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PREFACE

The following is a slightly edited version of- lecture notes on traffic flow theory
composed originally between about 1964 and 1966.

Modeling of highway traffic had progressed at a rapid pace during the late 1950s and
early 1960s. In 1963, I gave a short course on traffic flow theory for honours mathematics
students at the University of Adelaide in Australia at the invitation of Professor Renfrey Potts.
The following year I gave a more extensive special topics course for graduate students in
applied mathematics at Brown University. Most of these lecture notes were written for the
latter course.

In 1965 I came to the University of California, Berkeley to teach in the transportation
engineering graduate program. Although I taught courses on "traffic flow theory" and
"highway traffic control" a few times in the early 1970s, the former based mostly on these
lecture notes, enrollment in both of these classes was small and these courses were
discontinued in the mid 1970s. An "advanced course” in traffic flow theory has not been
given at UC Berkeley since then (as of 1994). At no time since 1965 have I supervised any
students doing research on traffic flow theory and, until recently, very little of my own

research was directed toward this subject.

students doing research on traffic flow theory and, until recently, very little of my own
research was directed toward this subject.

Not only did I abandon these subjects, but so did most of the other people who had
contributed to their development in the 1950s and 60s. The journals, Transportation Science
and Transportation Research, which were both initiated by people who were active in the

development of traffic flow theory and which were expected to be a vehicle for publication of



new developments in transportation theory, did not start until 1967. Most of the key literature
on traffic theory, which appeared before 1967, is scattered over a variety of journals,
symposium proceedings, and books. Much of this literature has been ignored by newcomers
to the transportation field.

My own attempt to revive some of the lost theory started in 1984 when some students
asked me to teach a special topics course on highway traffic control (after about a 10 year
lapse). Although there had been little improvement in the theory (particularly on highway
traffic signals) during the previous 10 years, there had been substantial advances in techniques
for approximating queueing delays, and the analysis of queueing delays did not depend on an
accurate theory for the dynamics of traffic flow (the delay to a driver caused by a traffic
signals does not depend on where the driver waits). It was possible not only to revive some of
the older works on traffic signals, but to write a fairly comprehensive analysis. This
culminated in publication of a 450-page treatise, "Theory of Highway Traffic Siénals," UCB-
ITS-CN-89-1 in 1989.

Publication of the prcé‘ent notes was also inspired by a proposal to give a special
topics course on fraffic ﬂéw theory (after about a 20 year lapse). As compared with the
theory of highway traffic signals, the status of traffic flow theory is quite different. There

have been few significant developments over the last 20 years and much of what has been

theory of highway traffic signals, the status of tratfic tlow theory 1S quite QiTIerent. lnere
have been few significant developments over the last 20 years and much of what has been
done is even less realistic than the theories which existed 30 years ago. Many attempts to
"improve"” the theories have only made them worse.

The modeling of light traffic for which cars interact only occasionally and, at most,

only two at a time, is fairly straightforward but of little concern to practical traffic engineers.
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A theory of light traffic was essentially complete 30 years ago, to the extent that ope would
care to analyze it. If traffic is so congested that cars can seldom pass each other, 4 theory of
traffic flow should, in principle, be straightforward if one knew precisely how one drjver
follows another. Unfortunately, we still do not know how drivers behave well enough 1o
construct realistic models of "car-following.” Indeed, we do not seem to understand it myc},
better now than 30 years ago. The modeling of moderately dense traffic with clusterg of cars,
lane changing, etc. is extremely difficult and attempts to do so have not been very succegsfy].

In contrast with the theory of highway traffic signals, there is not really much that |
can add to what was written 30 years ago even though these notes end very abruptly. | Wrote
what I knew at the time expecting that new experimental observations would soon resojve
some of the deficiencies of existing theories, and that I could add a concluding chapter 1o the
part on dense traffic. The chapter on moderately dense traffic ends abruptly because I Jogt
interest in pursuing something that appeared to be going nowhere.

Chapter I Introduction is mostly some commentary on the connection betweep
highway traffic and statistical mechanics or the kinetic theory of gases. It is this similarity
which attracted physicists and chemists to model traffic behavior in the 1950s. Chapter Iy

deals with very light traffic in which interactions between cars are neglected completely.

Traffic is represented simply as the superposition of independent vehicle trajectories, The key

deals with very light tratfic in which interactions between cars are neglected Completely.
Traffic is represented simply as the superposition of independent vehicle trajectories, The key
result here is the tendency of traffic to behave like a Poisson process (in either space or time)
with statistically independent velocities. Chapter Il treats weak interactions, the first order
effects of interactions between cars when they are close together. The key conclusion here is

that, in this second approximatjon, traffic has a tendency to behave like the superposition of
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independent Poisson processes of single cars and interacting pairs (if one can neglect
interactions involving three or more cars). The treatments in Chapters II and II are very
detailed and describe just about everything one would care to say about light traffic
approximations. Any extension of this theory to involve interactions among three or more
cars, however, would be very tedious.

Chapter IV on dense traffic gives an exhaustive analysis of models of car-following in
which every driver chooses a velocity dependent only on the spacing between himself and the
car he is following (possibly with a delayed response). This class of models includes or is
equivalent to most of the car-following or (first order) fluid models of traffic flow at high
density which had been proposed during the 1950s.

Chapter V describes some theories related to moderately dense traffic, but it does not
include all the things promised in the introductory section. This chapter was never completed.
The main topic here is an introduction to the theory of stationary stochastic point processes, a
subject which is described in much more detail in the literature on applied probability
(aithough mostly in books written after these notes were first written).

In the original notes, the present Chapter V was labeled Chapter V1. Chapter V had
not been written. It was to have been a follow-up to Chapter IV containing more realistic

theories of dense traffic explaining instability, "stop and go" driving, etc. I had already

not been written. It was to have been a follow-up to Chapter 1V containing more realistic
theories of dense traffic explaining instability, "stop and go" driving, etc. I had already
proposed a possible structure for such a theory by 1962, but it was still rather speculative and
lacking quantitative verification. I expected then (in 1965) that a more refined theory would

soon emerge to complete the story (but it still has not happened).
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The original notes also contained the start of a Chapter VII dealing with delays at an
isolated fixed-cycle traffic signal, but the theory of highway traffic signals was in an early
stage of development then. Anything of value contained in this chapter of the notes has since
been absorbed in the above mentioned treatise on traffic signals.

To close out the present notes I have added a new Chapter VI “postscript”
commenting on some things which I might explain differently today, some things that have
happened during thé last 30 years, and some theories old and new which I believe have
failed( even more so than those described in the previous chapters). I have also attached a
chronological bibliography on car-following and continuum theories which, I believe, is
nearly complete to 1972. This at least illustrates the rapid rise and decline of activity during
the 1950s and 60s.

The reproduction of these notes would not have happened without considerable
prodding from Carlos Daganzo who offered some hope that new experimental techniques may
soon resolve some of the deficiencies of existing theories.

Most of the huge job of typing equations was done by Ping Hale. Nadine Zalinsky

typed much of the text. Reinaldo C. Garcia proofread the entire text.
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I. INTRODUCTION

1. Structure of mathematical equations. If it were possible to construct a complete theory of

traffic flow which in principle predicts the motion of each and every car on the highway, the
equations describing this motion would probably be too difficult to solve and if solved would
only produce a library of figures most of which would be of no practical value. Nevertheless
the gross features of traffic flow that we do consider to be important must be a result of the
collective behavior of individual cars.

Although we lack a complete theory of the motion of individual cars, there are many
simple facts that even the most inexperienced driver knows and thcrc.ars others which we
could determine through experiment if we thought these facts were worth the effort required
to find them. The lack of such a theory however, should not deter us from constructing a
framework of possible theories consistent with what is known and seeing if such an incom-
plete theory can give any useful information about the gross aspects of traffic. Also by
considering various hypothetical motions of individual cars one may draw conclusions
regarding what features of the motion of single cars are relevant to the large scale behavior of
traffic.

The above sifuation is similar to that which faced physicists almost a century ago. They
traffic.

The above situation is similar to that which faced physicists almost a century ago. They
knew many laws regarding the bulk properties of matter. They were also convinced that
matter was composed of atoms and that there were certain laws of motion for the individual

atoms. The problem was to find the connection between one set of laws and the other and to



use experimental results obtained on large systems to infer properties of small systems or vice
versa. The study of these problems generated the branch of physics called statistical mechan-
ics.

Cars are driven by people and do not satisfy the laws of classical mechanics or
quantum mechanics as do atoms, but in constructing any theory of traffic one must start from
the conjecture that drivers do behave according to some pattern. It would be incorrect to
assume that all drivers behave in the same way or that even a single driver will always react
the same in a given situation but we will assume that there exists some probability distribu-
tion of behaviors. If a single driver or different drivers with similar desires are repeatedly
confronted with the same surroundings, they will respond in a given way a certain fraction of
the time. Whether or not we actually find these pfobabilities is not at issue. We only assume
that they can in principle be found or inferred if we were willing to expend sufficient effort to
find them.

