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Abstract: Brn3b (Pou4f2) is a class-4 POU domain transcription factor known to play central roles in
the development of different neuronal populations of the Central Nervous System, including retinal
ganglion cells (RGCs), the neurons that connect the retina with the visual centers of the brain. Here, we
have used CRISPR-based genetic engineering to generate a Brn3b-mCherry reporter mouse without
altering the endogenous expression of Brn3b. In our mouse line, mCherry faithfully recapitulates
normal Brn3b expression in the retina, the optic tracts, the midbrain tectum, and the trigeminal ganglia.
The high sensitivity of mCherry also revealed novel expression of Brn3b in the neuroectodermal cells
of the optic stalk during early stages of eye development. Importantly, the fluorescent intensity of
Brn3b-mCherry in our reporter mice allows for noninvasive live imaging of RGCs using Scanning
Laser Ophthalmoscopy (SLO), providing a novel tool for longitudinal monitoring of RGCs.

Keywords: retinal ganglion cells (RGCs); CRISPR-Cas9; retinal development; optic stalk; retinal
imaging; scanning laser ophthalmoscopy (SLO)

1. Introduction

Retinal ganglion cells (RGCs) are the sole output neurons of the retina. Located along the inner
surface of the retina, RGCs receive and integrate signals from the retina circuitry and send long axons
that converge at the center of the eye to form the optic nerve and convey visual information to several
areas of the brain [1,2]. There are approximately 40 RGC subtypes classified by single-cell RNA
sequencing clustering algorithms [3], and RGCs have also been categorized into numerous subtypes
based on their morphological and functional properties [4]. Different RGC populations participate in
distinct circuits, but the vast majority of optic nerve axons terminate in the lateral geniculate nucleus of
the thalamus or the superior colliculus in the tectum of the midbrain [5].

Progressive damage to the optic nerves and RGC degeneration is the final common pathway
that leads to vision loss in glaucoma, one of the leading causes of visual impairment and blindness
worldwide [6]. Although research in the field of glaucomatous degenerations is extensive, the
pathophysiological mechanisms underlying these diseases are not completely understood. Rodent
models of RGC degeneration have been vital to our continued efforts to understand the progression
of glaucoma and to devise novel therapeutic interventions. Several invasive methods [7–14],
naturally occurring models [15,16], and genetic manipulations [17,18] have been utilized as a proxy to
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glaucomatous disease. However, all these methods rely on in vivo optical coherence tomography scans
(OCT) imaging [19] or post-mortem histological procedures to assess the degree of RGC degeneration.
In general, OCT measurements of the ganglion cell complex involve measuring the thickness of three
layers together: the inner plexiform layer (IPL) that contains the dendritic arbors of the RGCs and the
axons of the cells of the inner nuclear layer of the retina, the ganglion cell layer (GCL) that contains
the somas of the RGCs and the displaced amacrine cells, and the retinal nerve fiber layer (RNFL)
containing the RGC axonal processes and astrocytes [20,21]. While great progress in segmentation
algorithms has been achieved and measurements of the GCL alone are possible, albeit time-consuming,
and novel imaging technologies are being developed, the current standard tools are not ideal to follow
RGCs over time [22]. Similarly, several RGC reporter mice are available including Thy-XFP, Isl2-GFP,
DRD4-GFP, Hoxd10-GFP and many others but these reporters are either not specific or label only a
small subset of RGCs [23–29].

Previous reports have identified Brn3b (Pou4f2), a POU-4 transcription factor, as a master
regulator of RGC development and neural cell type diversity [30–32]. The basic helix-loop-helix
(bHLH) transcription factor Atoh7/Math5 is expressed in RGC precursors and controls the expression
of Brn3b and another transcription factor, Isl1, which in a combinatorial manner are required for the
initiation of the RGC program [33,34]. Consequently, deletion of Brn3b results in the loss of 70% of
all RGCs, with remaining RGCs exhibiting axonal guidance defects or delays [35–40]. Conversely,
overexpression of Brn3b and Isl1 together is sufficient to promote RGC fates [41]. Brn3b expression has
also been observed in the trigeminal nerve ganglia and other cranial nerve nuclei in a very characteristic
and dynamic spatiotemporal pattern [42,43].

