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ARTICLE OPEN

Benchmarking quantum logic operations relative to thresholds
for fault tolerance
Akel Hashim 1,2,3✉, Stefan Seritan 4,5, Timothy Proctor 4,5, Kenneth Rudinger 4,5, Noah Goss 1, Ravi K. Naik1,3,
John Mark Kreikebaum 1,6,7, David I. Santiago 3 and Irfan Siddiqi1,3,6

Contemporary methods for benchmarking noisy quantum processors typically measure average error rates or process infidelities.
However, thresholds for fault-tolerant quantum error correction are given in terms of worst-case error rates—defined via the
diamond norm—which can differ from average error rates by orders of magnitude. One method for resolving this discrepancy is to
randomize the physical implementation of quantum gates, using techniques like randomized compiling (RC). In this work, we use
gate set tomography to perform precision characterization of a set of two-qubit logic gates to study RC on a superconducting
quantum processor. We find that, under RC, gate errors are accurately described by a stochastic Pauli noise model without coherent
errors, and that spatially correlated coherent errors and non-Markovian errors are strongly suppressed. We further show that the
average and worst-case error rates are equal for randomly compiled gates, and measure a maximum worst-case error of 0.0197(3)
for our gate set. Our results show that randomized benchmarks are a viable route to both verifying that a quantum processor’s error
rates are below a fault-tolerance threshold, and to bounding the failure rates of near-term algorithms, if—and only if—gates are
implemented via randomization methods which tailor noise.

npj Quantum Information           (2023) 9:109 ; https://doi.org/10.1038/s41534-023-00764-y

INTRODUCTION
Quantum bits (qubits) in the noisy intermediate-scale quantum
(NISQ)1 era are short-lived and susceptible to a variety of errors
and noise due to imperfect control signals and imperfect isolation
from the surrounding environment. Therefore, utilizing quantum
computers to solve classically intractable problems (e.g., integer
factoring2) will likely require quantum error correction (QEC)3–7.
QEC can protect logical qubits from errors, but it is only
guaranteed to work if the error rate of each physical qubit is
below some fault tolerance (FT) threshold8–13. Analytic lower
bounds on FT thresholds for various QEC codes have been
derived, ranging from ~ 10−6 for generic local noise13

to ~ 10−5–10−3 for stochastic and depolarizing noise14–18. More
optimistic estimates obtained via numerical simulation are orders
of magnitude larger than the lower bounds, ranging from
~10−3–10−119–27, but often assume stochastic (e.g., Pauli, dephas-
ing, or depolarizing) noise models. While recent claims of
quantum gates approaching or surpassing FT thresholds boast
impressive gate fidelities28–30, there is a discrepancy between
these claims and the formulation of FT thresholds, which are
specified in terms of worst-case error rates.
Various error metrics and measures exist for quantifying the

“error rate” of a quantum gate. Randomized benchmarks31–35

typically define error rates in terms of the average gate fidelity, or,
equivalently, the process fidelity

F ¼ ψh jðI� EÞðρÞ ψj i; (1)

where ρ ¼ ψj i ψh j is a maximally entangled state, E is the error
channel associated with some quantum gate, and I the identity
operation. A gate’s process infidelity eFðEÞ ¼ 1� F (or average

error rate) quantifies the probability that the gate induces an error
on a random input state, or, equivalently, the average failure rate
of random circuits that contain one instance of this gate but that
are otherwise perfect. However, FT thresholds are typically defined
via each gate’s worst-case error rate (also called the diamond
norm)36,

ϵ�ðEÞ ¼ 1
2

E � Ik k� ¼
1
2
sup
ρ

I� ðE � IÞ½ �ðρÞk k1; (2)

where the supremum is taken over all pure states and Xk k1 ¼
Tr

ffiffiffiffiffiffiffiffi
XyX

p
is the trace norm. Operationally, ϵ�ðEÞ represents the

worst-case performance of a quantum gate in any circuit, whereas
eFðEÞ represents the average-case performance for a single
instance of the gate. While the diamond norm is a pessimistic
estimate of the error rate of a quantum gate, it provides much
more rigorous performance guarantees in the context of QEC. This
is because the diamond norm upper bounds the accumulation of
error in any quantum circuit, since the distance between the ideal
and actual output probability distributions (measured via total
variation distance) for any circuit is bounded above by the sum of
the worst-case error rates of all its gates36.
While eFðEÞ can be measured directly via randomized bench-

marks, there exists no known scalable method for measuring
ϵ�ðEÞ. Tomographic methods, such as gate set tomography
(GST)37–41, can be used to estimate ϵ�ðEÞ40, but they are
exponentially expensive in the number of qubits. If only eFðEÞ is
known, ϵ�ðEÞ can be bounded using42–45

eFðEÞ � ϵ�ðEÞ �
ffiffiffiffiffiffiffiffiffiffiffi
eFðEÞ

p
d; (3)
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where d= 2n (for n qubits). The lower bound of ϵ�ðEÞ is saturated
when E is a stochastic Pauli channel, and the upper bound, which
is quadratically larger in eF and scales with the dimension d, is
saturated by a unitary channel. While modern experimental
platforms routinely report single- and two-qubit infidelities on the
order of eF,1Q≲ 10−4 and eF,2Q≲ 10−230,46–51, respectively, even if
coherent errors account for a tiny fraction of the infidelity, they
can dominate the diamond norm, in which case worst-case error
rates can be as large as ϵ�;1Q � ffiffiffiffiffiffiffiffiffi

eF;1Q
p t 10�2 and

ϵ�;2Q � ffiffiffiffiffiffiffiffiffi
eF;2Q

p t 10�143,44,52. Therefore, eFðEÞ and ϵ�ðEÞ can differ
by orders of magnitude in the presence of coherent errors. This
means that randomized benchmarks are generally inadequate for
testing whether gate error rates are below FT thresholds43,45.
Refs. 28–30 report single- and two-qubit error rates below the FT
threshold for the surface code, but base their claims on average
error rates from randomized benchmarking (RB) or GST, not
diamond norms. Refs. 53,54 make similar claims about state-
preparation and measurement (SPAM) errors, but only report
average preparation and assignment fidelities, not their worst-
case infidelities. Notably, Ref. 30 includes estimates of the diamond
norm that are an order of magnitude larger than their reported
process infidelities.
While it is not generally possible to directly compare eFðEÞ to a

