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ABSTRACT
Particle accelerator modeling is an important field of research and
development, essential to investigating, designing and operating
some of the most complex scientific devices ever built. Kinetic
simulations of relativistic, charged particle beams and advanced
plasma accelerator elements are often performed with high-fidelity
particle-in-cell simulations, some of which fill the largest GPU
supercomputers. Start-to-end modeling of a particle accelerator
includes many elements and it is desirable to integrate and model
advanced accelerator elements fast, in effective models. Tradition-
ally, analytical and reduced-physics models fill this role. The vast
data from high-fidelity simulations and power of GPU-accelerated
computation open a new opportunity to complement traditional
modeling without approximations: surrogate modeling through ma-
chine learning. In this paper, we implement, present and benchmark
such a data-driven workflow, synthesising a fully GPU-accelerated,
conventional-surrogate simulation for hybrid particle accelerator
beamlines.

CCS CONCEPTS
• Applied computing → Physics; • Computing methodolo-
gies → Model development and analysis; Massively parallel
algorithms; Neural networks.

KEYWORDS
high-performance computing, particle-in-cell, machine learning,
surrogate modeling, particle accelerator modeling, beam dynamics,
plasma-based acceleration
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1 INTRODUCTION
Particle accelerators are among the most complex scientific devices
ever built, used in medical and industrial applications or the frontier
of high-energy physics. Particle accelerator facilities are modeled
extensively with various scientific codes, many of which use spe-
cialized algorithms based on the particle-in-cell method [1, 2]. Thus,
high-performance simulations are a pillar of modern particle accel-
erator design.

Kinetic simulations of particle accelerators in varying levels of
detail and approximations are often necessary to capture the full
dynamics at play. The authors of this paper, together with their
collaborators, develop the open source Beam pLasma & Acceler-
ator Simulation Toolkit (BLAST).1 Two central codes in BLAST
for this paper are WarpX [3], a time-evolving particle-in-cell code
that was awarded the 2022 Gordon Bell Prize in high-performance
computing, and the recently published code ImpactX, a beam dy-
namics code evolving a particle bunch relative to a reference tra-
jectory [4].2 Complemented by HiPACE++ [5], a specialized code
for plasma-wakefield modeling, these three codes started a new
“Exascale-era” set of multi-node, fully GPU-accelerated and mesh-
refinement capable codes in BLAST [6]. These BLAST codes share
common HPC dependencies for data distribution and performance
portability through the AMReX library [7]. More generally, BLAST
codes reuse further shared middleware libraries and API conven-
tions, and I/O data compatibility through the open particle-mesh
metadata standard (openPMD) [8].

The value of the full BLAST suite is that it covers modeling needs
on different time and length scales, as well as different levels of
fidelity and time-to-solution, in a single framework of interoperable
1https://blast.lbl.gov
2https://github.com/ECP-WarpX
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codes [6]. Since modeling the detailed physics can be expensive,
there is an interest to capture specialized scenarios with reduced-
order and surrogate models. Typical examples of reduced-order
models include reduction of fidelity, neglecting electromagnetic
effects, assuming low energy spreads or limiting the geometry to
(quasi-)axisymmetric scenarios.

For start-to-end (whole-device) modeling in particle accelerator
design and research, reference trajectory-based modeling is very
efficient in describing bunch transport and dynamics evolution over
long distances, often over meters to kilometers. In combination with
using the accelerator lattice position 𝑠 as the independent dynamical
variable, particle phase space coordinates are specified relative to a
nominal reference trajectory and particles may only deviate slightly
from it [9, 10]. More general, time-based modeling uses the time 𝑡
as the independent dynamical variable without further assumptions
on the particle distribution. This can be more costly, but enables
modeling of scenarios with complex particle trajectories, as are
present in advanced accelerator elements that are based on plasma
elements for acceleration [11].

In this work, we explore a data-driven approach to fast modeling
of specialized beamline elements. When collective effects are neg-
ligible, particle accelerator elements can be described as complex
transfer maps for each particle, 𝑓 : R6 → R6, mapping initial 6D
particle phase space coordinates to final phase space coordinates.
One can deploy machine-learning surrogates such as neural net-
works 𝐹𝑛𝑛 to approximate these transfer maps to predict particle
phase space coordinates coming out of the accelerator elements as
functions of phase space coordinates at the entrance to the acceler-
ator element. This formulation is based on the assumption that the
beam particles do not interact and is only valid when there are no
collective effects (i.e., no beam space-charge, wakefield, synchrotron
radiation, etc.), as is the case for traditional transfer maps [9].

2 SYNTHESIS OF DATA AND COMPUTE:
BRIDGING SCALES THROUGH
MACHINE-LEARNING

In this paper, we employ data and compute models in a combined
simulation for fast accelerator modeling. We refer to this as a syn-
thesis, combining traditional physics-based simulations in high-
performance computing in situ with data-driven models that can ap-
proximate computationally costly sections of an accelerator beam-
line. In particular, we combine: (i) a fast modeling approach to study
beamline hybrids that includes conventional and advanced, non-
linear accelerator elements and (ii) a machine-learning augmented
high-performance simulation.

For the first part, we combine advanced accelerator elements
(e.g., plasma-based) with conventional beamline elements. For in-
stance, plasma elements such as laser-wakefields and plasma lenses
are often short (tens of centimeters) and can require high-fidelity
modeling of often many 1,000s of GPU hours for predictive qual-
ity. Conventional beamline elements on the other hand are fast
in modeling, but span large scales (≫ meters). Typically, a model-
ing workflow for advanced accelerator elements would involve a
𝑡-based code such as WarpX for the detailed, plasma-based elements

and an 𝑠-based code such as ImpactX for long-scale transport sec-
tions, with communication between the two codes done via file I/O
of the particle bunch data.

