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Parallel String Graph Construction and Transitive
Reduction for De Novo Genome Assembly

Giulia Guidi∗†, Oguz Selvitopi†, Marquita Ellis∗†, Leonid Oliker†, Katherine Yelick∗†, Aydın Buluç∗†
∗Department of Electrical Engineering and Computer Sciences, University of California, Berkeley

†Computational Research Division, Lawrence Berkeley National Laboratory

Abstract—One of the most computationally intensive tasks in
computational biology is de novo genome assembly, the decoding
of the sequence of an unknown genome from redundant and
erroneous short sequences. A common assembly paradigm iden-
tifies overlapping sequences, simplifies their layout, and creates
consensus. Despite many algorithms developed in the literature,
the efficient assembly of large genomes is still an open problem.

In this work, we introduce new distributed-memory parallel
algorithms for overlap detection and layout simplification steps of
de novo genome assembly, and implement them in the diBELLA
2D pipeline. Our distributed memory algorithms for both overlap
detection and layout simplification are based on linear-algebra
operations over semirings using 2D distributed sparse matrices.
Our layout step consists of performing a transitive reduction
from the overlap graph to a string graph. We provide a detailed
communication analysis of the main stages of our new algorithms.

diBELLA 2D achieves near linear scaling with over 80%
parallel efficiency for the human genome, reducing the run-
time for overlap detection by 1.2–1.3××× for the human genome
and 1.5–1.9××× for C.elegans compared to the state-of-the-art.
Our transitive reduction algorithm outperforms an existing
distributed-memory implementation by 10.5–13.3××× for the hu-
man genome and 18–29××× for the C. elegans. Our work paves the
way for efficient de novo assembly of large genomes using long
reads in distributed memory.

I. INTRODUCTION

One of the greatest computational challenges for the anal-
ysis of high–throughput sequencing DNA fragments (namely
reads) is de novo genome assembly [1]. It consists of aligning
and merging redundant and incorrect DNA reads to reconstruct
the original genome without any previous knowledge.

Long–read sequencing technologies [2], [3] deliver se-
quences with an average length of more than 10,000 base
pairs (bp). The longer the sequences are read, the better. By
using longer sequences, we can assemble through complex
genomic repetitions to obtain more precise assemblies that
were not possible with short–read technologies [4], [5]. Longer
sequences come at the cost of higher error rates, which lead to
higher algorithmic complexity and higher computational costs.

The Overlap–Layout–Consensus (OLC) paradigm is the
most common assembly strategy for long–read data [6]. The
first step (O) is to identify overlaps between reads to build
an overlap graph. Due to the redundant sequencing and the
inherent genome repetitiveness, the second step (L) simplifies
the overlap graph and converts it into a string graph. A string
graph is created from an overlap graph without contained
edges and without transitive edges, where the edges represent

the overlap suffix and not the overlap itself. Nevertheless,
a string graph can be created from different source graphs
depending on the application. A string graph has the desirable
property of collapsing genomic repeats into a single unit [7].
This conversion makes it easier to cluster sections of the graph
into contigs. A contig is a set of overlapping sequences that
together form a consensus region of DNA. Then the consensus
step (C) selects the most probable nucleotide sequence for each
contig to correct errors in the data. The OLC paradigm benefits
from longer reads, since significantly fewer reads are required
to cover the genome, limiting the size of the overlap graph.

Our earlier work [8], [9] focused on the implementation of
parallel strategies for shared and distributed memory for the
overlap step. In this respect, BELLA [8] is designed for shared
memory and is the first work formulating overlap detection
for de novo genome assembly using sparse matrices. The
distributed memory work [9], which we call diBELLA 1D,
performs overlap detection using distributed hash tables.

In this work, we propose a sparse linear algebra cen-
tric approach called diBELLA 2D for distributed memory
parallelization of overlap and layout phases. By using 2D
distributed sparse matrices for both phases, we reduce the
need for different data structures in different steps of genome
assembly. For the overlap step we formulate the overlap
detection as a distributed Sparse General Matrix Multiply
(SpGEMM). For the layout step, we present a novel distributed
memory algorithm for the transitive reduction of the overlap
graph. This simplifies the overlap graph and makes it easier
to resolve inconsistencies and create contigs.

A linear–time algorithm for the transitive reduction of an
overlap graph [10] has been proposed earlier. However, that
algorithm is inherently sequential. By contrast, our transitive
reduction algorithm is highly parallel. Both the overlap and
string graphs are represented as sparse matrices, and the entire
transitive reduction algorithm is expressed as operations on
sparse matrices. In this direction, our contributions include
the design of custom semirings, which are integral to the
correctness of the algorithm.

Our results show the scalability of our pipeline for overlap
detection plus transitive reduction and show that it achieves
near linear scaling with over 80% parallel efficiency for the hu-
man genome. Our transitive reduction algorithm outperforms a
competing distributed memory algorithm with a speedup of up
to 13.3××× for the human genome. Our implementation is pub-
licly available at https://github.com/giuliaguidi/diBELLA.2D.
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Fig. 1. Overlap to bidirected edge type mapping.

II. BACKGROUND

A genome consists of one or more DNA molecules that are
organized in three-dimensional space as chromosomes. The
DNA consists of two sequences of nucleotides, called strands,
which wind around each other and form a double helix. Each
strand is a string over the alphabet Σ = {A,C,G,T} and
has a direction. The two strands of a DNA molecule have
opposite directions. On opposite strands, A always pairs with
T and C with G. One strand defines the reverse complement
of the other. If v = ATTCG, its reserve complement is v′ =
CGAAT. The canonical form of a DNA sequence v is the
lexicographically smaller of v and its reverse-complement v′.
In our example, v = ATTCG is the canonical form.