FT threshold for QEC, if it can be guaranteed that eFðEÞ � ϵ�ðEÞ
then randomized benchmarks can be used to efficiently verify that
gate error rates are below a FT threshold. One method for
ensuring that an error budget is dominated by stochastic noise is
randomized compiling (RC)52,55, which converts all gate errors into
stochastic Pauli channels via Pauli twirling. This ensures that the
direct measurement of eFðEÞ (e.g., via cycle benchmarking56)
accurately captures the worst-case error rate, which enables the
comparison to FT thresholds as well as bounding the overall
failure rate of any quantum circuit or application.
In this work, we use GST to study RC performed on two qubits

(labeled Q5 and Q6; see Methods) on a superconducting transmon
processor (AQT@LBNL Trailblazer8-v5.c2). GST enables
measurements of both the process infidelity and diamond norm

for all gates in our gate set, allowing us to study the impact of RC
on gate errors. We find that RC eliminates signatures of coherent
errors, enabling one to accurately describe the gates’ errors by
stochastic Pauli noise. We further show that RC suppresses
spatially correlated coherent errors and non-Markovian errors.
Finally, we show that the diamond norm converges to the process
infidelity under RC, saturating the lower bound of Eq. (3),
providing strong experimental evidence that our quantum logic
operations are approaching or below a threshold for fault
tolerance. By combining RC with GST, our results provide a novel
framework for verifying that FT-required assumptions are satisfied,
demonstrating that FT thresholds can be accurately measured
using randomized benchmarks as long as quantum circuits are
implemented using RC or related randomization methods57–61.

RESULTS
Gate set tomography
Gate set tomography is a robust method for tomographically
reconstructing the errors and noise impacting all gate operations
within a gate set41. Like traditional quantum process tomography
(QPT)62, GST fully characterizes the process matrix of a quantum
gate; however, unlike QPT, it does so in a self-consistent manner
that simultaneously characterizes the errors in all the gates and in
the state-preparation and measurement (SPAM). Using the open-
source Python library pyGSTi63,64, one can obtain a best-fit
model for the gate set, consisting of a process matrix for each
gate, using maximum-likelihood estimation40,41. In this work, our
gate set consists of all possible combinations of I, Xπ/2, and Yπ/2
single-qubit gates applied simultaneously to both qubits, as well
as the controlled-Z (CZ) gate: G ¼ fG1 � G2 : G1;
G2 2 fI; Xπ=2; Yπ=2gg∪ fCZg. We utilized GST up to depth L= 128
layers to benchmark the performance of all gates in the gate set.
In this work, we represent gate errors using the Pauli transfer

matrix (PTM) representation of superoperators (see Fig. 1a and
Methods), denoted Λ. We fit our data to the following
parameterized error models:

General (CPTP)
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Fig. 1 Modeling gate errors in the Pauli transfer matrix (PTM) superoperator representation. (a) The PTM is divided into four blocks: the
top row (red) represents trace-preservation (TP). The lower right-hand block (blue) captures unital processes, such as unitary errors. The
leftmost column (cyan) captures non-unital processes, such as T1 decay. And the diagonal of the PTM (orange) represents state preservation
(SP); ΛPP= 1 ( < 1) if the Pauli channel P is (not) preserved under an error process such as stochastic Pauli noise. (b) Hierarchy of nested GST
models. For single-qubit gates A and B acting on qubits 1 and 2, respectively, the general CPTP model contains all weight-1 and weight-2 error
generators. The S model restricts the errors to be stochastic (i.e., the error generator is diagonal in the PTM) [red arrows]. The CD (SCD) model
restricts the error generators to be weight-1 (stochastic) errors [blue arrows], but allows contextual dependence. The CF (SCF) model restricts
the error generators to be context-independent weight-1 (stochastic) errors [purple arrows].
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1. General completely positive and trace-preserving (CPTP)
model: each gate’s errors are modeled by a general CPTP
two-qubit PTM Λ

ð1;2Þ
A;B , where A (B) denotes the gate acting on

qubit 1 (2).
2. General Pauli stochastic (S) model: the errors in the general

model are restricted to be diagonal in the Pauli basis

Λ
ð1;2Þ
S:A;B

� �
.

3. Context-dependent (CD) model: the errors on each single-
qubit gate is described by a single-qubit PTM that can

depend on the gate acting on the other qubit Λ
ð1Þ
AjB � Λ

ð2Þ
BjA

� �
.

4. Stochastic context-dependent (SCD) model: the errors in the
CD model are restricted to be stochastic Pauli errors

Λ
ð1Þ
S:AjB � Λ

ð2Þ
S:BjA

� �
.

5. Context-free (CF) model: the errors on each single-qubit
gate is described by a single-qubit PTM that is unconditional

on the gate acting on the other qubit Λ
ð1Þ
A � Λ

ð2Þ
B

� �
.

6. Stochastic context-free (SCF) model: the errors in the CF
model are restricted to be stochastic Pauli errors

Λ
ð1Þ
S:A � Λ

ð2Þ
S:B

� �
.

The hierarchy of all of the nested GST models can be seen in
Fig. 1b.
In general, models with greater complexity are able to capture

more complex dynamics; however, they also require fitting a
larger number of free parameters. The general CPTP model makes
no assumption of locality and can completely capture all two-
qubit interactions, including quantum crosstalk errors. The CD
model assumes that errors on single-qubit gates must be local
(weight-1), since the PTMs decompose as a tensor product of
operations, but allows the errors to be classically correlated (i.e.,
the error impacting qubit 1 can be correlated with the gate being
applied to qubit 2, but it cannot depend on the state of qubit 2).
This can model errors due to classical crosstalk, but not entangling
quantum crosstalk. The CF model assumes that the errors on

single-qubit gates are local and independent of the gate being
applied to the other qubit. The corresponding S-type models
make the same assumptions, but restrict the errors to be
stochastic Pauli noise. All models make an assumption of
Markovianity.

Randomized compiling
Randomized compiling is an efficient method for converting
arbitrary Markovian errors into stochastic Pauli noise for each cycle
(or layer) in a quantum circuit via Pauli twirling. This can benefit
circuit performance in two different regimes (see Methods):

1. Single-randomization limit: a single randomization under RC
interrupts the coherent accumulation of unitary errors
between cycles of gates, similar to dynamical decoupling
sequences65.

2. Many-randomization limit: averaging over many (N) rando-
mizations under RC tailors errors into stochastic Pauli
channels, completely eliminating off-diagonal terms in the
error process in the limit that N⟶∞.

