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Abstract 

 

Using Surface Networks to Infer CO2 and PM2.5 Emissions from On-road Vehicles 

by  

Helen L. Fitzmaurice 

Doctor of Philosophy in Earth and Planetary Science 

 

University of California Berkeley 

 

Professor Ronald C. Cohen, Chair 

 

Cities and regional governments throughout the world are increasingly making commitments to 

reducing both total greenhouse gas (GHG) emissions and air quality (AQ) inequities within their 

boundaries. To plan emission reduction strategies, governments need information regarding the 

sector and subsector breakdown, spatial origin, and temporal variability in emissions, as well as 

strategies for tracking emissions changes over the policy-relevant time scales of 1-3yrs. While a 

wide variety of emission calculator tools are available, commonly used inventories disagree with 

one another by up to 100% and in different ways in different locations. The result is substantial 

uncertainty in how well we can describe the total quantity and the sectoral, spatial, and temporal 

distribution of emissions. One approach to reducing the uncertainty is to create inventories that 

account for spatially resolved processes with explicit sectoral details (e.g., fleet composition, 

congestion) using directly measured activity data and comparing these emission inventories with 

emissions inferred from atmospheric measurements.  

 

In this dissertation, we use atmospheric observations to describe vehicle emissions of CO2 and 

aerosol. Vehicles are the largest sector contributing to CO2 emissions in US cities, and a 

substantial contributor to health inequities caused by exposure to co-emitted pollutants such as 

aerosol and aerosol precursors. We develop a novel method for using transportation data (vehicle 

flows, truck fraction) and near-road observations of aerosol and CO to derive Heavy Duty 

Vehicle (HDV) aerosol emission factors. We demonstrate that HDV primary aerosol emission 

factors derived using this method are in line with observations by other studies in the San 

Francisco (SF) Bay Area and elsewhere, that they decreased a by a factor of ~7 in the past 

decade, and that they are still 2-3 times higher than would be expected if all HDV were in 

compliance with California HDV regulations.  

 

Second, we use the BErkeley Air quality and CO2 Network (BEACO2N), of low-cost sensors, 

paired with the Stochastic Time-Inverted Lagrangian Transport (STILT) model and a Bayesian 

inversion framework to estimate the variation of traffic emissions with speed on a stretch of road 

in the SF Bay Area. We show that the BEACO2N-STILT-derived fuel efficiency estimates are 

within 3% of those predicted by the state of California’s EMissions FACtor (EMFAC) model 

and that our network-inversion system should be able to detect changes in fuel efficiency of the 

fleet in 3 years or less.  
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Finally, we quantify the impacts of error in background concentration and meteorology, 

measurement density, and measurement duration on the ability of the BEACO2N-STILT system 

to accurately constrain monthly and annual CO2 emissions from the transportation sector in the 

SF Bay Area. We find large seasonal biases in posterior emissions and show that these biases 

may be significantly reduced by correcting for seasonal biases in background concentration and 

wind speed. We explore a method for determining thresholds for the number of nodes necessary 

for convergence of emissions estimates. In assessing the ability of the current BEACO2N-STILT 

inversion framework to measure highway emissions, we find that this threshold is almost never 

met when less than 10 BEACO2N nodes are operational, but almost always met when greater 

than 30 nodes are operational. 

 

This dissertation illustrates two methods for using networks of sensors, paired with activity data 

to make sector and subsector-specific inferences about emissions in urban areas. These methods 

have the potential to observe both emissions at high resolution and changes in emissions over 

policy relevant time-scales, giving feedback to governments designing and implementing 

emissions reduction plans.  
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Chapter 1 Introduction  

1.1 – Mitigating climate change and poor air quality: The need to understand CO2 and PM2.5 

emissions at the urban scale 

Across the globe, climate change and poor air quality are among the most pressing challenges to 

human health and economic security. Already, an estimated 17 million people per year are 

displaced by climate-related disasters, and hundreds of millions are expected to be displaced by 

climate in the coming decades (UN, 2019). Climate change is already impacting food systems 

and is projected to reduce global crop yields by ~30% by 2080 (UN, 2019).  Each year, air 

quality is estimated to be the cause of more than 4.2 million premature deaths worldwide (WHO) 

and nearly 100,000-200,000 premature deaths in the United States alone (Tessum et al., 2019). 

The human impacts of both phenomena are expected to increase in magnitude and severity over 

the coming decades, and the shifts in our climate are expected to endure for millennia (Soloman, 

2007). 

  

The causes and consequences of climate change and exposure to poor air quality, are tightly 

linked to combustion-related urban emissions. Combustion is the burning of oil, coal, natural 

gas, wood, or other materials, through which hydrocarbons combine with oxygen to produce 

CO2, water, and heat. CO2 is the primary emission from combustion and the most important 

greenhouse gas (GHG) contributing to climate change (the water from combustion condenses 

and is rapidly removed to the oceans). As a consequence of combustion of fuels, the amount of 

CO2 in the atmosphere has increased from 280 parts per million (ppm) to 420 ppm since the start 

of the Industrial Revolution. Because CO2 is a strong absorber of infrared (IR) radiation, 

reducing the amount of thermal radiation that escapes to space in regions of the spectrum where 

it absorbs IR energy, maintaining an energy balance causes the earth’s surface to warm so that it 

emits increased amounts of IR radiation in regions of the spectrum where CO2 does not absorb. 

This increase in surface warming propagates to ocean heat content, changes the equator to pole 

temperature gradient and consequently the intensity of storms that move energy from equator to 

pole. These impacts on earth’s physical and chemical systems in turn impact the biosphere, 

stressing species adapted to historical climate conditions, launching a cascade of stress and 

increase in extinction events through the biosphere. Such changes in climate have happened 

before; however, the current pace of change is more rapid than those observed at the start or end 

of glacial periods and is unlike anything humans have tried to adapt to previously. 

  

A variety of other products (including particulate matter) are also created, typically as a 

consequence of incomplete combustion. Fine particulate matter (PM) is the main driver of air-

quality-related health impacts. PM2.5 is a term used to describe particles smaller than 2.5 microns, 

composed of liquid and solids, and suspended in the atmosphere. PM2.5 can be emitted directly 

into the atmosphere (primary PM2.5) or formed as a secondary product via chemical reactions. 

Because of its small size ( ~ 1/30 the width of a human hair) , PM2.5 can be absorbed directly 

through the surface of the lungs and lead to a number of serious heart (Rajagopalan et al., 2021) 

and respiratory conditions, as well as premature death (Di et al., 2017). 
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Both exposure to poor air quality (caused by PM2.5 emissions) and climate change (caused 

largely by CO2 emissions) exacerbate and magnify structural inequalities in health outcomes and 

economic stability within the United States and worldwide. For example, Tessum et. al (2021) 

showed that in the United States, race explains a larger percentage of the variance in PM2.5 

exposure than socioeconomic status, and that for most emission source types, people of color are 

more highly impacted than whites. Globally, air quality exposure is higher in cities than rural 

areas (Liu et al., 2021). Likewise, climate change is expected to push on the order of 100 million 

people worldwide into extreme poverty as climate change has a deleterious impact on human 

shelter, results in a loss of income for people in rural areas, and drives up food costs (Hallegatte, 

et al., 2016).  

  

A focus on emissions reductions in urban areas is essential to mitigating both the health-related 

consequences of air pollution and the extent of global climate change. Using climate models, it is 

estimated that to keep anthropogenically-caused increases of global average temperature to less 

than 1.5 °C above pre-industrial levels, emissions of GHGs must be reduced by ~45% of 2010 

levels by 2030 and to zero by 2050 (Rogelj et al., 2018). The 1.5 °C threshold is critical, because 

of the large differences in climate outcomes related to extreme heat, extreme precipitation and 

drought, and food security between scenarios in which the global mean temperature stabilizes at 

a 1.5 °C increase vs. a 2 °C increase (Hoegh-Guldberg et al., 2018). Worldwide, roughly 70% of 

CO2 is attributable to urban areas, meaning that a swift reduction of CO2 within and caused by 

cities is essential to achieving the less than 1.5 °C goal. Likewise, in the US, air quality is on 

average substantially worse in urban areas compared to rural areas (CDC, 2017), and in China 

the incidence of mortality attributable to PM2.5 is ~5 times greater in urban as compared to rural 

areas (Liu et al., 2021). Because the share of people living in urban areas is expected to increase 

from ~50% to ~70% by 2050 (IPCC, 2014), without targeted emission reduction strategies, the 

share of CO2 emitted and air pollution related deaths occurring in cities is likely to increase in 

the next three decades. 

  

Although sweeping national and international policies are needed to bring CO2 emissions to zero 

and decrease PM2.5 concentrations to a level deemed safe by the World Health Organization, a 

substantial fraction of emissions can be reduced through local actions. Responding to the need 

for emissions reduction outlined above, local (city, regional) governments have increased efforts 

to reduce city-wide emissions of CO2 and exposure to PM2.5 at the neighborhood scale. For 

example, 88 major cities across the globe, totaling ~700 million in population, have committed 

to halving their CO2 emissions by 2030 as part of the C40 program. This list of cities includes 

the three most populous cities in the United States: New York, Los Angeles, and Chicago, as 

well as San Francisco, one of the cities studied in this dissertation. At the regional scale, in 

California, 64% (Boswell et al., 2019) of residents reside within a city with a climate action plan 

that targets local reductions of CO2 emissions. Because a fraction of PM2.5 is co-emitted as 

product of combustion (through secondary processes enhanced by combustion products), 

concerted efforts in CO2 emissions can lead to reductions of PM2.5. Beyond PM2.5 emissions 

reduction as a co-benefit of CO2 emissions reduction, there are examples of local efforts to 

reduce PM2.5 exposure. For example, the California Air Resource Board’s AB617 program 

(A.B. 617) enables local air districts to work with community stakeholders to collaborate to form 

emission reduction plans for health-impacting emissions, such as PM2.5. 
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To create and continuously adapt and update emission reduction strategies, governments need 

information regarding the sector and subsector breakdown, spatial origin, and temporal 

variability in emissions. For example, to understand how to combat inequities in air quality 

exposure in an area near a port, neighborhood scale maps of emissions, and an understanding of 

the relative emission contributions by local emissions of cars, trucks, trains, watercraft, and other 

port activities and a comparison to regional contributions (e.g. Hamilton et al., 2021) are needed. 

Furthermore, to monitor the progress of these strategies, governments require the ability to track 

changes of emissions over the policy-relevant time scales of 1-3 years, so that course-corrections 

can be implemented on 5-10 year time scales. Consequently, there is a pressing need to 

understand urban emissions of both CO2 and PM2.5 emissions at the neighborhood scale and 

changes in these emissions over short periods of time. 

 

1.2  – Using a high-density surface network to quantify urban emissions 

The atmospheric science community has worked to develop tools to assess emissions progress at 

the sectoral level or to assess spatial and temporal changes in emissions. Briefly, these 

approaches can be characterized as either activity-based emissions models or those that use 

atmospheric measurements of concentration to infer emissions. Activity-based emissions models 

use quantifiable economic (e.g., utility or fuel sales) data, typically aggregated at the regional 

(for example, county) scale to estimate emissions by sector. These emissions models can then be 

given a spatial and temporal profile by applying high resolution activity (traffic counts), 

demographic (population density), or environmental (temperature) data that might indicate the 

location and timing of emissions. Several high-resolution (500m – 1km) (Oda et al., 2010; 

Gurney et al., 2012; McDonald et al., 2014; Gately et al., 2017a) or extremely high-resolution 

(10s of meters) (Gurney et al., 2019) emission inventories have been created for specific urban 

areas. In addition to emissions inventories created by researchers, a wide variety of emission 

calculator tools are available for use by municipalities and regional governments. However, 

activity-based inventories calculated by government agencies, and those created by researchers, 

can disagree with one another by up to 100% (Gately, 2017; Gurney, 2021). The result is 

substantial uncertainty in the total quantity and sectoral, spatial, and temporal distribution of 

emissions. 

 

Atmospheric observations, obtained through a variety of platforms, have been used to estimate 

GHG emissions in urban areas across the US and globally, and have the potential to reconcile 

differences between activity-based emissions inventories. These platforms can roughly be 

divided into long-term networks, total column measurements, and mobile campaigns. A 

summary of measurement systems used to infer emissions estimates from atmospheric 

concentrations can be found in Table 1. 

 

In practice, there are often tradeoffs between spatial and temporal resolution, spatial and 

temporal coverage, and biases created via representativeness error or errors in the meteorological 

model used to link atmospheric concentrations to emissions sources. For example, long-term 

measurements may monitor concentrations at elevation (~40-150 m above ground level) (Lavaux 

et al., 2016; Lavaux et al., 2020) or closer to the surface (Turner et al., 2016; Turner et al., 2020; 

Kim et al., 2021; Fitzmaurice et al., 2022a; Fitzmaurice et al., 2022b). Because of atmospheric 

mixing, emissions estimates inferred from measurements at elevation are sensitive to larger 
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areas, and therefore less likely to be biased by hyper-local sources, such as exhaust from 

individual buildings. However, because of the relatively larger areas to which each sensor is 

sensitive, and because of the sensitivity and corresponding instrument cost required for 

instruments to measure concentrations at height, tower networks are unable to achieve the spatial 

resolution of near-surface networks.  

 

Similarly, total column measurements including satellite (e.g., Kort et al., 2012) and ground-

based measurements (e.g., Sargent et al., 2018) measure the total integrated column of a 

particular species from ground to top of atmosphere, eliminating the need to model vertical 

atmospheric transport (a large source of error), but are unable to resolve emissions at high spatial 

resolution within an urban area.  Mobile campaigns such as aircraft measurements, ground-based 

mobile monitoring (Mallia et al., 2020), tower networks and near-road plume capture 

(Kirchstetter et al., 1999; Bishop et al., 2015; Haugen et al., 2017; Haugen et al., 2018; Preble et 

al., 2018) capture snapshots of concentrations at extremely high resolution, but over short 

durations, making it difficult to track trends over time. 

 

In Figure 1.1, we show the relative spatial and temporal resolution and coverage of each of the 

measurement systems described above. Only dense, low-cost measurement systems achieve 

neighborhood-scale (~1 km2) resolution with city-wide (104 km2) coverage at the time resolution 

(~1hr) required to track time of day changes over policy-relevant (1-3 yr) time periods. 

1.3 - Using surface networks to study urban vehicle emissions 

Vehicle emissions compose an important fraction of CO2 emissions (29% in the United States, 

14% globally) (IPCC, 2014) and have substantial public health consequences. In the United 

States, vehicles emit the largest sectoral fraction of CO2 and a significant fraction of the PM2.5 in 

urban areas (BAAQMD, 2011), and are estimated to cause 29% of deaths associated with poor 

air quality (Takrar, 2020).  

 

Local and regional governments can influence emissions from vehicles via policies targeting 

subsector processes such as vehicle kilometers traveled (vkm) reduction, fleet make-up in terms 

of vehicle model, make, and fuel usage, and congestion, which can drastically alter vehicle 

emission rates of both CO2 and PM2.5. Across the globe, local and regional governments have 

enacted policies using these three levers to target emissions by vehicles. For example, in 2019 

the city of London implemented an ultra-low emissions zone in which diesel and older gasoline 

vehicles are charged a flat rate per day to drive in the zone (Ma et al., 2021). 

 

In this dissertation, we focus on quantifying emissions from surface-level networks, using data 

from both reference grade instruments with individual instrument calibrations traceable to 

standard materials and low-cost sensors calibrated as an ensemble network. Although questions 

remain about the sensitivity of low-cost sensor networks to interference from hyper-local signals 

and the challenges associated with modeling transport at sites so close to the surface, when 

deployed at high density and maintained over years and decades, they have the potential to shed 

light on long- (Lauvaux, 2020; Kim, 2022) and short-term (Turner, 2020) trends and spatial 

variability of emissions. Furthermore, both the high spatial resolution (Apte, 2017; Caubel, 2018; 

Fitzmaurice et al., 2022) and colocation of sensors measuring several species (Fitzmaurice, 

Chapter 2) lend these networks to quantifying emissions by sector. 
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More specifically, we use network data to quantify emissions of PM2.5 (Chapter 2) and CO2 

(Chapter 3) by on-road vehicles. We used data from both the Bay Area Air Quality Management 

District (BAAQMD) air pollution network, and the BErkeley Air quality and CO2 Network 

(BEACO2N). The BAAQMD network consists of ~21 sites measuring criteria pollutants across 

the San Francisco Bay Area’s nine counties, covering an area of 18,040 sq km. BEACO2N is a 

low-cost sensor network of ~65 nodes, spaced at ~2 km intervals located in San Francisco and 

the east and northeast parts of the Bay Area covering an area of ~500 sq km. Both networks have 

the temporal resolution and coverage to track changes over 1-3 years and the BEACO2N network 

has the spatial resolution to track changes at the neighborhood (~1-2 km) scale (see Figure 1.1). 

Locations of BAAQMD and BEACO2N sites, as well as the interior of a BEACO2N node are 

shown in Figure 1.2.  

   

In the chapters described below, we make use of data from these to networks to quantify sub-

sector processes by vehicles. In Chapter 2, we describe a novel method for using near-road 

regulatory sensors to infer emissions factors (grams PM2.5 emitted per kilograms fuel) for heavy-

duty vehicles (HDV). We track changes in these factors over a decade in the Bay Area. In 

Chapter 3, we use emissions derived from BEACO2N to track changes in fuel efficiency as a 

function of congestion and HDV fraction. In Chapter 4, we use ~2 years of traffic emissions 

estimated using BEACO2N data to understand the impact of node density and meteorological 

model error on emissions estimates. 

 

1.4 – Chapter 2: Long-term trends in Aerosol Emissions from Heavy Duty Vehicles 

 

In chapter 2, we outline a method for using regulatory surface networks in combination with 

measurements of vehicle number and type to estimate emissions factors (g PM2.5 / kg fuel 

burned) from HDV. HDV contribute a small, but meaningful fraction of primary aerosol 

emissions in urban areas, for example ~7% in the county of San Francisco (BAAQMD, 2014). 