Here, we have developed a murine fluorescent reporter using CRISPR-Cas9 to introduce
monomeric Cherry fluorescent protein (mCherry) after the coding sequence of Brn3b, without
modifying its normal expression. In Brn3b-mCherry mice, mCherry closely recapitulates endogenous
Brn3b expression and, as a result, labels a large proportion of RGCs. In the retina, mCherry expression
begins around embryonic day 11.5 (E11.5), coinciding with the onset of RGC genesis, and persists
throughout development and in the adult retina. Interestingly, our approach also revealed novel Brn3b
expression in the optic stalk during early development. Additionally, the high detectability of mCherry
allows for live imaging of RGCs using fluorescence detection by Scanning Laser Ophthalmoscopy
(SLO), providing a powerful tool to monitor RGCs over time.

2. Results and Discussion

2.1. Generation of CRISPR–Engineered Brn3b-mCherry Reporter Mouse Line

We aimed to generate a Brn3b reporter mouse line without interfering with Brn3b endogenous
expression. To that goal, we designed a CRISPR/Cas9 (Clustered Regularly Interspaced Short
Palindromic Repeats/CRISPR-associated protein 9) strategy to insert 2A self-cleaving peptide
(P2A) and monomeric Cherry fluorescent protein (mCherry) sequences immediately downstream
of the coding sequence of the Brn3b gene (Pou4f2, transcript NM_138944, Figure 1A). The
gene-targeting was completed by Biocytogen (Worcester, MA, USA). Briefly, single guide RNAs
(sgRNAs) were designed using the CRISPR Finder design tool www.sanger.ac.uk [44]. One sgRNA
(GGAGAAGGGTCCCTAAATGC) was selected, cloned into pT7-sgRNA by Gibson assembly, confirmed
by DNA sequencing, and transcribed in vitro. Similarly, the targeting vector was constructed as shown
in Figure 1A. and validated by DNA sequencing. 286 zygotes were microinjected and transferred into
pseudopregnant females, from which 21 pups were born. With this strategy, a cassette containing a
P2A-mCherry sequence flanked by homology arms to exon 2 of Brn3b (5′ homology) and to the 3′ UTR
of the Brn3b coding sequence (3′ homology) were inserted by homologous recombination into the
Brn3b locus. Therefore, the resulting animals express Brn3b and mCherry from the endogenous Brn3b
promoter and regulatory elements. The founders were bred, the F1 animals were genotyped, and the
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positive animals were further confirmed by Southern blot using two different probes (Figure 1B) as
detailed in Figure S1.
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Figure 1. Design and validation of CRISPR/Cas9 strategy. (A) Schematic of the mouse Brn3b locus.
The dark green boxes correspond to the two exons of Brn3b (E1/2). Two probes named LR-probe
and 3′ probe-A (orange lines) were used to identify correctly targeted animals. (B) Southern blot of
Brn3b-mCherry mice showing correct insertion of the mCherry targeting vector into the Brn3b locus.
Further details on Southern blot design strategy design is detailed in Figure S1.

Other Brn3b reporter animals have been previously reported, including a GFP knock-in
reporter [45] as well as numerous strategies for labeling Brn3b+ cells using Cre or Dre-driven
recombination combined with alkaline phosphatase or lacZ to visualize the recombined cells [46–49].
Each of these models is useful for studying RGC and retinal biology, however in all these lines at
least one copy of Brn3b is disrupted. Furthermore, Brn3b is present in the germline or ubiquitously
expressed in the early stages of development leading to recombination in the whole animal in some
Brn3b-Cre knock-in models [49].

Similarly, other fluorescent RGC reporters using different drivers have also been developed. For
example, several Thy1 reporters have been generated and are widely used. However, Thy1 is not
exclusively expressed in RGCs as many displaced amacrine cells as well as INL neurons also express
Thy1 [23]. It is important to note that in our design we chose mCherry because it typically displays low
autofluorescence background levels and high photostability [50]. Furthermore, our Brn3b-mCherry
line could be easily combined with other existing RGC reporters such as the Thy1-YFP or Isl2-GFP
mice [23,51], and a similar strategy has been successfully used to label RGCs derived from human
Embryonic Stem Cells [52,53].