Despite the fact that statistical mechanics deals with large aggregates of particles which
specifically obey equations of particle dynamics, much of the mathematics or logic of
statistical mechanics can be translated into a corresponding theory of traffic flow, namely
those parts of statistical mechanics that deal only with the interrelation between macroscopic

and microscopic laws. The similarity, however, goes even further than this. One important

those parts of statistical mecnanics that aeal only witn i€ INEIMeIauvll DELWETIL HI1aULusLupIL
and microscopic laws. The similarity, however, goes even further than this. One important
feature of atomic forces is that they are usually of "short range,” i.e., two atoms which are
sufficiently far apart do not influence one another. The same feature is true of the interaction
between cars. Two drivers who are out of visible range of each other are not expected to

influence one another. In statistical mechanics this fact that there are short range forces is the
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key to the theory of an ideal gas and in traffic theory one can construct simple models of
flow at arbitrarily low density in an analogous way.

In physics the behavior of bulk systems changes drastically as one varies the density of
atomns from the ideal gas limit where the average distance between atoms is large compared
with the range of force to the limit of close packed structures (solids) where the distance
between atoms is comparable with or less than the range of force. The corresponding situation
is true of highway traffic also.

The development of traffic theory is even following a pattern similar to the historical
development of statistical physics. In physics the theory of gases based upon nearly indepen-
dent motions of atoms developed early and has advanced rapidly, as has the theory of solids
based upon a highly ordered motion of atoms, but the theory of intermediate systems,
particularly the theory of the liquid state, has progressed very slowly. In traffic also, a thecry
for low density and a theory for high density are off to a good start but the intermediate
densities present difficult problems.

Despite the similarities between traffic and statistical physics, there are obvious
differences in addition to the fact that cars do not satisfy the laws of dynamics. Cars are
constrained to move on highways which are parts of a two-dimensional space and in most

cases can be considered essentially networks of one-dimensional spaces. This should be a

constrained to move on highways which are parts of a two-dimensional space and 1n most
cases can be considered essentially networks of one-dimensional spaces. This should be a
simplification over the inherently three-dimensional nature of particle motion. On the other
hand the most annoying difference is that one seldom has the occasion to consider more than
a relatively small number of cars at a time, perhaps 10 or 100 or even 1000 and the drivers of

these cars are not all the same. Statistical fluctuations in observations are therefore quite



large. In physics a typical system is likely to contain something like 10% or 10* particles all
with identical properties. Whereas typical fractional fluctuations in density for example of a
physical system are of order 10, those of traffic may be anything from a few percent to 30
or 40 percent.

The logical foundations of statistical mechanics have been the subject of heated debate
for more than 75 years. In developing the mathematical formalism one still must make
heuristic arguments, try to argue away certain paradoxes and finally say that despite the
loopholes in the arguments, the theory must be correct most of the time because it gives the
answers we wanted. Unfortunately the parts of statistical mechanics which we wish to mimic
in traffic theory are just those which are so controversial. We can only hope that what seems
plausible will again prove to be correct most of the time. For example, in studying the
behavior of 100 drivers on the road, can one give some logical argument for selecting these
100 cars at random from a population of possible drivers when it seems clear that the
behavior of these cars does depend upon which drivers are selected and there is no grand
roulette machine in nature which picks the drivers which are to drive on the highway each
day?

The development of statistical mechanics usually starts from consideration of a system of

N particles with known properties (mass, electric charge, etc.) and with known equations of

‘I'ne development of statistical mechanics usually starts from consideration of a system of
N particles with known properties (mass, electric charge, etc.) and with known equations of
motion (the laws of classical mechanics, for example). If at time t = O one specifies the
positions and velocities of all particles, then the laws of motion determine, in principle, the
positions and velocities at any later time. One is immediately confronted with the following

fact. For "most" initial states, the macroscopic behavior of the system depends only upon a
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few macroscopic properties of the initial state, but if one tries to choose an initial state so as
to make the solution of the dynamical equations simple (for example if one takes all particles
in a gas to have velocities along coordinate directions), one is likely to be unlucky enough to
pick one of the rare initial states that is not "typical” in its macroscopic behavior. To avoid
this difficulty one introduces some probability distribution over the initial states and investi-
gates only the average behavior of this ensemble of initial states. This is done in such a way
that the anomalous initial states have probability zero and give no contribution to the average
behavior. Many of the controversies in statistical mechanics (the famous ergodic hypothesis,
etc.) deal with the arguments from which one selects a reasonable probability distribution
over the initial states.

The above picture literally relates only to a physical system that is closed and jsolated,

i.e., there is a fixed set of particles in the system, and they do not interact with other physical
systems. Actually the physical systems to which one applies statistical mechanics are never
really isolated and are seldom closed but one can imagine a hypothetical physical system
which differs from the real one only in that the hypothetical one is put in a box with perfectly
reflecting walls. For sufficiently large systems, the effect of a box upon the physical proper-
ties of interest is usually small (it varies like the ratio of the area of the box to its volume).

There are, however, extensions of statistical mechanics to open systems in which particles

ties of interest is usually small (it varnies like the ratio of the area oI tne DOX IO 1S VOIUMmE).
There are, however, extensions of statistical mechanics to open systems in which particles
leave and enter the system usually according to some stationary probability law.

Traffic systems which are either completely or nearly isolated do exist. An ideal
example is a collection of cars on a circular track or a collection of cars trapped between two

trucks. A city or metropolitan area is also nearly isolated in the sense that most traffic is



local. One would not change the pattern of traffic very much if each car leaving the city is
replaced by another car entering (a reflecting wall for cars). On a larger scale, the traffic on
the continents of the world is nearly closed—and certainly the world itself is closed. Most
traffic systems which we will want to study, however, are not even approximately closed. To
study the traffic on a single road, for example, or a simple network one seldom can avoid
considering the traffic entering and leaving the boundaries of the system.

In statistical mechanics it is common practice to consider a physical system which is a
small subsystem of a large isolated system (the so-called thermal bath). In dealing with traffic
it is also appropriate to consider traffic on a simple highway as a small subsystem of the
traffic in an entire city or continent. The city becomes the "thermal bath" with which the
subsystem exchanges cars. It is worth noting that even if we included all cars in the world as
our system we would have only of the order of 10® cars (few cities have more than 10°)
which from the point of view of statistical mechanics would be a relatively small system.

In physics the information necessary to describe a physical system can be separated
into the following categories: 1. a description of the particles in the system, their mass,
electric charge, spin, etc.; 2. the forces acting in the system including forces between particles
and external constraints. (This is usually described through the Hamiltonian and in a certain

sense includes 1.) and 3. a specification of the initial conditions necessary to uniquely define

and external constraints. (I'his 1s usually described through the Hamiltonian and in a certain
sense includes 1.) and 3. a specification of the initial conditions necessary to uniquely define
the solution of the equations of motion. One thinks of the initial conditions as a point in a
multi-dimensional space of all possible initial conditions, the state space or phase space. The
motion of the system is then represented by a trajectory, the path in the state space defined by

the parameitric representation of the state of the system as a function of time. A theory, in this




case the laws of dynamics, is simply a proposal that one collection of data can be inferred
from another; here the state at time t is deduced from the state at time zero, if one is given
all the other data above.

In an attempt to construct theories of traffic one should keep in mind that theories are
not formulas that describe everything one wishes to know. One tries to find as many relations
as one can between observable quantities but we would have a theory even if we could find
only one relation among a very large number of things. Certainly for the dynamical system
described above there is a tremendous number of physical quantities the values of which one
must find from observation. We have no theory yet which tells us what the masses of
particles must be. Neither is it likely that we will find any satisfactory theory which will tell
us how fast a driver wants to drive. If we know how fast a driver drives and where ke is,
however, we can say something about where he will be a short time later.

Because of various structural similarities between traffic and particles, one can also
classify much of the data relating to traffic in categories analogous to those listed above even
though as yet we have not proposed a theory which will be the analogue of the laws of
dynamics.

In the first category belong properties associated with an individual car or driver

which are more or less independent of time. There are potentially so many of these that one

In the first category belong properties associated with an individual car or ariver
which are more or less independent of time. There are potentially so many of these that one
would not want to list all that one can imagine. The object is rather to list as few as are
necessary to describe any particular theory. Some properties which will enter into theories
discussed here are the origin, destination, possible routes and starting times of a driver’s trips

(these properties which indicate an objective have no obvious counterpart in particle physics),



nis desired speed on various highways, his notion of safe driving distance behind another car, .
pis willingness to accept passing opportunities, etc.

In the second category belong the "forces” of interaction between cars if not already
jncluded in the first category. The external forces or constraints of a physical system,
powever, have an obvious analogue in the geometry of the road system, traffic lights, etc.
ginally in the third category belong the time dependent state variables such as the positions of
¢pe cars at any time whose evolution we hope to describe by some theory analogous to the
equations of dynamics.

Although we have given only a very fuzzy indication of what might enter into a
rﬂicrosc0pic theory, we turn now to some of the statistical questions. Since we know that for
physical systems much of the microscopic behavior is irrelevant to the macroscopic behavior,
we postpone any further discussion of the microscopic behavior of traffic unti] we have some
petter indication of what features of the microscopic behavior have the greatest influence on
{he Bross properties.

In statistical mechanics there are three types of arguments used to explain why certain
Jetails of the microscopic motion are irrelevant.