In this work, we apply RC to GST circuits using N= 1, N= 10,
and N= 100 randomizations to study the transition of RC from the
single- to many-randomization limit, and compare the results to
GST performed without randomization (denoted by N= 0).
To study the types of errors present in a gate’s process matrix G

estimated using GST, we write a noisy quantum gate as

G ¼ ΛG0 ¼ eLG0; (4)

where G0 is the ideal quantum gate, Λ the gate error channel, and
L the gate error generator66. L is analogous to the Linbladian
superoperator that generates all gate errors (coherent, stochastic,
and non-unital).
Figure 2 shows the error generator L of the CZ gate for

N= 0, 1, 10, 100 randomizations. We find that RC transforms the
error generator from dense to sparse as we increase N, twirling L
into a stochastic Pauli channel (these channels correspond to
diagonal PTMs). Going from N= 0 (Fig. 2a) to N= 1 (Fig. 2b)

Fig. 2 Improving model accuracy via noise tailoring. The error generator L in the PTM representation for the CPTP model of the CZ gate is
plotted for (a) N= 0, (b) N= 1, (c) N= 10, and (d) N= 100 randomizations under RC. If an error channel (i.e., PTM cell) in L is zero, then this
component of the estimated gate matches the corresponding component of the ideal target gate. (e) The model violation Nσ for each GST
model, plotted as a function of N. The evidence ratio γ is labeled above each nested model, and the number of free parameters Np of each
model is listed in the legend. For each N, we choose the model with the least number of parameters that satisfies γ≤1, finding that CPTP is the
best fit for N= 0, N= 1, and N= 10, and S for N= 100; blue (red) text indicates that the model is accepted (rejected). The CZ gate error
generator L is plotted for the S model for (f) N= 10 and (g) N= 100, showing that the stochastic models capture the dominant error for both.
Even though it is ultimately rejected by the evidence ratio for N= 10, the S model could be reasonably selected for its simplicity. As the S
model is selected for N= 100, all off-diagonal elements in (d) are statistically consistent with zero.
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randomizations significantly reduces the magnitude of L’s off-
diagonal elements, which signifies the presence of coherent
errors, but L for N= 1 still has significant magnitude in its off-
diagonal elements. As N increases from 1 to 10, and from 10 to
100, the magnitude of the off-diagonal terms is greatly reduced.
This is referred to as the “noise tailoring” property of RC.

Model Selection
GST enables the comparison of nested error models in a self-
consistent manner67,68. To compare two nested models, we utilize
the evidence ratio γ67,

γ ¼ λS � λL
Np;L � Np;S

; (5)

where λ is the model’s log-likelihood ratio (see Methods), and L (S)
denotes the larger (smaller) model defined in terms of the number
of free parameters Np describing the model. If γ≤1, then we
automatically choose the smaller model, as it describes the data at
least as well as the larger model without extra (potentially unused)
parameters. If γ > 1, there is evidence for rejecting the smaller
model, but even if 1≲ γ≲ 10 the smaller model may still be
preferable due to its simplicity51. In this work, we compute the
evidence ratio for each pair of nested models down the two
separate branches of the hierarchy in Fig. 1b: if γ≤1 we select the
smaller model and continue down the hierarchy until γ > 1, at
which point we select the larger of the two models and stop. If
two independent models satisfy this criteria, we select the model
with the fewest free parameters, as this model represents the best
fit estimate of our data without over-fitting.
Additionally, we compute the model violation Nσ of each model,

which captures the number of standard deviations that λ is from
the expected mean (see Methods). If Nσ≤1, then the GST model
faithfully captures all of the errors in the device. However, on
actual NISQ hardware, typically Nσ > 1 (and sometimes even
Nσ≫ 1) is observed40,60,68, indicating the presence of significant
model violation. Because GST can model all Markovian gate errors,
large Nσ for the CPTP model indicates that there is strong
evidence in the data for non-Markovian errors—which can be true
even if these non-Markovian errors are small in magnitude (see
the Non-Markovian Errors section for further discussion).
To choose a best-fit model for each dataset, we compute γ and

Nσ for each model, shown in Fig. 2e. We find that the general CPTP
model fits best for N= 0, N= 1, and N= 10, and that the S model
fits as well as the general CPTP model for N= 100. For N= 10,
none of the nested models satisfy the evidence ratio criteria, but
the S or CD model could also be reasonably selected, as γ= 2.0
and 2.4, respectively (there is therefore only weak evidence for
coherent errors). For N= 100, only the S model satisfies the
evidence ratio criteria, and we therefore prefer this model over the
general CPTP model. For the data presented in the rest of this
work, we fix the model for each dataset using the best-fit models
outlined above.
The large model violation for N= 0 (Nσ ≈ 535) is strong evidence

that there are non-Markovian errors, which cannot be modeled by
a PTM. N= 10 (Nσ ≈ 180) and N= 100 (Nσ ≈ 25) have significantly
less model violation, indicating less statistical evidence of non-
Markovian errors. For a single randomization (N= 1) there is even
larger model violation (Nσ ≈ 1394) than with no randomization
(N= 0). This effect arises because when N= 1, each circuit is
replaced with a single randomization of that circuit, and no
averaging occurs. Therefore, the implementation of a logical gate
(in G) will not correspond to the average action of multiple PTMs
(which decoheres errors) corresponding to the different Pauli-
equivalent implementations of the gate, but instead the action of
a particular PTM corresponding to one randomly selected Pauli-
equivalent implementation of the gate. Importantly, the PTM
describing the action of a logic gate will change depending on the

randomization selected (and therefore it varies between circuits
and uses of the logical gate within a circuit). Therefore, even when
each physical gate is describable by a PTM (i.e., all errors are
Markovian), when N= 1 each logical gate is not generally
describable by a single PTM. This violates the assumptions of
GST—which finds the best-fit PTM for each gate—and so a GST
model fit to the N= 1 data can exhibit significant model violation.
(See Methods for further discussion and examples.)

