature and pressure values, the roots

function that is built into MatLab was used. Using the roots function for this particular

pressure and temperature range removed the region where the Z jumped.
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4.2.1 Temperature Results

The first set of figures, from Figure 2 to Figure 7, hold P0 for each graph then vary T0.

The second set of figures, from Figure 8 to Figure 11, does the opposite, holding T0 constant

and varying P0 for each curve in the graph. There are no significant deviations in the T

versus P curves for any of the initial temperature or initial pressure ranges. In fact, the

difference in the curves is not distinguishable until Figure 6, where the curve corresponding

to T0= 500K and P0 = 200 bar, slightly jets out from the rest of the curves. This continues

to be noticeable for all curves corresponding to P0 = 200 bar, for a T0 = 500 K. The highest

temperature investigated, T0 = 4000 K, all had close agreement with the ideal-gas law.

The calculation of the real-gas equations relies upon the gradient equation for tempera-

ture, Equation 46; thus, a summation error might arise for values if a small enough pressure

change is not chosen.

Figure 2: Comparison Td
T0

versus Pd
P0

for Air with fixed P0 = 10 bar, for T0 = 500 K, 1000 K,
2000 K, 4000 K
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Figure 3: Comparison Td
T0

versus Pd
P0

for Air with fixed P0 = 30 bar, for T0 = 500 K, 1000 K,
2000 K, 4000 K

Figure 4: Comparison Td
T0

versus Pd
P0

for Air with fixed P0 = 50 bar, for T0 = 500 K, 1000 K,
2000 K, 4000 K
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Figure 5: Comparison Td
T0

versus Pd
P0

for Air with fixed P0 = 100 bar, for T0 = 500 K, 1000
K, 2000 K, 4000 K

Figure 6: Comparison Td
T0

versus Pd
P0

for Air with fixed P0 = 200 bar, for T0 = 500 K, 1000
K, 2000 K, 4000 K
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Figure 7: Comparison Td
T0

versus Pd
P0

for Air with fixed P0 = 500 bar, for T0 = 500 K, 1000
K, 2000 K, 4000 K

Figure 8: Comparison Td
T0

versus Pd
P0

for Air with fixed T0 = 500 K, for P0 = 10 bar, 30 bar,
50 bar, 100 bar, 200 bar, 500 bar
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Figure 9: Comparison Td
T0

versus Pd
P0

for Air with fixed T0 = 1000 K, for P0 = 10 bar, 30 bar,
50 bar, 100 bar, 200 bar, 500 bar

Figure 10: Comparison Td
T0

versus Pd
P0

for Air with fixed T0 = 2000 K, for P0 = 10 bar, 30 bar,
50 bar, 100 bar, 200 bar, 500 bar
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Figure 11: Comparison Td
T0

versus Pd
P0

for Air with fixed T0 = 4000 K, for P0 = 10 bar, 30 bar,
50 bar, 100 bar, 200 bar, 500 bar

4.2.2 Density Results

The first set of figures, Figure 12 to Figure 17, each have a constant P0, while T0 varies.

Figures 18 to Figure 21 are the opposite where T0 is constant and P0 is varied. Density

definitely had the largest variation of the flow between pressure, density and temperature.

The first thing to note is that unlike P and T , the normalized density R is not defined by

ρ
ρ0

but rather by Equation 42. In reviewing this equation it is evident that R is not just

dependent on ρd, but T0, and P0 as well. This means that for ideal-gas. R will start out as

1 and decrease as density and pressure decrease. Figure 12 shows R starting out as close to

1, but there is not much distinguishing between each T0.
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Figure 12: Comparison R = ρRT
P

versus Pd
P0

for Air with fixed P0 = 10 bar, for T0 = 500 K,
1000 K, 2000 K, 4000 K

Figure 13: Comparison R = ρRT
P

versus Pd
P0

for Air with fixed P0 = 30 bar, for T0 = 500 K,
1000 K, 2000 K, 4000 K
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Figure 14: Comparison R = ρRT
P

versus Pd
P0

for Air with fixed P0 = 50 bar, for T0 = 500 K,
1000 K, 2000 K, 4000 K

Figure 15: Comparison R = ρRT
P

versus Pd
P0

for Air with fixed P0 = 100 bar, for T0 = 500 K,
1000 K, 2000 K, 4000 K
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Figure 16: Comparison R = ρRT
P

versus Pd
P0

for Air with fixed P0 = 200 bar, for T0 = 500 K,
1000 K, 2000 K, 4000 K

Figure 17: Comparison R = ρRT
P

versus Pd
P0

for Air with fixed P0 = 500 bar, for T0 = 500 K,
1000 K, 2000 K, 4000 K
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Figure 18: Comparison R = ρRT
P

versus Pd
P0

for Air with fixed T0 = 500 K, for P0 = 10 bar,
30 bar, 50 bar, 100 bar, 200 bar, 500 bar

Figure 19: Comparison R = ρRT
P

versus Pd
P0

for Air with fixed T0 = 1000 K, for P0 = 10 bar,
30 bar, 50 bar, 100 bar, 200 bar, 500 bar
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Figure 20: Comparison R = ρRT
P

versus Pd
P0

for Air with fixed T0 = 2000 K, for P0 = 10 bar,
30 bar, 50 bar, 100 bar, 200 bar, 500 bar

Figure 21: Comparison R = ρRT
P

versus Pd
P0

for Air with fixed T0 = 4000 K, for P0 = 10 bar,
30 bar, 50 bar, 100 bar, 200 bar, 500 bar

The remaining figures, Figure 22 to Figure 25, are modeling the ρ
ρ0

with a constant T0

and varying P0. Figure 22 showed the largest deviation from ideal-gas calculations across all
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the P0 values. On the other hand, Figure 25, corresponding to a T0 of 4000 K demonstrated

the closest relation to ideal. The graph itself is indistinguishable between ideal-gas calcula-

tions and real-gas. Across all the remaining Figures in this section, any curve on a graph

correlated to a P0 of 500 bar is indistinguishable between that curve and ideal-gas calcula-

tions. These graphs follow the general trend of ideal-gas calculations being more accurate

at higher P0 and T0 values.

Figure 22: Comparison ρd
ρ0

versus Pd
P0

for Air with fixed T0 = 500 K, for P0 = 10 bar, 30 bar,
50 bar, 100 bar, 200 bar, 500 bar
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Figure 23: Comparison ρd
ρ0

versus Pd
P0

for Air with fixed T0 = 1000 K, for P0 = 10 bar, 30 bar,
50 bar, 100 bar, 200 bar, 500 bar

Figure 24: Comparison ρd
ρ0

versus Pd
P0

for Air with fixed T0 = 2000 K, for P0 = 10 bar, 30 bar,
50 bar, 100 bar, 200 bar, 500 bar
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Figure 25: Comparison ρd
ρ0

versus Pd
P0

for Air with fixed T0 = 4000 K, for P0 = 10 bar, 30 bar,
50 bar, 100 bar, 200 bar, 500 bar

4.2.3 Area Ratio Results

As demonstrated by the graphs of this section, the change in α has a very small change

until the P is either approaching 0 or 1. Next, the area ratio dramatically increases or

decreases. For each case of initial stagnation pressure and stagnation temperature, the

throat conditions were determined by finding where Mach is equal to 1. Then, the flow was

expanded subsonically and supersonically. Like previous properties, lower P0 and higher T0

of real-gas solutions are more in agreement with ideal-gas values. The real-gas solutions were

so close to ideal-gas values for low P0 that for the sake of clarity the graphs corresponding

to P0 = 30 bar and 50 bar were omitted. As Figure 26 demonstrates, the difference in values

is indistinguishable. It is not until P0 = 100 bar that there is a divergent in values on the

graphs that is discernible by simply viewing the graph.

The method for α calculations is described in Section 2.4. For the sake of clarity of reading

the graphs, each Figure represents either the subsonic, convergent portion of a nozzle or the

supersonic, divergent portion of a nozzle.
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Figure 26: Comparison α versus Pd
P0

for Air at P0 = 10 bar. This figure graphs the supersonic
expansion of a nozzle, where T0 = 500 K, 1000 K, 2000 K, 4000 K.

Figure 27: Comparison α versus Pd
P0

for Air at P0 = 10 bar. This figure graphs the supersonic
expansion of a nozzle, where T0 = 500 K, 1000 K, 2000 K, 4000 K. This figure is zoomed in
for clarity.
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Figure 28: Comparison α versus Pd
P0

for Air at P0 = 10 bar. This figure graphs the subsonic
expansion of a nozzle, where T0 = 500 K, 1000 K, 2000 K, 4000 K.

Figure 29: Comparison α versus Pd
P0

for Air at P0 = 10 bar. This figure graphs the subsonic
expansion of a nozzle, where T0 = 500 K, 1000 K, 2000 K, 4000 K. This figure is zoomed in
for clarity.
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Figure 30: Comparison α versus Pd
P0

for Air at P0 = 100 bar. This figure graphs the supersonic
expansion of a nozzle, where T0 = 500 K, 1000 K, 2000 K, 4000 K.

Figure 31: Comparison α versus Pd
P0

for Air at P0 = 100 bar. This figure graphs the supersonic
expansion of a nozzle, where T0 = 500 K, 1000 K, 2000 K, 4000 K. This figure is zoomed in
for clarity.
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Figure 32: Comparison α versus Pd
P0

for Air at P0 = 100 bar. This figure graphs the subsonic
expansion of a nozzle, where T0 = 500 K, 1000 K, 2000 K, 4000 K.

Figure 33: Comparison α versus Pd
P0

for Air at P0 = 100 bar. This figure graphs the subsonic
expansion of a nozzle, where T0 = 500 K, 1000 K, 2000 K, 4000 K. This figure is zoomed in
for clarity.
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Figure 34: Comparison α versus Pd
P0

for Air at P0 = 200 bar. This figure graphs the supersonic
expansion of a nozzle, where T0 = 500 K, 1000 K, 2000 K, 4000 K.

Figure 35: Comparison α versus Pd
P0

for Air at P0 = 200 bar. This figure graphs the supersonic
expansion of a nozzle, where T0 = 500 K, 1000 K, 2000 K, 4000 K. This figure is zoomed in
for clarity.
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Figure 36: Comparison α versus Pd
P0

for Air at P0 = 200 bar. This figure graphs the subsonic
expansion of a nozzle, where T0 = 500 K, 1000 K, 2000 K, 4000 K.

Figure 37: Comparison α versus Pd
P0

for Air at P0 = 200 bar. This figure graphs the subsonic
expansion of a nozzle, where T0 = 500 K, 1000 K, 2000 K, 4000 K. This figure is zoomed in
for clarity.
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Figure 38: Comparison α versus Pd
P0

for Air at P0 = 500 bar. This figure graphs the supersonic
expansion of a nozzle, where T0 = 500 K, 1000 K, 2000 K, 4000 K.

Figure 39: Comparison α versus Pd
P0

for Air at P0 = 500 bar. This figure graphs the supersonic
expansion of a nozzle, where T0 = 500 K, 1000 K, 2000 K, 4000 K. This figure is zoomed in
for clarity.
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Figure 40: Comparison α versus Pd
P0

for Air at P0 = 500 bar. This figure graphs the subsonic
expansion of a nozzle, where T0 = 500 K, 1000 K, 2000 K, 4000 K.

