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SUMMARY

Epigenomic regulation and lineage-specific gene expression act in concert to drive cellular 

differentiation, but the temporal interplay between these processes is largely unknown. Using 

neural induction from human pluripotent stem cells (hPSCs) as a paradigm, we interrogated these 

dynamics by performing RNA sequencing (RNA-seq), chromatin immunoprecipitation sequencing 

(ChIP-seq), and assay for transposase accessible chromatin using sequencing (ATAC-seq) at seven 

time points during early neural differentiation. We found that changes in DNA accessibility 

precede H3K27ac, which is followed by gene expression changes. Using massively parallel 

reporter assays (MPRAs) to test the activity of 2,464 candidate regulatory sequences at all seven 

time points, we show that many of these sequences have temporal activity patterns that correlate 

with their respective cell-endogenous gene expression and chromatin changes. A prioritization 

method incorporating all genomic and MPRA data further identified key transcription factors 

involved in driving neural fate. These results provide a comprehensive resource of genes and 

regulatory elements that orchestrate neural induction and illuminate temporal frameworks during 

differentiation.

*Correspondence: nadav.ahituv@ucsf.edu (N.A.), niryosef@berkeley.edu (N.Y.).
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Graphical Abstract

In Brief

To reveal regulatory dynamics during neural induction, we performed RNA-seq, ChIP-seq, ATAC-

seq, and lentiMPRA at seven time points during early neural differentiation. We incorporated all 

information and identified TFs that play important roles in this process. We demonstrated 

overexpression or CRISPRi of five TFs affected ESC-NPC differentiation.

INTRODUCTION

Global changes in gene expression are an essential part of cellular differentiation (Yosef and 

Regev, 2016). To date, many genome-scale maps of epigenetic properties in progenitor and 

differentiated cells have been used in comparative studies, demonstrating the importance of 

modifications of the epigenome to the pertaining changes in gene expression and shedding 

light on the mechanisms involved in this process (Andersson et al., 2014; Arner et al., 2015; 

Bernstein et al.,2012). For instance, in human embryonic stem cells (hESCs), the regulatory 

regions marked by histone modifications and binding of key regulators associated with gene 

expression were globally reorganized in accordance with multilineage differentiation (Dixon 

et al., 2015; Gifford et al., 2013; Tsankov et al., 2015; Xie et al., 2013). However, the 

majority of these studies provide descriptive genome-wide maps without large-scale 

functional analyses of candidate sequences.
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Furthermore, although a few studies used functional validation following large-scale 

genomic studies (Kheradpour et al., 2013; Kwasnieski et al., 2014; Ulirsch et al., 2016; 

Wang et al., 2018), these studies did not focus on differentiation processes.

The differentiation of hESCs into neural cells provides an exceptional model to study this. 

During early neural induction, the cells exhibit marked changes in gene expression as 

pluripotency-associated genes are rapidly downregulated and neural-associated genes are 

induced. These changes are then maintained for a duration of several weeks until the 

establishment of a neural progenitor cells (NPCs) population (Ziller et al., 2015). Several 

large-scale mapping efforts have characterized in a genome-wide manner the transcriptional 

and epigenetic landscape of hESC-derived NPCs or neural tissues and have annotated 

numerous genes and potential regulatory elements that could be important in neural 

differentiation (Andersson et al., 2014; Bernstein et al., 2012; Dixon et al., 2015; Fort et al., 

2014; Gifford et al., 2013; Tsankov et al., 2015; Xie et al., 2013). However, although these 

studies have identified putative regulatory elements, they have not comprehensively 

analyzed them for their function. Furthermore, none of these genomic studies focused on the 

early stages of neural differentiation when neural induction takes place. Thus, the intrinsic 

mechanism that governs neural induction remains largely unknown.

The differentiation of hESCs to neuronal cells also provides an important model system for 

studying the etiology of neurodevelopmental diseases. Mutations in genes and regulatory 

elements involved in neural induction and development have been associated with numerous 

human diseases. For example, dysfunction of cortical GABA neurons in schizophrenia 

begins during prenatal development (Volk and Lewis, 2013). Similarly, autism spectrum 

disorders (ASDs) are associated with de novo mutations in developmental genes (Samocha 

et al., 2014) and alterations in canonical Wnt signaling in developing embryos (Kalkman, 

2012). In addition, the majority of disease-risk loci discovered through genome-wide 

association studies (GWASs) in general and specifically for neuropsychiatric and 

neurodevelopmental disorders reside in noncoding regions (Hindorff et al., 2009; Maurano 

et al., 2012; Sanders et al., 2017; https://paperpile.com/c/Q8FO7P/iuTR+IK6Y+IWCK), 

suggesting an important role for enhancers in disease susceptibility.

Here, we set out to generate a genomic map of the transcriptional (RNA sequencing [RNA-

seq]) and epigenetic landscape (H3K27ac/me3 chromatin immunoprecipitation [ChIP]-seq 

and ATAC-seq) of neural induction and then coupled these observations with comprehensive 

functional assays (massively parallel reporter assays [MPRAs]). We integrated all of the 

resulting data modalities (genomics maps and MPRAs) to computationally infer the activity 

of transcription factors (TFs) over time and characterize candidate TFs that could be 

important drivers of neural induction. Our work provides a comprehensive resource of genes 

and regulatory elements and a blueprint for the interplay between them during neural 

differentiation.
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RESULTS

The Neural-Induction-Associated Transcriptome

We performed deep RNA-seq (average of 200 million reads per replicate) on 

undifferentiated H1-ESCs (0 h) and six different time points of early neural differentiation 

(3, 6, 12, 24, 48, and 72 h) following dual-Smad inhibition (Chambers et al., 2009). 

Principal-component analysis (PCA) of the RNA-seq data showed consistency between the 

three replicates and a clear separation between the earlier and later time points (Figure S1A). 

As expected, we observed neural marker genes, such as SOX1, to be upregulated after 12 h 

(Figure 1A), with limited expression changes in mesendoderm (EOMES), mesoderm (T and 

TBX6), endoderm (SOX17 and GATA4), and neural crest markers (FOXD3 and SNAI1/2). 