Impact of randomized compiling on error budgets
To explore how effective RC is at converting all errors into
stochastic Pauli noise, we calculate the total amount of stochastic
and coherent errors for each gate. To do so, we divide each gate’s
error generator L into stochastic and Hamiltonian components,
and compute the total error,

ϵtot ¼ ϵagg þ θagg; (6)

where ϵagg= ∑iϵi is the sum of the rates of all stochastic error
generators, and θagg ¼

ffiffiffiffiffiffiffiffiffiffiffiP
iθ

2
i

q
is the quadrature sum of all

Hamiltonian error generators51. The total error is closely related to
the diamond norm. For single qubit error generators L, the total
error upper-bounds the diamond norm error, ϵ� eL

� � � ϵtot eL
� �

.
For two or more qubits, the bound is much weaker51.
In Fig. 3 we plot the fraction of the total error due to stochastic

and coherent (Hamiltonian) errors. We find that the error budget
of the simultaneous single-qubit gates is dominated by coherent
errors for N= 0, and that coherent errors account for approxi-
mately two-thirds of the total error for the CZ gate. For N= 1,
coherent errors still dominate the single-qubit gates, but the
contribution from coherent errors and stochastic noise are both
approaching 50% for the CZ gate. By N= 10, stochastic noise
makes up the largest contribution to the total error for the CZ
gate, but we observe only a modest change for the single-qubit
gates. However, by N= 100 the error budget for all gates is
entirely due to stochastic noise. We note that for the N= 100 data,
our model selection chose the S model, which enforces the
constraint that the error budget is entirely due to stochastic Pauli
noise (see the diagram in Fig. 1b). This is because there is no
statistically significant evidence in the data for any coherent errors
(if more data were taken, evidence for some residual coherent
errors might be found). These data demonstrate the effectiveness
of RC in eliminating the impact of coherent errors. However, this
does not mean that coherent errors are physically not present;
rather, each individual randomization under RC is impacted by
coherent errors in a different manner, in such a way that the
aggregate effect is to randomize the impact of coherent errors.
Alternative methods for quantifying the magnitude of coherent

errors include purity RB (PRB)69 and cross-entropy benchmarking
(XEB)70. However, methods for measuring coherent errors that use
random circuits have two disadvantages. First, these methods
measure averages over gates, so they cannot separate out each
gate’s error rate into stochastic and coherent contributions (as
done herein). Second, although the unitarity (estimated by PRB)
and infidelity (estimated by RB) can be used to upper bound the
diamond norm error69, this method is inefficient (see Ref. 40 for
details).

Process infidelity vs. diamond norm
Error rates measured via randomized benchmarks cannot in
general be directly compared to FT thresholds. However, although
the diamond norm [Eq. (2)] enables rigorous comparison to FT
thresholds, it is difficult to measure in a scalable manner. If the
error model of a quantum processor is dominated by stochastic
noise, the process infidelity and diamond norm will be equal, in
which case randomized benchmarks can be used to efficiently
demonstrate that gate errors are below a FT threshold.
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In Fig. 3, we plot the process infidelity and the diamond norm as
a function of N for all gates in our gate set. We find that ϵ�ðEÞ
converges to eFðEÞ as N increases. This is strong experimental
evidence that ϵ�ðEÞ ¼ eFðEÞ in the many-randomization limit for
N= 100 [saturating the lower bound of Eq. (3)]. We also compare
these results with process infidelities measured independently via
CB and find good agreement between the two. These results
demonstrate that randomized benchmarks are sufficient for
benchmarking FT thresholds if—and only if—a quantum applica-
tion is impacted only by stochastic noise, which can be
guaranteed if implemented using methods which tailor noise.
We note that similar results were previously reported using Pauli
frame randomization71,72 for single-qubit gates60.
The largest diamond norm error over a gate set is arguably the

most relevant quantity to compare to a FT threshold. The surface
code73 is a popular QEC code due to its high FT threshold, which is
estimated to be between ~0.75−3%22,74–78, with 1% being the
threshold that is typically quoted in the literature28,30. In Fig. 3, we
find that the diamond norm of simultaneous single-qubit gates is
below the surface code threshold for N= 10 and N= 100, and that
the error rate of our CZ gate is approaching—but does not surpass
—the surface code threshold.

Correlated errors under Pauli twirling
A major requirement for reliable fault-tolerant QEC is the absence
of correlated errors, which can occur temporally79 or spatially80.
Many-qubit correlated errors cannot be corrected by QEC (each
QEC scheme has a maximal weight of error that it can correct),
causing logical failures. Therefore, the rate of correlated errors
must be low to achieve reliable fault-tolerant quantum computa-
tion. To characterize the extent to which spatially correlated errors
are present in our system with and without Pauli twirling, we
extract the weight-1 and weight-2 errors of each gate in our gate
set. Figure 4 shows the weight-1 and weight-2 coherent
(stochastic) errors for the idle cycle {I5⊗ I6} for the CPTP (S) model
for N= 0 (N= 100) randomizations. We focus on coherent
(stochastic) errors for N= 0 (N= 100) as they dominate the total

the error budget; see Fig. 3a. We observe significant weight-2
coherent errors for N= 0 (Fig. 4a), which corresponds to
unintended entanglement (i.e., quantum crosstalk), such as static
ZZ coupling81–83. In contrast, we observe that weight-1 Pauli errors
dominate for N= 100, and that weight-2 errors are largely
suppressed in comparison.
Additionally, we compare the Pauli error rates for N= 100 (Fig.

4b) to independently estimated Pauli error rates (Fig. 4c)
measured using cycle benchmarking (CB)56 and reconstructed
using cycle error reconstruction (CER)55,84,85. We find good
agreement between the reconstructed Pauli noise in the two
error maps, showing similar magnitudes of correlated errors, and
demonstrating that the dominant errors in our system are weight-
1. These results show that that Pauli twirling can suppress spatially
correlated coherent errors due to entangling crosstalk and static
ZZ coupling between superconducting qubits. (See Methods for a
similar CER analysis of correlated errors in cycles acting on four
qubits.)
In general, one can expect RC to provide a quadratic

suppression of correlated coherent errors—RC converts a
coherent error that contributes OðθÞ to the diamond norm (and
the total error) into a stochastic error that contributes Oðθ2Þ to the
diamond norm. Therefore, while correlated errors might not be
entirely suppressed by Pauli twirling, this reduction in the
magnitude of correlated errors may reduce the cost of QEC86.
While the current work focuses on spatial correlations, temporal
correlations can also be detrimental to worst-case error rates87.
However, we expect that a single randomization under RC can
similarly suppress temporally correlated errors, although we leave
an exploration of this topic to future work.

