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Low-q resonances, transport barriers, and secondary electrostatic
convective cells

C. J. McDevitt and P. H. Diamond
Center for Astrophysics and Space Sciences and Department of Physics,
University of California at San Diego, La Jolla, California 92093-0424, USA

!Received 7 August 2007; accepted 18 September 2007; published online 16 November 2007"

Recent experimental observations have suggested key characteristics of internal transport barrier
!ITB" formation near low-q surfaces in off-axis minimum-q !OAMq" discharges. These
observations identify mean profile flattening localized to the low-q surface as a transition precursor
in the absence of observable magnetic field perturbations. This observation suggests an electrostatic
model of ITB formation which accounts for strong transport in the immediate vicinity of the low-
q surface, as well as the formation of an ITB nearby the surface. Here, a low-m electrostatic
convective cell driven by modulational instability of the background drift wave turbulence is
discussed in the context of ITB formation near low-q resonances in OAMq discharges. Unlike pure
m=n=0 zonal flows, convective cells are capable of intense mixing localized around low-q resonant
surfaces, thus relaxing !T and !n profiles at the k ·B=0 resonance. However, nearby, but off the
low-q resonant surface the magnitude of convective cell shear is maximal, providing an effective
means of triggering a transport barrier there. Field line bending coupled with collisional viscosity
are found to strongly damp the intensity of the vortical flows except in the case of weak magnetic
shear. Furthermore, collisionless nonlinear saturation mechanisms such as nonlinear wave trapping
are largely circumvented due to the strong mixing of the convective cell. This suggests that low-m
convective cells may play a key role in the regulation of turbulent transport near low-q resonances
for OAMq discharges. © 2007 American Institute of Physics. #DOI: 10.1063/1.2806327$

I. INTRODUCTION

A detailed theoretical understanding of the physical
mechanism triggering internal transport barrier formation
near low-q resonant surfaces remains elusive. This topic is
particularly relevant, as the power input required for induc-
ing an internal transport barrier depends sensitively on the
mean current distribution and the presence of integer q
surfaces. Note that a standard paradigm often employed
to describe transport barrier formation—Reynolds stress
driven shear flow inducing a local steepening of the pressure
gradient, thus triggering a transport bifurcation via equilib-
rium E!B flow shear—may not be sufficient, since this
phenomenology by itself does not uniquely specify the
spatial location of the transport barrier. Thus, a necessary
component of any theory of ITB formation must be to
link the ITB triggering mechanism to the presence of
the low-q surface. Many candidate mechanisms have been
proposed. These include, but are not limited to !see Ref. 1
for a review" magnetic islands creating local, sharp gradients
in profiles,2 sheared electric fields responding to magnetic
topology changes or energetic particle dynamics,3 or
“rarefaction” of resonant surfaces and its effect on
global !i.e., ballooning" modes4,5 !also, see Ref. 6 for a
discussion of parallel velocity affects". However, in light
of recent experimental observations,7 a major challenge to
any model of ITB formation at low-q resonances is the need
to simultaneously explain all of the experimental observa-
tions:

a" the possibility of a purely electrostatic trigger mecha-
nism, since magnetic perturbations are not observed in
some cases

b" a region of profile flattening !i.e., “corrugation”" at the
resonant surface, which suggests strong, but localized,
mixing or transport in that region

c" the appearance of a transport barrier, due to strong E
!B shear flow, in the region immediately nearby the
low-q resonance !sketched in Fig. 1".

As a means of explaining the experimental observations !a"–
!c", detailed gyrokinetic simulations8 have been performed to
support the hypothesis of zonal flows being generated near
“gaps” in the density of rational surfaces localized in the
vicinity of low-q resonances. However, any ITB theory
based on zonal flow formation alone is inherently unable to
satisfy observations !b" and !c". In particular, a self-
consistent description of transport near low-q surfaces re-
quires the simultaneous evolution of both the Reynolds stress
driven shear flows, and the underlying microturbulence in-
tensity profile. This suggests that a critical element linking
shear flows to low-q surfaces is the spatial profile of the
turbulence intensity and its response to the appearance of a
low-q surface. We note that considering the numerous stud-
ies of complex nonlinear spatial dynamics of drift wave tur-
bulence, considerations of the linear properties of the micro-
turbulence near a low-q surface are not sufficient to
determine its saturated nonlinear structure. Furthermore, ob-
servations !b" and !c" can be seen to be compatible, since
strong localized mixing can induce the formation of E!B
shear flows in the layer where !P and !n steepen immedi-
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ately adjacent to the mixing zone.9 In addition, Reynolds
stress driven shear flows are necessarily strongest in regions
of large fluctuation intensity gradient. Considered together,
this further reinforces the necessity of understanding how
low-q resonances “structure” both the turbulence intensity
and the shear flow profiles. For example, a local peak in the
intensity profile at the resonant-q surface could lead to the
formation of a dipolar shear layer around the resonant-q sur-
face, as well as driving localized mixing at the resonant
surface.10 Together, these could steepen the profiles immedi-
ately adjacent to the surface.

An equally important element in describing transport
near low-q surfaces, is the structure of the shear flow profile.
In particular, while Reynolds stress driven axisymmetric
shear flows, coupled with a description of the microturbu-
lence dynamics, presents a possible route toward a descrip-
tion of transport near low-q surfaces, a more natural and
direct approach is to instead consider the impact of weakly
nonaxisymmetric shear flows. Indeed the breaking of axi-
symmetry by a large scale shear flow has the advantage of
introducing both local profile relaxation via the intrinsic mix-
ing of the flow, as well as introducing strong shear flows in
the adjacent regions. Furthermore, since nonaxisymmetric
shear flows are strongly inhibited by magnetic shear, this
mechanism would tightly link their appearance to regions of
weak magnetic shear, thus providing a simple explanation for
why ITBs are often observed to form in OAMq profiles,
which typically have weak magnetic shear.

The specific physical mechanism which we propose is a
low-m secondary cell, driven by nonlocal transfer of energy
form high-k, radially co-located drift wave turbulence. This

structure is a finite m, n analog of the zonal flow !which has
m=n=0", and is somewhat similar in concept to the idea
of a “convective cell” originally proposed by Dawson and
Sagdeev.11,12 These secondary cells are strongly localized
near resonant surfaces, and damped by friction !as are zonal
flows", field line bending, viscosity, Landau resonance, etc.
In normal shear discharges they usually have negligibly
small width, but become broader and stronger in regimes of
weak magnetic shear, which are characteristic of the regimes
of OAMq plasmas we consider. In contrast to zonal flows,
convective cells combine both strong mixing at the resonant
surface and the generation of shear flows nearby, thus con-
stituting a simple mechanism for satisfying critical elements
of the above observations.

In the following, a simple dynamical model describing
the self-consistent evolution of a low-m secondary convec-
tive cell driven by drift wave turbulence is developed and
analyzed. The paper is organized as follows: Sec. II intro-
duces the model equations. In Sec. III the cell excitation
criterion is derived. Section IV discusses nonlinear properties
of the drift wave-convective cell system. Section V presents
a simplified transport model, and Sec. VI presents the con-
clusions and a discussion of future work.

II. BASIC EQUATIONS

Similar to zonal flows, secondary convective cells are a
mesoscale phenomena, i.e., they evolve on larger !slower"
spatial !temporal" scales compared to the microscopic scales,
but smaller !faster" in comparison to those on which the
equilibrium profiles vary. This scale separation, allows the
description of the system to be separated into two elements,
namely,

a" a dynamical model of the large scales which incorpo-
rates stresses induced by small scales,

b" a model of the turbulence and how it responds to large
scale cellular flow.

In the following, a description of both the large and small
scale models are presented. Emphasis is placed on clearly
delineating the regime in which convective cells are most
likely to be excited, as well as on the critical physical ele-
ments which determine their evolution.

A. Dynamical model of mean field evolution

Here we are interested in deriving an expression describ-
ing the evolution of the large scale mean flow in the presence
of a background of ambient drift wave turbulence. The gy-
rokinetic equation for the total distribution function of ion
gyrocenters is given by13

$ f i
tot

$t
+ Ẋ ·

$ f i
tot

$X
+ U̇

$ f i
tot

$U
= C!f i

tot" , !1"

where

FIG. 1. Sketch of pressure profile in the presence of the convective mode.
The broken line corresponds to the original pressure profile and the solid
line corresponds to the corrugated profile.
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Ẋ = U%b̂ +
&B!'"

B
( + vd +

c

B
b̂ ! !&#'", !2"

U̇ = −
e

mic

$&A)'"

$t
−

e

mi
%b̂ +

&B!'"

B
( · !&#'"

−
1
mi
%b̂ +

&B!'"

B
( · !!$%ci" −

c

B
Ub̂

! !b̂ · !b̂" · !&#'", !3"

vd = b̂ ! % $

mi
! ln B + U2 b̂ · !b̂

%ci
( .

Here C!f" is the gyrokinetic collision operator, $
*!miv!

2 " / !2%ci", &¯'"*!2&"−1+0
2&d"!¯", #='

− !e /c"A ·v!, and ', A, and B! are perturbed quantities.
Equation !2" contains the parallel velocity along a general
perturbed magnetic field, drifts due to generalized magnetic
geometry, and the E!B drift, with finite ( corrections.
Equation !3" includes both the electrostatic and inductive
component of the parallel electric field and the mirror force.
Also, the last term in Eq. !3" is necessary in order to cancel
the finite divergence of the E!B drift in generalized geom-
etry, so that phase space volume is conserved. Finally, we
note that the polarization drift appears via the transformation
from gyrocenter coordinates to particle coordinates.