Pluripotent markers (NANOG and POU5F1) and direct targets of transforming growth factor 

β (TGF-β) and bone morphogenetic protein (BMP) signaling (SMAD7, ID1, and LEFTY2) 

were downregulated, and immediate early genes (ATF3, FOS, FOSB, and EGR1/2/3) were 

transiently upregulated at 3 h, corresponding to the cell’s stress response against 

differentiation stimuli. For a more general analysis, we used a conservative approach to 

identify genes whose expression differed significantly over time, using a consensus over two 

methods—ImpulseDE (Sander et al., 2017) and DESeq2 (Love et al., 2014). Altogether, we 

detected 2,172 genes as differentially expressed over time (henceforth referred to as 

temporal genes), with 85% of them being induced at some point in time (Figure 1B; the 

remaining genes show monotonic decrease of expression). Gene set enrichment analysis 

(Subramanian et al., 2005) of the resulting clusters of temporal profiles found that genes that 

are more strongly expressed at the early time points (0–12 h; false discovery rate [FDR] < 

0.05; hypergeometric test) are enriched for regulation of multicellular organismal 

development, indicating an association with pluripotency. Conversely, genes induced at later 

time points (>24 h; FDR < 0.05) are enriched for neurogenesis processes, consistent with the 

progression of the cells toward a neural lineage fate (Table S1). Combined, our 

transcriptomic analyses validated the ability of the dual-Smad inhibition protocol to obtain 

the expected neural trajectory and provide a catalog of genes involved in neural induction.

The Neural-Induction-Associated Regulome

To identify candidate enhancers involved in the differentiation process that could be driving 

neural induction, we performed ATAC-seq as well as ChIP-seq for the active histone mark 

H3K27ac and the silencing mark H3K27me3 at all seven time points. We then identified 

regions that are enriched (i.e., peak regions) in each of these assays (Feng et al., 2011; FDR 

< 0.05) by analyzing each time point separately and then taking the merged set of peaks over 

all time points. To establish peak calling quality, we compared our 0-h time point H3K27ac 

and ATAC-seq peaks to H1-ESC H3K27ac peaks and DNase I hypersensitive sites (DHSs) 

from ENCODE (Bernstein et al., 2012) and observed a substantial overlap of 80% and 90%, 

respectively. Overall, we identified 40,486 ATAC-seq peaks, 40,170 H3K27ac peaks, and 

4,446 H3K27me3 peaks that are present in at least one time point. To exclude potentially 

inactive regions from further analysis, we removed H3K27ac peaks that overlap an 

H3K27me3 peak at all the time points in which that peak was detected. This resulted in a 

filtered set of 40,042 H3K27ac peaks, indicating that the two chromatin marks have little 

overlap in our data. Conversely, we observed a substantial overlap between the H3K27ac 

Inoue et al. Page 4

Cell Stem Cell. Author manuscript; available in PMC 2019 November 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



peaks and the ATAC-seq peaks, with an overall 60% (23,294) of the H3K27ac peaks 

overlapping an accessible region at the same point in time. These results correspond to a 

similar overlap of 61% between H3K27ac peaks and DHSs in H1-ESC from ENCODE 

(Bernstein et al., 2012). Using a strict procedure, similar to the gene expression analysis 

(Love et al., 2014; Sander et al., 2017), we found 2,435 ATAC-seq and 2,024 H3K27ac 

peaks that were differentially enriched between time points, henceforth referred to as 

temporal H3K27ac or ATAC-seq peaks (Table S1). Similar analysis of H3K27me3 peaks 

showed weaker temporal signal (STAR Methods) with a smaller number of 248 temporal 

peaks (Figure S1B), possibly due to histone methylation being less dynamic than acetylation 

(Donnard et al., 2018; Garber et al., 2012; Luizon et al., 2016; Smith et al., 2014).

We next set out to study the association between the temporal changes observed at the 

epigenome level and those observed at the gene expression level. We clustered the two sets 

of temporal regions (in terms of accessibility and H3K27ac) into several prototypical 

patterns (Figures 1C and 1D), as we have done for the temporal genes (Figure 1B). 

Functional enrichment analysis (using GREAT; McLean et al., 2010; with FDR < 0.05) on 

the accessibility and H3K27ac clusters was overall consistent with the results observed with 

the gene expression clusters, with an enrichment for pluripotent factors and nervous system 

development processes in early- and late-response regions, respectively (Table S1). 

Interestingly, the observed temporal changes of accessibility, histone acetylation, and 

proximal gene expression were highly correlated to each other (Figures 1E and S1C; exact 

overlaps are displayed in Table S1). Furthermore, for a significant fraction of the genes 

induced at the late stages (RNA-seq clusters 4–6), chromatin accessibility was found to be 

acquired first (ATAC-seq clusters 4 and 5) or simultaneously (ATAC-seq cluster 6) with 

H3K27ac modification followed by an increase in mRNA expression of the nearest gene 

(Figure 1E), and at early stages (RNA-seq clusters 1–3), this was a less obvious trend. For 

example, the DNA accessibility cluster 4 that peaks at 24 h showed the strongest overlap 

with H3K27ac clusters 5 and 6 that peak at 48–72 h, and this cluster significantly overlaps 

(in terms of genes; p < 0.0014; hypergeometric test) with gene expression cluster 6, which 

peaks at 72 h (Figure 1E). Specifically, examination of potential enhancers within these 

clusters that are located near neural marker genes, MAP2 (Herzog and Weber, 1978) and 

ROR2 (Endo et al., 2012), found them to be enriched for ATAC-seq signal at 12–24 h, 

H3K27ac signal at 48–72 h, and their expression to peak at 72 h (Figure S2A and S2B). 

Combined, these results suggest that regions that are associated with changes to chromatin 

structure during neural induction are statistically related to changes in gene expression.

Neurological-Disorder-Associated Variants Are Enriched in Temporal H3K27ac Peaks

As genes and regulatory elements involved in neural development may be associated with 

neurological disorders, we tested whether our neural induction regulome overlaps with 

disease-associated variants. We first tested whether the temporal loci (in terms of 

accessibility or H3K27ac) are enriched for GWAS variants associated with neurological 

disorders. To this end, we used the complete set of peaks (temporal and non-temporal) as 

background and added variants associated with height as negative controls. We observed a 

significant enrichment for H3K27ac (but not accessibility) temporal peaks with neurological 

disorders (Table S1; STAR Methods; p < 0.05; Fisher’s exact test), but not with height 
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variants. Specifically, we observe significant enrichment when examining variants associated 

with a combined set of neuropsychological disorders (schizophrenia, attention-deficit 

hyperactivity disorder [ADHD], ASD, bipolar disorder, and major depressive disorder) as 

well as enrichment when examining for individual disorders (i.e., bipolar and psychosis 

disorders). As the smaller size of ATAC-seq peaks might account for the lack of enrichment 

in ATAC-seq temporal peaks, we expanded the ATAC-seq peaks to the average size of 

H3K27ac peaks but observed similar results.