OLC is the most widely used assembly paradigm for long
read data [6], [11]. Its first step consists of identifying overlaps
between input sequences. The idea behind the search for
overlaps is that two sequences that overlap may originate
from adjacent positions on the genome. However, the assembly
process is more complex than it might seem at first glance.
This is because we cannot be sure that two overlapping
sequences actually originate from adjacent positions on the
genome due to the repetitiveness of the genome.

For the sequences v1 and v2 and their reverse-complements,
v′1 and v′2 we can say that v1 and v2 have an overlap of length
L in base pair (bp) if and only if at least one of these is true:

• the last L bp of v1 match the first L bp of v2;
• the last L bp of v1 match the first L bp of v′2;
• the last L bp of v′1 match the first L bp of v2;
• the last L bp of v′1 match the first L bp of v′2.

Given the erroneous sequencing process, in this context an
overlap indicates that the two sequences have mostly identical
base content, so that their pairwise alignment score reaches a
quality threshold defined by the overlap detection algorithm.

It is necessary to define four types of overlap, since reads
can overlap in a reverse–complement manner and algorithms
typically store only the canonical form of k-mers. Additionally,
we can define a contained overlap as an overlap where the
overlapping region of one read is the entire read. An overlap
can be called reverse–complement if and only if one of the
sequences in the overlap is used in the original direction and
the other one is used in the reverse–complement direction.
Therefore, an overlap that belongs to the last case is not a
reverse–complement overlap, since it is equivalent to the last
L bp of v2 matching the first L bp of v1. Since the two forward
cases are equivalent in theory, we only have three different
cases. However, it makes sense to keep the four categories in
practice. The correct use of orientation information is crucial
during the second and third stages of the OLC algorithm and
is essential for the correctness of the final assembly.

Commonly, an indexing data structure, such as a k-mer (i.e.,
a substring of fixed length k) index table or suffix array, is
used to identify an initial set of overlap candidates [11], [12],
[6]. Then, as a next step, pairwise alignment is sometimes
performed to discard false positives. After the overlaps have
been calculated and consolidated from the reads, the next step
is the layout step, where the goal is to create a graph that
encodes how we can assemble sequences to obtain contigs.

A string graph (or matrix) is a graph G = (V,E), where
V is the set of sequences and E is the set of overlap suffixes
between any two vertices. There exists an edge if and only
if the respective reads overlap and the weight of this edge
is the length of the suffix. For example, for the sequences
v1 = TACGA and v2 = ACGACC, their overlap suffix or
overhang is the portion of v2 that exceeds the overlap between
v1 and v2, i.e. e12 = CC. Given G = (V,E), where V =
{v1, v2, v3} and E = {e12, e13, e23}, we can walk (a) v1 →
v2 → v3 using e12 and e23, (b) or v1 → v3 using only e13. If
we take the weight of the edges into account (i.e., the overhang
length), we can see that one of these two paths carries less
information than the other and therefore we can mark it as
transitive and remove it from the string graph.

In de novo genome assembly, we want to keep as many
overlapping bases as possible for any pair of sequences, so we
mark the edges (belonging to a valid path) with longer suffixes
(higher weight) as transitive. Since the string graph maximizes
the overlap length, it can disambiguate short repeats [7]. In our
example, e13 would be marked as transitive and removed since
the path e12 → e23 encloses more overlapping bases.

Since we do not know from which strand a certain sequence
originates, we want to be able to traverse our graph in both
forward and reverse direction. That is, if we consider G =
(V,E) in our example above, we want to be able to walk both
v1 → v2 → v3 and v′3 → v′2 → v′1. Using the directed graph
representation requires doubling the number of nodes, because
for each read we need one vertex representing its entrance and
one representing its exit. Using an undirected graph can avoid
this bloat, but it does not guarantee that a particular read will
be used in a consistent manner at any point within a single
assembly. The use of a bidirected graph (i.e., a graph with a
directional head at each end of each edge) [13] solves both of
these problems. Figure 1 shows the four types of bidirectional
edges that result from the four overlap types described earlier.

If G = (V,E) is a bidirected graph, then a valid path in G
is a continuous sequence of edges where each vertex is entered
by a head inward and exited by a head outward (unless it is the
end of the path) or vice versa. Figure 2 shows two examples of
a valid walk (A→ B → C → D and F → G→ H) and one
example of an invalid walk (E → F → G). A walk through
the bidirected string graph encodes the way the sequences can
be consistently assembled [10].

Given two paths v1 → v2 → v3 and v1 → v3 in a bidirected
string graph, the edge v1 → v3 can only be considered to be
transitive if the following conditions are satisfied: (a) v1 →
v2 → v3 constitutes a valid walk, (b) the two heads next to
v1 have the same orientation, and (c) the two heads next to v3



A B C D
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B C
D

A      B      C      D is a valid walk

E F G H
E

F
H

G

E      F      G is an invalid walk while F      G      H is a valid walk

Fig. 2. An example of a valid and invalid walk in a bidirected string graph.

also have the same orientation.
By definition, a string graph can be constructed from various

sources, such as an overlap graph (as we present in this
paper), k-mers [14] or FM index [15], and Burrows–Wheeler
transform (BWT) [7]. These approaches are not invariant to the
input properties and often only consider error-free sequences.
In reality, long read data with its high error rates and long
lengths often make string graph construction impractical for
approaches other than those based on overlap graphs.

III. RELATED WORK

In this section we review the literature on overlap detection
and transitive reduction, and describe works related to ours.

Myers’ transitive reduction algorithm consists of iterating
over each node v in the source graph and examining nodes up
to two edges away from v to identify all transitive edges that
leave or enter v [10]. These edges are then marked for removal,
and they are removed after all nodes have been considered.