The ordering used is similar to the standard gyrokinetic
ordering, i.e.,

$t

%ce
,

f

F0
,

e'

Te
, ) ,

where )=*i /L0 is the gyrokinetic expansion parameter, and
L0 is the smallest equilibrium scale length. In this analysis
we are primarily concerned with considering magnetohydro-
dynamic !MHD" stable, low-q surfaces for which tearing
modes, and other electromagnetic instabilities are not
present. Thus, we anticipate weak electromagnetic fluctua-
tions, and it is therefore convenient to take the low ( limit
for which (,). Thus, we are left with the remaining param-
eters ordered as

A)

B*i
,

A!

B*i
, (

*i

L0
, )2.

Note that the low ( ordering utilized here, will likely be
violated after the formation of the transport barrier, however
here our primary interest is understanding the triggering
mechanism for the ITB. Applying this ordering procedure,
evaluating the gyroaverages, and writing the distribution
function as f i

tot=F0i+ f i, where F0i is the equilibrium piece
!assumed to be Maxwellian", and f i is a fluctuating quantity,
Eq. !1" yields the expression

$ f i

$t
+ -Ub̂ +

c

B
b̂ ! J0!+" ! ' + vd. · !f i

= −
c

B
b̂ ! J0!+" ! ' · !F0i + - e

mi
b̂ +

c

B
Ub̂

!!b̂ · !"b̂. · J0!+" ! '
$F0i

$U
+ C!f i" . !4"

It is convenient at this point to separate the fields into a
slowly evolving mean field component as well as a rapidly
fluctuating small scale component !whose evolution is de-
scribed in the following section". Defining #= #̄+ #̃, where #̄

and #̃ represent the slow and rapidly varying portions, re-
spectively, and averaging Eq. !4" over the fast scales defined
as &¯'= !XT"−1+t

t+T+x
x+Xdt!dx!!¯", where x is a radial vari-

able, and X and T correspond, respectively, to mesolength
and time scales, yields

$ f̄ i

$t
+ /Ub̂ + vd0 · ! f̄ i

= −
c

B
b̂ ! !'̄ · J0!+" ! F0i + - e

mi
b̂ +

c

B
U

!b̂b̂ · !b̂. · J0!+" ! '̄
$F0i

$U

− 1 c

B
b̂ ! J0!+" ! '̃ · ! f̃ i2 + C!f i" . !5"

Here ! ln #̄,! ln #̃, such that the mean field nonlinearity is
subdominant to the fluctuation nonlinearity. This approxima-
tion, while valid for relatively weak mean flows, needs to be
re-examined for the case of intense mean flows in which
tertiary instabilities may occur. Also note that for the case of
convective cells, the mean field nonlinearity requires some-
what more careful attention than for the case of zonal flows.
For zonal flows, the mean field nonlinearity is strictly a sink
of free energy, i.e., any tertiary instability necessarily results
in the break up of the zonal flow. However, for the case of
convective cells, for which m%0, tertiary instability of a
zonal flow, may in fact act as a source of free energy for the
convective cell. This introduces the possibility of two
mechanisms of excitation of convective cells:14 indirect ex-
citation via Kelvin-Helmholtz instability of zonal flows, or
direct excitation via modulational instability of drift wave
turbulence. Here we focus on the latter, and leave the former
for future analysis.

1. Vorticity equation

Applying the integral 2&+dUd$!%ci /mi" to Eq. !5", and
noting the spatial dependence of the Jacobian, yields an
equation for the evolution of the density of gyrocenters given
by
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$N̄i

$t
+ ! · !b̂V̄)i" +

Tic

eB
b̂ ! ! ln B · !P̄!i +

Tic

eB
b̂

! !b̂ · !"b̂ · !P̄)i =
c

B
!b̂ ! ! ln N0" · !!1 − -ib"

!e−b'̄ −
c

B
b̂ ! ln B · !!1 − b"

!e−b'̄ −
c

B
b̂ ! !b̂ · !"b̂ · !

!e−b'̄ −
c

B
&b̂ ! !!1 − b"

!e−b'̃ · !Ñi' +
c

B
&b̂ ! !b

!e−b'̃ · !P̃!i' , !6"

where b=k!
2 *i

2, -i*Ln /LT, LT, and Ln are the ion tempera-
ture and density gradients, respectively. Note that a rigorous
treatment of the gyrokinetic collision operator in generalized
geometry, including full neoclassical effects is currently un-
available. Since a detailed treatment of the gyrokinetic colli-
sion operator is not the focus of this analysis, its contribu-
tions to the vorticity equation will be temporarily suppressed
for simplicity.

At this point it is necessary to transform from gyrocenter
moments into particle fluid moments. In order to obtain a
simple expression for the evolution of the particle density it
is convenient to exploit the smallness of !k!*s"2 for the mean
fields. Keeping terms up to second order in !k!*s"2, yields
the expressions13

Ni = ni + b%p!i + 2
e

Ti
'( , !7"

V)i = !1 + b"v)i, !8"

P)i = p)i + b%p)i + p!i − ni + 2
e'

Ti
( , !9"

P!i = p!i + 2b%2p!i − ni + 2
e'

Ti
( . !10"

Substitution of Eqs. !7"–!10" into Eq. !6" and expanding in b,
yields a reduced equation for the ion density

$ n̄i

$t
+ ! · !b̂v̄)i" + %d!p̄!i + %d.p̄)i −

1
2

*i
2 $

$t
!!

2 p̄!i

− *i
2 $

$t
!!

2 e'̄

Ti
−

1
2

*i
2 ! · !b̂!!

2 v̄)i"

= %d
*e'̄

Ti
−

1
2

*i
2%d

*!1 + -i"!!
2 e'̄

Ti
− !%d! + %d."

e'̄

Ti

−
c

B
&b̂ ! !'̃ · !ñi' −

c

B
*i

21b̂ ! !'̃ · !!!
2 e'̃

Ti
2

−
1
2

c

B
*i

2&b̂ ! !'̃ · !!!
2 p̃!i'

−
1
2

c

B
*i

2&b̂ ! !!!
2 '̃ · !p̃!i' , !11"

where p!i→p!i / p!oi, p)i→p)i / p)0i, ni→ni /n0, and the drifts
are defined as

%d
* = vthi*ib̂ ! ! ln n0 · ! ,

%d. = vthi*ib̂ ! !b̂ · !"b̂ · ! ,

%d! = vthi*ib̂ ! ! ln B · ! ,

and vthi*3Ti /mi. Similarly, the electrons are described by
the nonlinear drift kinetic equation

4 $

$t
+ %vd +

c

B
b̂ ! !' + Ub̂( · !5 fe

tot

+ % e

me
b̂ · !' − $

%ce

me
b̂ · ! ln B

−
c

B
Ub̂ ! !b̂ · !b̂" · !'( $ fe

tot

$U
= C!fe

tot" . !12"

A similar calculation gives the evolution equation for the
density of electrons as

$ n̄e

$t
+ ! · !b̂v̄)e" + %d!p̄!e + %d.p̄)e

= %d
*e'̄

Ti
− !%d! + %d."

e'̄

Ti
−

c

B
&b̂ ! !'̃ · !ñe' , !13"

where p̄)e→ p̄)e / p0e and p̄!e→ p̄!e / p0e. Taking the difference
between Eqs. !11" and !13", applying Eq. !15", and utilizing
quasineutrality then yields

$

$t
!!

2 e'̄

Ti
= − vA

e

Ti
b̂ · !!!

2 Ā) −
%d!

*i
2 p̄! −

%d.

*i
2 p̄)

−
1
2

%d
*!1 + -i"!!

2 e'̄

Ti
−

1
2

b̂ · !!!
2 v̄)i

−
c

B
1b̂ ! !'̃ · !!!

2 e'̃

Ti
2 −

1
2

$

$t
!!

2 p̄!i

−
1
2

c

B
&b̂ ! !'̃ · !!!

2 p̃!i' +
1
2

c

B
&b̂

! !!!
2 '̃ · !p̃!i' , !14"

where p! and p) represent the total perpendicular and paral-
lel pressure, A)→ !vA /c"A), the ! · b̂=−b̂ ·! ln B terms are
neglected, and Ampere’s law, given by

v)i − v)e = −
c

4&n0e
!!

2 A) , !15"

has been used to eliminate the parallel velocity components.
Equation !14" provides a description of vorticity evolution
appropriate for mesoscale phenomena.
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2. Ohm’s law

In contrast to zonal flows, convective cells, while poloi-
dally extended, have a weak but finite radial component of
velocity. This weak spatial asymmetry necessitates the inclu-
sion of resistivity in order to allow the plasma to diffuse
through the magnetic field. Hence, in this section it is con-
venient to model the role of collisions via the explicit inclu-
sion of parallel resistivity.

Taking the first order moment of Eq. !12", yields the
expression

vAb̂ · !%p̄)e/ −
e'̄

Ti
( = −

e

Ti
-!!

2 Ā) , !16"

where -*-) is the parallel collisional resistivity, and /
*Te /Ti. Here we consider the evolution of mesoscale phe-
nomena !large in comparison to the electron skin depth",
such that electron inertia may be ignored. We have also again
neglected terms proportional to b̂ ·! ln B. This expression for
Ohm’s law interpolates between two well known regimes.
For large scale dynamics in which finite Larmor corrections
may be neglected, Eq. !16" reduces to vAb̂ ·!'̄=-!!

2 Ā),
which corresponds to the electrostatic limit of the resistive
MHD Ohm’s law. Also, for scales in which k!*s61, in the
low collisionality limit, and in the absence of temperature
fluctuations, Eq. !16" reduces to the adiabatic response limit
n̄ /n0=e'̄ /Te. Here, however, since convective cells corre-
spond to mesoscale phenomena, and collisions play an essen-
tial role in allowing the convective cell to diffuse through the
magnetic field, we are interested in considering the more
generalized form given by Eq. !16".

