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ARTICLE

Genome biology of the paleotetraploid perennial
biomass crop Miscanthus
Therese Mitros et al.#

Miscanthus is a perennial wild grass that is of global importance for paper production, roofing,

horticultural plantings, and an emerging highly productive temperate biomass crop. We

report a chromosome-scale assembly of the paleotetraploid M. sinensis genome, providing a

resource for Miscanthus that links its chromosomes to the related diploid Sorghum and

complex polyploid sugarcanes. The asymmetric distribution of transposons across the two

homoeologous subgenomes proves Miscanthus paleo-allotetraploidy and identifies several

balanced reciprocal homoeologous exchanges. Analysis of M. sinensis and M. sacchariflorus

populations demonstrates extensive interspecific admixture and hybridization, and docu-

ments the origin of the highly productive triploid bioenergy crop M. × giganteus. Transcrip-

tional profiling of leaves, stem, and rhizomes over growing seasons provides insight into

rhizome development and nutrient recycling, processes critical for sustainable biomass

accumulation in a perennial temperate grass. The Miscanthus genome expands the power of

comparative genomics to understand traits of importance to Andropogoneae grasses.

https://doi.org/10.1038/s41467-020-18923-6 OPEN

#A list of authors and their affiliations appears at the end of the paper.
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In addition to its historical roles in paper production and as
ornamentals, varieties of the wild grass Miscanthus can pro-
duce high yields of harvestable vegetative biomass while

maintaining and potentially increasing soil carbon1. These fea-
tures, enabled by C4 photosynthesis, perenniality, and related
high efficiencies of light, nutrient, and water use, make Mis-
canthus and its close relatives (including sugarcanes and energy
canes) promising candidates for economically feasible and sus-
tainable bioenergy crops2–4. Continued genetic improvement of
bioenergy feedstocks is needed to enhance productivity and
ensure that these crops remain robust in the face of ongoing
biotic and abiotic stresses. This is particularly true for perennial
grasses, where the advantages in economic and environmental
sustainability relative to annuals depend on the longevity of the
crop once established. Although perennial crops have tremendous
potential for maximizing agricultural yields and minimizing
environmental impacts, our knowledge of their biology and
ability to manipulate their genetics lags well behind that in annual
crops5.

A key limitation to the genetic improvement of perennial
bioenergy grasses is the complexity of their genomes, which
hinders the application of modern breeding approaches6. Mis-
canthus sinensis is a genetic diploid (2n= 38) with a genome size
of 1C= 2.4–2.6 Gb7; the related M. sacchariflorus occurs in both
diploid (2n= 38) and tetraploid (2n= 76) forms. The n= 19
monoploid chromosome set of Miscanthus arose by ancient
doubling of a sorghum-like n= 10 ancestor, with a single chro-
mosomal fusion8–10. Interspecific hybrids of Miscanthus form
readily, even between individuals of different ploidy11,12. Indeed,
the predominant commercially grown miscanthus bioenergy
variety is the high-yielding, sterile, asexually propagated triploid
hybrid M. × giganteus “Illinois” (3n= 57). It is a clone of the
taxonomic-type specimen, holotypus 1993–1780 Kew13,14. Poly-
ploidy is also common within the Saccharum complex, a group of
closely related and highly productive perennial C4 grass species in
the subtribe Saccharinae that includes sugarcanes (Saccharum
spp.) and miscanthus. Intergeneric hybrid “miscanes” have been
made by crossing miscanthus with hybrid sugarcanes15, sug-
gesting that natural genetic variation in these two genera could be
combined in order to blend desirable traits (e.g., cold tolerance
and disease resistance).

Here we establish miscanthus as a genomic model for per-
enniality and polyploidy, and develop a foundation for genomic
variation that will enable the future improvement of perennial
biomass crops. We describe a draft chromosome-scale genome
sequence for M. sinensis, prove that miscanthus is a paleo-
allotetraploid by analyzing the distribution of transposable ele-
ments across its genome, and establish the timing of key evolu-
tionary events. By mRNA sequencing, we identify genes
preferentially expressed in rhizomes, stems, and leaves, and
explore the unique transcriptional dynamics of nutrient mobili-
zation in this rhizomatous perennial grass. Unlike most perennial
Andropogoneae, which are restricted to tropical or subtropical
regions, the Miscanthus genus comprises species that naturally
range from tropical to subarctic regions. Genomic analysis of 18
miscanthus accessions sequenced for this study, in addition to
reduced representation genotyping of over 2000 accessions col-
lected in the wild from east Asia, reveals extensive population
structure and interspecific introgression, which further con-
tributes to the genomic diversity of the genus Miscanthus.