1. Most physical measurements can be made only in a time which is large compared

with the time interval between microscopic events. For example, a measurement of tempera-

1. Most physical measurements can be made only 1n a time which 1s large compared
with the time interval between microscopic events. For example, a measurement of tempera-
gure with a thermometer takes several seconds during which time many particles collide with
gach other and with the thermometer. In effect one is measuring a time average property of
¢pe system. If the time of measurement is large compared with the time for the system to

geach "thermodynamic equilibrium,"” then for all practical purposes the time average over a




finite time is equivalent to an average over an infinite time. Mathematically one can represent
this in the following way. If the coordinates of the state space are represented by a collection
of numbers or vectors {x;}, then a trajectory of the system is a set of functions {x;(t)} that
gives the state of the system at time t. If an instantaneous measurement would give a
quantity £(x,(t), X,(t), * * -) some function of the state of the system at time t, then the

quantity which one actually observes is

%j’ dt flx, (), 3,0, - ) - (1.1)

We expect that this will be much less sensitive to the initial state {x,(0)} than the instanta-
neous value of f at any time t.

2. The physical quantities one thinks of as macroscopic variables all seem to have the
form

Zifi(x) or X filux) (1.2)

where here the x; stands for some possibly vector valued property associated with the i
particle and the sums are over all particles or pairs of particles respectively. Furthermore if all
particles are identical as in a monoatomic gas then the functions f; do not depend upon the
particle number j. For example, the total momentum of the system is the sum of the momenta

of all the particles and the total potential energy is usually the sum of the energies of

particle number j. For example, the total momentum of the system 1s the sum of the momenia
of all the particles and the total potential energy is usually the sum of the energies of
interaction between pairs. The number of particles in a region D is obtained by choosing f;
to be 1 if x; is a point in D and zero otherwise. The average density in D is then defined as
this number divided by the volume of D. Since the sums extend over a very large number of

particles one expects considerable cancellation of the fluctuation and a value for this sum



which is not very sensitive to the state of the system. The above sums are in effect averages
over all particles.

3. If the above arguments fail and the physical observations do depend upon certain
detailed properties of the microscopic state, it is likely that these observations are so sensitive
to small changes in this state that it is impossible in practice to reproduce the same state with
sufficient accuracy to guarantee the same outcome of an experiment. A coin, for example, is a
rigid body that supposedly obeys the laws of classical dynamics. If we specify the initial
velocity, angular velocity, position etc. of the coin and describe the geometry of the region
into which it is thrown, we should be able to determine with certainty whether the coin will
land heads or tails. Whether a coin lands heads or tails after spinning many times, however, is
so sensitive to these initial conditions that is practically impossible to set the initial conditions
accurately enough to predict the outcome. The fact that a coin lands heads about half the time
is not simply because the coin is symmetric but because the uncertainty in selecting the initial
conditions is such that about half the time we choose the initial conditions from the set of all
possible initial conditions that leads to heads.

A similar argument may apply to radioactive decay of nuclei. We do not know enough
about the states of nuclei to predict under what conditions a nucleus will radiate. If we

observe enough decays, however, one can say something about the average rate. This average

about the states of nuclei to predict under what conditions a nuclens will radiate. If we
observe enough decays, however, one can say something about the average rate. This average
rate is then considered as the effective macroscopic observable rather than the non-reproduce-
able number of decays observed in a single experiment.

The mathematical formulation of this we obtain by introducing a probability distribu-

tion of possible initial conditions. If {x(t)} is the state of the system at time t, then x(t) is
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also a function X1, x,(0), %,(0),) of the initial state x,(0), x,(0), = If we assume that the
initial states are chosen at random with a probability density p(x,;(0), x,(0), *-) and we are
concerned with a function f (x,(t), x,(t),*), then the macroscopic quantity of interest is the
expectation or average value of f over the probability distribution of initial states, i.e..

-] dx(0)ax,(0) o Ohp(xi 0 x(0), Wk 62,0} x40), ), 2l 9, ) (1:3)
where if x,(0) is a vector, dx;(0) represents a volume element in the space of x;(0) values.
Fortunately the three types of averages described above, complement each other in that by
using one of them we do not destroy the possibility of using another. Furthermore the result
of successive averages is independent of the order in which they are done. For most
macroscopic quantities one can in fact argue that what one observes involves all three
averages i.c. a time average of a particle average of an average over some distribution of
initial states. If, as one often hopes, the time average of some function f is independent of
the initial state and independent of permutations of the particles or the particle average is
independent of the initial state and time or the average over initial states is independent of
time and permutations of the particles, then the use of more than one type of average is
redundant because the second or third average becomes the average of a constant which
always yields this same constant independent of the distribution over which one averages.

Each of the above arguments has an obvious application to traffic since we have

always yields this same constant independent of the distribution over which one averages.
Each of the above arguments has an obvious application to traffic since we have

nowhere used any properties of the state space or the equations of motion. We have assumed,

however, that the equations are deterministic, i.e. {x,(t)} is uniguely determined from {xj(O)},

but we could have assumed that for any initial state {x,(0)} there is a probability distribution

11



for the states {x;(t}}. In the latter case one could perform still a fourth average over all .

possible motions of the system.

Unfortunately the above ideas which are so effective in describing mass phenomena in
physics will never give more than a very crude description of highway traffic. In physics one
is interested in time averages over times which are in effect very large but in traffic there is
little interest for example in flow on a highway averaged over a year’s time in which one
averages out hourly variations, seasonal variations, etc. but to average only over a few
minutes is usually not very effective in smoothing out random fluctuations. In physics a
particle average is typically over enormously many particles but in traffic the number of cars
one observes at any time is quite small. In physics the laws of nature are assumed to be
valid for an indefinite length of time and one can repeat an experiment as many times as one
wishes under what seem to be equivalent conditions. If the outcome of an experiment is
random one can find the average behavior by repeated trials. In traffic one is never quite sure
if one is repeating an experiment under nearly equivalent conditions, and furthermore one
cannot repeat the experiment indefinitely because the traffic behavior is known to vary from
year to year. The "laws" of traffic are not valid for all times in the future. In traffic one will
always be confronted with the problem of not having as much data as one would like.

These inherent limitations on the accuracy of any theory of traffic flow are things that

always be confronted with the problem ot not having as much data as one would like.

These inherent limitations on the accuracy of any theory of traffic flow are things that
one must learn to accept. Certainly a traffic engineer is not concerned about the detailed
behavior of each and every driver in a city; he is only interested in the typical or the average.
That the latter is only very crudely defined cannot be remedied by better theory or more

accurate data. A theory that gives predictions to an accuracy of 25% or even a factor of 2 is

12

a




better than nothing and perhaps in some cases the ultimate accuracy of any prediction. That it
does not give the 10% or the 1% accuracy that engineers are accustomed to expect in
engineering applications of physics is not always a reflection of a poor theory but more likely

a crudely stated but nevertheless relevant question.
Bibliographical Notes

There is no published literature in which statistical mechanics and highway traffic are
compared although the papers listed below by Cohen, Newel], and Prigogine were obviously
motivated by similarities in the two subjects and other works to be discussed later certainly
mimic many of the techniques of statistical mechanics even if it was not intended. There is a
very large number of books on statistical mechanics but most of the modern textbooks
emphasize the methods of applying the conclusions to current physical problems. The )
references given below contain the most thorough discussion of foundations. The review |
paper by P. and T. Ehrenfest is a classic and gives a thorough history of the early develop- {
ments of the kinetic theory of gases and a penetrating analysis of the controversies. Despite
the early date, much of the discussion is as relevant today as then. The book by Tolman is

also quite old in terms of the developments in physics but it is still one of the best books

the early date, much of the discussion is as relevant today as then. 1he book by lolman is
also quite old in terms of the developments in physics but it is still one of the best books
available. The book by Khinchin treats the subject from a rigorous mathematical point of

view (to the extent that such is possible).
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II. LOW DENSITY TRAFFIC (NO INTERACTION)

1. Introduction. Since any realistic mathematical description of traffic flow is certain to be so
complicated that we would have great difficulty in analyzing it, the main object at the present
state of development of traffic theory is to construct models which are as simple as possible
but still contain some similarity with certain aspects of real traffic. We shall therefore begin
by considering what seem to be the crudest possible models and then gradually add
refinements to thern.

The three basic ingredients of any theory are 1. a description of the population of
drivers. 2. a description of the road network and 3. some equations of motion with an
appropriate specification of an initial state. The simplest population of drivers is a population
of identical drivers. The simplest road network is a homogeneous highway of length L say
with one entrance at x = 0 and one exit at x = L. The simplest equations of motion are that
each driver travels at a constant velocity v. We represent the highway as a one-dimensional
line and a car by a point (the position of its center for example). If x;(t) is the position of

the j* car at time t then the equations of motion are

SO L 0 <x(h <L (L.1)
At I
Z0 v fro<xmp <1 (L)

the solution of which is
xft) = x{0) + vt fO<x(t)< L
or
x(t) = v(t-1;,) forO < t-t, < Lo
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if t,, is the time the car enters the highway at x = 0.

This system of equations is so simple that it seems hardly necessary to say more. To
lay the groundwork for future refinements, however, it is convenient to use this model as a
means of illustrating some of the dynamical and statistical concepts that will be necessary in
the treatment of more complicated models and also to see how some of the ideas of chapter 1
relate to this model.