Expression quantitative trait loci (eQTLs) mark variants that can be associated with 

modulating the regulation of nearby genes. We tested for overlap between eQTLs found in 

various tissues (GTEx Consortium, 2015) and our temporal ATAC-seq or H3K27ac peaks 

We found the temporal H3K27ac peaks to be significantly enriched for eQTL variants 

(Leslie et al., 2014) in general and specifically for those from brain tissues (GTEx 

Consortium, 2015; Table S1; STAR Methods; p < 0.05, Fisher’s exact test). Similarly to 

GWAS variants, we did not observe an enrichment of eQTLs in temporal ATAC-seq peaks, 

even upon their expansion. When restricting H3K27ac peaks to not overlap with H3K27ac 

ChIP-seq peaks obtained from different cell types (GM12878, K562, and HepG2) via the 

ENCODE project (Bernstein et al., 2012), we observe similar results, indicating that our 

signal is not biased by constitutive peaks. When restricting variant enrichment analysis to 

H3K27ac temporal peaks and assessing the enrichment in each temporal cluster (Figure 1C), 

we observe that the late response cluster 6 is significantly enriched in nervous system 

disease and specifically with ASD-associated variants (Fisher’s exact test; p < 0.005). 

Combined, these results suggest that our temporal H3K27ac regions could be functional 

enhancers that harbor neurological disease risk variants. They also suggest that temporal 

changes to the chromatin early in the differentiation process can facilitate the identification 

of potentially functional regions more so than data from a single time point.

lentiMPRA Identifies Regulatory Regions that Are Active during Neural Induction

In order to test whether our candidate regulatory sequences can in fact induce temporal 

transcriptional response, we carried out lentiMPRA at all seven time points. Overall, we 

investigated 2,464 candidate sequences, covering both promoters (n = 386; 15.7%) and 

putative enhancers (n = 2,078; 84.3%), termed henceforth as candidate regulatory sequences 

(CRSs). As the number of potential CRSs is large, we developed a prioritization scheme to 

select the set of assayed regions (Figure 2A; Table S2; STAR Methods) using the following 

criteria: (1) manually curated list of enhancers that are next to genes involved in neural 

differentiation (n = 102; Table S2); (2) sequences that overlap a temporal H3K27ac ChIP-

seq peak that also overlap an ATAC-seq peak (not necessarily temporal) and that their 

closest gene shows increased expression due to neural induction (n = 1,596); (3) sequences 

that overlap non-temporal H3K27ac peaks and temporal ATAC-seq peaks and their closest 

gene shows increased expression due to neural induction (n = 441); (4) among the regions 

not included in the first three groups, we select sequences that showed the strongest 

difference in signal of either H3K27ac ChIP-seq, ATAC-seq, or mRNA of the closest genes 

(n = 132; comparing either 0 versus 3 h or 0 versus 72 h); and (5) positive control sequences 

(n = 193) that included previously reported sequences that were validated forebrain 

enhancers in the VISTA Enhancer Browser (Visel et al., 2007; n = 105), sequences near 
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pluripotent factors (n = 42), and commonly used positive controls from the ENCODE 

project (n = 46; Table S2). For negative controls, we randomly selected 200 of our candidate 

sequences and shuffled their nucleotides obtaining scrambled sequences. Overall, we chose 

2,664 sequences using this process. As our assayed sequences were 171 bp long, due to 

oligonucleotide synthesis limitations, we chose the 171-bp window within a peak of interest 

by maximizing the number of motifs in it (Grant et al., 2011; Kheradpour and Kellis, 2014).

The selected oligonucleotides were generated and cloned upstream of a minimal promoter 

(mP) and EGFP reporter gene into a lentivirus-based enhancer assay vector (Figure 2B) as 

previously described (Inoue et al., 2017). Although the sequences are assayed in the context 

of enhancer activity in this assay, previous work has shown that it also provides a good 

indication for promoter activity (Kreimer et al., 2017, 2019; Melnikov et al.,2014). Each 

individual CRS was designed to be associated with 90 different 15-bp barcodes, thus 

allowing robust evaluation of the pertaining expression output and to correct for site of 

integration biases (Ashuach et al., 2019; Inoue et al., 2017). In total, 239,760 sequences 

(2,664 CRSs and negative controls × 90 barcodes) were included in the library (Figure 2B). 

The cloned library was sequenced in order to evaluate the quality of the designed 

oligonucleotides and the representation of individual barcodes (STAR Methods; Figure 

S3A–S3D).

hESCs were infected with the library with an average of 5–8 integrations per cell (Figure 

S3E), cultured for 3 days to clean out for unintegrated lentivirus, and then subsequently 

induced into a neural lineage via dual-Smad inhibition. lentiMPRA was performed at all 

seven time points of neural differentiation with three replicates (two biological replicates, 

one of which was split into two technical replicates; Table S3). Due to the short time spans 

between some conditions, we collected nuclear RNA in all time points to detect their 

immediate expression. We observed an average of 70 barcodes out of 90 per CRS in each 

replicate (Table S3). By aggregating these barcodes (STAR Methods), we were able to get 

highly reproducible results across replicates (Figure S3F) with similar magnitude to a 

previously characterized lentiMPRA in another cell type (Inoue et al., 2017). We then 

combined replicates to produce a normalized RNA/DNA ratio for each CRS (henceforth 

referred to as MPRA signal). Examination of the signal observed for regions nominated by 

the different experimental design criteria found that temporal H3K27ac signal (criterion 2) 

provides a highly effective predictor of functional enhancer activity, and as expected, the 

negative controls showed the lowest activity (Figures 3A and S3G).

lentiMPRA Identifies Temporal CRS

We next set out to examine whether the enhancer activity observed in our assay changes over 

time and then characterize these changes with respect to the cell-endogenous temporal 

processes depicted in Figure 1. As a starting point, we considered each time point separately 

and applied MPRAnalyze (Ashuach et al., 2019), a method and Bioconductor package for 

statistical analysis of MPRA data developed in our group, to identify active enhancers, 

namely enhancers whose activity significantly deviates from that of the negative controls 

(median-based Z score; FDR < 0.05; STAR Methods). Of note, the dynamic ranges we 

observed were comparable to a previous library generated in a similar manner (Inoue et al., 
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2017). From the 2,464 CRSs that we tested via lentiMPRA, 1,681 (68%) were called 

significant in at least one of the time points, and on average, 1,141 (46.3%) sequences were 

active per each individual time point.