For the second part, we aim to create a fast simulation with
ImpactX that integrates the usually WarpX-modeled, costly, ad-
vanced accelerator elements at a computational cost comparable
to conventional tracking costs in 𝑠-based codes. For this, the strat-
egy in this work incorporates machine-learning surrogates into
GPU-accelerated simulations using node-local inference. Machine-
learning models themselves are created from high-fidelity data from
BLAST HPC PIC simulations - training a transfer-map like model
reduces these simulation results to a specialized machine-learning
data model.

Aiming for a seamless integration of HPC modeling codes and
machine-learning ecosystems, we extended both AMReX-based, GPU-
accelerated codes WarpX and ImpactX with Python bindings using
the new pyAMReX library [12, 13]. pyAMReX implements emerging
community standards for zero-copy, in-memory data exchange such
as the (CUDA) Array Interface [14] or alternatively the open in-
memory tensor structure (DLPack) for sharing arbitrary data among
frameworks. Through this adherence to community standards, one
can create non-owning, read-write enabled views of node-local,
HPC simulation data to Python frameworks such as numpy on CPUs,
cupy on GPUs, permitting to add at runtime custom, just-in-time
compiled GPU kernels, or even GPU-accelerated ML frameworks
such as PyTorch [15].

Python scripting layer and data interfaces enable WarpX and
ImpactX users to design and augment their fully (GPU) accelerated
AMReX C++-based simulations productively. ImpactX implements
callback functions from C++ into Python code that can be adjusted
at runtime to program beam optics elements from Python. The
callbacks can advance the beam particles through any of three
different approaches:

(1) use the Python zero-copy data views to implement additional
transfer maps and integrators as in traditional accelerator
modeling;

(2) call back into accelerated C++ code;
(3) advance their particle tensors through inference with a pre-

trained machine-learning surrogate model, thus completing
the high-performance compute model model synthesis with
data modeling.

The presented approach works on CPU-only hardware too, but
since it is desirable to accelerate machine-learning surrogate in-
ference and traditional modeling components, this work goes one
step further. Both the traditional HPC simulation compute model
and the machine-learning data model are fully GPU-accelerated,
without involving a host-device particle copy, enabling significant
performance benefits over existing approaches [16].

For particle beamline element tracking, the in situ inference of
ML models is very fast compared to the traditional approach of
switching codes through I/O and can be done node-local on each
subset of distributed particles in ImpactX, which simplifies model
deployment in multi-node parallel execution, as is typical for HPC
simulation runs.

2
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3 RELATEDWORK: NEURAL NETWORKS AS
FAST SURROGATES IN PARTICLE-IN-CELL
MODELING

Neural networks are a class of machine learning algorithms that
have been explored as versatile and robust in learning complex
functions, and so serve as surrogate models [17, 18]. In particle-in-
cell modeling for accelerator and laser-plasma science, examples
include:

• Koser et al. [19] used neural networks as surrogate models
for optimizing RF quadrupole accelerator design.

• Djordjevic et al. [20] trained a feed-forward neural network
surrogate from low-dimensional PIC simulations for predict-
ing beam properties in laser-ion acceleration.

• Badiali et al. [16], augmented CPU-only Fortran PIC code
for collisional physics with limited speedup potential and
surrogate precision.

• Edelen et al. [21] used a neural network trained with PIC
simulations in order to accelerate the design optimization of
a particle accelerator.

• In a recent conference proceedings [22], we reported our
progress modeling accelerator elements with neural net-
works. In this work we have improved on the neural network
structure and training, trained on 15 stages, and incorporated
the neural networks as surrogates into a larger accelerator
modeling workflow.

A neural network is a parametric nonlinear function 𝐹𝑁𝑁 :
R𝑛 → R𝑚 whose parameters can be adjusted to approximate an-
other function 𝑓 : R𝑛 → R𝑚 . The structure of the neural network
and the approximation process are described by more parameters,
commonly called hyperparameters. A fully connected feed-forward
neural network has the structure of many interleaved composi-
tions of simple nonlinear functions with linear connections. The
parameters of the neural network are called its weights, denoted
collectively here as the matrices {Ai}𝑖=0,...,ℓ and biases, denoted
collectively here as {®𝑏𝑖 }𝑖=0,...,ℓ . Here ℓ ∈ N is the number of hidden
layers of the neural network. Let A0 ∈ R𝐻1×𝑚 , Ai ∈ R𝐻𝑖+1×𝐻𝑖 for
𝑖 = 1, . . . , ℓ − 1, and Aℓ ∈ R𝑚×𝐻ℓ , 𝑏𝑖 ∈ R𝐻𝑖+1 for 𝑖 = 0, 1, . . . , ℓ − 1,
and ®𝑏ℓ ∈ R𝑚 . Here 𝐻𝑖 ∈ N is the number of nodes per hidden layer
of the neural network.

The ability of the neural network to approximate nonlinear func-
tions comes from its activation functions 𝜎𝑖 : R𝐻𝑖 → R𝐻𝑖 for
𝑖 = 1, . . . , ℓ , typically the component-wise application of a simple
nonlinear function such as a sigmoidal function or the Rectified
Linear Unit (ReLU) piecewise function

ReLU(𝑥) =
{
0 𝑥 ≤ 0
𝑥 𝑥 ≥ 0

}
. (1)

In this work, we use a generalization of the ReLU activation func-
tion, the Parametric Rectified Linear Unit (PReLU) [23]. The PReLU
activation function has a slight nonzero slope 𝑎 for negative values:

PReLU(𝑥) =
{
𝑎𝑥 𝑥 ≤ 0
𝑥 𝑥 ≥ 0

}
. (2)