Results
Genome sequence and organization. We assembled the M.
sinensis genome into n= 19 chromosomes by combining short-
read whole-genome shotgun (WGS) and fosmid-end data with

in vitro16 and in vivo17 chromatin proximity libraries (Supple-
mentary Fig. 1, Supplementary Table 1, and Supplementary
Notes 1, 2). The reference accession is the previously character-
ized8 doubled haploid DH1, which as expected is homozygous
throughout. The genome assembly anchors 1.68 Gb of contigs to
chromosomes, with a contig N50 length of 33.1 kb and pre-HiC
scaffolding N50 length of 190 kb (Supplementary Table 2). An
additional 0.20 Gb of contig sequence in scaffolds is not yet
placed on linkage groups; highly repetitive sequences are pro-
blematic and missing from the assembly (Supplementary Fig. 1b).
We validated the assembly at chromosome scale by comparison
with an integrated genetic map with 4298 assignable markers
(Supplementary Note 3).

We predicted the structure of 67,967 protein-coding genes
based on several lines of evidence, including homology with other
grasses and deep transcriptome data for miscanthus and
sugarcane18. These predicted genes account for an estimated
98% of protein-coding genes, with 94% assigned to a chromo-
somal position (Supplementary Tables 3–5, Supplementary Fig. 5,
and Supplementary Note 4). These genes are embedded within a
sea of transposable element relicts and other repetitive sequences,
which account for 72.4% of theM. sinensis genome assembly. The
most common class of assembled transposons are gypsy long-
terminal-repeat (LTR) retrotransposons (Supplementary Table 6
and Supplementary Note 5).

The paleotetraploidy of miscanthus is evident at the sequence
level, since each sorghum chromosome aligns to a pair of M.
sinensis chromosomes, after accounting for the chromosome
fusion of ancestral sorghum 4- and 7-like chromosomes8 that
reduces the karyotype from n= 20 to n= 19 (Fig. 1a). As
expected from earlier genetic maps8–10 (Supplementary Fig. 3),
the miscanthus and sorghum genomes show extensive 2:1
conserved collinear synteny (Fig. 1a and Supplementary Fig. 4a),
consistent with a whole-genome duplication in the Miscanthus
lineage. While it has been suggested19 that this duplication could
be shared with sugarcane, comparison of M. sinensis and S.
spontaneum20 genomes shows that the duplications in the two
lineages are distinct (Supplementary Note 7 and Fig. 2). Although
the doubled genome and disomic genetics of miscanthus is
suggestive of an allotetraploid history, neither a mechanism nor
timing for paleotetraploidy has been described, in part due to the
absence of known diploid progenitor lineages. We address this
further below.

Regarding the more than twofold difference in bulk genome
size between sorghum and miscanthus, we find that lengths of
coding sequence and introns are generally similar (Supplemen-
tary Fig. 4b, c), with overall differences arising from increased
intergenic spacing in miscanthus due to transposon insertion, as
well as by the expansion of repetitive pericentromeric regions,
which are only partially captured in the assembly (Supplementary
Fig. 4b). The chromatin conformation contact map (Supplemen-
tary Fig. 2a) exhibits an enrichment of centromeric and telomeric
contacts, respectively, consistent with the interphase nuclear
“Rabl” conformation as seen in the barley genome21. We
identified locally interacting chromosomal compartments (Sup-
plementary Fig. 2b and Supplementary Note 2) for which A
compartments have a higher gene density and B compartments
have lower gene density (one-sided t-test p value < 2.2 × 10−16)
and tend to occur predominantly in the pericentromeric region,
as observed in other plants22.