Although we saw similar levels of activity at each time point, the respective sets of active 

CRSs may differ greatly over time. Reassuringly, we observed substantial overlaps between 

the sets of active CRSs at nearby time points (Figure 3B), along with a marked decrease in 

overlap as the distance between the respective time points increases (Figure 3C). This 

indicated that regulatory programs carried out by enhancers are far from fixed but instead 

change over the course of neural induction. As an example, we observed that a known 

enhancer of NANOG as well as its promoter (Rodda et al., 2005; Wu et al., 2006) both have 

activity only at the early time points (Figure 3D), as expected. We also found novel 

enhancers near SOX1 that showed increased temporal activity at 24–48 h while being less 

active at 72 h and further away (140 kb) an enhancer that has strong enhancer activity at 72 

h, suggesting a complex temporal regulation pattern for this gene (Figure 3E). To validate 

our temporal observations with lentiMPRA, we individually tested five ESC enhancers, four 

immediate response enhancers (12–24 h), and four NPC enhancers (48–72 h) using 

luciferase assays. We observed the expected temporal activities for these sequences, which 

were consistent with our MPRA results (Figures 4A and 4B). As an additional validation, we 

used CRISPR activation (CRIPSRa) (Gilbert et al., 2013) to target three CRSs detected in 

our study at the SOX1, IRX3, and OTX2 loci in hESCs. We found that all three CRSs 

upregulated the expression of their predicted target gene (SOX1, IRX3, and OTX2) 

following CRISPRa (Figures 4C-4F), further suggesting that the enhancers we identified are 

functional and can affect gene expression.

We next carried out a more global analysis that aims to identify enhancers whose MPRA 

signal significantly changed over time (Ashuach et al., 2019). This alternative approach 

pools together information from all time points, rather than considering each time point 

individually, and therefore has the potential to identify effects that may otherwise be missed. 

In this analysis, the temporal activity of each CRS was compared with a null temporal 

behavior displayed by the set of negative controls. Regions with significantly different 

temporal activity were called temporally active using a likelihood ratio test (FDR < 0.05; 

Ashuach et al., 2019). We found that 1,547 sequences out of the 2,464 we tested (63%) 

showed temporal regulatory activity (henceforth referred to as temporal CRS). Out of these 

temporal CRSs, 1,261 (82%) were also detected by the per-time-point analysis. In the 

following analyses, we focused on the complete set of temporal CRSs. Importantly, we 

observed consistent results when limiting our analyses to the smaller and more stringent set 

of 1,261 regions.

Comparative analysis of temporal versus non-temporal CRSs for differences in TF binding 

motifs (Kheradpour and Kellis, 2014) found an enrichment for pluripotency-related 

regulators, such as POU5F1, SOX2, SALL4, NANOG, and SMAD1 (largely targeting CRSs 

with a marked decrease in activity over time), as well as the NPC-associated TF, SOX1 

(largely targeting CRSs with a marked increase in activity over time; Figure 3F). Of note, 

previous reports have shown that SOX2-POU5F1 and SOX2-POU3F2 regulate ESC and 

NPC genes, respectively (Lodato et al., 2013), suggesting that SOX and POU motifs not 
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only function in a pluripotent state but also in a neural state. We also observed an enrichment 

for immediate early response factors (e.g., AP-1, ATF3, and EGR3), corresponding to the 

cell’s response to differentiation stimuli. Finally, we found that regulators of chromatin 

conformation, including regulators of histone acetylation (EP300 and HDAC) and chromatin 

boundary and looping (CTCF), were also enriched in temporal CRSs, indicating that 

changes in activity over time may also be mediated by a more direct regulation of the 

epigenome and not only by state-specific TFs.

Enhancer Activity Is Consistent with the Endogenous Temporal Profiles

To further evaluate the significance of the temporal CRSs, we turned to estimate the extent 

to which changes to their MPRA signal correlates with the respective changes to gene 

expression and the endogenous chromatin. To this end, we clustered the temporal CRSs into 

four patterns of activity: (1) early (mainly active at 0–6 h); (2) mid-early (primarily active at 

12–24 h); (3) mid-late (mainly active at 24–48 h); and (4) late response (primarily active at 

48–72 h; Figure 5A). To facilitate direct comparison to temporal profiles in the endogenous 

genome, we quantified for each temporal CRS the expression of its closest gene and the 

epigenetic signal (accessibility, H3K27ac) in the respective endogenous position. We then 

stratified the resulting profiles into clusters, in a similar way to that of the MPRA, and tested 

the overlap between the resulting endogenous clusters (Figures 5B–5D; Table S4) and the 

MPRA-based clusters (Figure 5A). Starting with the expression of the closest gene, we find 

significant levels of overlap between the respective clusters (lentiMPRA and RNA-seq; 

Bonferroni-corrected hypergeometric p < 0.05; Figure 5E). The significant overlap is 

observed primarily in time-matched clusters, indicating that an overall trend in the data is 

that the temporal CRSs are capable of inducing reporter gene expression that is similar to the 

(postulated) endogenous target gene. Indeed, in an alternative analysis, we defined the 

maximal segment of each enhancer as the two adjacent time points in which it reaches its 

maximal expression. Comparing the MPRA and the endogenous mRNA, we found that, in 

48% (752/1,547) of the temporal CRSs, the respective maximal segments overlap. Gene 

ontology enrichment analyses for the genes associated by proximity with the regions in the 

different clusters also found gene categories fitting with the temporal expression (Figure S4; 

Table S4). For instance, the early cluster is enriched for recruitment of histone 

acetyltransferases (HATs) and expression of pluripotent genes (e.g., KLF4), indicative of 

stem cell differentiation processes that take place during these early time points (Tsankov et 

al., 2015). The mid-early and mid-late clusters are enriched with early chromatin response 

and genes that are involved in developmental processes. The late cluster is enriched for open 

chromatin, HAT recruitment, and expression of neural genes (e.g., OTX1). We observe 

similar results for the more restricted set of regions that are temporal and active in at least 

one time point (Figure S5).

We next set out to compare the temporal patterns observed with MPRA to those observed at 

the chromatin level. As expected, we find that the temporal CRSs rarely overlap with 

H3K27me3 peaks (Figure S1D). Conversely, we find significant overlaps between the 

MPRA clusters and their time-matched H3K27ac clusters (Figure 5E). Using the concept of 

maximal segments, we find that 50% of the temporal CRSs reach their maximum level 

around the same time as the respective H3K27ac peak (i.e., 604 out of 1,208 temporal CRSs 
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that intersect with an H3K27ac peak; Figure S4). With ATAC-seq, we observe a less 

coordinated pattern of overlap between clusters yet a similar level of overlap in maximal 

segments, which allows for some discrepancy in peak times (48% of CRSs). This is possibly 

due to chromatin accessibility preceding enhancer activation and open chromatin not 

necessarily being synonymous with active regions (for example, SOX1 downstream 

enhancers were found to be accessible at an undifferentiated state but only active at a later 

stage).