Li [16], [11] uses a seed–based approach to find overlaps
and then uses the Myers algorithm to transitively reduce the
string graph. In particular, Li uses minimizers (i.e., reduced
k-mer representations) for overlap detection and does not
perform explicit pairwise alignment on sequences.

Simpson and Durbin [7] use the Ferragina–Manzini index
(FM–index) [17] derived from the Burrows–Wheeler trans-
form [18] for overlap detection and transitive reduction. Their
algorithm for transitive reduction is similar to that of Myers’.
Bonizzoni et al. [15] propose a similar approach using only the
FM–index of the input sequence to create a string graph and
perform a transitive reduction with a different but equivalent
formulation than Myers’ [19].

BELLA [8] is the first work proposing to use sparse matrices
for overlap detection. A sparse matrix A is used to indicate
the occurrence of k-mers in sequences, and the multiplication
of this matrix by its transpose, i.e. AAT, is used to detect
the overlaps. Given the similarity of our distributed memory
design to BELLA, we give more details about it in Section IV.

Our first distributed memory design for overlap detection,
diBELLA 1D [9], uses a k-mer based approach and creates
and traverses a distributed hash table to find overlapping se-
quences. This design resembles a 1D SpGEMM using an outer
product algorithm without explicit construction of matrices. It
does not perform transitive reduction.

PASTIS [20] is inspired by BELLA and computes protein
homology search as distributed SpGEMM. Genome assembly
and protein homology search are different problems, but both
require a computationally expensive all-to-all comparison.

Algorithm 1 The matrix computation in diBELLA 2D.
1: procedure DIBELLA 2D
2: reads← FASTAREADER()
3: k-mers← KMERCOUNTER()
4: A ← GENERATEA(reads, k-mers) . Data matrix
5: AT ← TRANSPOSE(A)
6: C← AAT . Candidate overlap matrix
7: C← APPLY(C,Alignment()) . Run alignment
8: R← PRUNE(C,AlignmentScoreLessThan(t))
9: S← TRANSITIVEREDUCTION(R) . Algorithm 2

10: return S

Besta et al. [21] present another approach similar to BELLA
using distributed SpGEMM to calculate the Jaccard similarity
between read sets of different genomes. The main difference is
that their software is optimized for the case where the output
|genomes|-by-|genomes| matrix is dense because it stores the
Jaccard similarity between any genome pairs.

Jackson and Aluru [14] present a parallel algorithm for con-
structing a bidirected string graph from a de Bruijn graph [22]
in which the vertices represent k-mers and edges correspond
to individual nucleotides whose two vertices have in common.
A de Bruijn graph is not suitable for long read data because
of the high error rates.

SORA [23] computes transitive reduction of a string graph
based on an overlap graph in distributed memory using Apache
Spark [24] and the GraphX library [25], which allows parallel
computation on distributed graphs in Spark. To the best of our
knowledge, SORA is the only other distributed algorithm that
computes transitive reduction on overlap graphs, although it
was designed for cloud environments.

IV. PROPOSED ALGORITHM

In this section we describe the current implementation of our
pipeline, focusing primarily on the novel transitive reduction
algorithm. To keep the paper self–contained, we first briefly
describe the first half of the pipeline, which combines k-mer
counting and overlap detection of our prior work [26], [20].

A. Overview

Our algorithm design [8] uses a k-mer–based approach
and relies on parallel sparse matrix multiplication for overlap
detection as the first step of the OLC paradigm. The outline
of our pipeline can be seen in Algorithm 1. We form a
|sequences|-by-|k-mers| matrix A to detect the occurrence of
k-mers in sequences, and perform AAT to detect overlaps,
resulting in a sparse |sequences|-by-|sequences| matrix C.
Overlap detection is followed by a computationally intensive
seed–and–extend pairwise alignment for all nonzeros in C
using SeqAn [27], a sequence analysis library. If the alignment
score of a read pair does not exceed a threshold, then the
overlap is discarded and the entry is removed from the matrix.
We refer to this resulting output |sequences|-by-|sequences|
matrix as overlap matrix and denote it with R. A transitive
reduction algorithm is then run on R to remove redundant
edges and simplify it into a string graph, S.
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Fig. 3. Read distribution when we read the input (left) and read distribution
we need to perform pairwise alignment (right).

B. Data Partitioning

The input to our program is a set of nucleotide sequences
in FASTA file format. To ensure load balance, each processor
reads an equal–sized independent chunk of this file via parallel
MPI I/O. Immediately thereafter, processors begin communi-
cating sequences to create a 2D grid that is consistent with
the way the matrices are partitioned among processors. This
approach is similar to the one chosen by PASTIS [20].

C. K-mer Selection and Counting

A k-mer based approach calculates the frequency of each
k-mer in the input because not all k-mers are useful. K-mers
that are usually discarded are (a) k-mers that occur only once
in the input (singletons) and (b) high frequency k-mers. For
more details on k-mer selection, see BELLA paper [8].

diBELLA 2D eliminates singletons using a Bloom filter [28]
during k-mer counting and high frequency k-mers that occur
at least d times, as in our first implementation. The threshold
d is calculated using the approach introduced in BELLA [8],
which uses dataset-specific features. In Section V we use d to
calculate the communication costs of our algorithm.

Our k-mer counter is similar to that of HipMer [26] and
consists of two phases. First we add k-mers to the Bloom filter
and then we calculate the frequencies for the filtered k-mers.
The processors extract k-mers from their local sequences, hash
them, and possibly communicate them with other processors
as dictated by the Bloom filter hash function. On the receiver,
the incoming k-mers are added to the local Bloom filter; if
they already exist, they are added to the local hash table
partition. The communication requires an all-to-all exchange
and is implemented via MPI Alltoall and MPI Alltoallv.