2.2. mCherry Labels A Large Fraction of RGCs in the Adult Retina of Brn3b-mCherry Mice

To analyze mCherry expression in the adult retina, 8–12-week old Brn3b-mCherry mice (n = 4
from two different generations) were euthanized, and their retinas were dissected, flat-mounted,
fixed, and immunolabeled with mCherry and Brn3, as well as with other known RGC markers such
as RBPMS and Tuj1 (Figure 2). mCherry+ RGC somas range from 8.25–29.67 µm, with an average
diameter of 15.1 +/− 3.6 µm consistent with previous reports [29], and we observed an average of 2297
+/− 411 mCherry+ cells/mm2 of retina (mean +/− SD, Table S1). A widely-used pan-Brn3 antibody
that detects Brn3a, Brn3b and Brn3c (C-20, Santa Cruz Biotechnology) labels most RGCs, but some
subpopulations, including some intrinsically-photosensitive RGCs (ipRGCs), are Brn3− [54,55]. As
expected, mCherry highly colocalizes with Brn3 (99.06 ± 0.25% colocalization, indicated as mean
+/− SD) and we only found a very small subset of Brn3+ cells that were mCherry− (yellow arrow in
Figure 2B’), presumably indicating a small fraction of cells that are Brn3b− but Brn3a+ or Brn3c+. As
described previously, RBPMS specifically labels all RGCs [29]. Counting RBPMS+ and mCherry+ cells
in our Brn3b-mCherry mouse indicated that 70.86 ± 4.33% of all RGCs are mCherry+ (data indicated
as mean +/− SD, yellow arrows in Figure 2C’ show RBPMS+ mCherry− RGCs). Conversely, 100% of
mCherry+ cells are RBPMS+ indicating that all fluorescently-labeled cells are RGCs (Figure 2C,C’).
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Since the mCherry sequence does not include a nuclear localization signal, the RGC axonal bundles
(Tuj1+, white arrows in Figure 2D’) and optic nerves also exhibit detectable levels of mCherry.
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Figure 2. Brn3b-mCherry expression in the adult retina. (A) Flat-mounted retina labeled with
anti-mCherry antibody. (B,B’) mCherry (red) and Brn3 (teal) colocalization. Yellow arrow indicates a
Brn3+ mCherry- cell. (C,C’) mCherry (red) and RBPMS (teal) colocalization. Yellow arrows indicate
RBPMS+ mCherry- cell bodies. (D,D’) mCherry (red) and Tuj1 (teal) colocalization. White arrows
indicate Tuj1+ mCherry+ axons. (E–E”’) Cross-section of an adult retina labeled with mCherry (red),
RBPMS (gray), DAPI (blue), and Pax6 (green). All mCherry+ cells (white arrows) are RBPMS+.
Amacrine cells are labeled with yellow stars and are mCherry- (Pax6+ RBPMS− mCherry− cells).
Yellow arrowhead corresponds to an mCherry− RGC (RBPMS+ Pax6−mCherry− cell). ONH: Optic
Nerve Head. ONL: Outer Nuclear Layer. INL: Inner Nuclear Layer. GCL: Ganglion Cell Layer. Scale
bars: 300 microns in A, 50 microns in B–E”’.

Paraffin sections of Brn3b-mCherry adult mice showed specific mCherry expression only in the
GCL (Figure 2E). To verify that mCherry is only expressed in RGCs and not in displaced amacrine
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cells or in any other retinal cell type, we performed co-localization experiments with Pax6 (Figure 2E’)
and RBPMS (2E”). Pax6 is expressed in RGCs, amacrine cells, horizontal cells, and Muller glia [56].
Therefore, Pax6+ RBPMS- cells located in the GCL are displaced amacrine cells (yellow stars in
Figure 2E’,E”) and these cells are not mCherry positive. Conversely, a considerable fraction of RBPMS+

cells exhibit mCherry expression (white arrows, Figure 2E–E”), similarly to our flat-mount experiments.
Together, these findings suggest that our Brn3b-mCherry reporter mouse specifically labels RGCs in
the adult mouse retina.

2.3. The Expression Pattern of mCherry Recapitulates Endogenous Brn3b during Retinal Development

During normal development, retinal progenitor cells give rise to all the different cells of the retina
in a stereotyped sequence with the RGCs being the first cell population generated [57–59]. Classic
H3-thymidine labeling and cell lineage experiments established that in the mouse retina the onset
of RGC genesis is around embryonic day 11.5 (E11.5). We detected mCherry in our Brn3b-mCherry
mouse line at the onset of Brn3b expression in nascent RGCs located in the center of the retina at E11.5
and this expression progressively spreads outward during the wave of neurogenesis that occurs during
retinal development (Figure 3). At all the ages analyzed, mCherry expression colocalizes with Brn3 as
observed by immunohistochemistry using mCherry and Brn3 antibodies (Figure 3A–C”). Moreover,
mCherry is also observed in axonal fibers and in the optic nerve (white arrows in Figure 3B).