This slope𝑎 is a model parameter to be learned alongwith themodel
weights and biases. The PReLU activation function helps avoid dead
neurons – neurons that always output zero due to very nonnegative

weights or biases preceding the neuron. Define 𝐿𝑖 : R𝐻𝑖 → R𝐻𝑖+1

by 𝐿𝑖 ( ®𝑥) = A𝑖 ®𝑥+®𝑏𝑖 . The action of the neural network can be written
as

𝐹 ( ®𝑥) = 𝐿ℓ ◦ 𝜎ℓ ◦ . . . ◦ 𝐿1 ◦ 𝜎1 ◦ 𝐿0 . (3)
In this work, we use the same activation function 𝜎 at each layer,
so 𝜎𝑖 = 𝜎 for all 𝑖 = 1, . . . , ℓ − 1. The hidden layers all have the
same size 𝐻 , so 𝐻𝑖 = 𝐻 for all 𝑖 = 1, . . . , ℓ . We also look for maps
where 𝑛 =𝑚, that is we are approximating functions 𝑓 : R𝑛 → R𝑛 .
In this work we did not investigate unevenly sized hidden layers.
We choose 𝑛 = 6 for the six dimensional phase space coordinates
(®𝑟, ®𝑝)⊤ of each particle in a bunch.

There are several results proving the ability of neural networks to
approximate continuous functions, differing in the assumed struc-
ture of the network, e.g. [24–26]. While these theorems provide
some assurance that in various limits of network size, and even
for finite sized neural networks, parameters can be found to ap-
proximate a function arbitrarily well, they do not indicate how to
obtain the parameters. Commonly, the neural network parameters
are obtained by phrasing the approximation problem as an opti-
mization problem – minimizing the value of some loss function
calculating the difference between the neural network prediction
𝑦 𝑗 = 𝐹 ( ®𝑥 𝑗 ) and the ground truth 𝑦 𝑗 = 𝑓 ( ®𝑥 𝑗 ) for a dataset of 𝑁
known pairs {𝑥 𝑗 , 𝑦 𝑗 = 𝑓 (𝑥 𝑗 ))} 𝑗=1,...,𝑁 . The neural network “learns”
or is “trained” as the optimization problem is solved and the optimal
weights and biases are found that minimize the error of the neural
network.

In this work, we use the mean-squared-error (MSE) loss function,

MSE( ®𝑥, ®𝑦) = 1
𝑁𝑛

𝑁∑︁
𝑖=1

𝑛∑︁
𝑗=1

(𝑥𝑖 𝑗 − 𝑦𝑖 𝑗 )2, (4)

where ®𝑥, ®𝑦 ∈ R𝑁×𝑛 . The loss function is evaluated on the entire
training set.

Common practice is to solve the optimization problem via some
flavor of stochastic gradient descent. We use the ADAM algo-
rithm [27], an adaptive stochastic gradient descent method. This
allows for performing gradient descent over subsets of the available
data, called batches, allowing for faster optimization. There are
several possible hyperparameters associated with the optimization.
These include the step size or learning rate of each gradient de-
scent step 𝛼 , the number of optimization steps, often referred to as
epochs, and the size of the batches.

Determining the optimal hyperparameters, number of hidden
layers ℓ , number of nodes per hidden layer 𝐻 , activation function
𝜎 , batch size, and learning rate 𝛼 , poses a secondary optimization
problem. In this work we used the PReLU activation function and
fixed the batch size at 1200. The number of epochs trained for is
problem dependent but is chosen manually to be large enough
that training further would result in negligible decrease in error.
Optimization of ℓ , 𝐻 , and 𝛼 is performed through grid scans of
parameter ranges to find hyperparameters that define neural net-
works that, when trained, achieve minimal loss. Generally, we find
wide, shallow networks of a few layers and almost 1,000 nodes per
layer perform best for the regression problems we are solving.

The open-source Python machine learning library PyTorch was
used to implement the neural networks, which were trained on
GPUs from the Perlmutter cluster at NERSC.

3
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Figure 1: Schema of a chain of plasma accelerator stages. Grey rectangles mark the laser-plasma accelerator stages, blue lines
denote the details of the transport gap (drift elements and focusing plasma lens) for the beam. Inset: detail schema of two
plasma accelerator stages. With fast plasma columnmodeling, one can rapidly co-design significantly longer andmore complex,
apochromatic or non-linear transport gaps [28].

The data to train the neural networks was generated with high-
fidelity, GPU-accelerated WarpX computer simulations. The initial
and final beam phase space coordinates of the particles in the parti-
cle bunch were collected, resulting in two 𝑁 ×𝑛 arrays correspond-
ing to the initial and final particles’ phase space coordinates. The
data were cleaned by examining the final phase space images. Some
particles were very clearly outliers and so were removed from the
initial and final datasets. In each coordinate direction, data were
normalized to the mean and standard deviation. That is, for each
phase space direction, the mean for that direction was subtracted
from the data, which was then divided by the standard deviation
for that direction. The computational particle data was then divided
into training and testing subsets. 70% of the simulation particle data
was used to update the neural network parameters in the training
process while 30% of the simulation particle data was reserved for
testing. In the training loop, after the model weights were updated,
the model was evaluated on the testing dataset. The error on the
testing set was not used to update the weights, just to evaluate how
well the model was able to generalize as it learned the training data.

4 BENCHMARK: STAGED LASER-WAKEFIELD
SIMULATIONS

A challenging problem in particle accelerator design is the optimiza-
tion of the accelerator beamline for best beam quality. For example,
the plasma-based accelerator community is working to demonstrate
plasma-based accelerators that achieve collider-relevant energies
and beam quality [28, 29]. A simplified version of this problem
involves repeated identical laser-plasma accelerator (LPA) elements
joined with simple transport sections consisting of vacuum prop-
agation, a small idealized focusing element, and further vacuum
propagation, as depicted in Fig. 1. The LPA elements are optimized
for energy gain and beam quality assuming the particle beam is
properly matched. The focusing elements for the particle bunch in
our example are plasma lenses [30].