D. Overlap Detection and Alignment

The local k-mer hash table and the local sequences are
used to create a distributed |sequences|-by-|k-mers| matrix A.
A nonzero Aij stores the position of the jth k-mer in the
ith sequence. A is multiplied by AT to obtain the sparse
candidate overlap matrix C = AAT of dimension |sequences|-
by-|sequences|. In C each nonzero Cij stores the number of
common k-mers and their positions in the sequence pair i and
j. The number of stored positions is a user-defined parameter.
For this work we store two k-mer positions for each read pair.

To compute C we use the distributed SpGEMM in the
CombBLAS library [29] and we overload the addition and
multiplication operators in SpGEMM with a custom semiring.
We overload the multiplication with an assignment by taking
the positions of the respective k-mer in two sequences corre-
sponding to Ai and AT

j . We overload the addition operator by
incrementing the counter of common k-mers between Ai and
AT

j and storing the positions of another common k-mer in Cij

(i.e., concatenate the results of the multiplication operation) as
long as it is smaller than the number of positions to be stored.

CombBLAS relies on 2D Sparse SUMMA algorithm for
parallel SpGEMM [30] and it uses a hybrid hash table and
heap based algorithm for local multiplication. For matrices,
CombBLAS uses a 2D matrix decomposition, so both A and
C are distributed over a process grid of

√
P ×

√
P . Observe

that in such a distribution a processor may need to align
a pair of sequences which it does not have in its partition
(Figure 3). Such sequences need to be communicated among
respective processors. In this respect, a processor has two
possibilities: (a) wait until C is computed to find out which
sequences it would need, and then begin communicating those
sequences, or (b) request the full range of sequences it might
need once the FASTA input file is read from disk, as described
in Section IV-B. We choose the latter option because it allows
for overlapping sequence exchanges with k-mer counting and
matrix multiplication. This is also the approach adopted by
PASTIS [20]. Once the sequences are communicated, we
perform pairwise alignment for all identified pairs (i.e., the
nonzeros C) using a seed–and–extend algorithm that returns
an alignment score and updated seed coordinates. If the score
does not exceed the specified threshold, the read pair is
discarded and the nonzero is removed from C.

We can view these operations from a matrix point of view:
(a) the pairwise alignment is an in-place element-wise opera-
tion on C that sets the alignment flag to true for each nonzero
Cij if the alignment score exceeds the given threshold, and
to false otherwise, and (b) the removal of entries with false
flags is another in-place operation on C that prunes nonzeros
whose flags are set to false. The resulting matrix R (line 8
in Algorithm 1) at the end of these operations is the input
for the transitive reduction algorithm. Contained overlaps, as
defined in Section II, are discarded during transitive reduction
regardless of their alignment scores. They may be reintroduced
at later stages of the de novo assembly process.

E. Transitive Reduction

Our distributed memory transitive reduction algorithm takes
the overlap matrix R as input and computes a transitively
reduced version of R, which we refer to as S (line 9 in
Algorithm 1). Recall that each nonzero Rij stores the number
of common k-mers and their positions in the sequence pair
(si, sj). The transitive reduction algorithm needs two addi-
tional information for each such pair: the length of the overlap
suffix and the overlap orientation. Both can be derived in-place
from the alignment coordinates stored in Rij . The length of
the suffix and the orientation are calculated and stored in R



Algorithm 2 Parallel transitive reduction on R.
1: procedure TRANSITIVEREDUCTION(R)
2: do
3: prev ← R.NNZ
4: N← R2 . Find edges two-hops away
5: v ← R.REDUCE(Row, 0,max)
6: v ← v.APPLY(x, add) . x is a scalar
7: M← R.DIMAPPLY(Row,v, return2nd)
8: I ←M ≥ N . Find transitive edges
9: R← R ◦ ¬I . Remove transitive edges

10: nnz ← R.NNZ
11: while nnz 6= prev
12: S← R
13: return S

Algorithm 3 Custom MinPlus semiring used in N← R2.
1: struct MINPLUSSR
2: ID( ) return ∞
3: ADD(a, b) return MIN(a, b) . Find the shortest path
4: MULTIPLY(a, b)

5: if ISDIROK( ) then return a + b
6: else return ID( )

during the pairwise alignment, so that R is immediately ready
for the transitive reduction phase.

Our transitive reduction algorithm is presented in Algo-
rithm 2. The algorithm begins by discovering two-hop neigh-
bors of each vertex in the overlap graph. This first step is the
most computationally intensive stage of transitive reduction
and is achieved by squaring the overlap matrix: N = R2,
where N is the two-hop neighbor matrix. In de novo assembly,
whenever there are multiple alternative paths in the graph, we
retain the one that gives us more genomic coverage in terms
of nucleotides. Therefore, whenever there are multiple alterna-
tives, the path with the shorter suffix is chosen, since a shorter
suffix indicates a longer overlap between two sequences. This
is achieved by using a custom MinPlus semiring during the
squaring of R. Algorithm 3 illustrates the MinPlus semiring
we use, where we overload the addition operation with a
minimum operation and the multiplication operation with a
summation. Because of the bidirectionality of our graph, we
make sure that the orientation of the edges in play conforms
to the transitivity rules listed in Section II. This is ensured by
checking whether the edges follow the transitivity rules during
multiplication (line 5 in Algorithm 3). If not, we mark the edge
as not transitive. In particular, we check in MinPlus semiring
whether the two heads next to the intermediate node (i.e. the
middle node of a three-node path) have opposite directions.

In lines 5–7 of Algorithm 2, we create the maximal suffix
matrix M, where each nonzero within a row is replaced by
the maximum value (i.e., the longest overlap) of that row.
In de novo assembly, read overlaps are approximate matches
because sequencing errors can cause endpoint positions to
shift. To make our algorithm robust to sequencing errors, we

increase the value of the longest overlap per row (i.e. per
read) by a scalar x. REDUCE in line 5 returns a vector v
whose ith cell stores the maximum value of the ith row of R.
APPLY in line 6 adds x to each nonzero vi. For each nonzero
vi 6= 0, DIMAPPLY in line 7 replaces the corresponding
row i of R with vi in its output. The last parameter in
the functions REDUCE, APPLY and DIMAPPLY is the binary
operator applied to each scalar operation.