Unlike classical mechanics in which the equations of motion are second order
differential equations and therefore require a specification of both initial positions and
velocities, (1.1) is a system of first order equations. Even for more general models it seems
reasonable to assume for traffic flow that the desired speed of a driver is a property of the
individual driver (analogous to the mass of a particle), something which the driver retains for
all time. For a system in which a driver deviates from his desired speed to stop for a traffic
signal or to slow down as he overtakes another car, etc. it is still reasonable to assume that
the driver’s behavior at any time depends only (or at least mainly) upon his position on the
highway and the positions of other cars. We might therefore postulate for a fairly general
class of models that the state space of the system is the space of position coordinates only,
but not also velocities (although the description of the population of drivers implies a

specification of the properties of the j™ driver including his desired speed).
but not also velocities (although the description of the population ot drivers implies a

specification of the properties of the j™ driver including his desired speed).
The state space of the system under discussion thus consists of spatial coordinates x; ,
j=1,2..., Nfor which N represents the total of all cars which may use this highway

during any specified time of observation. Those cars which are not on the road at any
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particular time can be assigned any coordinates not in (0,L). They may be in parking lots or
on other highways.

The equations of motion of our system consist of some rule whereby we can deter-
mine the position x,(t) at any time t if we know the corresponding positions at any earlier
time. In the present situation we determine x,(t) of the cars in (0, L) at time t from the
positions at an earlier time for the cars in (O,L) at the earlier time through (1.1), otherwise
from the times at which they enter (0, L). The entering times can be considered as properties
of the population or as part of the equations of motion not covered by (1.1). Thc evolution of
our system is then represented by a trajectory (x,(t), x,(t), - ) in the space of coordinates
(X,, X3, - *). If cars not in (0, L) are assigned the coordinates O or L, this trajectory is a
piece-wise linear curve in the N dimensional space which changes direction each time a car
etther enters or leaves (0, L).

One can also represent trajectories as a curve in an N+1-dimensional space (t, x,,
Xp.Xy). The N-dimensional curve is then the projection of the N+1 M¢nsionﬂ curve onto
the N-dimensional space with the parameter t represented as a parameter along the latter
curve.

Because of the difficulty in visualizing trajectories in an N or N+I1-dimensional

space, it is more usual to draw two-dimensional projected (x;,t) graphs. On the same graph of

Because of the difficulty in visualizing trajectories in an N or N+I1-dimensional
space, it is more usual to draw two-dimensional projected (x;t) graphs. On the same graph of
position vs. time we draw each single car trajectory .x;(t). This has the obvious advantage of
simple geometric representation but, if there is an interaction between cars, it has the
disadvantage that the trajectory of one car depends upon those of other cars whereas in N or

N+1 dimensions there is just one trajectory which describes all cars simultaneously.
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For the particular model proposed here, all cars travel at the same velocity. The single

car trajectories are all straight lines of slope v as shown in figure II.2 rather than the more
realistic type of picture such as in figure II.1. The spacing between the cars is fixed and there

is no passing. Furthermore if the spacing between cars is larger than the range of influence

between cars, the velocity v can be interpreted as some average free speed or desired speed E
of the drivers. r

The most important feature of this model that makes the equations of motion
manageable is that there are no interactions and so the trajectory of one car is functionally 7
independent of any other car. Although we really have a system of N simultaneous
equations, these equations are uncoupled and equivalent to the superposition of N indepen- i

dent one car systems.

L

////'

O t 0 t

Fig. Il 1 Fig. 1l 2
Typical trajectories of cars Trajectories for cars all traveling at the same velocity

@
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2. Macroscopic quantities. Three quantities that experimentalists frequently measure are the

density of cars on the highway, k, the mean velocity, v, and the flow, q. The flow, also
called the volume of traffic, is, roughly speaking, the number of cars crossing a fixed point
on the highway per unit time. In the present model in which all cars travel at the same
velocity, the mean velocity must be v but the precise definitions of k and q are less
obvious.

Density of cars, k, should represent the number of cars per unit length of highway.
Unfortunately the number of cars in any section of highway must be integer and if we take an
arbitrarily small interval about some point x, as would be usual in defining a density, it will
contain either O or 1 cars. The density is either O or oo in the limit of zero length of highway.
A similar problem arises, however, in fluid dynamics. The density of mass is defined as the
mass per unit volume but since mass is atomic one cannot take an arbitrarily small volume to
define density at a point.

There are two approaches to this problem. By analogy with the usual procedure in
physics, one can imagine a length of highway sufficiently long as to contain many cars but
sufficiently small that the gross aspects of the system can be considered constant over this
section of highway. This scheme Works well in physics because any element of volume that 1s

small in terms of visible dimensions of length usually still contains an enormous number of

section of highway. 'I'his scheme works well 1n physics because any element OI VOIUINE tnaL 1y
small in terms of visible dimensions of length usually still contains an enormous number of
particles. Also it is the nature of the physical laws that local concentrations of particles
diffuse very rapidly. Even though there will be fluctuations in the number observed in volume
elements of the same size, these fluctuations will be small compared with the number of

particles observed. In traffic there are serious problems in observing a density because the
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lengths of highway one would like to use in evaluating a density seldom contain very many

cars but if one increases the length one 1s apt to exceed the range of highway over which
traffic can be considered more or less homogeneous. Nevertheless this is the only practical j
way of evaluating a density unless one makes repeated observations and computes an average,
but then one has the problem of ascertaining if the different observations were done under 1
equivalent conditions.
The second approach to defining a density is mathematically more satisfactory but 4
experimentally impractical. One first defines a joint probability distribution over the possitle
states of the system. Suppose F (x;,X,, - - - ,Xyt) is the probability that car I has coordinate
less than x,, car 2 less than x,, etc. for 0 < x < L at time t. Any car not in (0,L.) can be put )

at O or L. The marginal probability that car j has coordinate less than x; is

J

FI_(xj;t)=F(oo,°0,..,x.,oo..;t). (2.1) |

IfF (x; 2)is differentiable then there is a probability density for the coordinate x(t) of car j

£ 0 = ZF (6 9) 2.2)
i X 7

0

o

which is interpreted to mean that for small dx, f_(x; #)dx is the probability that x;(t) lies
/)

between x and x + dx. The density of cars at x is then

between x and x + dx. The density of cars at x is then

N
k(x, ) =Y fx; 0. (2.3)
=
The connection between the two interpretations of density arises as follows. Let x;(t)
be the random position of car j and for any small interval (a,b) in (O,L) let %, (x) be the set

characteristic function of (a,b) i.e.,
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_Jlifa<x<bd
Aap®) = {0 otherwise _ (2.4)

Xa(X()) is a random variable with value 1 if the j* car is in (a,b) at time t and zero

otherwise.

N
I MEI0) (2.5)
=l
is the number of cars in (ab) at time t. If we divide this by (b-a) we obtain what is
experimentally evaluated as the density.

We hope that the stochastic structure of the {x,(t)} is such that a law of large
numbers applies, which in the present context would imply the value of (2.5) divided by the
expectation of (2.5) would be nearly equal to one for almost all realizations of the random
variables x;(t). For this to be true, however, we must choose (b-2) sufficiendy large that many

X(X;(t)) are non-zero. The second definition of density (2.3) is equivalent to

kK(x, £) = lim :

a3 b-ox (b = (1)

N
E(Y %, &)} (2.6)
j=1

in which E{x} represents the expectation or average of x.
The interpretation of the flow q has similar problems, in fact the only difference

between k and q is that k is the spatial density, the number per unit length of road, while

‘The interpretation ot the Ilow ( [ias SIMUAr ProbIeIns, 11 FdCL LIE UILY WLCICULG
between k and q is that k is the spatial density, the number per unit length of road, while
q is the "time density." In the (x,t) space, k is the density of crossings of the x axis at
fixed t and q is the density of crossings of the t axis for fixed x by the trajectories x(t).
Furthermore for the case of equal velocity v for all cars, the q and k are simply related

by the equation
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g = kv. 2.7)
This one can see from the fact that if at any instant there are n = kx cars on an interval of
highway (0,x), then these n cars traveling at velocity v will all pass the position x ina
time x/v. Thus n = kx = q x/v.

Edie [1] has suggested another interpretation of q and k which is in practice
somewhat easier to apply. Consider any area A (which for convenience we choose as a
convex set) in the (x,t) plane (see figure I1.3). Let Ax; be the distance traveled in A by car j
and At be the time traveled in A by car j. Now define the density of cars k and the flow

of cars q in A by

SA, g=LF A @8

|
|
l
|
|

L—Atj—-l

Fig. 11 3 Fig. Il 4
Sections of trajectories enclosed by area Equivalence of definitions
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The k and q so defined are random variables and if A is too small we again have
difficulties analogous to those described above because A may be empty or contain only one
non-zero Ax;. We can formally avoid this problem by defining k and q by

k(x, 1) = lim ;11_2 E(A 1} ; qix,) = lim = % E{Ax) . (2.9)
A—0 J J

A—>0

in which A->0 implies that the largest distance or time interval in A vanishes while A
converges on the point (x,t).

If all relevant functions of x and t are continuous functions of x and t, then the
definition of k(x,t) in (2.9) is equivalent to (2.3) or (2.6). To show that this is true, divide the
region A into narrow vertical strips as shown in figure II 4, the k™ strip A, including
times t, < t < t,,,. The time A t; which the j* car spends in A can be written as the sum of
the times spent in each of the A,. Since the velocity v is finite (the trajectories are not
vertical) most trajectories which enter A, will spend a time t,,,-t, in A,. The only exceptions
are those trajectories which enter or leave through the upper or lower ends of A, near the
positions b, or a, respectively. These latter, however, will contribute nothing in the limit of
arbitrarily narrow strips if f(x,t) is continuous and the boundary of A is smooth.