Previous studies have shown spatial heterogeneity in emissions as a consequence of variations in 

compliance with HDV emission control regulations (Preble et al., 2018). Consequently, location-

specific emissions factors are necessary to describe primary particulate matter emissions by 

HDV. Using near-road observations from the BAAQMD network over the 2009-2020 period in 

combination with traffic measurements of vehicle number and type, we determine primary PM2.5 

emission factors from HDV on highways in the San Francisco Bay Area. We demonstrate that 

HDV primary aerosol emission factors derived using this method are in line with observations by 

other studies in the SF Bay Area and elsewhere, that they vary spatially, that they decreased by a 

factor of ~7 in the past decade, and that they are still 2-3 times higher than would be expected if 

all HDV were in compliance with California HDV regulations. 

  

1.5 – Chapter 3: Using a Network of Low-Cost Sensors to Observe Fuel Efficiency in Vehicles 

Turning from a focus on PM2.5 emissions by HDV, in Chapter 3 we continue developing 

methodology for evaluating sub-sector vehicle emissions by using a high-density sensor network 

of low-cost CO2 sensors to quantify changes in fuel efficiency from vehicles. Transportation 

represents the largest sector of anthropogenic CO2 emissions in urban areas in the United States. 

Timely reductions in urban transportation emissions are critical to reaching climate goals set by 



 

 6 

international treaties, national policies, and local governments. Transportation emissions also 

remain one of the largest contributors to both poor air quality (AQ) and to inequities in AQ 

exposure. As municipal and regional governments create policy targeted at reducing 

transportation emissions, the ability to evaluate the efficacy of such emission reduction strategies 

at the spatial and temporal scales of neighborhoods is increasingly important. However, the 

current state of the art in emissions monitoring does not provide the temporal, sectoral, or spatial 

resolution necessary to track changes in emissions and provide feedback on the efficacy of such 

policies at a neighborhood scale. The BErkeley Air Quality and CO2 Network (BEACO2N) has 

previously been shown to provide constraints on emissions from the vehicle sector in aggregate 

over a ~500 km2 multi-city spatial domain. Here, we focus on a 5 km, high volume, stretch of 

highway in the SF Bay area. We show that inversion of the BEACO2N measurements can be 

used to understand two factors that affect fuel efficiency: vehicle speed and fleet composition. 

The CO2 emission rate of the average vehicle (g/vkm) are shown to vary by as much as 27% at 

different times of a typical weekday because of changes in vehicle speed and fleet composition. 

The BEACO2N-derived emissions estimates are consistent to within ~3% of estimates derived 

from publicly available measures of vehicle type, number, and speed, providing direct 

observational support for the accuracy of the Emissions FACtor model (EMFAC) of vehicle fuel 

efficiency. 

1.6  – Chapter 4: Evaluating the Impact of Background Concentration Error, Transport 

Error, and Node Count on BEACO2N-STILT Emissions Estimates 

Finally, in Chapter 4 we further assess the BEACO2N-STILT tool (developed by Turner et al., 

2020) used to determine fuel efficiencies in Chapter 3. High-density, urban sensor networks, 

paired with Bayesian inverse models have been used to quantify sector-specific, temporally-

specific, and spatially-specific CO2 emissions and have, in some cases (e.g. Kim et al., 2022), 

been shown to have the precision necessary to evaluate whether annual emissions reductions are 

occurring as expected based on policy. A better understanding of the accuracy and precision of 

such emissions estimates, as well as the impact of real-world network conditions (background 

estimation error, meteorology, sensor down time) on these estimates is needed to support more 

general use of the tool. In this Chapter, we quantify the impacts of background error, 

meteorology, measurement density, and measurement duration on the ability of the BEACO2N-

STILT observation/inversion system as implemented by Turner et al 2020 to accurately constrain 

CO2 emissions from the transportation sector in the SF Bay area. We find that there are seasonal 

biases in the inversion system. These biases are attributed to biases in CO2 background (~80%) 

and biases in the modeled wind speed (~10-15%). We use BEACO2N-STILT footprints to 

explore the node density necessary for convergence of highway emissions estimates in this 

inversion system. Finally, we make recommendations eliminating seasonal biases and for future 

evaluation of the system.  

  

1.7 – Ch 5: Conclusions and Future Work 

In this section, we summarize the findings in Chapter 2, Chapter 3, and Chapter 4 and make 

recommendations for future work. The novel contributions of this dissertation area as follows. In 

Chapter 2, we describe a novel method for using near-road regulatory sensors, paired with 

publicly available traffic data to track long term trends and spatial heterogeneity in HDV 
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emission factors. In Chapter 3, we use the BEACO2N network to observe the dependence of CO2 

emission rates on vehicle speed and fleet composition on a short segment of highway in the SF 

Bay Area. To our knowledge, this is the first time that a network-inversion system has been used 

to quantify the impact of sub-sector processes on CO2 emissions at the neighborhood scale. 

Finally, in Chapter 4, we investigate the impacts of node density, meteorological error, and 

background concentration error on emissions estimates.  

 

In the future, we suggest that the method described in Chapter 2 could be applied widely across 

the United States to track long-term changes in HDV emission factors for PM2.5 and other 

species or applied to dense, low-cost networks with many near-road sensors to understand the 

spatial heterogeneity in HDV emission factors. The work described in Chapter 3 could be 

extended to other species emitted by vehicles (for example CO) or sectors (with appropriate 

activity data for those sectors). Finally, based on the work describe in Chapter 4, we make 

recommendations to improve the BEACO2N-STILT inversion system and for further evaluations 

of the system. 
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Technique Brief Description Technique has been 

used to estimate total 

emissions from an 

urban area 

Technique has been used 

to estimate sector-specific 

emissions from an urban 

area 

roadside plume 

capture 

Instruments sample multiple species from 

individual vehicle plumes to ascertain emissions 

factors (g X / kg fuel burned) - rather than total 

emissions. 

 

 

flight campaigns Instruments sample concentrations along flights 

in and around urban areas. Flight tracks 

typically not repeated. 

  

mobile 

measurements 

Instruments sample concentration along vehicle 

(car or light rail) driving path. Measurements 

are repeated many times (>10) at the same 

location via repeated paths. 
 

 

tower 

measurements 

Instruments sample concentration from elevated 

locations (10s -100s of meters) across an urban 

area. 

  

satellite 

measurements 

Measure total column absorption of a chemical 

species, integrated from the surface to the top of 

the atmosphere 

 

 

regulatory 

networks 

(5-15 sensors per urban area) 
 

 

low-cost sensor 

networks 

A dense network of 20 or more sensors set up 

throughout an urban area, typically instruments 

are located near-surface ( <10 m). 

  

surface remote 

sensing 

Instruments located on the surface measure total 

column absorption a chemical species, 

integrated to the top of the atmosphere 

 

 

 

Table 1.1. Summary of techniques used to infer emissions from concentration measurements. 
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Figure 1.1. (left) Spatial resolution and coverage and (right) temporal resolution and coverage 

typically achieved by a variety of measurement systems. Pink boxes represent (left) the spatial 

resolution and coverage necessary to quantify neighborhood scale emissions for an urban area 

and (right) the temporal resolution and coverage required to understand daily patterns in 

emissions and track changes on policy relevant timescales.  
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Figure 1.2. (right) Cut-away view of a BEACO2N node. (left) Measurement locations of the 

BEACO2N and BAAQMD networks in the SF Bay Area. 
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Chapter 2 A method for using stationary networks to observe long term trends of on-road 

emissions factors of primary aerosol from heavy duty vehicles  

Adapted from Fitzmaurice, H.L. and Cohen, R.C., 2022. A method for using stationary networks 

to observe long term trends of on-road emissions factors of primary aerosol from heavy duty 

vehicles. Atmospheric Chemistry and Physics Discussions, pp.1-13. 

 

Abstract Heavy-duty vehicles (HDV) contribute a significant, but decreasing, fraction of 

primary aerosol emissions in urban areas. Previous studies have shown spatial heterogeneity in 

compliance with regulation. Consequently, location-specific emissions factors are necessary to 

describe primary particulate matter (PM) emissions by HDV. Using near-road observations from 

the Bay Area Air Quality Management District (BAAQMD) network over the 2009-2020 period 

in combination with Caltrans measurements of vehicle number and type, we determine primary 

PM2.5 emission factors from HDV on highways in the San Francisco Bay Area. We demonstrate 

that HDV primary aerosol emission factors derived using this method are in line with 

observations by other studies, that they decreased a by a factor of ~7 in the past decade, and that 

they are still 2-3 times higher than would be expected if all HDV were in compliance with 

California HDV regulations. 

 

2.1. Introduction 

Exposure to aerosols smaller than 2.5 microns in diameter (PM2.5) at current ambient levels is 

estimated to cause 130,000 excess deaths per year in the United States (Tessum, 2019). 

Epidemiological studies have shown that health and mortality impacts from PM2.5 persist at 

concentrations of PM2.5 below current National Ambient Air Quality Standards and that small 

changes in PM2.5 concentration may result in substantial health impacts (Di et al, 2017). Because 

of the health impacts resulting from small increases in PM2.5, air quality academics, public health 

researchers, local regulatory agencies, and state governments have come to appreciate the 

importance of neighborhood scale differences in cumulative exposure to PM2.5 (e.g. CARB, 

2018). For example, regulatory agencies in California have begun to shift from a paradigm based 

primarily on compliance with annual and daily, regional scale air quality metrics to one also 

focused on mitigation of cumulative exposure, creating local remediation plans based on source 

apportionment. (BAAQMD, 2019). These source apportionment estimates are created from 

bottom-up emissions inventories using emissions factors and activity data. Consequently, 

accurate local emissions factors are vital to understanding and planning neighborhood-scale 

mitigation strategies.  

 

On-road vehicles, specifically HDV, are a large contributor to aerosol in urban areas, both 

through direct emissions and through secondary formation in the atmosphere (e.g. Shah, 2018; 

BAAQMD, 2011). Total emissions can be thought of as the product of emissions factors (EFs) 

and the activity, where the EFs are expressed in units of grams of aerosol per unit activity (such 

as grams of aerosol per kg of fuel burned or per km travelled). EFs are estimated for on-road 

activity in a variety of ways including scaling based on measurements in a lab setting and/or on-

road measurements (See references, Table 2.1). A summary of on-road studies for primary HDV 

and passenger vehicle PM EFs over the last 25 years is shown in Fig. 2.1 and Table 2.1. These 
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studies determined EFs of primary on-road aerosol by comparing ratios of aerosol enhancement 

(in grams) to CO2 and/or CO enhancement (as a measure of fuel burned). Measurements 

included sampling directly in the exhaust of tunnels, and high frequency sensors near or above 

roads to sample and characterize individual vehicle plumes.  

 

These prior observations show that typical heavy duty, diesel-powered vehicles dominated on-

road emissions of primary aerosol in the 1990s and early 2000s. However, in recent years, 

emissions factors from typical heavy-duty vehicles have been dramatically reduced such that PM 

EFs of HDVs are now similar to those of light duty vehicles (LDV) and are less than 0.05 g 

aerosol/kg fuel burned. Control technologies such as diesel particulate filters and selective 

catalytic reduction are contributing to these reductions in EFs for HDVs.   

 

While these improvements are seen in the “typical” HDV, previous studies indicate that 

compliance of HDV with emission technology requirements, and therefore HDV on-road 

emissions factors, vary by up to an order of magnitude from location to location (Preble, 2018 

Bishop, 2015; Haugen, 2018; Haugen, 2019). For example, Bishop (2015) and Haugen (2018, 

2019) found emissions factors measured at the Port of Los Angeles were as much as an order of 

magnitude lower than those measured along a highway in Cottonwood, California during the 

same season. While the gap between the two sites narrowed from 2013-2017, the mean emission 

factors measured in Cottonwood were still 3 times those measured at the Port of Los Angeles in 

2017. Similarly, Preble (2018) found that while 100% of trucks at the Port of Oakland were 

registered by the state of California as being in compliance with HDV control technology 

regulations, compliance rates amongst HDV at the Caldecott tunnel (also in Oakland, CA) were 

below 90%.  

 

These studies highlight that variability in emissions factors as a function of location may affect 

exposure. They point to the importance of characterizing spatial variation in HDV emissions if 

we are to understand aggregate emissions from the sector and its localized impacts. To assess the 

potential for existing data sources to supply the needed information, here we explore the use of 

regulatory sensor networks (near-highway, hourly PM2.5 and CO (or CO2) measurements), paired 

with coincident traffic data including LDV and HDV counts, to quantify spatial variation in 

HDV EFs. Such data is widely available. For example, in the US, there are more than 550 

regulatory sites at which PM2.5 and CO are collocated, some of which have measurements 

spanning more than a decade (https://www.epa.gov/outdoor-air-quality-data). Of these, 154 are 

located within 500 m of a highway. The large number of these sites and their longevity allow for 

examination of regional and temporal differences in EFs for HDV across the United States. In 

the future, the approach we outline should be even more widely applicable when dense low-cost 

sensor networks including aerosol and CO or CO2 are available as a data source (e.g. 

Shusterman, 2016, Kim, 2018; Zimmerman, 2018). Because HDV emissions control regulations 

vary regionally in the US, this method has the potential to shed light on regional differences in 

HDV EF trends. 

 

We begin by describing a general method for using such data to derive EFs of primary PM2.5 

from HDV (Section 2.2). We then (Section 2.3) test our method by using data from four near-

highway sites operated by the Bay Area Air Quality Management District  (BAAQMD) in the 
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San Francisco Bay Area (Figure 2.2a) over the period of 2009-2018. In section 4 we discuss the 

relationship of these findings to measures of exposure. 

 

2.2. Data and Methods 

2.2.1 Aerosol and CO Measurements 

We use 1 hr averaged observations from 18 of the BAAQMD regulatory sites which measure 

PM2.5 using Beta Attenuation Monitors and CO using the Thermo Scientific TE48i IR sensor. 

Some sites have been in operation since 2009, while others have been brought online as recently 

as 2018, or were operational for only a few years during this time period. Data was retrieved 

from https://aqs.epa.gov/aqsweb/documents/data_api.html. Site locations are summarized in 

Figure 2.2.  

2.2.2. Meteorology 

Boundary layer height and wind speed and direction are taken from the European Center for 

Meteorology and Weather Forecasting (ECMWF) ERA5 reanalysis, 

(https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=form). Typical diel 

cycles for boundary layer height and total windspeed are shown in Fig. 2.10. 

2.2.3. Traffic Data 

Total vehicle flow and the percent of vehicles that are HDV are taken from the  Caltrans’ 

Performance Measurement System (PeMS) database (http://pems.dot.ca.gov), which records 

these parameters at over 1800 locations on highways in the Bay Area. We include all BAAQMD 

sites that are within 500 meters of one major highway and use traffic count data from the PeMS 

measurement site closest to each air quality site. In cases of missing PeMS data, data was filled 

in with the median value associated with that parameter for a particular site in a particular year, 

or if not possible, retrieved from the second or third nearest sites. More details about the PeMS 

data are presented in Fig. 2.5, Table 2.2, and Fig. 2.6. 

 

2.2.4. Derivation of EFPM(HDV) 

Our derivation of HDV EFs assumes that the relationship between PM and CO, as observed 

near-road, can be scaled so that it represents PM per unit of fuel burned by HDVs (Equation 1): 

 𝐸𝐹𝑃𝑀(𝐻𝐷𝑉) = 𝛾
𝑃𝑀𝐻𝐷𝑉

𝐶𝑂𝑓𝑙𝑒𝑒𝑡

𝑔𝐶𝑂𝑓𝑙𝑒𝑒𝑡

𝑘𝑔 𝑓𝑢𝑒𝑙,𝑓𝑙𝑒𝑒𝑡

𝑘𝑔 𝑓𝑢𝑒𝑙,𝑓𝑙𝑒𝑒𝑡

𝑘𝑔 𝑓𝑢𝑒𝑙,𝐻𝐷𝑉
, (1) 

In this equation, =0.0008, and is the ideal gas law conversion factor, from (𝜇g/m3ppm-1-CO) to 

(𝑔𝑃𝑀/𝑔𝐶𝑂). Below, we describe the steps used to calculate each term in equation (1). 

 

The first term 
𝑃𝑀𝐻𝐷𝑉

𝐶𝑂𝑓𝑙𝑒𝑒𝑡
 in the equation is derived from observations as the slope of a linear fit 

of near-road PM2.5 (assumed to be primarily emitted by HDV) and near-road CO (assumed to be 

emitted by both HDV and LDV). This term is derived by (1) isolating local enhancements of 

https://aqs.epa.gov/aqsweb/documents/data_api.html
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=form
http://pems.dot.ca.gov/
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PM2.5 and CO, (2) isolating roadway enhancements by use of temporal filters and (3) fitting 

resulting roadway enhancements of PM2.5 and CO to a line, as detailed below.  

(1) To isolate local enhancements from total signal PM2.5 and CO, we first leverage the entire 

BAAQMD network to derive an hourly regional signal for each species. The regional 

signal is defined as the 10th percentile of the data across all 22 BAAQMD sites within a 

five-hour window of that hour (Figure 2.2b). This regional signal is assumed to be 

composed of background PM/CO transported to the region from elsewhere as well as 

region-wide sources of secondary aerosol/CO. We the find the enhancement by local 

primary emissions by subtracting the regional signal from total signal at each site.  

(2) We isolate primary emissions from on-road sources by considering only the morning 

commute times and only during fall and winter. These are times coinciding with 

relatively high traffic emissions and too early in the day for significant accumulation of 

new secondary aerosol. We find the 6-8 am period represents the optimal overlap of low 

boundary layer height (Figure 2.10) and HDV emissions (Figure 2.6). To avoid 

observations of stagnant air, we only include observations with wind speed above 0.5 

m/s. We also exclude known fire events. The result of these first two steps are 

enhancements, PM2.5 and CO above background. 

(3) The slope of a linear fit of the median PM2.5 in bins of CO (see figure 2.3) is defined 

as the “enhancement ratio,” , in units of 𝜇g/m3ppm-1-CO. Using the lengthy dataset, we 

are able to derive  for different percentages of HDV in the vehicle fleet on the road. 

There are some high PM2.5 values uncorrelated with CO as shown in Figure 2.3. In all 

cases, these points show little to no NOx enhancement and thus are characteristic of a 

source that is not HDV.  We make the assumption that LDV PM EFs are negligible and 

on-road primary emissions of aerosol are solely from HDV, implying that  is equivalent 

to the term 
𝑃𝑀𝐻𝐷𝑉

𝐶𝑂𝑓𝑙𝑒𝑒𝑡
. This assumption is sound at the beginning of our period (2010s) of 

interest, because reported values of EFPM(HDV) were 2-3 orders of magnitude higher than 

EFPM(LDV)  at that time (Fig 2.1). More recently, as EFPM(HDV) has decreased, this is less 

clear, especially without on-road estimates of EFPM(LDV). To understand the impact of 

LDV PM emissions on our findings, we establish an upper bound for EFPM(LDV) to be 

0.002 g PM / kg fuel by insisting that all EFPM(HDV) > 0 and find the impact of LDV PM 

on the long-term trends of EFPM(HDV) to be minimal (Figure 2.13). 