3. Pressure and ion parallel velocity evolution

In order to close the system given by Eqs. !14" and !16",
it is necessary to derive expressions for the evolution of the
electron and ion pressure, as well as the parallel ion velocity.
In the following, since we consider the limit of weak mag-
netic inhomogeneity and b,1, we will only keep the lowest
order contributions. Thus, the perpendicular and parallel ion
pressure equations can be written as

$p!i

$t
+ b̂ · !v)i = %d

*!1 + -i"
e'

Ti
−

c

B
b̂ ! !' · !p!i, !17"

$p)i

$t
+ 3b̂ · !v)i = %d

*!1 + -i"
e'

Ti
−

c

B
b̂ ! !' · !p)i, !18"

where again collisions have been temporarily suppressed.
Similarly for electrons

$p!e

$t
+ b̂ · !v)e = %d

*!1 + -i"/−1e'

Ti
−

c

B
b̂ ! !' · !p!e,

!19"

$p)e

$t
+ 3b̂ · !v)e = %d

*!1 + -i"/−1e'

Ti
−

c

B
b̂ ! !' · !p)e.

!20"

Also, an equation for the ion parallel velocity can be easily
derived by taking the parallel velocity moment of Eq. !5",

$v)i

$t
= − vthi

2 b̂ · !% e'

Ti
+ p)i( −

c

B
b̂ ! !' · !v)i. !21"

Equations !14" and !16"–!21" form a closed set of equations
describing the evolution of the convective cell. In the next
section, these equations will be simplified into a single equa-
tion, providing a simple and intuitive description of the large
scale mean flow.

4. Equation for convective cell evolution

Here we seek to simplify the system given by Eqs. !14"
and !16"–!21". Equation !14" can be simplified by taking the
Laplacian of Eq. !17",

$

$t
!!

2 p!i + b̂ · !!!
2 v)i

= %d
*!1 + -i"!!

2 e'

Ti
+

c

B
!b̂ ! !!!

2 '" · !p!i

−
c

B
!b̂ ! !'" · !!!

2 p!i

− 2
c

B
! · #!b̂ ! !!'" · !p!i$ , !22"

where we have used the approximation

!!
2 #!b̂ ! !'" · !p!i$

6 − !b̂ ! !!!
2 '" · !p!i + !b̂ ! !'" · !!!

2 p!i

+ 2 ! · #!b̂ ! !!'" · !p!i$ . !23"

Performing an average over the rapid spatial and temporal
scales on Eq. !22", and inserting the result into Eq. !14"
yields

$

$t
!!

2 e'̄

Ti
=

vA
2

-
!b̂ · !"2%p̄)e/ −

e'̄

Ti
( −

%d!

*i
2 p̄!

−
%d.

*i
2 p̄) − %d

*!1 + -i"!!
2 e'̄

Ti

−
c

B
1b̂ ! !'̃ · !!!

2 e'̃

Ti
2 , !24"

where the last term on the right-hand side of Eq. !22" van-
ishes due to the properties of the averaging procedure, and
Eq. !16" has been used to eliminate the !!

2 Ā! term. In order
to further simplify Eq. !24", we calculate the linear response
of Eqs. !18" and !20", to obtain

p̄)e = − 3i
b̂ · !

%
v̄)e + i

%d
*

%
!1 + -i"/−1e'̄

Ti
, !25"
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p̄)i = − 3i
b̂ · !

%
v̄)i + i

%d
*

%
!1 + -i"

e'̄

Ti
. !26"

v̄)e can be obtained from Eqs. !15" and !16", and is

v̄)e = v̄)i −
vA

2*i
2

-
b̂ · !%/p̄)e −

e'̄

Ti
( . !27"

Similarly for v̄)i, we find

v̄)i = − i
vthi

2

%
b̂ · !% e'̄

Ti
+ p̄)i( . !28"

Utilizing Eq. !26", Eq. !28" can be written in terms of '̄,
yielding

v̄)i = −
ivthi

2

%
41 +

3vthi
2

%2 !b̂ · !"25−1

b̂ ·

!-1 + i
%d

*

%
!1 + -i". e'̄

Ti
. !29"

The second term in the denominator, can be estimated as

3vthi
2

%2 !b̂ · !"2 , m2%%ci

%
(2%*i

a
(2%0x

Ls
(2

,

where m is the poloidal mode number of the cell, a is the
minor radius, and 0x is the radial extent of the cell. For
realistic parameters, in regimes of weak magnetic shear, this
term is negligible. Thus, Eq. !29" may be reduced to

v̄)i = −
ivthi

2

%
b̂ · !41 + i

%d
*

%
!1 + -i"5 e'̄

Ti
. !30"

Similarly, v̄)e can be written as

v̄)e = 41 − 3i/
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where the second term in the denominator can be estimated
as

3/
vA

2*i
2

-%
!b̂ · !"2 , m2/S%%ci

%
(%*i

a
(3

(i
1/2%0x

Ls
(2

.

Here (i is evaluated using the ion temperature, and S is the
Lundquist number defined as S*!vAa /-". This term is neg-
ligible for realistic parameters, so Eq. !31" can be approxi-
mated as

v̄)e = b̂ · !-vA
2*i

2

-
41 − i

%d
*

%
!1 + -i"5

− i
vthi

2

%
41 + i

%d
*

%
!1 + -i"5. e'̄

Ti
. !32"

Hence, from Eq. !25" the electron parallel pressure can be
written as

p̄)e = − 3i
vA

2*i
2

-%
!b̂ · !"241 − i%vthi

vA
(2 -

%*i
25 e'̄

Ti

+ i
%d

*

%
!1 + -i"/−1e'̄

Ti
, !33"

where we have dropped the i!%e
* /%"!1+-i" terms inside the

brackets in Eq. !32", since they are smaller than the second
term in Eq. !33" by factors of 3!vAk)*i"2 / !-%" and
3vthi

2 k)
2 /%2, respectively. Employing analogous approxima-

tions for the perpendicular electron and ion pressure, Eq.
!24" can then be written as

$

$t
!!

2 '̄ = −
vA

2

- -1 − i
%d

*

%
!1 + -i"

− i
%d! + 3%d.

%
41 − 2i%vthi

vA
(2 -

%*i
25.

!!)
2'̄ − i

%d
*

%

%d. + %d!

*i
2 !1 + -i"!1 + /−1"'̄

− %d
*!1 + -i"!!

2 '̄ −
c

B
&b̂ ! !'̃ · !!!

2 '̃'

− 1d!!
2 '̄ + 2c!!

2 !!
2 '̄ , !34"

where !) * b̂ ·!, and terms fourth order in !) have been ne-
glected. The terms on the right-hand side of Eq. !34" corre-
spond to field line bending, coupling to the equilibrium pres-
sure gradient in generalized magnetic geometry, diamagnetic
drift, Reynolds stresses induced by the microturbulence, and
the last two terms correspond to generic forms for neoclas-
sical friction and classical viscosity. While corrections due to
finite Larmor radius effects and generalized magnetic geom-
etry perturb the mode structure and the growth rate of the
cell, the three critical elements within this description corre-
spond to magnetic field line bending, collisional damping,
and Reynold’s stresses. In the simplest picture, these three
elements combine to set the radial width of the mode, the
magnitude of the large scale damping, as well as the strength
of the instability drive. More explicitly, resistive field line
bending plays a dual role: acting in combination with colli-
sional viscosity as a mechanism for large scale damping, as
well as setting the radial extent of the convective cell. Both
of these properties are critical elements within the descrip-
tion, since the radial extent of the mode determines the width
over which the cell mixes and, in analogy with the drift
wave-zonal flow system, large scale damping is expected to
determine how well the cell regulates the turbulence inten-
sity. Another necessary component within our description
corresponds to the Reynolds stresses exerted by the small
scale microturbulence. This term provides the mechanism for
spectral transfer of energy from small to large scales, and is
the dominant mechanism of the cell drive.

B. Model of turbulence intensity evolution

Wave kinetics provides the simplest framework for de-
scribing the evolution of the small scales. This description
provides both easy visualization of the drift wave dynamics,
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as well as a simple mathematical framework to self-
consistently incorporate multiscale interactions. The wave
kinetic equation for drift wave turbulence is given by15

$Nk

$t
+

$

$k
!%k + v0 · k" ·

$Nk

$x
−

$

$x
!%k + v0 · k" ·

$Nk

$k

= 1kNk − 0%kNk
2, !35"

where Nk is the wave quanta population, defined by Nk
*!1+k!

2 *s
2"2Ik, Ik is a Wigner function defined as Ik

=+dqeiq·x&'̃k+q'̃−k' !where the averaging is over the fast
temporal scales", %k is the linear frequency, and vgr
=d%k /dk is the group velocity. Here, nonlocal interactions
between the large scale shear flow and the drift wave turbu-
lence are described by the advection and refraction of the
drift wave packets, corresponding to the second and third
terms, respectively, on the left-hand side of Eq. !35". The
right-hand side of Eq. !35" has the form of an effective col-
lision operator, where the first and second terms represent
growth and local self-saturation, respectively. From Eq. !35"
an expression for the evolution of the mean turbulence inten-
sity in the presence of a large scale shear flow can be easily
derived as16

$&N'
$t

+ vgrx
$&N'
$x

=
$

$kx
%Dk

$&N'
$kx

( + 1k&N' − 0%k&N'2.

