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ICRF wave propagation and absorption modelling via machine learning
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1 Princeton Plasma Physics Laboratory, Princeton, NJ 08540, USA
2 Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

3 San Francisco State University, San Francisco, CA 94132, USA
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Abstract. A surrogate model of the wave absorption in the ion cyclotron range of frequencies is

presented. The model is trained to capture the physics of 1D electron and ion power absorption

profiles for both the high harmonic fast wave scheme in NSTX, and the minority heating scheme

in WEST. The surrogate models, based on both the random forest regressor and the multilayer

perceptron algorithms, reduce inference time of 1D power absorption profiles from 1-5 minutes

required by TORIC to ∼50 µs with high accuracy (i.e. R2 = 0.71−0.96).

Introduction and methodology. Radio-frequency wave heating systems in the ion cyclotron

range of frequencies (ICRF) are widely used actuators in the operation of magnetic confinement

fusion devices. Even with the use of high performance computing, available RF actuator model-

ing tools are still too computationally expensive, making their application unfeasible for specific

scenario optimization, inter-shot predictive modeling, or real-time control. In this context Ma-

chine Learning (ML) has established as a clear candidate for bringing the physics underlying

in these tools to the aforementioned applications. Recently, surrogate models of the lower hy-

brid current drive physics model using ray-tracing-Fokker/Planck simulations were obtained

featuring significant decrease in inference time [1].

In this work we demonstrate surrogate models for the 1D ICRF wave absorption profiles. ICRF

physics is rather complex, as not only it involves electron Landau damping but also ion cy-

clotron damping at the fundamental and harmonic resonances. Surrogate models are trained

with databases generated using TORIC [2, 3], an ICRF full-wave simulation code for toroidal

geometries. Two databases of ∼10000 cases each are generated targeting flat top scenarios in

two different regimes: the high harmonic fast wave (HHFW) in the National Spherical Torus Ex-

periment (NSTX) [4], and the minority heating scheme in the W Environment in Steady-state

Tokamak (WEST) [5]. Therefore both frequencies (ω) in the order and above the ion cyclotron

frequency are covered by the surrogates developed. Radial plasma property profiles are assumed

to follow the shape ne = (ne0−ne1)(1−ρe1)e2 +ne1, where subscripts 0 and 1 refer to core and

edge, e/i to electron/ion, and ρ is the normalized radial coordinate. The input parametric spaces
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chosen cover the important physics for each scenario. For NSTX, the toroidal mode number Nϕ

is selected between [5-21], the core electron density ne0 ∈ [0.5− 2]× 1014 cm−3 and temper-

ature Te0 ∈ [1− 5] keV, and exponent e1 ∈ [2− 10]. In WEST database parameters scanned

are Nϕ ∈ [0− 60], ne0 ∈ [4− 8]× 1013 cm−3, ne1 ∈ [1− 3]× 1012 cm−3, Te0 ∈ [1− 1.5] keV,

Ti0 ∈ [1−1.5] keV, e1 ∈ [2−10], and the minority fraction XH ∈ [0.01−0.1]. Latin Hypercube

Sampling is used to ensure an unbiased dataset while being representative of the variability of

the parametric space covered. The 1D surrogate models selected are the Random Forest Re-

gressor (RFR) [6] and the MultiLayer Perceptron (MLP). Surrogate training is carried out with

80% of the database, and the rest is used for testing. Five-fold cross validation is applied. Ev-

ery predicted profile (yyy) is compared to the ground truth (YYY ) by standard scoring metrics as the

average mean squared error MSE = 1/N ∑
N
i=1(YYY i − yyyi)

2, and the coefficient of determination

R2 = 1− (∑N
i=1(YYY i − yyyi)

2/(YYY i − ȲYY )2), N being the number of test samples, and ȲYY is the mean

ground truth profile.

Scenario Variable Method MSE[W/cm3/MWabs] R2[-] t̄i [µs]

HHFW Pe RFR 2.1×10−5 0.95 54

PD RFR 9.2×10−5 0.93 49

Minority Pe PCA-MLP 9.1×10−6 0.85 33

PH PCA-MLP 6.8×10−3 0.85 35

PD PCA-MLP 4.1×10−4 0.71 31

Table 1: Summary of scoring results for TORIC-ML surrogate models

Figure 1: MLP best (left) and worst (right) predictions of Pe in the filtered HHFW database for NSTX.