Figure 41: Comparison α versus Pd
P0

for Air at P0 = 500 bar. This figure graphs the subsonic
expansion of a nozzle, where T0 = 500 K, 1000 K, 2000 K, 4000 K. This figure is zoomed in
for clarity.
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4.2.4 Compressibility Factor Z, Results

The following graphs show similar curves corresponding to the same T0 as P0 is increased.

However, upon a closer look at the vertical axis, it shows that the Z value does change. When

P0 = 10 bar, Z ranges from near 1 to 1.0045. When P0 = 30 bar, Z ranges from around 1

to 1.014. Now, making a large jump to P0 = 500 bar, Z ranges from ∼ 1 to ∼ 1.3. While a

difference between 1.0045 and 1.3 may seem small on the Z plots, it does give rise to a very

significant change to density for higher P and P0 values for a wide T0 range. The graphs in

this section plot the relationship between P and Z.

The graphs that hold P0 and vary T0 also include the comparison to previously discussed

approximate solution for compressibility factor. This includes Figure 42 to 47 and Equation

7, that were discussed in the literature review as an approximation that could be used in place

of another method for solving the cubic EoS. However, this approximation sacrifices accuracy

for lower computational cost. Across the range of pressures and temperatures calculated the

maximum error associated with the approximate solution to the exact solution is 3.89%.

Figure 42: Comparison Z versus Pd
P0

for Air with fixed P0 = 10 bar, while varying T0 where
T0= 500 K, 1000 K, 2000 K, 4000 K. The solid lines indicates Cardano’s method was used
to sovle for Z. The dashed lines indicated the approximate solution proposed by Sirignano
[18]
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Figure 43: Comparison Z versus Pd
P0

for Air with fixed P0 = 30 bar, while varying T0 where
T0= 500 K, 1000 K, 2000 K, 4000 K. The solid lines indicates Cardano’s method was used
to sovle for Z. The dashed lines indicated the approximate solution proposed by Sirignano
[18]

Figure 44: Comparison Z versus Pd
P0

for Air with fixed P0 = 50 bar, while varying T0 where
T0= 500 K, 1000 K, 2000 K, 4000 K. The solid lines indicates Cardano’s method was used
to sovle for Z. The dashed lines indicated the approximate solution proposed by Sirignano
[18]
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Figure 45: Comparison Z versus Pd
P0

for Air with fixed P0 = 100 bar, while varying T0 where
T0= 500 K, 1000 K, 2000 K, 4000 K. The solid lines indicates Cardano’s method was used
to sovle for Z. The dashed lines indicated the approximate solution proposed by Sirignano
[18]

Figure 46: Comparison Z versus Pd
P0

for Air with fixed P0 = 200 bar, while varying T0 where
T0= 500 K, 1000 K, 2000 K, 4000 K. The solid lines indicates Cardano’s method was used
to sovle for Z. The dashed lines indicated the approximate solution proposed by Sirignano
[18]

60



Figure 47: Comparison Z versus Pd
P0

for Air with fixed P0 = 500 bar, while varying T0 where
T0= 500 K, 1000 K, 2000 K, 4000 K. The solid lines indicates Cardano’s method was used
to sovle for Z. The dashed lines indicated the approximate solution proposed by Sirignano
[18]

Figure 48: Air, 500 K

Figure 49: Comparison Z versus Pd
P0

for Air with fixed = T0 = 500 K, while varying P0 where
P0= 10 bar, 30 bar, 50 bar, 100 bar, 200 bar, 500 bar.
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Figure 50: Comparison Z versus Pd
P0

for Air with fixed = T0 = 1000 K, while varying P0

where P0= 10 bar, 30 bar, 50 bar, 100 bar, 200 bar, 500 bar.

Figure 51: Comparison Z versus Pd
P0

for Air with fixed = T0 = 2000 K, while varying P0

where P0= 10 bar, 30 bar, 50 bar, 100 bar, 200 bar, 500 bar.
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Figure 52: Comparison Z versus Pd
P0

for Air with fixed = T0 = 4000 K, while varying P0

where P0= 10 bar, 30 bar, 50 bar, 100 bar, 200 bar, 500 bar.

4.2.5 A Results

The calculations of A across the range of investigation has many different trends of curve,

mainly depending on the stagnation temperature. The effects of a very low temperature

change the trend so much that it over-shadows the other curves. The effect can be seen not

only in the graphs plotted, but also, in Equation 4. Therefore, the graphs of A are re-plotted

at the end of this section without the curves corresponding to 500 K. The curves of the

500 K all increase at the beginning of the graph until a certain low normalized pressure

value. At this point, the plot gradually decreases. The 1000 K curves show a similar trend,

but after the peak it decreases rapidly with increasing normalized pressure. For the 2000

K curve there is a distinct difference from the lower temperature graphs and no longer is

concave down. The 2000 K curve is concave up with a small decrease while increasing the

normalized pressure reaches a minimum and then dramatically increases in value. The final

stagnation temperatusre, 4000 K almost looks like a linear line except for the very beginning
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of the plot.

Varying the stagnation pressure does not change the shape of the curve, but it does change

the magnitude of the values. As the pressure increases, so does the values corresponding to

A. Without looking at the graphs, this trend based on pressure can be seen by Equation 4.

Figure 53: Comparison A versus Pd
P0

for Air with fixed P0 = 10 bar, while varying T0, where
T0 = 500 K, 1000 K , 2000 K , 4000 K.
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Figure 54: Comparison A versus Pd
P0

for Air with fixed P0 = 30 bar, while varying T0, where
T0 = 500 K, 1000 K , 2000 K , 4000 K.

Figure 55: Comparison A versus Pd
P0

for Air with fixed P0 = 50 bar, while varying T0, where
T0 = 500 K, 1000 K , 2000 K , 4000 K.
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Figure 56: Comparison A versus Pd
P0

for Air with fixed P0 = 100 bar, while varying T0, where
T0 = 500 K, 1000 K , 2000 K , 4000 K.

Figure 57: Comparison A versus Pd
P0

for Air with fixed P0 = 200 bar, while varying T0, where
T0 = 500 K, 1000 K , 2000 K , 4000 K.
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Figure 58: Comparison A versus Pd
P0

for Air with fixed P0 = 500 bar, while varying T0, where
T0 = 500 K, 1000 K , 2000 K , 4000 K.

Figure 59: Comparison A versus Pd
P0

for Air with fixed T0 = 500 K, while varying P0, where
P0 = 10 bar, 30 bar, 50 bar, 100 bar, 200 bar, 500 bar.
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Figure 60: Comparison A versus Pd
P0

for Air with fixed T0 = 500 K, while varying P0, where
P0 = 10 bar, 30 bar, 50 bar, 100 bar, 200 bar, 500 bar.

Figure 61: Comparison A versus Pd
P0

for Air with fixed T0 = 2000 K, while varying P0, where
P0 = 10 bar, 30 bar, 50 bar, 100 bar, 200 bar, 500 bar.
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Figure 62: Comparison A versus Pd
P0

for Air with fixed T0 = 4000 K, while varying P0, where
P0 = 10 bar, 30 bar, 50 bar, 100 bar, 200 bar, 500 bar.
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(a) (b)

(c) (d)

(e) (f)

Figure 63: Plots of A Using Air. Vertical Axis is A like previous graphs but without 500 K
so this demonstrates relationship more clearly. a)10 bar; b)30 bar; c) 50 bar; d) 100 bar; e)
200 bar; f) 500 bar 70



4.2.6 B Results

The results of B are pretty simplistic compared to that of A in that the plots follow a

constant trend that is easily seen by the definition in Equation 5. As the normalized value of

pressure increases, so does the value of B. Increasing the stagnation temperature decreases

the value of B as well as decreases the rate at which B increases when normalized pressure

increases. The effects of increasing stagnation pressure have a more dramatic effect on B

where there is an order of two difference on the scales of the graph. While the first set of

graphs, Figures 64 to 67, are for constant T0 values, the order of mangitude used to plot B

is the same. However Figures 68 to 73 have a difference. These have to hold different values

to describe the changes in B across the range of normalized pressure.

Figure 64: Comparison A versus Pd
P0

for Air with fixed T0 = 500 K, while varying P0, where
P0 = 10 bar, 30 bar, 50 bar, 100 bar, 200 bar, 500 bar.
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Figure 65: Comparison A versus Pd
P0

for Air with fixed T0 = 10s00 K, while varying P0, where
P0 = 10 bar, 30 bar, 50 bar, 100 bar, 200 bar, 500 bar.

Figure 66: Comparison A versus Pd
P0

for Air with fixed T0 = 2000 K, while varying P0, where
P0 = 10 bar, 30 bar, 50 bar, 100 bar, 200 bar, 500 bar.
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Figure 67: Comparison A versus Pd
P0

for Air with fixed T0 = 500 K, while varying P0, where
P0 = 10 bar, 30 bar, 50 bar, 100 bar, 200 bar, 500 bar.

Figure 68: Comparison A versus Pd
P0

for Air with fixed P0 = 10 bar, while varying T0, where
T0 = 500 K, 1000 K , 2000 K , 4000 K.
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Figure 69: Comparison A versus Pd
P0

for Air with fixed P0 = 30 bar, while varying T0, where
T0 = 500 K, 1000 K , 2000 K , 4000 K.

Figure 70: Comparison A versus Pd
P0

for Air with fixed P0 = 50 bar, while varying T0, where
T0 = 500 K, 1000 K , 2000 K , 4000 K.
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Figure 71: Comparison A versus Pd
P0

for Air with fixed P0 = 100 bar, while varying T0, where
T0 = 500 K, 1000 K , 2000 K , 4000 K.

Figure 72: Comparison A versus Pd
P0

for Air with fixed P0 = 200 bar, while varying T0, where
T0 = 500 K, 1000 K , 2000 K , 4000 K.
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Figure 73: Comparison A versus Pd
P0

for Air with fixed P0 = 500 bar, while varying T0, where
T0 = 500 K, 1000 K , 2000 K , 4000 K.

4.2.7 Sound Speed Results

Changing stagnation temperature and pressure had a different effect on the real-gas

solutions than the other properties investigated. All the normalized sound speed graphs

demonstrated almost congruent solutions at the low normalized pressure values. The only

graph that does not show this trend is Figure 79 where the plots cross each other. When

the normalized pressure increases, the curves corresponding to different pressures and tem-

peratures diverge. The largest variation of the normalized sound speed plots is in Figure 80,

corresponding to the lowest stagnation temperature while varying stagnation pressure. On

the same Figure, the plot corresponding to the lowest temperature and highest pressure is

the highest normalized sound speed value.

Referring to Equation 76, the sound speed for ideal-gas should not be impacted by static

or stagnation pressure at a given temperature. However, the normalized pressure ratio still

effects the sound speed, just not static pressure or stagnation pressure by itself.

However, based on the graphs in this section, this does not seem to be the case for real-
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gas with maximum deviation of 24.05% to that of ideal-gas. The definition of the speed of

sound for ideal-gas is as follows:

c =
√
γTR̄ (76)

Figure 74: Comparison C =
√
TZ(f + gβ) versus Pd

P0
for Air with fixed P0 = 10 bar, while

varying T0, where T0 = 500 K, 1000 k, 2000 K, 4000 K.
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Figure 75: Comparison C =
√
TZ(f + gβ) versus Pd

P0
for Air with fixed P0 = 10 bar, while

varying T0, where T0 = 500 K, 1000 k, 2000 K, 4000 K.

