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Summary

Time course studies of gene expression are essential in biomedical research to understand

biological phenomena that evolve in a temporal fashion. Microarray technology makes it pos-

sible to study genome-wide temporal differences in gene expression profiles between different

experimental conditions/groups. In this paper, we introduce a functional hierarchical model

and empirical Bayes approach to model gene expression trajectories over time and to detect

temporally differentially expressed (TDE) genes. Monte Carlo EM algorithm is developed for

estimating both the gene-specific parameters and the hyperparameters. We use the posterior

probability based false discovery rate (FDR) criterion to identify the TDE genes in order to

control for the over FDR. We illustrate the methods by using both simulated data sets and a

data set from a microarray based gene expression time course study of C. elegans developmen-

tal processes. Simulation results suggested that the procedure have low false discovery rate

but could potentially have high false negative rate when the noise variance is relatively large.

Results from both simulations and analysis of C. elegans data indicated that the procedure

performed better than the two-way ANOVA in identifying TDE genes between the dauer exit

process and starved L1 worms response to feeding process.

Key Words: Hierarchical model, Empirical Bayes, Gibbs-sampler, B-spline, False discovery

rate, gene expression.
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1 Introduction

Since many important biological systems or processes are dynamical systems, it is important

to study the gene expression patterns over time in the genomic scale. The DNA microarray

technologies make it possible to monitor changes in gene expression over time during these

biological processes (Spellman et al., 1998; Diaz et al., 2002; Chuang et al., 2002). One

important application of such microarray time course (MTC) gene expression experiments is

to identify genes that are differentially expressed temporally between two MTC gene expression

experiments. We call these genes temporally differentially expressed (TDE) genes. Comparing

to gene expression study at one time point, such MTC studies can potentially identify more

genes which are differentially expressed (Chuang et al., 2002).

While many statistical methods have been developed in recent years for identifying differ-

entially expressed genes, the focus of these methods is on identifying genes with different mean

genes expression level at one single time point (Lonnstedt and Speed, 2002; Efron et al., 2001;

Newton et al., 2003). In comparison, methods that are specifically developed for identifying

genes with different expression patterns during two MTC experiments are less developed. One

common approach is to use the two-way repeated ANOVA treating group, time and their in-

teractions as factors (Park et al., 2003; Wang and Kim, 2003) and to identify the TDE genes

by testing the interactions. However, due to the number of replications is usually small, such

analysis may not have power to detect truly differentially expressed genes. Xu et al. (2002)

proposed to model the time course expression with lower order polynomial functions of time

for each gene separately, including the interaction terms between times and group indicator.

A particular gene is identified to be differentially expressed among groups if any of its coeffi-

cients of the interaction terms is significantly different from zero. To control false-positives on

the global scale of all genes, they used Bonferroni correction to adjust for multiple compari-

son. However, simple low order polynomials may not provide the flexibility of modelling more

complicated gene expression profiles. In addition, modelling and testing each gene separately

makes simultaneous inferences of all genes difficult. Guo et al. (2003) formulated MTC data

as longitudinal measurements and defined a robust Wald score statistic to detect genes with

temporal changes in expression. The methods can account for within-subject correlation of

gene expression levels over time. They then used the SAM method (Tusher et al., 2001) on
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the derived scores to identify those genes with non-constant means over time. Again due the

small number replications, the asymptotic variance of the Wald score statistic used in Guo et

al. (2003) may not be valid. In addition, the methods in Guo et al. (2003) was developed for

identifying genes with change of expression levels over time, not for identifying TDE genes.

Among the methods for identifying differentially expressed genes, the empirical Bayes

methods have gained much popularity due to the fact that they can effectively pool data from

different genes (Efron et al. 2001; Lonnstedt and Speed, 2002; Newton et al., 2003). In this

paper, we propose an empirical Bayes method for identifying the TDE genes between two

experimental conditions in the framework of hierarchical models. In our model formulation,

we treat the observed time course gene expression data as samples from the true underlying

continuous gene expression trajectories and propose to use cubic B-splines (De Boor, 1978)

to approximate the true gene expression trajectories. The cubic B-splines provide a flexible

curve-fitting methods and have been shown to effectively model various gene expression time

course profiles (Luan and Li, 2003; Luan and Li, 2004). Based on the empirical Bayes methods,

data from all the genes are combined together into estimate of the posterior probability of

differential expression for each individual gene. We propose to use the false discovery rate

(FDR) procedure of Story (2003) for identifying the TDE genes while controlling for overall

false discovery rates.

The rest of the paper is organized as follows: we first present the hierarchical model and

empirical Bayes methods for the problem and the Monte Carlo EM (MCEM) algorithm for

estimating the model parameters. We then present simulation results to evaluate the proposed

models and the MCEM algorithm. We apply the methods to a C. elegans developmental data

set (Wang and Kim, 2003) which collect the expression profiles of thousand genes during dauer

recovery experiment and starved L1 worm response to feeding experiment. Finally, we give a

brief discussion on the methods and results.