It follows then that

E{A t} = % E{time spent in A, by car j}
It follows then that

E{A t} =« %E{time spent in A, by car j}

.1 — L) P{j* car is in A at time t )

~2 (t
k
b,

=T G, - 1) [, @ tax

In the limit ¢,,, - t, = O, this last sum is itself an integral over the time and we have
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Eas) = [[draf @ o
A

This relation can be proved more rigorously and is in fact valid for any region A such that
" the integral over the region A is mathematically well-defined.

If we now let A be an arbitrarily small region about some point (X, t) and assume

f,(x, 1) is continuous and therefore essentially a constant over A, we have

p)

. E{ary _
lim = lim fAfdx dtf, (1) = f,06 D)

4a>0 A A0
The terms of (2.9) and (2.3) are all equal.

Since in practice one usually infers the values of k(x,t) or q(x,t) from a single
observation, the usual measurement of k(x,t) as the actual number of cars in an interval of
highway about some position x attime t is essentially equivalent to (2.8) when A is
chosen to be an arbitrarily narrow vertical slit of the (x,t) plane, an A, of figure II 4.
Similarly the usual direct observation of q(X,t) is equivalent to (2.8) when A is chosen to
be an arbitrarily narrow horizontal slit of the (x,t) plane. It is not obvious what shape or size
of A leads to the most accurate estimates of k(x,t) or q(x,t) for a single observation
particularly if k(x,t) and q(x,t) are not constant functions of x and t but (2.8) at least gives

nne the ontion of chnnsine whatever shanes of A micht seem most snitable in anv situation.

particularly if k(x,t) and q(x,t) are not constant functions of x and t but (2.8) at least gives
one the option of choosing whatever shapes of A might seem most suitable in any situation.
As yet very little has been done to determine "best” statistical estimates of parameters
occurring in traffic models. Actually most models that exist now do not describe the statistical
aspects of traffic flow in sufficient detail as to admit the possibility of one even posing such

problems.
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3. Stochastic description. So far we have avoided any detailed discussion of what sort of

arrival pattemn is reasonable in this problem of traffic flow on a homogeneous section of
highway although in the definitions of macroscopic quantities it was necessary to have some
fairly well behaved probability structure in order that these things have any meaning at all.

There is inherent in almost any traffic situation some uncertainty. One cannot predict
exactly when or how many cars will enter a highway, for example. In principle, probability
distributions can be determined experimentally by repeated observation but sometimes one
can deduce certain features of them from plausible assumptions about uncertainties in human
behavior.

One important human limitation, for example, is that people can not judge time with
split-second precision, in fact most people cannot éredict when they will depart on a journey
to an accuracy better than one minute. If there is a probability density for a given driver’s
departure time, it should therefore be nearly constant over small times of the order of a
minute perhaps. Furthermore the uncertainty of departure time for one driver should be
statistically independent of the uncertainty for another driver.

To exploit this suppose that the section of highway under discussion is fed by a very
large parking lot representing an idealized source of cars from which drivers start their

Journey. There is to be no interference between the cars in leaving the lot and there are to be

large parking lot representing an idealized source of cars from which drivers start thewr
Journey. There is to be no interference between the cars in leaving the lot and there are to be
no traffic signals or other external influences that would cause statistical correlations in the
departure times of the cars. We will therefore assume that the departure times i.e., the times
at which drivers enter the highway at x = 0 are subject to the statistical uncertainties

described above.
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Consider a short (perhaps a minute) interval of time between some arbitrarily selected
time t and time t+T. Any " driver has a certain probability density associated with his
random departure time and by hypothesis this density is essentially constant over the time
(t,t+7). If the density at time t is oy(t) then the probability that the j® driver leaves in this
time interval is approximately oy(t)t. It is to be implied also that this T is sufficiently small
that o,(t)t is small compared with 1 for all j and t.

This oy(t) is closely related to the probability density for the position of the j® car x(t)

at time t, the f (x, ) of the last section. If the j™ car crosses x = 0 in the time interval (t, t

+ T) and travels with velocity v, it is certain to lie in the spatial interval (0,vt) at time t+7.

Thus oy(t) = v fo(O,t).

Suppose we now choose t as a time when some car has entered the highway and we
ask what is the probability, P, (T, t), that no cars enter the highway during the time interval (t,

t + 7)? Since the departure times of different cars are assumed to be statistically independent,

P(t, 1) = ; [1 - o 1],

J=1

if there are M cars still in the parking lot at time t and we label them with the index j. If

if there are M cars still in the parking lot at time t and we label them with the index j. If
oy ()t is sufficiently small we can write l-oy(t)T as exp[-0(t)t] and obtain

P,(1t) ~ exp[-a(t)T] 3.

with
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o) =% o) (32
=

In this formula, the oy(t) and consequently also the o(t) were to be nearly constant
over the time interval t to t+T. Equation (3.1) admits the possibility of slow varations of
P, (tt) with t caused for example by hourly variations in demand but it is the more rapid
exponential dependence upon T which is of primary concern here. The quantity 1-P (T.t)
considered as a function of 1 represents the distribution function at time t for the random
time interval between departures, the probability that this interdeparture time has a value less
than T.

To derive (3.1) as an exact limit distribution one would imagine that the o(t)
depended upon M in such a way that for M — o we have oy(t) = o4(t, M) — O for all ]
and t , while ot, M) — o(t). In practice we do not have an arbitrarily large M and it is
not natural to think of the ¢ (t) being dependent upon the size of the parking lot. We can,
however, treat (3.1) as a plausible conjecture which is subject to experimental confirmation.
We can also define roughly the sort of experimental conditions under which one might expect
(3.1) to be a reasonable approximation.

The conditions under which (3.1) is plausible are: (1) 1(t), being a measure of the

average time between departures, should be appreciably larger than about 3 seconds, three

I'ne conditions under which {3.1) 1S plausible are: (1) L/Qi(t), being a measure oI tne
average time between departures, should be appreciably larger than about 3 seconds, three
seconds being a typical time headway for congested traffic where the statistical independence
assumptions are not expected to be valid, (2) T must be small enough (a few minutes
perhaps) so that we cannot single out any particular driver as having a significant probability

of departing between time t and t+t;, and (3) o(t) is nearly constant over a time <. The last
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condition is the least critical because on the one hand it is usually true (typically traffic
demands or average headways should be nearly constant over about 10 to 20 minute intervals)

and on the other hand if it is not true we can modify (3.1) accordingly. In the above

derivation the o4(t)t was used as an approximation to f T o (z)dz . Similarly (3.1) is used
i

as an approximation for a more general expression

P (T, 1) ~ exp

- f T @ dz] (3.3)

where the o(z) is still as given in (3.2).

We can now go one step further and ask: what is the probability that j cars enter the
highway between time t and t+t. To simplify nétation we will delete for now the
dependence of P (T,t), a(t), etc. upon t and take P (T,t)=P (T)=e"

To evaluate the probability P,(T) that one car enters between time t and t+T, we note
first that for any z, O<z<T, the probability that no car enters between t and t+z, that one
enters between t + z and t + z + dz is -P(z + dz) + P (z) = ¢ adz.

The probability that there is one car in the above interval dz and no others in (t, t + T)
is the above probability multiplied by the conditional probability that there is also none in the

interval (t + z + dz, t + T) given that there is none in (f, t + z) and one in the interval dz. If

IS (e apove propavility IMUIOplIEd DY INEe CONAIlOoNal propapuity [nal were 1S also none 1n e
interval (t + z + dz, t + T) given that there is none in (f, t + z) and one in the interval dz. If
M is very large, the fact that one car has already been removed from the parking lot does not
significantly alter the probability of no entrances in the final interval fromt+z +dztot + .

We therefore conclude that the probability of one car in dz and no others in (t, t + T) is
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e 'uzadze -(t - z - dz) ~e —a't(xdz

and
P (1) = f ‘ dz0e ™ = Qte ™™

Similarly one can argue that the probability of one car in (t, t+z), a second car in (t+z,

t+z+dz) and no others is approximately
oze ®otdze ™™ = o’zdze™

and so the probability of two cars in (t, t+7) is
P(1) = j " dre 0y = _;_(ar)ze ot

More generally the probability of j cars in (tt+1T) is

P = (foy e (3.4)
J:

This is the famous Poisson distribution for the number of events j. It arises in a wide
variety of applications. Typically the Poisson distribution arises in any situation where one
asks for the probability that j events will occur (an event here is the entrance of some
specified car onto the highway) when there is a very large number of independent events that

~oaild necnr (here there are manv cars in the lot that could enter the highway) but the

specified car onto the highway) when there is a very large number of independent events that
could occur (here there are many cars in the lot that could enter the highway) but the
probability that any specified event occurs is very small (there is a small probability that any
specified car will enter the highway during the time T).

The fact that the Poisson distribution like the exponential distribution of (3.1) can be

derived as an exact limit distribution is again somewhat academic because the appropriate
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mathematical limit cannot be physically realized, but one can describe roughly the conditions
under which (3.4) is plausible. One certainly would not use (3.4) for example to calculate
P(t) for j so large that j cars entering the highway during a time interval would necessari-
ly imply some congestion.