Figure 76: Comparison C =
√
TZ(f + gβ) versus Pd

P0
for Air with fixed P0 = 50 bar, while

varying T0, where T0 = 500 K, 1000 k, 2000 K, 4000 K.
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Figure 77: Comparison C =
√
TZ(f + gβ) versus Pd

P0
for Air with fixed P0 = 100 bar, while

varying T0, where T0 = 500 K, 1000 k, 2000 K, 4000 K.

Figure 78: Comparison C =
√
TZ(f + gβ) versus Pd

P0
for Air with fixed P0 = 200 bar, while

varying T0, where T0 = 500 K, 1000 k, 2000 K, 4000 K.
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Figure 79: Comparison C =
√
TZ(f + gβ) versus Pd

P0
for Air with fixed P0 = 500 bar, while

varying T0, where T0 = 500 K, 1000 k, 2000 K, 4000 K.

Figure 80: Comparison C =
√
TZ(f + gβ) versus Pd

P0
for Air with fixed T0 = 500 K, while

varying P0, where P0 = 10 bar, 30 bar, 50 bar, 100 bar, 200 bar, 500 bar.
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Figure 81: Comparison C =
√
TZ(f + gβ) versus Pd

P0
for Air with fixed T0 = 1000 K, while

varying P0, where P0 = 10 bar, 30 bar, 50 bar, 100 bar, 200 bar, 500 bar.

Figure 82: Comparison C =
√
TZ(f + gβ) versus Pd

P0
for Air with fixed T0 = 2000 K, while

varying P0, where P0 = 10 bar, 30 bar, 50 bar, 100 bar, 200 bar, 500 bar.
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Figure 83: Comparison C =
√
TZ(f + gβ) versus Pd

P0
for Air with fixed T0 = 4000 K, while

varying P0, where P0 = 10 bar, 30 bar, 50 bar, 100 bar, 200 bar, 500 bar.

4.2.8 Velocity Results

The normalized velocity shows little change when varying temperature in low pressure

regions. However, when the P0 reaches around 200 bar there is a noticeable difference

between the varying temperature curves. The graph corresponding to 500 bar, Figure 89,

displays a distinct difference between each temperature curve. The effects of temperature

are definitely less dramatic than that of pressure. In Figures 90 to 93, these have all the

curves grouped closely together, except for the curves corresponding to the 500 bar.

Across all the ranges of stagnation pressure and temperature investigated, the maximum

deviation of the real-gas solutions from ideal-gas was not a useful metric to compare. Since

the beginning of the calculation starts with P as one and U at zero, the error between ideal-

gas and real-gas become highly dependent on equations that are sensitive to small numbers.

When dealing with small values, a small change leads to a large change in difference between

ideal-gas values and real-gas. Meaning, while the the velocities are of similar order, the

values of the numbers being used in the equations to solve for both causes a large fluctuation
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of errors. Thus, it is more appropriate in this case to state that the highest deviation in ideal-

gas value to that of real-gas solutions corresponded to the lowest stagnation temperature, T

= 500 K, and the highest stagnation pressure, P = 500 bar. At this particular instance the

average difference in value between ideal-gas and real-gas is 8.41% across the entire curve

(P=1 to P = 0). While this does not give the largest error for normalized velocity, it does

give an idea of how much of an offset in values the real-gas is to the ideal-gas values.

Figure 84: Comparison U = u√
RT0

versus Pd
P0

for Air with fixed P0 = 10 bar, while varying
T0, where T0 = 500 K, 1000 K, 2000 K, 4000 K.
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Figure 85: Comparison U = u√
RT0

versus Pd
P0

for Air with fixed P0 = 30 bar, while varying
T0, where T0 = 500 K, 1000 K, 2000 K, 4000 K.

Figure 86: Comparison U = u√
RT0

versus Pd
P0

for Air with fixed P0 = 50 bar, while varying
T0, where T0 = 500 K, 1000 K, 2000 K, 4000 K.
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Figure 87: Comparison U = u√
RT0

versus Pd
P0

for Air with fixed P0 = 100 bar, while varying
T0, where T0 = 500 K, 1000 K, 2000 K, 4000 K.

Figure 88: Comparison U = u√
RT0

versus Pd
P0

for Air with fixed P0 = 200 bar, while varying
T0, where T0 = 500 K, 1000 K, 2000 K, 4000 K.
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Figure 89: Comparison U = u√
RT0

versus Pd
P0

for Air with fixed P0 = 500 bar, while varying
T0, where T0 = 500 K, 1000 K, 2000 K, 4000 K.

Figure 90: Comparison U = u√
RT0

versus Pd
P0

for Air with fixed T0 = 500 K, while varying P0,
where P0 = 10 bar, 30 bar, 50 bar, 100 bar, 200 bar, 500 bar.
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Figure 91: Comparison U = u√
RT0

versus Pd
P0

for Air with fixed T0 = 1000 K, while varying
P0, where P0 = 10 bar, 30 bar, 50 bar, 100 bar, 200 bar, 500 bar.

Figure 92: Comparison U = u√
RT0

versus Pd
P0

for Air with fixed T0 = 2000 K, while varying
P0, where P0 = 10 bar, 30 bar, 50 bar, 100 bar, 200 bar, 500 bar.
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Figure 93: Comparison U = u√
RT0

versus Pd
P0

for Air with fixed T0 = 4000 K, while varying
P0, where P0 = 10 bar, 30 bar, 50 bar, 100 bar, 200 bar, 500 bar.

4.2.9 Mach Number Results

The Mach number shows small variation when changing stagnation temperature, T0 for

a wide pressure range. While normalized velocity changes vary little over both large P0 and

T0 ranges, the sound speed has a noticeable difference in value at lower T0 and higher P0. A

slight variation of Mach number occurs at 500 bar when T0 is 500 K. However, the rest of

the T0 range shows little difference to ideal-gas values.
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Figure 94: Comparison M versus Pd
P0

for Air with fixed P0 = 10 bar, while varying T0, where
T0 = 500 K, 1000 K, 2000 K, 4000 K.

Figure 95: Comparison M versus Pd
P0

for Air with fixed P0 = 30 bar, while varying T0, where
T0 = 500 K, 1000 K, 2000 K, 4000 K.
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Figure 96: Comparison M versus Pd
P0

for Air with fixed P0 = 50 bar, while varying T0, where
T0 = 500 K, 1000 K, 2000 K, 4000 K.

Figure 97: Comparison M versus Pd
P0

for Air with fixed P0 = 100 bar, while varying T0, where
T0 = 500 K, 1000 K, 2000 K, 4000 K.
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Figure 98: Comparison M versus Pd
P0

for Air with fixed P0 = 200 bar, while varying T0, where
T0 = 500 K, 1000 K, 2000 K, 4000 K.

Figure 99: Comparison M versus Pd
P0

for Air with fixed P0 = 500 bar, while varying T0, where
T0 = 500 K, 1000 K, 2000 K, 4000 K.
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Figure 100: Comparison M versus Pd
P0

for Air with fixed T0 = 500 K, while varying P0, where
P0 = 10 bar, 30 bar, 50 bar, 100 bar, 200 bar, 500 bar.

Figure 101: Comparison M versus Pd
P0

for Air with fixed T0 = 1000 K, while varying P0,
where P0 = 10 bar, 30 bar, 50 bar, 100 bar, 200 bar, 500 bar.
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Figure 102: Comparison M versus Pd
P0

for Air with fixed T0 = 2000 K, while varying P0,
where P0 = 10 bar, 30 bar, 50 bar, 100 bar, 200 bar, 500 bar.

Figure 103: Comparison M versus Pd
P0

for Air with fixed T0 = 4000 K, while varying P0,
where P0 = 10 bar, 30 bar, 50 bar, 100 bar, 200 bar, 500 bar.
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4.2.10 Mass Ratio Results

Mass flow of ideal-gas and real-gas was compared by deriving equations to find the mass

flow at a specific point in the nozzle. The throat was chosen for ease of calculation so that

mach number is one and the area ratio, α, is also one. This will simplify some calculations.

The general equation for mass flow is as follows:

ṁ = ρuA (77)

Ultimately, both the ideal-gas equations and real-gas calculations are dependent on the

specific heat ratio, stagnation temperature, stagnation pressure, area at the throat, velocity

at the throat and molecular weight. This is contrary to the usual case of where ideal-gas

is only dependent on mach number and specific heat capacities. Recalling that flow at a

chocked nozzle has a M of 1, the general equation becomes:

ṁ = ρd,tcd,tAt (78)

To find the mass flow at the throat for an ideal-gas, one must recall Equations 65 and 67

as well as the ideal-gas equation for sound speed:

cideal =
√
γRTd (79)

Setting M equal to 1 and substituting ideal-gas equations into the sound speed equation,

Equation 77 becomes:

ṁideal = ρ0

(
γ + 1

2

) −1
γ−1√

γRTd (80)

Substituting ρ0 for P0

T0R
and simplifying leads to the following equation:

ṁideal = γ
1
2

(
2

γ + 1

) γ+1
2(γ−1) P0At√

RT0
(81)

94



Once the condition at the throat have been determined using the real-gas calculations,

ṁreal can be determined easily by substituting Equations 51 and 42 into Equation 78:

ṁreal = (
RP

RT
)(U
√
γT0) (82)

Now, the mass ratio of the real mass flow is normalized by the ideal mass flow. Even

though the area has not been determined, it is unnecessary because the At term will cancel

out. The following table is a tabulation of ṁ
ṁideal

for Air, Argon (Ar) and Nitrogen (N2).
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Air Ar N2

P0 bar T0 K ˙mreal

˙mideal
Zthroat P0 bar T0 K ˙mreal

˙mideal
Zthroat P0 bar T0 K ˙mreal

˙mideal
Zthroat

10 500 1.0008 1.0019 1 500 1.0016 0.9999 1 500 1.0056 0.9937

10 1000 1.0003 1.0019 1 1000 1.0004 1.0015 1 1000 1.0007 1.0016

10 2000 1.0006 1.0009 1 2000 1.0005 1.0009 1 2000 1.0006 1.0011

10 4000 1.0009 1.0004 1 4000 1.0007 1.0004 1 4000 1.0009 1.0003

30 500 1.0004 1.0058 3 500 1.0030 0.9997 3 500 1.0149 0.9808

30 1000 0.9989 1.0058 3 1000 0.9993 1.0045 3 1000 1.0000 1.0047

30 2000 0.9999 1.0028 3 2000 0.9998 1.0027 3 2000 0.9997 1.0033

30 4000 1.0006 1.0011 3 4000 1.0004 1.0012 3 4000 1.0006 1.0010

50 500 0.9999 1.0097 5 500 1.0044 0.9996 5 500 1.0245 0.9675

50 1000 0.9975 1.0096 5 1000 0.9983 1.0075 5 1000 0.9992 1.0078

50 2000 0.9991 1.0046 5 2000 0.9991 1.0044 5 2000 0.9988 1.0055

50 4000 1.0002 1.0018 5 4000 1.0000 1.0020 5 4000 1.0002 1.0016

100 500 0.9983 1.0197 10 500 1.0074 0.9995 10 500 1.0502 0.9327

100 1000 0.9940 1.0192 10 1000 0.9957 1.0149 10 1000 0.9973 1.0157

100 2000 0.9971 1.0093 10 2000 0.9972 1.0089 10 2000 0.9964 1.0109

100 4000 0.9994 1.0036 10 4000 0.9992 1.0039 10 4000 0.9993 1.0033

200 500 0.9944 1.0404 20 500 1.0119 1.0002 20 500 1.1067 0.8610

200 1000 0.9872 1.0384 20 1000 0.9905 1.0298 20 1000 0.9933 1.0315

200 2000 0.9933 1.0186 20 2000 0.9935 1.0177 20 2000 0.9919 1.0219

200 4000 0.9978 1.0072 20 4000 0.9974 1.0079 20 4000 0.9975 1.0066

500 500 0.9799 1.1078 50 500 1.0025 1.0343 50 500 1.1640 0.8007

500 1000 0.9675 1.0954 50 1000 0.9750 1.0746 50 1000 0.9801 1.0797

500 2000 0.9822 1.0465 50 2000 0.9829 1.0442 50 2000 0.9788 1.0546

500 4000 0.9930 1.0181 50 4000 0.9923 1.0198 50 4000 0.9922 1.0167

Table 2: Mass ratio of real-gas calculations over ideal-gas calculations. ṁ
ṁideal

was found
using a wide range of T0 and P0 as well as different species of gas: Air, Ar and N2