!36"

The first term on the right-hand side of Eq. !36" corresponds
to k-space diffusion introduced via nonlocal interaction with
the convective cell !i.e., random shearing", and the second
term corresponds to spatial mixing of the turbulence inten-
sity profile by the convective cell. The k-space diffusion co-
efficient has the form Dk=ky

27qR!k ,q"qx
4 8 '̄q82, where the

resonance function is R!k ,q"=1k / #1k
2+ !%q−vgrxqx"2$. Here,

qx corresponds to the radial wave number of the large scale
mode, %q is the frequency of the large scale mode, and 1k is
understood to represent the drift wave self-decorrelation rate
set by the condition of quasistationary turbulence 1kNk
−0%kNk

260. Note that this broadened form of the response
function interpolates between the case of weak local interac-
tions where the response function asymptotes to R!k ,q"
→&3!%q−vgrqx", as well as the case of strong local interac-
tions in which the broadening of the resonance is significant.

C. Self-consistent model

Equations !34" and !35" provide a self-consistent de-
scription of the coupled dynamics of the drift wave-
convective cell system. Here, we are interested in formally
closing the system of equations. This can be easily done by
utilizing the expression

&b̂ ! !'̃ · !!!
2 '̃' 6 −

$2

$x27
k

kxky

!1 + *s
2k!

2 "2Nk. !37"

From Eqs. !37" and !34", one can follow the two-scale, adia-
batic closure used in Refs. 16 and 17 to derive a Fourier
transformed evolution equation for the convective cell

vA
2qy

2

-Ls
2 %1 − i

%d
*

%
(d2'q

dqx
2 = /#2c + 2T!qx"$qx

2

+ #1d − i!% − %d
*"$0qx

2'q, !38"

where the magnetic curvature terms have been dropped and

2T = cs
27

k
R!k,q"

*s
2ky

2

!1 + *s
2k!

2 "2kx
$&N'
$kx

. !39"

Here, *s=cs /%ci, cs=3Te /mi and !1+-i" has been absorbed
into %d

*. For $&N' /$kx,0 !true for all practical cases", the
turbulent viscosity will be negative, and thus correspond to a
source of free energy for the mean flow, a result familiar
from previous studies of the drift wave-zonal flow system.
Note that the inclusion of magnetic curvature would allow
the cell to couple directly to the free energy contained within
the pressure gradient, and thus admit additional unstable
roots. Here, for simplicity, we choose to focus exclusively on
unstable roots associated with modulation instability of the
drift wave turbulence, as this will allow for an uncluttered
presentation of the physics underlying the convective cell.
Finally, Eq. !38" is derived using q) =qy!x /Ls", where x=r
−rm,n, and rm,n is the m ,n rational surface.

Equations !36" and !38" constitute a closed, self-
consistent description of the dynamics of a low-m, electro-
static vortical cell evolving in the presence of drift wave
turbulence. Unlike zonal flows, the resonant finite-m convec-
tive cell drives radial transport !since ṽr%0" and also is
damped by field line bending and collisional viscosity, as
well as by friction between trapped and untrapped particles.
Thus, the convective cell is more strongly damped than the
zonal flow, which is !linearly" damped only by collisional
friction and viscosity. The width of the cell is determined by
the interplay between field line bending !i.e., proportional to
magnetic shear!" and viscosity. Thus, finite m, n convective
cells are always localized at k ·B=0 resonances and are more
damped than zonal flows, and so are usually subdominant to
zonal flows. However, in the weak shear regimes character-
istic of OAMq plasmas, they can be considerably broader
and more robust than in normal shear regimes.

III. EXCITATION CRITERION

Here, we are interested in identifying the excitation cri-
terion for the convective cell. In order to simplify the nota-
tion throughout the analysis, Eq. !39" is approximated as

82T!qx"8 6 cs
2 1k

1k
2 + !qxvgr"2 &N' 6

4DGB

1 + !4*sqx"2

&N'
NML

, !40"

where vgr /1k64ve
* /%e

*64*s, NML= !*s /Ln"2, and DGB
= !*s /Ln"cs*s. A solution to Eq. !38" can be found using a
WKB analysis. We require convergent solutions for Rqx
→4, and since the potential of Eq. !38" has a double well
structure, we apply 'q!0"=0 for odd modes, and 'q!!0"=0
for even modes. The rhs of Eq. !38" has six zeros in the
coefficient of 'q, resulting in singularities in the WKB solu-
tion. Thus, we must find a solution near these regions and
match to the surrounding WKB solutions. Performing the
asymptotic analysis yields the eigenvalue conditions for the
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odd and even modes !respectively" as !details contained in
the Appendix"

0x9
q1

q2

dqx
35!qx" = &%lo −

1
2
( , !41a"

0x9
q1

q2

dqx
35!qx" = &%le −

1
2
( + 3 , !41b"

tan 3 = −
1
32

exp4−
4
3

0x%: −
d5

dqx
:

q=q1

(1/2

q1
3/25 , !42a"

5!qx" * %1 − i
%d

*

%
(−1-%2c − 82T!qx"8

82T!0"8 (0x2qx
2

+
0x2

82T!0"8
#1d − i!% − %d

*"$.0x2qx
2. !42b"

Here, lo and le are integers 61, 0x
*#82T!0" 8-$1/6#Ls / !vAqy"$1/3, and q1 and q2 are the roots !in
the complex plane" of Eq. !42b" with 8q1 8 , 8q28. A branch cut
is made between q1 and q2, in order to ensure the kernel of
Eqs. !41a" and !41b" is single valued, and the contour of
integration is chosen to run just below this branch cut. Note
that since the real piece of 3 is negative definite, the even
mode with le=1 is always the most unstable solution. Thus,
for the remainder of this analysis we will focus exclusively
on this mode, although the general properties of other modes
would not differ significantly. At this point it is convenient to
introduce the following definitions:

N *
&N'
NML

,

2̂c *
2c

DGB
,

7 *
1
1k

#1d − i!% − %d
*"$ ,

8 *
1
8
%N − 7

2̂c
−

1
4
( +

1
16

.

Making the change of variables, z=*s
2qx

2− !1/8"!N−7
− 2̂c /4" / 2̂c, Eq. !41b" can be rewritten as

1
2
3 2c

82T!0"8%0x

*s
(3%1 − i

%d
*

%
(−1/2

!9
−zc

zc

dz3!zc − z"!zc + z"
z + 8

=
&

2
+ 3 , !43"

zc =
1
8
3%N − 7

2̂c
−

1
4
(2

−
7

2̂c
, !44"

and 88 8 9 8zc8. Evaluating the integral in Eq. !43" then yields

&

2
+ 3 =

2
3
3 2c

82T!0"8%0x

*s
(3%1 − i

%d
*

%
(−1/2

!3zc + 8-8E% 2zc

zc + 8
( − !8 − zc"K% 2zc

zc + 8
(. .

!45"

Here K and E are complete elliptical integrals of the first and
second kind, respectively.18 Expanding this expression to
first order in 2̂c, yields a recursive expression for the growth
rate of the mode

7 6 N − ; 3&

2
+ 3

1 − )
<

2/3

2c
2/3

-1/3%vAqy

Ls
(2/3%1 − i

%d
*

%
(1/3 1

1k
,

!46"

) *
3
4

"4ln%16
"
( −

N − 27

N − 7
5 ,

" *
1
4

N

!N − 7"2 2̂c.

In order to obtain a simple excitation criterion for the con-
vective cell, it is useful to neglect the %d

* dependence in the
second term in Eq. !46" !a higher order %d

* correction", then
the lowest order imaginary component of Eq. !46" yields %
6%d

*. Thus, Eq. !46" becomes

N 6
1d

1k
+ ; 3&

2
+ 3

1 − )
<

2/3

2c
2/3

-1/3%vAqy

Ls
(2/3 1

1k
. !47"

Here, since we are interested in an excitation criterion, the
growth rate has been taken to zero, and ) is defined above,
except with 7→1d /1k. The first term in Eq. !47" is the con-
tribution from scale-independent collisional damping, famil-
iar from descriptions of zonal flows, and the second term
corresponds to damping due to magnetic shear !field line
bending" and collisional viscosity. Note that although
2c /DGB"1 for all practical cases, " may still be significant
due to the factor of !N−7"2 in the denominator. This surpris-
ingly strong dependence on the collisional viscosity and field
line bending can be understood by considering the coupled
effect of these two damping mechanisms. As shown below,
stronger field line bending leads to more localized modes in
real space, so the rapid variation of the mode structure will
then enhance the contribution from collisional viscosity !note
that the anomalous viscosity possesses scale dependence!",
leading to a stronger stabilizing effect. Furthermore, since
the mode is ultimately localized by the presence of colli-
sional viscosity, it is clear that even for modest values, the
saturated turbulence intensity can be strongly affected.