2 Statistical Model and Empirical Bayes Inference

A typical design of MTC studies for comparing the gene expression profiles between two

experimental groups can be summarized as in Table 1, in which the two experiment groups

are indexed by i = 1, 2. Assume that there are Ki (Ki ≥ 1) replications for the ith group. For
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each replication, the gene expression levels are measured at T different time points, t1, · · · , tT .

Assume that there are a total of n genes (j = 1, ..., n) on each array slide. Let Yjikt be the log

gene expression level for jth gene at time t in kth replication under the ith condition, and let

Yjik = {Yjik1, · · · , YjikT} be the vector of observed gene expression levels over T time points.

2.1 Functional Hierarchical Model Based on Basis Expansion

Let Zi = 0, 1 be the indicator for the two experimental groups. We consider data of the form,

Yjikt = fji(tjit) + σjitεjikt (1)

where fji is the true gene expression function for the jth gene under condition i, σ2
jit is the

gene, experiment and time-specific variance, εjikt is the error term with mean 0 and variance

1. Under this model, we assume that the measured log-expression level at time t is the true

gene log-expression level plus noise. In practice, since the number of measured time point T

is usually small, it is often difficult to estimate the true gene expression function fji by any

nonparametric function. Instead, we assume that the true gene expression trajectory can be

modeled by basis expansion, i.e., we assume that

fji(t) =

p∑
l=1

(βlj + Zidlj)Bl(tjit), (2)

where Bl is the basis function, l = 1, · · · , p, βlj is the corresponding coefficient of the lth basis

for the jth gene under the condition when Zi = 0, and dlj measures the difference in coefficient

at the lth basis function between the two conditions. Note that if dlj = 0 for all l = 1, · · · , p

then there is no difference in gene expression trajectories between the two conditions for gene

j. If, in addition, we assume that

εjik = {εijlt}T
t=1 ∼ MV N(corrji),

then

Yjik = {Yjikt}T
t=1|(µji, Σji) ∼ MV N(µji, Σji)

µji = {
p∑

l=1

(βlj + Zidlj)Bl(tt)}T
t=1 (3)

5



Since the number of replications in a typical microarray time-course gene expression is

usually small, it is difficult to estimate the gene expression for each gene separately. Instead we

take a hierarchical modeling approach by assuming priors for the difference of the coefficients,

dj = {d1j, · · · , dpj}. One possibility it to assume an independent 0-normal mixture prior for

each dlj across all the genes, i.e., for each l = 1, · · · , p,

elj ∼ Bernoulli(πl)

dlj ∼ N(0, eljσ
2
l ), (4)

which implies that there exists a Bernoulli random variable elj, if elj = 0, dlj = 0, indicating

no difference between the two gene expression trajectories at the lth basis function. On the

other hand, if elj = 1, dlj is generated from a normal distribution with mean 0 and variance σ2
l .

We call the model (3 together with prior (4) the independent prior (IP) model. This model

includes both the hyperparameters θh = {πl, σ
2
l , l = 1, ...p, H, q} and gene-specific parameters

θg = {βlj, l = 1, ...., p, j = 1, ..., n}.
Alternatively, we can assume

dj = {d1j, d2j, · · · , dpj}
′ ∼ (1− π)δ(0) + πMV N(0, A), (5)

treating the difference vector {d1j, · · · , dpj} as a p-dimensional random vector which follows

a mixture distribution of vector 0 and multivariate normal distribution with mean 0 and

variance-covariance matrix A. This is equivalent to assuming that for gene j, there is a

Bernoulli random variable ej with probability of π being 1, and if ej = 0, dj = 0, otherwise

dj follows MV N(0, A), i.e.,

dj|ej ∼

 0 if ej = 0

MV N(0, A) if ej = 1

We call the model (1) together with prior distribution (5) the joint-prior (JP) model. Com-

paring to the IP model, the JP model allows potential dependency in the prior distribution

of changes across different basis functions.

To finish the specification of the hierarchical model, we assume an inverse Wishart prior

for the variance-covariance matrix of the error terms, i.e.,

Σ−1
ji ∼ W (Bi, qi).

6



With additional assumptions, the distribution of gene-specific covariance matrix Σji can be

simplified. For example, we can assume that the gene specific error covariance to be diagonal

as

Σji = diag{σ2
ji1, · · · , σ2

jit, · · · , σ2
jiT}

and each σ2
jit follows an inverse gamma distribution IG(at, bt). We can further assume that

the variance at all time points are the same for a given gene but different from gene to gene,

i.e., σ2
ji1 = · · · = σ2

jiT = σ2
ji, and assume σ2

ji ∼ IG(ai, bi). The simplest model is to assume that

error variances are the same for all the genes at all the time points. The specification of the

covariance depends on the design of the experiments and also the availability of replications.

For example, if the number of replications is small or zero, it is difficult to estimate gene-

specific variance, in which case we may want to assume a constant variance across all the

genes.