Reviewing Table 2 it is evident that the specific heat ratio does not have as large an

effect on the deviation of ideal-gas between each species.
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4.2.11 Momentum Flux Results

Momentum flux was calculated by multiplying the dimensional density ρd by the di-

mensional u2d. It is then normalized by the momentum flux of ideal-gas to compare. Note,

the tremendous increase of the momentum flux between each P0 at each graph. By first

looking at y axis in Figure 104 (corresponding to 10 bar), the normalized momentum flux

is on the range of 0.995 to 1.025. This is essentially a deviation from ideal-gas values of

−.5% to 2.5%. Now looking forward to Figure 109 (corresponding to 500 bar), the range

of value of real-gas value and ideal-gas range from 1 to 1.5. Reviewing the graphs shows

reasonable results considering that the point with maximum density corresponds to M = 1.

It is interesting to note how quickly the momentum flux drops with increasing M . Referring

to the M graphs in Section 4.2.9, it is clear that as P diminishes, M increases.

In Section 4.2.8, U was demonstrated to increase as P increased, meaning as U increases

in value, so does M . Now, looking at Section 4.2.2 it is evident that an increase in P

correlates to an increase in R. Thus, there is an inverse relationship between M and R, as

well as ρd. So, as M increases in value, U increases, but ρ decreases at such a rate that it

counter acts the increase of U making ρdu
2
d decrease at a quick rate.

In Figures 106 to Figure 109, it demonstrates that there is a higher momentum flux

value for the real-gas case than there is for the ideal-gas case. In Figures 104 and Figure

105, the figures corresponding to lower pressures have some of the real-gas momentum flux

values below that of the ideal-gas. Ultimately, most values are still above ideal-gas solutions.

Similar to other properties, the difference in value of the real-gas calculation compared to the

ideal-gas is seen more at higher pressure. However, increasing the temperature, especially

for T0 = 4000 K, the real-gas-solution is more in agreement with the ideal-gas solution.

With that in mind, the two lines for low P and constant T0 = 4000 K are indistinguishable,

(Figures 104 and 105).
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Figure 104: Comparison of normalized momentum flux,
(ρdu

2
d)real

(ρdu
2
d)ideal

, versus Pd
P0

for Air with

fixed P0 = 10 bar, while varying T0, where T0 = 500 K, 1000 K, 2000 K, 4000 K.

Figure 105: Comparison of normalized momentum flux,
(ρdu

2
d)real

(ρdu
2
d)ideal

, versus Pd
P0

for Air with

fixed P0 = 30 bar, while varying T0, where T0 = 500 K, 1000 K, 2000 K, 4000 K.
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Figure 106: Comparison of normalized momentum flux,
(ρdu

2
d)real

(ρdu
2
d)ideal

, versus Pd
P0

for Air with

fixed P0 = 50 bar, while varying T0, where T0 = 500 K, 1000 K, 2000 K, 4000 K.

Figure 107: Comparison of normalized momentum flux,
(ρdu

2
d)real

(ρdu
2
d)ideal

, versus Pd
P0

for Air with

fixed P0 = 100 bar, while varying T0, where T0 = 500 K, 1000 K, 2000 K, 4000 K.
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Figure 108: Comparison of normalized momentum flux,
(ρdu

2
d)real

(ρdu
2
d)ideal

, versus Pd
P0

for Air with

fixed P0 = 200 bar, while varying T0, where T0 = 500 K, 1000 K, 2000 K, 4000 K.

Figure 109: Comparison of normalized momentum flux,
(ρdu

2
d)real

(ρdu
2
d)ideal

, versus Pd
P0

for Air with

fixed P0 = 500 bar, while varying T0, where T0 = 500 K, 1000 K, 2000 K, 4000 K.
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4.3 Normal Shock

This section are the results of the normal shock solutions as described in Section 3.

Sections 4.3.1 to 4.3.4 utilize method 1 of the normal shock solutions. Recall that this does

not require the knowledge of upstream velocity and can only really be used to measure the

behavior of real-gas undergoing normal shocks of varying strength. Section 4.3.5 utilizes

method 2 by showing shocks at specific location in the divergent part of a nozzle.

4.3.1 Pressure Ratio, P2

P1
vs. Density Ratio, ρ2

ρ1

The following section graphs the pressure ratio versus the density ratio, demonstrating

the effects of temperature and pressure on density. With respect to the density ratio, while

increasing shock, at a certain point, increasing the shock strength will not change the density

ratio. At a certain density ratio the curve becomes asymptotic and will not go past that

value. In the case of air using ideal-gas, the density ratio will not go past a value of 6.

However, this asymptotic value is dramatically changed with the influence of both pressure

and density.

For the case of temperature, higher temperatures lead to a closer agreement with the

ideal-gas solution. Contrarily, increasing the pressure will further increase the discrepancy

of real-gas and ideal-gas. In the case of Figure 115, the density ratio does not even reach

2.5 for the 500 K curve. Comparing this to the ideal-gas value of 6, it is more than a 240%

difference.
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Figure 110: Comparison of properties across a normal shock, P2

P1
versus ρ2

ρ1
for Air with fixed

P1 = 10 bar, for T1 = 500 K, 1000 K.

Figure 111: Comparison of properties across a normal shock, P2

P1
versus ρ2

ρ1
for Air with fixed

P1 = 30 bar, for T1 = 500 K, 1000 K.
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Figure 112: Comparison of properties across a normal shock, P2

P1
versus ρ2

ρ1
for Air with fixed

P1 = 50 bar, for T1 = 500 K, 1000 K.

Figure 113: Comparison of properties across a normal shock, P2

P1
versus ρ2

ρ1
for Air with fixed

P1 = 100 bar, for T1 = 500 K, 1000 K.
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Figure 114: Comparison of properties across a normal shock, P2

P1
versus ρ2

ρ1
for Air with fixed

P1 = 200 bar, for T1 = 500 K, 1000 K.

Figure 115: Comparison of properties across a normal shock, P2

P1
versus ρ2

ρ1
for Air with fixed

P1 = 500 bar, for T1 = 500 K, 1000 K.
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4.3.2 Temperature Ratio T2
T1

vs. Density Ratio, ρ2
ρ1

The temperature ratio versus density ratio curves are very similar to the curves shown

in Section 4.3.1. Both the effects of temperature and pressure affect the real-gas solution

in the same manner as the pressure ratio versus density ratio. Without the labels on the

graphs, the only apparent difference between the sets of graphs is the axis values for the

temperature ratio and pressure ratio. For the values of the temperature ratio are only about

one sixth of the value for the pressure ratio.

Figure 116: Comparison of properties across a normal shock, T2
T1

versus ρ2
ρ1

for Air with fixed
P1 = 10 bar, for T1 = 500 K, 1000 K.
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Figure 117: Comparison of properties across a normal shock, T2
T1

versus ρ2
ρ1

for Air with fixed
P1 = 30 bar, for T1 = 500 K, 1000 K.

Figure 118: Comparison of properties across a normal shock, T2
T1

versus ρ2
ρ1

for Air with fixed
P1 = 50 bar, for T1 = 500 K, 1000 K.
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Figure 119: Comparison of properties across a normal shock, T2
T1

versus ρ2
ρ1

for Air with fixed
P1 = 100 bar, for T1 = 500 K, 1000 K.

Figure 120: Comparison of properties across a normal shock, T2
T1

versus ρ2
ρ1

for Air with fixed
P1 = 200 bar, for T1 = 500 K, 1000 K.
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Figure 121: Comparison of properties across a normal shock, T2
T1

versus ρ2
ρ1

for Air with fixed
P1 = 500 bar, for T1 = 500 K, 1000 K.

4.3.3 Temperature Ratio T2
T1

vs. Pressure Ratio, P2

P1

Initially the graphs in this section seem to be misleading. Thus far, in this thesis study,

the higher the temperature, the closer to ideal-gas the real-gas properties become, (with only

a few exceptions). However, this graph in this scale shows a different trend. by zooming into

the lower pressure ratio region, (lower M1 values) of Figure 126 shows that this trend holds.

The higher temperature curve is closer to the ideal-gas solution than the lower temperature

curve. However, Figure 127 has a limited pressure ratio range to show this trend.

When the range is expanded to see across a larger range of pressure ratios, not only do

the 500 K curve and the 1000 K curve move to the other side of the ideal-gas curve, but the

lower temperature is closer than the higher temperature. Thus, the effects of temperature

and pressure have different affects on the curve depending on how strong the shock is.

For stronger shocks, the discrepancy between ideal-gas and real-gas is increased by higher

pressure and higher temperature. Meanwhile, for weaker strength shocks, higher pressure

and lower temperatures show larger variations than ideal-gas.
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Figure 122: Comparison of properties across a normal shock, T2
T1

versus P2

P1
for Air with fixed

P1 = 10 bar, for T1 = 500 K, 1000 K.

Figure 123: Comparison of properties across a normal shock, T2
T1

versus P2

P1
for Air with fixed

P1 = 30 bar, for T1 = 500 K, 1000 K.
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Figure 124: Comparison of properties across a normal shock, T2
T1

versus P2

P1
for Air with fixed

P1 = 50 bar, for T1 = 500 K, 1000 K.

Figure 125: Comparison of properties across a normal shock, T2
T1

versus P2

P1
for Air with fixed

P1 = 100 bar, for T1 = 500 K, 1000 K.
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Figure 126: Comparison of properties across a normal shock, T2
T1

versus P2

P1
for Air with fixed

P1 = 200 bar, for T1 = 500 K, 1000 K.

Figure 127: Comparison of properties across a normal shock, T2
T1

versus P2

P1
for Air with fixed

P1 = 200 bar, for T1 = 500 K, 1000 K. This is the same graphs as Figure 126, but zoomed
in to demonstrate the trends of real-gas on a smaller scale.
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Figure 128: Comparison of properties across a normal shock, T2
T1

versus P2

P1
for Air with fixed

P1 = 500 bar, for T1 = 500 K, 1000 K.

4.3.4 Comparison of Air, N2, O2

Air, N2, and O2 are all different species/ compounds but have the same specific heat

ratio and thus give an interesting perspective on the effects of species on normal shock

calculations. For normal shock calculations, the only term that distinguishes the make up

of a gas in ideal-gas calculations is the specific heat ratio. Thus, according to these set of

equations; Air, N2, and O2 should all have the same curve. In Figures 129 to 134, it compares

the effect that different species have on real-gas solutions.