Overall, we observe a substantial level of agreement between MPRA and the endogenous 

transcriptional changes, with 67% of the temporal CRSs (1,038/1,547) consistent with the 

temporal patterns of at least one of the endogenous signals (H3K27ac, accessibility, or 

mRNA expression). These results suggest that the signal captured by lentiMPRA could be 

relevant for neural induction and that the activity of the endogenous counterparts of the 

temporal CRSs may be functional during this process. For example, a MPRA temporal 

enhancer on chr2:58023768-58023938 (hg19) was part of the late MPRA cluster and 

associated with the late H3K27ac cluster and mid-late ATAC-seq cluster. The H3K27ac peak 

overlapping this region harbors ASD-associated SNPs that are in linkage disequilibrium (r2 

≥ 0.8) with the lead SNP rs2176546 (rs6545663, rs6545664, and rs6545665; Autism 

Spectrum Disorders Working Group of The Psychiatric Genomics Consortium, 2017), and 

its two closest genes, VRK2 and FANCL, are both associated with ASD. VRK2 and FANCL 
belong to the mid-early and late gene expression clusters, respectively (Figure S2C). 

Although we observed an overall strong correlation between temporal CRSs and gene 

expression, it is important to note that this overlap was not obtained for all sequences (see 

STAR Methods for discussion of these cases).

TF Binding Site Analyses Identify Important Neural Induction Genes

As the RNA product of MPRA is non-endogenous, it provides an effective way for directly 

estimating the effects of TFs on transcription. We utilized this property to pinpoint which 

TFs could be driving neural induction at the different time points. To this end, we used 

experimental data from the public domain along with DNA binding motifs to determine the 

potential binding landscape of a large cohort of TFs across our tested regions. We recorded, 

for each temporal CRS, (1) its predicted binding sites using FIMO (Grant et al., 2011) with 

two sets of TF motifs (Kheradpour and Kellis, 2014; Weirauch et al., 2014) and (2) its 

overlap with TF ChIP-seq peaks in hESCs (Gifford et al., 2013) or in hESC-derived 

neuroectoderm (Tsankov et al., 2015). The result of this analysis is a binary binding matrix 

of TFs by CRSs with entries indicating either potential binding using FDR < 10−4 for TF 

motifs or overlap with TF ChIP-seq peaks.

We next employed a strict enrichment analysis based on comparing the number of putative 

binding sites in regions within each temporal MPRA cluster versus the set of all regions in 

our MPRA design (FDR < 0.05; hypergeometric test; Table S5). This analysis was designed 

to nominate candidate TFs whose activity is specific to certain phases of the differentiation 

process. Accordingly, we found that motifs of pluripotent factors (e.g., NANOG, POU5F1, 

and SOX2; Boyer et al., 2005) were enriched in the early cluster. Furthermore, immediate 

early response factors (ATF, JUN, and FOS) were enriched in mid-early enhancers (Table 
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S5). These observations suggest that early- and mid-early clusters may respond to TFs that 

function in pluripotency maintenance and the cell’s acute response, such as apoptosis 

(Herschman, 1991), respectively. We also found that both mid-late and late clusters were 

enriched for cell fate commitment and specification factor binding. Specifically, SOX, OTX, 

and class III POU factor motifs were enriched in both mid-late and late enhancers, 

suggesting that enhancers in these groups were the direct targets of these key neural factors 

(Table S5).

Activity Score Identifies Novel TFs that Are Important for Neural Induction

To narrow down the list of candidate TFs for a follow-up investigation of their effect on 

neural induction, we defined a TF activity score, which represents the potential to affect 

transcription at each time point (STAR Methods). We considered two factors that influence 

this score at each time point: (1) the extent of deviation from the null-expected amount of 

active enhancers at that time point that are potentially bound by the TF (Grossman et al., 

2017), suggesting that these TFs may provide a parsimonious explanation for the MPRA 

signal (Kashtan and Alon, 2005), and (2) an added requirement that the mRNA that codes 

for the TF is induced compared to previous time points, which may also suggest functional 

importance (Rosenfeld et al., 2005; Setty et al., 2003; Yosef et al., 2013). For the former, we 

focused our attention to enhancers in which the temporal MPRA pattern significantly 

overlaps with the endogenous patterns, namely those CRSs pertaining to significant entries 

in Figure 5E. Each of these “consistent” entries represents a certain mode of temporal 

relationship between MPRA and the endogenous genome—e.g., early induction with 

matched timing of mRNA expression or late induction that appears after the establishment of 

chromatin accessibility. Although other CRSs in our data can be of additional interest, we 

postulate that focusing on temporal regions that conform with the major patterns of overlap 

with the endogenous processes is desirable when integrating additional genomic readouts 

(TF binding potential in this case) and may also increase the odds that the respective 

endogenous region is indeed functional.

The resulting activity matrix (Figure 6A; Table S5) provided a catalog of 107 TFs that could 

potentially function as regulators of neural induction. Repeating this analysis with the 

stricter set of temporal regions that were also detected by the per-time-point analysis yielded 

largely similar results (94 out of 107 cataloged TFs were detected). Similar to previous 

analyses, we clustered the TF activity score to four representative patterns of activity, early, 

mid-early, mid-late, and late response, and ranked it by the strength of induction of the 

respective TF’s mRNA expression and the extent of overlap between TF’s targets and the 

significant sub-clusters of MPRA activity. Overall, we observed an agreement between 

known hESCs and neural-induction-associated TFs and their temporal time points. For 

example, in the early cluster, the pluripotent marker NANOG showed high TF activity score 

at 0 h, and immediate-early gene products, ATF3, MYC, and EGR1, showed high score at 3 

h, as expected (Herschman, 1991). TFs that had a high score at later time points (24–72 h) 

included several neural TFs, such as SOX1, OTX2, and PAX6.
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Overexpression and CRISPRi Identify Novel Neural-Induction-Associated TFs

To test whether our identified TFs are indeed involved in neural induction, we selected for 

follow-up overexpression studies 26 highly ranked TFs that were predicted as active during 

different time points of the induction process: top six in mid-early (FOXL2, BACH2, 

NR3C1, SMAD1, ELF3, and HOMEZ; primarily active at 12–24 h) and top ten in mid-late 

(SOX1, NFE2, OTX2, SP5, MAF, ID4, TCF7L2, IRX3, SMAD4, and SOX2; 24–48 h) and 

late response (DMBX1, OTX1, BARHL1, POU3F2, FOXB1, NR2F2, SOX11, LHX5, 

SOX5, and PAX6; 48–72 h) clusters. In this follow-up analysis, we used PAX6 as a positive 

control, because overexpression of PAX6a (short isoform of PAX6) is known to function as 

a neuroectoderm fate determinant and was previously shown to induce hESCs into a neural 

lineage (Zhang et al., 2010). In addition, we used EGFP as a negative control.