Allotetraploid origin of Miscanthus. An allotetraploid (i.e.,
hybrid) origin for a paleotetraploid species is commonly
demonstrated by showing that one set of its chromosomes (a
subgenome) is more closely related to some diploid lineages to the
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exclusion of others23. Because there are no known candidates for
the diploid progenitors of tetraploid miscanthus, this approach
cannot be used here. Instead, we used a new method that relies on
the chromosomal distribution of repetitive elements, which can
provide robust markers for subgenome ancestry24. We sought
repetitive sequences whose presence is enriched on one member
of each homeologous chromosome pair (Supplementary Note 6).
Such sequences are definitive markers of allotetraploidy, and
occur as relicts of repetitive elements that were active in only one
of the two diploid progenitors prior to hybridization and genome
doubling24. Importantly, the method does not require access to or
even knowledge of living representatives of the progenitor
lineages. We found 1187 13-bp sequences (13-mers) whose
pairwise enrichment pattern consistently partitions homeologous
chromosome pairs between distinct A and B subgenomes (Fig. 1a,
b). This observation establishes the past existence of distinct A
and B progenitor lineages (which remained separate for millions
of years, see below), and the allotetraploid origin of miscanthus.

Although we can use these markers to assign each miscanthus
chromosome in bulk to the A or B subgenome, we find evidence
for the balanced reciprocal exchange of distal segments between

homeologous chromosomes such that dosage remains intact (e.g.,
the ends of chromosomes 5–6, 11–12, and 16–17; Figs. 1a, 3a,
Supplementary Fig. 6, and Supplementary Note 6). Based on
consistency with our dense genetic map, these are clearly bona
fide homeologous exchanges rather than misassemblies. The
observed distal reciprocal exchanges likely occurred either by
mitotic recombination in the vegetative tissue of an AB F1 hybrid
founder prior to genome doubling, or by aberrant homeologous
recombination after allotetraploidy. The concentration of these
exchanges toward the ends of chromosomes is consistent with the
proximity of these regions in a telomeric bouquet conformation.
The maintenance of discrete A/B patterns of diagnostic 13-mers
in these distal segments implies that these exchanges occurred by
single crossover events rather than recurring recombination
throughout the distal regions of the chromosomes, which would
blur the distinctive A/B 13-mer signature.

Discrete homeologous exchanges are often observed in newly
formed allotetraploids and are thought to occur in response to a
new meiotic environment25. In studies of other polyploids,
homeologous replacements that alter the balance between A and
B alleles are common; when such variants are segregating in a
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Fig. 1 Allotetraploidy in miscanthus. a Syntenic relationships between sorghum and M. sinensis subgenomes MsA and MsB. Distribution of subgenome-
specific 13-mer sequences (blue for MsA, red for MsB) is shown for each M. sinensis chromosome (see text and Supplementary Note 7.1). b Clustering of
counts of 13-mers that differentiate homeologous chromosomes enables the consistent partitioning of the genome into two subgenomes. Blue
chromosome names correspond to the A subgenome, red chromosome names correspond to the B subgenome. c Timetree of Andropogoneae showing the
timeline of allotetraploidy in the Miscanthus lineage, with divergence and hybridization times of the A and B progenitors estimated from sequence
comparisons (Supplementary Note 8). Source Data underlying Fig. 1b are provided as a Source Data file.
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population, the resulting genetic variation can underlie quanti-
tative trait loci26,27. In contrast to these studies, however, in
Miscanthus, we find (1) predominantly balanced reciprocal
exchanges that alter chromosomal linkage, but do not change
A/B dosage, and (2) no evidence that these segmental exchanges
are segregating in our sequenced samples, suggesting that the
reciprocal homeologous exchanges are the result of ancient events
that have become fixed in Miscanthus (and therefore cannot be
causal for any phenotypic variation in the genus) (Supplementary
Note 6)). In addition to these long fixed reciprocal exchanges,
there are several shorter internal homeologous segments
(Supplementary Note 6) that could correspond to nonreciprocal
or recurrent exchange. These segments will be interesting to study
further.

From the identification of distinct A and B subgenomes, we see
that the sorghum-7 and -4-like chromosomes that fused8 to form
miscanthus chromosome 7 were both derived from the B
progenitor. While it is possible that the fusion occurred in the
B progenitor itself prior to hybridization, the absence of other
Saccharinae with n= 9 chromosomes, and the likelihood of
chromosome instability in the aftermath of allotetraploidization,
suggests that the fusion occurred after allohybridization.