To define the dynamics of Brn3b expression, we performed co-localization experiments with
well-established markers for different stages in RGC development. PCNA (Proliferating Cell Nuclear
Antigen) is a known marker of retinal progenitor cells that labels dividing cells during all phases
of cell cycle throughout retinal histogenesis [60]. Co-immunolabeling experiments of mCherry and
PCNA showed that Brn3b and PCNA are largely expressed in two separate populations. This is not
surprising, as Brn3b is mostly expressed in post-mitotic RGCs. However, we found a small fraction of
mCherry+ cells that co-labeled for PCNA (white arrows in Figure 3D), indicating that Brn3b can be
expressed in dividing progenitors, probably during the terminal cell division. Brn3b and Isl1 have
been previously detected in EdU or BrdU-labeled cells after a short chase [61,62], suggesting that
these transcription factors can be expressed during S or G2, consistent with the hypothesis that fate
commitment is decided prior to the terminal mitosis [61,63]. Atoh7 (Atonal homologue 7/formerly
Math5) is expressed during the terminal cell cycle in a subset of progenitor cells and is known to be
required for RGC genesis [33,34,63]. Accordingly, a subset of Atoh7+ cells co-expresses Brn3b [64,65].
As expected, in our mouse model, mCherry also overlaps with a small subpopulation of Atoh7+ cells
(white arrows in Figure 3E). As the retina develops in a central to peripheral gradient, Atoh7 precedes
Brn3b expression (yellow arrowhead in Figure 3E) consistent with a younger developmental status at
the periphery. Therefore, the expression patterns observed support the current model of transcriptional
relationships of Atoh7 and Brn3b. Finally, γ-Synuclein (sncg) is a commonly used marker of RGCs,
and its expression has been shown to be RGC-specific in the adult retina and in purified postnatal RGC
cultures [66–68]. All γ-Synuclein+ cells are mCherry+ at E13.5 (Figure 3F) but, in this case, mCherry
expression precedes γ-Synuclein (yellow arrow in Figure 3F), suggesting that γ-Synuclein is expressed
in a later maturation stage during RGC development. Altogether, our data indicates that mCherry
expression in our reporter mouse faithfully recapitulates spatial and temporal Brn3b patterns in the
developing mouse retina.
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Figure 3. Brn3b-mCherry expression during early retinal development. (A–C”) Co-localization
experiments of mCherry and pan-Brn3 antibody at E11.5 (A-A”), E13.5 (B–B”) and P0 (C–C”). White
arrows in B indicate mCherry+ RGC axons. D–F’) E13.5 retina stainings. (D,D’) mCherry (red) and
PCNA (green) co-localization. White arrows: PCNA+ mCherry+ cells. (E,E’) mCherry (red) and Atoh7
(green) co-localization. White arrows: mCherry+ Atoh7+ cells. Yellow arrowhead indicates the leading
edge of neurogenesis. (F,F’) mCherry (red) and γ-synuclein (green) colocalization. Yellow arrowhead
indicates the leading edge of neurogenesis. L: Lens. NbL: Neuroblastic Layer. GCL: Ganglion Cell
layer. Scale bars: 200 microns A–C”, 100 microns D–F’.
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2.4. Brn3b-mCherry Reveals the Dynamic Expression of Brn3b during CNS Development

In addition to the expected expression in RGCs, we also validated mCherry expression in the
optic nerves and optic tracts (Figure 4A). As described previously, Brn3b is also expressed in subsets of
neurons of the superior colliculus, with a very dim/sparse expression in the superior layer (stratum
griseum superficiale) and very prominent expression in the putative stratum opticum, where RGC
axons enter the superior colliculus at a deep level relative to the pial surface [69]. In agreement
with these prior findings, we detected high levels of mCherry expression in the deeper areas of the
superior colliculi, and this expression greatly colocalizes with Brn3 (Figure 4B,B’). Furthermore, Brn3b
is expressed in different cranial nerve nuclei in a very dynamic fashion. For example, Brn3b is present
in subsets of neurons of the trigeminal ganglia (V) at early stages of development [42]. Consistently, at
E13.5, mCherry is present in a salt-and-pepper manner in the trigeminal ganglia in Brn3b-mCherry
mice (Figure 4C,C’).
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2.5. In Vivo Imaging of mCherry+ RGCs 