The chosen TFs were individually overexpressed in hESCs via lentivirus. 4 days post-

infection, cells were harvested and examined for various lineage marker genes by qRT-PCR 

(Figure 6B). We found that overexpression of BARHL1, IRX3, LHX5, OTX1, and OTX2 
were sufficient to induce PAX6 expression, suggesting that these TFs may play a role in 

neural fate specification. Overexpression of these TFs also induced other neural marker 

genes directly or indirectly via PAX6 (Figure 6B). Previous studies have shown that OTX2 
overexpression promotes PAX6 expression in hESCs upon treatment with the TGF-β 
inhibitor SB431542 and FGF2 (Greber et al., 2011), and its paralogous gene OTX1 is known 

to function similarly (Acampora et al., 2003). It was also reported that LHX2, a paralog of 

LHX5, promotes PAX6 expression and neural differentiation in hESCs (Hou et al., 2013). 

However, despite LHX5 being expressed in NPCs, its overexpression has yet to be 

associated with neural induction. The same holds true for IRX3 and BARHL1, which are 

known to be expressed in the neuroectoderm and CNS, respectively, in the mouse embryo 

(Bosse et al., 1997) but whose function in neural induction has not been evaluated. 

Consistent with these findings, analysis of the PAX6 promoter region identified binding sites 

of OTX, IRX3, SOX, and POU that are evolutionarily conserved (Figure 6D). These results 

are in line with the observations that the respective region is active around 12–24 h, when 

these TFs are significantly expressed (Figure 2A), and starts to gain a high TF activity score 

(Figure 6A) at those time points. We found several additional examples of functional neural 

enhancers that contain conserved OTX, SOX, IRX, and/or homeo-domain (recognized by 

both LHX and BARHL) binding motifs upstream of the LHX5, POU3F2, and OTX2 genes 

(Figure S6).

We next tested whether these five TFs could lead to a more established neural lineage by 

analyzing the expression of late neural marker genes (e.g., FABP7 and CDH2) 9 and 14 days 

after infection. We observed continuous upregulation of the late neural markers at day 9 and 

14 (Figure 6C), consistent with the observation that these five factors activated the neural 

lineage determinant PAX6 at an early stage. Further examination of these cells at day 14 via 

bright-field microscopy and immunocyto-chemistry for the neuronal marker MAP2 

indicated that the TF-activated cells have acquired neuronal hallmarks (Figure 6E).

To gain a broader understanding of the changes to the transcriptional landscape following 

overexpression of the five TFs, we carried out RNA-seq analysis at day 14 post-infection, 

using three replicates per condition. As before, we used PAX6 as a positive control as well 
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as EGFP as a negative control. As reference, we also sequenced NPCs that were induced by 

dual-Smad inhibition for 72 h followed by 72-h culture in N2B27 medium supplemented 

with fibroblast growth factor (FGF) and epidermal growth factor (EGF), termed here as 

“dSi.” PCA of the resulting data validated the reproducibility among three replicates (Figure 

7A). Interestingly, the first principal component captured the dichotomy between the two 

reference states (ESC and NPC, represented by EGFP and dSi, respectively), as can be 

observed by marker genes and by a more systematic analysis of gene set enrichment (Table 

S6). The assayed TFs spanned a spectrum between the reference states, where PAX6 
overexpression has the most similar effect to that of dSi as expected and LHX5 
overexpression has the least amount of similarity.

To assess cell lineage, we examined overlaps of differential expression (DE) genes (Love et 

al., 2014) between each of TF-overexpressed cells and previously published hESC-derived 

mesendoderm (ME), trophoblast-like cells (TBL), mesenchymal stem cells (MSCs), and 

NPCs (Xie et al., 2013). This analysis confirmed that the overlaps are most significant for 

NPCs (Figure 7B) than the other non-neural cells, supporting the role of all the six TFs in 

neural lineage specification. Gene set enrichment analysis of Gene Ontology (GO) 

annotations (Subramanian et al., 2005) confirmed, for all overexpressed TFs, significant 

enrichment in CNS development and neurogenesis processes (Table S6). This analysis also 

validates that all overexpressed TFs lead to transcriptional changes that significantly overlap 

with those induced in dSi (Figure 7C; p < 1e–20; hypergeometric test). Indeed, specific 

neural marker genes (e.g., CDH2 and FABP7) in TF-overexpressed cells were upregulated at 

a similar level to PAX6-overexpressed cells (Figure 7D), recapitulating the qPCR results 

(Figure 6C), and mesoderm and endoderm markers were expressed in a more limited 

manner.

To explore potential regional characteristic of the TF-overexpressed cells, we focused on 

anterior-posterior brain marker genes and found that BARHL1 induced more posterior 

markers (hindbrain marker GBX2 and hindbrain-spinal cord markers HOXB2 and HOXD4), 

although, as expected, OTX1 and OTX2 induced anterior identity (fore-midbrain markers 

FOXG1, SIX3, OTX1, EMX2, PAX2, EN1, and EN2; Figure 7E). However, we should note 

that these TF-overexpressed cells are likely to comprise a heterogeneous regional identity.

To further validate the role of these five genes in neural induction, we set out to test whether 

knocking them down via CRISPR interference (CRISPRi) (Gilbert et al., 2013) will affect 

neural differentiation. We introduced dCas9-KRAB and single guide RNAs (sgRNAs) that 

target the promoters of the five genes into hESCs, followed by neural differentiation and 

qRT-PCR analyses for various markers at 72 h post-neural induction. We found that 

CRISPRi of each of the five TFs decreased the expression of early neural genes, such as 

PAX6 and POUF3F1, and increased the expression of the pluripotent marker NANOG 
(Figure 7F). At 6 days post-induction, later neural markers (i.e., CDH2 and FABP7) were 

also decreased, although other neural markers, such as MEIS2 and DLK1, showed normal 

expression and NANOG was downregulated. These results suggest that knockdown of these 

genes leads to impairment or possibly a delay in neural differentiation and therefore 

associate these genes as potential players in the regulation of neural differentiation.
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DISCUSSION

Genomic analyses of multiple time points during early neural induction provided several 

findings. We confirmed that neural induction first involves the silencing of pluripotent 

markers and upregulation of immediate early genes, corresponding to the cell’s stress 

response against differentiation stimuli. This is then followed by the upregulation of genes 

involved in neural lineage fate specification. We also observed that this process is first 

controlled by chromatin accessibility or simultaneously with H3K27ac modification 

followed by an increase in mRNA expression. These results support previous reports about 

the importance of H3K27ac as an active promoter and enhancer mark that correlates with 

(and possibly affects) temporal changes in transcription levels, which are not captured by 

accessibility alone (Heintzman et al., 2009). Finally, our work provides a comprehensive 

catalog of dynamically changing genes and regulatory elements during neural induction.