Air and N2 are always the closest in solution than that of Air and O2. This is most likely

because N2 makes up 80% of Air while the other 20% is O2. For any given pressure and

temperature, N2 is the furthest from ideal-gas solution, followed by Air. Thus, O2 is the

closest to ideal-gas. Both O2 and N2 exhibit the same effects of varying temperature and

pressure as Air does.
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Figure 129: Comparison of properties across a normal shock, P2

P1
versus ρ2

ρ1
for Air with fixed

P1 = 10 bar, for T1 = 500 K, 1000 K. This graph also compares the effects of the species on
normal shock solutions, with N2,O2 and Air being compared.

Figure 130: Comparison of properties across a normal shock, P2

P1
versus ρ2

ρ1
for Air with fixed

P1 = 30 bar, for T1 = 500 K, 1000 K. This graph also compares the effects of the species on
normal shock solutions, with N2,O2 and Air being compared.
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Figure 131: Comparison of properties across a normal shock, P2

P1
versus ρ2

ρ1
for Air with fixed

P1 = 50 bar, for T1 = 500 K, 1000 K. This graph also compares the effects of the species on
normal shock solutions, with N2,O2 and Air being compared.

Figure 132: Comparison of properties across a normal shock, P2

P1
versus ρ2

ρ1
for Air with fixed

P1 = 100 bar, for T1 = 500 K, 1000 K. This graph also compares the effects of the species
on normal shock solutions, with N2,O2 and Air being compared.
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Figure 133: Comparison of properties across a normal shock, P2

P1
versus ρ2

ρ1
for Air with fixed

P1 = 200 bar, for T1 = 500 K, 1000 K. This graph also compares the effects of the species
on normal shock solutions, with N2,O2 and Air being compared.

Figure 134: Comparison of properties across a normal shock, P2

P1
versus ρ2

ρ1
for Air with fixed

P1 = 500 bar, for T1 = 500 K, 1000 K. This graph also compares the effects of the species
on normal shock solutions, with N2,O2 and Air being compared.
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4.3.5 Pressure and Area Ratio Results

In Figures 135 to 140, are graphs of the divergent portion of convergent/ divergent nozzle

with normal shocks at specific points in the nozzle. Each graph has a specific stagnation

pressure with varying stagnation temperatures. Each color refers to either 500 K, 1000 K

or ideal-gas. The dashed lines mark the subsonic expansion of the flow, while the solid

lines demonstrate the supersonic expansion, shock and then subsonic expansion. The curves

plotted in comparison to ideal-gas seem very close to the solution of the real-gas for varying

both stagnation pressure and temperature. There are two reason for this.

The first is that the upstream Mach numbers for the shock in the graphs are relatively

low compared to those covered in earlier sections discussing the normal shock. Referring

back to Section 4.2.3, discussing area ratio versus pressure, the area ratio does has a very

small change with regards to a change in pressure throughout most of the nozzle. It is not

until nominal pressure, P , moves from a lower number to 1 that area ratio makes a dramatic

change. It is not until the area ratio starts to change a large amount, that the velocity of the

flow increases and the sound speed decreases dramatically, to the point that larger variations

in the value between ideal-gas and real-gas can be seen. Thus, at the expansion ratio limits,

the speed and Mach number of the flow increase and thus the strength of the shock. The flow

in Figure 141 is allowed to expand to a much larger area ratio to demonstrate the increased

Mach number before the normal shock. However, the issue is seen as in the graphs with a

smaller area ratio.

The second reason for their similarity is the view of the graph. The graph is plotted over

a large range of pressures, so the scale of the graphs hides the discrepancies between real-gas

and ideal-gas values. For these reasons, it is challenging to determine that for the case in

Figure 140, the curve corresponding to 500 K at an area ratio, α, of 7.5, the error between

real-gas and ideal-gas is 19.08%. For clarity on the supersonic and subsonic expansion of the

real-gas through a nozzle, refer to Section 4.2.3.
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Figure 135: P
P0

versus α at P0= 10 bar

Figure 136: P
P0

versus α at P0= 30 bar
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Figure 137: P
P0

versus α at P0= 50 bar

Figure 138: P
P0

versus α at P0= 100 bar
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Figure 139: P
P0

versus α at P0= 200 bar

Figure 140: P
P0

versus α at P0= 500 bar
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Figure 141: P
P0

versus α at P0= 500 bar. The flow for this graphs was allowed to expand to
a much larger area ratio to show the effects of area ratio on the normal shocks in the nozzle.

4.3.6 Comparison To Previous Literature

There have only been a few relevant investigations that used real-gas calculations to solve

for normal shock properties and then, even fewer that used the SKR EoS in order to do so.

While there are a few that use the Redlich-Kwong EoS to approach normal shock solutions,

such as Kouremenous they define specific heat capacity using the pressure, temperature and

terms found in Redlich-Kwong equations [10]. Defining the specific heats in this way will

have a large impact on the solution. Recall that this investigation uses a constant specific

heat capacity and is defined by Equation 74.

Thus, the most reasonable work to compare the results of the normal shock calculations

developed in this study are to that of Sirignano. Previously, Sirignano demonstrated two

ways of calculating the normal shock; one using the conservation equations and a solver that
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comes with MatLab. The second utilizes a completely different approach using a Taylor

expansion [13]. The first method to be described by Sirignano was used to compare to

this study’s calculations, however, the algorithm and approach still differ from each other

resulting in different values when the strength of the shock is increased. For lower strength

shocks, this study and Sirignano’s result in similar solutions, but at higher strengths shocks,

the difference in value become more apparent. In Figure 142, note close agreement between

each studies solutions, while Figure 144 shows there are differences in the stronger shocks.

Figure 142: P2

P1
versus ρ2

ρ1
, comparison to Sirignano [13]. P1 = 10 bar and is held constant

while the strength of the shock is varied. For this case T1 = 500 K, and 1000 K.
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Figure 143: P2

P1
versus ρ2

ρ1
, comparison to Sirignano [13]. P1 = 10 bar and is held constant

while the strength of the shock is varied. For this case T1 = 500 K, and 1000 K. This graph
in Figure 145, but zooms into the region of weaker strength shocks to show the comparison
more clearly.

Figure 144: P2

P1
versus ρ2

ρ1
, comparison to Sirignano [13]. P1 = 100 bar and is held constant

while the strength of the shock is varied. For this case T1 = 500 K, and 1000 K.
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Figure 145: P2

P1
versus ρ2

ρ1
, comparison to Sirignano [13]. P1 = 100 bar and is held constant

while the strength of the shock is varied. For this case T1 = 500 K, and 1000 K. This is the
same graph in Figure 145, but zooms into the region of weaker strength shocks to show the
comparison more clearly.
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5 Conclusion

The Soave-Redlich-Kwong EoS was used to compare real-gas calculations with predicted

behavior for ideal-gas values. This thesis study demonstrates a novel application of the

method for directly solving the cubic EoS associated with the SKR EoS. This increases

the computational efficiency of the real-gas calculations. The flow is applied to convergent-

divergent nozzle analysis as used in rocket and jet engines. Thus the investigated ranges of

temperature and pressure are higher than most previous studies. Classical mixing rules were

utilized to model the mixture of species. The primary focus for this investigation was air,

along with limited investigation into some single-species gases.

Previous literature was discussed demonstrating the development of the SKR EoS and its

initial applications in the energy industry. As more researchers studied the SKR EoS, more

uses became apparent and eventually led to the SKR EoS being used to analyze isentropic

flow and normal shocks for the real-gases. Methods for calculating isentropic flow were

explained, as well as equations needed for modeling a mixtures of species.

This investigation examined stagnation temperatures, T0 of: 500 K, 1000 K, 2000 K, and

4000 K. The values of stagnation pressure, P0, investigated were at: 1 MPa, 3 MPa, 5 MPa,

10 MPa. 20 MPa, 50 MPa.

In regards to temperature, velocity, sound speed, A, B, compressibility factor, M , mass

flux and momentum flux in an isentropic flow, it was found that generally a real-gas at higher

pressures or at lower temperatures has a greater deviation from ideal-gas, than it has with

higher temperature and lower pressure. However, for some values the difference between

ideal-gas flow and real-gas flow was found to be very similar, even at low temperatures

and low pressures. For example, the graphs displaying the P versus T curves appear to be

closely harmonious with ideal-law, while on the other hand, R versus P varies significantly

on wide ranges of P0 and T0. Overall, it was concluded that for a large range of pressures

and temperatures, the difference between real-gas and ideal-gas was significant enough to
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cause specifications when applying to practical applications.

Temperature of a real-gas compared to that of an ideal-gas was the mildest of the pa-

rameters investigated with regards to difference in ideal-gas and real-gas values. Across the

entire range of the total pressures and temperatures investigated, the maximum difference

was 4.25%. This means that for an ideal-gas, temperature should give a close estimate (but

not accurate) answer for a change in pressure. Density the third of the state variables, had

a maximum deviation of 28.19% from that of the ideal-gas calculations.

Pressure was the variable that was not investigated since all partial equations were de-

pendent on a change in velocity. Consequently, the ideal-gas equations were also dependent

on the change in pressure. The maximum deviation of velocity was not a decent metric to

measure the difference of velocity. Instead, the average difference of values between ideal-gas

and real-gas was found to be 8.41%. Sound speed had the largest deviation from ideal-gas

at 24.05% at its maximum. The Mach numbers deviation had the same issues as velocity

and was found to have an average difference of 8.64%.

In the literature an approximate solution for solving the compressibility factor Z was dis-

cussed and is demonstrated in Equation 7. While there is a significant amount of calculations

for both Cardanos Method and a root finding function, it does show a maximum deviation

of 3.89%. It should be noted that the previous stated discrepancies was for air, a mixture of

species. For different species these deviations will change. For example, in the case of pure

oxygen, all of the differences were higher in percentage, (except of Mach number).

There was not a constant trend based on either stagnation or static value for tempera-

ture or pressure that led to the most deviation from ideal-gas values with regards to mass

flux. Changing the temperature or pressure did not lead to a monotonically increasing or

decreasing difference in value unlike previous properties. Thus, the most that can be stated

for this thesis study is that based on the points that were measured, (as seen in Table 2),

the maximum difference between real-gas and ideal-gas mass flux was 3.25%.

This thesis study developed two different methods were developed for calculating normal
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shocks. While there have been previous investigations into normal shock using some cubic

EoS, there have been limited investigation using the SRK EoS. The few studies prior to

this thesis study utilized different solvers to approach the calculations and confirmation of

the normal shock properties differently. In this thesis study, however, the first method for

analysis of shocks developed did not require the knowledge of upstream velocity / Mach

number. This will result in an array of solutions for varying upstream velocity. The results

demonstrated how dramatic the difference in value of downstream temperature and pressure

are compared to ideal-gas results. The second method developed in this study is for use

when all of the upstream conditions are known, primarily velocity. This method is used for

specific upstream conditions and results in only one solution for downstream conditions.