 

The term 
𝑔𝐶𝑂𝑓𝑙𝑒𝑒𝑡

𝑘𝑔 𝑓𝑢𝑒𝑙,𝑓𝑙𝑒𝑒𝑡
 is the fleet EF for CO. We use truck percentage and CO emission factors 

from EMFAC2017 model and fuel efficiency estimates to calculate this term as follows:  

 

𝐸𝐹𝐶𝑂,𝑓𝑙𝑒𝑒𝑡 =
𝐸𝐹𝐶𝑂(𝐻𝐷𝑉)𝑡𝐸𝐻𝐷𝑉+ 𝐸𝐹𝐶𝑂(𝐿𝐷𝑉)(1−𝑡)𝐸𝐿𝐷𝑉

𝑡𝐸𝐻𝐷𝑉+ (1−𝑡)𝐸𝐿𝐷𝑉
 , (2) 

 

where t is the HDV fraction and E is fuel efficiency (miles / gallon). EFCO for both LDV and 

HDV is defined for each time period using the EMFAC2017 model. 

 

Finally, 
𝑘𝑔 𝑓𝑢𝑒𝑙,𝑓𝑙𝑒𝑒𝑡

𝑘𝑔 𝑓𝑢𝑒𝑙,𝐻𝐷𝑉
 is the ratio of fuel burned by the total vehicle fleet to that burned by HDV 

alone. We find this ratio to be  
𝑡𝐸𝐻𝐷𝑉+ (1−𝑡)𝐸𝐿𝐷𝑉

𝑡𝐸𝐻𝐷𝑉
.  
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Because, at a given site, we expect 
𝑃𝑀𝐻𝐷𝑉

𝐶𝑂𝑓𝑙𝑒𝑒𝑡
 (but not EFPM(HDV)) to vary linearly with HDV 

fraction, we bin data by HDV fraction in increments of 0.02, use the process above to calculate 

EFPM(HDV) for each bin. We use the 95th percent confidence intervals to represent uncertainty in 

EFPM(HDV) for each bin, and finally, calculate EFPM(HDV) for each site during a particular time 

period using the average of the, weighted by uncertainty in EFPM(HDV) for each bin. 

 

2.3. HDV Emissions Factors from Primary Aerosols in SF Bay Area: 2009-2018 

The result of this procedure is HDV EFs at four near-highway BAAQMD sties (Redwood City, 

Berkeley Marina, San Rafael, Pleasanton) during the time periods: 2009-2011, 2012-2015, 2016-

2018.  (Figure 2.4.) HDV EFs decrease over the decade (Figure 2.1, Figure 2.4), amounting to a 

roughly seven fold reduction. Site to site differences in HDV EFs remain substantial. For 

example, during the 2018-2020 period, we see a range of more than a factor of 10 with a 

minimum of 0.02+/0.10 g PM / kg fuel to a maximum of  0.38+/0.07 g PM / kg fuel. Both the 

temporal decrease and the site to site differences are similar to prior reports derived using other 

approaches to data collection and interpretation (e.g. Haugen et al. 2017, 2018).  

 

By 2020, California law required that all HDV models from the years 1995-2003 replace their 

engines with 2010 or newer models, and that all HDV model year 1994 or newer use diesel 

particulate filters (DPF) (California Code of Regulaitons). Assuming that the fleetwide average 

EF for models with 2010 or newer engines using DPF is 0.03 g PM / kg fuel as observed by 

Haugen (2018), we can use fuel usage by HDV model year in 2020 as well as emissions factors 

for vehicles older than 1994 estimated by the Emissions FACtor Model (EMFAC2017) to 

estimate a fleetwide average. Thus a fleetwide average should have an EF of 0.03-.06 g PM / kg 

fuel if the trucks were fully compliant in 2018-2020. We observe an average EF of 0.11 g PM / 

kg fuel, for 2018-2020, more than 2-3 times larger than expected for an HDV fleet compliant 

with current regulations. Possible explanations for this discrepancy include exemptions from 

truck regulations, under which certain classes of HDV travelling less than 15,000 miles per year 

are eligible for exemptions, meaning locally travelling HDV may have higher emissions factors 

than those travelling long distances (CARB, 2018), the fact that HDV registered in other states 

are not typically subject to CA regulations unless they enter specific areas, such as ports and 

failure of or tampering with installed equipment. 

 

We also observe site to site variation in emission factors. For example, while emission factors at 

both Redwood City and Santa Rosa drop throughout the time period observed and each 

experiences a sharp drop between different two time periods, that sharp drop occurs earlier 

(2009-2011 to 2012-2014) at RWC than at SR (2012-2014 to 2015-2017), suggesting a 

difference in timing of compliance to control technologies at each place. Furthermore, in the 

2018-2020 period, we see a wide range in emission factors, likely indicating a range in 

compliance.  

 

We found reliable results using this procedure at 4 near-road locations that are well separated 

from other activity. However, at some at other locations apparent large emissions are observed, 

that we believe to be unphysical. For example, the EFHDV calculated for Laney College in the 
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2015-2017 and 2018-2020 periods is significantly higher than EFHDV observed at the four sites 

we deem reliably far from other sources. While it is possible that HDV on the highway near 

Laney College, are unusually high emitters, it is more likely that emissions from a nearby 

parking lot are responsible for the high inferred EFs. (See Fig. 2.12.) Slow moving LDV could 

be an important influence on local emissions, a factor that should be assessed more thoroughly. 

2.4 Primary PM2.5 exposure 

To understand exposure from HDV PM2.5, we calculate both a region-wide addition to aerosol 

burden by HDV emissions and an enhancement as a function of distance from a highway. 

Assuming steady-state, a box of 100 km in length, 160 m in height, and a wind-speed of 1.2 m/s 

(Figure 2.10), and using fuel sales data (Moua, 2020)  to estimate total HDV fuel used, we 

estimate a maximum region-wide enhancement on the order of 0.2 𝜇g/m3 on a typical day in the 

2018-2020 period, compared to an enhancement of 1.3 𝜇g/m3 during the 2009-2011 period 

(Figure S7). Decreases in emissions factors over the past decade are countered by the increase in 

diesel fuel usage (70%) (Moua, 2020) such that there has been only a small change in typical 

regional exposure to primary PM from HDV. (See Fig. 2.11 for diel cycle of modeled region-

wide enhancement.) While an enhancement of 0.2 𝜇g/m3 is small in comparison to average 

ambient PM2.5 (8.3-14.4 𝜇g/m3 for all BAAQMD sites in 2018), it is sizeable in comparison to 

average ambient BC (.4-1 𝜇g/m3 for all BAAQMD sites in 2018).  

 

To gauge near roadway exposure, PM enhancement from HDV was calculated as a function of 

distance from a highway, modeled treating emissions from the highway as a gaussian plume 

flowing perpendicular to a line source. Assuming both highway and point of measurement at 

ground level, the simplified gaussian plume dispersion for a line source yields: 

𝑃𝑀𝑒𝑛ℎ =  
2

√2𝜋𝑢𝜎𝑧
 (3) 

where  is an emissions rate per unit highway length, u is wind speed, and 𝜎𝑧 is a dispersion 

parameter. For a typical daytime HDV flow rate of 500 vehicles per hour (Figure 2.6) and 

windspeed of 1.2 m/s (Figure 2.10), we calculate PM enhancement as a function of perpendicular 

distance downwind of a highway. For unstable atmospheric conditions (𝜎𝑧 =  
0.102𝑥

(1 + 
𝑥

927
)

−1.92), 

enhancements drop to values below 1 𝜇g/m3 in the first 200 m. For stable conditions (𝜎𝑧 =

 
0.022𝑥

(1+ 
𝑥

1170
)

0.7), such as those typical of early morning, enhancements of ~0.8 𝜇g/m3 are predicted up 

to a kilometer away. 

2.5. Conclusions 

We find that HDV EFs in the SF Bay Area have decreased by about a factor of seven over the 

last decade, consistent with trends reported in other analyses in this region and Los Angeles. We 

find spatial variation of HDV EFs remains large indicating a wide range in the application of 

retrofit technologies and possible that vehicles legally exempt from compliance with the current 

standards are a significant portion of those on the road at the sampling sites.  
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Figure 2.1: On-road measurements of emissions factors, from other studies.  HDV (black) 

emissions factors converge on LDV (blue) emissions factors. Some studies do not give error bars. 

Grey patches and blue trendline indicate findings from this study for the two highway sites (RWC 

and SR) available during all three time periods. Patches span the mean and standard deviations of 

emissions factors from these two sites during each time period. 
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Figure 2.2. (Left): BAAQMD sites used in this study. Red dots show near-highway sites at 

which HDV emissions factors were determined. Blue sites were used only for determining 

regional signal. (Right): Aerosol and CO at each BAAQMD site (various colors). The regional 

background (black), is defined as the lowest 10th percentile of all signals within a rolling 4-hour 

window. Figure credit: Esri, HERE, Garmin, USGS, EPA, NPS. 
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Figure 2.3. PM vs. CO at Pleasanton site during the 2018-2020 time period for which 10-12% 

of traffic flow is trucks. Data is colored by NOx concentration. Black point represent the median 

PM value falling within a 0.05 ppm bin of CO. These points are fit linearly to find slope, . 
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Figure 2.4. Top: Fleet emissions factors, derived from all sites, all years, binned by truck 

fraction. Bottom: HDV emissions factor at near highway sites during 2009-2011, 2012-2014, 

2015-2017, and 2018-2020 time period. 
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Study Year of 
Measurements 

Vehicle Type Measurement 
Location 

EFCO (g/kg 
fuel) 

EFPM (g/kg fuel) 

Kirchstetter (1999) 1997 Light Duty Caldecott Tunnel, 
Oakland CA 

 0.11 ±  0.1 
 

Kirchstetter (1999) 1997 Heavy Duty Caldecott Tunnel, 
Oakland CA 

 2.7 ±  0.3 
 

Geller (2005) 2004 Light Duty Caldecott Tunnel, 
Oakland CA 

 0.07 ±  0.02 
 

Geller (2005) 2004 Heavy Duty Caldecott Tunnel, 
Oakland CA 

 1.04  ± 0.02 
 

Ban-Weiss (2008) 2006 Light Duty Caldecott Tunnel, 
Oakland CA 

 0.07 ± 0.2 
 

Ban-Weiss (2008) 2006 Heavy Duty Caldecott Tunnel, 
Oakland CA 

 1.4 ± 0.6 

Park (2011)* 2007  Light Duty Los Angeles, CA 
(Wilmington) 

47 
 

0.15 
 

 2007  Heavy Duty Los Angeles, CA 
(Wilmington) 

36 
 

0.73 
 

Dallman (2012) 2010 Heavy Duty Caldecott Tunnel, 
Oakland CA 

8.0 ± 1.2   

Dallman (2013) 2010 Light Duty Caldecott Tunnel, 
Oakland CA 

14.3 ± 0.7  
 

0.038 ± 0.010  
 

Bishop (2015) 2013 Heavy Duty Cottonwood, CA  0.65 ± 0.11 
 

Bishop (2015) 2013 Heavy Duty Port of Los 
Angeles 

 0.031 ± 0.007 

Park (2016) 2011 Light Duty West Hollywood 15.2 ± 53.8  0.01 ± 0.01  

 2011 Light Duty  Boyle Heights 36.8 ± 85.6  0.11 ± 0.68  

 2011 Light Duty Los Angeles, CA 
(Wilmington) 

46.6 ± 117.9  0.04 ± 0.21  

Haugen (2017) 2015 Heavy Duty Port of Los 
Angeles 

1.6 ± 0.4  0.11±0.01 

 2015 Heavy Duty Cottonwood, CA 3.0 ± 0.2  0.22 ± 0.04  

Haugen (2018) 2017 Heavy Duty Port of Los 
Angeles 

1.7 ± 0.3  0.035 ± 0.01  

 2017 Heavy Duty Cottonwood, CA 2.8 ± 0.4  0.09 ± 0.005  

Li (2018) 2014 Light Duty Pittsburgh, PA  0.035±0.008 

 2014 Heavy Duty Pittsburgh, PA  0.225±0.065 

 

Table 2.1. Summary of emission factors derived by previous studies. 

* Note that in Park (2011), no error in emissions factors were reported.  
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2.6 Supporting Information for Chapter 2 

 

Introduction  

In 2.6.1 and 2.6.2, we provide additional details describing the traffic data used in this work. In 

2.6.3, we define regional signal in more detail than in the main text and explore the sensitivity of 

derived emissions factors to the time window used to derive regional signal. In 2.6.4, we 

compare weekend and weekday truck flow, total flow, PM enhancement, and CO enhancement 

to demonstrate the sensitivity of PM and CO enhancement at each site to traffic signal. In 2.6.5, 

we detail the fitting process used to determine enhancement ratio and show fits for each site and 

time period. In 2.6.6, we show the mean diel cycles of boundary layer height and windspeed used 

to model enhancement of PM from HDV both near roadways and regionally. In 2.6.7, we show 

modeled PM from HDV. In 2.6.8, we show data from Laney College, near-highway site with 

signal interference from a nearby large parking lot and discuss the importance of using isolated 

sites for this analysis. In 2.6.9, we explore the possible impacts of LDV emissions on our 

calculations. 
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2.6.1. Transportation Data 

The Caltrans Performance Measurement System consists of a network of in-road sensors 

(magnetic loop) that detect car and truck flow rate across the state of California. PeMS derives 

truck portion at a given site using vehicle length estimates (Kwon, 2003). Comparisons of this 

method with weigh-in-motion technology finds error in this method to be ~5%. (Kwon, 2003) 

Although network density varies across the state of California, coverage in the San Francisco 

Bay Area is quite dense, with over 1800 measurement sites along major highways (Figure S1). 

Total vehicle flow rate and truck percentage were retrieved from (http://pems.dot.ca.gov ). For 

each near-highway BAAQMD site, traffic data was taken from the two closest (primary) PeMS 

sites (one in either direction). In cases when PeMS data from the closest sites were not available, 

data was (if possible) filled in with median values for hour of week for the given site and year 

(excluding 2020), or retrieved from pairs of second closest (secondary) or third closest (tertiary) 

sites on the same highway. PeMS site codes in Table S1. Example flow rates are shown below in 

Figure S2.1.  

 

 
Figure 2.5. Map of Caltrans PeMS loop detector sites in the SF Bay Area from 

http://pems.dot.ca.gov. Copyright © 2022 State of California. 

 

 

BAAQMD 

Site 

PeMS – 

DIR 1  

(primary) 

PeMS – 

DIR 2 

(primary) 

PeMS – 

DIR 1 

(secondary) 

PeMS – 

DIR 2 

(secondary) 

PeMS – 

DIR 1 

(tertiary) 

PeMS – 

DIR 2 

(tertiary) 

Laney 

College 

(LC) 

408138 400835 400609 400980 401710 400682 

San Rafael 

(SR) 

403317 403316 403314 403315 402412 402139 

http://pems.dot.ca.gov/
http://pems.dot.ca.gov/
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Redwood 

City 

(RWC) 

404572 405673 401875 401874 401873 405679 

Berkeley 

(BM) 

400176 400728 400009 400432   

Pleasanton 

(PL) 

402016 401006 400892 402018 402444 407964 

 

Table 2.2. PeMS stations used in this study to capture truck flow near BAAQMD sites. 
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2.6.2. Example of weekly truck flow and truck percent at sites of interest. 

Hourly flow rates and truck percent are found by combining data from paired traffic sensors in 

each direction of flow. Peak weekday flow rates vary substantially from site to site from ~300 to 

~1000 trucks / hr. 

 

 
Figure 2.6. Hourly truck flow and truck % for PeMS sites located closes to the near-highway 

BAAQMD sites below. 
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2.6.3. Sensitivity of Results to Regional Signal method 

We define regional signal of PM2.5 as including PM2.5 transported to the Bay Area from 

elsewhere, PM2.5 emitted from area point, and line sources far enough away from a site to have 

mixed through the area, and PM2.5 formed in the atmosphere through secondary chemical 

processes. We make the assumption that by taking the 10th percentile of the signal from all sites, 

that we are able to approximate this regional signal, as in Shusterman (2018). By subtracting the 

regional signal from total signal at a given site, we are able to isolate enhancements that result 

from localized emissions. We furthermore make the assumption that within the nearfield of a 

highway during morning rush hour, that both PM2.5 and CO enhancements are dominated by 

highway emissions. PM2.5 emissions not from the highway should not correlate well with 

enhancements in CO and are eliminated from our analysis by taking the median value of PM2.5 

enhancement for each CO bin.  

 

We choose to take a the 10th percentile of a five hour window, based on the size of the region we 

are trying represent, but we recognize that depending on meteorology, different time windows 

may be more appropriate. In figure S3, we explore the sensitivity of emissions factors to the time 

window used to derive regional signal. While we observe some dependence of HDV emissions 

factors on time window, we note that with the exception of San Rafael in 2009-2011, (1) 

temporal trends for a given site are unchanged, and (2) the spatial pattern of differences in 

emissions factors for a given time period are unchanged. 

 

 
Figure 2.7. HDV emissions factors derived at each site during each time period, as in Figure 4 of 

the main text. Colors denote BAAQMD site: yellow denotes San Rafael, purple denotes 

Redwood City, blue denotes Laney College, and red denotes Berkeley. Each symbol represents a 

different time window used to derive regional signal: plus denotes one hour, square denotes three 

hours, circle denotes five hours, and the asterisk denotes seven hours. Error bars denote error 

calculated for 5 hour window. 
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2.6.4. Dependence of PM and CO enhancement on roadway emissions. 

To illustrate the dependence of PM enhancement of HDV traffic and CO enhancement on total 

traffic, we show differences in truck flow, vehicle flow, PM enhancement, and CO enhancement 

at 8AM in Redwood City across all time periods in Figure S4. Although there is a large spread in 

enhancement of both PM and CO, weekend and weekday populations are distinct.  