The next step is to identify the transitive edges in N (line
8 in Algorithm 2). Our algorithm performs an element-wise
operation between M and N to identify such edges. If Mij

is greater than or equal to Nij , the corresponding nonzero Iij
in the output matrix is set to true. In N we store the shortest
path, so that all nonzeros with Mij ≥ Nij are transitive edges
because Mij is an overlap suffix longer than Nij .

The described element-wise operation is only performed for
entries that are nonzero in both M and N. Recall that when
computing N = R2 we checked whether a path is a valid
walk or not. In this element-wise operation we also make
sure that the orientation of the edges in the intersection of N
and M follows the last two transitivity rules. In the element-
wise operation, we check whether the two heads next to the
departure node (i.e., the start node of a three-node path) and
the two heads next to the destination node (i.e., the end node
of a three-node path) have the same orientation.

The final operation of our transitive reduction algorithm
is to prune the identified transitive edges from R (line 9 in
Algorithm 2). This is achieved by an element-wise multipli-
cation of R and the logical negation of I, ¬I. Any nonzero
in Iij becomes a zero in ¬Iij , therefore the nonzeros of R
corresponding to the transitive edges (i.e. zeros) in ¬I are
pruned. Again, only those entries that are nonzero in both R
and ¬I are considered. This is equivalent to a set difference
operator (nonzeros(R) \ nonzeros(I)) in linear algebra.

In practice, we need several rounds to successfully remove
all transitive edges, since we need to consider neighbors
that are three, four, etc. hops away. Therefore, our algorithm
iterates on R until the number of nonzeros remains the same
(line 11 in Algorithm 2).

V. COMMUNICATION ANALYSIS

In this section we analyze the communication costs of
diBELLA 2D and compare them with our 1D implementation.
First, we briefly consider the communication cost of the k-mer
counting phase, which is common to both implementations.
Then we examine the communication costs of the overlapping
phase and read exchange, which are the main differences
between the two implementations. The communication costs
of the transitive reduction for the current implementation
follow. The communication costs are given in word count W
(bandwidth cost) and number of messages Y (latency cost).
The communication costs are summarized in Table I next to
useful notations in Table II.
A. Communication Cost of K-mer Counting

The communication costs for this step depend on the prop-
erties of the input dataset and the settings of our algorithm,



TABLE I
COMMUNICATION COSTS OF DIBELLA 1D AND DIBELLA 2D.

Task Bandwidth Latency
diBELLA 1D diBELLA 2D diBELLA 1D diBELLA 2D

K-mer Counting nlk/4P nlk/4P bP bP

Overlap Detection a2m/P am/
√
P P

√
P

Read Exchange cnl/P 2nl/
√
P min{cnl/P, P}

√
P

Transitive Reduction - rn/
√
P - t

√
P

such as the depth d of the dataset, the genome size G (in
nucleotides), the k-mer length k and the read length l.

Our total input size is Gd ≈ nl. Each processor has (1/P )th
of the input. Each sequence has (l − k + 1) k-mers and each
k-mer takes k/4 bytes using 2–bit compression per nucleotide.
Hence, the total size on each processor before communication
is n(l− k + 1)k/4P . For long–read data l− k + 1 ≈ l, since
l is usually 2–3 orders of magnitude larger than k.

The hash function maps k-mers uniformly and randomly
on processors, so that each processor keeps (1/P )th of the
data for itself and communicates the rest. For large P we can
assume (P −1)/P ≈ 1 to avoid clutter. Hence, the bandwidth
cost for k-mer counting per process is on average:

W =
P − 1

P

n(l − k + 1)k

4P
≈ nlk

4P
(1)

Based on the available memory, we may have to perform
several k-mer exchanges. So the latency cost of k-mer counting
is Y = bP , where b is the batch count.

B. Communication Cost of Overlap Detection

In our application AAT is the output matrix n× n, A and
AT are the input matrices of dimension n × m and m × n
respectively. The number of nonzeros in both A and AT is
am, where a is the density indicating the average number of
sequences containing a particular k-mer. The k-mer selection
procedure that we present in [8] and that we also use in this
work chooses an interval for the k-mer frequency, which in
turn translates into the average number of sequences that can
contain a given k-mer.

Our previous work, diBELLA 1D, computes overlap detec-
tion using distributed hash tables [9]. K-mers are distributed
to processors that allow them to detect candidate overlap pairs
locally. This must be followed by a global reduction. In terms
of communication, this implementation is equivalent to a 1D
sparse matrix multiplication using the outer product algo-
rithm [31], [32]. The 1D outer product formulation distributes
A in block columns where the ith block column is denoted by
A:i, and AT in block rows where the ith block row is denoted
by AT

i:. C is distributed in block rows in diBELLA 1D. The
computation can be written as C =

∑P
i=1 A:iA

T
i:.

Each k-mer exists on average in a sequences, hence the local
overlap detection A:iA

T
i: generates a2m/P nonzeros on each

processor. These nonzeros must be reduced before performing
pairwise alignment, so that no read-read pair is aligned more
than a few (1-2) times, depending on the algorithm parameters.
This means that each processor exchanges W1D = a2m/P
words and the latency cost is Y1D = P .

TABLE II
LIST OF SYMBOLS AND ANNOTATIONS IN OUR PAPER.