Non-Markovian errors
In the context of quantum computing, in particular for character-
ization and benchmarking, an error process is typically considered
to be non-Markovian if it cannot be modeled by a process matrix.
More precisely, non-Markovian errors are present if each n-qubit
cycle (or layer) of gates cannot be modeled by a fixed, context-

Fig. 3 Tailoring noise for improved estimates of the diamond norm. (a) Fraction of the total error due to coherent errors (blue) and
stochastic noise (orange) as a function of the number of randomizations N under RC. As N increases, stochastic noise makes up a larger
fraction of the total error, which is dominated by coherent errors for small N. For (a) and (b), triangular markers denote the CZ gate, and
circular markers denote the single-qubit gates {G5⊗ G6} (small transparent markers depict the individual gates, large markers depict the
averages, and violin plots outline the distribution). (b) Saturation of the lower bound of the diamond norm under RC. We plot the GST process
infidelity eF (blue) and diamond norm ϵ♢ (purple) as a function of the number of randomizations N. We observe that ϵ♢ > eF for all gates for
N= 0, 1, 10, but that the two are equal for N= 100. For visual clarity, we omit the idle cycle for N= 0, as eF,II= 0.0001 and ϵ◇,II= 0.001 fall well
below their respective averages. We compare the GST estimates with the process infidelity measured via cycle benchmarking (CB) for the CZ
gate (dashed green line) and idle cycle {I5⊗ I6} (solid green line). The GST error bars and CB transparent bands indicate the 95% confidence
intervals. Additionally, we compare the benchmarked error rates with the 1% FT threshold for the surface code (black line) and find that the
single qubit gates are well below the threshold value, whereas the CZ gate is approaching, but does not surpass the threshold.
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independent n-qubit process matrix. Various common sources of
non-Markovianity in NISQ systems include leakage out of the
computation basis states88–93, unwanted entangling interactions
(e.g., static ZZ coupling) with qubits outside of the studied system,
drift in qubit parameters94 (e.g., stochastic fluctuations in
transition frequencies), unwanted coupling to environmental
systems with memory beyond the timescale of a cycle (e.g.,
two-level fluctuators and nonequilibrium quasiparticles80,95–97),
and qubit heating98; see Fig. 5a. Studying and suppressing non-
Markovian errors is important for at least two reasons: they
interfere with the quantification of Markovian errors, and their
impacts on QEC are less well-understood.
GST is designed to reconstruct all possible Markovian errors on

any cycle of quantum gates. So, when GST cannot fit the data, this
implies that there are non-Markovian errors. While model violation
Nσ is useful for providing evidence of the existence of non-

Markovian errors, to quantify the magnitude of such errors, we
add a wildcard error model99 to each of our GST models. These
wildcard error models assign a wildcard error rate wG∈ [0, 1] to
each gate G, and a wildcard error rate to the SPAM wSPAM∈ [0, 1],
which quantifies how much additional error on each operation is
missing from the model (i.e., how much is required to make the
model consistent with the data; see Methods for more details). By
comparing wG to ϵ♢ for each gate, we are able to quantify whether
Markovian or unmodeled non-Markovian errors dominate the
error model68,99. If wG≪ ϵ♢ for all gates, then Markovian errors
dominate and non-Markovian errors are negligible. In this case,
the model captures the majority of the errors in the gate (or, more
precisely, all those errors that were revealed in this experiment),
despite the fact that there is evidence that the model is
incomplete. On the other hand, if wG≥ϵ♢, the non-Markovian

Fig. 5 Suppressing non-Markovian errors. (a) Non-Markovian errors in gate-based quantum computing. Markovian errors for a given system
of qubits (black) are defined to occur within the timescale of a given cycle of gates (blue rectangle). Sources of non-Markovianity include
leakage (seapage) out of (into) the computational basis states (purple), unintended entanglement (green) with external qubits (gray) or two-
level fluctuators in the environment, drift in the system properties (e.g., fluctuations in the qubit frequency ω, with ω0 ¼ ωþ δω), and classical
EM signals from outside of the defined system (red) that reach the system qubits within their pseudo light cone (blue). (b) Unmodeled error
versus the diamond norm. The per-gate wildcard wG is plotted on top of the diamond norm for each gate in G (plus SPAM) as a function of N.
As N increases, wG becomes negligible, indicating that non-Markovian errors are suppressed under RC.

Fig. 4 Suppressing correlated errors. Heat maps of the weight-1 and weight-2 errors acting on Q5 and Q6 during the idle cycle {I5⊗ I6}
reconstructed using (a) the Hamiltonian projection of the GST error generator L for N= 0, (b) error rates calculated from the stochastic
projection of L for N= 100, and (c) cycle error reconstructing via CB measurements. The x-axis labels the target gate; the y-axis labels the
Hamiltonian error for (a), and the Pauli Kraus error for (b) and (c); the cell color denotes the over-rotation angle for (a), and error rate for (b) and
(c); the cell gradient defines the 95% confidence interval; the first (second) row of subplots shows marginalized weight-1 (correlated weight-1
and weight-2) errors. While weight-2 errors are dominant for N= 0, (b) and (c) show that Pauli twirling suppresses weight-2 errors to negligible
levels.
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errors dominate the Markovian errors, and the so the GST estimate
is unreliable.
Figure 5 b shows the wildcard error and the diamond norm

error for all of the gates in our gate set and SPAM, for
N= 0, 10, 100 (we omit the N= 1 data due to its systematic
inconsistency with a Markovian error model; see Model Selection
and Methods). Without RC (N= 0), we observe diamond norm
errors as large as ϵ♢ ≈ 0.07, with up to 0.01 additional non-
Markovian error. For N= 10 randomizations, the wildcard errors
are still significant, but they are much smaller in magnitude than
N= 0 and they are a small fraction of the diamond norm error
rates. By N= 100 randomizations, the wildcard errors are
negligible—in absolute terms and as a fraction of ϵ♢—contribut-
ing at most 0.0012 additional error per gate. This indicates that the
S model accurately captures almost all of the N= 100 data (note
that in this case the wildcard error quantifies the combined
contribution of both non-Markovian errors and all non-S
Markovian errors). Because wG 	 ϵ� 8G 2 G for all N, we consider
all of our models trustworthy, even for N= 0. We additionally note
that RC significantly improves both the wildcard error and worst-
case error rate for SPAM, which is the sum of the trace distance for
the state-preparation and the diamond norm for the positive
operator-valued measure. However, even in the N= 100 case, the
SPAM error rate remains around ~ 4%, well above the 1% surface
code threshold; these errors are equally as important as gate
errors in the context of fault-tolerant QEC, and will need to be
dramatically improved for achievable QEC in the future.
The N= 100 data was gathered over a period of over 40 hours,

and no re-calibration of gates was performed during the
experiment. Therefore, the negligible amount of unmodeled error
speaks to the robustness of RC to the inevitable drift in gate and
qubit parameters during this time period. While RC was not
designed to specifically target non-Markovian errors, its apparent
robustness to both non-Markovian errors and correlated errors is
promising for future large-scale fault-tolerant applications.