 
Figure 2.8. Truck and total flow rates, as well as PM2.5 and CO enhancements on weekdays and 

weekends at 8 AM at RWC site during all time periods considered in this study. 
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2.6.5. Determining Emissions Factors 

As described in the main body of the text, we use enhancement in local CO over background as a 

tracer for PM2.5 emitted by HDV on the highway. Although most of the CO comes from LDV, 

when averaging over the course of an hour, PM2.5  emissions from HDV and CO emissions from 

LDV and HDV can be thought of as originating from the same location and can be thought to 

have the same, meteorologically dependent dilution from the roadway. Using our knowledge of 

truck percentage and total flow rate from PeMS and assuming a fleet-wide emissions factor for 

CO from HDV and LDV, we use enhancement ratios of PM2.5 to CO to find HDV emissions 

factors for PM2.5, as described in the main text. Here we detail the process used to find these 

enhancement ratios. 

(1) In figure S5, we show median PM2.5 enhancement for every CO enhancement for each 

time period and truck percentage bin. (We insist on 5 data points to find a median.) These 

median PM2.5 enhancements are fit to a line to find the enhancement ratio.  

(2) We use the 95th percent confidence interval values from the fit and to define uncertainty 

in the slopes. 
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Figure 2.9. Binned PM enhancements and fits to CO enhancement. 

 

  



 

 32 

2.6.6. Meteorology Used in Modeled PM Enhancement 

In the main text, we make estimates of near roadway enhancement, using the continuity equation 

and gaussian plume dispersion. Here, we show diel cycles of the meteorology used in these 

calculations. Meteorological variables were taken from ECMWF ERA5. 

 
Figure 2.10. Mean diel cycle for total boundary layer height (top) and wind speed (bottom) in 

Bay Area during winter and spring. Data averaged across 2009-2018. 
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2.6.7. PM enhancement from HDV  

As described in the text, we model PM enhancement from HDV across the region and as a 

function of distance from the highway. 

 

 
Figure 2.11. Modeled PM enhancement across Bay Area (top) and as a function of distance from 

a highway (bottom) during neutral conditions. 
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2.6.8. Laney College Site 

Laney College is a near-highway BAAQMD site located in a large parking lot. We calculate 

much larger EFPM(HDV) than for other sites (FigS8, left). We believe that this is due, at least in 

part, to emissions from the parking lot. Here, we use EMFAC2017 emissions factors for PM and 

CO for both LDV and HDV, as well as typical 7 am LDV and HDV flow at that site to predict a 

PM:CO ratio due to highway traffic alone as well as the ratio that is expected from highway 

traffic plus 650 cars per hour driving into the parking lot at 5mph (FigS8, right). EMFAC2017 

predicts EFPM(LDV) to be much higher at very low speeds, resulting in a substantially enhanced 

PM:CO ratio, that do not match, but are closer to the values measured at this site. This case 

highlights the need to screen near-highway sites for interfering emissions and the need to assess 

the role of slow moving LDV for their contribution to primary PM emissions. 

 

 
Figure 2.12. (top) Aerial photo of parking lot in which Laney College AQ sensors located. 

Image retrieved from google maps (© Google Maps 2021). (bottom left) EFPM(HDV) calculated by 

applying the procedure described in the text at Laney College. (bottom right) PM:CO ratios at 
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Laney College site that are measured, modeled to include highway emissions only, or modeled to 

include both highway and parking lot emissions. 
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2.6.9. Understanding the impact of LDV on emission factor estimates 

In the procedure described in the main text, we assume that EFPM(LDV)=0 and that all measured 

PM enhancements are due to HDV. This is a reasonable assumption in the early part of the 

period considered in our analysis when EF for HDV were measured to be 2-3 orders of 

magnitude larger than EF for LDV, but it is important to understand the impact of emissions 

from LDV during later time periods as emissions from HDV have dropped dramatically. We try 

to characterize EFPM(LDV) in two different ways.  

1. We try to find EFPM(LDV) , using the intercept of PM:CO ratios for all sites and truck bins 

during the 2018-2020 time period (Figure S9, right). We find this intercept to be within 

error of zero: -0.00087 (-0.005,0.004) g PM / g CO. 

2. We use the idea that EFPM(HDV)  0 to constrain the possible impacts that PM from LDV 

might have on our results. If we do not assume that EFPM(LDV)=0, our equation for 

calculating EFPM(HDV) becomes 

𝐸𝐹𝑃𝑀(𝐻𝐷𝑉) = 𝛾
𝑡∙𝐸𝐹𝐶𝑂,𝑓𝑙𝑒𝑒𝑡∙

𝑓𝑢𝑒𝑙 𝑓𝑙𝑒𝑒𝑡

𝑓𝑢𝑒𝑙 𝐻𝐷𝑉
−𝐸𝐹𝑃𝑀(𝐿𝐷𝑉)(1−𝑡)

𝑡
. (Equation S1) 

Applying Equation S1, and requiring EFPM(HDV)  0, we find that for highway driving, 

EFPM(LDV) should be less than 0.002 g PM / kg fuel in the 2018-2020 time period. Using  

the value of 0.002 for 𝐸𝐹𝑃𝑀(𝐿𝐷𝑉), Equation S1 in our analysis does little to change our 

final results (Figure S9, right). 

 

 
Figure 2.13. (Left) PM:CO ratio calculated from slope from for all HDV % bins and for BM, 

PL, RWC, SR during the 2018-2020 period. (Right) Trend in EFPM(HDV) for RWC and SR (as 

shown in Figure 1). The blue line indicates values calculated setting EFPM(LDV)=0, while the 

orange line indicates values calculated using EFPM(LDV)= 0.002 g PM / kg fuel. 
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Chapter 3 Assessing vehicle fuel efficiency using a dense network of CO2 observations  

Adapted from Fitzmaurice, H.L., Turner, A.J., Kim, J., Chan, K., Delaria, E.R., Newman, C., 

Wooldridge, P. and Cohen, R.C., 2022. Assessing vehicle fuel efficiency using a dense network 

of CO2 observations. Atmospheric Chemistry and Physics, 22(6), pp.3891-3900. 

 

Abstract. Transportation represents the largest sector of anthropogenic CO2 emissions in urban 

areas in the United States. Timely reductions in urban transportation emissions are critical to 

reaching climate goals set by international treaties, national policies, and local governments. 

Transportation emissions also remain one of the largest contributors to both poor air quality 

(AQ) and to inequities in AQ exposure. As municipal and regional governments create policy 

targeted at reducing transportation emissions, the ability to evaluate the efficacy of such emission 

reduction strategies at the spatial and temporal scales of neighborhoods is increasingly important. 

However, the current state of the art in emissions monitoring does not provide the temporal, 

sectoral, or spatial resolution necessary to track changes in emissions and provide feedback on 

the efficacy of such policies at a neighborhood scale. The BErkeley Air Quality and CO2 

Network (BEACO2N) has previously been shown to provide constraints on emissions from the 

vehicle sector in aggregate over a ~500 km2 multi-city spatial domain. Here, we focus on a 5 km, 

high volume, stretch of highway in the SF Bay area. We show that inversion of the BEACO2N 

measurements can be used to understand two factors that affect fuel efficiency: vehicle speed and 

fleet composition. The CO2 emission rate of the average vehicle (g/vkm) are shown to vary by as 

much as 27% at different times of a typical weekday because of changes in these two factors. 

The BEACO2N-derived emissions estimates are consistent to within ~3% of estimates derived 

from publicly available measures of vehicle type, number, and speed, providing direct 

observational support for the accuracy of the Emissions FACtor model (EMFAC) of vehicle fuel 

efficiency.  

3.1. Introduction 

Urban emissions currently account for ~75 % of all anthropogenic CO2 emissions (IPCC, 2014). 

By 2050, roughly two-thirds of the earth’s projected population of 9.3 billion is expected to 

reside within urban areas (IPCC, 2014), meaning that effective greenhouse gas emissions 

reductions strategies must focus on urban emissions reductions.  

 

The transportation sector is responsible for ~23% of global greenhouse gas emissions worldwide 

(IPCC, 2014) and represents the greatest sectoral percentage (~25-66%) of emissions from 

within the boundaries of urban areas in the United States (Daw, 2020; Gurney et al., 2021). 

Although fuel efficiency of new internal combustion engine vehicles has increased by ~30% 

over the last 20 years and electric vehicles (EV) are becoming more prevalent  (e.g. 

https://arb.ca.gov/emfac/emissions-inventory), emissions reductions resulting from fuel 

efficiency gains in newer vehicles are negated by an increasing percentage of heavy-duty 

vehicles (HDV) (Moua, 2020), speed-related reductions in fuel efficiency resulting from 

increases in congestion, and an increase of total vehicle kilometers traveled (vkm). Over the past 

20 years, even in locations with aggressive climate change policy, these factors have resulted in 

CO2 emissions from vehicles that have increased or stayed nearly constant. For example, 

California Air Resources Board estimates that in the state of California, per capita vehicle 

emissions in 2015 were only 2% lower than in 2000 and per capita vehicle kilometers traveled 
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(vkm) increased ~2.5% over that time period (California Air Resources Board, 2018). In addition 

to GHG emissions, the transportation sector is responsible for a significant share of PM2.5 and 

NOx emissions, exacerbating PM2.5 and ozone exposure in low-income communities and 

communities of color already experiencing disproportionate health burdens associated with poor 

air quality (Tessum et al., 2021).   

 

Municipal and regional governments have increasingly shown interest in tracking and reducing 

CO2 emissions from all sectors, including transportation. For example, Boswell et al. (2019) 

found that 64% of Californians live in a city with a climate action plan. For urban and regional 

governments to plan, monitor, and responsively adjust emissions reduction policies, an up-to-

date understanding of the spatial and temporal variations in total emissions and in emissions by 

sector and subsector processes is key.  

 

For transportation, reductions in vkm, congestion mitigation, and rules affecting fleet 

composition (e.g., limiting road access to HDV, incentivizing use of electric vehicles, or buy-

backs of older vehicles) are three levers that can be employed to reduce CO2 and AQ emissions 

from vehicles, thereby affecting the climate footprint, air quality (AQ), and environmental justice 

(EJ) in a region. However, the current state of the art in emissions monitoring and modelling do 

not provide the temporal, sectoral, or spatial resolution necessary to track changes in urban 

emissions and provide feedback on the efficacy of each lever separately. Furthermore, current 

estimates of the magnitude and sectoral apportionment, of urban CO2 emissions can vary widely. 

For example, Gurney et al. (2021) show how a consistent approach to total emissions from cities 

across the U.S. differs from locally constructed inventories in magnitude and sector by sector. 

 

Spatial and temporal process-level maps of emissions are needed to improve the scientific basis 

for emission control strategies. The current state of the art involves finding aggregate emissions 

over large regions (counties, states) using economic data and downscaling those totals using 

proxies such as road length, building type or population density. These models meet the need for 

high spatial resolution (~500 m) and capture emissions from many detailed subsectors (Gately et 

al., 2015; Gurney et al., 2012; McDonald et al., 2014). Because fuel sales are well-characterized, 

these models are also likely to produce accurate region-wide CO2 emissions totals from the 

transportation sector.  

 

Yet even the most detailed of these inventories do not presently describe the temporal variability 

in processes that affect emissions, such as the direct response of home heating or air conditioning 

to ambient temperature or, with one exception (Gately et al., 2017b), the variations in emissions 

per km when comparing free-flowing to stop-and-go traffic. These models often disagree with 

one another spatially (Gately et al., 2017a), have been subject to only limited testing against 

observations of the atmosphere, and are not designed to be consistent with separately constructed 

AQ inventories that have been subject to much more extensive testing against observations. 

 

Mobile monitoring campaigns and high-density measurement networks highlight the importance 

of characterizing and identifying the processes contributing to sharp neighborhood-scale AQ and 

GHG hotspots and point to the importance of traffic emissions on neighborhood scales. For 

example, Apte et al. (2017), showed that concentrations of NOx and Black Carbon (BC) can vary 

by as much as a factor of ~8 on the scale of 10s to 100s of meters. Caubel et al. (2019), showed 
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BC concentrations to be ~2.5 times higher on trucking routes than on neighboring streets. Such 

gradients are not represented in inventories based on downscaled economic data.  

 

Observations of CO2 and other greenhouse gases can play an important role in improving and 

maintaining the accuracy of emission models—especially during a time of rapid proposed 

changes. CO2 measurements paired with Bayesian inverse models have been shown to provide a 

quantitative assessment of emissions (Lauvaux et al., 2016; Lauvaux et al., 2020; Turner, et al., 

2020a). To date, most attempts at quantifying urban CO2 emissions have focused on extracting a 

temporally averaged (often a full year) total of the anthropogenic CO2 across the full extent of 

city. A few studies have attempted to disaggregate emissions by sector or fuel type, or describe 

large shifts in aggregate emissions (Newman et al., 2016; Nathan et al., 2018; Lauvaux et al., 

2020; Turner, et al., 2020a),  but none characterize subsector processes of vehicle emissions. 

 

High spatial density observations offer promise as a means to explore process-level emissions 

details. The BErkeley Air Quality and CO2 Network (BEACO2N) is an observing network 

deployed in the San Francisco Bay Area and other cities with measurement spacing of ~2km 

(Fig. 1, left). In a prior analysis, Turner et al. (2020a) showed that BEACO2N measurements can 

detect variation in CO2 emissions with time of day and day of week in addition to the dramatic 

changes in CO2 emissions due to the COVID-related decrease in driving.  

 

Here, we analyze hourly, spatially-allocated CO2 emissions derived from the inversion of 

BEACO2N observations (Turner et al., 2020a) to explore how well they constrain the CO2 

emissions from a 5km stretch of highway. This stretch chosen because of its location upwind of 

consistently active BEACO2N sites and for completeness of traffic data, and because emission 

rates are highly affected by speed (vehicles use more fuel per km at very low and high speeds) 

and fleet-composition (HDV emit more CO2 per km than light duty vehicles (LDV)). The 

variation of the ratio of total fleet CO2 emission per vehicle km traveled (g CO2 / vkm) is used to 

explore variations in on-road fuel efficiency and the factors responsible for that variation. We 

show that average fuel efficiency of the vehicle fleet on the road varies by as much as 27% over 

the course of a typical weekday. 

3.2 Methods and Data 

3.2.1 The Berkeley Air quality and CO2 Network 

We use hourly CO2 observations from the Berkeley Air quality and CO2 Network (BEACO2N) 

(Shusterman et al., 2016; Kim et al., 2018; Delaria et al., 2021). The BEACO2N network 

includes more than 70 locations in the SF Bay Area, spaced at ~2 km, and measures CO2 with a 

network instrument error of 1.6 ppm or less (Delaria et al., 2021). All available data from 

January-June 2018-2020 are included in this analysis. During this time, more than 50 distinct 

locations had nodes that were active for a month or more (including 19 sites within 10 km of our 

highway stretch of interest). The number of nodes active at any given time ranged from 7-41, 

with a mean of 17. Figure 1 shows sites in operation at some point during analysis period and 

Fig. S1 shows a timeseries of the number of nodes available throughout the study period. 
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3.2.2 The BEACO2N - STILT Inversion System 

To infer CO2 emissions from within the BEACO2N footprint, we use the Stochastic-Time 

Inverted Lagrangian Transport (STILT) model, coupled with a Bayesian inversion as described 

in detail in Turner et al. (2020a). Briefly, we use meteorology from NOAA’s HRRR product at 3 

km resolution to calculate footprints from each hour at each site, weighted by a priori CO2 

emissions. The overall region of influence, the network footprint, as defined by a contour 

representing 40% of the CO2 influence is shown in Fig. S2 (left).  We construct a spatially 

gridded prior emissions inventory using point sources provided by the Bay Area Air Quality 

Management District (2011), home heating emissions as reported by BAAQMD (2011) and 

distributed spatially according to population density, on-road emissions from the High-resolution 

Fuel Inventory for Vehicle Emissions (McDonald et al., 2014) varying by hour of week and 

scaled by year using fuel sales data, and a biogenic inventory derived using Solar Induced 

Fluorescence (SIF) Satellite data (Turner et al., 2020b). 

 

To ensure a focus on highway emissions, we subtract prior estimates associated with non-

highway sources from posterior BEACO2N-STILT fluxes. Non-highway sources are small 

(~12%) in comparison with highway emissions for the pixels corresponding with the highway 

stretch analyzed in this study (Fig. 2, left). We assume the error in prior estimates of these 

sources to be an even smaller fraction of the total. For reference, a diel cycle of sector-specific, 

weekday prior emissions for the pixels analyzed in this study is shown in Fig. S3. 

 

We estimate the BEACO2N-STILT inversion to be precise to at least 30% for a line source. This 

estimate is based on the results of Turner et al. (2016) who used Observation System Simulation 

Experiments to demonstrate that with 7 days of observations at 30 sites a 45 tC/hr line source 

could be constrained to 15 t C/hr. However, this paper also demonstrated that error in the 

posterior decreased as results were averaged over a longer period of time. Here we are using 18 

months, rather than 7 days of observations, we expect and observe better precision than 30%.   

 

3.2.3. PeMS-EMFAC – derived CO2 Emissions Estimates 

Total hourly vehicle flow, truck (HDV) percent, and speed, were retrieved from 

http://pems.dot.ca.gov for January – June 2018-2020.  There are ~1800 traffic counting stations 

hosted by the Caltrans Performance Measurement System (PeMS) in the Bay Area, including 

more than 400 sites (Fig. S2) within the 2020 footprint of the BEACO2N, as described in Turner 

et al. (2020a). These stations count vehicle flow using magnetic loops imbedded in roadways and 

estimate HDV fraction using calculated vehicle speed and assumptions about vehicle length 

(Kwon et al., 2003). For hours during which fewer than 50% of measurements were reported, we 

fill in total speed and light duty vehicle (LDV) flow gaps by using linear fits to nearest neighbor 

sites and gaps in HDV flow using hour-of-day- and weekend/weekday-specific median ratios 

between neighboring sites. We find that using this imputation method, mean absolute errors in 

speed are 5-10 km h-1, in LDV flow are 500 vehicles h-1, and in HDV flow are 50 vehicles / hour. 

(See Fig. S4.) 