A numerical solution of Eq. !45" #with %d
*=0, in order to

compare with Eq. !47"$ is plotted in Figs. 2 and 3. As can be
seen from examination of Figs. 2 and 3, or Eq. !47", for
strong magnetic shear or viscosity the cell is strongly
damped, so it plays no role in regulating turbulence levels. In
the opposite limit, the damping effects of field line bending
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and collisional viscosity are limited, thus leading to a lower
level of saturated turbulence, and an increase in cell size
!which determines the extent of cell-induced mixing", and
flow shear. Thus in this limit, the approximate scaling of the
excitation threshold of the turbulence intensity in the pres-
ence of the convective cell will roughly scale as &N' /NML

,1d /1k plus a small correction. This scaling is similar to the
results from previous drift wave-zonal flow studies. Thus,
while low-m convective cells may exist for normal q profiles,
they can be expected to be much broader and more active
!i.e., with higher flow velocities and stronger flow shear" in
regimes of weak magnetic shear. Associated fluctuation lev-
els will be concomitantly reduced in such weak shear re-
gimes, as well. This leads us to the important conclusion that
low-m convective cells are most important in regions of weak

magnetic shear, such as often exist for OAMq profiles.
Here it is useful to consider the structure and properties

of the convective cell. In real space, an approximate form of
the cell structure can be calculated by inverse Fourier trans-
forming Eq. !38". This procedure is complicated by the scale
dependence of 2T!qx", which prevents 2T!qx" from behaving
like a simple diffusion coefficient. A crude estimate can be
obtained by solving Eq. !38" !in real space" for the case of
2T!qx"62T!0"=const. The asymptotic form of the radial cell
profile is then given by

'!x" ,
1

x3/4 exp4i
2
3
% x

0x
(3/25 . !48"

A more detailed asymptotic calculation of the convective
cell potential profile is shown in Fig. 4. The width of the
cell, which sets the scale of the flat spot or corrugation
over which profiles are mixed, scales as 0x
*#82T!0" 8-$1/6#Ls / !vAqy"$1/3, and increases with Ls.

Another observation that can be made from Eq. !48" is
that, while ' decays algebraically, the strength of the flow
shear increases as 8vy! 8 ,x1/4. Thus, the magnitude of Dk in
Eq. !36" is stronger away from the rational surface, suggest-
ing that the convective cell will suppress turbulence away
from the resonant surface more strongly than it will affect
turbulence at the resonant surface. This appears consistent
with the dual observations of persistent transport or mixing
at the surface !needed for the local flat spot" along with flow
shear suppression of turbulence nearby the surface. Note that
shear suppression by both m%0 flow components and m
=0 zonal flows, has been observed in simulations.19

We also note that this mechanism has a power threshold
determined by the critical fluctuation intensity level !Ncrit"
required to drive the convective flow against damping due to
friction, line bending and viscosity, as shown in Eq. !47".
Using a simple, standard model of ITG turbulence20 to relate
heat flux to turbulence intensity, along with power balance,
yields

FIG. 2. Saturated intensity of drift wave turbulence for three values of
magnetic shear with the parameters 1d /1k=1, - /DGB=1/10, (=1/20, m
=2, and **=0.01. The solid curve corresponds to Ls /Ln=20, the broken
curve to Ls /Ln=10, and the last curve to Ls /Ln=1.

FIG. 3. Saturated intensity of drift wave turbulence for three values of
viscosity for the parameters 1d /1k=1, - /DGB=1/10, (=1/20, m=2, and
**=0.01. The solid curve corresponds to 2c /DGB=0.01, the broken curve to
2c /DGB=0.05, and the last curve to 2c /DGB=0.1.

FIG. 4. Sketch of radial eigenmode of the convective cell.
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Qcrit = − :crit
$Ti

$r
6 vthiTi-i)T

−1/2/2Ncrit, !49"

Pin , RrbQcrit , RrbvthiTi-i)T
−1/2/2Ncrit, !50"

where

Ncrit 6 7 + ; 3&

2
+ 3

1 − )
<

2/3

2c
2/3

-1/3%vAqy

Ls
(2/3 1

1k
.

Here, )T*LT /R, R is the major radius, and rb is the radius of
the barrier. The power threshold clearly increases for stron-
ger friction, and decreases for weaker magnetic shear.

IV. NONLINEAR EVOLUTION OF THE CONVECTIVE
CELL

In the above discussion, an estimate of the excitation
criterion for the destabilization of the convective cell was
presented. That analysis provided insight into the regimes in
which a convective cell is likely to be active, as well as the
scale over which it is expected to mix. Here we discuss
purely nonlinear properties of the drift wave-convective cell
system which are not easily incorporated into the quasilinear
analysis. Specifically, we focus on the role of trapping/
detrapping of wave packets !quasiparticles" as they propa-
gate in the cell field. As discussed further below, this topic is
critical as the presence of a significant population of trapped
quasiparticles can substantially impact the quasilinear analy-
sis utilized above.21

One of the utilities of the wave kinetic description is that
it allows for the simple visualization of microturbulence dy-
namics via the phase space evolution of drift wave packets.
More specifically, instability of secondary structures requires
transport of microturbulence to high-k!. Within the above
description, this transport is induced via quasilinear diffusion
of the drift wave turbulence by the large scale shear flow
!random refraction". A necessary condition for the validity of
this quasilinear description, is that the phase space trajecto-
ries of the quasiparticles be stochastic. In the limit of small
Kubo number !defined as the ratio of the autocorrelation time
of the shear flow structure to the shearing time /cc

−1=v0y! ", this
condition can be satisfied via resonance overlap in phase
space !Chirikov criterion". The resulting ray chaos induces
diffusive transport of the quasiparticles to high-k!, which
can be approximated via the k-space quasilinear diffusion
coefficient appearing in Eq. !36". Alternatively, for a tempo-
rally stationary but spatially chaotic shear flow pattern of low
amplitude !conditions under which use of the quasilinear
equation is strictly justified", diffusion in k-space follows
directly.

For the important case of finite amplitude flows in the
limit of large Kubo number !i.e., stationary shear flow struc-
tures", purely integrable orbits may form in phase space due
to the strong nonlinear modification of quasiparticle orbits.
These coherent structures are not compatible with the quasi-
linear description, since they are capable of “impeding” the
transport of quasiparticles to high-k. One particular phase
space structure which is of interest here is that of trapped

quasiparticles, which can be induced by velocity wells in the
shear flow pattern. Due to trapped quasiparticles undergoing
closed orbits in phase space, no net energy need be trans-
ferred from the trapped quasiparticle population to the large
scale shear flow. This is in contrast to the case of untrapped
quasiparticles. They are instead exposed to the global shear
flow pattern, allowing them to be transported to higher k!.
Thus, quasiparticle trapping suggests a means by which in-
tense shear flow patterns may be nonlinearly saturated.16

Our motivation in considering this topic is that in order
to understand which types of flow patterns are likely to be
dominant near low-q surfaces, is necessary to consider the
“competition” between different Reynolds stress driven flow
structures !i.e., m=0 vs finite-m". Criteria which provide in-
sight into the importance or relevance of a given flow pattern
can be divided into two categories. The first is the stability
threshold, as this criterion must necessarily be satisfied for a
particular flow pattern to be established. Thus, it provides
insight into the parameter regimes in which a specific flow
pattern is likely to be observed. In the above, we have al-
ready noted that for the case of weak magnetic shear, the
stability threshold for convective cells asymptotes to that of
zonal flows. Hence, for reversed magnetic shear configura-
tions, zonal flows have only a marginal advantage over con-
vective cells with regards to their respective excitation crite-
rion. Also, in contrast to zonal flows, the mean field
nonlinearity within the vorticity equation can act as both a
sink or a source of energy for a finite-m flow, allowing for
dual mechanisms of excitation !note that tertiary instabilities
are most important in regimes of weak magnetic shear".

Nonlinear saturation mechanisms define a second prop-
erty which yields insight into the relative importance of a
specific flow structure. This property is critical, as once a
flow pattern is excited, the efficiency of the flow in regulat-
ing the turbulence intensity will depend sensitively on its
saturation mechanism. As noted above, for the case of weak
magnetic shear, magnetic field line bending plays only a mar-
ginal role in damping convective cells, hence the collisional
saturated intensity of !m%0" convective cells is only mildly
reduced in comparison to zonal flows. To this we add that as

FIG. 5. The top figure shows a sketch of an oscillating shear profile. The
locations of the orbits of the trapped quasiparticles are indicated. The bottom
figure shows a sketch of velocity contours in the perpendicular plane, with
arrows indicating the direction of the velocity flow. The cells clearly provide
a mechanism for the quasiparticles to be transported between shear wells.
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shown below, due to the finite mixing present within a con-
vective cell !see Fig. 5" quasiparticles can be detrapped by
the large scale convection. This can easily be seen by con-
sidering that the “depth” of a shear well increases in propor-
tion to the strength of the shear flow. Hence, for the case of
a purely poloidal flow, the fraction of trapped quasiparticles
will increase as the shear flow intensifies. However, for the
case of a finite-m flow, as the strength of the shear flow
increases, both the strength of the shear wells, as well as the
efficiency of radial convective transport increase, allowing
the cell to circumvent quasiparticle trapping as a means of
nonlinear saturation.

A. Nonlinear wave trapping

Here we begin by briefly reviewing the derivation of a
simple trapping criterion for the case of m=0 flows. This
expression is useful as it allows us to determine when qua-
siparticle trapping may begin to strongly influence the sys-
tem. Throughout the analysis we will assume a stationary
spatial profile of a coherent spatially oscillating mode, for
simplicity.

A simple quasiparticle trapping criterion can be obtained
by considering the characteristics of the wave kinetic equa-
tion !WKE" #Eq. !35"$,

dx
dt

=
$

$k
!%k + k · v0" , !51"

dk
dt

= −
$

$x
!%k + k · v0" , !52"

where

%k =
ve

*ky

1 + k!
2 *s

2 .

Considering the limit of m=0, an expression for the kx tra-
jectories of a given quasiparticle can be easily derived as

dkx

dx
= − ky

c

B

1

vgrx

$2'̄

$x2 , !53"

ky = const = ky
0. !54"

Upon integration an expression for the trajectory of kx can be
written as !see Ref. 22 for a more detailed treatment"

!kx*s"2 =
#1 + !ky

!0"*s"2$#1 + !k!
!0"*s"2$

1 − !v0y/ve
*"#1 + !k!