The timeline of paleotetraploidy in miscanthus can be
established through inter- and intra-subgenome comparisons
(Fig. 1c and Supplementary Note 7). We estimate that the A and
B progenitors diverged from their common ancestor ~7.2 Mya
(million years ago), based on the synonymous differences
between homeologous protein-coding genes (Supplementary
Fig. 7). After this divergence but before hybridization, the two
(now likely extinct) progenitors evolved independently; evidence
of their species-specific transposable element activity appears in
the contemporary Miscanthus genome as subgenome-specific
repeats24. Consistent with this hypothesis, we find several LTR-
retrotransposon families within only one of the two subgenomes,
and estimate that they were actively inserting during the period
~2.5–6 Mya (Supplementary Note 7). In contrast, transposon
activity after the allotetraploidy event should be distributed across
the entire Miscanthus genome without regard to subgenomes.
Also, consistent with this picture, we find a burst of transposon
activity that is not subgenome-specific starting ~2.5 Mya, which
serves as our best estimate for the allotetraploid origin of
Miscanthus (Supplementary Note 7 and Supplementary Fig. 7c).
Finally, the interfertile sister species M. sinensis and M.
sacchariflorus diverged ~1.65 Mya (Fig. 1c), consistent with
speciation occurring after allotetraploidy. Chromosome-level
comparisons of repetitive elements and protein sequences
confirm that the polyploidies of Miscanthus and sugarcane
occurred independently (Supplementary Note 7).

Common hallmarks of allopolyploidy are asymmetric gene loss
(or conversely, retention) and biased gene expression between
subgenomes, which are both thought to arise from epigenetic
asymmetries in the aftermath of allohybridization28,29. Compar-
ing miscanthus and sorghum genes, we find that ~29% of
sorghum genes have been lost on one of two subgenomes;
conversely, ~71% have co-orthologs on both subgenomes
(Supplementary Note 6). Gene retention in M. sinensis shows a
small but statistically significant bias toward the B subgenome
(87.1% genes retained on B vs. 83.9% on A, Supplementary
Table 7; Fisher’s exact p value, two-sided= 1.2 × 10−9). The level
of homeologous gene retention in M. sinensis is nearly twice that
of maize (71% vs. 36%), presumably because the miscanthus
allotetraploidy is more recent. The subgenome retention bias in
Miscanthus is also smaller than in maize28 (80.6% in maize 1 vs.
55.4% in maize 2), which may reflect differences in the degree of
genomic differentiation between maize versus Miscanthus
progenitors prior to hybridization.

Similarly, for retained homeolog pairs, we find a weak but
significant expression bias (median B/A expression ratio 1.038,
without strong variation across tissues or season, Fig. 3b).
Although most pairs of homeologous genes have similar
expression levels, there are ~10% more pairs with higher B-
subgenome expression than vice versa (Supplementary Table 8).
This is again notably weaker than the expression bias in maize28.
Interestingly, genes in regions of homeologous exchange show
(on average) the bias of their source subgenome (Supplementary
Note 8 and Fig. 3c), indicating that subgenome expression bias
arises from local effects and/or became fixed early in the
allotetraploid evolution. This observation is consistent with
experiments that show rapid development of subgenome bias in
neoallopolyploids25,30,31. The weaker subgenome expression and
retention bias seen in the more recent miscanthus allotetraploidy
versus the older maize suggests that these effects may become
amplified over time, and may also be influenced by the relative
genomic divergence of progenitors.

Seasonal dynamics of gene expression. As a rhizomatous per-
ennial, miscanthus provides a model for studying the biology of
rhizomes, which are modified underground stems that enable
temperate perennial grasses to overwinter by their capacity to (1)
store nitrogen, carbon, and other nutrients from senescing leaves
and stems, and (2) mobilize these reserves in the spring to feed
new vegetative growth. Amino acids, particularly asparagine with
its high N:C ratio, are the primary form of nitrogen cycled among
plant tissues32. Monitoring free asparagine concentrations
(Fig. 4a) from stem, leaf, and rhizome tissues of M. × giganteus
sampled throughout the growing season (May to October) over 3
years revealed high concentrations in the spring rhizome, low
levels in all tissues during the summer period of rapid growth,
followed by increasing accumulation in stem and rhizomes after
flowering. Elevated asparagine levels mark periods of active
nitrogen remobilization from rhizome to shoot in spring, and
from the shoot to rhizome in autumn.