2.2 Parameter Estimation and Inference

We propose to estimate both the gene-specific parameters θg and the hyper-parameters θh in

the prior distributions by maximizing the marginal likelihood of the observed data. However,

directly maximizing such marginal likelihood is difficult, we therefore employ the Monte Carlo

EM algorithm for obtaining these parameter estimates, where Gibbs sampling is used in the E-

step to approximate the required expectations (Carlin and Louis, 1996). Details of the MCEM

algorithm and the conditional distributions in the Gibbs steps are given in the Appendix.

After obtaining the parameter estimates, we can calculate the posterior probability or log

posterior odds for gene j to have different gene expression trajectories, i.e., to be a TDE gene,

Pj = 1− Pr(ej = 0|Y ),

and

Bj = log
1− Pr(ej = 0|Y )

Pr(ej = 0|Y )
,

for both the IP and the JP models, where in the IP model, ej = {e1j, · · · , epj}. Similarly,

for the IP model, we can calculate the posterior probability and posterior log odds of having

different coefficients for each basis function in the mean model as

Plj = Pr(elj = 1|Y ),
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Blj = log
Pr(elj = 1|Y )

Pr(elj = 0|Y )
,

for l = 1, · · · , p. These basis-specific posterior values can be used to classify gene expression

patterns for those TDE genes. Furthermore, the estimated posterior mean of the random

effect dlj, which is denoted as Mlj, can be used to assess the magnitude of the expression

profile change.

2.3 False discovery rate

Based on the estimated marginal posterior probability Pj, j = 1, · · · , n, we can select a list

of genes by ranking from smallest to largest by Pj and cutting the list at some point chosen

beforehand. Alternatively, the cutoff probability κ can be selected by controlling the overall

FDR. The FDR has emerged in the context of multiple hypothesis testing as a practical

object to be controlled (Benjamini and Hochberg, 1995). The focus of most recent work on

FDR has been based on the p-values, not the posterior probabilities. However, Newton et al.

(2003) noticed that the posterior probability, which cause the gene to be selected or not, also

measures the probability of type I error if a given gene is selected. Following the notation

used in Newton et al. (2003), let

J(κ) = {j ∈ {1, 2, ...,m} : Pj ≥ κ}

denote the list of genes identified. Conditionally upon the data, and in the context of the

model, the expected number of type I errors (i.e., false discoveries) is

E[]FD|data] =
∑

j∈J(κ)

(1− Pj).

Typically we can find κ as large as possible so that J(κ) is not empty and also

E[]FD|data]/|J(κ)| ≤ α

for some target error rate α, where |J(κ)| is the size of the list. The left-hand side is similar

to the positive FDR (Story, 2003), except that the expectation is conditional on data. By

plugging in the estimated posterior probability, the above equation can be approximated by∑
j∈J(κ)

(1− Pj)/|J(κ)| ≤ α.
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The cutoff point κ is found conditionally on data, either to make a list of some fixed size or

to approximately achieve the target error rate α. However, as noted by Newton et al. (2003),

the control of the false discovery rate at α is only approximate because it rests on the fitted

probability model being an accurate approximation of the data-generating mechanism.

3 Simulation Studies

In this section, we present results based on simulated data to evaluate the MCEM algorithm

and the results on identifying TDE genes. We also investigate by simulations how error

variance affects the identification results from the proposed methods and from the ANOVA

method.

3.1 Simulations based on B-spline models and parameter estimates

We simulated several data sets based on the proposed IP model. We assume that the true

gene expression trajectories can be modeled by cubic B-splines with six basis functions. We

generated gene expression data at T = 19 equal-spaced time points for 500 genes. The coeffi-

cients of the baseline gene expression level βlj are grouped into 10 groups and are randomly

selected from a uniform distribution U(−2, 2). For each condition, two replications were sim-

ulated, i.e., K1 = K2 = 2. In order to evaluate the proposed MCEM algorithm for parameter

estimates, for a given set of true parameters, we simulated fifty replications based on the true

IP model. The error variance is fixed at σ2
e = 0.03 across all the genes and all the time points.

For the first model, we assume that the true values for the prior probabilities and basis-wise

variances are

Model 1: π = (π1, ..., π6) = (0, 0, 0, 0, 0.1, 0.1),

σ2 = (σ2
1, ..., σ

2
6) = (0, 0, 0, 0, 2, 2), (6)

This model assumes that the gene expression differences are only on the last two basis func-

tions. Figure 1 shows the gene expression profiles for ten simulated genes, which are quite

typical profiles we normally observe.

The parameter estimates from the MCEM algorithm resulted in π1 = · · · = π4 = 0 for

the first four basis function, indicating no changes in the gene expression profiles on the first
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4 basis functions. Figure 2 (a) shows the scatter plot of the MCEM estimates of π5 and π6

versus the estimates based on the true values of e5j and e6j for j = 1, · · · , 500 for a total of

50 replications. Similarly, Figure 2 (b) shows the scatter plot of the MCEM estimates of σ2
5

and σ2
6 versus the estimates based on the true values of d5j and d6j for j = 1, · · · , 500. Both

plots indicate that the MCEM algorithm estimates the hyperparameters reasonably well. In

general, we observe that the EM estimates of the prior probabilities are smaller than the

estimated based on the realized values of the variables e5j and e6j. On the other hand, the

EM estimates of the variances in the hyperparameters are usually larger than those estimated

by the realized values of d5j and d6j. This is not surprising since even when e5j or e6j is 1, the

realized values of d5j or d6j can still be small.