 

We calculate both LDV and HDV vkm for each highway segment during each hour, using 

downloaded flow data at each sensor location and segment lengths obtained from the PeMS 

http://pems.dot.ca.gov/
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database. For highway segments within the BEACO2N footprint, vkm are summed to obtain 

regional highway HDV and LDV vkm for every hour. Figure S2 (left) shows the extent of the 

PeMS network in comparison to the BEACO2N-STILT footprint, as well as total HDV vkm and 

LDV vkm.  

 

Vehicle fuel efficiency is dependent on both fleet composition and vehicle speed.  We calculate 

an emissions rate at each location by combining speed and the HDV percentage with fuel 

efficiency estimates provided by the California Air Resources Board’s Emissions FACtor Model 

(EMFAC2017). The EMFAC2017 model provides yearly fuel efficiency estimates for the Bay 

Area for 41 vehicle classes as a function of speed. We group these 41 vehicle types into the 

categories LDV or HDV. (Table S5) PeMS’s vehicle-type classification system is length based, 

assuming that LDV have a median length of 3.7 m and HDV a median length of 18.3 m (Kwon 

et al., 2003). As a result, we group most light duty trucks into the LDV category. To find speed-

dependent emissions rate values for the LDV and HDV groups, we find a vkm-weighted mean of 

emissions rates across all vehicle-classes within a group at a given speed 

 

𝑒𝑟𝑠𝑝𝑒𝑒𝑑,𝑔𝑟𝑜𝑢𝑝 =
∑ 𝑣𝑘𝑚𝑖,𝑠𝑝𝑒𝑒𝑑𝑒𝑟𝑖,𝑠𝑝𝑒𝑒𝑑

𝑛
𝑖=1

∑ 𝑣𝑘𝑚𝑖,𝑠𝑝𝑒𝑒𝑑𝑛
𝑖=1

, (3.1) 

 

where we is a vehicle class. From this, we generate LDV and HDV emissions rates at 8.02 km h-1 

(5 mph) intervals. (See Fig. S6.) EMFAC does not provide data for several LDV vehicle classes 

at and above 96.8 km h-1 (60 mph). To fill in this gap, we estimate emissions rates for the LDV 

group by using emissions rate to speed slopes (g CO2 vkm-1 km h-1 ) for high speeds (88-145 km 

h-1), using data from Davis et al. (2021).  

 

We calculate emissions rates (g CO2 / vkm) for each (< 1km) road segment between PeMS 

sensors at a moment in time 

 

𝑒𝑟(𝑡, 𝑠𝑒𝑔) =
𝑣𝑘𝑚𝐿𝐷𝑉(𝑡,𝑠𝑒𝑔)𝑒𝑟𝐿𝐷𝑉(𝑡,𝑠𝑒𝑔)+𝑣𝑘𝑚𝑡𝐻𝐷𝑉(𝑡,𝑠𝑒𝑔)𝑒𝑟𝑡𝐻𝐷𝑉(𝑡,𝑠𝑒𝑔)

𝑣𝑘𝑚𝐿𝐷𝑉(𝑡,𝑠𝑒𝑔)+𝑣𝑘𝑚𝐻𝐷𝑉(𝑡,𝑠𝑒𝑔)
, (3.2) 

 

where emissions rates for cars and trucks are found via spline fit between reported speed for that 

segment and time with our curves for the emissions rates of each vehicle group. A fit is used 

rather than an individual bins, because of the sharp gradients that exist at low speeds for LDV. 

From the emissions rate for each (~1km) segment, we calculate an emissions rate for a stretch of 

highway including several segments to find total emissions rate (er) along a “stretch” over a 

period of time: 

 

𝑒𝑟(𝑡, 𝑠𝑡𝑟𝑒𝑡𝑐ℎ) =
∑ (𝑣𝑘𝑚𝐿𝐷𝑉(𝑡,𝑠)𝑒𝑟𝐿𝐷𝑉(𝑡,𝑠)+𝑣𝑘𝑚𝐻𝐷𝑉(𝑡,𝑠𝑒𝑔)𝑒𝑟𝐻𝐷𝑉(𝑡,𝑠))𝑎𝑙𝑙 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠

∑ (𝑣𝑘𝑚𝐿𝐷𝑉(𝑡,𝑠)+𝑣𝑘𝑚𝐻𝐷𝑉(𝑡,𝑠))𝑎𝑙𝑙 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠
. (3.3) 

 

Total CO2 emissions rates for the highway stretch analyzed in this work are shown in Fig. 2 

(right, bottom). 
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3.3. Results 

To gain insight into the relative impacts of congestion and fleet composition, we calculate fleet-

wide vehicle emission rates (gCO2/vkm) using two different methods. For both methods, the 

Caltrans Performance Measurement System (PeMS) provides vehicle counts, speed and 

categorizes HDV vs. LDV (http://pems.dot.ca.gov). Using this data and estimates of fuel per km 

from the EMissions FACtor 2017 (EMFAC) Model, we calculate the CO2 emissions per km for 

the average vehicle with hourly time resolution as described above. Second, we use the PeMS 

data in combination with g CO2 per unit area derived from the BEACO2N-STILT inversion 

system. We focus on the ~5 km stretch of Interstate-80 just north of the San Francisco-Oakland 

Bay Bridge (Fig. 2).  Interstate 80 is an East-West Highway whose orientation in this stretch is 

mainly North-South, with eastbound lanes traveling north and westbound lanes traveling south. 

The road has 5 lanes in each direction and is often subject to high congestion (vehicles traveling 

slower than the posted speed).  

 

PeMS-EMFAC-derived emissions rates give us insight into (1) the expected variation in 

emissions rates across a typical day (Fig. 2) and (2) the relative impacts of congestion vs. HDV 

percentage as factors leading to this variation (Fig. S7). For example, while the west-bound 

segment experiences speeds significantly below free-flow during both morning and evening rush 

hours, the east-bound segment experiences significant congestion only during the evening. 

Because of a steep gradient in LDV emission rates between 20 and 50 km h-1 (Fig. S6), the west-

bound congestion in this segment occurs at speeds that are more fuel efficient than free-flow. 

The overall variance in emissions rates over the whole stretch is significantly smaller than in 

either of the directions shown individually. 

 

From PeMS-EMFAC-derived emissions factors, we predict a median diel cycle with emissions 

per km travelled ranging from ~247 to ~314 g CO2 / vkm. For reference, if all vehicles were 

driving at the speed limit of 104.6 km h-1 (65 mph) and the fleet mix was 6% HDV and 94% 

LDV, we calculate an emission rate of 265 g CO2 / vkm. The range of predicted emissions are 

narrower on the weekend (238 to 276 g CO2 / vkm), both because fewer HDV use the road and 

because there is a smaller range in speed.  

 

Figure S7 shows the hourly variation in the relative contributions of LDV speed, HDV 

percentage, and HDV speed to the deviation in g CO2 / vkm from the reference value of 265 g 

CO2 / vkm. The solid line is the mean and the shaded envelope represents the day-to-day 

variance. In the morning and mid-day, HDV percentage and LDV speed have opposite impacts 

on g CO2 / vkm, leading to small variations in g CO2 / vkm over the day, despite substantial 

variations in the separate effects of speed and HDV %. During evening rush hour, low vehicle 

speeds result in higher emission rates, leading to large positive deviations. High day-to-day 

variance in vehicle speed contributes to high day-to-day variance in emission rates. At times near 

midnight, large, positive deviations are observed, mostly as a consequence of high HDV 

percentage, but also because traffic flows at rates higher than 104.6 kph, leading to higher 

emission rates. Night-to-night variance in HDV percentage is low, thus variance in nighttime 

predicted g CO2 / vkm is small. HDV speed has little impact on g CO2 / vkm.  

 

We use CO2 measurements from 50 BEACO2N sites across the Bay Area, combined with the 

BEACO2N-STILT inversion system to assess highway emissions from our stretch of interest. In 
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Fig. 1, we show the location of BEACO2N sites, the stretch of interest, and emissions estimates 

for this stretch. Note that the posterior emissions move substantially from prior emissions 

towards what is estimated from PeMS-EMFAC, particularly during evening rush hour, when the 

prior overestimates emissions by ~20%.  

 

We compare BEACO2N-derived and PeMS-EMFAC-derived emissions rates (CO2 / vkm) and 

find remarkable agreement. The PeMS-EMFAC-derived emissions rates range from 225-300 g 

CO2 / vkm and include effects of both fleet composition and variation in speed. For BEACO2N, 

we use the total CO2 emissions from the inversion at times corresponding to narrow bins of 

PeMS-EMFAC g CO2 / vkm. Figure 3 (left) shows an example of data selected at times with 

with PeMS-EMFAC-derived fuel efficiency in the range 271.4-279 g CO2 / vkm. There is a 

range of emissions at each vkm because of noise in the inversion, variation in speed and 

variation in fleet composition. The slope of a fit to the data in Fig. 3 (left) is an estimate of the 

emissions rate (equation 4), where CO2 emissions is defined as hourly emissions summed over 

BEACO2N pixels corresponding to our highway stretch of interest (Fig. 2) 

 

𝑒𝑟( 𝑔 𝐶𝑂2/𝑣𝑘𝑚) =  
𝐶𝑂2 𝑒𝑚𝑖𝑠𝑠𝑜𝑛𝑠

𝑣𝑘𝑚
.  (Eq. 3.4) 

 

Using 18 months of data for weekdays between 4 am and 10 pm, we compare PeMS-EMFAC-

derived and BEACO2N-derived CO2 / vkm (Fig. 3, right). These hours were chosen, because 

they represent the hours for which we expect traffic emissions to be substantially larger than 

emissions from other sources in our area of interest (See Fig. S3). Fitting to a line forced through 

the origin, emissions rates found via the BEACO2N inversion are within 3% (0.97 +/- 0.01) of 

those predicted using PeMS-EMFAC traffic counts. A more complete description of this fitting 

and error calculation process can be found in Text S8 and a comparison to results from applying 

this method to the prior can be found in S9. Using the definition of limit of detection as three 

times our uncertainty, we calculate that we would be able to detect an 11% change in individual 

points (representing bins of fuel efficiency from a combination of HDV percent and speed) and a 

3% change in the slope. Because 18 months of data was required to reach this level of certainty, 

if we assume the 2.3-3.8% per year decrease in emission rate found by Kim, et al. 2021, we 

should be able to detect a change in overall fuel efficiency with three full years of BEACO2N-

STILT output. 

 

We also consider how emissions rates compare throughout the day (Fig. 4, top). During the 

evening, PeMS-EMFAC-derived and BEACO2N-derived emission rates are in good agreement. 

The BEACO2N g CO2/vkm increases from 256 g CO2 / vkm before rush hour (2 pm) to 324 g 

CO2/ vkm during peak rush hour (5 pm). Likewise, the PeMS-EMFAC-derived CO2/vkm 

increases from 256 CO2 / vkm to 320 CO2 / vkm over the same time period. The BEACO2N 

prior has a slightly larger increase in emission rate over this period (256 g CO2/vkm at 2PM to 

361 g CO2/vkm at 5PM). In contrast, during the morning rush hours, we see less agreement 

between PeMS-EMFAC-derived and BEACO2N-derived emission rate estimates. The 

BEACO2N inversion is similar to the PeMS-EMFAC estimate at 5 am local time (280 g CO2 / 

vkm) and then the BEACO2N estimate increases over the morning rush hour to 330 g CO2 / vkm 

at 8 am.  This behavior is different than either the BEACO2N prior (175 at 5 am and 275 at 8 am) 

or the PeMS-EMFAC calculation which decreases over this period (275 at 5 am and 250 at 8 

am).  
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The discrepancy in the morning between emissions derived from PeMS-EMFAC and BEACO2N 

can potentially be reconciled by congestion. There is a non-linear relationship between vehicle 

speed and the rate of emissions.  As such, congestion involving non-constant speeds can result in 

higher emissions than would be estimated using the average vehicle speed.  This can be seen 

from a simple example.  Consider two cases: 1) a LDV travelling at a constant 50 km h-1 for one 

hour and 2) a LDV traveling at 100 km h-1  for 20 minutes and 25 km h-1  for 40 minutes.  Both 

vehicles travel 50 km in one hour and therefore have the same average speed.  However, the 

emissions rate is 461.5 g CO2/vkm at 25 km h-1, 195 g CO2/vkm at 50 km h-1, and 221 g 

CO2/vkm at 100 km h-1.  Using these emission rates, the vehicle in the first case would emit 9.75 

kg CO2 whereas the vehicle with the variable speed in the second case would emit 15 kg CO2. 

 

Contrasting the speeds (Fig. 4 bottom, right) during these two periods, we see that while both 

show a bi-modal speed distribution, a greater fraction of morning speeds fall into the 40-100 kph 

range, whereas a greater fraction of evening speeds are < 40 km h-1 or > 100 km h-1. We show in 

Fig. S10, emission rate estimates based on hourly averaged speeds between 0-40 km h-1 and 100-

140 km h-1 (more common in evening rush hour) are likely an upper bound on possible emission 

rates corresponding to those hourly averaged speeds, whereas emission rate estimates based on 

hourly averaged speeds between 40-100 km h-1 (more common in morning rush hour) likely 

represent a lower bound of emissions. The predicted range in emission rate resulting from non-

constant speeds, combined with a larger HDV % in the morning (Fig. 4 bottom, right), is large 

enough to explain the mismatch observed during morning rush hour. 

3.4. Discussion 

Strategic reduction of emissions from transportation is important to both reducing total GHG 

emissions and improving AQ. To make informed decisions that reduce GHGs and exposure to 

poor AQ, policy makers need to know (1) how much is being emitted, (2) location and timing of 

emissions, and (3) the relative impact of various sub-sector processes (vkm, fleet composition, 

congestion).  

 

To effectively capture emissions from sub-sector processes, models are also reliant on emissions 

factor models, such as the EMFAC2017 emissions model used in this paper. While our 

BEACO2N-STILT based estimates largely agree with the EMFAC2017 emissions model for 

CO2, tracking on-road changes in emission factors will be especially important as the impacts of 

congestion and fleet composition evolve rapidly, making timely updates essential to creating 

spatially accurate inventories. For example, the EMFAC model predicts an 18% decrease in 

overall CO2 emission rates by 2030, resulting from the improved fuel efficiency of combustion 

engine vehicles and a transition to hybrid and EV (~6.8% of LDV vkm and ~6% of HDV vkm 

are expected to be traveled by EV by 2030). While the increased share of hybrid and EV should 

work to decrease the impact of congestion, a projected increase in total congestion and 

congested-vkm share by HDV (Texas A&M Transportation Institute, 2019) is likely to work 

against that trend, making the overall result difficult to predict.  

 

To our knowledge, this paper represents the first demonstration that a high-density atmospheric 

observing network can both diagnose and quantify relative contributions of sub-sector processes 

at the neighborhood scale.  We demonstrate that the BEACO2N network (~2 km spacing) of low-
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cost CO2 sensors, can be used to quantify emission rates at a specific location (~5 km stretch) 

and by time of day. We show that on the highway stretch, activity-based emissions estimates that 

account for speed and HDV % match the inference from atmospheric measurements to within 

3%. Finally, we demonstrate that the BEACO2N-STILT system detects daily changes in fuel 

efficiency that range from 200-300 g CO2 / vkm and this system would be capable of detecting 

fleet-wide changes in fuel efficiency in ~3 years. 

3.5 Outlook 

In this work, we have demonstrated that the BEACO2N-STILT system was able to infer emission 

rates from vehicles along a specific stretch of highway. To understand the extent to which this 

method can be applied to other contexts, future work should investigate the extent to which 

various elements of the BEACO2N-STILT system, including measurement density, error in 

meteorology used to calculate STILT trajectories, and the quality of the prior, impact the ability 

of similar systems to estimate emissions.  

 

For example, it is possible that the mismatch we observe during the morning rush hour may be 

due to a larger relative meteorological model error during the morning as compared to the 

afternoon and early evening in which the boundary layer is relatively well mixed. Because a 

highly mixed boundary layer is important for minimizing discrepancies between particle 

trajectories in the STILT model and real transport (Lin et al., 2003), inversions typically use only 

measurements taken during the afternoon, (Lauvaux et al., 2016; Nathan et al., 2019; Lauvaux et 

al., 2020) when the boundary layer is relatively well mixed. However, as discussed by Martin et 

al. (2019), the impacts of meteorological mismatch during the morning may be offset by stronger 

signal, and future work should explore the extent to which averaging results over long time 

periods or strategic filtering of meteorological mismatches can combat emissions error. 

 

Beyond further exploration of the elements influencing the sensitivity and precision of the 

BEACO2N-STILT system, because each BEACO2N node measures CO, NOx, and PM2.5 in 

addition to CO2 (Kim et al., 2018), the method presented in this paper has the potential to shed 

light subsector processes impacting emission factors of these co-emitted species. This is salient 

because plume-based emission factor measurements of co-emitted pollutants show various 

emissions factor models systematically underestimate emissions (Bishop, 2021), fail to capture 

spatial heterogeneity in these factors due to fleet composition (age and compliance with control 

technologies) for PM (Haugen et al., 2018; Park, et al., 2016) and Black Carbon (Preble et al., 

2018), or fail to capture the impact of temperature on emissions factors. 

 

Applying these methods across a broader spatial area and to other species (PM2.5, NOx, CO) 

should yield information of interest to both scientists and policy makers by:  

1. Revealing spatial and temporal trends in emission rates and emission factors across an 

urban area and quantifying the contributions of congestion, fleet composition, or other 

factors to spatial variations. 

2. Identifying and diagnosing the causes of traffic-related AQ hotspots that contribute to 

exposure inequities. 

3. Tracking trends in the above over periods of years to decades. 
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Figure 3.1. Left: Map of the BEACO2N Network shows all sites (blue dots) for which there are 

more than 4 weeks of data during the period analyzed (Jan-June 2018-2020). Red stars indicate 

location of PeMS monitors used in this study. Right (top): CO2 values shown for a ‘typical week’ 

during time period observed. Dark line represents the median value observed across all sites and 

times. Shaded envelope represents 1 sigma variance across the network and over the 2 year 

period. Right (bottom): CO2 emissions on all highway pixels in the domain as derived from the 

inversion of BEACO2N observations (blue), BEACO2N prior (black), and PeMS-EMFAC-based 

estimate (red). Shaded envelope shows variance in emissions during the 18-month analysis 

window. 
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Figure 3.2. Left: ~5km stretch over which we analyze g CO2/ vkm. Points show the location of 

PeMS stations. Squares show pixels associated with BEACO2N STILT output which we use for 

comparison for 5km stretch. Right (top): Hourly average speed shown for two opposite (West in 

red, East in blue) PeMS measurement stations for a typical week. Right (middle): PeMS-

EMFAC-derived emissions rates calculated for two opposite (West in red, East in blue) PeMS 

measurement stations for a typical week. Right (bottom): Aggregate PeMS-EMFAC-derived 

estimated emissions rates from the two directions of traffic for a typical week for this highway 

stretch. 
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Figure 3.3. Left: BEACO2N-derived emissions vs. vkm for times corresponding to modeled 

emission rates of 271.4-279 g CO2/ vkm. Red points represent binned medians used in fitting. 