If o is a slowly varying function of t, the corresponding form for P;(7,t) is obtained
by the substitution of a(t) for o in (3.4). If o varies more rapidly (3.4) can be further

generalized to the form
Pt 0 = [ o expl-["" ooyl it - 2.5)

Since we have already defined q(0,t) as the expected number of cars that enter the
highway per unit time we can now identify the a(t) in the above formulas as the observed
flow since

g0, = lim 2 TP, 0 =0 . (3.6)

1250 T g

For the model considered here in which all cars travel at the same constant velocity
v, the position of any car at time t is uniquely determined by the time at which it enters the
highway at x = 0. A specification of the probability distribution for all entrance times, such as

the ores described above, therefore implies a specification of the probability distributions for
highway at x = 0. A specification of the probability distribution for all entrance times, such as

the ores described above, therefore implies a specification of the probability distributions for
any events whatsoever that may occur on the highway (insofar as the event in question is

determined by the positions of cars at various times).
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If j cars enter the highway at x = O between time t and t+t, the same j cars must
cross a position x during the time interval t+ x4 and t + x4 +7. Thus if P,(t,t,x) represents
the probability of j cars crossing x during a time ttot+7

P(t, 1, x) = P(1, t - xlv, 0) (3.7
identically for all j,t, t and x. It follows also that
q(x, t) = q(0, t-x%) (3.8)
and k(x, t) = k(0, t - xV).
If the traffic entering the highway has a Poisson distribution in time at x = 0, it must also
have the same Poisson distribution of crossing the position x at a time x/v late;.

The spatial distribution of cars at a fixed time will also be Poisson distributed because
there can be j cars in an interval of highway between x and x+{ at time t if and only if
these j cars entered at x = O during the time interval t-x/v and t-(x+&)/v. If the latter has the
Poisson distribution (3.4) with parameter q7 for a time interval 7, the probability of j cars in

an interval of highway of width & is

P(E) = (’;,Y e

a Poisson distribution with parameter g€~ = k& i.e., the Poisson distribution which has a

mean spatial density of cars k. If the q and k vary with x and t one must of course use

a Poisson distribution with parameter q&v = k& i.e., the Poisson distribution which has a
mean spatial density of cars k. If the q and k vary with x and t one must of course use

the appropriate values of q and k as given by (2.18).

4. Poisson distributions and Poisson processes. The Poisson distdbution arises in a wide

variety of traffic situations besides the one mentioned above. For future reference, we review
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here a few of its properties and origins. For a more complete discussion of some of the
following, see the book by Feller [2] or the review by Gerlough [3].

In most text books on probability theory, the Poisson distribution is derived as a limit
of a binomial distribution. Suppose an experiment results with probability p in the event E,
sometimes called “success" in the context of Bernoulli trials but in the present context the
event that a driver enters the highway during the time (t,t+ T ). If we make M
statistically independent trials of the same experiment, the probability of j occurrences of E

in the M trials is
P = (M] pi(l - pyi (4.1)
where
1
(M) - _ M! .
il JM - )
If we keep A =pM fixed while p = 0 and M — | then

L, Ne (4.2)
p; 5

This method of derivation of the Poisson distribution is certainly simpler than the one

described in the last section, but it is not quite as general. We could use this simple

This method of derivation of the Poisson distribution is certainly simpler than the one
described in the last section, but it is not quite as general. We could use this simple
derivation to show the following: If the parking lot contains M cars and each has a probabili-
ty oy(t)dt,

o) = otyM
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of entering the highway between t and t + dt, independent of the entrance times of any other

cars, then the probability of its entering between t and t+ T is

_ e _ 1 L+ T
p=["" awa ”M‘f: an)dt

and P;(t, t) is as given by (3.5). To derive (3.5) in the last section, we did not, however, need
to assume that the oy(t) were all equal. Different drivers could have different distributions for
entrance times. The assumption that one driver’s entrance time is statistically independent of
any other .is, however, basic to both derivations.

In deriving the Poisson distribution, we have already made use of the fact that the
number of cars entering during one interval of time (t, t+ 7,) is (for M — o and oyt) —
0) statistically independent of the number entering during any non-overlapping interval (t +

T, t + T, + T,) say. It follows that the probability, P(j,, j,, ..., ji), that j; cars enter during (t,

t+7T)j, MEA+T,t+7T, +7T), ..., andj, in (t+ T, + T, t+T +°T)is
kj' e™ A e ™ N e ™
PGy, Jyo e 0 J)) = —— X Me % £ (4.3)
Jl! J2' Jk!
where

A, = f’ Mondr , A, = J;:T‘ "R ot ..

! 1

1 +7T

A, = J;' Mondr , A, = J; R aqndt

+‘[I

This is the multiple-Poisson distribution which in most textbooks is derived as a limit of the
multinomial distribution in the special case of repeated trials of the same experiment. From

this we can define a Poisson process.
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In the general theory of random processes [4], a random process is a family of random .

variables X(t), parametrically dependent upon some parameter t which takes values in some
arbitrary space. The parameter space will usually be the real numbers, —eo <t < +e , having
the physical interpretation of time. For any values of t;¢t,,t,, .., ¢t , X() , X(t,) , ..., X(t)
are random variables. A point process is a special case of a random process for which X(t)
assumes only the values 0 or 1, I if an event happens at time t, O otherwise. In the present
‘context an event is the entrance of a car onto the highway, and the point process the process
of entrances. In describing the probability structure of a point process, it is sometimes more
convenient to specify the joint probabilities for the times t, , t,, ... at which events occur,
rather than the joint probabilities associated with the X(t) at various arbitrary times.

The probability distributions of entrance times were originally defined here by specifica-
tion of the probability densities oy(t) for the entrance time of each i™ car, along with the
assumption that these entrance times were statistically independent. This description not only
defines the probabilities for the times at which cars enter the highway (the process of entrance
times) but also which car enters at any time. Equation (4. 3) represents first of all only a limit
distribution or an approximate property of the entrance times but secondly does not include a
description of which cars enter during any time intervals. A process which satisfies (4. 3) for

all values of t, T,, T,, - - -is called a Poisson process with rate 0(t).

description of which cars enter during any time intervals. A process which satisiies (4. 3) tor

all values of t, 1, T,, - - - is called a Poisson process with rate o(t).

Most elementary texts on probability theory treat only Poisson processes for which
o(t) = ¢, a constant independent of t. The term "Poisson process" is also used frequently to
imply that o(t) is constant. We shall use the term here usually in this more restricted sense,

but in cases where there may be some confusion we shall use the more specific expression
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"homogeneous Poisson process” to refer to this special case. The non-homogeneous processes
will arise in some discussions of traffic flow. It is obvious that they are relevant to the study
of flows in which q(x, t) varies with time because of rush hour traffic, etc.

Homogeneous Poisson processes have certain special stochastic properties not shared
by non-homogeneous processes. For a homogeneous Poisson process, the probability of no
events during (t, t + 1),

Pft,t)=¢e™" , (4.4)
is independent of t. In particular, this is true even if t is the time at which an event has
occurred. If in this case, we let T be the time of the first event after t, given that there is
one at t, then

Pyt,t) = P{T>1} =1-Fq1)
Fft)=1-e™
Thus F; is the distribution function for the time between the event at t and the next event.
If welet T, , T, , - - - be the time intervals between successive events, it follows also
that T; has a distribution function
P(T, > 1} =¢™ (4.5)
independent of the values of any other T,, k #J. The set of random variables {T;} are

mutually independent. A homogeneous Poisson process is also uniquely defined by saying

independent of the values of any other T,, k #j. The set of random variables {!;} are
mutually independent. A homogeneous Poisson process is also uniquely defined by saying
that the times T, are independent random variables with a distribution function (4.5), and
that the (marginal) probability of finding some event during a time interval (t, t + dt) is audt.

The process is also uniquely defined if we say that there is a probability o dt of an event

35



during (t,t+ dt) for any t, independent of the times of any other events outside this
interval.

The latter interpretation has an obvious generalization to non-homogeneous processes. A
non-homogeneous Poisson process is one for which there is probability o(t)dt for an event
occurring during (t, t + dt) for any t, independent of the times of any other events outside
this interval. The former interpretation of a Poisson process in terms of the times T; between
events, does not however have a simple generalization. The times T; for a non-homogeneous
Poisson process are not statistically independent.

A homogeneous Poisson process is also a special case of another well-known type of

point process known as a renewal process. A renewal process is one for which the times T;
between events are independent identically distributed random variables with some general
distribution function, not necessarily exponential. As a special case of a renewal process, the
most important property of the exponential distribution for the T; is the following. If we
know that T, > a;ie., atime a has already elapsed since the last event occurred, then

P{T,>1 +a} gtra
P(T, > a} e™

P{T, ~a > 1T, > a} = e ™ (4.6)

Thus the distribution of time until the next event, T, - a, given that there has been none for

atime a,isalso e, independent of a . The time until the next event is independent of

'I'hus the distribution of time until the next event, T, - a, given that there has been none for
atime a,isalso e, independent of a . The time until the next event is independent of
how long it has been since the last event.

A non-homogeneous Poisson process is not in general a renewal process. The non-homo-
geneous Poisson process is a different type of generalization of a homogeneous Poisson

process. It is, in fact, a simpler type of process to treat than the renewal process. It is always
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possible to map a non-homogenous process into a homogeneous Poisson process. If we define

anew time t by
ﬂﬂ=£a@ﬂ (4.7)

then t (t) is a monotone increasing function of t if o(t) > 0. There is a one-to-one
correspondence between t and t. As a function of t” , however, the Poisson process is
homogeneous.