Ground truth from TORIC simulations in black and MLP predictions in blue.

HHFW regime (NSTX). Surrogate scoring results trained on the entire HHFW database results

in poor surrogate scoring for 1D electron (Pe) and deuterium (PD) absorption profile predictions
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(i.e. R2 = 0.62/0.51). Analyzing the database, part of TORIC’s electric field solutions present

pronounced maxima at unexpected locations, which is denoted as outlier behavior. The nature

of these cases is still under investigation, but it is observed that they are correlated with regions

of parametric space which are more demanding for the simulation as low core temperature(i.e.

low damping), high plasma density (i.e. small wavelengths) and low toroidal mode number. A

non-MSE based metric is used to identify that outliers represent 23% of the HHFW database.

Figure 2: Prediction of electron power absorption

profile for an outlier case in the HHFW database.

Surrogate training with the filtered database

shows a significant improvement in both pre-

dictions of electron/ion power profiles, from

R2 = 0.62/0.51 to 0.95/0.93 and from MSE =

2.6 × 10−3/6.1 × 10−2 to 2.1 × 10−5/9.2 ×

10−5. In HHFW scenarios the majority of

power is absorbed by electron species through

Landau damping [7]. Figure 1 shows the best

and worst electron power absorption profile

predictions in terms of MSE for the MLP sur-

rogate model. Additionally, training the RFR

on the filtered database shows the capability of providing predictions for outlier cases that pre-

serve the main physical aspects of absorption while eliminating outlier features (see Fig. 2).

Minority regime (WEST). Minority heating scenario features increased complexity compared

to HHFW due to the higher number of species and diversity of the absorption mechanisms [8],

including the presence of significant mode conversion of the fast wave (FW) to the ion Bernstein

wave (IBW) close to the ion-ion hybrid resonance. In this regime hydrogen absorption (PH) by

cyclotron damping at the fundamental resonance represents the major part of total power ab-

sorption and the rest is dominated by electron Landau damping of both FW and IBW. Addition-

ally, the higher physics complexity also requires increasing the number of free input parameters

including minority fraction and others, so that the database resolution per free parameter is sig-

nificantly decreased. Nevertheless, fair performances are obtained by training surrogates on the

entire minority database where RFR slightly outperformed the MLP (e.g. R2(PH) = 0.59/0.57).

Outlier cases are also found in this database although of different nature, being correlated under-

resolved IBW mode undamped in the high field side featuring extremely short wavelengths. In

this scenario outlier elimination before training shows no significant effect in scoring so they

are maintained in the dataset. Application of principal component analysis allows to reduce

the complexity of Pe and PH absorption training data from 300 components to 5 and 7 princi-
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pal components, respectively, while maintaining 99% of the variance of the original dataset. A

MLP is trained for each PCA projected database, and with the use of hyperparameter tuning on

the batch size, number of hidden layers, learning rate value and method, activation function and

solver, network scoring predicting PH/Pe profiles is improved from R2 = 0.57/0.64 to 0.85/0.85

and from MSE = 1.7×10−2/1.7×10−5 to 6.8×10−3/9.1×10−6.

Figure 3: Predictions of MLP surrogates (blue) trained on entire data (left) and PCA projected data

(right) for the same case compared to the TORIC ground truth (black). RFR predictions for the same

case shown on the left (red) and on the right (red) we show the PCA-projected ground truth.

Concluding remarks. In this work we have demonstrated the development of fast (∼50 µs

compared to 1-5 min. TORIC simulation time) and accurate (i.e. R2 = [0.71− 0.96]) surro-

gate models of the ICRF 1D wave absorption in both HHFW and minority heating schemes,

for NSTX and WEST, respectively. While some outliers are found in both databases, these

affect more the performance of HHFW predictions and are correlated to regions input para-

metric space featuring small damping and expected short wavelengths. The predictions show

to be robust even in outlier cases, where the key physical aspects of absorption are preserved

while avoiding the outlier features. Overall, these aspects make TORIC-ML appealing for its

incorporation into integrated modeling and control codes.
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