!0"*s"2$

!-v0y

ve
* +

!kx
!0"*s"2

#1 + !k!
!0"*s"2$#1 + !ky

!0"*s"2$. , !55"

where v0y = !c /B"$ '̄ /$x, '̄ is assumed to be purely oscilla-
tory, kx

!0" and ky
!0" correspond to the value of kx and ky at

v0y!x=0", respectively #where v0y!x=0" is taken to be zero
for simplicity$, and we assume 8v0y /ve

* 8 , #1+ !k!
!0"*s"2$−1,

such that the denominator before the braces in Eq. !55" is
nonzero and positive !well satisfied in most applications". By
recognizing that only trapped quasiparticles will cross the
kx=0 plane #i.e., vgrx=−2ve

*ky
0kx*s

2 / !1+k!
2 *s

2"2, such that the

particle is reflected as kx goes through zero$, a trapping cri-
terion for a given quasiparticle can be easily derived from
Eq. !55", yielding

:v0y

ve
* : =

vy

cs

Ln

*s
9

!kx
!0"*s"2

#1 + !k!
!0"*s"2$#1 + !ky

!0"*s"2$
, !56"

where vy is the amplitude of the oscillatory shear flow. From
this expression it is clear that for regions of weak density
gradients, even shear flows which are strongly subsonic may
nonlinearly trap a significant fraction of wave packets. Fur-
thermore, note that this criterion is independent of collision-
ality, suggesting the possibility that this process may play a
strong role in the saturation of the large scale shear flows for
the case of weak or zero collisions, and thus be of interest in
a wider range of contexts.

B. Convective cell induced ray chaos

As is clear from Eqs. !51" and !52", this system pos-
sesses a Hamiltonian structure where

3%!x,y,kx,ky" = %k + v0 · k , !57"

acts as the effective Hamiltonian. As noted above, for the
axisymmetric case of qy =0, the quasiparticle orbits which
this Hamiltonian describes are particularly simple, i.e., since
ky is a constant of the motion, the contours of N
=N!x ,y ,kx ,ky" evolve in the three-dimensional space given
by !x ,y ,kx". After applying the constraint 3%!x ,y ,kx ,ky"
=const, this further restricts the contours to a two-
dimensional surface within this space. Hence, if a cross sec-
tion of the phase space is taken at constant y, the orbits of the
quasiparticles will necessarily have solutions described by
N=N#3%!x ,kx" ,ky$. However, considering the more general
case of a weakly nonaxisymmetric flow with small but finite
qy, ky will be modulated by the weak radial component of the
cell, removing one of the constants of motion. Thus, the
space in which the quasiparticle is allowed to wander is in-
creased by one dimension. For arbitrarily small values of qy
many of the surfaces on which the wave packet traversed in
the unperturbed system are likely to remain intact. However,
as qy is increased, an increasing number of these surfaces are
destroyed, leading to chaotic orbits. In the following, this
process is studied by scanning the two control parameters
8v0y 8 /ve

* and qy /qx, which correspond to the relative strength
of the shear flow pattern in comparison to the diamagnetic
drift, and the degree of nonaxisymmetry of the cell, respec-
tively. The third free parameter of the system 3%, which has
the effect of setting the degree of anisotropy of the turbu-
lence, is chosen such that the turbulence is approximately
isotropic when ky*s60.5.

In Figs. 6 and 7, the Poincaré surface of sections are
plotted for a constant value of y. These simulations are per-
formed by considering a large number of initial kx and x
values !where 3% is kept constant for each initial condition",
and integrating forward in time. The accuracy of the numeri-
cal integration is verified both by checking that 3% is con-
stant throughout the integration !to within a relative error of
10−9", and that the simulation results are unchanged as the
accuracy of the numerical solver is increased.
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Considering first a shear flow structure with the param-
eters qy /qx=1/20 and 8v0y8 /ve

*=0.04, which corresponds to a
regime of very weak axisymmetry breaking and relatively
weak shear flow, a Poincaré surface of section is plotted in
Fig. 6!b". In comparison to the qy =0 zonal flow case shown
in Fig. 6!a", it is clear that the region of trapped quasiparticle
orbits has been replaced by a dense, area-filling stochastic
region. Thus, the orbits of the system can be separated into
smoothly translating and stochastically wondering trajecto-
ries, neither of which are radially confined. The appearance
of this localized region of ray chaos, resulting from the
breaking of axisymmetry by the shear flow, is consistent with
previous studies of Hamiltonian systems, where Kolmog-
orov, Arnold, and Moser !KAM" tori near the separatrix were
shown to be most susceptible to nonintegrable perturbations.
Figure 7!a" shows a Poincaré surface of section with the
parameters qy /qx=1/20 and 8v0y 8 /ve

*=0.2. While the region
inside the separatrix is still largely chaotic, this figure con-
tains a clearly visible region in which integrability has been
restored. Note that these closed KAM tori, do not correspond
to trapped quasiparticles. Instead they are periodic orbits in
which a quasiparticle traverses a single velocity well after
each rotation around the poloidal circumference. Also note
that the width of the stochastic region has significantly in-
creased, which results from the width of the separatrix in the
qy =0 integrable region increasing, and can be understood
from Eq. !56".

In summary, the introduction of a weak nonaxisymmet-
ric perturbation to the zonal flow shear profile has been
shown to break KAM tori associated with nonlinearly
trapped wave packets and so produce chaotic orbits. The
absence of these KAM tori allows for nonlinear wave trap-
ping to be largely circumvented as a saturation mechanism
for the large scale shear flow. Note that while in this analysis
we have focused on the convective cell as the symmetry
breaking mechanism, the presence of any appreciable non-
axisymmetric component to the shear flow profile will likely
have a similar effect. Also note that this result has been ob-
tained in the limit of an infinite Kubo number, the ideal re-
gion for wave trapping to occur.

V. TRANSPORT MODEL

In the above, an excitation threshold as well as key prop-
erties of the linear mode structure and nonlinear dynamics of
the convective cell were discussed. These investigations uti-
lized idealized models in order to illustrate these fundamen-
tal characteristics clearly. Due to the idealized nature of these
models however, much of the self-consistent time dependent
dynamics of the microturbulence and shear flows has been
lost. Here, we seek to recover this information and demon-
strate the form of different time dependent solutions of the
convective cell and drift wave system in various parameter
regimes. Emphasis is placed on understanding how these dif-
ferent solutions impact the formation of ITBs, and thus the
amount of input power required. In particular, a simple set of
zero dimensional amplitude equations are derived and used
to phenomenologically model the formation of an ITB.
While this simple phenomenological model is incapable of
accurately representing the detailed spatial structure of the
drift wave-convective cell system, it does allow insight into
the interplay between turbulence intensity, Reynolds stress
driven zonal flows and convective cells, mean E!B flows,
as well as their relation to mechanisms which trigger trans-
port barriers.

A. Model equations

The system of equations we consider are similar to those
utilized in Refs. 23 and 24 !also, see Refs. 25 and 26", and
are given by

FIG. 6. Poincaré surface of sections in the kx-x plane. !a" is for qy =0. !b" is for the parameters qy /qx=1/20 and 8v0y 8 /ve
*=0.04.

FIG. 7. Poincaré surface of sections in the kx-x plane with parameters
qy /qx=1/20 and 8v0y 8 /ve

*=0.2.

112306-12 C. J. McDevitt and P. H. Diamond Phys. Plasmas 14, 112306 "2007#



$)

$t
= 1P!) − a1vcc

2 ) − a2vEB
2 ) − a3)2, !58"

$vcc

$t
= b1)vcc − b2vcc, !59"

$P!
$t

= − c1)P! − c2P! + Q , !60"

vEB = d1P!2. !61"

The terms on the right-hand side of Eq. !58" have clear ana-
logs to terms contained within Eq. !36". Specifically they
correspond to linear growth, convective cell shearing, mean
flow shear, and local self-saturation of the turbulence inten-
sity. Similarly, by analogy with Eq. !38", Eq. !59" contains
convective cell generation via Reynold’s stresses as well as
linear damping. Here, the linear damping is understood to
represent field line bending, viscosity, friction, and poten-
tially collisionless processes, which in the context of a zero
dimension model all have the same functional form. Also,
the pressure equation contains both turbulent and neoclassi-
cal transport coefficients, as well as heat input. Finally, the
mean flows are slaved to the pressure gradient via Eq. !61".
Note that these equations should be understood to apply near
the location of a low-q resonance where the convective cell
is most active.

B. Solution to the reduced two field system

Before analyzing the complete system of equations
given by Eqs. !58"–!61", it is convenient to consider the two
field system given by Eqs. !58" and !59" where P! is utilized
as the control parameter, and Eq. !61" closes the system. This
simplified model is instructive, as many of the fixed point
states which occur in the full system are present within this
reduced model. Thus it provides a means of clearly illustrat-
ing much of the complete system’s underlying behavior, with
significantly less clutter !see Table I for a summary". In this
simple limit there exist three fixed points. The first can be
trivially seen to occur for vcc

2 =0 and )=0. Performing a
simple linear stability analysis around this point yields
purely real eigenvalues with a stability condition given by
1,a2!P!3, where a2!*a2d1

2. For stable solutions, this point
possesses the dual properties of low transport !only neoclas-
sical" and high mean field shear, and thus may be understood
to correspond to an ITB mode.