To further demonstrate the proposed model and methods, we provide some more detailed

analysis for one simulated data set. Figure 3 (a1) shows the MCEM estimates of the Spline

coefficients βlj, l = 1, · · · , p, j = 1 · · · , n, versus the true values, indicating that the algorithm

estimates the B-spline coefficients and therefore the gene expression trajectories very well.

Figure 3 (b1) plots the estimated posterior mean of dlj versus the true realized values of dlj,

for l = 5, 6. We observed that for large dlj, the posterior means of the random effects are very

close to the true realized values. However, for small values of dlj, the posterior means of the

random effects shrink towards zero, which implies that for some genes with small true djl, the

posterior probabilities can be small. Figure 3 (c1) shows the log posterior odds Bj versus the

maximum of the posterior mean of dlj, where for genes with large posterior odds, a ceiling of

35 was applied. This plot shows that the genes with large posterior odds tend to have large

absolute value of posterior mean of the difference dlj and therefore large difference in gene

expression trajectories.

For the second model, we assume

Model 2: π = {0.05, 0.1, 0.1, 0.2, 0.1, 0.1},

σ2 = {1, 2, 2, 3, 2, 2}. (7)

Under this model, there is a probability of difference on each of the six basis functions used

to characterize the expression profiles. The third model assumes that half of the genes with

the expression change occurring only at the first two bases, and the other half only at the last
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two bases, with the following prior probabilities and basis-specific variance,

Model 3: π = {0.1, 0.1, 0, 0, 0, 0}, σ2 = {2, 2, 0, 0, 0, 0},

π = {0, 0, 0, 0, 0.1, 0.1, }, σ2 = {0, 0, 0, 0, 2, 2}.

For both models, we simulated a total of 800 genes for each replication. The results indicated

that the MCEM algorithm can estimated both the gene-specific parameters and the hyperpa-

rameters very well. For the third model, the estimated prior probability for basis 1,2,5,6 are

close to 0.5. As examples, the top panel of Figure 3 shows results for one data set simulated

under the Model 2, and the bottom panel of Figure 3 shows results for one data set simulated

under the Model 3. We observe that the estimated gene-specific B-spline coefficients are close

to the true values and the posterior mean of gene specific random effects are close to the

observed values. In addition, we also observed the V-shaped plot of the log posterior odds Bj

versus the maximum of the posterior mean of dlj. These results indicate that the proposed

MCEM algorithm can indeed estimate the parameters well and that large estimated posterior

probabilities indeed imply that the genes have large difference in expression profiles across

times.

3.2 Effect of error variance and number of replications on identifying TDE

genes

The simulation results presented in previous section indicate that the MCEM algorithm can

indeed be applied to estimate the model parameters when the error variance σ2
e is small. We

now examine how error variance affects the results on identifying TDE genes. We simulated

10 identical data based on the true parameters as in Model 1 in previous section with the same

realized values of elj and dlj, but we simulated the error terms from 10 different true error

distributions with variance σ2
e ranging from 0.01 to 0.10. The estimated prior probability of

π5 and π6 based on realized e5j and e6j are 0.101 and 0.104, which are close to the true value

of 0.1. Similarly, the estimated prior variance σ2
5 and σ2

6 based on realized d5j and d6j are 2.05

and 2.1, which are also close to the true value of 2.0. Figure 4 (a) and (b) show the estimated

p5 (p6) and σ2
5 (σ2

6) as the error variance increases from 0.01 to 0.10. We observe that as the

error variance increases, the EM estimate of prior probability decreases, but the EM estimate
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of the variance of the differences increases. The results are not surprising since large noise

tend to mask the true difference in gene expressions, which results in smaller estimate of π5

and π6.

The effects of error variance on the parameter estimates also directly translate into the

results on identifying TDE genes. For 97 true TDE genes we simulated, Table 2 presents the

identification results for the number of replications of K1 = K2 = 2 and K1 = K2 = 10 and

for different error variance using a FDR of 0.01. As the error variance increases, the method

identifies a smaller number of the true TDE genes. However, we observe that increasing the

number of replications helps to identify more true TDE genes. As a comparison, we also

report in this Table the identification results based on two-way ANOVA. We observed that

the proposed methods indeed identified more true TDE genes than the ANOVA method,

especially when the number of replications is small. In addition, both methods resulted in 0

false identification. This is also expected, since we set FDR=1% and there are only 500 genes.