Right: BEACO2N-derived vs. PeMS-EMFAC derived emissions rates with uncertainty estimate. 

Black line shows fit weighted by variance: y = 0.97(.01)x . Grey envelope is 5% deviation from 

fit. Red line represents 1:1 line. 

  



 

 49 

 

 
Figure 3.4. Top: Emissions rates by time of day on weekdays for PeMS-derived (red), 

BEACO2N-prior (blue), and BEACO2N posterior (green). Bottom: Probability density functions 

of truck fraction (left) and speed (right) from weekday morning (5-9 am) and evening (4-8 pm) 

rush hour period on the segment of I-80 analyzed in the Results section. Y-axis represents the 

relative probability of HDV fraction (left) or averaged hourly speed (right). Speeds are from 

individual PeMS sensors, while truck fraction is aggregated over the whole stretch under 

consideration (both directions). 
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3.7. Supplemental Information to Chapter 3 

Introduction  

In 3.7.1, we describe the time series of the number of BEACO2N nodes reporting CO2 during the 

from January through June for the years 2018-2020. In 3.7.2, we show the locations in the PeMS 

measurement network in the region of the SF Bay Area shown on the map, as well as an estimate 

of LDV and HDV VMT for a typical week in this domain. In 3.7.3, we describe the hourly 

BEACO2N-STILT prior for the typical weekday for CO2 emissions in the 1km pixels that 

encompass the highway stretch that is the focus of our analysis. The figure also shows vkm 

traveled for each hour on this stretch of highway. In 3.7.4, error analysis for PeMS values for 

speed, LDV and HDV volume is described. In 3.7.5, we list EMFAC2017 vehicle classes and 

indicate whether we have classified them as LDV or HDV based on estimated vehicle length. In 

3.7.6, we show both LDV and HDV emissions rates as a function of speed. We also compare a 

piece-wise linear to a spline fit of these two curves. In 3.7.7, we show the diel cycle for 

contribution to total emissions by congestion and vehicle type as estimated using PeMS-

EMFAC. In 3.7.8, we describe the calculation of uncertainty in emissions rates derived using the 

BEACO2N-STILT system. In 3.7.9, we derive emission rates from the BEACO2N-STILT prior 

and discuss improvements of the posterior over the prior. In 3.7.10, we explore how non-constant 

speed may impact emissions rates for a given hourly average speed.  
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3.7.1. Site Availability 

Throughout the period examined in this study, the number of BEACO2N sensors reporting data 

varied from due to power or instrument failure. 

 

 
Figure 3.5. Number of BEACO2N sites reporting CO2 data used in BEACO2N-STILT inversion 

for January-June in 2018 (top) 2019 (middle) and 2020 (bottom). 

  



 

 52 

3.7.2 – PeMS Emissions Estimates  

The Caltrans Performance Measurement System Network consists of thousands of magnetic loop 

monitors imbedded in highways across the state of California (http://pems.dot.ca.gov). Each 

station consists of loop sensors in each lane that report hourly values for total vehicle flow, HDV 

percentage, and average speed. Using station locations, vehicle flow, and HDV percentage, 

hourly vkm can be calculated as outlined in the main text.  

 
Figure 3.6. Left: Locations of Caltrans PeMS monitoring stations (black and red). The solid 

blue line marks the 40% contour of the BEACO2N cumulative influence function during January 

– June 2020. Right: LDV vkm, HDV vkm estimated based on PeMS data. 
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3.7.3. Daily Cycles of Traffic and Prior Emissions Estimates 

 

We focus our analysis on the hours 4am – 10pm. During this period, emissions from traffic are 

much larger than all other sources in the pixels used in this analysis. From 11pm – 3am, total 

vkm and therefore emissions from traffic are low.   

 
Figure 3.7. Top: Diel variation of total vkm (from PEMS observations) for the stretch of 

roadway indicated in Figure 2 for a typical weekday. Bottom: Prior estimates of emissions from 

biogenic sources (orange), vehicle emissions (blue), point sources and area sources (yellow). 
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3.7.4. Imputation of Traffic Data 

We apply linear fits (for speed and LDV) and hourly ratios (for HDV) to nearest neighbors, 

second nearest neighbors, and third nearest neighbors to create modeled values for all times for 

which we have observations. Using these modeled values we estimate mean error and spread for 

all PeMS sites over the time period studied, finding that speed accurate to about 5km hr-1, 

LDV/hr to ~300 vehicles and HDV to ~55 vehicles for the east and west directions of flow on I-

80.  Precision is much higher than these values as shown on the right. 

 
Figure 3.8. Mean average error (left) and distribution of error (right) for modeled speed (top), 

LDV flow (middle), and HDV flow (bottom). 
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3.7.5. EMFAC2017 Vehicle Classes 

While EMFAC2017 provided speed-dependent emission rate estimates for 41 vehicle classes, 

PeMS characterizes vehicles in two categories based on length. In order to use EMFAC2017 

emission rates in combination with PeMS traffic counts to estimate total emissions, we classify 

EMFAC2017 categories as LDV or HDV based on length. 

 
EMFAC Vehicle 

Class 

Grouping for this work 

All Other Buses 0 

LDA 1 

LDT1 1 

LDT2 1 

LHD1 1 

LHD2 1 

MCY 1 

MDV 1 

MH 0 

Motor Coach 0 

OBUS 0 

PTO 0 

SBUS 0 

T6 Ag 0 

T6 CAIRP heavy 0 

T6 CAIRP small 1 

T6 OOS heavy 0 

T6 OOS small 1 

T6 Public 0 

T6 instate 

construction heavy 

0 

T6 instate 

construction small 

1 

T6 instate heavy 0 

T6 instate small 1 

T6 utility 0 

T6TS 0 

T7 Ag 0 

T7 CAIRP 0 

T7 CAIRP 

construction 

0 

T7 NNOOS 0 

T7 NOOS 0 

T7 POAK 0 
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T7 Public 0 

T7 SWCV 0 

T7 Single 0 

T7 other port 0 

T7 single 

construction 

0 

T7 tractor 0 

T7 tractor 

construction 

0 

T7 utility 0 

T7IS 0 

UBUS 0 

 

Table 3.1. Breakdown of EMFAC vehicle classes we characterize as LDV or HDV based on 

length. “1” denotes LDV and “0” denotes HDV. 
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3.7.6. EMFAC2017 Emissions Rates 

 

As described in the main text, emission rates for LDV and HDV on each road segment between 

individual PeMS monitoring stations are computed hourly as a function hourly average speed. 

Here we show emission rates as a function of speed.  

 

We also compare piece-wise linear fits to the spline fits used in this study. With the exception of 

emissions rates for LDV at speeds lower than 20 km h-1, there is little difference between these 

fits. High uncertainty in emission rates at low hourly average speeds because of travel at non-

constant speeds is likely to outweigh any difference between these fits (see Fig S7). 

 
Figure 3.9. We show emission rates (g CO2 / km) of different vehicle classes as a function of 

speed. Top and middle: Red lines indicate emission rates for individual vehicle classes as 

reported by EMFAC2017. Black lines indicate extrapolation using Oakridge National Lab data. 

Heavy blue lines indicate emission rates for LDV and HDV groups calculated by taking the 

vkm-weighted mean of emission rates for all vehicles within a group at a particular speed. 

Bottom: We compare piecewise-linear fits of this data to spline fits. Black lines indicate spline 

fit. Blue lines indicate piecewise-linear fits.  
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3.7.7. Contribution to Emissions by Speed and Fleet Composition 

Figure S5 shows the hourly variation in the relative contributions of LDV speed, HDV 

percentage, and HDV speed to the deviation in CO2 / vkm from the reference value of 265 g 

CO2 / vkm. The solid line is the mean, and the shaded envelope represents the day-to-day 

variance. In the morning and mid-day, HDV percentage and LDV speed have opposite impacts 

on CO2 / vkm, leading to smaller variations in CO2  /vkm than the variations in the separate 

effects of speed and HDV %. During evening rush hour, low vehicle speeds result in higher 

emission rates, leading to large positive deviations. High day-to-day variance in vehicle speed 

contributes to high day-to-day variance in emission rates, shown as the envelope surrounding the 

solid line. At times near midnight, large, positive deviations are observed, mostly as a 

consequence of high HDV percentage, but also because traffic flows at rates higher than 104.6 

kph, leading to higher emission rates. Night-to-night variance in HDV percentage is low, thus 

variance in nighttime predicted CO2 / vkm is small. HDV speed has little impact on CO2 / vkm. 

 
Figure 3.10. Top: PeMS-EMFAC-derived emissions rate deviations from baseline of 6% of all 

vehicles HDV, and vehicle speed constant at 105 kph resulting from car speed, truck percentage, 

and truck speed for the average day on the week shown in Figure 3.3. Bottom: Total deviation in 

emissions rate by hour of day. % Deviation (right axis) shows percent deviation for all curves 

from emissions rate of 6% HDV at 105 kph. For all plots, solid line represents median values and 

shaded area represents variance. 
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3.7.8. Determination of Uncertainty in Emissions Rate Estimates 

For the set of BEACO2N emissions corresponding in time to the data in each 7.8 g CO2 / vkm 

bin of PeMS-derived emissions rates, we find a BEACO2N-derived emissions rate estimate. To 

do this, we take all BEACO2N traffic emissions occurring simultaneously with the PeMS-

derived emissions rates and further bin these points based on vkm, as shown in Figure 3. For 

each vkm bin, we then find the median emissions value and the variance of emissions values, 2. 

We assume the error in our estimate of the median emissions for each vkm bin to be  

𝛿𝑒𝑚𝑠 =


√𝑛
 .  

We then fit median emissions values to the line 

𝑒𝑚𝑠 =  
𝑔𝐶𝑂2

𝑣𝑘𝑚
𝑣𝑘𝑚,  

to find 
𝒈𝑪𝑶𝟐

𝒗𝒌𝒎
, using 𝜹𝒆𝒎𝒔 as weights in the MATLAB fitlm function, and take the reported SE in 

slope to be the error in our calculated 
𝒈𝑪𝑶𝟐

𝒗𝒌𝒎
. 
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3.7.9. Posterior Emission Rates 

The prior inventory was constructed to reflect vehicle type (LDV v. HDV) dependence on 

emissions, but not speed-dependence in emissions. In order to illustrate improvement of the 

posterior (Figure 3) over the prior, we repeat the analysis described in the main text to show 

emission rates calculated for the prior. Calculated emissions rates for the prior are nearly 

constant over a wide range (237.5 – 262.5 g CO2 / vkm) of PeMS-EMFAC emission rates. 

Where they do vary, they are substantially different than those estimated in the posterior. 

 
Figure 3.11. Emission rate estimates calculated for the BEACO2N-STILT prior in the same 

manner in which they were calculated for the posterior vs. PeMS-EMFAC emissions estimates 

with uncertainty estimate. Black line shows fit of to posterior (Fig 3) weighted by variance: y = 

0.97(.01)x . Grey envelope is 5% deviation from fit. Red line represents 1:1 line. 
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3.7.10. Impacts of Non-Constant Vehicle Speeds 

  

While PeMS reports hourly averaged speeds for each sensing station, non-constant speeds due to 

congestion can result in range of possible emissions rates that can occur for a particular hourly 

averaged speed. 

 
Figure 3.12. The dark line indicates the emissions rate corresponding to driving the speed 

indicated on the x axis at a constant velocity. The shaded region represents er distribution 

resulting from vehicle travel at non-constant speeds. For each speed, we calculate all possible 

emissions rates (g CO2 / vkm) that could be generated assuming that the vehicle fleet (here, 8% 

HDV as is common during AM rush hour) drives at 2 different speeds between 8 kph and 130 

kph for the times required to result in the average speed represented on the x axis. The spread for 

each speed represents the 16th-84th percentiles of possible emissions rates. 
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Chapter 4 – Evaluating the Impact of Background Concentration Error, Transport Error, 

and Node Count on BEACO2N-STILT Emissions Estimates 

4. 0 Abstract  

High-density, urban sensor networks, paired with Bayesian inverse models have been used to 

quantify sector-specific, temporally-specific, and spatially-specific CO2 emissions and have, in 

some cases (e.g., Kim et al., 2022), been shown to have the precision necessary to evaluate 

whether annual emissions reductions are occurring as expected based on policy. A better 

understanding of the accuracy and precision of such emissions estimates, as well as the impact of 

real-world network conditions (background concentration error, meteorology, sensor down time) 

on these estimates is needed to support more general use of the tool. In this chapter, we quantify 

the impacts of background error, meteorology, measurement density, and measurement duration 

on the ability of the BEACO2N-STILT observation/inversion system as implemented by Turner 

et al. (2020) to accurately constrain CO2 emissions from the transportation sector in the SF Bay 

area. We find large seasonal biases in the inversion system. These biases can be largely 

attributed to biases in CO2 background (~80%) and biases in the modeled wind speed (~10-

15%). We also use BEACO2N-STILT footprints to explore the number of nodes and node 

density required for convergence of highway emissions estimates in this inversion system, 

estimating that one node per ~16.3 km2 may be sufficient. Finally, we make recommendations 

for eliminating seasonal biases and for future evaluation of the system.  

4.1. Introduction 

Globally, cities are responsible for ~70% of GHG emissions. Because the urban share of the 

world population is expected to increase by 2.5-3 billion, making up ~67% of the world’s 

population by 2050 (IPCC, 2014), global emissions reduction strategies must necessarily focus 

on reductions in urban emissions. Locally enacted policies are predicted to be able to drive a 

large (~30%) decrease in urban emissions and cities, and regional governments throughout the 

world are increasingly making commitments to reducing total greenhouse gas (GHG) emissions 

within their boundaries (e.g., Boswell, 2019). To plan GHG emission reduction strategies and 

then evaluate their effectiveness, governments need information regarding the sector and 

subsector breakdown, spatial origin, and temporal variability in emissions, as well as strategies 

for tracking emissions changes over the policy-relevant time scales of 1-3yrs. A large repertoire 

of activity-based, high-resolution emissions inventories have been created with fine resolution 

(~1km) at the urban scale (Gurney et al., 2012; Oda et al., 2011; McDonald et al., 2014; Gately 

et al., 2017a) However, there is a substantial lag in updates in the databases describing activities, 

and these emissions inventories often disagree with one another spatially (Gately et al., 2017b), 

in sectoral distribution, or in total estimates of emissions (Gurney et al., 2021). Because of these 

discrepancies and additional discrepancies with locally created inventories, it is desirable to use 

atmospheric observations of CO2 to provide independent evaluation of emissions and emission 

trends. 

 

Several recent studies have combined CO2 measurements with atmospheric transport models and 

a Bayesian inverse system to estimate urban greenhouse gas emissions (Lauvaux et al., 2016; 

Turner et al., 2020, Hedelius, et al., 2018; Lian et al., 2022; Kort et al., 2012; Wu et al., 2016, 

Bréon et al., 2015; Staufer et al., 2016; Lauvaux, 2012). Applications to CO (Nathan et al., 
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2018), and particulate matter (Nathan et al., 2021) have also been described. Using data from 

tower networks, Staufer et al., (2016) was able to reduce uncertainty in urban CO2 measurements 

across the Paris metropolitan area by 9-50% and Lauvaux et al., 2020 was able to match city-

wide CO2 emissions to within 3% of a highly detailed emissions inventory. The latter was ~35% 

different from the inventory estimated by the local government. Using data from a surface 

network and tower network respectively, Turner et al. (2020) and Lian et al., (2022) were both 

able to observe a short term (~6 week) shifts in traffic emissions resulting from COVID-19 

shelter-in-place orders. Furthermore, Fitzmaurice et al. (2022, Chapter 3) used a surface network 

to observe changes in highway fuel efficiency as a function of speed and fleet composition. 

 

The above projects represent the promise of the network-inversion approach. However, the 

choices made by the different research groups in measurement density, sensor height, and 

instrument cost, imply wide variations in the labor and capital costs for expanding these initial 

studies to most cities on the planet. Furthermore, all network-inversion systems are subject to 

noise and bias because of representativeness error, background error, and error in modeled 

meteorology. Because different network-inversion setups may respond differently to these 

challenges, it useful to document system characteristics such as number of days required for 

emissions estimates to converge, the impact of meteorological and background concentration 

error on emissions estimates, and the node density required for convergent emissions estimates 

for each network-inversion system. For example, the approach used in this dissertation relies on 

a high spatial density (~2 km spacing), low capital cost, distributed network with an internal 

calibration approach that limits the need for reference grade standards and instruments. The 

design of the network followed from some hypotheses based on observations that urban 

emissions mix into the background on length scales of order ~1km, thus necessitating 2km 

spacing between nodes if every source is to be directly observed at a node in the network. 

However, because the inversion system allows for advection and diffusion to be represented, the 

reach of each node is extended, making it plausible that a lower network spacing is truly 

required.  

 

Turner et al. (2016) explored the time required for emissions estimates to converge for a network 

similar to that described in this dissertation in a simulation showing that for network density, 

instrument precision and capital costs could be viewed as trade-offs. They estimated the 

precision of a networks of varying numbers of instruments and with varying, Gaussian 

distributions of model-measurement mismatch error. Estimates of the accuracy of inversions for 

a point, line and area source were described and the time for convergence to 1.3% was estimated. 