The second solution which is pertinent to this analysis

is localized around )=b2 /b1 and vcc
2 = !1/a1"#1P!−a2!P!4

−a3!b2 /b1"$. The eigenvalues for this mode are generally
complex and have a stability condition given by 1P!
9a2!P!4+a3!b2 /b1". Thus, eigenmodes centered around this
point may be understood to correspond to spiral modes. This
eigenmode structure leads to a self-regulating system, where
the turbulent transport is not completely quenched, but is
significantly reduced via convective cell shearing. Thus, it is
convenient to refer to this state as a convective cell regulated
!CCR" state. Also, for the case of a360 the stability criteria
for the ITB state and the CCR state are complementary, i.e.,
once the CCR fixed point goes unstable, the ITB state be-
comes an attractor. Thus, it is easy to see that transitions
from CCR to ITB mode are readily attainable. Note that for
the two field model, P! is utilized as the control parameter.
In the next section P! will be replaced by the heat flux Q, as
P! will be allowed to vary dynamically.

The last fixed point present within this reduced model
corresponds to )= !1/a3"!1P!−a2!P!4" and vcc

2 =0. The eigen-
values for this point are real, with a stability condition given
by 1P!,a2!P!4+a3!b2 /b1". Thus, this state is relevant for
strong cell damping !large b2" in which the cell is submar-
ginal !also note this solution necessarily appears before the
ITB mode". We refer to this state as the unregulated !UR"
state of the system. Note that unlike the CCR state, the UR
state’s stability criterion possesses a large region of coexist-
ence with the ITB state, making bifurcations between these
two states difficult. Hence, it’s clear that the role of the CCR
mode is to provide an efficient means of entering the ITB
mode, by avoiding the difficult UR→ ITB transition route.
Also note that while this large region of coexistence of the
UR and ITB modes makes transitions between these two
solutions difficult !a minus for confinement", this region of
coexistence also allows for the possibility of hysteresis !a
plus".

C. Three field evolution

Considering the three field model given by Eqs.
!58"–!61", we may identify fixed point solutions in direct
analogy with the previous section. Beginning with the ITB
state, where the fixed point is now given by )=0, vcc

2 =0, and
P!=Q /c2. Performing a linear stability analysis about this
point yields pure real eigenvalues with a stability criterion
1,a2!!Q /c2"3, which can be seen to be identical to that
found for the two field model in the previous section. This
isomorphism is not surprising as the role of P! is essentially
replaced by Q in the three field model.

For the CCR state, the fixed point is given by

TABLE I. Summary of the values of the fixed points and stability criteria for the two field model.

Fixed points Stability criteria

ITB )=0, vcc
2 =0 1,a2!P!3

CCR )= !b2 /b1", vcc
2 = !1/a1"#1P!−a2!P!4−a3!b2 /b1"$ 1P!9a2!P!4+a3!b2 /b1"

UR )= !1/a3"!1P!−a2!P!4", vcc
2 =0 1P!,a2!P!4+a3!b2 /b1"
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) =
b2

b1
* N ,

P! =
Q

c1N + c2
* q , !62"

vcc
2 = !1 − a2!q

3"
q

a1
−

a3

a1
N .

Note that while this fixed point is similar to the two field
case, the nontrivial dependence of P! on Q !note the N de-
pendence in the denominator" will introduce somewhat more
complex stability criteria. The eigenvalue condition for per-
turbations around this point is cubic, and in general complex.
Here we are primarily interested in the stability criteria near
this fixed point, thus it is convenient to apply the Routh-
Hurwitz method !which provides a set of criteria for all roots
having negative real parts", yielding the nontrivial stability
criteria,

1q 9 a2!q
4 + a3N , !63"

and

#a3N + !c1N + c2"$#a3!c1N + c2" + c1q1 − 4a2!c1q4$

9 2a3b2!a2!q
4 + a3N − 1q" , !64"

where Eq. !63" is isomorphic to the two field system, and can
be recognized as being merely the reality condition of the
fixed point of vcc

2 . However, with the addition of Eq. !64", a
more stringent criterion applies to the stability of the CCR
mode. This added constraint will be shown to be crucial to
the CCR→ ITB bifurcation.

Finally, for the state with vcc
2 =0, but )%0, referred to in

the two field model as the UR state, the fixed points are
given by vcc

2 =0, P!=Q /:st, where :st*c1)+c2 is given by

0 = −
a3

c1
:st

5 + a3
c2

c1
:st

4 + 1Q:st
3 − a2!Q

4. !65"

Thus, while for the two field model only a single fixed point
existed for vcc

2 =0, but )%0, here multiple solutions may
exist, depending on the parameter regime. Insight can be
gained into the behavior of these solutions via numerical

solution of Eqs. !58"–!61". In order to focus exclusively on
the behavior of this set of modes, and their transition to the
ITB mode, we choose a parameter regime with strong cell
damping, so that Eq. !63" is never satisfied. Figure 8!a"
shows the evolution of the turbulence intensity, convective
cell amplitude, and pressure gradient versus time. The heat
input is initially zero, but is linearly increased with time. For
small t only one root of Eq. !65" exists, whose value can be
seen to increase in time #see Fig. 8!b"$. However as time
evolves a second root appears. We refer to these roots as the
weak UR !WUR" and strong UR !SUR" transport modes.
Also note for this parameter regime, the ITB fixed point
becomes stable at roughly t6125 !in arbitrary units". Thus,
while the system is clearly in SUR for t;190, there is co-
existence with both the ITB and WUR states for t6125
through t6190, thus illustrating the difficulty of !S"UR
→ ITB transitions. From Fig. 8!a", it is clear that the system
transitions into the ITB mode at roughly t6190. This bifur-
cation results from the fixed point solutions of the WUR and
SUR modes vanishing, as shown in Fig. 8!b".

The coexistence of multiple stable fixed points allows
for the possibility of hysteresis between the SUR and ITB
modes. This hysteresis is demonstrated in Fig. 9!a", where
we have linearly increased the power input until the system
bifurcates into the ITB mode, and then ramped down the
power linearly at the same rate. As can clearly be seen, a
large region of hysteresis is present. Note that the width of
this region is exaggerated due to the turbulence intensity
going almost exactly to zero before the ITB mode becomes
unstable. That is, the ITB mode becomes unstable at Q=1,
such that the turbulence intensity begins to grow at this
point. However, because the amplitude of the turbulence in-
tensity is nearly zero, the amplitude remains negligible until
roughly Q60.6. More precisely, the eigenvalue for the ITB
mode !there of course exist three, but two are trivially stable"
is given by += #1−a2!!Q /c2"3$!Q /c2". For large Q, the sys-
tem decays exponentially with a rate that scales as Q4, thus
rapidly damping the eigenmode for Q91. In contrast, for
small Q, the eigenmode is amplified, but with a far weaker
growth rate, thus leading to a wide region of hysteresis. This
discrepancy may be easily corrected via the introduction of a

FIG. 8. !a" The evolution of turbulence intensity, convective cell amplitude, and pressure gradient are denoted, respectively, by the solid, the broken, and
broken-dotted. !b" Roots of Eq. !65" for times t16103, t16155, t16180, and t16192 denoted by the solid, broken-dotted, broken, and dotted lines,
respectively. UR fixed point solutions disappear coincident with transition to the ITB state.
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weak noise term into Eq. !58", whose magnitude is chosen to
be three orders of magnitude smaller than the linear growth
rate such that the underlying dynamics are largely unper-
turbed. The results of the simulation of the modified system
are shown in Fig. 9!b", where the width of the hysteresis
region can be seen to be significantly reduced.

In order to consider the CCR→ ITB transition, the large
scale damping may be reduced in comparison to the above
simulations, such that the inequalities in Eqs. !63" and !64"
are satisfied, allowing for the cell to be destabilized. As
shown in Figs. 10!a" and 10!b" !with the noise term turned
off", after a transient burst by the convective cell, the system
begins to approach SUR mode. However, as the input power
is increased, the system transitions into CCR mode. As can
be seen in Fig. 10!b", the eigenmode corresponds to an in-
ward spiral, as anticipated from the two field calculation.
Once the input power becomes large enough, the stability
criterion given by Eq. !64" is violated, resulting in a transi-
tion into ITB mode. Note that this transition occurs with
significantly less input power than in the SUR→ ITB bifur-
cation. Thus, while entry into ITB mode is possible in the
absence of the convective cell, the power threshold for such
a transition is substantially higher. This significant reduction
in input power for entry into the ITB mode may be under-

stood to result from the CCR mode pushing the system into
the basin of attraction of the ITB attractor. Thus, once the
CCR fixed point becomes unstable, the ITB mode may be
readily accessed.

We now consider the impact of holding the power input
fixed after the CCR fixed point becomes unstable, but before
the ITB attractor appears. As is evident from Figs. 11!a" and
11!b", after the CCR fixed point goes unstable, the system
undergoes a Hopf bifurcation into a limit cycle solution.
From Fig. 11!a", it is clear that this solution results in bursty
transport. Transition from this state into the quiescent ITB
mode is possible via further increasing the input power.

In summary, four distinct modes of the system are pre-
dicted by the simple model:

a" The ITB mode corresponds to an )=vcc
2 =0 solution

!i.e., zero microturbulence, convective cell" which is
accessible for high input power regimes. This mode
should be understood to correspond to a somewhat ide-
alized state of an experimental ITB, since for an ex-
perimental system, MHD modes !not contained within
this simple model", are likely to degrade transport for
high ( values, and push the system away from this
attractor.

FIG. 9. !a" The evolution of turbulence intensity, convective cell amplitude, and pressure gradient are denoted, respectively, by the solid, the broken, and
broken-dotted. The arrows delineate whether the power is being increased or decreased. A clear region of hysteresis is observed. !b" Same as !a" but with noise
added.