In our idealized case the plasma lenses have two free parameters,
focusing strength and position, which can be varied between each
consecutive pair of LPA elements. This results in 2(𝑁stage − 1) pa-
rameters to vary for 𝑁stage LPA stages. The 3D simulations required
to capture all the physics of laser-plasma particle acceleration can

be expensive. While it is feasible to perform a few simulations for
a given beamline, it would be prohibitively expensive to perform
the hundreds of simulations required to fully explore the effects
of varying the 2(𝑁stage − 1) lens parameters. In this section, we
present the use of surrogate models for stages as an alternative to
repeated direct simulation of the staged LPA beamline.

Consider an 𝑁stage = 15 stage layout, with initial electron beam
parameters as indicated in table 1 and laser-plasma parameters
chosen for about 7GeV energy gain per stage and to control the
electron beam transverse emittance. We refer to a WarpX simulation
of this layout throughout this paper as a baseline for measuring
performance of the ImpactX+Surrogate simulation. The WarpX sim-
ulation gives access to statistical beam moments, as shown in Fig. 2,
and to all the particle data. The top panel of Fig. 2 shows the average
energy of the electron beam as a function of propagation distance 𝑧.
Only a few points are plotted – the initial value and the energy at
the end of each plasma stage. The electron beam gains about 7 GeV
of energy in each stage.

The next three panels in Fig. 2 show the evolution of statis-
tical beam moments in the coordinate directions transverse to
the axis of propagation. The second panel shows the evolution
of the beam width 𝜎𝑥 =

√︁
⟨𝑥2⟩ with propagation distance 𝑧. Here

⟨𝑞⟩ ≡ ∑𝑁
𝑖=1𝑤𝑖𝑞𝑖/

∑𝑁
𝑖=1𝑤𝑖 means to take the average over the beam

distribution of quantity 𝑞 = 𝑥, 𝑝𝑥/𝑝𝑧 , 𝑦, 𝑝𝑦/𝑝𝑧 , . . ., weighted with
the particle mass or weight𝑤𝑖 . In a plasma accelerator stage, there
is a specific beam width at which the expansion of the beam is
balanced by the focusing forces in the wakefield. Combining the
definition for beam width with the definition of emittance and the
focusing strength in the wakefield [28], we find that the matched
beamwidth varies with the inverse fourth root of beam energy 𝐸, i.e.
𝜎𝑥 ∼ 𝐸−1/4. This ideal evolution of the beamwidth is indicated with
the dashed black line. Note that the beam width oscillates about the
matched beamwidth – this deviation from ideality suggests that the
current transport parameters can be improved on. The third panel

shows the evolution of the beam divergence 𝜎𝜃𝑥 =

√︃
⟨(𝑝𝑥/𝑝𝑧)2⟩.

Note that all momenta 𝑝𝑥 , 𝑝𝑦 , and 𝑝𝑧 in this work are scaled by elec-
tron mass times the speed of light and so are dimensionless. As for
the beam width, the matched beam divergence is indicated with the

4
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dashed black line. The matched divergence varies with the inverse
cube of the fourth root of beam energy 𝐸, that is, 𝜎𝜃𝑥 ∼ 𝐸−3/4 [28].
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Figure 2: Electron beam evolution in 15 stages of chained
laser-plasma accelerators as diagrammed in Fig. 1 from a
WarpX simulation. The top panel shows the energy gain. The
second panel shows evolution of the beam width. The third
panel shows the beam divergence. The bottom panel shows
the emittance. Longitudinal extent of the stages is indicated
with pale grey shading.

The final panel shows the evolution of the normalized transverse

beam emittance 𝜖𝑥 =

√︃
⟨𝑥2⟩⟨𝑝2𝑥 ⟩ − ⟨𝑥𝑝𝑥 ⟩2. Note that the y quanti-

ties are similarly defined. For use in a collider, emittance needs to
be preserved. The 5% growth in emittance over 15 stages is still too
large for collider applications and now needs to be reduced.

The WarpX reference simulation in this study took about 1,316
GPU-hours using 64 nodes (256 Nvidia A100 GPUs) of the Perlmut-
ter machine at NERSC, which we consider to be moderately well
resolved.

Beam transport between stages is governed by the strength of
the focusing optics. The goal of the surrogate optimization is to
maintain energy growth while suppressing emittance growth. In
this case the focusing optics are idealized lenses with linear focusing
forces. The lenses for this WarpX simulation are centered between
the plasma stages and the lens strengths are determined by solving
an analytic expression for lens strength using the first order elec-
tron beam average energy 𝛾𝑎𝑣𝑒 = ⟨𝛾⟩ and the second-order beam
moments beam width 𝜎𝑥 , divergence 𝜎𝜃𝑥 , and position-velocity
correlation 𝜎𝑥𝜃𝑥 = ⟨𝑥𝑝𝑥/𝑝𝑧⟩. This technique for setting the lens
strengths was derived with a collaborator and first demonstrated
in Ref. [31]. These beam moments are evaluated in the simulation
after each plasma stage, in the gap between the plasma and the
lens.

The LPA stages in this example can be understood as nonlinear
phase space maps that require PIC simulations to compute, so this
example is a natural candidate for hybrid surrogate/conventional
simulations. To obtain the surrogate models, we train neural net-
works to learn the phase space map 𝑓 : R6 → R6 from initial to
final beam phase space through the stages.

4.1 Training simulation for neural network
surrogates

The training data is generated from a single, high-fidelity WarpX
HPC simulation. The simulation models 15 particle bunches of dif-
ferent initial energy going simultaneously through a single laser
plasma stage. The different bunches are set to very low charge, so
they can pass through the accelerator simultaneously. This is a com-
mon particle-tracking approach that neglects space charge effects.
The training particle bunches each consist of 𝑁 = 106 particles.
They are centered at the initial energy of the corresponding bunch
from the staged simulation; that is, the first bunch starts at the
initial simulation energy of 1 GeV, the second bunch starts at the en-
ergy of the bunch from the staged simulation going into the second
stage, etc. The training bunches are chosen to have a relative energy
spread of 10%, bunch duration 6.67 fs, widths 𝜎𝑥 = 𝜎𝑦 = 2 𝜇m and
momentum widths 𝜎𝑝𝑥 = 𝜎𝑝𝑦 = 8. Note that in the figures we plot

the beam divergence 𝜎𝜃𝑥 =

√︃
⟨(𝑝𝑥/𝑝𝑧)2⟩.