If real traffic were known to conform with a homogeneous Poisson process of unknown
flow g (i. e, o) the estimation of q from a single observation of the number of cars
which enter the highway during a time 7T is a classic problem in parameter estimation. It is
discussed in most books on mathematical statisticé as the problem of estimation of the mean
for a Poisson distribution.

If j cars are observed in a time T, the usual estimate of q is

g =jn |
The § is a random variable. If the experiment were repeated under identical conditions (same
q), § would have a probability distribution of possible values determined by the fact the

number of cars observed in a time T has a Poisson distribution with parameter qt.

2 T (O
number of cars observed in'a time T fas a Poison distribition with parameter qft.

k
mq=M}a%?ewuk=mLm

The estimate of § is unbiased: i.e.,
Efg) =q .

The standard deviation of § is
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n 12
E{@ - 94" = [%]

The standard deviation divided by the mean is a measure of fractional deviation one would
expect between the estimate and the actual value of q. This ratio is (gT)™* ~j~

Even if the traffic is not Poisson distributed, it is generally a "good rule of thumb" to say
that if one is using some count of events as an estimate of some parameter, the fractional
error in the estimate will be of the order of magnitude of (number of events) .

Unfortunately in most traffic counts, the value of 7 and corsequently qt is limited by
the desire to have q nearly constant over the time T . Even under the most favorable
conditions, one cannot usually expect flows to remain constant for more than 15 minutes or
perhaps an hour. On the other hand, if the hypothesis of a Poisson distribution is to apply, we
should have average time headways, 1/q , of the order of 10 seconds or more (otherwise there
will be some interactions between cars). Typically, the best one can do is qt in the range of
10* to 10* , (qT)™* is then of the order 10" or 10%.

It is rather difficult to devise a meaningful statistical test for the hypothesis that a traffic
stream is Poisson distributed. Cars have finite size and interact strongly at close headways.

The Poisson process is certainly not an exact representation of traffic, and one can devise

statistical tests (sensitive to short headways) which would almost always lead one to reject the

The Poisson process is certainly not an exact representation of traffic, and one can devise
statistical tests (sensitive to short headways) which would almost always lead one to reject the
hypothesis that the traffic is a Poisson process. The conventional theory of statistical testing is
not ideally suited to the rather poorly defined question: is a hypothesis (known to be false)
approximately correct? It would be possible to devise some suitable tests, but the logic would

become rather involved.
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5. Velocity distributions. The model just discussed in which all cars travel at the same

velocity gives only a rather crude description of the way cars actually behave. It is one which,
however, is very useful in estimation of the proper synchronization of traffic signals or the
description of flows on networks in which the network aspect of the problem is of main
concern and further refinements of the detailed behavior of traffic on single highways adds
little insight but considerable complication.

The most obvious fault of this model is that it does not permit passing nor the natural
spreading of a platoon due to variations in the speed of the cars. To incorporate this into the
model we will simply assign to each j* driver his own free speed v; which may be
different for different drivers. Since different single car trajectories will have different slope,
some trajectories will intersect (the cars will pass each other). Depending upon the nature of
the highway a passing may or may not produce a significant delay to the driver who wishes
to pass. We will assume for the present that there is no interaction between cars. This will be
valid if either the passings can be executed with negligible change in velocity or if passings
are so rare that one can neglect their consequences (the density is very low).

Again the detailed dynamics is simple. The trajectories are given by

x(t) = x(0) + vt (5.1)

but certain modifications must now be made in the definitions of the macroscopic variabies

X{t) = X{U) + v Ny
but certain modifications must now be made in the definitions of the macroscopic variabies
and the stochastic description of the system.

A density k and a flow q can still be defined as the number of cars per unit length of

highway and the number passing a fixed point per unit time respectively. Since there are
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many different velocities, however, the simple relation q = kv no longer has an obvious
meaning.
Suppose we have only finitely many possible velocities vV, v, - - -, v™ and for
each velocity v® there is a density k® of cars with this velocity and a flow q®. For these
cars alone, all with the same velocity, it is true that
g = VKD or KD = g@p0, (5.2)
Since cars do not interfere with one another, the complete set of trajectories is simply a
superposition of trajectories corresponding to the different velocities. Therefore
g=2q9" and k=% K (3.3)
which with (5.2) gives _
g=kX K"VY% or k =q X, ¢V g). (5.4)
To define an empirical probability distribution of velocities one might quite naturally
proceed in either of two ways. If we take an aerial photograph and count the fraction of cars
with velocity v®, we might consider

@ 0fy ®
ko athT (5.5)
k Y q Wy
J
as the velocity distribution. But if we stood at a fixed point on the highway and counted the

fraction of cars with velocity v* that passed this point, we might consider

as the velocity distribution. But if we stood at a fixed point on the highway and counted the
fraction of cars with velocity v* that passed this point, we might consider

g® _ yO0

q O (5.6)
J

as the velocity distribution. These two distributions are clearly not the same. The extreme

example is when some v® is zero. These cars would be observed from an aerial photograph to

40




have density kX but since they have zero rate of passing a fixed point, a stationary observer
would see none of them.
If we define a spatial mean velocity as
Efv} = Z vk (5.7)
then (5.4) gives
q =k E{v}, {(5.8)
the analogue of the equation q = kv in the case of equal velocities. If one wishes to use the
time distribution q%/q then
k=qEf') (5.9
with
E{v7) = Z(167) (q1). (5.10)

In terms of the time distribution, one can define a harmonic mean velocity as

_ 1
Ef{v'}

E{v}
which is the same as E {v}.
If one uses the technique of defining q and k from segments of trajectories

contained in an area A of the x-t plane as in figure 3, one again obtains (2.8), which does

not contain the velocities of the cars. It follows then that the spatial mean velocity is

contained in an area A of the x-t plane as in figure 3, one again obtains (2.8), which does

not contain the velocities of the cars. It follows then that the spatial mean velocity is

This along with many other similar type relations are contained in [1]. The recognition that

the velocity distribution of cars observed per unit time at a fixed position is different from
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that observed at a fixed time per unit length of highway seems to have originated with .
Wardrop [5], although analogous situations were known in the kinetic theory of gases.

In the previous discussion of cars leaving a parking lot, we were only concerned with
how mény cars left during any time interval since all cars had identical behavior. We must
now construct a model giving not only departure times but also speeds. In the absence of any
specific knowledge indicating that high velocity cars are more likely to depart at one time
than another or more likely to leave after a fast car than a slow car, etc., the only reasonable
postulate we can make is the following. The parking lot contains so many cars that we can
define a velocity distribution

F(v) = fraction of cars in the lot with velocity less than v (5.11)
which can be approximated by some continuous distribution function. Any car which is due to
depart from the parking Iot is now sampled at random from this distribution independent of
any previous departures.

There are a number of equivalent descriptions of the complete stochastic structure of
the departing cars, for example:

1. The time intervals between successive departures are independent identically distribut-
ed random variables with an exponential distribution

P{ time interval <1} =1-¢€7.

ed random variables with an exponential distribution

P{ time interval <1} =1-¢€7.
The velocities of successive cars are independent random variables with a distribution
function F(v) independent of the departure times. (For a discrete velocity distribution

the distribution function F,(v) corresponds to the frequency distribution q /g of

(5.6).)
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The probability of j departures in a time interval of duration T with the first car
having a velocity less than or equal to v, the second car a velocity less than or equal

to v ,, etc., is

(q._"c)f e ™ Fv) Fv,) . Fv(vj) ) (5.12)
J:

This event is also statistically independent of the number or velocities of any depar-
tures during times outside the time interval T.
The cars with velocity less than any given value v also define a Poisson process. The

probability that j cars with velocity less than or equal to v depart during a time 7T is

[qTF"',(V)]’ exp [-gvF, ()] (5.13)
J!

This event is statistically independent of the number or the velocities of the cars
having a velocity larger than v that depart during the time T and is independent of the
number or velocities of departures during times outside the interval T.

We will leave it to the reader to prove the equivalence of the above or to formulate

other descriptions.

One of the main objections to the above postulates about the stochastic properties is

that it is very difficult to test experimentally and it is also difficult to justify on theoretical

One of the main objections to the above postulates about the stochastic properties 1s

that it is very difficult to test experimentally and it is also difficult to justify on theoretical

grounds alone. Before we divided the population of drivers according to their velocities, we

had some hope that the flow would remain constant long enough (half an hour perhaps) so

that we would obtain large enough samples to test the Poisson nature of the traffic. Now with

the same amount of data we want to separate drivers into various ranges of velocities and
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then test not only that the number of cars in each velocity range has a Poisson distribution but .
that they are also statistically independent. This is more than one can do in a satisfactory
way.

If we try to take larger times we must expect not only that the flow may change but
also the distribution of velocities. Certainly the five o’clock rush of commuters is likely to
have a different distribution of desired speeds than the midday shoppers and commercial
traffic.

As regards the justification from postulates about uncertainties in departure times of
individuals we have previously argued that uncertainties in the departure time of an individual
should be a few minutes perhaps, during which time many drivers were likely to depart. If,
however, we take a subpopulation of drivers in some narrow velocity range, it is no longer
plausible that many such drivers are likely to depart during a time of the order of the
uncertainty in the departure time of a single driver. Indeed if we take an arbitrarily small
velocity range, the times between departures of cars with velocities in this range can be made
as large as we please and any fluctuations in individual departure times will be negligible by
comparison. The whole picture begins to look more like a deterministic one than a stochastic

one.

one.