In conclusion, the results of the normal shock solutions follow similar the same trends

for isentropic real-gas solutions but differ in value. The higher the temperature is, the closer

the solution is to ideal-gas. With higher pressure the opposite is true, where the difference

in real-gas versus ideal-gas solutions becomes a larger variation. With this in mind, it

was noted that the variation of pressure on a reasonable range has a higher effect on the

real-gas than that of a practical range of temperature. Some of the parameters used are

temperature dependent and vary such as the binary interaction coefficient (kij), constant

pressure coefficient or specific heat ratio. Future studies should include the variation of

these values for higher ranges of temperature. Some of the temperature dependent factors

may need to be developed from experimental data. Previous studies focused on smaller

temperature ranges where the changes in these values are relatively small, so the temperature

dependency does not have as much of an effect as it would for the range investigated in this

thesis study.
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A List of Symbols

Term Definition
A Pressure / Temperature Dependent Term Used in Cubic EoS
a Term Used in Calculating Cubic EoS and Other Terms
â Normalized Version of a, Account for Multiple ai if Applicable
âi Normalized Version of a for a Specific Species
B Pressure / Temperature Dependent Term Used in Cubic EoS
b Term Used in Calculating Cubic EoS and Other Terms

b̂ Normalized Version of b, Account for Multiple bi if Applicable

b̂i Normalized Version of b for a Specific Species
C Normalized Sound Speed
c Dimensional Velocity
c0 Initial Sound Speed
cp Specific Heat, Constant Pressure
f Term Used in Calculations
g Term Used in Calculations
H Total Enthalpy
h Specific Enthalpy
H1 Normal Shock Upstream Total Enthalpy, Dimensionalized
h1 Normal Shock Upstream Enthalpy, Dimensionalized
H2 Normal Shock Downstream Total Enthalpy, Dimensionalized
h2 Normal Shock Downstream Enthalpy, Dimensionalized
kij Binary Interaction Coefficient
M Mach Number
MW Molecular Weight
P Normalized Pressure by P0

P0 Total Pressure, Used as Initial Pressure
p1 Normal Shock Upstream Pressure, Dimensionalized
p2 Normal Shock Upstream Pressure, Dimensionalized
Pc Normalized Critical Pressure
Pcd Dimensional Critical Pressure
Pd Dimensional Pressure (with units Pa)
q1 Dummy Variable for Cardano Derivation
q2 Dummy Variable for Cardano Derivation
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List of Symbols Continued

Term Definition
R Normalized Density (Section 2.3)
R Specific Ideal Gas Constant
r Dummy Variable for Cardano Derivation
Ru Universal Ideal Gas Constant
Si Coefficient of a Specific Species of Gas Used In The Calculation of A
T Normalized Temperature by T0
T0 Total Temperature, Used as Initial Temperature
T1 Normal Shock Upstream Temeprature, Dimensionalized
T2 Normal Shock Downstream Temeprature, Dimensionalized
Tc Normalized Critical Temperature
Tcd Dimensional Critical Temperature
Td Dimensional Temperature (With Units Kelvin)
U Normalized Velocity
u Dimensional Velocity
u0 Initial Velocity
u1 Normal Shock Upstream Velocity, Dimensionalized
u2 Normal Shock Downstream Velocity, Dimensionalized
v Specific Volume
Xi Molar Fraction of ith species
Z Compressibility Factor
Zi ithroot of Cubic Equation of State
Z1 Normal Shock Upstream Compressibility Factor
Z2 Normal Shock Downstream Compressibility Factor
α Area normalized by Area of the throat
β Term used in Temperature Change Calculation
γ Specific Heat Ratio
ρ Static Density, Dimensionalized
ρ0 Total Density, Dimensionalized
ρ1 Normal Shock Upstream Density, Dimensionalized
ρ2 Normal Shock Downstream Density, Dimensionalized
ω Acentric Factor
ω1 Cubic Root of 1
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B Gas Properties

B.1 Property Tables

Species Critical Temperture (K) Critical Pressure (kPa) ω MW (g/mol) γ

H2O 647.1 22064 0.344 18.0 1.333

CO2 304.25 7380 0.228 44.0 1.286

O2 154.6 5050 0.228 32.0 1.400

N2 126.2 3390 .040 28 1.400

Ar 150.8 4780 0 40 1.667

Table 3: Data taken from Sirignano [13]

B.2 Binary Reaction Coefficient

Figure 146: Table taken from Stoll [23]

132



C Matrix Laboratory Code

Following is the Matrix Laboratory Code used for calculating the data shown in the

graphs in Section 4. There are two main codes displayed here; one for isentropic flow and

the second normal shock calculations using method 1. The codes use similar functions which

are listed in Section C.3.

C.1 Isentropic Flow

The following code is used to calculate and graph isentropic flow through a convergent-

divergent nozzle. This particular code holds P0 constant while varying T0 for each graph.

The graphs are then plotted and stored as images. The original functions that are called

upon are in Appendix C.3:

clc

clear

clear figure

close all

format long

%% Version 7

count=1;

Cp=1142; % J/kg/K

R=8134;

for P0=[1 3 5 10 20 50]*1e6 % Pascals

for T0=[500 1000 2000 4000] %Kelvin

bar= P0*(1e-5);

T=1;

P=1;

dP=-0.001;

u0=0;

alpha=1;

Tci=[154.6 126.2]./T0;

Pci=[5050e3 3390e3]./P0;

MWi=[32 28];

gami=[1.4 1.4];

Xi=[0.2 .8];

MW=MWi(1)*Xi(1)+MWi(2)*Xi(2);

if sum(Xi)~=1
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disp(’Mole Fraction Error’)

return

end

wi=[0.022 0.04];

Si=0.48508 + 1.5517.*wi-0.15613.*wi.^2;

kij=[0,-.00978; ...

-.00978,0];

%%Cal ai, bi, etc

ai=[]; %initialize varibles

bi=[];

da_dTi=[];

d2a_dT2i=[];

for i=1:length(Xi)

ai(i)=0.42748*Tci(i)^2/Pci(i)*(1+Si(i)*(1-sqrt(T/Tci(i))))^2;

bi(i) = 0.08664*Tci(i)/Pci(i);

da_dTi(i)= -0.42748*Tci(i)^1.5/Pci(i)*Si(i)*(1+ Si(i)...

*(1-sqrt(T/Tci(i))))/sqrt(T);

d2a_dT2i(i)=0.21374/Pci(i)*(Tci(i)/T)^1.5*Si(i)*(1+Si(i));

end

a=0;

b=0;

for i=1:length(Xi)

b=b+ Xi(i)*bi(i);

for j=1:length(Xi)

a=a+ sqrt(ai(i)*ai(j))*(1-kij(i,j))*Xi(i)*Xi(j);

end

end

%% Calc A and B parts

A=a*P/T^2;

B=b*P/T;

Apr=0;

Aprpr=0;

for i=1:length(Xi)

for j=1:length(Xi)

Apr=Apr + (1-kij(i,j))*0.5*Xi(i)*Xi(j)*P/T*(sqrt(ai(i))/sqrt(ai(j))...

*da_dTi(j)+sqrt(ai(j))/sqrt(ai(i))*da_dTi(i));

Aprpr=Aprpr+(1-kij(i,j))*0.5*P*Xi(i)*Xi(j)*P*(sqrt(ai(i))/sqrt(ai(j))*...

d2a_dT2i(i)-0.5*sqrt(ai(i))/sqrt(ai(j))/ai(j)*(da_dTi(j)^2)+...

sqrt(1/ai(i)/ai(j))*da_dTi(i)*da_dTi(j)+sqrt(ai(j))/sqrt(ai(i))*...

d2a_dT2i(j)-0.5*sqrt(ai(j))/sqrt(ai(i))/ai(i)*(da_dTi(i)^2));

end

end

%% Calc kij and specific Gas Constant for Mixture

m=0;

Rspec=0;

gamma=0;
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for i=1:length(Xi)

m=m+MWi(i)*Xi(i);

Rspec=Rspec + R*Xi(i);

gamma=gamma+gami(i)/MWi(i)*MWi(i)*Xi(i);

end

Rspec=Rspec/m;

%% Initial Speed of SOund Stuff

U=u0/sqrt(Rspec*T0);

U2=U^2;

%% Calculate Cubic Equation

N_1=-1;

N_2=A-B-B^2;

N_3=-A*B;

Z=cardano(N_1,N_2,N_3);

format short

Rscr=P/T/Z; %non-dimensional Density

rho0=Rscr*P0/T0/Rspec;

%% Initialize matrix

U_m=[];

Rscr_m=[];

alpha_m=[];

Z_m=[];

A_m=[];

B_m=[];

T_m=[];

P_m=[];

C_m=[];

M_m=[];

TI_m=[];

err_m=[];

dT_m=[];

f_m=[];

g_m=[];

fgb_m=[];

beta_m=[];

Apr_m=[];

Aprpr_m=[];

mdot_m=[];

k_cv_m=[];

a1_m=[];

a2_m=[];

a_m=[];

b_m=[];

da_dTi1_m=[];

d2a_dT2i1_m=[];

da_dT_m=[];

da_dTi2_m=[];

d2a_dT2i2_m=[];

fgb_b_m=[];
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Zapprox_m=[];

for n=P:dP:.01

%% Calculate f,g Rscript

f=(2*Z^3-Z^2+A*B)/(Z^3-B^2*Z);

g=1/(Z-B) - Apr/Z/(Z+B);

k_cv= (gamma-1)*Aprpr/B*log((Z+B)/Z);

beta=(gamma-1)*Z*g/(1+k_cv);

%% Calcualte Partial Gradients (equations 1-VII)

fgb=(f+g*beta); %I

fgb_m=[fgb_m fgb];

dalpha_dP=-alpha*(1/P/(fgb)-1/Rscr/U^2); %IV

dU2_dP=-2/Rscr;

dT_dP=beta*T/P/fgb; %VIII

C=sqrt(T*Z*fgb);

U2=U2+dU2_dP*dP;

U=sqrt(U2);

M=U/C; %Mach Number

mdot=Rscr*P0/T0/Rspec*U*sqrt(Rspec*T0)*1;

%% store variables

U_m=[U_m U] ;

f_m=[f_m f];

g_m=[g_m g];

mdot_m=[mdot_m mdot];

Apr_m=[Apr_m Apr];

Aprpr_m=[Aprpr_m Aprpr];

beta_m=[beta_m beta];

Rscr_m=[Rscr_m Rscr];

alpha_m=[alpha_m alpha];

Z_m=[Z_m Z];

k_cv_m=[k_cv_m k_cv];

A_m=[A_m A];

B_m=[B_m B];

T_m=[T_m T];

P_m=[P_m P];

C_m=[C_m C];

M_m=[M_m M];

TI_m=[TI_m P^((gamma-1)/gamma)];

Zapprox_m=[Zapprox_m 1+B-A];

dT_m=[dT_m dT_dP];

fgb_b_m=[fgb_b_m fgb/beta];

err_m=[err_m abs(U/C-1)*100];

a_m=[a_m a];

b_m=[b_m b];

a1_m=[a1_m ai(1)];

a2_m=[a2_m ai(2)];

da_dTi1_m=[da_dTi1_m da_dTi(2)];

d2a_dT2i1_m=[d2a_dT2i1_m d2a_dT2i(1)];

da_dT=0;
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for j=length(Xi)

for i=length(Xi)

da_dT=da_dT+Xi(i)*Xi(j)*(ai(i)/ai(j)*da_dTi(j)+ai(j)/ai(i)*da_dTi(i));

end

end

da_dT_m=[da_dT_m da_dT];

%% Calcualte Next Step’s Variables

P=P+dP;

T=T+dT_dP*dP;

for i=1:length(Xi)

ai(i)=0.42748*Tci(i)^2/Pci(i)*(1+Si(i)*(1-sqrt(T/Tci(i))))^2;

bi(i) = 0.08664*Tci(i)/Pci(i);

da_dTi(i)= -0.42748*Tci(i)^1.5/Pci(i)*Si(i)*(1+ Si(i)...