Live imaging of RGCs requires relatively abundant levels of endogenous fluorescence. To 
address whether Brn3b-mCherry could be used as a tool to monitor RGCs in vivo, we performed 
noninvasive SLO using our custom multimodal mouse retinal imaging system [79]. Reflectance 
(Figure 5A,C) and fluorescence images (Figure 5B,D) were collected from 8–12-week-old mice (n = 3). 
Remarkably, we were able to clearly detect mCherry in the living mouse retina, indicating that the 

Figure 4. Brn3b-mCherry expression in other regions of the CNS. (A) Optic tracts at P0 visualized
by mCherry staining (white arrows). (B,B’) Co-localization experiments with mCherry (red) and
pan-Brn3 (green) antibodies at P0. (C,C’) Co-localization with mCherry (red) and Tuj1 (green) in the
trigeminal ganglia at E13.5. Arrows indicate mCherry+ Tuj+ neurons. (D) Low magnification image of
a horizontal E13.5 whole-head section. E–F’) White arrows indicate mCherry+ Tuj1- cells present in the
optic stalk (E) and optic recess (F). Aq: Aqueduct. soSC: stratum opticum of the Superior Colliculus.
SGS: Stratum Griseum Superficiale. Tg: Trigeminal ganglion. L: Lens. ONH: Optic Nerve Head. OR:
optic recess. III: 3rd ventricle. Scale bar: 100 microns in C,C’, E,E’ and F,F’, 200 microns in B,B’, 300
microns in D, and 500 microns in A.
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Surprisingly, during the course of these experiments we observed mCherry expression in cells of
the optic stalk (Figure 4D-F’ and Figure S2) and in neuroepithelial cells of the optic recess (Figure 4F) at
E13.5. The optic stalk is the structure that connects the developing eye to the forebrain and constitutes
the conduit along which the RGC axons grow; later in development, the optic stalk becomes the
neuroglial sheath that surrounds the optic nerve. Interestingly, at this embryonic stage, both the optic
stalk and the optic recess, which forms the boundary region between the optic vesicle, hypothalamus
and telencephalon [70], are made of actively dividing neuroepithelial cells that are Pax2+ and PCNA+

(Figure S2A). This mCherry expression is intriguing since generally Brn3b is expressed in post-mitotic
neurons. However, several reports indicate that Brn3b is expressed at very early stages of development,
and also in the developing gonad tissues and germline cells [49,71,72].

In future experiments, it will be interesting to investigate the potential expression of Brn3b
in the optic stalk, and to further discriminate any non-cell autonomous roles for Brn3b in optic
nerve development as Brn3b-knockouts display axonal disorganization and dysfunction of RGC
projections [37]. Alternatively, the presence of mCherry in the optic stalk may reflect important
cellular interactions between the optic nerve axons and the neuroepithelial cells of the developing
stalk such as material exchange or phagocytosis processes. Previously, transcellular degradation of
axonal components by adjacent astrocytes in the optic nerve has been reported in adult mice and
in frogs [73,74]. In the same direction, microglial-mediated engulfment of Brn3+ RGCs leading to
the presence of Brn3-labeled fragments inside microglial cells has been observed in the embryonic
retina [75]. This evidence supports previous reports indicating that a wave of RGC death at early
embryonic stages regulates retinal homeostasis [75–77]. Since RGC axons reach the optic nerve 24–48 h
after birth [78], it is possible that mechanisms of cell debris clearance, including mCherry+ axonal
fragments, are taking place in the developing optic stalk. Notably, since mCherry is not as sensitive as
GFP to the pH changes that occur in phagocytic vacuoles, our Brn3b-mCherry strain offers an ideal
tool to investigate some of these open questions.