Figure 3: Comparing the training and staged beams. Particles
from the training simulation are black •, from the staged
simulation are red •. Top-left: 𝑧-𝑥 staged and training phase
spaces initially, bottom-left: 𝑝𝑧-𝑝𝑥 staged and training phase-
spaces initially, top-right: 𝑧-𝑥 staged and training phase space
at the end of stage 15, bottom-right: 𝑝𝑧-𝑝𝑥 staged and training
phase spaces at the end of stage 15.

The training bunches are chosen to be centered on the expected
bunch parameters but several times larger in each phase space
direction, as seen in Fig. 3 to allow the surrogates to learn a broader
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𝜎𝑥 = 𝜎𝑦 (𝜇m) 𝜎𝑧 (𝜇m) 𝜎𝑝𝑥 𝜖𝑛𝑥 (mm-mrad) energy (GeV) relative energy spread (%)
staged simulation 0.75 0.1 1.33 1 1 0

stage 𝑖 2 2 8 16 ≈ 1 + 7𝑖 10
Table 1: Initial beam parameters for the 15-stage simulation and for the training simulations. The energies listed for the
training stages are approximate as these were set more precisely to the exact energies of the beam observed in the staged WarpX
simulation.

region in phase space and generalize to phase space distributions
beyond what is in the staged simulation to facilitate exploration
of the lens parameters in the optimization. We introduce 𝜉 = 𝑧 −
𝑐𝑡 for the relative longitudinal position. The larger the region of
phase space that the models learn, the more work it is to train
the models. Deciding the region of phase space to cover with the
training bunches is a trade-off between minimizing computational
effort and maximizing generalizability of the models. The region
chosen was found to be a reasonable compromise between model
accuracy and training time.

The particle phase-space positions of the training bunches are
initially sampled from a Gaussian distribution, as are the bunch
particle positions in the staged simulation. The use of a Gaussian
distribution in generating training data is primarily a matter of
convenience, as this is already implemented in WarpX. The Gaussian
distribution is reasonable for the purposes of this example, however,
as most data is centered near the core of the training bunch, which is
the region where the staged simulation begins and where the bunch
at subsequent stages is expected to be. For example, in Fig. 3, the left
two panels show the region of phase space initially sampled by the
staged and training beams; we see that the staged bunch is initially a
small sliver of the training beam. The right panels show the relative
overlap of the staged beam at the end of the final stage with the
training bunch for the second final. We see that, compared to the
initial conditions, the staged bunch is larger relative to the training
beam, but still occupies only a fraction of the phase-space area of
the training bunch. The training bunch parameters are described in
table 1 and a complete description of the training simulation can be
found in the supplementary material [32]. The training simulation
took about 404 GPU-hours on 64 nodes (256 GPUs) of Perlmutter.

4.2 Training neural network surrogates
The training data is collected from the training simulation and
stored as initial and final 𝑁 × 6 arrays as discussed in section 3.
These input and output arrays allow us to perform supervised
learning. In this work we used fully connected feed-forward neural
networks with PReLU activation functions. The neural networks
for the first three stages have 5 hidden layers and 900 nodes per
layer. The neural networks for the last 12 stages have 3 hidden
layers and 700 nodes per layer. Hyperparameter tuning was done
by grid search for the surrogates for the first 5 stages, after which it
was observed that similar models yield similar accuracy. For these
parameters, training on one A100 GPU at Perlmutter took about
2.2 hours per stage for the first 3 stages and about 2 hours per stage
for the last 12 stages.

We used the MSE loss function. While we experimented with
other loss functions, including a physics-inspired custom loss func-
tion that penalizes second order terms 𝑥𝑖 𝑗𝑥𝑖𝑘 , we did not see sig-
nificant improvement over the MSE loss. For training we found
a learning rate of 1 × 10−4 works best. Training and testing loss
curves can be seen in figure 4 for stages 1 and 15. The curves for
stages 2 through 14 are similar to the stage 15 curve. While the
training loss has visible slope at the 1,500 epochs, indicating that
further training would decrease the training loss and lead to more
accurate predictions on the training data, the test loss has less slope
and is nearly flat for stage 1. This indicates that the model is not
getting any better at interpolating to unseen data and further train-
ing will not make the model more accurate generally. Note that the
achievable loss decreases with increasing stage number. This cor-
responds with the more rigid particle dynamics at higher average
bunch energies – at higher energies, particles are more relativistic,
meaning less transverse motion in the same longitudinal distance.
Rigid dynamics means the neural network has an easier time learn-
ing the map to the final particle phase space at later stages than at
earlier stages.

(a) (b)

Figure 4: This figure shows training (in blue) and testing
(in green) loss from the training of the neural networks for
certain stages. In (a) are the training and testing losses from
stage 1 and (b) are the loss curves from stage 15.