To characterize the seasonal dynamics of gene expression and
regulatory programs associated with perenniality in Miscanthus,
we performed RNA-seq from the same tissue samples collected
for profiling nitrogen cycling (Supplementary Note 8 and
Supplementary Data 1). Principal component analysis (PCA)
identified the two largest sources of variation as tissue type,
followed by sampling time (Fig. 4b). Comparisons among tissues
produced a catalog of organ-preferred genes (Supplementary
Fig. 8 and Supplementary Data 1–9). As expected, leaf-preferred
genes are significantly enriched in genes functioning in carbon
fixation and metabolism, and stem-preferred genes include those
associated with phenylpropanoid biosynthesis and amino acid
metabolism. Gene expression in rhizomes is more similar to
stems than leaves, consistent with their developmental origin as
modified stems (Supplementary Fig. 8a, b). Relative to stems and
leaves, rhizomes preferentially express transcription factors that
regulate growth and metabolic processes, and genes that respond
to stimuli such as water and stress (Supplementary Fig. 8e). We
identified 35 genes that are preferentially expressed in the
rhizome, including homologs of genes like GIANT KILLER (GIK)
and SHORT INTERNODE (SHI) implicated in organ patterning,
differentiation, and cell elongation33–36. Overexpression of SHI-
like genes results in compact plants with shorter stem
internodes37–39, which is consistent with the morphological
differences between miscanthus rhizomes and stems.

We identified and characterized the transcriptional network
regulating seasonal nutrient mobilization in miscanthus (Supple-
mentary Note 8), which is central to the perennial lifecycle and
efficient recycling of resources. Although tissue identity
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dominates the first two principal components of gene expression,
the third component (PC3) separates the spring rhizomes, fall
leaves, and fall stems from the other tissues (Fig. 4c). Differen-
tially expressed genes contributing to the pattern in PC3
(Supplementary Note 8) comprise a dynamic network differ-
entiating the fall rhizome that is storing nitrogen from the spring
rhizomes that are releasing nitrogen to promote new growth
(Supplementary Data 1). Of these genes, 104 had a functional or
KEGG assignment, including a suite of transcription factors and
genes with known important roles in nitrogen mobilization40 like
ASPARAGINE SYNTHETASE (ASN1), GLUTAMATE DEHY-
DROGENASE (GDH2), and GLUTAMATE DECARBOXYLASE
(GAD1). Remarkably, the most prominent (“hubby” or central)

transcription factors within the network are a subset of
JASMONATE ZIM DOMAIN (JAZ) family proteins that regulate
jasmonic acid biosynthesis (e.g., ALLENE OXIDE SYNTHASE,
AOS) and signaling, a pathway recently shown to activate
nitrogen remobilization in rice41 (Fig. 4d). These data reveal a
group of regulators and enzymes that may be key for promoting
the nitrogen remobilization in spring.

Inter- and intraspecific variation and introgression. Breeding to
improve miscanthus for biomass and other applications can draw
upon extensive wild germplasm from multiple species and ploidy
levels. We therefore investigated the genetic diversity of Mis-
canthus and the distribution of inter- and intraspecific variation
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in admixed populations. We combined new WGS sequencing of
18 accessions of varying ploidy, including the triploid biofuel
cultivar M. × giganteus “Illinois” (see Supplementary Note 9 and
Supplementary Table 9) with previously generated genotyping-
by-sequencing data from primarily wild accessions with broad
geographic coverage11,12,42,43, spanning the native range of mis-
canthus across north- and south-east China, Korea, Russia, and
Japan. Genome-wide admixture (Fig. 5a) and PCA (Fig. 5b)
readily differentiate two species,M. sinensis andM. sacchariflorus.
Other named Miscanthus accessions, such M. transmorrisonensis
and M. floridulus, lie within the range of genetic variation of M.
sinensis, suggesting that these taxa should more properly be
considered subtypes of M. sinensis. The accession in our collec-
tion named Miscanthus junceus, however, is clearly distinct and
appears to be more closely related to sugarcanes than Miscanthus
(Supplementary Fig. 9). It is African, sometimes classified in a
separate genus Miscanthidium, and clearly separate from Mis-
canthus sensu stricto44.