Symbol Description
n Read set cardinality
m K-mer set cardinality
d Depth of coverage
k K-mer length
L Overlap length
l Read length
A Data matrix: reads–by–kmers
C Candidate overlap matrix: reads–by–reads
R Overlap matrix: reads–by–reads
S String matrix: reads–by–reads
a A average density: nnz(A)/m
c C average density: nnz(C)/n
r R average density: nnz(R)/n
s S average density: nnz(S)/n
P Total number of processes
W Bandwidth cost
Y Latency cost

In contrast, diBELLA 2D uses a 2D sparse matrix multi-
plication algorithm known as Sparse SUMMA [30]. The P
processors are logically organized in a

√
P ×

√
P grid with

row and column indexes, so that the (i, j)th processor is Pij .
Each processor stores a n/

√
P ×m/

√
P submatrix Aij and

a m/
√
P × n/

√
P submatrix AT

ij in its local memory. Each
processor calculates a product of a block row of A with a
block column of AT. Sparse SUMMA is an owner-computes
algorithm, so we only need to consider the communication
of input matrices. If we assume a good load balance, which
we achieve by randomly permuting k-mers and reads, Aij has
am/P nonzeros. Each processor Pij receives 2(

√
P−1) input

blocks because Cij =
∑√P

i=k AikA
T
kj .

For large P we simplify
√
P −1 ≈

√
P so that the number

of nonzeros that a processor must collect is W2D = am/
√
P

and the latency cost is Y2D =
√
P .

C. Communication Cost of Read Exchange

The communication costs of the read exchange are derived
from the analysis in the previous section. The sequences are
distributed to the processors by parallel I/O according to the
corresponding implementation decomposition, i.e. 1D for our
first implementation and 2D for the present work.

To compute the communication costs, we consider the
candidate overlap matrix Cn×n = AAT. C has cn nonzeros
(before computing pairwise alignment) where c is its density
per row or column, which indicates the average number of
overlapping sequences for each read. Each exchange costs
O(l). The 1D algorithm exchanges at most W1D = cnl/P
words and sends Y1D = min{cnl/P, P} messages, while
the current 2D implementation exchanges at most W2D =
2nl/
√
P words and sends Y2D =

√
P messages.

diBELLA 1D communicates at most one read per nonzero
because an alignment task is only assigned to a processor if
this processor has at least one of the two sequences involved.
diBELLA 2D communicates the full range of sequences that a
processor may need and starts the read exchange immediately



TABLE III
LIST OF EXPERIMENTAL VALUES OF SPARSITY FOR DIBELLA 2D.

Dataset Depth (d) C density (c) Inefficiency (c⁄2d) R density (r)
E. coli 30 145.9 2.4 6.4
C. elegans 40 1,579.7 19.7 8.1
H. sapiens 10 1,207.7 60.4 1.3

TABLE IV
DATA SETS USED DURING EVALUATION: NAME, DEPTH, NUMBER OF

SEQUENCES IN THE INPUT, AVERAGE READ LENGTH, INPUT SIZE, GENOME
SIZE, AND ERROR RATE.

Label Depth Reads (K) Length Input (GB) Size (Mb) Error
C. elegans 40 420.7 11,241 4.8 100 0.13
H. sapiens 10 4,421.6 7,401 33.1 3,000 0.15

after the initial data partition, so that communication overlaps
with computation.

The 1D algorithm has better scaling with increased concur-
rency, but has a large constant c, whose typical value often
exceeds 1000 for large genomes, as shown in Table III. To
overcome this large constant and communicate fewer words
than the 2D algorithm, the 1D algorithm would require (c2/4)–
way parallelism. Ellis et al. [9] show that c ≈ 2d for a perfect
overlapper. In practice, c is much larger than d and c/2d can
be considered the inefficiency factor of an overlapper.

D. Communication Cost of Transitive Reduction

The sparse matrix multiplication dominates the runtime of
the transitive reduction algorithm. The communication costs
for the squaring of R follow from the previous analysis and
are W2D = rn/

√
P , where r ≤ c is the sparsity of the overlap

matrix Rn×n after performing the pairwise alignment, which
often leads to the discarding of nonzeros, and Y2D =

√
P . The

transitive reduction algorithm also contains some element-wise
sparse routines, but these are executed in-place so that they
do not contribute to communication time. While the transitive
reduction loop is repeated until convergence, the number of
iterations is often a small constant (denoted t in Table I) and
the geometrically decreasing density after each iteration makes
the total communication volume asymptotically equal to that
of the first iteration.

VI. EXPERIMENTAL SETUP

Our experiments were performed on two machines: the
Cray XC40 supercomputer Cori at NERSC and the IBM
supercomputer Summit at Oak Ridge National Laboratory. On
Cori we use the Haswell partition, while on Summit we use
only IBM POWER9 CPUs. Using two architectures shows
that our algorithm scales on different architectures. However,
this is not intended to be a cross–platform comparison, as our
algorithm is not specifically optimized for either platform.

Each Haswell node on the Cori system consists of two 2.3
GHz 16-core Intel Xeon processors and has a total memory of
128 GB. Each Summit node has two 22-core IBM POWER9
processors and 512 GB DDR4 of RAM. Because one core
per Summit half-node is reserved for OS, each node has a
maximum of 42 cores available for application codes. In this

paper, we do not utilize the GPUs available on Summit. For
details on the two architectures, see Table V.

To investigate the parallel performance of our algorithm,
we use two data sets from Pacific Biosciences (CLR tech-
nology) [33] with different sizes: Caenorhabditis elegans (C.
elegans) and Homo sapiens (H. sapiens). Details of the two
data sets are given in Table IV. Our algorithm is also suitable
for other long–read technologies such as Pacific Biosciences
CCS [34] (or HiFi) and Oxford Nanopore [35]. In this paper
we only run with CLR data as our parameters are tuned to it
and the accuracy of our tool for CLR input is reported in the
single node BELLA paper [8].