3.3 Simulating data from other models

We also simulated a data set of n = 500 genes with T = 19 and K1 = K2 = 2 based on the

following model,

yjikt =

p∑
l=1

βljBl(t) + Zidjt + εjikt

where p = 6, Bl(t) is the B-spline basis function, βlj is the same as in previous simulations

and var(εjikt) = 0.1. We simulated 100 genes with djt 6= 0, including

• 50 genes with Constant difference: djt = dj, dj ∼ N(0, 3)

• 25 genes with Linear difference: djt = αj0 + αj1t,

αj0, αj1 ∼ Unif [−0.2, 0.2]

• 25 genes with a step difference: djt = αj0I(t < Tj) + αj1I(t ≥ Tj)

αj0, αj1 ∼ N(0, 2) and Tj ∼ Unif [2, 18].

For this data set, for FDR=0.01, the IP model with six B-spline basis functions identified

82 true TDE genes with no false positive, the JP model with six B-spline basis functions

identified 84 true TDE genes with no false positive. This simulated data set indicates that the
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proposed models work well in identifying genes with linear difference. Note that in such case,

we would expect that the ANOVA perform equal well. Indeed, the ANOVA model identified

82 true TDE genes with one false positive.

4 Application to C. elegans Developmental data

4.1 Description of the data set

When conditions are not favorable, such as low amount of food, high population density and

temperature, first larval stage (L1) C. elegans worm can develop into dauer larvae to maxi-

mize survival. In this facultative stage, worms become developmentally arrested, non-feeding,

stress-resistant and long-lived. These dauers continue development when conditions become

favorable, particularly under the condition of a high food to pheromone ratio and low tem-

perature. On the other hand, the L1 worms will also arrest in the absence of food. However,

the arrested L1 larvae do not display dauer like properties but will continue development with

the addition of food. Wang and Kim (2003) reported a cDNA microarray time course gene

expression study on the dauer recovery and L1 starvation responses to feeding, in which they

measured gene expression levels of about 17,088 genes at 0,1,· · · and 12 hrs after feeding. For

each time point, there are three or four replicates. The biological question is to identify genes

that are related to common feeding program, i.e. those genes with similar expression patterns

over time and dauer-recovery specific genes, which are the genes with different expression

profiles over time.

Wang and Kim (2003) first identified 2430 genes which change their expression during the

dauer exit time course by using a standard one-way ANOVA. They further analyzed those

2430 genes with two-way mixed-effects ANOVA and identified 1984 genes to be differentially

expressed between dauer exit and L1 starvation time course (p-value< 0.05 from ANOVA).

4.2 Results of analysis

We first applied the JP model with gene- and time- specific error variance to fit the data in

order to identify genes with different expression patterns between the dauer recovery experi-

ment and starved L1 response to feeding experiment. We treated dauer recovery as condition
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1 (i = 1, Zi = 0) and starved L1 response to feeding as condition 2 (i = 2, Zi = 1). Due

to the small number of time points measured, we used B-splines with four basis functions to

approximate the gene expression trajectories. The MCEM algorithm converged after 50 steps.

The estimated parameters in the prior distributions are π = 0.42, a = 2.64 and b = 2.28 in

the inverse gamma prior for the variance, and

A =


3.34 0.93 0.96 0.75

5.36 0.36 1.26

1.83 0.49

1.21


These parameter estimates imply that prior probability of being a TDE gene is 0.42. Our

method identified 1011 and 1049 genes for FDR=0.01 and 0.05 respectively (see Table 3) . As

examples, Figure 5 shows the observed mean expression profiles and the fitted smooth curves

for nine TDE genes we identified. Clearly, the smoothed curves fit the data well. The four

genes in the first column of Figure 5 show different expression at the end of the time course.

On the other hand, the four genes in the second column of Figure 5 have different expression

at the start of the time course. The genes in the last columns have different expression profiles

throughout the whole time course. Figure 6 shows the observed and fitted gene expression

data for nine genes with the smallest posterior probabilities of being TDE. Clearly, the gene

expression profiles of these 9 genes are very similar. We also see that the fitted smooth gene

expression profiles agree with the observed data very well for the 12 genes in Figure 5 and the

9 genes in Figure 6.

We also performed analysis by assuming the JP model but with constant variance for the

error terms. The estimated prior probability of π is 0.38 and σ2
e = 0.26. For a FDR=0.01

or 0.05, the genes identified by this model are essentially the same as those identified by the

model assuming time- and gene-specific variance (see Table 3).

Wang and Kim (2003) applied a two-way ANOVA with replication-specific random effect

to each gene and obtained the p-value of having different expression profiles by testing the time

by group interaction for each gene. They identified 1681 and 1949 genes for FDR=0.01 and

0.05. These numbers are very different the numbers of TDE genes identified by our methods.

There are a large number of genes which were identified as TDE genes by ANOVA but not
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by our proposed empirical Bayes method. The 800 - 900 genes identified by both methods

indeed show clear differential expression patterns over times. However, for the genes that were

identified by ANOVA but not our methods, we examined their expression profiles under the

two conditions and observed apparent similar expression profiles between the two time course

after smoothing the data. Figure ?? present the observed and fitted data for 40 randomly

selected genes that were identified as TDE genes by ANOVA only. These genes do not seem

to have differential expression patterns over time. Plots for additional genes identified by

ANOVA only can be found in our website, http://dna.ucdavis.edu/∼hli/Ebspline.html. One

possible reason that ANOVA identified so many genes is that the F-test for interaction is very

sensitive to the normality assumption and outliers.