We gain some insight into what the model is trying to learn from
visually comparing the bunch phase space from the training data
with the predicted phase space. Fig. 5 shows the phase space of
the beam used to train for stage 1 in black and the predicted phase
space of the bunch in color. Each particle of the predicted phase
space is colored by its mean-squared error after normalization. To
make sure the simulation bunch is visible behind the predicted
bunch, the black dots are also larger, leading to a black border
around the predicted bunch that should not be mistaken for error
in the prediction. The top row shows the 𝑥-𝑦, 𝑧-𝑥 , and x-y spatial
projections. In the 𝑥-𝑦 projection, the bunch is symmetric and
error increases radially from the center. Since our training data
is sampled from a Gaussian distribution, we attribute the lower

6



Synthesizing Particle-in-Cell Simulations Through Learning and GPU Computing for Hybrid Particle Accelerator Beamlines PASC ’24, June 3–5, 2024, Zurich, Switzerland

error in the beam center to there being more available training
data for this region of phase space. The 𝑥-𝑧 and 𝑦-𝑧 projections are
similar, reflecting again the azimuthal symmetry. The middle row
shows the 𝑝𝑥 -𝑝𝑦 , 𝑝𝑧-𝑝𝑥 , and 𝑝𝑧-𝑝𝑦 momentum projections. The
spatial-velocity coupling in each direction leads to similar patterns
in these momentum projections as in the spatial projections of the
top row. The bottom row shows the 𝑥-𝑝𝑥 , 𝑦-𝑝𝑦 , and 𝑧-𝑝𝑧 phase
spaces. In 𝑥-𝑝𝑥 and 𝑦-𝑝𝑦 we see the bunch is elliptical and again
showing the increase in error with radial distance attributed to the
decreasing information density with radial distance. The 𝑧-𝑝𝑧 phase
space shows the strong coupling between longitudinal position
and energy characteristic of the plasma-based acceleration and the
micron-scale accelerating structure. The tight agreement between
the phase spaces overall reflects howwell the neural network learns
the particle phase space. As seen in Fig. 3, the phase space region
of most interest is in the center of the training bunch, where the
model accuracy is highest.

The phase spaces for the other training bunches are similar
in shape, features, and overall agreement of the neural network
prediction with the simulation.

Figure 5: Training stage 1: Comparison of bunch phase spaces
from the bunch for stage 1 in the WarpX training simulation
(black•) and the predicted final phase space of this bunch as
calculated by the neural network to be used as a surrogate for
stage 1 (yellow•-red•, colored by MSE loss). Top row: spatial
projections,middle row:momentumprojections, bottom row:
phase space projections.

4.3 Incorporating surrogates into ImpactX
The surrogate models are seamlessly incorporated into an ImpactX
beamline simulation as discussed in Sec. 2. Inference of the neu-
ral network surrogate models for 10,000,000 particles, as is used
in the staged simulation, takes about 632ms/stage on an Nvidia
A100 80 GB SMX and scales roughly linearly with the number of
particles and number of stages, giving an estimated inference cost
of 63.2 ns/particle/stage.

More precisely, the surrogate push has a time of about 1.12 s
for the first three neural networks and 494ms for the last twelve
networks. Recall that the first three networks have twomore hidden
layers and each hidden layer is about 25% larger. For the first three
stages, about 1.108 s are spent in inference, and the rest of the time is
spent in preparing the data for/after inference. That is, 99% percent
of the surrogate push is spent running GPU kernels to apply the
neural network, showing the efficiency of the all-GPU data access
and preparation. For the last 12 stages, 483 of the 494ms of the
surrogate push are spent in neural network inference, or 98% of
the surrogate push is spent in inference and 2% is spent on data
preparation. Data preparation are applying/reversing normalization
factors and array-to-struct transformations (arrays to/from tensors),
all on GPU. There is no movement of the beam particles from GPU
to CPU and all GPU operations are executed in CUDA streams in
the typical, asynchronous manner.

(a) (b)

(c) (d)

Figure 6: Comparison of bunch moment evolution in WarpX
simulation with ImpactX simulation using surrogate models.
(a) beam width 𝜎𝑥,𝑦 , (b) beam divergence 𝜎𝜃𝑥,𝑦 , (c) beam emit-
tance 𝜖𝑥,𝑦 , (d) calculated lens strengths

Fig. 6 shows the evolution of bunch moments in the ImpactX +
surrogate and WarpX simulations. Fig. 6(a) shows the evolution of
bunch spot size over propagation distance, plotted initially and at
the end of each stage. Fig. 6(b) shows the evolution of the bunch
divergence, which oscillates similarly to bunch size. Fig. 6(c) shows
the evolution of the bunch emittance, which grows as a result of
the beam mismatch into each stage and beam oscillation in phase
space as shown in (b) and (c).

The x- and y-emittances predicted by the ImpactX + surro-
gate simulation agree remarkably well with the reference WarpX
emittances through the first 10 stages. In the final 5 stages, the
x-emittance between the two simulations agrees closely but the
y-emittance from the ImpactX + surrogate simulation begins to
differ from the reference simulation by a few percent. Moreover, it
shows qualitatively different behavior by increasing whereas the
y-emittance of the reference simulation saturates. We do not know
the origin of this discrepancy both from anticipated x-y symmetry
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and from the reference simulation, but it is only on the order of a
few percent and there are many possible sources of random error:
Significant among these is that each stage is modeled with a neural
network that has randomly initialized parameters that are then
refined by stochastic gradient descent. There is statistical noise
inherent in the simulations and so in the training data that results
from randomized beam initialization.

Ultimately, the agreement between the surrogate and reference
simulation is very good through the first 10 stages and even to
within a few percent through the full 15 stages. Fig. 6(d) shows
the lens strengths used in each simulation. Recall that the lens
strengths are calculated in the course of the simulation, using the
bunch parameters as the bunch is about to enter the lens. The lens
strengths are a high-level quantity requiring accurate calculation
of several sensitive second-order bunch moments throughout the
simulation, which in turn requires very accurate surrogate models
for the LPA stages. Hence the close agreement of the two methods
shown in Fig. 6(d) is a strong indication of the potential of the
surrogate models to capture the dynamics of the full 3D PIC simu-
lation and the potential of the ImpactX + surrogate simulations for
accurate exploration of parameter space. We see that the ImpactX +
simulation with LPA surrogates is able to predict the bunch width,
divergence, and emittance evolution of the 3D WarpX simulation
to within a few percent. The mean bunch energies are not plotted
here but are similarly well-predicted by the ImpactX + surrogate
simulation.

Figure 7: Benchmark: Comparison of beam phases from
WarpX (black•) and ImpactX+surrogate (red•) simulations at
stage 15. Top row: spatial projections, middle row: momen-
tum projections, bottom row: phase space projections.