*(1-sqrt(T/Tci(i))))/sqrt(T);

d2a_dT2i(i)=0.21374/Pci(i)*(Tci(i)/T)^1.5*Si(i)*(1+Si(i));

end

a=0;

b=0;

for i=1:length(Xi)

b=b+ Xi(i)*bi(i);

for j=1:length(Xi)

a=a+ sqrt(ai(i)*ai(j))*(1-kij(i,j))*Xi(i)*Xi(j);

end

end

%% Calc A and B parts

A=a*P/T^2;

B=b*P/T;

Apr=0;

Aprpr=0;

for i=1:length(Xi)

for j=1:length(Xi)

Apr=Apr + (1-kij(i,j))*0.5*Xi(i)*Xi(j)*P/T*(sqrt(ai(i))/sqrt(ai(j))...

*da_dTi(j)+sqrt(ai(j))/sqrt(ai(i))*da_dTi(i));

Aprpr=Aprpr+(1-kij(i,j))*0.5*P*Xi(i)*Xi(j)*P*(sqrt(ai(i))/sqrt(ai(j))*...

d2a_dT2i(i)-0.5*sqrt(ai(i))/sqrt(ai(j))/ai(j)*(da_dTi(j)^2)+...

sqrt(1/ai(i)/ai(j))*da_dTi(i)*da_dTi(j)+sqrt(ai(j))/sqrt(ai(i))*...

d2a_dT2i(j)-0.5*sqrt(ai(j))/sqrt(ai(i))/ai(i)*(da_dTi(i)^2));

end

end

%% Calculate Cubic Equation

N_1=-1;

N_2=A-B-B^2;

N_3=-A*B;

Z=cardano(N_1, N_2, N_3);%input(’Give Z input ’)

format short
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Rscr=P/T/Z; %non-dimensional Density

end

C_m=real(C_m);

RIsen_m=P_m.^(1/gamma);

RscrIdeal_m=P_m./T_m;

%% Need points where M1 is exactly equal to 1

M1_err=sign(U_m-C_m);

for q=2:length(M1_err)

if M1_err(q)~=M1_err(q-1)

d=q;

end

end

%earlier we found where

M_m=U_m./C_m;

Pt=interpolate(M_m(d-1),M_m(d),P_m(d-1),P_m(d),1);

Ut=interpolate(M_m(d-1),M_m(d),U_m(d-1),U_m(d),1);

Ct=interpolate(M_m(d-1),M_m(d),C_m(d-1),C_m(d),1);

Tt=interpolate(M_m(d-1),M_m(d),T_m(d-1),T_m(d),1);

Rscrt=interpolate(M_m(d-1),M_m(d),Rscr_m(d-1),Rscr_m(d),1);

Zt=interpolate(M_m(d-1),M_m(d),Z_m(d-1),Z_m(d),1);

Bt=interpolate(M_m(d-1),M_m(d),B_m(d-1),B_m(d),1);

da_dTt=interpolate(M_m(d-1),M_m(d),da_dT_m(d-1),da_dT_m(d),1);

hhh=entropy(Z_m(d),da_dT_m(d),a_m(d),b_m(d),MW,B_m(d),Cp,T_m(d));

Pdt=Pt*P0;

udt=Ut*sqrt(Rspec*T0);

Tdt=Tt*T0;

rhodt=Pdt/Tdt/Rspec/Zt;

mdot_ae=udt*rhodt;

mdot_ae_i=sqrt(gamma)*(2/(gamma+1))^((gamma+1)/2/(gamma-1))*P0/sqrt(Rspec*T0);

mdot_r=mdot_ae/mdot_ae_i;

mom_real=(U_m.*sqrt(Rspec*T0)).^2.*P_m.*P0./T_m./T0./Rspec./Z_m;

TI=T0.*P_m.^((gamma-1)/gamma);

MII=sqrt(2/(gamma-1).*(P_m.^((gamma-1)/-gamma)-1));

mom_ideal=rho0.*(P_m).^(1/gamma).*(sqrt(gamma*Rspec*TI).*MII).^2;

mom_r=mom_real./mom_ideal;

% entropy=entropy(Z,da_dT,a,b,MW,B,Cp,T)

% plot(P_m,U_m, ’r-o’,P_m,C_m,’b-x’)

% legend(’Velocity’,’Sound Speed’)

% number=interpolate(X1,X2,Y1,Y2,Z)

%number=Y1+(Y2-Y1)*(Z-X1)/(X2-X1);

rhor_m=Rscr_m.*P0./T0./Rspec./rho0;

figure(1)

plot(P_m,T_m,’LineWidth’,2)

hold on
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figure(2)

plot(P_m,Rscr_m,’LineWidth’,2)

hold on

figure(3)

plot(P_m,U_m,’LineWidth’,2)

hold on

figure(4)

plot(P_m, Z_m,’LineWidth’,2)

hold on

figure(5)

plot(P_m,C_m,’LineWidth’,2)

hold on

figure(6)

plot(P_m,A_m,’LineWidth’,2)

hold on

figure(7)

plot(P_m,B_m,’LineWidth’,2)

hold on

figure(8)

plot(P_m,mom_r,’LineWidth’,2)

hold on

figure(9)

plot(P_m,M_m,’LineWidth’,2)

hold on

figure(10)

plot(P_m,rhor_m,’LineWidth’,2)

hold on

fprintf(’P= %2f, T= %4.0f, mdot_r= %6.4f, Zt= %5.4f \n’,P0/(1e6),T0,mdot_r,Zt)

end

TI_m=(P_m).^(1-1/gamma);

rho_m=(P_m).^(1/gamma);

MI_m=sqrt(((P_m).^(1/gamma-1)-1)*2/(gamma-1));

CI_m=sqrt(gamma.*TI_m);

UI_m=MI_m.*CI_m;

temperature=join([’Temp_m’ num2str(P0/(1e6))],0);

density=join([’Density_m’ num2str(P0/(1e6))],0);

velocity=join([’U_m’ num2str(P0/(1e6))],0);

compfactor=join([’Z_m’ num2str(P0/(1e6))],0);

soundspeed=join([’C_m’ num2str(P0/(1e6))],0);

Aname=join([’A_m’ num2str(P0/(1e6))],0);

Bname=join([’B_m’ num2str(P0/(1e6))],0);

mname=join([’mom_m’ num2str(P0/(1e6))],0);
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Machn=join([’M_m’ num2str(P0/(1e6))],0);

rhoname=join([’rhor_m’ num2str(T0)],0);

figure(1)

plot(P_m,TI_m,’--’,’LineWidth’,3)

xlabel(’Normalized Pressure, P’)

ylabel(’Normalized Temperature, T’)

lgd=legend(’T_0 = 500 K’,’T_0 = 1000 K’,’T_0 = 2000 K’,’T_0 = 4000 K’,’Ideal Gas’);

lgd.Location=’southeast’;

lgd.FontSize=18;

set(gcf, ’Position’, get(0, ’Screensize’))

set(gca,’FontSize’,20)

saveas(figure(1), temperature,’png’);

hold on

figure(2)

plot(P_m,rho_m,’--’,’LineWidth’,3)

xlabel(’Normalized Pressure, P’)

ylabel(’Normalized Density, \Re ’)

lgd=legend(’T_0 = 500 K’,’T_0 = 1000 K’,’T_0 = 2000 K’,’T_0 = 4000 K’,’Ideal Gas’);

lgd.Location=’southeast’;

lgd.FontSize=18;

set(gcf, ’Position’, get(0, ’Screensize’))

set(gca,’FontSize’,20)

saveas(figure(2), density,’png’);

hold on

figure(3)

xlabel(’Normalized Pressure, P’)

ylabel(’Normalized Velocity, U’)

lgd=legend(’T_0 = 500 K’,’T_0 = 1000 K’,’T_0 = 2000 K’,’T_0 = 4000 K’);

lgd.Location=’northeast’;

lgd.FontSize=18;

set(gcf, ’Position’, get(0, ’Screensize’))

set(gca,’FontSize’,20)

saveas(figure(3), velocity,’png’);

hold on

figure(4)

xlabel(’Normalized Pressure, P’)

ylabel(’Z’)

lgd=legend(’T_0 = 500 K’,’T_0 = 1000 K’,’T_0 = 2000 K’,’T_0 = 4000 K’);

lgd.Location=’northwest’;

lgd.FontSize=18;

set(gcf, ’Position’, get(0, ’Screensize’))

set(gca,’FontSize’,20)

saveas(figure(4), compfactor,’png’);

hold on

figure(5)

xlabel(’Normalized Pressure, P’)

ylabel(’Normalized Sound Speed, C’)

lgd=legend(’T_0 = 500 K’,’T_0 = 1000 K’,’T_0 = 2000 K’,’T_0 = 4000 K’);
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lgd.Location=’southeast’;

lgd.FontSize=18;

set(gcf, ’Position’, get(0, ’Screensize’))

set(gca,’FontSize’,20)

saveas(figure(5), soundspeed,’png’);

hold on

figure(6)

xlabel(’Normalized Pressure, P’)

ylabel(’A’)

lgd=legend(’T_0 = 500 K’,’T_0 = 1000 K’,’T_0 = 2000 K’,’T_0 = 4000 K’);

lgd.Location=’eastoutside’;

lgd.FontSize=18;

set(gcf, ’Position’, get(0, ’Screensize’))

set(gca,’FontSize’,20)

saveas(figure(6), Aname,’png’);

hold on

figure(7)

xlabel(’Normalized Pressure, P’)

ylabel(’B’)

lgd=legend(’T_0 = 500 K’,’T_0 = 1000 K’,’T_0 = 2000 K’,’T_0 = 4000 K’);

lgd.Location=’northwest’;

lgd.FontSize=18;

set(gcf, ’Position’, get(0, ’Screensize’))

set(gca,’FontSize’,20)

saveas(figure(7), Bname,’png’);

hold on

figure(8)

xlabel(’Normalized Pressure, P’)

ylabel(’(\rho u^2)_{real}/(\rho u^2 )_{ideal}’)

lgd=legend(’T_0 = 500 K’,’T_0 = 1000 K’,’T_0 = 2000 K’,’T_0 = 4000 K’);

lgd.Location=’eastoutside’;

lgd.FontSize=18;

xlim([0 .95])

set(gcf, ’Position’, get(0, ’Screensize’))

set(gca,’FontSize’,20)

saveas(figure(8), mname,’png’);

hold on

figure(9)

plot(P_m,MI_m,’--’,’LineWidth’,3)

xlabel(’Normalized Pressure, P’)

ylabel(’Mach Number, M’)

lgd=legend(’T_0 = 500 K’,’T_0 = 1000 K’,’T_0 = 2000 K’,’T_0 = 4000 K’,’Ideal Gas’);

lgd.Location=’northeast’;

lgd.FontSize=18;

set(gcf, ’Position’, get(0, ’Screensize’))

set(gca,’FontSize’,20)

saveas(figure(9), Machn,’png’);

hold on

figure(10)
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plot(P_m,rhor_m,’--’,’LineWidth’,3)

xlabel(’Normalized Pressure, P’)

ylabel(’Normalized Density, $\frac{\rho}{\rho_0}$’,’interpreter’,’latex’)

lgd=legend(’P0=1 MPa’,’P0=3 MPa’,’P0=5 MPa’,’P0= 10 MPa’,’P0= 20 MPa’,’P0= 50 MPa’,’Ideal Gas’);

lgd.Location=’southeast’;

lgd.FontSize=18;

set(gcf, ’Position’, get(0, ’Screensize’))

set(gca,’FontSize’,20)

saveas(figure(10), rhoname,’png’);

hold on

close all

end

beep

C.2 Normal Shock using Method 1

This is the code used to calculate the normal shock given a value for upstream conditions