We also performed analysis using B splines with five basis functions and obtained almost

identical results on genes identified. However, based on the deviance information criteria

(DIC) (Spiegelhalter et al., 1998), the two models give very similar fit, with score of 3.19×105

and 3.10×105 for the model with 4 basis functions and 5 basis functions, respectively. Note

that the B-spline function with 4 basis function is equivalent to the third-order polynomial

function.

5 Discussion and Conclusions

We have proposed a hierarchical model and an empirical Bayes method to identify genes with

temporal differential expression patterns based on microarray time course gene expression

data. The method utilizes information from all the genes to estimate the posterior probability

and posterior log-odds of being TDE for each gene. These posterior probabilities are then

used for identifying the TDE genes in the framework of FDR. Simulations and application to

real data set indicated that the methods are able to identify the TDE genes with low FDRs.

The proposed model can be applied to both replicated or non-replicated time-course gene

expression comparisons. However, our simulation also indicated that when the error variance

is large and the number of replications is small, real TDE genes can be missed.

Our proposed methods assume that the true gene expression trajectories over time are

continuous and smooth and enough samples are taken to approximate these trajectories. For

simplicity, we used B-splines with pre-specified number and location of knots to approximate
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and characterize these gene expression trajectories. However, it should be emphasized that

other curve-fitting procedure such as smooth splines and other basis functions can be applied in

the same modeling framework. Using expansions in basis functions have been commonly used

in both functional and longitudinal data analysis (Ramsay and Silverman, 1997). Our model

can be interpreted as searching for TDE genes in the transformed functional spaces formed

by the basis functions, so it serves as a way of dimension reduction. Another advantage of

the proposed method is that it does not require the same sampling times between the two

experimental conditions. We did not extensively study the issue of knots selection for B-

splines, except that we applied the DIC to select between two different models in our analysis

of the C. elegans data set. The location of knots may also be driven by our prior knowledge of

the biological process. For typical microarray time course gene expression data, we found that

B-splines with small number of evenly spaced knots fit the observed data quite well (Luan and

Li, 2003; Luan and Li, 2004). Of course one should always check how well the curves fit the

data. While it is an advantage to estimate the true gene expression trajectories by B-splines,

one limitation of the proposed methods is that when the sampled time points are small, the

true gene expression trajectories can not be modeled very well. In this case, we can develop

a vector based empirical Bayes approach in a similar modeling framework. We are currently

pursuing this approach.

In our proposed hierarchical model, we assume the prior probability of π to be unknown

parameter and estimate them using the data. If the number of replications is small, there

might be numerical instability in estimating these parameters. Alternatively, we can fix these

prior probabilities to some reasonable values. Of course the posterior probabilities cannot be

used with FDR to select the TDE genes. However, we can still rank the genes based on these

posterior probabilities. For example, if we fix the prior probability at π = (0, 0.5, 0.1, 0.5) in

our analysis of the C. elegans data set, the top 1900 genes identified are the same as using

the estimated prior probabilities. We also assume that the difference in coefficients of B-

spline basis functions follows a normal distribution across the genes. If some genes have very

extreme difference in expression profiles between the two conditions, distributions with long

tails such as Cauchy or Laplace distribution may provide more suitable model for the data.

How different distributional assumption affects the results on genes identified deserves future

investigation.
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In summary, we have introduced a B-spline based hierarchical model for identifying genes

with different expression patterns over time. The methods have been successfully applied to

analysis of the C. elegans developmental data set in identifying both dauer recovery specific

genes and genes that the related to common feeding programs in C. elegans. As more and more

microarray time course gene expression data are being generated in the such areas as cancer

research (Chuang et al., 2002) and neurobiology (Diaz et al., 2002), we expect to see more

applications of the proposed methods in identifying genes with different expression patterns

over time.
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Appendix

Parameter Estimation Using Monte Carlo EM Algorithm

We give some details of the MCEM algorithm for the IP model. Details for the JP model are

similar and are omitted. The IP model includes both the hyperparameters θh = {πl, σ
2
l , l =

1, ...p, B, q} and gene-specific parameters θg = {βlj, l = 1, ...., p, j = 1, ..., n}. Let τj = Σ−1
j

and denote θ = (θh, θg). We make the following conditional independence assumptions: dlj|elj

are independent for all l = 1, ..., p, Yjik|(dlj, l = 1, ..., p, Σj) are independent for all replications

k = 1, ..., Ki and two conditions i = 1, 2, and the n genes are independent. Under these

assumptions, we have

f(ej) =

p∏
l=1

(πl)
elj(1− πl)

1−elj ,

f(dj|ej) =

p∏
l=1

{φ(dlj − 0; σ2
l )}elj{δ(dlj)}1−elj ,

f(τj) =
|τj|(q−T−1)/2 exp{−tr(τjB

−1)/2}
2Tq/2πT (T−1)/4|B|q/2

∏T+1
i=0 Γ{1/2(q − i)}

,

f(Yjik, i = 1, 2, k = 1, ..., Ki|τj, µji, i = 1, 2)

= f(Yj1k, k = 1, ..., K1|τj, µj1)f(Yj2k, k = 1, ..., K2|τj, µj2)

=

K1∏
k=1

Φ(Yj1k − µj1, τj
−1)

K2∏
k=1

Φ(Yj2k − µj2, τj
−1),

where φ(� − µ, σ2) and Φ(� − µ, Σ) are normal and multivariate normal density functions.