6. Time dependent flow. One important consequence of distributed velocities is that a

concentration of cars on the highway tends to disperse. To investigate this and related
problems we consider a joint density of both position and velocity. Let

p(x, v, t)dx dv = E {number of cars between x and (6.1)




x + dx with velocity between v and v + dv at time t}.
This is the two dimensional density in the space of position x and velocity v at time t.
Correspondingly we define a joint density of flow and velocity
px, v, t)dt dv = E{ number of cars crossing the position x between time t and
t + dt with velocity between v and v+dv) . (6.2)
The p,(x,v.t) is the analogue for a continuous velocity distribution of the k and p,(x,v,t)
is the analogue of the g of equations (5.2) and (5.3) except that we are now admitting the
possibility that these quantities may vary with position and time. If these functions are
continuous in x and t, they are related by the equations
Plx, v, 1) = vp(x v (6.3)
analogous to the equation q® = vWk® of (5.2) .

The time dependence of p, and p, is dictated by the equations of motion for the
individual cars. Any car of velocity v that lies between x and x+dx at time t will lie
between X + vT and X + vT + dx at time t + 1. Thus

p(x, v, 1) = pfx+ VI, v, t+7T)foral T, (6.4)
and in particular
p,(xv,t) = p 0, t-x/v)

= p,(x-vi,v,0)
ps(x'vlt) = ps(O,V,t'X/V)

= p,(x-vi,v,0)
gives p, at x,v,t in terms of its values at the origin x = O or at some initial time t = 0.
These equations are the generalizations of (3.8) for distributed velocities.

The density of cars k(x.t) 1s given by
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k(x, 1) = f” dv p(x, v, 1) = f dv p, (x - vt, v, 0), (6.5)

and the flow is

gx, 1) = L’" dv p,(x, v, 1) = f dvvop (x,v, 1) . (6.6)
It is important to observe that one cannot evaluate the density at time t from only the
density k(x,0) at time 0. One must know the distribution of velocities also. The distribution of

velocities, however, is not constant but is given by

p(x, v, 1)
- s (6.7)
1 v, 0 k(x, 9
and
Fo v, 8 = Pl v. B (6.8)
g(x, 1)

respectively for the spatial and time distributions.

The above equations can be used to describe the diffusion of cars due to a distribution
of velocities. Suppose, for example, that initially we know that the density of cars i$ non-zero
only at x = x, but the expected number of cars at x, is 1. We represent this by

P(x.v,0) = d(x-x,) f(v)
in which &8(x-x,) is the Dirac 8-function and f; (v) is the spatial density of velocities taken

from the parking lot population for example i.e.,
in which &(x-x,) is the Dirac 0O-function and f; (v) is the spatial density of velocities taken

from the parking lot population for example i.e.,

v~ dF (v)idv

vy s —
Lw Tt dFVl{“’\)

(6.9)

The Dirac 8-function is, in the modern mathematical literature, called a "generalized

function.” It is a mathematical notion by which a concentrated unit mass at a single point X,
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. is represented as if it had a density. Loosely speaking 0(x-x,) is a function that is zero
everywhere except at x, but at x, is infinite in such a way that the integral of d(x-x,) is one.

The key property of 8(x-x,) is that for any function ¢(x) continuous at x,

[ 86 - x) 400 ax = oz
The integral of a function ¢(x) with d(x-x,) is thus a linear mapping of the function ¢(x)
into itself, the identity operator on (continuous) functions.

The density at any later time, is given by (6.5)

k(x, ) = L"" dv 8(x - pt - x)f(V)

1 X - X 6.10
1 ]x-n (6.10)
L L
t
= 21
[ ==
s
41
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Dispersion of traffic due to distributed velocities

The spatial density is for all times given by the same function f; except for a rescaling of the

spatial coordinates measured from x, by a factor t and a rescziling of the density itself by a

’
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factor t. This is shown in figure (II.5) for some typical shape for f(v). Similarly the flow is

given by

4, ) = x - X x - X, . (6.11)

As another interesting example suppose that at x = 0 we have a fixed cycle traffic signal
fed by a time homogeneous traffic source. The flow leaving the traffic signal will then be a
periodic function of time, i.e.,
q(0,t) = q(0, t + T) (6.12)

if T is the cycle time. If we choose the velocity distribution independent of t at x = 0, then

PO, v, 1) = fv) g (0, 1), (6.13)
with

JAv) = dF\(v)/dv,

is a product of the time independent probability density for the velocities and the periodic
time-dependent flow.

The flow at some x > 0 is given by

g(x, #) = fo”dv p(x, v, 1) = L“’ dv p(0, v, t - x)
- L"" dv £,(v) 0, t - xtv) . (6.14)

Tha ~Antnot fram anv ~ygla Af tha cional wil], Aiffiica and wa avnact that far enffiriantlhr

- L“' dv £,09) 900, t - xiv) . (6.14)
The output from any cycle of the signal will diffuse and we expect that for sufficiently
large x the pulses of traffic created by the signal will overlap i.e., fast cars from one cycle
will overtake slower cars from the previous cycles. Eventually so many pulses will overlap
that the flow should become nearly constant. This effect can be deduced from (6.14).

If we let u = 1/v in (6.14) then
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qglx, ©) = fd_L;fv [l} g, t — ux) . (6.15)
U

u

We can decompose this integral into the contributions coming from successive cycles.
Formally

R 2
j=0 JTix u

o (j+1)T/x d 1
glx, ) = X f —uf{;] q(0, t - ux)
in which the argument t-ux of q increases by T in each range of integration (jT/x , (j+1)T/X)
For x — oo , the range of integration of each integral goes to zero and if f(1/u)/u? jg

continuous for O < u < oo this factor is essentially constant over the range of integration

Thus
= I G+DTix
g, ) > T f~ j du g0, t - w0
J=0 uj j JTix
with
u, = jTix

The remaining integrals are integrals of a periodic function,

G + DIix G+1T T
x f du g0, t - ux) = fdyq(O,t-y)=fdyq(0,y),
JTix i 0

which is independent of both t and x. If the traffic signal is fed by a homogeneous streay,

T JT 0
which is independent of both t and x. If the traffic signal is fed by a homogeneous strey,
with flow ¢, then we can interpret this integral as the average number of cars leaving pe;

cycle or qT. Thus
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g,y > % Lyp |11
o y? u | x
J J

But now for x — o the u; become uniformly dense with spacing T/x so this sum becomes a

Riemann integral
< du 1 w
- = « 6
qlx, 1) = ¢q _J; Ff{;] q .L av f,(v) =q . (6.16)

The time dependent flow at x = 0 thus returns to the constant flow q that exists before the
signal as x — oo .

This represents only one special case of a much wider class of possible flow patterns
p(0,v,t) which will give rise to a flow q(x,t) that converges to a constant q for x—eo.
Similarly there is a wide class of possible initial spatial distributions p(x,v,0) which give rise
to a density k(x, t) that converges to some constant k for t — oo. Note that any flow pattern
of the former type can be mapped into a flow pattern of the latter type if we simply inter-
change the roles of x and t. Any set of straight line trajectories with x plotted vs t, remains a
set of straight line trajectories if we plot t vs x.

For the flow to approach a constant g one must impose certain conditions on p,(0,v.t),
however. If there is a discrete component of the velocity distribution, i.e., some single

velocity v appears with non-zero probability, than any irregularities in the starting flow

however. 1 there 1s a discrete component ot the velocity distribution, i.e., some single
velocity v appears with non-zero probability, than any irregularities in the starting flow
pattern of this velocity will propagate with no dispersion and will exist for arbitrarily large x.
We have avoided this in the above example by having a continuous density f,(v). If for very
high velocities v—eo, the f,(v) does not go to zero fast enough some irregularities in the

starting flow may reach x almost instantaneously. In practice this of course cannot happen
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because velocities are bounded. Here we avoided this problem by choosing f(1/u)/u? continu-
ous at u = 0. Finally, this dispersion only smooths local variations in flow. One must be able
to define some long time average flow q over a time interval (t,t+T*) for some sufficiently
large T.* One must also have some long range uniformity over t of the velocity distributions
to avoid "focusing." These properties are satisfied in the above example by the periodic flow
and time-independent velocity distribution but they would obviously also be true of a more

general class of flows.

7. The Poisson tendency of traffic and reversibility.

In the last section we considered only the densities of position and velocity or
expectations for the number of cars. We made use of the fact that these expectations at some
position x and time t are related to similar quantities at other values of x and t. To study the
probabilities for various events we must, however, consider the evolution of stochastic
properties of the system other than just these expectations.

If in the present model we specify the entrance times at x = 0, or the positions of the
cars at t = 0 and the velocities of all cars, the positions and velocities of the cars are
uniquely determined for all time. Similarly if we specify the joint probability distributions of

all entrance times at x = 0 or positions at t = 0 and all velocities, the complete probability

uniquely determined for all time. Similarly if we specity the joint probabiluty distributions ox
all entrance times at x = 0 or positions at t = 0 and all velocities, the complete probability

structure of all trajectories is uniquely defined. In particular the joint distribution of positions
and velocities of cars at time t and the joint distribution of the times at which cars cross some

point X and the velocities are both uniquely determined.
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