Turner et al., 2016 estimated that ~2 days would be enough time for convergence of emissions 

estimates for dense, near-surface measurements. This analysis was a model examination of the 

limits of performance but did not involve a suite of observations and a model of weather that 

might not perfectly match. The purpose of the paper was comparison of two approaches to an 

observing system. Analyses of convergence of real implementations of observation and modeling 

systems are expected to be different. Lauvaux et al., 2020 found for a tower network, 5 days 

were inadequate for emissions estimate convergence, 1 month to be substantially better, and 1 

year to be as good as 3 years, in correcting bias in prior emissions. In this chapter we begin a 

similar exploration of the BEACO2N-STILT inversion system. 
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In addition to noise, systematic errors in background concentrations contribute to biases in 

emissions estimates of network-inversion systems. There is no standard method for the 

determination of background concentrations, and inversion studies have used a variety of 

methods including a running lowest percentile, upwind measurements, or modeled concentration 

data. One study explicitly included the background as a parameter to be derived from the inverse 

(Henne et al., 2016). Several studies have documented large background concentration 

differences resulting from the use of different methods (Karion et al., 2021; Balashov et al., 

2020). Henne et al., 2016 and Lauvaux et al., 2016 both tested the sensitivity of emissions to 

different strategies for finding background, finding up to 30% and 9% variation in emissions 

output respectively. 

 

Transport errors are a large contributor to bias in any atmospheric inversion system. In the 

inversion process, transport models serve as a link between measurements (3-d concentrations at 

locations at points in time) and emissions (a 2D grid of emissions estimates for every moment in 

time); noise and bias in transport models lead to noise and bias in emissions estimates. For 

example, wind speeds biased high will result in lower concentrations than correct winds and thus 

emissions estimates with such biased winds will be higher to compensate. Previous work has 

documented transport errors in models over large regions (Lin 2005; Gerbig 2008; Martin et al., 

2019) and across smaller, urban areas (Sarmiento et al., 2017; Lian et al., 2020). While observed 

variance and bias in the meteorological parameters are highly dependent on the specific location, 

transport model, and parameterizations used, higher relative error in windspeed and boundary 

layer height is typically seen during the nighttime and early morning hours. As a consequence, 

many inverse modeling studies attempt to avoid transport-induced bias by using data only from 

afternoon hours, during which the boundary layer is well-mixed and relative error in windspeed 

and boundary layer height are lower. Other approaches go further and use only data from mid-

afternoon that meet certain wind-speed and direction criteria, resulting in the filtering of more 

than 90% of afternoon data points (Staufer et al., 2016). 

 

In addition to documenting error in transport models, several studies have examined the 

relationship between transport error and error in emissions estimates, either through OSSEs 

(Deng et al., 2017) or the by studying the relationship between transport error and concentration 

error in forward models (Martin et al., 2019; Lian et al., 2020). For example, Deng et al. (2017) 

evaluates the impact of transport error on posterior emissions and finds reduced transport error 

substantially enhance the performance of the posterior at correcting bias in the prior. While both 

Lian et al. (2020) and Martin et al., (2019) attribute bias in modeled concentrations to bias in 

meteorological factors, they interpret the implications of this bias differently. Lian et al. (2020) 

suggests that higher nighttime bias in modeled concentration supports the practice of using only 

afternoon emissions, while Martin et al. (2019) report the existence of significant bias (both in 

modeled concentrations and meteorological variables) during the afternoon as well, suggesting 

that data used for estimating emissions via inversions should be filtered by meteorological error, 

rather than time of day. 

  

Finally, because of the cost of instruments and the labor involved in maintaining urban networks, 

it is important to understand the impact of measurement density, which impacts the footprint of 

urban networks, on emissions estimates. Studies exploring this relationship using OSSEs suggest 

that a higher instrument density can substantially decrease uncertainty in emissions estimates 
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(Wu et al., 2016; Turner et al., 2016; Deng et al., 2017). However, because of costs, network 

plans must consider the trade-offs between sensor density and instrument precision. High-

precision CO2 (< .1 ppm) instruments are costly (~50K USD per instrument), making networks 

with dozens of sensors infeasible. Low-cost CO2 instruments (~2K USD per instrument) can be 

deployed at higher density but are precise to ~1 ppm (e.g. Delaria et al. 2021).  

 

Findings regarding the relative importance of instrument precision and sensor density seem to 

vary by network type (tower v. near surface). Turner et al. (2016) found that for near-surface, 

dense networks (25 sites at ~2km spacing) a model-measurement mismatch error corresponding 

to a Gaussian precision smaller than 1 ppm does not substantively reduce errors in emissions 

estimates. In contrast, Deng et al (2017) found that for a tower network, error in emissions 

estimates was greatly increased by a 1 ppm instrument precision. Turner et al. (2016) also found 

that optimal site density varied by emissions type. For an area source (~150 km2) no significant 

information was gained by adding more than 10 measurement sites to the domain, estimation of a 

32 km long line source was improved by adding up to 20 sites and estimation of a point source 

continued to improve as more than 35 sites were added. Because the labor costs associated with 

maintaining and calibrating sensor networks are substantial, finding the optimal site density for 

estimating emissions is critical for planning the scaling of such systems to multiple cities. 

Importantly, all three of the studies discussed were OSSEs. To our knowledge, there has been no 

real-world test of the relationship between node density and a system’s ability to infer emissions. 

 

In this chapter, we evaluate the inversion-network system characteristics discussed above: the 

impacts of errors in background concentration and meteorology on estimated emissions, the time 

required for emissions estimates to converge, and the number of nodes required to estimate 

highway emissions. Specifically, we use CO2 measurements from the BErkeley CO2 and Air 

quality Network (BEACO2N), paired with the Stochastic Time Inverted Lagrangian Transport 

model (STILT) and a Bayesian inversion. 

 

4.2 Data and Methods 

4.2.1 The BErkeley Air quality and CO2 Network  

The BErkeley Air quality and CO2 Network (BEACO2N) (Shusterman et al., 2016) consists of 

~65 sites, spaced at ~2km, across the San Francisco Bay. (See Fig. 1, left.)  Each site measures 

CO2, as well as CO, NO, NO2, O3, PM2.5, temperature, and relative humidity (Kim et al., 2018). 

 

In this study, we make use of BEACO2N CO2 data from January 2018 to March 2020 (before the 

start of the COVID-19, related shelter in place in the SF Bay Area), during which time the 

number of BEACO2N nodes reporting data ranged from 1 to 41. The data used in this study was 

calibrated using the temperature-correction method described in Delaria et al. (2021) and 

precision of the CO2 measured by individual nodes in the network is estimated to be 1.4 ppm. 

4.2.2 BEACO2N – STILT Inversion System  

Data from the BEACO2N network has been used to infer emissions changes as a result of the 

COVID-19 shelter in place (Turner et al., 2020), year over year changes in fuel efficiency of the 
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vehicle fleet (Kim et al., 2022), and changes in fuel efficiency resulting from congestion and 

fleet composition (Fitzmaurice et al., 2022). In two of these studies (Turner et al., 2020; 

Fitzmaurice et al., 2022), emissions estimates were derived using the Stochastic Time Inverted 

Lagrangian Transport (STILT) model, paired with a Bayesian inversion. The STILT model 

follows particles transported backwards in time from BEACO2N measurements to generate a 

footprint (
𝑝𝑝𝑚

𝜇𝑚𝑜𝑙 𝑚−2𝑠−1), expressing the area to which BEACO2N measurements are sensitive. The 

inversion then uses an error-weighted comparison of prior emissions estimates (Turner et al., 

2020a; Turner et al., 2016; McDonald et al., 2014), transformed into observation space using the 

STILT model, with BEACO2N measurements to calculate posterior emissions for the domain on 

the same grid as emissions estimates. 

  

The inversion step of this process is carried out via the equation 

 

𝑥̂ = 𝑥𝑝𝑟𝑖𝑜𝑟 + (𝐻𝐵)𝑇(𝐻𝐵𝐻𝑇 + 𝑅)−1(𝑦𝑜𝑏𝑠 − 𝐻𝑥𝑝𝑟𝑖𝑜𝑟), (Equation 4.1) 

 

in which 𝑥𝑝𝑟𝑖𝑜𝑟 (m x 1) is the prior emissions estimate, 𝑥̂ (m x 1) is the posterior emissions 

estimate, 𝑦𝑜𝑏𝑠 (n x 1) are the BEACO2N observations of CO2 enhancement over background 

values, 𝑅(n x n) is the model-data mismatch error covariance matrix, B (m x m) is the prior error 

covariance matrix, and H (n x m) is the measurement footprint. Note that m is 96 times the 

number of spatial elements in the prior domain, as the covariance matrices contain temporal as 

well as spatial elements and n is the number of observations made at a specific time point. More 

details surrounding the construction of these matrices can be found in Turner et al. (2020a). 

 

CO2 enhancement is found by subtracting background values from calibrated BEACO2N 

measurements. For each measurement (location, hour) the background value is estimated using 

either the NOAA Pacific curtain (for most trajectories) or AmeriFlux measurements in the 

Sacramento Delta, if the back-trajectories pass within 25 km of an AmeriFlux site. 

 

In this work, we make use of H, the footprint of BEACO2N measurements as a spatial measure 

of sensitivity of the inversion system, and to explore the relationship between convergence and 

node density. While inversion footprints for a given measurement are dependent on meteorology, 

areas closer to measurements tend to have higher footprints (Fig. 4.1, right).  We refer to the 

non-normalized sum of all individual measurement footprints at a given hour as the cumulative 

influence (CI). CI (m/96x1) is given in units of 
𝑝𝑝𝑚

𝜇𝑚𝑜𝑙 𝑚−2𝑠−1, thus translating prior emissions into 

concentration. When comparing CI to emissions estimate convergence, we sum CI over the 

pixels for which we are tracking emissions. 

 

Because we want to understand the impact of meteorology and node density on emissions 

estimate convergence, we choose to focus on a set of emissions unlikely to change abruptly or 

seasonally: highway traffic emissions. To examine these emissions, we evaluate weekday 

emissions from pixels associated with major highways. (See Fig 4.1, left.) We isolate traffic 

emissions in these pixels by subtracting emissions from the prior associated with other sectors, as 

described in Chapter 3. 
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4.2.2 Modeled Meteorology 

The transport model used to generate Lagrangian back-trajectories for the BEACO2N-STILT 

system is the High Resolution Rapid Refresh (HRRR) model, a reanalysis product created by 

NOAA (https://rapidrefresh.noaa.gov/hrrr/), simulating meteorology at a 3 km x 3 km scale 

across the United States.  

4.2.3 Meteorological Measurements 

We use wind speed and direction measurements recorded by a Vaisala WXT520 anemometer is 

in Richmond California to compare to the HRRR.  

 

To understand biases in boundary layer height, we use data from soundings released at 0 UTC 

and 12 UTC daily at the Oakland airport. We calculate the bulk Richardson number (Zhang et 

al., 2014) as: 

 

𝑅𝑖 =
𝑔

𝜃𝑣

(𝜃𝑣−𝜃𝑣0)(𝑧−𝑧0)

(𝑢−𝑢0)2+(𝑣−𝑣0)2, (Equation 4.2) 

 

where 𝑔 is gravitational acceleration, 𝜃𝑣 is virtual temperature, 𝑧 is height above ground level, 

and 𝑢 and 𝑣 are the horizontal components of horizontal wind speed. We then find the boundary 

layer height to be the point at which 𝑅𝑖 = 0.25.  

4.3 Results 

4.3.1. Relative Impact of Background Concentration and Windspeed Error on STILT 

Emissions Estimates 

The STILT emissions from highway pixels are observed to have an unphysical seasonal variation 

that is too large to be attributed to uptake by the biosphere or seasonal changes in anthropogenic 

emissions. For example, inferred highway emissions are ~60% lower than the annual mean in 

mid-July 2018. In contrast, uptake by the biosphere is estimated to peak in late-April 2018 and 

result in a 19% deviation from average values in the pixels we examine.  

 

To understand the source of the seasonal bias, we assess seasonal biases in background CO2 

concentrations, wind speed, and boundary layer height. To estimate error in background CO2 

estimates, we follow Kim et al., (in prep) and estimate the true background of the network for a 

given hour to be the running six-hour average of the 5th percentile of measured CO2 

concentrations. We then calculate error in enhancement for a given hour to be the difference 

between the mean background used in the STILT inversion (detailed in Turner et al., 2020a) and 

background calculated using the 5th percentile method. We also find the error in windspeed by 

comparing HRRR output to wind measurements at the RFS and error in boundary layer height to 

that estimated using OAK sounding data.  

 

In Fig. 4.3, we show 30-day averages in fractional difference from mean emissions, wind error, 

enhancement error, and boundary layer height error.  We see that background error and wind 

speed also exhibit seasonal bias, and that these biases are roughly synced in time with that of the 

bias in emissions estimates, with positive values peaking in winter and negative minima in 

https://rapidrefresh.noaa.gov/hrrr/
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summer. In contrast, boundary layer height, while exhibiting positive bias, does not show a 

seasonal trend. This is reflected in much higher correlations in the timeseries of windspeed and 

background concentration error with fractional emissions difference (0.92 and 0.89 respectively) 

compared to boundary layer height (0.29).   

 

To estimate the impact that seasonal bias in background concentration and windspeed have on 

emissions, we make use of a simplified version of the continuity equation, which assumes that 

we are estimating emissions from a uniform box at steady state with no substantial entrainment. 

 

𝑄 =  (𝐶 − 𝐶𝑏𝑘𝑔)
𝑈ℎ

𝑊
, (Equation 4.3) 

 

where Q is emissions, C is CO2 concentration, h is boundary layer height, U is windspeed and W 

is the width of the domain from which emissions arise. Kim (in prep) parameterized W using 

STILT posterior output, BEACO2N concentrations, background values used, and HRRR 

meteorological parameters, and found  

 

𝑊 =  𝛼1√𝑈ℎ + 𝛼2, (Equation 4.4) 

 

where 𝛼1 = 3436 and 𝛼2 = −1.58 ∙ 104. Using Kim’s (in prep) parameterization, we estimate 

fractional seasonal bias in emissions estimates due to background, wind, and boundary layer 

height error to be: 

 
𝑄0

𝑄𝑐
=

(𝐶−𝐶𝑏𝑘𝑔,0)

(𝐶−𝐶𝑏𝑘𝑔,𝑐)

𝛼1√𝑈𝑐ℎ𝑐+𝛼2

𝛼1√𝑈0ℎ0+𝛼2

𝑈0ℎ0

𝑈𝑐ℎ𝑐
, (Equation 4.5) 

 

in which variables with subscripts “0” are the values used as inputs to the BEACO2N-STILT 

system as described in Sect. 4.2 and variables with subscripts “c” are “correct” values: measured 

values for windspeed and background values generated with the rolling 5th percentile method for 

background. We use Eq. 3.5 to evaluate the plausibility that windspeed and background error are 

the primary causes of the season bias we observe in emissions estimates. To isolate the impact of 

background error and windspeed separately, we compute the ratio described by Eq. 3.5 in three 

separate ways: assuming only background error with no windspeed error, assuming only 

windspeed error with no background error, and assuming both background and windspeed error. 

To avoid unphysical estimates, we omit times when enhancement (in either numerator or 

denominator) is less than 2 ppm, when W (Eq. 3.4) is estimated to have values less than zero, and 

when the uncertainty in modeled error is greater than 0.210-6 kg m-1 s-1. Because we have only 

twice-daily measurements giving us boundary layer height and because percent error in boundary 

layer height is smaller than percent error in windspeed, we use modeled boundary layer height in 

these estimates.  

 

We find fractional seasonal bias expected from background concentration error alone, 

background concentration error and windspeed error, and windspeed error alone and compare 

this expected bias to a normalized, 30-day running average of emissions. We see that the bias 

due to background error is expected to be substantially larger (maximum of 52%) than that due 

to seasonal bias in wind speed (up to 18%). In Tbl. 4.2, In winter, the expected fractional bias 

due to both background error and windspeed error is similar in magnitude to fractional bias 
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observed in posterior emissions (0.50 v. 0.45). In summer, the match between observed seasonal 

bias and bias expected because background and windspeed error is not as good (-.17 v. -.43). It is 

unclear whether this is due to other seasonal biases or because of substantial uncertainty in the 

bias ratio during summer, largely because of small (and negative) enhancements over 

background lead to large variations in the denominator of Eq. 4.5. 

 

We hoped to use our knowledge of the error in these two factors to correct STILT emissions 

output, evaluating the correction by its ability to create a highway traffic signal with no 

seasonality. However, we found the correction factor (especially during the summer months) to 

be highly sensitive to our choice of data filtering thresholds and were therefore not able to create 

such a corrected set of emissions. 

4.3.2 The Impacts of Short-Term Noise on Emissions Estimates 

Despite the seasonal biases discussed in 4.3.1, it is still possible to address the question of how 

many days of observation are needed to overcome short-term noise in the BEACO2N-STILT 

system. To answer this question, we compare contiguous sampled subsets of emissions output 

for a given area to the eventual mean emissions over that area. We find the fractional mean 

average error of these subsets as a function of number of days of emissions output included in 

the subset (sampling the maximum possible number of contiguous subsets available given 

number of days included and the availability of emissions data described in the above section). 

Regardless of area sampled, we find the mean average error follows a double exponential decay 

function (e.g., Fig. 4.2, left.), in which we see a sharp drop in error in the first few days, followed 

by a long decay in error. While the long decay represents seasonal bias, the short time constant, 

𝜏1, and its corresponding coefficient, 𝐶1, represent the impacts of short-term noise Fitting the 

curve produced using all traffic data in the whole footprint area averaged over an entire weekday, 

we find 𝜏1 = 3.8 𝑑𝑎𝑦𝑠, 𝐶1 = 4.7%. Because performing the same analysis on background and 

meteorological error yields similar time constants, we assume that 𝜏1 is a product of day-to-day 

noise in background and meteorological error (Table 4.1).  

 

We also perform this analysis on each of the pixels pictured in Fig. 1, left. In Fig. 4.2, we see that 

(at least within the footprint region) time constants and coefficients associated with individual 

pixels are uncorrelated with CI and similar to those estimated for all highway traffic across the 

footprint region (3-7 days and ~5-10%).  

4.3.3 Emissions Estimate Convergence and Measurement Density 

Because of the labor and costs associated with maintaining a dense network of low-cost sensors, 

it is desirable to quantify the number of nodes required for convergence of emissions estimates. 

In principle, it would be possible to repeat inversions with a subset (different numbers of) 

measurements at each (as in Turner et al., 2016). However, the realities of our data record (see 

Fig. 3.5) make this challenging. Instead, we use the relationship between CI (summed over 

traffic pixels) and emissions estimate convergence to establish a threshold CI value required for 

convergence of emissions and link this CI threshold to number of nodes.  