Let Yj = {Yjik, i = 1, 2, k = 1, ..., Ki, τj, ej, dj} denote the complete data for gene j and let

Y = {Y1, · · · , Yn} be the complete data for all the n genes. Then the complete data likelihood

function for the jth gene is

Lj = {
p∏

l=1

f(ej)}{
p∏

l=1

f(dj|ej)}f(Yj1k, k = 1, ..., K1|τj, µj1)f(Yj2k, k = 1, ..., K2|τj, µj2),

and the overall complete data likelihood function is L =
∏n

j=1 Lj. Let lj = log Lj and

l =
∑n

j=1 lj be the corresponding log likelihood functions.
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It is easy to see that the EM equations for updating the parameters in θ are given as the

following,

π
(new)
l =

∑n
j=1 E(elj|Y )

n
,

σ2(new)
l =

∑n
j=1 E(eljd

2
lj|Y )∑n

j=1 E(elj|Y )
,

β
(new)
l =

1

K1 + K2

[
B{E(τj|Y )}B′

]−1
[
B{E(τj|Y )}(

2∑
i=1

Ki∑
k=1

Yjik)−K2B{E(τjB
′(ed)j|Y )}

]
,

q(new) = argmax

[
q − T − 1

2

n∑
j=1

E(log τj|Y )− Tqn

2
(1 + log 2)− n

T∑
i=1

log Γ{1

2
(q + 1− i)}

]
,

H(new) =
1

q(new)n

n∑
j=1

E(τj|Y ),

where B = (B1, ..., Bp)
′ and Bl = {Bl(1), ...., Bl(T )}′ is the matrix and vector of curve-

modelling basis functions evaluated at the observed data points, and (ed)j = (e1jd1j, ..., epjdpj).

For updating parameters H and q, we fist update q by one-dimensional minimization, then

update H based on the new q.

In order to update these parameters in the M-step, we need the following expectations,

E(ej|Y ), E(ejd
2
j |Y ), E(τj|Y ) and E(τjX

′(ed)j|Y ) in the E-step. However, direct calculations

of these expectations are not feasible due high-dimensional integrations. Here we propose

to approximate these expectations by using the Gibbs sampling, which involves sampling

conditional distribution sequentially (see Carlin and Louis (1996) for more information on

using Gibbs sampling for empirical Bayes analysis). In particular, for the nth Gibbs step, we

perform the following three sequential sampling steps,

1. For each gene j, draw τ
(n)
j from the condition distribution of τ |{Yj, e

(n−1)
j , d

(n−1)
j }, which

can be shown to follow a Wishart distribution, W (H
(n)
j , q

(n)
j ) with

H
(n)
j = H−1 +

2∑
i=1

Ki∑
k=1

(Yjik − µji)(Yjik − µji)
′
,

q
(n)
j = q + K1 + K2,

where µj1 = B
′
βold

j , µj2 = B
′
(βold

j +de
(n−1)
j ) and de

(n−1)
j = (d

(n−1)
1j e

(n−1)
1j , ...., d

(n−1)
pj e

(n−1)
pj )

′
.
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2. For each gene j, draw e
(n)
l , from conditional distribution of el|{Yj, τ

(n)
j , d

(n−1)
j }, which is

a discrete distribution with 2p possible outcomes.

3. For each gene j, draw d
(n)
j from the conditional distribution of dj|{Yj, τ

(n)
j , e

(n)
j }, which

is a multivariate normal distribution MV N(ν
(n)
j , Σ

(n)
j ) with parameters

ν
(n)
j = Σ

(n)
j Qj(

K2∑
k=1

Yj2k −K2B
′
βold

j ),

Σ
(n)
j = (Aj + K2Qjτ

old
j Q

′

j)
−1, (8)

where Aj = diag(
e
(n)
1j

σ2old
1

, ...,
e
(n)
pj

σ2old
p

), Qj = (Q1j, ..., QTj), and Qtj = {B1(t)e
(n)
pj , ..., Bp(t)e

(n)
pj }

′
.

Repeat the Gibbs-sampling N times, we can approximate the conditional expectation of

the function g(ej, dj, τj) by

E(g(ej, dj, τj)|Yj) ≈
1

N

N∑
n=1

g(e
(n)
j , d

(n)
j , τ

(n)
j ).