2.5. In Vivo Imaging of mCherry+ RGCs

Live imaging of RGCs requires relatively abundant levels of endogenous fluorescence. To address
whether Brn3b-mCherry could be used as a tool to monitor RGCs in vivo, we performed noninvasive
SLO using our custom multimodal mouse retinal imaging system [79]. Reflectance (Figure 5A,C) and
fluorescence images (Figure 5B,D) were collected from 8–12-week-old mice (n = 3). Remarkably, we
were able to clearly detect mCherry in the living mouse retina, indicating that the intensity of mCherry
fluorescence is sufficient for in vivo imaging and longitudinal assessment of RGC status in the same
animal over its lifespan. Cell counts from SLO images showed that 1139 +/− 87.88 mCherry+ cells/mm2

(mean +/− SD, n = 3 retinas) are visible with our imaging conditions.
In vivo imaging of RGC disease modeling has the potential to transform mouse RGC disease model

research. The specificity of mCherry expression combined with its long-term presence in RGCs makes
this reporter mouse an excellent tool for studying RGC disease models and treatment interventions.
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3. Conclusions

Currently, standard methods to visualize RGCs require sacrificing experimental animals for
staining/labeling or are not RGC-specific (e.g., conventional OCT imaging or Thy1-YFP imaging using
SLO). Therefore, they are not ideal for monitoring RGCs in living animals and to assess glaucomatous
disease progression in real-time. In this report, we have developed a new mouse strain in which all
Brn3b-expressing cells express the mCherry fluorescent protein without interfering with normal Brn3b
function. In the retina of both adult and developing Brn3b-mCherry mice, mCherry is specifically
expressed in a large proportion of RGCs. Furthermore, the level of mCherry expression is sufficient for
us to detect RGCs using non-invasive methods in live animals (SLO). Therefore, this new mouse line
can be used for developmental studies and, if combined with existing glaucoma models, will enable
longitudinal monitoring of RGCs using the fluorescent channel of SLO. Interestingly, a widespread
decrease in gene expression, including Brn3, has been reported in glaucoma models [80,81]. This decline
in Brn3 and other genes correlates with retrograde axonal transport deficiencies and degeneration.
Therefore, Brn3b levels and consequently mCherry will not necessarily reflect cell loss in experimental
models of glaucoma but it is a convenient readout of the early stages of RGC degeneration. We
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believe this tool will greatly facilitate the validation of new therapies and neuroprotection strategies
for glaucomatous degenerations.

4. Materials and Methods

4.1. Animals

All mice husbandry and handling were in accordance with protocols approved by the University of
California Davis Animal Care and Use Committee (IACUC protocol # 19413, approved on 12July2016),
which strictly adheres to all NIH guidelines and satisfies the Association for Research in Vision and
Ophthalmology guidelines for animal use. The Brn3b-mCherry CRISPR knock-in mouse line was
generated by Biocytogen (Worcester, MA, USA) in the C57BL/6N background. We have not performed
whole-genome sequencing to screen for off-target effects but we have not detected any abnormalities,
viability, fertility or any developmental problems (4 different generations have been analyzed to date).
For all the embryonic analyses, the morning of the vaginal plug was considered E0.5. The animals are
currently being bred to a different background to avoid the Rd8 mutation present in the C57BL/6N
background. We will make this line available upon request to the scientific research community.