DISCUSSION
The field of quantum characterization, verification, and validation
(QCVV) was developed in part to benchmark our progress toward
fault-tolerant QEC. While full-scale fault-tolerant QEC is still many
years away, contemporary quantum gates are rapidly approaching
the necessary thresholds for many QEC codes, such as the surface
code. Therefore, it is important to be able to accurately benchmark
our progress toward this goal. While average error rates measured
via randomized benchmarks are useful for tracking progress, they
fall short of capturing the information required to determine
whether all gate errors fall below a given FT threshold, for which
the diamond norm is the relevant metric43,45. In this work, we
demonstrate that FT thresholds can in fact be captured by
randomized benchmarks, but only if the error-corrected applica-
tion is performed using a randomization method which tailors
noise. In fact, utilizing artificial randomness to suppress coherent
dynamics is not new, and has been previously discussed for
disorder-assisted error correction methods100–102. While our
results were measured in the many-shot, many-randomization
limit, they are still relevant for error correction, which operates in
the single-shot, single-randomization limit, because results mea-
sured in latter limit sample from the same distribution that is
estimated in the former limit; in other words, results measured in
the single-shot, single-randomization limit are indistinguishable
from those sampled from a distribution impacted by only
stochastic noise.
The current approach also helps resolve a discrepancy

regarding logical error rates in the Pauli twirling approximation
(PTA). While some have argued that logical noise is well
approximated by Pauli errors for large-distance codes103, others
have shown that the PTA is a dishonest approximation of the

impact of coherent errors104–108 and breaks down for large
numbers of qubits109, and that despite the projective nature of
QEC, coherent errors at the physical level can lead to coherent
errors at the logical level110–113, which can increase logical error
rates114. Our results show that Pauli twirling can efficiently be
implemented at the physical level, which may even impact the
kinds of errors that manifest at the logical level, potentially
negating any need to approximate the accuracy of Pauli twirling at
the logical level. Moreover, while coherent errors may continue
persist even at the logical level, recent studies suggest that the
diamond norm of gates at the logical level is smaller than the
diamond norm of gates at the physical level115, which bodes
favorably for the future of QEC. An exploration of this topic would
be a natural extension of this work, and would provide insight into
the necessity and/or potential benefits of using randomization
methods for QEC.
While rapid improvements in two-qubit gates on many

hardware platforms engender optimism for FT, caution must be
taken in the claims inferred from gate fidelities, as results which
include estimates of the diamond norm suggest that many
contemporary two-qubit gates fall short of FT thresh-
olds30,51,116–118. Furthermore, while isolated single- and two-
qubit gates may be approaching the necessary requirements for
fault-tolerance, any gate(s) performed in parallel with other qubits
are likely to be impacted by crosstalk-induced coherent errors,
potentially causing the diamond norm to scale with

ffiffiffiffiffi
eF

p
. The

figure of merit for determining whether low logical error rates can
be achieved via QEC is the error rate of a cycle containing all
active qubits in a register, not simply the error rate of isolated
gates within the cycle86. Thus, whether or not randomization
methods such as RC will be effective at the scale of the large
number of qubits needed for QEC is an open question. However,
in theory the efficiency of noise tailoring via Pauli twirling does
not depending on system size119. Therefore, future work could
explore the efficacy of RC at saturating the lower bound of the
diamond norm for larger cycles of simultaneous gate operations.

METHODS
Experiment
All experimental gate set tomography (GST) results were
measured in a manner which normalizes shot statistics between
circuits implemented with and without randomized compiling
(RC). Bare GST sequences were measured K= 1000 times. For GST
sequences implemented with N randomizations under RC, we fix
K= 1000 and measure each randomization K/N times. By
computing the union over the N different logically equivalent
randomizations of each GST sequence, one obtains an equivalent
statistical distribution for a single GST circuit measured K times.

Qubit parameters
Table 1 lists the relevant qubit parameters for the two transmon
qubits used in this work. Qubit frequencies and anharmonicities
are measured using Ramsey spectroscopy. Relaxation (T1) and
coherence (T


2 and Techo
2 ) times are extracted by fitting exponential

Table 1. Single-qubit parameters.

Q5 Q6

Qubit freq. (GHz) 5.331004 5.490952

Anharm. (MHz) −275 −271.35

T1 (μs) 62(5) 52(4)

T
2 (μs) 37(6) 36(6)

Techo2 (μs) 73(7) 68(7)
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decay curves to the excited state lifetime and Ramsey spectro-
scopy measurements (without and with an echo pulse), respec-
tively. The reader is referred to Ref. 55 for details of the sample
AQT@LBNL Trailblazer8-v5.c2 and the experimental setup
of the device, as well as Refs. 50,61,68,120 for the previous
characterization of the qubits used in this experiment.

Representations of quantum processes
Various representations of quantum processes exist39. A common
representation is the operator-sum, or Kraus, representation which
maps any density matrix ρ into

EðρÞ ¼
X
i

K iρK
y
i ; (7)

where the set {Ki} is a general class of operators known as Kraus
operators. For a Pauli channel,

EðρÞ ¼
X
P2P�n

cPPρP
y

(8)

where the Kraus operators are K ¼ ffiffiffiffiffi
cP

p
P, with cP the probability

that P is applied (which is an error, except in the case of the
identity Pauli), and P�n ¼ fI; X; Y; Zg�n is the set of 4n generalized
Pauli operators.
Another useful representation of a quantum operator is the

Pauli transfer matrix (PTM) representation, which is used
throughout this work. The PTM representation can be defined
by expanding any density matrix ρ in the Pauli basis,

ρ ¼
X
P2P�n

αPP; (9)

where αP are the expansion coefficients. By vectorizing the
expansion coefficients, we obtain a vectorized density matrix
ρj ii ¼ αI�n ¼ αZ�nð ÞT . A linear completely positive and trace-
preserving (CPTP) quantum map ρ 7!ρ0 ¼ ΛðρÞ in the PTM
representation is completely defined by a 4n × 4n matrix Λ, with
values Λij ¼ Tr½PiEðPjÞ�=d that can derived directly from the Kraus
representation [Eq. (8)] for a Hilbert space of dimension d= 2n. All
entries in the PTM are real and are bounded by Λij ∈ [− 1, 1]. PTMs
have the useful property that the composite map (i.e. the PTM of a
quantum circuit) can be constructed by taking the matrix products
of the individual maps (i.e. the PTMs of the individual gates).
For a single qubit,

ρj ii ¼

αI

αX

αY

αZ

0
BBB@

1
CCCA: (10)

The quantum map ρ0 ¼ ΛðρÞ can be expressed in vector form,
ρ0j ii ¼ Λ ρj ii, or more explicitly,