Our chromosome-scale genome assembly allows us to investigate
patterns of admixture in interspecific hybrids (Fig. 5c). While allM.
sinensis × M. sacchariflorus hybrids and admixtures are taxonomi-
cally characterized as M. × giganteus, this nothospecies has rich
diversity due to the occurrence of diploid, triploid, and tetraploid
accessions (Supplementary Fig. 10). We find that many ornamental
diploids, especially many bred by Ernst Pagels in Germany, contain
chromosomal segments ofM. sacchariflorus introgressed into anM.
sinensis background, consistent with prior admixture studies11,12.
Mainland Asian and Japanese M. sinensis are distinct subpopula-
tions (Fig. 5a) that diverged ~500,000–1000,000 years ago based on
chloroplast DNA (Supplementary Note 9).

Our data confirm that the highly productive triploid biofuel M.
× giganteus genotype, “Illinois,” is an interspecific hybrid of
tetraploid M. sacchariflorus and diploid M. sinensis14,45. We find
a predominant 2:1 ratio of M. sacchariflorus: M. sinensis alleles
across the entire genome, consistent with this hypothesis;
however, we also observed that the M. sacchariflorus ancestor
had interspecific admixture (Fig. 5c and Supplementary Fig. 10c,
e), which indicates that the most productive miscanthus genotype
currently grown is the product of more than one cycle of
introgression from M. sinensis into M. sacchariflorus. Hybrids
between M. sacchariflorus and M. sinensis are frequently highly
vigorous and high-yielding, regardless of whether they are
diploid, triploid, or tetraploid46,47. Thus, understanding how
prior introgression of M. sinensis alleles into a primarily M.
sacchariflorus genetic background affects the yield potential of
subsequent interspecific hybrids will be important for optimizing
breeding strategies. In particular, M. × giganteus combines the
tufted habit (many stems per area; short rhizomes) of its M.
sinensis parent with the spreading rhizomatous habit (few stems
per area; long rhizomes) of its M. sacchariflorus parent, typically
in an intermediate form, and optimizing the number of stems per
area is critical to breeding for high yield in M. × giganteus48. The
recently collected Japanese M. × giganteus triploid49 “Ogi80” has
a similar pattern to “Illinois,” with both including several short
blocks containing two or three M. sinensis alleles. These regions
could be due to segmental gene conversion or loss during the
propagation of this sterile triploid, or interspecific introgression
prior to triploid formation. Another natural triploid, “Ogi63,”
shows a distinct pattern, highlighting the diversity of natural
polyploid Miscanthus hybrids (Supplementary Fig. 10).
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Miscanthus is a promising perennial biomass source and
candidate biofuel crop with efficient C4 photosynthesis that is
highly adaptable. Its ability to grow on marginal lands with
limited inputs, and its high drought and chilling tolerance make it
suitable for both tropical and temperate climates. The genome
sequence and genomic analysis presented here provides a
foundation for systematic improvement of Miscanthus to
optimize its productivity and robustness. Comparative analyses
among the Andropogoneae50, which unites miscanthus with
maize, sorghum, and sugarcane, promise to reveal the genetic
basis for innovations that contribute to the high productivity and
wide adaptation of this tribe of grasses.

Methods
Genome sequencing and chromosomal assembly. We shotgun-sequenced the
M. sinensis genome at ~90× redundancy with Illumina paired-end and mate-pair
data, augmented by fosmid-end pairs and in vitro and in vivo chromatin con-
formation capture (HiC) as described in Supplementary Note 1. Illumina shotgun
assembly was performed with Meraculous251 and organized into chromosomes
with HiC data using HiRise (Dovetail Genomics, Scotts Valley, CA) followed by
manual curation with Juicebox52, and confirmation of internal self-consistency as
described in Supplementary Note 2. The assembly was further corroborated and
assigned to chromosomes using a genetic map derived from four crosses, with 4298
uniquely assignable 64-bp markers, as described in Supplementary Note 3.