Analysis of temporal genes and DNA regions is important not only to understand the 

regulatory network underlying neural induction but also to dissect neurological disease. 

Indeed, a large body of evidence suggests that the temporal alteration of genes and 

regulatory elements involved in neural development can affect neurological phenotypes 

(Grove et al., 2019), such as cognition and brain size (de la Torre-Ubieta et al., 2018). Fitting 

with these studies, we observed significant overlap between regions with induced H3K27ac 

histone modification and neurological disorder GWAS variants. We also observed a 

significant overlap between the set of loci that had temporal H3K27ac signal in our data and 

the set of loci found to have an eQTL in the brain and in other tissues. Our null model for 

computing this statistic was the observed overlap between the set of all H3K27ac peaks in 

our data (regardless of how they change over time) and the eQTL hits. Finding significant 

enrichments beyond this baseline suggests that the temporal aspect adds important 

information, pointing at phenotypically important regions.

The use of lentiMPRA allowed us to functionally test thousands of CRSs and identify 63% 

that have temporal activity. Although we observed an overall strong correlation between the 

temporal patterns of these regions and their respective gene expression and chromatin 

features, it is important to note that this overlap was not obtained for all sequences. 

Although this may result from inaccuracies in the various assays, it may also point to 

biologically driven causes (described in detail in STAR Methods).

By integrating information from across all of our large-scale assays, we proposed a scheme 

to identify and rank TFs based on their predicted activity during the course of development. 

After an initial screen, we identified BARHL1, IRX3, LHX5, OTX1, and OTX2 as 

important regulators of neural induction, as both overexpression and knockdown of these 

factors up- and downregulated PAX6 and other neural markers, respectively. Although PAX6 
expression in hESCs was shown to be upregulated via OTX2 (Greber et al., 2011), this 

finding was novel for the other TFs. Although LHX5 is a commonly used neural marker, its 

ability to induce neural induction was not tested. IRX3 and BARHL1 were of particular 

interest. In our study, we found their expression to increase at 24–72 h, and it obtained a 

high activity score at these time points, suggesting an important role in neural induction. In 

our overexpression experiments, we observed that they could by themselves control several 
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neural markers in the hESC culture condition, including PAX6. To our knowledge, this is the 

first report demonstrating a potential role for either IRX3 or BARHL1 in neural induction. 

Although we identified important regulators of neural induction, we also observed that both 

over-expression and knockdown of different TFs perturbed different sets of neural markers 

or even non-neural markers. This observation suggests that the orchestration of multiple TFs 

is necessary to fine-tune neural differentiation. Assays that target the molecular function or 

regulatory grammar of these regulators will be necessary in order to further understand this 

regulatory network.

STAR★METHODS

LEAD CONTACT AND MATERIALS AVAILABILITY

Plasmids generated in this study have been deposited to Addgene. Further information and 

requests for resources and reagents should be directed to and will be fulfilled by the Lead 

Contact, Dr. Nadav Ahituv (nadav.ahituv@ucsf.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

hESC culture and neural differentiation—H1 hESCs (WiCell WA-01, 

RRID:CVCL_9771) were cultured on Matrigel (Corning) in mTeSR1 media (STEMCELL 

Technologies). Medium was changed daily. For passaging, cells were dissociated using 

StemPro Accutase (Fisher Scientific), washed and replated on Matrigel-coated dish at a 

dilution of 1:5 to 1:10 in mTeSR1 media supplemented with 10 μM Y-27632 (Selleck 

Chemicals). For genomic assays, hESCs were allowed to expand until they were nearly 

confluent and harvested to obtain undifferentiated hESCs (0 hour). Neural differentiation 

was performed using a dual-Smad inhibition protocol (Chambers et al., 2009). Briefly, the 

mTeSR1 media were replaced by neural differentiation media (Knockout DMEM; Life 

technologies) supplemented with knockout serum replacement (Life technologies), 2 mM L-

glutamine, 1× MEM-NEAA (Life technologies), 1x beta-mercaptoethanol (Life 

technologies), 200 ng/mL Recombinant mouse Noggin (R&D systems), and 10 μM 

SB431542 (EMD Millipore), and harvested at 3, 6, 12, and 24 hours. At these time points, 

the cells were 50%–90% confluent in 6-well plates (for RNA-seq and ATAC-seq) or 10 cm 

dishes (for ChIP-seq and lentiMPRA). The cells were further cultured by refreshing the 

neural differentiation media daily and harvested at 48 and 72 hours, when the cells were 

100% confluent.

METHOD DETAILS

RNA-seq—hESCs were plated in 6-well plates and induced to neural differentiation as 

described above. Cells from all time points were lysed in RLT buffer (QIAGEN) 

supplemented with beta-mercaptoethanol and stored in −20°C. Total RNA were extracted 

using the RNeasy mini kit (QIAGEN) following the manufacturer’s protocol. RNA was 

quantified with Qubit RNA HS assay kit (Thermo Fisher Scientific). Sequencing library 

preparation was carried out using Illumina TruSeq Stranded Total RNA Kit. Massively 

parallel sequencing was performed on an Illumina NextSeq500 with 75 bp paired-end reads. 