The experiments are divided into two groups: (a) parallel
performance and scalability of diBELLA 2D and (b) perfor-
mance comparison with related work. In the latter case, we
compare the overlap detection of diBELLA 2D with diBELLA
1D [9] and minimap2 [16] written in C for shared memory,
while we compare our transitive reduction algorithm with
SORA [23] written in Scala on top of Apache Spark [24].

diBELLA 2D and 1D run with the same input and alignment
setting, i.e. k = 17 and maximum k-mer frequency equal to
4, while minimap2 run with its default setting for CLR data.
The results from minimap2 and SORA were only collected
from Cori, as minimap2 uses SSE intrinsics that are not
supported on the IBM POWER9 processor, and Summit has no
support for Apache Spark. For minimap2 we only report single
node performance because it does not implement distributed
memory parallelism. To compare transitive reduction, we used
the output of diBELLA 2D as input for SORA, which is an
overlap graph consisting of 5.8M edges and 4.4M vertices for
the H. sapiens data set and 4.2M edges and 0.4M vertices
for C. elegans. We only compare the execution time of the
transitive reduction by removing all start and shutdown times
from Apache Spark and the time dedicated to I/O.

On Cori, we used gcc-8.3.0 and the O3 flag to compile
C/C++ codes, while on Summit we used gcc-8.1.1. On
both Cori and Summit, we used the default MPI implementa-
tion. SORA used jdk/1.8.0_202 and spark/2.3.0. In
the next section we report the average runtime over 10 runs
for each experiment, except for the H. sapiens data set at low
concurrency, where we report the average over three runs.

VII. EXPERIMENTAL RESULTS

In this section we first examine the parallel performance of
diBELLA 2D and its individual components and then compare
our performance with the state of the art.

A. Detailed Analysis of diBELLA 2D

Figure 4 illustrates the strong scaling of our algorithm for
C. elegans on the left and for H. sapiens on the right. In
this figure, the two machines run on P = {32, 72, 128}
nodes using 32 MPI ranks/node for C. elegans and P = {128,
200, 288, 338} for H. sapiens. For C. elegans, diBELLA 2D
achieves a parallel efficiency of 83% on Summit CPU, while it
achieves a parallel efficiency of 68% on Cori Haswell. For H.
sapiens, the parallel efficiency of both machines is over 80%



TABLE V
DETAILS OF THE MACHINES USED FOR EVALUATION: NAME, NUMBER OF PHYSICAL CORES PER NODE, PROCESSOR MAX TURBO FREQUENCY,

PROCESSOR MODEL, MEMORY, NETWORK, AND L1, L2, L3 CACHES SIZES.

Platform Cores/Node Frequency (GHz) Processor Memory (GB) Network and Topology L1 L2 L3
Cori Haswell 32 3.6 Intel Xeon E5-2698V3 128 Aries Dragonfly 64KB 256KB 40MB
Summit CPU 42 4.0 IBM POWER9 512 InfiniBand Non-Blocking Fat Tree 32KB 512KB 10MB

diBELLA 2D Scaling E. Coli and C. Elegans

Fig. 4. diBELLA 2D strong scaling on Cori Haswell and Summit CPU using
32 MPI rank/node on C. elegans (left) and on H. sapiens (right).

with a peak of 92% on Summit CPU. These results show the
near linear scaling behavior of our overall algorithm using a
large input on two different architectures.

Figures 5–6 (C. elegans) and Figures 7–8 (H. sapiens)
show the runtime breakdown of diBELLA 2D on the two
machines. In each breakdown, the plot on the left shows total
execution time including pairwise alignment, while the plot
on the right excludes pairwise alignment. We included plots
excluding pairwise alignment because alignment takes a large
proportion of the runtime and makes it difficult to see the
scaling of the other stages. From bottom to top the layers
are ordered according to the legend. The first layer is the
pairwise alignment, i.e. the time needed to align all non-
zero pairs in the candidate overlap matrix C. ReadFastq
is the time spent reading and parsing the input file in parallel.
Immediately after this step, we start exchanging sequences to
overlap this communication with the subsequent computation.
CountKmer corresponds to the k-mer counting stage, and
CreateSpMat corresponds to the time needed to create
the input matrices A and AT. SpGEMM includes both the
communication time and the computation time to create the
candidate overlap matrix C = AAT. ExchangeRead times
the period from the end of SpGEMM until all sequence ex-
changes are complete. Depending on the MPI implementation,
the read exchange may potentially overlap with k-mer counting
and overlap detection phases. Finally, TrReduction is the
transitive reduction time.

Figures 5–6 show diBELLA 2D performance breakdown on
the C. elegans dataset using P={32, 72, 128} nodes of each
machine. diBELLA 2D runs faster overall on Cori Haswell
than on Summit CPU. The relative proportion of pairwise
alignment in the total runtime increases on Summit CPU
compared to Cori Haswell. SeqAn’s pairwise alignment is
probably not optimized for IBM processors, so we refrain from

Cori Haswell Breakdown C. elegans

Fig. 5. diBELLA 2D runtime breakdown on Cori Haswell (C. elegans).

Summit Breakdown C. elegans

Fig. 6. diBELLA 2D runtime breakdown on Summit CPU (C. elegans).

making architecture comparisons based solely on this data.
On the two machines, the sparse matrix computation AAT

for overlap detection after pairwise alignment has the greatest
contribution to runtime. The parallel read I/O does not show
any scaling and its performance deteriorates when the number
of processes is increased. For C. elegans, overlap detection
has a parallel efficiency of 55% for Cori Haswell and 63%
for Summit CPU, while k-mer counting (consisting of first
and second passes) has a parallel efficiency of 70–80% across
machines. The read exchange has a parallel efficiency of 50%
across machines. Despite a parallel efficiency of 38% on Cori
Haswell and Summit CPU, our transitive reduction shows
a significant speedup compared to a competing distributed
memory implementation.