Protein-coding gene and transposable element annotation. Protein-coding
gene structures were annotated using the DOE Joint Genome Institute annotation
pipeline53 that incorporates transcriptional evidence, homology support from
related grasses, and ab initio methods, as described in Supplementary Note 4.
RNA-seq data from three tissues and 57 timepoints for M. × giganteus and M.
sinensis DH1 leaf and rhizome (PRJNA575573, SRP017791) were used, and these
data are summarized in Supplementary Note 8 including accession numbers.
Genome completeness was estimated using BUSCO54, and orthologous gene
families identified using OrthoVenn55 as described in Supplementary Note 4.

Transposable elements were identified de novo using RepeatModeler56 to
augment existing catalogs of grass repeats from repbase57 and MIPS58 using
RepeatMasker59, and identified intact retrotransposons with LTRHarvest60, as
described in Supplementary Note 5. LTR families were defined by clustering these
LTRs with those of sorghum and sugarcane by BLAST score using 90% identity and
90% length cutoffs as described in Supplementary Note 5.

Subgenome and homeologous exchange identification. We partitioned the M.
sinensis genome into subgenomes A and B by a modification of methods described
in Session et al.24 and described more fully in Supplementary Note 6. Importantly,
this method can be applied without requiring sequences from extant A and B
diploids. Briefly, we identified 1187 13-bp sequences (13-mers) that (1) occurred at
least 100 times across the genome, and (2) were at least twofold enriched in one
member of each homeologous chromosome pair (excluding the case of fused
homeologs). 13-mers were counted using Jellyfish61. Homeologous chromosomes
were determined based on conserved synteny to each other and to sorghum
(Fig. 1). These 13-mers allowed chromosomes to be clustered by subgenome, and
were found to overlap with subgenome-specific repeats as described in Supple-
mentary Note 6. To identify cases of homeologous exchanges, we sought chro-
mosomal regions whose 13-mer identity differed from the overall identify of the
chromosome, using a hidden Markov model whose observed state was the number
of A- and B-specific 13-mers and whose emitted state is A or B, as described in
Supplementary Note 6.

Determination of biases in subgenome gene retention. We used two methods to
determine orthology between M. sinensis genes and sorghum in order to assess
differential retention of gene duplicates after allotetraploidy, using sorghum as the
outgroup representing the ancestral (preduplicated state). For the first method,
gene families were constructed using OrthoVenn55. For the second method, we
used BLAST-based clustering. Subgenome-specific retention is defined as the
number of genes on a given subgenome divided by the number of inferred ancestral
(i.e., preduplication) gene number. Details of this analysis can be found in Sup-
plementary Note 6.

Timing of events associated with allotetraploidy. We estimated the timing of
speciations in the Andropogoneae using a set of 1:1 orthologs for species shown in
Fig. 1c with P. hallii and S. italica as outgroups, as described in Supplementary
Note 7. Briefly, concatenated multiple-sequence alignments were produced using
Dialign-TX62 and Gblocks63. M. sinensis and maize genes were partitioned into A
and B subgenomes, and 1 and 2 subgenomes, respectively, with 1–2 assignments as
determined by Schnable et al.28. The dataset included M. sacchariflorus A and B
genes predicted by mapping diploid M. sacchariflorus shotgun sequence to the M.

sinensis assembly. M. sacchariflorus has the same karyotype as M. sinensis, and
hybrids are fertile, indicating that they share the same A/B ancestral tetraploidy.
Phylogenies were produced from the resulting 28,887 nucleotide alignment using
PhyML64. Timetrees were estimated using r8s65 with a smoothing parameter of 0.1,
and constraining the Setaria/Panicum node to 12.8–20 Mya and the Sorghum/
maize split to 13–21.2 Mya66.

We estimated the period during which the A and B progenitors were separate
species using phylogenies of five subgenome-specific LTR families with ≥100
members that contain a subgenome-enriched 13-mer, as described in
Supplementary Note 7. Subgenome-specific LTR families have been active when
the two progenitors were separate species, but before allotetraploidy. To
calibrate the rate of LTR substitution in miscanthus, we used LTR families that are
(1) found in high copy number in miscanthus across both the A and B
subgenomes, and so were active after allotetraploidy, and (2) have parallel activity
in the sorghum genome, and used a miscanthus–sorghum divergence time of 10
My as determined from protein-coding genes. We used the median substitution
rate of these families (2.1 × 10−8 substitutions per My) to infer the timing of
subgenome-specific activity based on Jukes–Cantor distance. Details are provided
in Supplementary Note 7.