T and P . Once the calculation is finished, both upstream and downstream conditions are

stored in a text file to be plotted with a different script:

clc

clear

clear figure

close all

format long

%% Version 99 For use in the normal shock calc via ratio not a specific

% point in the nozzle

count=1;

Cp=1039.3; % J/kg/K

R=8134;

tic;

for P1=[1 3 5 10 20 50]*1e6; % Pascals

for T1=[500 1000]; %Kelvin

fprintf(’Temperature = %4i \n’,T1)

fprintf(’Pressure = %3.1e \n’,P1)

bar= P1*(1e-5);

Tci=[154.6 126.2];

Pci=[5050e3 3390e3];

MWi=[32 28];

gami=[1.4 1.4];

Xi=[0.20 .8];

MW=MWi(1)*Xi(1)+MWi(2)*Xi(2);
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if sum(Xi)~=1

disp(’Mole Fraction Error’)

return

end

wi=[0.022 0.04];

Si=0.48508 + 1.5517.*wi-0.15613.*wi.^2;

kij=[0,-.00978; ...

-.00978,0];

m=0;

Rspec=0;

gamma=0;

for i=1:length(Xi)

m=m+MWi(i)*Xi(i);

Rspec=Rspec + R*Xi(i);

gamma=gamma+gami(i)/MWi(i)*MWi(i)*Xi(i);

end

Rspec=Rspec/m;

%% Calculate Cubic Equation

[da_dT ahat A bhat B]=attraction(Si(1),Si(2),Xi(1),Xi(2),Tci(1),Tci(2),...

Pci(1),Pci(2),T1,P1,kij(2));

N_1=-1;

N_2=A-B-B^2;

N_3=-A*B;

Z1=cardano(N_1,N_2,N_3);

h1=entropy(Z1,da_dT,ahat,bhat,MW,B,Cp,T1);

rho1=P1/T1/Rspec/Z1;

%already have T1, and P1, so missing u1 and all other downstream conditions

%being loop with Tr Value

Pr=1.0001; %to initiliaze variable, educated guess

counterT=0;

err=0.5;

errnm1=1e20;

format short

for Tr=1:0.01:10

counterT=counterT+1;

T2=Tr*T1;

disp(Tr)

%% Guess Pr

qP2=1;

while qP2==1

P2=Pr*P1;

[da_dT2 ahat2 A2 bhat2 B2]=attraction(Si(1),Si(2),Xi(1),Xi(2),Tci(1),Tci(2),...

Pci(1),Pci(2),T2,P2,kij(2));

N_1=-1;

N_2=A2-B2-B2^2;

N_3=-A2*B2;
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Z2=cardano(N_1,N_2,N_3);

rho2=P2/Rspec/Z2/T2;

h2=entropy(Z2,da_dT2,ahat2,bhat2,MW,B2,Cp,T2);

u1=sqrt((P2-P1)/rho1/(1-rho1/rho2));

u2=rho1/rho2*u1;

H1=h1+u1^2/2;

H2=h2+u2^2/2;

errcheck=abs(H2-H1);

if (errcheck<=err) && (P2>P1);

qP2=0;

else

% figure out if the error in increasing or decreasing and then

%adjust accordingly

%if total ENTHALPY_2 is greater than total ENTHALPY_1, then the Pr

%assumed is too big.

if H2>H1

Pr=Pr+.000001;

else

Pr=Pr-.000001;

end

%reasign error of previous case

end %end of error check

end %end of while loop for Pr

% disp(rho2/rho1)

% disp(P2/P1)

P2_m(counterT)=P2;

rho2_m(counterT)=rho2;

h2_m(counterT)=h2;

T2_m(counterT)=T2;

u1_m(counterT)=u1;

u2_m(counterT)=u2;

end %end of looper for Tr

rhor_m=rho2_m./rho1;

Pr_m=P2_m./P1;

Tr_m=T2_m./T1;

%% Plot Figures

filename=strcat([’data_information_m’ num2str(P1/(1e6)) ’_’ num2str(T1) ’.txt’],0);

fileID = fopen(filename,’w’);

for i=1:length(P2_m)

fprintf(fileID,’%9.7f %9.7f %9.7f %9.7f %9.7f %9.7f %9.7f %9.7f %9.7f %9.7f \n’,P2_m(i),...

rho2_m(i), h2_m(i),T2_m(i),u2_m(i),P1, rho1, T1, h1, u1_m(i));

end

fclose(fileID);
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end %% End Loop here for T1 values

end % End loop for pressure

toc

C.3 Functions

function [da_dT ahat A bhat B]=attraction(S1,S2,X1,X2,Tc1,Tc2,Pc1,Pc2,T,P,kij)

R=8134;

a1=0.42748*(Tc1^2)/Pc1*(1+S1*(1-sqrt(T/Tc1)))^2;

a2=0.42748*(Tc2^2)/Pc2*(1+S2*(1-sqrt(T/Tc2)))^2;

ahat=R^2*(a1*X1^2+a2*X2^2+2*sqrt(a1*a2)*(1-kij)*X1*X2);

da1_dT=-0.42748*(Tc1)^1.5/Pc1*S1*(1+S1*(1-sqrt(T/Tc1)))/sqrt(T)*R^2;

da2_dT=-0.42748*(Tc2)^1.5/Pc2*S2*(1+S2*(1-sqrt(T/Tc2)))/sqrt(T)*R^2;

da_dT=X1^2*da1_dT + X2^2*da2_dT+X1*X2*(a1/a2*da2_dT+a2/a1*da1_dT) ;

b1=0.08664*R*Tc1/Pc1;

b2=0.08664*R*Tc2/Pc2;

bhat=X1*b1+X2*b2;

B=bhat*P/T/R;

A=ahat*P/(R*T)^2;

end

function cardan=cardano(N_1,N_2,N_3)

p=N_2 - (N_1^2)/3;

q=+N_3 + (2*N_1^3 - 9*N_1*N_2)/27;

if q^2/4 + p^3/27<=0

u=nthroot((q/2)+sqrt(abs(q^2/4 + p^3/27)),3);

else

u=nthroot(real(q/2+sqrt(q^2/4 + p^3/27)),3);

end

omega= -1/2 + sqrt(3)/2 *i;

sigma=u;

epsilon=p/3/sigma;

% format long

root_1=epsilon-sigma-N_1/3;

root_2=epsilon*omega^2-sigma*omega-N_1/3;

root_3=epsilon*omega-sigma*omega^2-N_1/3;

cardan=root_1;

end
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function entrop=entropy(Z,da_dT,a,b,MW,B,Cp,T)

R=8134;

entrop=Cp*T+1/MW*(R*T*(Z-1)+ (T*da_dT-a)/b*log(1+B/Z));

end
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D Gas Results

This appendix displays the real-gas calculation that was demonstrated in the results

section, but utilizing different species of gases.

D.1 Nitrogen, N2

D.1.1 Temperature Results

(a) (b)

(c) (d)

Figure 147: a) 500 K; b) 1000 K; c) 2000 K; d) 4000 K
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D.1.2 Density Results

(a) (b)

(c) (d)

Figure 148: a) 500 K; b) 1000 K; c) 2000 K; d) 4000 K
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D.1.3 Compressibility Factor Z Results

(a) (b)

(c) (d)

Figure 149: a) 500 K; b) 1000 K; c) 2000 K; d) 4000 K
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D.1.4 A Results

(a) (b)

(c) (d)

Figure 150: a) 500 K; b) 1000 K; c) 2000 K; d) 4000 K
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D.1.5 B Results

(a) (b)

(c) (d)

Figure 151: a) 500 K; b) 1000 K; c) 2000 K; d) 4000 K
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D.1.6 Sound Speed Results

(a) (b)

(c) (d)

Figure 152: a) 500 K; b) 1000 K; c) 2000 K; d) 4000 K
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D.1.7 Velocity Results

(a) (b)

(c) (d)

Figure 153: a) 500 K; b) 1000 K; c) 2000 K; d) 4000 K
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D.1.8 Mach Number Results

(a) (b)

(c) (d)

Figure 154: a) 500 K; b) 1000 K; c) 2000 K; d) 4000 K
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D.2 Oxygen, O2

D.2.1 Temperature Results

(a) (b)

(c) (d)

Figure 155: a) 500 K; b) 1000 K; c) 2000 K; d) 4000 K
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D.2.2 Density Results

(a) (b)

(c) (d)

Figure 156: a) 500 K; b) 1000 K; c) 2000 K; d) 4000 K
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D.2.3 Compressibility Factor Z Results

(a) (b)

(c) (d)

Figure 157: a) 500 K; b) 1000 K; c) 2000 K; d) 4000 K
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D.2.4 A Results

(a) (b)

(c) (d)

Figure 158: a) 500 K; b) 1000 K; c) 2000 K; d) 4000 K
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D.2.5 B Results

(a) (b)

(c) (d)

Figure 159: a) 500 K; b) 1000 K; c) 2000 K; d) 4000 K
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D.2.6 Sound Speed Results

(a) (b)

(c) (d)

Figure 160: a) 500 K; b) 1000 K; c) 2000 K; d) 4000 K
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D.2.7 Velocity Results

(a) (b)

(c) (d)

Figure 161: a) 500 K; b) 1000 K; c) 2000 K; d) 4000 K
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D.2.8 Mach Number Results

(a) (b)

(c) (d)

Figure 162: a) 500 K; b) 1000 K; c) 2000 K; d) 4000 K
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D.3 Argon, Ar

D.3.1 Temperature Results

(a) (b)

(c) (d)

Figure 163: a) 500 K; b) 1000 K; c) 2000 K; d) 4000 K
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D.3.2 Density Results

(a) (b)

(c) (d)

Figure 164: a) 500 K; b) 1000 K; c) 2000 K; d) 4000 K
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D.3.3 Compressibility Factor Z Results

(a) (b)

(c) (d)

Figure 165: a) 500 K; b) 1000 K; c) 2000 K; d) 4000 K
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D.3.4 A Results

(a) (b)

(c) (d)

Figure 166: a) 500 K; b) 1000 K; c) 2000 K; d) 4000 K
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D.3.5 B Results

(a) (b)

(c) (d)

Figure 167: a) 500 K; b) 1000 K; c) 2000 K; d) 4000 K

167



D.3.6 Sound Speed Results

(a) (b)

(c) (d)

Figure 168: a) 500 K; b) 1000 K; c) 2000 K; d) 4000 K
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D.3.7 Velocity Results

(a) (b)

(c) (d)

Figure 169: a) 500 K; b) 1000 K; c) 2000 K; d) 4000 K
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D.3.8 Mach Number Results

(a) (b)

(c) (d)

Figure 170: a) 500 K; b) 1000 K; c) 2000 K; d) 4000 K
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