α0I
α0X
α0Y
αZ

0
BBB@

1
CCCA ¼

ΛII ΛIX ΛIY ΛIZ

ΛXI ΛXX ΛXY ΛXZ

ΛYI ΛYX ΛYY ΛYZ

ΛZI ΛZX ΛZY ΛZZ

0
BBB@

1
CCCA

αI

αX

αY

αZ

0
BBB@

1
CCCA: (11)

As shown in Fig. 1a, some important properties of a process can be
easily extracted from the components of its PTM. The PTM can be
divided into four blocks: the upper left-hand corner represents trace-
preservation, with ΛII= 1 if a process is trace-preserving (TP). This
constraint can be succinctly summarized by stating that a process is
TP if Λ0j= δ0j (i.e. the first row of the PTM is [1, 0,…, 0]). The lower
right-hand block is the unital block, which captures processes such as
stochastic Pauli noise and unitary errors. A unital process is one that
maps the identity operation to the identity operation ΛðIÞ ¼ I (it
cannot purify a mixed state). The row above the unital block captures
state-dependent leakage, represented by ΛIP≠ 0 for P∈ {X, Y, Z};
leakage is therefore not TP. The column to the left of the unital block

is the non-unital block, which captures processes such as
spontaneous emission (i.e., T1 decay) or amplitude damping. This
constraint can be summarized by stating that a process is unital if
Λi0= δi0 (i.e. the first column of the PTM is [1, 0,…, 0]T). Finally, the
diagonal of Λ represents state-preservation, with ΛPP= 1 ( < 1) for
processes which (do not) preserve the Pauli channel P ∀ {I, X, Y, Z}.
The process fidelity of a map in the PTM representation is the

weighted average of the diagonal components,

FΛ ¼ 1
4n

X
P2P�n

ΛPP: (12)

Therefore, the process infidelity is given by eF= 1− FΛ.

Gate set tomography
In GST, the quality of the model is quantified by computing the
log-likelihood ratio λ of the likelihood L of the GST model with the
likelihood Lmax of the “maximal model”,

λ ¼ �2 ln
L

Lmax

� �
: (13)

The maximal model is the one in which each independent
measurement outcome in the data set is assigned a distinct
probability equal to the observed frequencies. Wilks’ theorem121

states that if L and Lmax are both valid models, then the log-
likelihood ratio is a χ2k random variable, where k ¼ Nmax � Np is
the difference in the number of free parameters between the
maximal and GST models. If λ is not consistent with χ2k distribution
(i.e. it does not lie within the interval ½k � ffiffiffiffiffi

2k
p

; k þ ffiffiffiffiffi
2k

p �, with
mean k and standard deviation

ffiffiffi
k

p
), then this indicates that the

GST data are inconsistent with the GST model.
We quantify the model violation, or “goodness of fit,” by the

number of standard deviations that λ is from the expected mean k,

Nσ ¼ λ� kffiffiffiffiffi
2k

p : (14)

If Nσ ≤ 1, then the GST model can be considered trustworthy and
faithfully captures the behavior of the device. GST makes an
assumption of Markovianity (i.e. any Markovian process can—by
definition—be captured in a generalized model based on process
matrices), therefore large Nσ indicates the presence of non-
Markovian errors. However, Nσ does not quantify the magnitude of
these non-Markovian errors. Because Nσ will grow linearly with the
number of shots (and will typically increase with the depth of the
GST circuits), a large Nσ can be observed even if the underlying
non-Markovian errors are small in magnitude. Therefore, large Nσ

simply indicates that some non-Markovianity is present with high
statistical certainty.
While Nσ provides statistical evidence of non-Markovianity, a

wildcard error model99 can capture the magnitude of these errors.
The wildcard error rate wG∈ [0, 1] quantifies the unmodeled error
per logic gate operation. A wildcard error can also be assigned for
a circuit C containing gates by summing over the wildcard error
rates for all gates G ∈ C: wC= ∑G∈CwG. The wildcard model is
chosen to be minimal, such that assigning wG to a gate G is just
sufficient to make the model’s predictions consistent with the
observed data. This is enforced by requiring that the total
variation distance (TVD)

DTVðp; qÞ ¼ 1
2
jjp� qjj1 (15)

between the observed probability distribution pC and the
wildcard-augmented probability distribution qC be bounded by
the total wildcard error for circuit C,

DTVðpC ; qCÞ � wC : (16)

The wildcard-augmented model is therefore not unique, as qC can
be chosen from any distribution that satisfies Eq. (16). Because the
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wildcard error quantifies the magnitude of unmodeled error per
gate, and because unmodeled errors are often attributed to non-
Markovianity in the system, the per-gate wildcard error budget is a
good estimate of the magnitude of non-Markovian errors
impacting the gate. The TVD is a useful metric for quantifying
the magnitude of unmodeled errors because it captures the rate
at which measurement outcomes are incorrectly predicted by a
model. Because the TVD is upper-bounded by the diamond
norm36, one can compare the wildcard error wG to the diamond
error ϵ♢ for any gate G to inform whether unmodeled errors in the
GST estimate are dominant or negligible, and thus whether the
GST model can be trusted. By extension, comparing wG to ϵ♢
quantifies whether Markovian or non-Markovian errors dominate
the total error.

Randomization compiling: single-randomization limit
To understand how RC suppresses the coherent accumulation of
unitary errors between cycles of gates, consider the simple
example of applying many Rx(2π) rotations to a qubit in the
ground state, but each time the qubit over-rotates by a small
angle θ. The resulting state of the qubit after M rotations is

ψj i ¼
YM

e�iθσx 0j i ¼ cos ðMθÞ 0j i � i sin ðMθÞ 1j i: (17)

The fidelity of this state with respect to 0j i is
F ¼ jh0jψij2 ¼ cos2ðMθÞ � 1� ðMθÞ2, thus the infidelity
r ¼ 1� F � ðMθÞ2. Therefore, the infidelity scales quadratically
in both the over-rotation angle θ and the number of rotations M.
Under RC, the trajectory from the initial state to the final state is
randomized, thus ensuring that coherent errors will not grow
quadratically between gates. While exact quadratic growth is
highly unlikely for longer-depth multi-qubit circuits due to the
complex dynamics of crosstalk, and because coherent errors can
act in any direction (not just along the axis of rotation), coherent
errors can still accumulate in an adversarial fashion and grow
faster than average error rates, especially in structured quantum
circuits122.