Calculation of the posterior probabilities and likelihood function

After obtaining the parameter estimation, for each gene we can calculate the posterior prob-

ability of being TDE gene, Pj by the Gibbs samples at the last EM step. For the model with

a constant error variance σ2
e , we can calculate this probability analytically as

Pr(ej|Yj) ∝ Pr(ej, Yj)

=

∫
Prj(ej, dj, Yj)ddj

= Cj(ej, l = 1, .., p)

∫
Φ(dj − νj, Σj)ddj

∝
p∏

l=1

(π̂l)
elj(1− π̂l)

1−elj
{ 1√

2πσ̂2
l

}elj

 exp(
1

2
ν∗

′

j Σ∗
j
−1ν∗j )(2π)p∗/2(|Σ∗

j |),

where ν∗j and Σ∗
j are the sub-vector and sub-matrix of νj and Σj which corresponds to non-zero

element of ej and νj and Σj are given in equation (8) evaluated at the converged parameter

values. Finally,

Prj(e1j = 0, ..., epj = 0|Y ) =
Cj(0, ..., 0)∑

e1j ,...,epj
Cj(ej, l = 1, .., p)

.
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In addition, we can also obtain the posterior mean of the random effect dlj for each gene

based on the Gibbs samples obtained at the last EM algorithm.

The observed data likelihood can be computed as:

f(Yjik, i = 1, 2, k = 1, ..., Ki, j = 1, ..., n) =
n∏

j=1

∑
e1j ,...,epj

f(Yjik, elj, , i = 1, 2, k = 1, ..., Ki)

=
n∏

j=1

∑
e1j ,...,epj

Cj(ej, l = 1, .., p),

where Cj(ej, l = 1, .., p) are obtained when calculating posterior probability above. The

likelihood value can then be applied in the model selection step using AIC or BIC.
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Table 1: Array lay-out for studies comparing two different experimental conditions, where

Yjikt is the log of the expression level for the jth gene at time t in the kth replication under

condition i.

condition i ————————— ***********************

replication k —— .... —— —— ... ——

time point t t1, · · · , tT ... t1, · · · , tT t1, · · · , tT ... t1, · · · , tT

array Array ikt

gene j gene expression level Yjikt

Table 2: Identification results for 97 true TDE genes using for a FDR of 0.01 for K = 2 and

10 replications. Ebayes: proposed empirical Bayes methods; Anova: two-way ANOVA. The

entry is the number of falsely identified genes/number of TDE genes identified.

Error variance (σ2
e)

K Method 0.01 0.05 0.1 0.5 1.0

2 EBayes 0/86 0/67 0/40 0/4 0/2

Anova 0/76 0/33 0/15 0/0 0/0

10 Ebayes 0/93 0/87 0/81 0/49 0/33

Anova 0/91 0/80 0/73 0/33 0/12

24



Table 3: Number of TDE C. elegans genes identified by the Ebayes methods and the Anova

method by Wang and Kim (2003).

# of genes identified

FDR EBayes Anova(Kim) Overlap Overlap(top)

0.01 1011 (918) 1681 850 (824) 636 (608)

0.05 1049 (957) 1949 948 (904) 669 (640)

Figure 1: Examples of simulated gene expression profiles

25



Figure 2: Simulation results based on 50 replications for Model 1. (a) Estimated π5 and π6 by

the EM algorithm versus the estimates based on simulated values of e5j and e6j. (b) Estimated

σ2
5 and σ2

6 by the EM algorithm versus the estimates based on simulated values of d5j and d6j.
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Figure 3: Demonstration of results for one simulated data set for Model 1 (top panel), Model

2 (middel panel) and Model 3 (bottom panel). (a1), (a2), (a3): Estimated gene specific βlj

versus the true values; (b1), (b2), (b3): Posterior mean of dj versus the simulated values; (c1),

(c2), (c3): log posterior odds versus the maximum of the posterior means of dlj with a ceiling

of log odds ratio of 35 applied.
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Figure 4: EM estimates of π5 and π6 (plot (a)) and σ2
5 and σ2

6 (plot (b)) for increasing error

variance σ2
e (x-axis). Solid lines represent the estimated parameters by the MCEM algorithm;

dotted horizontal lines represented estimates based on simulated values.
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Figure 5: Observed (solid) and fitted (dashed) expression profile of the selected genes identified

to be differentially expressed at late time (left column), at early time (middle column) and over

all time points (right column). The KimLab IDs for these genes are: 1st column, C13C12.2,

F26E4.3, R160.7, F52F10.2; 2nd column, T09F5.1, F13G3.5, C43E11.7#2, H04M03.4; 3rd

column: K08C7.5, C10H11.5, C16H3.2, T28A11.20#2.
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Figure 6: Observed (solid) and fitted (dashed) expression profile of nine genes with the small-

est posterior probability of being TDE. The KimLab IDs for these genes are: Top three:

”F22F7.2”, ”T05F1.1”, ”F59A3.4”, middle three: ”F58G1.6”, ”T09A5.11”, ”Y66H1A.2”,

bottom three: ”K08F11.3”, ”B0511.10”, ”F09E5.3”
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Figure 7: Average gene expression profiles and fitted smooth curves for forty randomly selected

genes that were selected by ANOVA but not by our proposed empirical Bayes methods.
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