Figures 7–8 tell a similar story for H. sapiens. The size
of the data set, which is about 10××× of C. elegans, mitigates
the contribution of I/O to the overall runtime. The parallel
efficiency of AAT increases to 65% on both machines. The
parallel efficiency of k-mer counting reaches 89% on Cori
Haswell. The formation of A and AT has negligible impact
on the total runtime, yet it scales almost linearly with a parallel
efficiency of over 80% on both machines and data sets.



Cori Haswell Breakdown H. sapiens

Fig. 7. diBELLA 2D runtime breakdown on Cori Haswell (H. sapiens).

Summit Breakdown H. sapiens

Fig. 8. diBELLA 2D runtime breakdown on Summit CPU (H. sapiens).

B. Comparison with the State of the Art

To demonstrate the competitiveness of our approach, we
now compare it with prior work in the literature.

First, we compare the overall runtime and scaling of di-
BELLA 2D with diBELLA 1D [9], subtracting the transitive
reduction time from diBELLA 2D, since the 1D version
does not implement this step. This comparison was made on
Summit CPU and is shown in Figure 9 for C. elegans and H.
sapiens. diBELLA 2D and 1D differ mainly in the way they
perform overlap detection and communicate sequences before
pairwise alignment. They exhibit similar near linear scaling
behavior, but diBELLA 2D consistently outperforms the 1D
implementation by 1.5–1.9××× (average 1.7×××) for the C. elegans
data set and 1.2–1.3××× (average 1.2×××) for H. sapiens.

For completeness, we evaluate diBELLA 2D against min-
imap2 [16], a popular shared memory algorithm for overlap
detection. To do this, we run minimap2 on a single node using
32 OpenMP threads and compare its runtime to diBELLA 2D
on a different number of nodes using 32 MPI ranks/node. It
is important to note that minimap2 and diBELLA 2D perform
significantly different computations. In particular, minimap2
does not perform base-level pairwise alignment and instead
estimates pairwise similarity from the number of shared min-
imizers, making it significantly faster. Nevertheless, they are
ultimately aimed at solving the same problem, which is why
we provide a comparison here. For the runtimes of diBELLA
2D we refer to Figure 4. For C. elegans, minimap2 is about 2×××
faster than diBELLA 2D at P = 8, while at higher concurrency
diBELLA 2D is 1.6×××, 3.2×××, and 5××× faster than minimap2.

diBELLA 1D vs 2D 

Fig. 9. Comparison of diBELLA 2D and diBELLA 1D [9] on Summit CPU.

TABLE VI
COMPARISON OF TRANSITIVE REDUCTION (IN SECONDS) BETWEEN

DIBELLA 2D AND SORA [23] ON CORI HASWELL.

Dataset Nodes SORA diBELLA 2D Speed-Up

C. elegans
32 34.6 1.9 18.2×
72 34.3 1.3 26.4×
128 34.9 1.2 29.0×

H. sapiens
128 23.4 1.9 12.4 ×
200 24.3 2.3 10.5 ×
338 25.3 1.9 13.3 ×

The speedup of diBELLA 2D over minimap2 is 9.5×××, 13.7×××,
and 20.6××× at P={128, 200, 338} for the H. sapiens dataset.

Finally, we compare our transitive reduction algorithm with
the transitive reduction module of SORA [23], a distributed
memory implementation of transitive reduction from overlap
graph to string graph based on Apache Spark and GraphX.
Our transitive reduction algorithm is currently integrated into
our pipeline, so for fairness reasons we do not include startup,
shutdown, and I/O time for SORA. The input of SORA is the
overlap matrix R of diBELLA 2D, therefore the two transitive
reduction algorithms work with the same input. The results are
summarized in Table VI. Our transitive reduction algorithm
has a speedup of up to 29××× for C. elegans and up to 13.3×××
for H. sapiens.

VIII. CONCLUSIONS

In this work, we presented a scalable distributed memory
approach called diBELLA 2D for overlap detection and layout
simplification in the context of de novo genome assembly. di-
BELLA 2D relies on linear algebraic operations over semirings
using 2D distributed sparse matrices. Using sparse matrices
for both overlap detection and transitive reduction reduces the
need for different data structures normally used in genome as-
sembly. Well-studied distributed-memory algorithms on sparse
matrices, such as sparse matrix-matrix multiplication, allows
diBELLA to efficiently parallelize the computation without
losing expressiveness, thanks to the semiring abstraction. We
provided detailed communication analysis for parallel overlap
detection and transitive reduction, which were missing from
previous work. In particular, our analysis shows that the
new 2D overlap detection algorithm reduces communication
compared to the existing 1D algorithm for commonly utilized
concurrencies in the range of 100–10000 processors. This



translates into a speedup of 1.2–1.9××× in our experiments. For
transitive reduction, our approach is 10–29××× faster than an
existing distributed-memory implementation.

Our approach paves the way for high performance assembly
of large genomes where it is impractical to assemble them in
shared memory or on a small cluster. Fast and efficient de
novo assembly enables the study of previously uncharacterized
genomes [7]. Deciphering the nucleotide sequence is also of
crucial importance when a reference genome is available. In
mapping sequences to a reference, individual–specific genetic
variations are often lost. But they are crucial, for example, to
discover disease–causing mutations [36].

Future work includes reducing memory consumption so that
diBELLA 2D can assemble large genomes at low concurrency
if desired. For this purpose, we can form only a part of
the candidate overlap matrix in each time step, aligning only
sequences belonging to this part, and removing the spurious
entries before moving on to the next region of the output
matrix. Also, we plan to use GPUs in both pairwise alignment
and k-mer counting to boost the performance of our pipeline.
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