A visual inspection of the bunch phase space at the end of stage
15 is shown in Fig. 7. In contrast with Fig. 5, the most interesting
figure is for stage 15 rather than for stage 1. Here the interest is
not the performance of the model on a given stage but how all the
models perform in aggregate. The bunch particles from the WarpX
staged simulation are shown in black and the bunch particles of the

ImpactX + surrogate simulation are in red. The top row shows the
𝑥-𝑦, 𝑧-𝑥 , and 𝑥-𝑦 spatial projections. As in Fig. 5, in 𝑥-𝑦 the beam
is symmetric. The 𝑥-𝑧 and 𝑥-𝑦 phase spaces are similar, reflecting
again the azimuthal symmetry. The middle row shows the 𝑝𝑥 -𝑝𝑦 ,
𝑝𝑧-𝑝𝑥 , and 𝑝𝑧-𝑝𝑦 momentum projections. The spatial-velocity cou-
pling in each direction leads to similar patterns in these momentum
projections as in the spatial projections of the top row. The bottom
row shows the 𝑥-𝑝𝑥 , 𝑦-𝑝𝑦 , and 𝑧-𝑝𝑧 phase spaces. In 𝑥-𝑝𝑥 and 𝑦-𝑝𝑦
we see the beam is experiencing some deviation from its initial
elliptical shape, a result of imperfect matching and beam dynamics
through the accelerator. The spatial energy correlation seen in the
z-energy phase space is characteristic of laser-plasma acceleration
and the microscopic acceleration structure. The ImpactX+surrogate
model reproduces the phase space projections of the WarpX simula-
tion accurately, even capturing the small beam mismatching and
evolution that are occurring in the 15 stage WarpX simulation.

The phase spaces at the end of earlier stages are similar in shape
and features, with similar and even better agreement between the
particles of the WarpX and ImpactX+surrogate simulations.

4.4 Optimization Using Conventional-Surrogate
Simulations

The ImpactX+surrogate simulation ran quickly, facilitating the ex-
ploration of large regions of parameter space and even numerical
optimization. For example, using the simplex or Nelder-Mead op-
timization [33] for scalar optimization in the SciPy optimization
package [34] in Python, the optimal lens parameters were deter-
mined for minimizing the emittance in 𝑥 in the ImpactX+surrogate
simulation. This was performed as a series of optimizations, mini-
mizing the emittance in 𝑥 after stage 1 by varying the plasma lens
position and strength between stages 1 and 2; then minimizing the
emittance in 𝑥 after stage 2 by varying the plasma lens position
and strength between stages 2 and 3; and so on until finally mini-
mizing the emittance in 𝑥 after stage 15 by varying the plasma lens
position and strength between stages 14 and 15. After optimizing
the ImpactX+surrogate simulation, the resulting best lens positions
and strengths were transferred back to a WarpX simulation for ver-
ification in full-fidelity. The parameters of the WarpX simulation
were identical to the reference simulation other than the new lens
parameters.

(a) (b)

Figure 8: Optimization: Comparison of emittances in (a) 𝑥 and
(b) 𝑦, between the WarpX reference simulation, the optimized
ImpactX+surrogate simulation, and the WarpX simulation us-
ing the found optimal lens parameters. Lower emittance
values are better.
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The resulting emittances can be seen in Fig. 8. Figures 8 (a) and (b)
show the normalized emittances in 𝑥 and𝑦, respectively. The hollow
blue circles indicate the emittance of the bunch through the WarpX
reference simulation, the blue circles with crosses indicate the emit-
tance of the bunch through the optimized ImpactX+surrogate sim-
ulation, and the solid blue circles show the emittance of the bunch
through the WarpX simulation with optimal lenses. The same fill
pattern of hollow, crossed, and solid for the red squares indicates
the emittances in 𝑦.

The optimization resulted in emittances that improve on the
previous ImpactX+surrogate simulation and that stay constant after
the first stage. The surrogate models are accurate enough that the
optimized ImpactX+surrogate parameters preserve emittance in
the full-fidelity WarpX simulation as well. Notably, although the
optimization was for emittance in the 𝑥 direction, the emittance
in the 𝑦 direction is also improved. While the emittance in 𝑦 does
ultimately increase over the last several stages in the optimized
ImpactX+surrogate simulation, emittance growth saturates at less
than what is observed without the optimization. In the WarpX+
simulation with the optimized lens parameters, emittance in 𝑦 is
also almost constant. There is a slight increase, but emittance is
much better preserved compared to the WarpX reference simulation.

The resulting beam size and divergence can be seen in Fig. 9. Fig-
ures 9 (a) and (b) show the divergence in x and y, respectively and
Figures 9 (c) and (d) show the beam width in x and y, respectively.
Recall, as was stated earlier, that if the beam is perfectly matched
to each accelerator stage then the spot size should vary with the in-
verse fourth root of beam energy 𝐸 indicated with the dashed black
line, 𝜎𝑥 ∼ 𝐸−1/4. Note that the optimized beam width more closely
follows the desired trend. The optimization has improved on the
analytical transport parameters used in the reference simulation.
This sort of optimization would be prohibitively expensive with PIC
simulations. Similarly, the divergence should vary with the inverse
cube of the fourth root of beam energy 𝐸, i.e. 𝜎𝜃𝑥 ∼ 𝐸−3/4, indi-
cated by the dashed black line, and the divergence of the optimized
simulation more closely follows the desired trend.

5 CONCLUSIONS AND FUTUREWORK
There are large amounts of data from high-fidelity simulations.
In this work, we utilize this data to develop data-driven models
and workflows to complement existing HPC tools. We developed
a hybrid conventional-surrogate simulation that has shown three
advantages: it is fast, reasonably accurate, and provides a flexible
infrastructure for exploring problem structures and parameters.