4.2. Immunohistochemistry

For cryosection, embryonic whole heads and P0 dissected eyes were collected and fixed for
30 min at 4 ◦C in 4% Paraformaldehyde (PFA, Cat # 15714, Electron Microscopy Sciences for 32% stock,
Hatfield, PA, USA). Following fixation, tissues were cryopreserved by sequential gradients of 10%,
20%, 30% sucrose (tissues were maintained in each solution until they sink), and finally a mixture
of half 30% sucrose and half O.C.T. (Tissue-Tek® O.C.T. Compound, Sakura® Finetek, Alphen aan
den Rijn, Netherlands. Cat # 4583). Tissues were finally embedded in O.C.T., quickly frozen using
dry ice, and stored at −80 ◦C until sectioning. For paraffin samples, eyes were collected and frozen
in dry-ice chilled propane, and freeze-substituted with methanol-acetic acid at −80 ◦C, as described
previously [82], transferred to ethanol and embedded in paraffin. Paraffin sections were deparaffinized
using Xylene, and further rehydrated. After de-paraffinizing, tissues were washed with PBS, and
antigen retrieval was performed with Sodium Citrate Buffer (10mM Sodium Citrate, 0.05% Tween20,
pH 6.0). Briefly, the slides were placed in a microwave-safe vessel in the Sodium Citrate Buffer and the
microwave was set to full power until the solution boiled. The samples were allowed to cool down
and were then rinsed 5 times with PBS. Subsequently, all tissue was blocked in 10% Normal Donkey
Serum (NDS) in Phosphate Buffered Saline (PBS)-0.1% Triton X-100, and the samples were incubated
with primary antibodies diluted in fresh blocking solution overnight at 4◦C. Primary antibodies used
include: Goat anti-Brn3 (Santa Cruz, Dallas, TX, USA, #SC-6026, 1:100), Mouse anti-Tuj1 (Biolegend,
San Diego, CA, USA, #801201, 1:500), Rabbit anti-mCherry (Novus Biologicals, Centennial, CO, USA,
#NBP2-25157, 1:500), Goat anti-mCherry (Acris Antibodies, Rockville, MD, USA. #AB0040-200, 1:500),
Guinea Pig anti-RBPMS (Phosphosolutions, Aurora, CO, USA, #1832-RBPMS, 1:500), Rabbit anti-Sncg
(generous gift from Nick Marsh-Arsmtrong, Princeton, NJ, USA, 1:10,000), Rabbit anti-Atoh7 (Novus
Biologicals, #88639, 1:200), anti-Pax2 (Biolegend #901001, 1:1000), anti-PCNA (Invitrogen, Rockford,
IL, USA, #13-3900, 1:100). Next, tissues were rinsed 5 times with PBS and incubated with Alexa
Fluor secondary antibodies (Thermo Fisher Scientific, Rockford, IL, USA) in blocking solution. All
tissues were counterstained with 4′,6-diamidino-2-phenylindole (DAPI). The sections were rinsed with
PBS-0.1% Triton and mounted for microscopy with Fluoromount-G (Southern Biotech, Birmingham,
AL, USA). Most images were obtained with a 20× oil objective and captured with an Olympus FV1000
confocal microscope. High-magnification images were obtained with a 40× oil objective. Images were
assembled in Adobe Photoshop and Illustrator. Brightness and contrast were similarly adjusted to
all samples.
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4.3. Retinal Ganglion Cell Counts

Adult retinas were flat-mounted and stained for mCherry and RBPMS (n = 4 mice from two
different generations). RBPMS labels all RGCs and thus was used as the denominator to count the total
number of RGCs in the retina. The percentage of RGCs labeled was measured as the total number of
mCherry positive cells over RBPMS positive cells. For each retina, at least 3 pictures from different
regions of the eye (ventral, dorsal and central) were taken, quantified and averaged. To calculate
mCherry+ cell size, digital images of 250 × 250 µm2 of flat-mounted retinas were processed to set
intensity and background levels, and mCherry+ cell diameters were calculated using Fiji, considering
diameter as the longest distance between any two points on a cell’s perimeter.

4.4. In-Vivo Retina Cellular Imaging

For in vivo retinal imaging experiments, mice were anesthetized with the inhalational anesthetic
isoflurane (2–3% in O2), and their pupils were dilated with medical grade tropicamide and
phenylephrine. A contact lens and gel (GenTeal Tears, Alcon, Fort Worth, TX, USA) was used
to maintain the cornea transparency during in vivo retinal imaging [83]. Mouse body temperature
was maintained with a temperature-controlled blanket under the animal to prevent cooling of mouse
body and development of a cold-cataract. The mouse head was stabilized by a customized bite-bar
connected with positioning stage.

A custom rodent scanning laser ophthalmoscopy (SLO) detection channel of custom multimodal
mouse retinal imaging instrument [79] was used to image back reflected and fluorescence signal from
the mouse retina, with excitation light from an OBIS LX 561nm laser (Coherent Inc., U.S.), and a
long-pass filter (BLP02-561R, Semrock, Rochester, New York, USA) to select the emission light for
mCherry-expressing cells. The power at the mouse pupil was ~300 µW, and the beam diameter at the
mouse pupil was ~0.5mm which offers a lateral resolution of 2.9 µm [84].

The mouse retina was first imaged with full field-of-view (FOV) of 51 degrees, corresponding to
~2 mm on the mouse retina, to allow search for the region of interested (ROI). Then a 3× zoom-in region
was selected and imaged with higher density sampling. For each ROI, a total of 100 serial SLO images,
including both reflectance and fluorescence, were collected. The serial images were further registered
to using ImageJ TurboReg plugin with ‘Rigidbody’ transformation [85], and then averaged for display.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/12/
2903/s1.
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