FIG. 10. !a" The evolution of turbulence intensity, convective cell amplitude, and pressure gradient are denoted, respectively, by the solid, the broken, and
broken-dotted, where the cell damping has been substantially reduced. !b" 3D phase space of ), vcc, and P!. After the transient burst of the convective cell,
the system begins to approach the SUR mode, subsequently transitions into CCR mode, and finally transitions into ITB mode once CCR fixed point becomes
unstable.
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b" The !S"UR mode represents a high transport state
which exists for strong large scale damping. Transition
into the ITB mode is possible via this mode, however
at a cost of high input power. Fairly wide regions of
hysteresis were observed however, suggesting that
while reaching ITB mode via this mode is costly ini-
tially, it may be possible to significantly reduce the
input power afterward without back transitioning.

c" The CCR mode corresponds to a regime of cell regu-
lated transport. This mode is active for regimes of
weak large scale damping !low collisionality and mag-
netic shear", and has been shown to provide a means
for the system to access the ITB mode with a minimum
of input power. Hysteresis between the CCR and ITB
mode plays no role in this transition scenario, as the
ITB attractor does not appear until after the CCR mode
becomes unstable, hence there is no regime of coexist-
ence between these two attractors.

d" The limit cycle solutions, characterized by bursty trans-
port, were obtained via a supercritical Hopf bifurcation
of the CCR mode for input powers slightly above the
CCR stability criteria. Upon subsequently increasing
the power input, beyond the threshold of the ITB at-
tractor, the system transitions into the ITB mode. Also
note that because the limit cycle solution appears via a
supercritical Hopf bifurcation, there is no hysteresis be-
tween the CCR and limit cycle solutions.

VI. CONCLUSION

In the above analysis we have proposed an ITB trigger
mechanism which addressed key components of experimen-
tal observations of ITB formation, namely,

a" an electrostatic trigger mechanism;
b" profile flattening or “corrugation” at the rational sur-

face;
c" barrier formation nearby the rational surface.

The addition of a novel candidate ITB trigger mechanism to
an already crowded field is necessary, as existing theories of
ITB formation appear to be largely incompatible with the

above observations. Also, this mechanism is particularly at-
tractive as it provides a simple and direct means of linking
the transport barrier to the region nearby the low-q surface.

Alternatively, the generation of shear flows near low-q
surfaces may be linked to the response of microturbulence to
the appearance of the low-q resonance. In particular, cou-
pling of many co-located high m, n harmonics has been
shown to lead to strongly inhomogeneous structures in the
vicinity of the low-q surface.27 Such coupling has been
shown to overcome magnetic shear damping and result in
localized peaks in the fluctuation intensity profile. Since such
localized peaks necessarily imply a sharp slope in the fluc-
tuation intensity profile, their resulting Reynolds stress natu-
rally produces flow shear which is strongest nearby the reso-
nant surface, thus triggering the formation of a transport
barrier there. This scenario will be explored further in a fu-
ture publication. Also, we note that these two possibilities are
not mutually exclusive, and may in fact work in synergy.

To summarize, the main results of this paper are as
follows:

a" Secondary convective cells, while generally subdomi-
nant to zonal flows, are likely to be active near regions
of weak magnetic shear. This follows as a result of field
line bending being substantially reduced in these re-
gions.

b" Secondary convective cells satisfy the experimentally
observed criteria of strong mixing at the low-q surface
and strong shear nearby the resonant surface.

c" Nonlinear wave trapping is unlikely to be effective in
saturating the growth of convective cells. This follows
as a result of the nonaxisymmetric component of the
shear flow removing ky as an integral of motion of the
system, and thus breaking the KAM tori associated
with the trapped quasiparticle orbits.

d" The power input required to trigger a mean flow bifur-
cation into an ITB state has been shown to be signifi-
cantly reduced via the CCR→ITB mode transition
scenario.

In conclusion, we remind the reader that this paper has pro-
posed a novel mechanism for the formation of ITBs nearby

FIG. 11. !a" The evolution of turbulence intensity, convective cell amplitude, and pressure gradient are denoted, respectively, by the solid, the broken, and
broken-dotted, where rate of power input is held fixed after the CCR fixed point becomes unstable. !b" 3D phase space of ), vcc, and P!. Same plot as Fig.
10!b", however power input is held fixed after instability of the CCR fixed point. System fails to reach the ITB mode, instead is absorbed into the limit cycle
solution.
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low order resonant-q surfaces. This mechanism centers on a
low-m electrostatic convective cell, excited by modulational
instability of ambient drift wave turbulence and damped by
friction and field line bending. Thus, such cells are probably
significant only in conditions of weak magnetic shear, as
often exist near OAMq profiles.
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APPENDIX: DERIVATION OF CONVECTIVE CELL
EIGENVALUE CONDITION

In this appendix we provide details of the derivation of
Eqs. !41a" and !41b". We begin with Eq. !38", which we
rewrite here for convenience as

0 =
$2'!p"

$p2 − 5!p"'!p" , !A1"

where

5!p" * %1 −
%d

*

%
(−1-%2c − 82T!p"8

82T!0"8 (p2

+
0x2

82T!0"8
#1d − i!% − %d

*"$.p2, !A2"

and p*0xqx. A WKB solution can be readily derived from
Eq. !A1", yielding

'WKB!p" =
C

35!p"
exp#i+pdp3− 5!p"$

+
D

35!p"
exp#− i+pdp3− 5!p"$ , !A3"

where C and D correspond to arbitrary constants. The poten-
tial given by Eq. !A2" possesses six roots, two of which are
zero, and the other four which we will label ±p1 and ±p2, are
generally complex. As is clear from the form of Eq. !A3",
each of these roots, correspond to singularities in the WKB
solution. Thus, connection formulas will be required in order
to match WKB solutions valid in different regions. This
asymptotic analysis is complicated due to the necessity of
performing the analysis in the complex p plane. This requires
an understanding of the location of the Stokes lines #lines for
which the real part of the exponents in Eq. !A3" vanish$,
such that the matching can be carried out unambiguously. A
sketch of the local Stokes structure in the complex p plane is
shown in Fig. 12, which will serve as a “guide” for the
asymptotic analysis carried out below.

Considering first the region near p=0, or the limit,

8p82 , : 0x2

82T!0"8
#1d − i!% − %d

*"$: !A4"

!where we have ignored the 2c term for simplicity", Eq. !A2"
may then be approximated as

5!p" 6 %1 −
%d

*

%
(−1 0x2

82T!0"8
#1d − i!% − %d

*"$p2 * Vp0p2,

!A5"

such that the solutions of Eq. !A1" have the form

'!p" = A3pK1/4!3Vp0p2/2" + B3pI1/4!3Vp0p2/2" . !A6"

As can be seen by examination of Eq. !A2", 5!p" is invariant
as p→−p, thus it is only necessary to consider positive val-
ues of p. Hence, as a boundary condition at p=0 we apply
'!0"=0 for odd modes and $'!p" /$p8p=0=0 for even modes.
For brevity, we will only discuss even modes, although the
derivation for odd modes would follow analogously. Apply-
ing the boundary condition $'!p" /$p8p=0=0, yields the rela-
tion A= !32/&"B. Next it is necessary to match this solution
with the WKB solution in the limit 3Vp0p2 /291. Note that
this limit is nontrivial, as Eq. !A4" must be simultaneously
satisfied. The self-consistency constraint can be easily de-
rived as Vp0!1−%d

* /%"922/3, which can be rewritten as

:%1 −
%d

*

%
(−1/3 0x2

82T!0"8
#1d − i!% − %d

*"$: 9 22/3. !A7"

The case of the weak magnetic shear is well satisfied in
nearly all relevant regimes. Assuming the condition given by
Eq. !A7" is satisfied, Eq. !A6" may be expanded as

'!p" 6 B!p"#32 exp!− 1
2
3Vp0p2" + exp! 1

2
3Vp0p2"$ ,

!A8"

where B!p" is an arbitrary p dependent quantity, whose spe-
cific form is not required in order to obtain the lowest order
eigenvalue condition. Matching to the WKB solution whose

FIG. 12. Sketch of local Stokes structure in the complex p plane. Dotted
lines indicate Stokes lines in the vicinity of turning points. The location of
zeros in the potential are denoted by points. Finally, the solid line is an
example of a path through the various WKB regions.
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potential is approximated by Eq. !A5" yields the WKB ex-
pression valid in region I of Fig. 12,

'I!p" = B!p"-32 exp4i9
0

p

dp3− 5!p"5
+ exp4− i9

0

p

dp3− 5!p"5. . !A9"

Similarly, near p1, 5!p" can be expanded to linear order
yielding the expression

$2'!p"
$p2 = :4−

$5!p"
$p

5:
p=p1

!p1 − p"'!p" , !A10"

whose general solution is given by '!s"=EAi!s"+FBi!s",
where Ai and Bi are Airy functions of the first and second
order, respectively, E and F are arbitrary constants, and s
*!−$5 /$p8p=p1

"1/3!p1− p". Following a similar matching
procedure as that outlined above for both s90 and s,0,
yields the WKB expression valid in region II as

'IIA!p" = B!p"- b

2
sin49

p1

p

dp3− 5!p" +
&

4 5
+ cos49

p1

p

dp3− 5!p" +
&

4 5. , !A11"

where

b * 232 exp44
3
%−

$5

$p
:

p=p1

(1/2

p1
3/2.

Following an analogous procedure near p2, and implement-
ing the boundary condition '!Rp→ 4 "=0, yields the WKB
expression also valid in region II,

'IIB!p" = B!!p"sin49
p

p2

dp3− 5!p" +
&

4 5 , !A12"

matching Eqs. !A11" and !A12" yields the expression for the
eigenvalue,

9
p1

p2

dp3− 5!p" = &!le − 1
2" + 3 , !A13"

where le is a positive integer, and 3 is defined by Eq. !42a".
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