The simple neural network surrogate models in this work took
each about 2 GPU-hours to train and the entire hybrid conventional-
surrogate simulation takes 10 GPU-seconds (or a couple of CPU-
minutes) to evaluate, whereas a single well-resolved PIC simulation
takes >1,000 GPU-hours to run. The hybrid conventional-surrogate
simulation agreed with the high fidelity simulation to within a few
percent in calculating the sensitive second-order quantities, even
after accumulated errors through 15 stages. The derived quantities
such as the predicted lens parameters for beam transport were
similarly accurate to within a few percent.

The flexible hybrid conventional-surrogate infrastructure per-
mits the easy rearrangement of accelerator elements or variation

(a) (b)

(c) (d)

Figure 9: Optimization: Comparison of beam widths in (a) 𝑥
and (b) 𝑦 and divergences in (c) 𝑥 and (d) 𝑦, from the WarpX
reference, the optimized ImpactX+surrogate simulations, and
the WarpX simulation using the found optimal lens parame-
ters. Note how the optimized values oscillate less around the
dashed black line, which indicates the ideal beam moment
evolution given perfectmatching of the beam into each stage.

of parameters. For example, we took advantage of the fast evalua-
tion of the hybrid conventional-surrogate simulation to optimize
for beam quality over 28 parameters in the staged LPA example.
The optimization significantly improved final bunch parameters.
Additionally, other interesting workflows can be envisaged includ-
ing large parameter scans for fast plasma and transport design
iterations, or sensitivity analysis.

The surrogate models in this work are simple and there is good
reason to believe that more sophisticated neural network structures
could be designed to better capture moments of the bunch distribu-
tion, reflect the symmetries of our problems, and/or encapsulate
more of the relevant physics of the problems we study.

While tracking simulations are generally valuable for accelerator
modeling, surrogate modeling of the collective effects of highly-
charged beams poses an opportunity for future research. The com-
plexity of modeling collective effects changes fundamentally how
the problem of predicting beam dynamics is approached – pure
single-particle tracking is not effective because the particles inter-
act with each other and the laser-plasma stage. One step towards
learning collective effects could be including beam moments in
addition to the phase-space coordinates of each particle.

We would like to highlight that even without space charge ef-
fects, our ML models are already desirable and helpful to design
detailed beam transport and optimize start-to-end accelerator lat-
tices with chromatic effects, as we are actively studying in staged
laser-wakefield acceleration for future high-energy physics collid-
ers. With our model, we can test and design new complex (e.g., chro-
matic) beam transport via ImpactX for many beam phase space con-
figurations without having to rerun the costly WarpX high-fidelity
simulation. We believe that the herein presented HPC software

9



PASC ’24, June 3–5, 2024, Zurich, Switzerland Ryan T. Sandberg, Remi Lehe, Chad E. Mitchell, Marco Garten, Andrew Myers, Ji Qiang, Jean-Luc Vay, and Axel Huebl

improvements and training workflows are an ideal starting point
for such complex research topics.

In our reference study of the staged laser-plasma acceleration in
traditional simulations with WarpX, we benefited from being able to
compare to an analytic model [31] for the bunch focusing and trans-
port that provided a good benchmark for verification of the hybrid
conventional-surrogate simulation. With the hybrid simulation ver-
ified, we can extend studies of hybrid beamlines to more complex
beam transport for which there is no such good analytic model.
This hybrid conventional-surrogate model is faster to evaluate than
traditional reduced-physics models. Trained on high-fidelity simu-
lation data, surrogate elements do not add simplifications on the
physics at play, while providing similar ability to predict beyond
what is known analytically.

The hybrid conventional-surrogate simulation concept for parti-
cle accelerator simulations provides a powerful, data-driven mod-
eling capability to complement the current full-scale and reduced-
order computational tools.
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A APPENDIX: OPTIMAL LENS PARAMETERS
In this appendix, we discuss the optimal transport parameters found
in the optimization workflow discussed in section 4.4. In Fig. 10,

we extend the plot in Fig. 6 that shows lens strengths as calculated
in the WarpX reference simulation and the ImpactX+surrogate sim-
ulation. Fig. 10 includes the optimal lens strengths discovered by
the workflow described in section 4.4 and that resulted in the beam
parameters shown in figures 8 and 9.

Note that we present the lens strength in terms of magnetic field
gradient. The magnetic field of the lens circles around the 𝑧 axis and
increases linearly with increasing radius. Hence the field strength is
expressed in terms of the slope of the field, 𝑑 ®𝐵

𝑑𝑟
, with units of Tesla

per meter. The magnetic field gradient relates to the lens strength
𝑘 shown in Fig. 6 by the relation

𝑑 ®𝐵
𝑑𝑟

=
⟨𝛾⟩𝑚𝑒𝑐

𝑒
𝑘2, (5)

where ⟨𝛾⟩ is the average electron beam energy,𝑚𝑒 is the electron
mass, 𝑐 is the speed of light, and 𝑒 is the fundamental charge. Pre-
senting the lens strength in terms of the magnetic field gradient
highlights the physical trend discovered by the optimization.

Observe how the lens parameters used in the WarpX and ImpactX
+surrogate simulations oscillate around the optimal lens strengths.
This oscillation in lens strengths corresponds with the oscillation of
the beam widths and divergences observed in the WarpX simulation
described in section 4 and Fig. 2. That the oscillation is around the
optimal lens parameters is another demonstration of the ability
of the optimization to find a physical solution that improves the
matching of the electron beam. The smooth trend followed by the
optimal lens strengths suggests a physical relation we have not yet
derived, further highlighting the utility of this data-drivenworkflow.
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Figure 10: Lens strengths: Comparison of the lens strengths
used in the WarpX reference simulation, obtained analyti-
cally); the lens strengths used in the ImpactX+surrogate simu-
lation, obtained analytically; and the optimal lens strengths
that minimize emittance in the ImpactX+surrogate simula-
tions.
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