Analysis of gene expression. We analyzed RNA-seq data using Tophat2.1.167,
HTSeq68, DESeq269, and the NOISeq R package70,71 to extract expression levels
and further analyze the RNA-seq data as described in Supplementary Note 8. To
identify genes that were constitutively expressed in any one organ type, we con-
sidered only genes with a count per million (cpm) of 5 or greater within all samples
of an organ type. KEGG enrichment analysis using keggseq72 was performed on
genes that were preferentially in leaves, stems, and rhizomes, respectively, to
determine if they clustered into specific pathways or functional categories. Enri-
ched pathways with a q value ≤ 0.01 are shown in Supplementary Fig. 8c–e.

For the purposes of comparing gene expression of homeologs, we measured
gene expression using cpm, after combining replicates, as described in
Supplementary Note 8. In order to measure subgenome expression bias, for each
homeolog pair, we considered only experiments where one or both homeologs have
nonzero expression (cpm > 0.5). This condition is necessary because the majority of
genes are not expressed in every tissue, leading to a large number of uninformative
comparisons. We considered expression bias using a variant of the approach of
Schnable et al.28, identifying homeolog pairs where one member of the pair was
expressed X-fold relative to the other, where X= 2, 5, and 10, again requiring both
members to be expressed at a minimal level (cpm > 0.5) to avoid uninformative
comparisons.

Analysis of genetic variation. WGS sequences of 18 miscanthus accessions
(Supplementary Table 9) were aligned to the haploid M. sinensis DH1 reference
sequence using bwa mem73, and variants called using GATK74 version 3.6, as
described in Supplementary Note 9. Restriction site-associated DNA-sequencing
(RAD-seq) data from 2819 Miscanthus individuals were used to obtain a snapshot
of genetic diversity, as described in Supplementary Note 9.

For PCA with the RAD-seq data genotypes, we retained SNPs with a maximum
of 30% missing data and a minimum minor allele frequency of 0.01, resulting in a
set of 144,337 SNPs. From this dataset, individuals with 50% or more missing data
were removed, leaving 2492 out of the original 2819 individuals. By filtering SNPs
and individuals in this way, the remaining data were primarily derived from PstI
sequencing libraries, as this was the enzyme most commonly used across the
dataset. Genotypes were coded on a numeric scale from 0 to 1, indicating copy
number for the nonreference allele, i.e., 0, 0.5, and 1 for diploids, 0. 0.33, 0.67, and
1 for triploids, and 0, 0.25, 0.5, 0.75, and 1 for tetraploids. PCA was performed
using probabilistic PCA method implemented in the Bioconductor package
pcaMethods75. All SNPs were centered and scaled to unit variance before PCA.

The genomic makeup of the accessions was analyzed with ADMIXTURE76.
Figure 5a shows the result for K= 3, which was used to analyze the populations. To
resolve admixture along chromosomes, we identified 1283,756 species-specific
SNPs in the nonrepetitive regions of 19 chromosomes from fixed differences
between the two species as represented by 4 diploid exemplar genomes without
evident admixture as described in Supplementary Note 9. These ancestry-
informative markers were used to obtain a high-resolution admixture map for the
WGS accessions (Fig. 5c), following the method of Wu et al.77. A subset of these
ancestry-informative markers that overlapped RAD-seq variants were used to infer
the segmental ancestry of the RAD-seq accessions. Further details are provided in
Supplementary Note 9 and Supplementary Data 10.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data supporting the findings of this work are available within the paper and its
Supplementary Information files. A reporting summary for this article is available as a
Supplementary Information file. The datasets generated and analyzed during the current
study are available from the corresponding author upon request. Genomic reads for the
M. sinensis DH1 genome assembly can be found at PRJNA346689, transcriptomic reads
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at PRJNA575573 and SRP017791. The genome, annotation, transcriptomic, and
variation data are available on Phytozome. Source data are provided with this paper.

Code availability
All custom scripts used for parsing and analyzing transposable elements, gene families,
and gene expression, as described in Supplementary Notes, are available at GitHub
[https://github.com/miscanthus-paper/Miscanthus-genome.git] and [https://bitbucket.
org/bredeson/artisanal.git].
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