Randomization compiling: many-randomization limit
Regardless of the rate at which coherent errors accumulate between
cycles of gates, they can still impact each computational gate G in a
circuit. We can model this process as an ideal gate G0 followed by an
unwanted unitary operator G ¼ Uðn̂; θÞG0, where
Uðn̂; θÞ ¼ e�iθn̂�σ=2, n̂ is the axis of rotation, σ the Pauli vector, and
θ is the rotation angle relative to the intended target state. For
simplicity, consider a unitary error about the x-axis for a single qubit,

Uðx; θÞ ¼ exp �i θ2 σx
� �

¼ cosðθ=2Þ � i sinðθ=2Þ
i sinðθ=2Þ cosðθ=2Þ

� �
:

(18)

In the PTM representation (see Fig. 1a), this coherent error takes
the following form,

Λ ¼

1 0 0 0

0 1 0 0

0 0 cosðθÞ � sinðθÞ
0 0 sinðθÞ cosðθÞ

0
BBB@

1
CCCA: (19)

For small θ, the diagonal components of Λ scale as
cosðθÞ � 1� 1

2 θ
2, and the off-diagonal terms scale as sinðθÞ � θ.

While the infidelity of the diagonal terms is eF ≈ θ2, we see that the
off-diagonal terms are quadratically larger, with

ffiffiffiffiffi
eF

p � θ. While
not all error metrics are sensitive to the off-diagonal terms in an
error process (e.g. fidelity-based measures), norm-based error
metrics such as the diamond norm generally are sensitive to such
terms, setting the � ffiffiffiffiffi

eF
p

upper bound of Eq. (3).

Under RC in the many-randomization limit, all off-diagonal
terms in the error process are completely suppressed in the limit
that N⟶∞. To understand how this occurs, consider Pauli
twirling Λ, i.e. PΛP† for any P ∈ {I, X, Y, Z}, where P represents the
Pauli superoperator. Under Pauli conjugation, the signs of the off-
diagonal terms remain the same (are reversed) if P commutes
(does not commute) with Λ. Thus, the off-diagonal terms change
sign with a 50% probability upon conjugation with a randomly
selected Pauli. When averaging over N randomizations, the
magnitude of the off-diagonal terms scale as θ=

ffiffiffiffi
N

p
, reminiscent

of a random walk, and thus vanish as N⟶∞ or if by luck the
correct Paulis were sampled which average to zero. While the
“noise tailoring” property of RC rests on assumption that the noise
impacting the easy gates is gate-independent, Wallman et al.52

prove that RC is robust to small gate-dependent errors, which are
inevitable in modern-day experiments.

Method for performing randomized compiling on GST
sequences
In order to preserve the circuit depth of GST sequences under RC,
randomly sampled single-qubit Paulis and their correction gates
are inserted between every layer. For circuits only containing
single-qubit gates, the random Paulis are compiled into the
previous layer and the correction gates are compiled into the
subsequent layer. For circuits containing two-qubit gates, the
correction gates are commuted through the two-qubit gate
before being compiled into the subsequent layer.
To highlight this method, consider a circuit C containing N

layers L of single-qubit gates:

C ¼ LNLN�1 ¼ L3L2L1: (20)

Under RC, a single randomized circuit takes the following form

C ¼ PNLNP
y
N�1PN�1LN�1 ¼ L3P

y
2P2L2P

y
1P1L1; (21)

where PyN is omitted in the circuit but taken into account in the
final ideal measurement results. The compiled circuit is

C ¼ ~LN~LN�1 ¼~L3~L2~L1; (22)

where the kth layer ~Lk ¼ PkLkP
y
k�1 (except for the first layer, which

does not contain a correction gate). For circuits containing two-
qubit gates in layer k− 1, the kth layer becomes ~Lk ¼ PkLkPck�2,
where Pck�2 ¼ Lk�1P

y
k�2L

y
k�1. This method therefore randomizes all

layers of single-qubit gates, while also maintaining the original
circuit depth, and was developed within the pyGSTi framework
specifically for the purpose of randomizing GST and related
benchmarking circuits.
As highlighted in the main text, we observe larger model

violation for a single-randomization under RC than for no
randomizations. This is expected behavior for N= 1 even when
the physical gates are Markovian, which we illustrate with the
following example: consider two single-qubit circuits, C1 ¼ GIGI
and C2 ¼ GIGIGIGI , and consider a physical gate set {GI, GX, GY,
GZ}, with GX = Xπ, etc. Consider a simple error model where each
gate is followed by a small coherent Xθ rotation error. When we
implement C1 with a single randomization under RC, we actually
implement a circuit that should perform the identity rotation,
but the gates have been randomized according to the method
outlined above. Let’s assume our randomized circuit ~C1 is the
same as the original circuit, ~C1 ¼ C1 ¼ GIGI . If we initialize our
qubit in the ground state, we will observe a small coherent
over-rotation error by 2θ, which will result in some θ-dependent
probability of not measuring 0. Similarly, when we run C2 we
will actually actually implement one of the many length-4
combinations of Pauli gates that produces the identity rotation.
For example, suppose we sampled ~C2 ¼ GZGZGZGZ ; this combi-
nation of gates would echo away the X rotation error, and we
would measure 0 with probability 1. Therefore, altogether we
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observe Prð0jC1Þ< 1 and Prð0jC2Þ ¼ 1. This is inconsistent with
every possible process matrix for GI (or at least every process
matrix that is close to the target identity matrix), because
repeating an identity gate amplifies all of its error parameters,
but does not echo away errors. Finally, note that this argument
is predicated on the assumption that we measure each circuit
many times; if we measure each circuit only once, the results
will not be inconsistent, but also will not be very informative.

Cycle error reconstruction
In Fig. 6, we plot the results of CER applied to the identity cycle
{I4⊗ I5⊗ I6⊗ I7} across all four qubits on the quantum
processor. We measure all 44= 256 Pauli channels, but omit
values which fall below 12% of the maximum value for visual
clarity. We observe no significant contribution from weight-k≥2
in the plot, demonstrating that Pauli twirling can break larger-
scale correlations across an entire quantum processor. Further-
more, Refs. 55,120 present similar results for multi-qubit cycles
containing two-qubit gates, and the conclusions were the same:
the most dominant errors under Pauli twirling are single-body
errors (i.e. weight-1 errors for single-qubit gates, weight-1 or
weight-2 errors for two-qubit gates, etc.). Moreover, because
two-body errors are the sum of all errors that act non-trivially
on the corresponding two bodies, irrespective of their action on
other qubits, the fact that two-body errors are negligible
indicates that higher-body errors are also negligible.
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