 

We examine the relationship between fractional change from prior for each hour of the weekday, 

as we expect that area-wide, weekday highway emissions to be fairly constant for a given hour. 
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We show that for emissions across a large area, averaged emissions estimates converge at a 

threshold value of CI. We then relate CI of convergence to node density.  

 

Figure 4.4 shows and example of the relationship between CI and emissions estimates, in which 

we show percent deviation of prior emissions to posterior emissions. At times associated with 

low CI, posterior emissions stay close to the prior, as expected from Eq. 4.1. Note that as H 

approaches zero, 𝑥̂ approaches 𝑥𝑝𝑟𝑖𝑜𝑟 . In contrast, in areas where CI is high, 𝑥̂ moves from the 

prior towards emissions rates implied by the translation of BEACO2N measurements into 

emissions space by H. However, the number of BEACO2N nodes reporting CO2 data at any one 

time varies from 1-41. Because of substantial fluctuations in total number of sites reporting as 

well as which nodes were reporting (for example, before June 2018, no nodes were located in 

Vallejo, CA), both the total value and spatial distribution of CI area highly variable. Over the 

two-year period we explore, even pixels with high average CI may experience times of zero CI, 

during which emissions estimates move only a small distance from their posterior value.  

 

To further understand the relationship between CI and emissions convergence for the footprint 

area, we plot percent change of posterior from prior vs. CI for each hour. (For example, Fig. 4.4, 

left.) Based on Eq. 4.1, we expect Δ𝑒𝑚𝑠𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟  to (roughly) follow the form  

 

Δ𝑒𝑚𝑠𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 =
𝑏𝐶𝐼2

𝑏𝐶𝐼2+𝑅
(𝑒𝑚𝑠𝑜𝑏𝑠 − 𝑒𝑚𝑠𝑝𝑟𝑖𝑜𝑟), (Eq 4.6) 

 

where 𝑒𝑚𝑠𝑜𝑏𝑠 is the emissions implied by our observations. Because data points from Eq. 4.6 fit 

the form of a decaying exponential 

 

Δ𝑒𝑚𝑠 = Δ𝑒𝑚𝑠0(𝑒
−

𝐶𝐼

𝐶𝐼0 − 1), (Eq 4.7) 

 

we can fit the binned median values of shift from prior as a function of CI using Eq. 4.7, 

interpreting Δ𝑒𝑚𝑠0 as the shift from prior at convergence and CI0 as roughly the CI necessary for 

convergence of emissions estimates. Averaging across CI0 for fits with R2 > 0.5, (nighttime fits 

are worse than daytime fits), we find the average threshold CI value to be 2.25 
𝑝𝑝𝑚

𝜇𝑚𝑜𝑙 𝑚−2𝑠−1. 

To understand the relationship between this threshold CI and node density, we show CI for the 

footprint area vs. number of BEACO2N nodes reporting CO2 data. We see that at times when the 

network has 10 or fewer nodes reporting data, the threshold CI (represented by the red line) is 

almost never met, while the threshold CI is nearly always met during times where 30 or more 

nodes report data, which translates roughly to a density of one node per ~16.3 km2 across the 

BEACO2N footprint region.  

4.4. Implications for the BEACO2N-STILT system 

In this chapter, we investigate the (1) the impact of transport and background concentration error 

on BEACO2N-STILT emissions estimates, (2) the time needed to resolve those estimates, and 

(3) the measurement density required to arrive at those estimates. Here we discuss the 

implications for the BEACO2N-STILT system: how our findings impact our understandings of 

previous emissions estimates and how we can use these new understandings to improve 

emissions estimates going forward. 
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4.4.1. Implications for Understanding Previous Work 

The seasonal bias in background concentrations and windspeed discussed in this chapter has 

undoubtably influenced previous work (Turner et al., 2020; Fitzmaurice et al., 2022) using 

BEACO2N-STILT to constrain CO2 emissions. It would be prudent to repeat the analysis for 

these works after seasonal bias in background CO2 and windspeed have been addressed. 

However, we have several reasons to believe that the results of those works will be similar after 

seasonal bias is addressed. Turner et al., 2020 saw larger emissions decrease due to the COVID-

19 shelter in place than would be expected from PeMS highway emissions (48% v. 41%). This 

may have been in part due to a decrease in fractional bias over the period examined (February 

2020 to May 2020). However, the question is whether we expect BEACO2N-STILT to be able to 

converge on emissions estimates in the time Turner considered (~6 weeks). By considering the 

sharp reduction in error associated with using a few days in emissions estimates, we find error 

reduction timescales similar to, but slightly longer than those predicted by Turner et al., 2016 

(3.8 d v. 2 d). These values represent a BEACO2N-STILT time to convergence in the best-case 

scenario in which seasonal biases in background concentrations, windspeed, and other factors 

impacting emissions estimates are eliminated, and that in the absence of seasonal bias, 

BEACO2N-STILT should be able to converge on emissions estimate over 6 weeks, the time 

period examined in Turner et al, 2016.  

 

Results from Fitzmaurice et al. (2022, Chapter 3) rely on median values across 18 months of data 

(January – June), binned by fuel efficiency modeled using traffic data. Although we see day-to-

day fluctuations in fuel efficiency in the area examined, fuel efficiency is highly dependent on 

hour of day (Figs. 3.2, 3.4).  Across the period used, median values for expected fractional bias 

from background concentration and windspeed are relatively even (less than 0.1 spread from 0 

fractional bias) across the times of day sampled (4 am – 10 pm). Because the spread in fuel 

efficiencies observed is much higher (~50% over minimum values) than hour-to-hour differences 

in median bias, we expect that we are in fact observing changes in fuel efficiency, and that 

observed fuel efficiencies are within 10% of true fuel efficiencies.  

4.4.2. Implications for Improving BEACO2N-STILT Emissions Estimates 

We find that on seasonal timescales, BEACO2N-STILT emissions estimates are subject to 

substantial biases influenced by errors in the background CO2 concentration and the HRRR 

reanalysis product. Seasonal biases in emissions (up to 60% of mean emissions) are much larger 

than those associated with day-to-day noise (5-10% of mean). A significant portion of seasonal 

emissions bias can be explained by bias in background concentration and windspeed. We predict 

that correcting background error prior to inversion may eliminate up to 80% of the observed 

seasonal bias in emissions output, and future work should prioritize eliminating background 

error, either by using an alternate calculation process before inverting emissions estimates or by 

solving for background concentrations through the inversion (e.g., Henne et al., 2016; Nickless et 

al., 2018). Greater precision in concentrations will be required during the summer when 

enhancements are smaller relative to noise in background. In principle, seasonal bias in 

windspeed error may be reduced through careful choice of transport model or by assimilating 

meteorological variables at a higher resolution and over a smaller domain than used by HRRR. 

However, because we expect seasonal meteorological bias to produce emissions estimate bias on 
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the order of only ~10%, the relative gains would likely be smaller than those realized by 

correcting background concentration values.  

 

Finally, we present a method for examining the relationship between node density and emissions 

estimate convergence, by identifying a threshold CI below which emissions estimates have not 

converged. This method, which circumvents problems posed by node down-time in repeating 

OSSEs (e.g., Wu et al., 2016; Turner et al., 2016) which vary the number of nodes used in 

inversions, has the potential for use in planning field maintenance or node siting around areas of 

interest. For example, our analysis implied that consistently reach this threshold CI for the whole 

footprint region when we have more than 30 nodes active. Several caveats must be applied to 

these results. Before being used for planning purposes, this analysis should be repeated after 

seasonal biases are corrected. Furthermore, we assessed only the CI threshold needed for 

convergence of highway traffic emissions. Smaller emissions may require different CI thresholds 

and future work should investigate the relationships between CI thresholds and emissions 

magnitude and area of interest. Despite these caveats, we see this analysis as a useful planning 

tool. The threshold we find corresponds to ~ 1 node / 16 km2, meaning that roughly half of all 

BEACO2N nodes are sufficient for detecting changes in highway emissions. This density metric 

could also be applied to historical BEACO2N data (which dating back to ~2012) to evaluate the 

utility of applying the STILT-HRRR system and Bayesian filter to these time periods. Beyond 

network and inversion planning, this analysis also presents a potential filtering criteria for 

posterior emissions. Time points for which CI is below the convergence threshold represent time 

points at which BEACO2N measurements are not sufficiently sensitive to areas of interest and 

could be filtered. 

 

Future work could also evaluate whether CI convergence thresholds are similar across 

geographical locations. Networks using the same instruments as BEACO2N have been 

established in Los Angeles, Glasgow, and Leicester, and will soon be deployed in Providence. 

While place to place differences in meteorology may result in different node densities required 

for convergence of emissions estimates, CI is a more direct indicator of the sensitivity of the 

measurement network to local emissions. If CI thresholds are similar across geographic 

locations, CI convergence thresholds, paired with Lagrangian back-trajectory models, could be 

used in planning networks in new cities. 

 

  



 

 73 

 

 WINDSPEED ERROR 

 

1 (DAYS)  

WIND DIRECTION ERROR 

1(DAYS) 

PBLH  

ERROR 

 

1 (DAYS)  

06:00 LT 4.4  3.7    

12:00 LT 3.0 5.3   

18:00 LT 4.7 4.5   

00:00 LT 2.6 4.0   

00:00 UTC    6.4 

12:00 UTC    3.0 
 

Table 4.1. Shorter time constants for meteorological error fit to double exponential function. 
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Fractional Bias Summer (JJA) Winter (DJF) 

 

Expected from Windspeed Error 
 

 

    -0.0896 (0.0521) 

 

0.0687 (0.2349) 

Expected from Background Concentration Error 

 

 

 

-0.0825 (1.6511) 

 

0.4029 (0.1970) 

Expected from Windspeed Error and Background 
Concentration Error 

 

 
-0.1651 (1.5060) 

 
0.4995 (0.5024) 

 

Observed in Posterior (compared to mean in Posterior) 

 

-0.4282 

 

0.4501 

 

Table 4.2. We show expected bias from windspeed error, background concentration, windspeed 

and background concentration error, as well as observed bias in the posterior both in summer 

(JJA) and winter (DJF). Numbers in parentheses represent variance in correction factors. 
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Figure 4.1. (Left) Map of pixels used (black boxes), BEACO2N sites (blue dots), and 

meteorological measurements. (Right) CI averaged in time for each pixel across domain. 
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Figure 4.2. Left: Percent error from mean of highway traffic emissions as a function of number 

of days used. Right: Coefficients to fit to double exponential for traffic emissions from all 

highway pixels analyzed. CI on x axis is the average CI for a given pixel over the whole time 

period examined. 
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Figure 4.3. 30 day rolling averages of (1st) fractional change from mean highway traffic 

emissions (2nd) CO2 enhancement error (3rd) windspeed error and (4th) boundary layer height 

error. 
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Figure 4.4. Left: Example percent change of posterior from prior for highway traffic emissions 

within the BEACO2N footprint area as a function of summed footprint (CI) over all highway 

pixels. Red dots represent binned median values of percent change. Blue line indicates fit to Eq. 

4.6. Right: We show summed footprint over highway pixels as a function of number of 

BEACO2N sites reporting CO2 values for a given hour. Black line indicates median value and 

grey shaded area indicates one-sigma variance. Red dashed line represents the mean total 

footprint value across all hours with R2 > .5 required for convergence. 
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Chapter 5 Conclusions 

5.1. Summary  

Because vehicle emissions represent the largest sectoral contribution of CO2 emissions in US 

cities and contribute substantially to health inequities caused by exposure to co-emitted 

pollutants (Tessum, 2020), city and regional governments are increasingly developing and 

implementing measures to decrease emissions of CO2 and PM2.5 in an equitable way. To plan 

emission reduction strategies, governments need information regarding the sector and subsector 

breakdown, spatial origin, and temporal variability in emissions, as well as strategies for tracking 

emissions changes over the policy-relevant time scales of 1-3yrs.  

 

In this dissertation, we outlined and evaluated methodology for using surface networks and real-

time activity data to infer PM2.5 and CO2 emissions from vehicles in urban areas at the 

neighborhood scale. The work described in the previous chapters demonstrates that both 

regulatory monitoring sites and low-cost sensor networks can be used to quantify long-term 

trends and spatial heterogeneity sector and sub-sector specific emissions of CO2 and PM2.5. 

Applying these methods in combination with real-time, high-resolution traffic data, we can 

quantify not just emissions, but also emissions factors (g pollutant / unit activity). 

 

W first develop a method for using HDV percentage and stationary, near-road regulatory sensors 

to derive Heavy Duty Vehicle emission factors – mass pollutant per unit activity (Fitzmaurice, 

Chapter 2). In applying this method to the San Francisco Bay Area, we find that EFs decline by a 

factor of ~7 in the 2009-2020 period and are comparable to those derived in similar places with 

higher-cost measures. Additionally, we observe spatial heterogeneity in EFs across the Bay Area, 

possibly due to inconsistencies in compliance to HDV emissions regulations.  

 

Second, we demonstrate that a high-density network of low-cost sensors, such as BEACO2N can 

resolve speed-dependent fuel efficiency at the scale of ~5km highway segments (Fitzmaurice, 

2022a), and that with exception of emissions during the morning rush hour, that BEACO2N 

observations are in line with fuel efficiencies generated using EMFAC2017 data.  

 

Finally, we explore the dependence of the accuracy and precision of the BEACO2N network on 

background concentration estimate error, modeled meteorological error, and site density. We 

find that with the exception of stagnation events not reflected in modeled meteorology, that 

BEACO2N-STILT emissions inferences are not biased by meteorological error. We present a 

method for exploring convergence of emissions estimates as a function of BEACO2N footprint 

density. We find that using the current inversion framework, the conditions for convergence of 

highway emissions are almost never met when less than 10 BEACO2N nodes are operational and 

almost always met when more than 30 BEACO2N nodes report data. 

 

5.2. Future Directions 

 

5.2.1. Observing long-term trends and spatially heterogeneity of HDV emissions across the 

United States 
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As shown in Tbl 2.1, most studies in the past decade documenting HDV EF have been conducted 

in the state of California. This is problematic for understanding the current and long-term impact 

of HDV on air quality across the United States, because HDV emissions control regulations (and 

likely the use of emissions control technology such as diesel particulate filters and selective 

catalytic reduction) differ from state to state. 

 

A cross-country campaign to understand HDV EF from single plume analysis would be costly 

and time and labor intensive. However, because of the Clean Air Act, the United States has a 

long record of hourly, co-located PM2.5 and CO measurements. More than 100 of these co-

located sites across the country are located within 500 m of a major highway and many have 

been in operation for a decade or more. All US states track truck percentage and vehicle flow via 

dense, in-road magnetic sensor networks. Because of the accessibility of this data, the method 

described in Chapter 2 could be applied to datasets across the United States and over the past 

decade to uncover long-term trends and spatial variations in HDV EF. Furthermore, researchers 

interested in observing spatial heterogeneity in HDV EF across a specific city could apply this 

method in combination with a network of near-highway, low-cost sensors. 

5.2.2. Additional learning about traffic emissions from the BEACO2N-STILT system 

In Chapter 3, we demonstrated that the BEACO2N-STILT system can observe shifts in vehicle 

fuel efficiency associated with speed and vehicle type, by focusing on a short (~5 km) stretch of 

highway. This means that BEACO2N-STILT can be used as a tool to evaluate and improve upon 

parameterizations used to generate activity-based emissions inventories. While we demonstrated 

that for my segment of interest, BEACO2N-STILT-derived fuel efficiency generally matches fuel 

efficiency expected by using speed and vehicle-type as inputs to the EMFAC2017 model, several 

avenues of exploration remain. 

 

One avenue is using BEACO2N-STILT to identify and understand situations in which 

EMFAC2017 does not predict emissions accurately. For example, in Chapter 3, we describe a 

mismatch between EMFAC2017 model and the BEACO2N-STILT observation system during 

the morning rush hour. Because we do not expect seasonal bias to have an hour-of-day specific 

impact on median emissions estimates over the time period examined, we expect this morning 

rush hour mismatch to persist after seasonal biases in the BEACO2N-STILT are corrected. In the 

supplement to Chapter 3, we hypothesize the inability of hourly speed data to represent the 

complexity of acceleration and speeds traveled as a function of congestion, but that hypothesis 

remains to be verified. Beyond highway emissions, the BEACO2N-STILT system has the 

potential to help us understand mobile emissions from surface streets. Most activity-based 

inventories estimate that surface streets account for ~25-30% of total on-road CO2 emissions 

(McDonald et al., 2014), but those estimates have not been verified via atmospheric 

measurements, and the spatial distribution of these emissions is not well understood, especially 

because of the variability of traffic speeds on surface streets is not typically represented in 

activity-based inventories. Pairing BEACO2N measurements with inventories created by urban 

science researchers leveraging cell-phone and UBER speed data to create high-resolution 

emissions estimates on surface streets (Ozturk, in prep) has the potential to refine our 

understanding of surface-street vehicle emissions. Finally, because each BEACO2N sensor is 

equipped with PM2.5, CO, NO, and NO2 sensors, the BEACO2N-STILT system has the potential 
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to evaluate long-term trends and spatial and temporal distribution of emissions and emission 

factors of these co-emitted species from vehicles. For example, preliminary BEACO2N-STILT 

estimates of CO emissions (Asimow, in prep) show that while evening rush hour CO emissions 

are concentrated in highway pixels, morning rush hour emissions are distributed more evenly 

across pixels associated with surface streets, implying the importance of cold-start emissions of 

CO. 

5.5.3. Refining the BEACO2N-STILT Inversion Process 

As discussed in Chapter 3, under the current inversion framework, BEACO2N-STILT emissions 

output suffers from seasonal biases, likely caused by errors in background concentrations. Future 

work should explore methods for reducing such seasonal bias, either by employing different 

strategies for determining background concentrations as discussed in Karion et al. (2021) or by 

solving directly for background concentration values as in Henne et al. (2016) or Nickless et al. 

(2018). Future work should also explore methods for minimizing the seasonal impacts of wind 

and boundary layer height biases. 

5.5.4. Expanding BEACO2N-STILT analysis to additional sectors and locations 

The BEACO2N-STILT system has the potential to evaluate emissions from other sectors such as 

home heating, industrial sources, and the biosphere. Furthermore, BEACO2N expansions to other 

locations (Los Angeles, Glasgow, Leicester, Providence) will allow for inter-city and inter-

country comparisons of emission rates. 
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