RNA-seq was done with three biological replicates for each of the seven time points and 

sequenced deeply with an average of 200M reads per replicate.
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ChIP-seq—ChIP-seq was performed using LowCell# ChIP kit (Diagenode) according to 

manufacturer’s instruction with modifications. Briefly, cells cultured in 10 cm dishes were 

crosslinked in 1% formaldehyde (Thermo Fisher Scientific) for 5 minutes. Crosslinking was 

quenched with 125 mM Glycine. The cells were washed with PBS and precipitated with 

centrifugation at 6000 rpm for 5 minutes. The cell pellet was stored in −80°C for each time 

point, so that all the samples were processed together. The pellet was lysed in 250 μL of 

Buffer B (LowCell# ChIP kit) supplemented with complete protease inhibitor (Roche) and 

20 mM Na-butyrate (Sigma). 130 μL of lysed chromatin was sheared using a Covaris S2 

sonicator to obtain on average 250 bp size fragments. 870 μL of Buffer A (LowCell# ChIP 

kit) supplemented with complete protease inhibitor (Roche) and 20mM Na-butyrate (Sigma) 

was added to the shared chromatin. 20 μL of the chromatin solution was saved as an input 

control. To obtain magnetic bead-antibody complexes, a mixture of 40 μL of Dynabeads 

protein A and 40 μL of Dynabeads protein G was washed twice with Buffer A (LowCell# 

ChIP kit) and resuspended in 800 μL of Buffer A. 10 μg of H3K27ac (Abcam Cat# ab4729, 

RRID:AB_2118291) or H3K27me3 antibodies (Millipore Cat# 07-449, RRID:AB_310624) 

were added to the washed beads, and gently agitated at 4°C for 2 hours. The beads-antibody 

complex was precipitated with a magnet and the supernatant was removed. 800 μL of shared 

chromatin was added to the beads-antibody complex and rotated at 4°C overnight. The 

immobilized chromatin was then washed with Buffer A three times and Buffer C once, and 

eluted in 100 μL of IPure elution buffer (IPure kit; Diagenode). In addition, 80 μL of IPure 

elution buffer was added to the 20 μL input that were saved before immunoprecipitation, and 

purified using the IPure kit. Purified DNA was sheared using a Covaris S2 sonicator once 

again to obtain on average 250 bp fragments. Sequencing libraries were generated using 

ThruPLEX DNA-seq kit (Rubicon Genomics) according to manufacturer’s protocol. The 

DNA was size-selected using SPRIselect (Beckman Coulter). 0.7× and 0.9× volume of 

SPRIselect was used for right side and left side selection, respectively. DNA was quantified 

with Qubit DNA HS assay kit and Bioanalyzer using the DNA High Sensitivity kit 

(Agilent). Massively parallel sequencing was performed on an Illumina HiSeq4000 with 50 

bp single-end read. ChIP-seq was done with two biological replicates for each time point.

ATAC-seq—ATAC-seq was performed according to previously described protocol 

(Buenrostro et al., 2013) with modifications. Briefly, 50,000 cells were dissociated using 

Accutase and precipitated with centrifugation at 500 g for 5 minutes. The cell pellet was 

washed with PBS, resuspended in 50 μL lysis buffer (10 mM Tris·Cl, pH 7.4, 10 mM NaCl, 

3 mM MgCl2, 0.1% Igepal CA-630), and precipitated with centrifugation at 500 g for 10 

minutes. The nuclei pellet was resuspended in 50 μL transposition reaction mixture which 

includes 25 μL Tagment DNA buffer (Nextera DNA sample preparation kit; Illumina), 2.5 

μL Tagment DNA enzyme (Nextera DNA sample preparation kit; Illumina), and 22.5 μL 

nuclease-free water, and incubated at 37°C for 30 minutes. Tagmented DNA was purified 

with MinElute reaction cleanup kit (QIAGEN). The DNA was size-selected using 

SPRIselect (Beckman Coulter) according to the manufacturer’s protocol. 0.6× and 1.5× 

volume of SPRIselect was used for right and left side selection, respectively. Library 

amplification was performed as previously described (Buenrostro et al., 2013). Amplified 

library was further purified with SPRIselect as described above. DNA was quantified on a 

Bioanalyzer using the DNA High Sensitivity kit (Agilent). Massively parallel sequencing 
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was performed on an Illumina HiSeq2500 or HiSeq4000 with PE150. ATAC-seq was done 

in 2 biological replicates for each time point.

lentiMPRA library generation—The lentiMPRA plasmid library was constructed as 

previously described (Inoue et al., 2017) with minor modifications. Briefly, array-

synthesized oligos were amplified with two sets of adaptor primers mentioned previously 

(pLSmP-AG-f01/r02 and pLSmP-AG-f03/r04, Table S7, sheet 1). The amplified fragments 

were cloned into pLS-mP vector (Addgene_81225, RRID:Addgene_81225) following its 

digestion with SbfI and EcoRI using In-Fusion HD cloning kit (Takara). The reaction 

products were transformed into electrocompetent cells (NEB C3020). The pre-library was 

purified using Plasmid plus midi kit (QIAGEN) and tested for its quality via sequencing on a 

MiSeq (see below section). The minimal promoter and EGFP fragment (mP-EGFP) was 

inserted into the SbfI and EcoRI restriction sites contained between the enhancer and 

barcode sequence in the pre-library using T4 DNA Ligase (NEB M0202). The ligation 

products were then transformed and midi-prepped as mentioned above to obtain the final 

lentiMPRA library.

Before inserting the mP-EGFP, the plasmid pre-library was examined for the quality of the 

designed oligos and the representation of individual barcodes via sequencing as previously 

described (Inoue et al., 2017). CRS-barcode fragments were amplified using pLSmP-ass-F 

and pLSmP-ass-R-i# primers (Table S7, sheet 1), and purified using MinElute PCR cleanup 

kit (QIAGEN). The DNA was sequenced with MiSeq (PE150). Two sets of sequencing 

primers (pLSmP-AG-seqR1 and pLSmP-AG-seqR1_2 for read 1, pLSmP-AG-seqR2 and 

pLSmP-AG-seqR2_2 for read 2, and pLSmP-AG-seqIndx and pLSmP-AG-seqIndx_2 for 

index read) were mixed at 1:1 ratio and used for the sequencing. We sequenced the CRS, 

spacer, and barcode sequences from both read ends and called a consensus sequence from 

the two reads using PEAR (Quinlan and Hall, 2010; Zhang et al., 2014). We obtained 16.4 

million paired-end consensus sequences from this sequencing experiment, 43% of which 

had the expected length, 30% of sequences were 1 bp short, and 13% were 2 bp short 

(summing up to 86%), similar to previously reported results (Inoue et al., 2017). Only 0.9% 

of sequences showed an insertion of 1 bp (Figure S3A). These results are in line with 

expected dominance of small deletion errors in oligo synthesis. We aligned all consensus 

sequences back to all designed sequences using BWA MEM (Li and Durbin, 2009) with 

parameters penalizing soft-clipping of alignment ends (−L 80). We consensus called reads 

aligning with the same outer alignment coordinates and SAM-format CIGAR string to 

reduce the effects of sequencing errors. We analyzed all those consensus sequences based on 

at least three sequences with a mapping quality above 0. Figure S3B shows the distribution 

of alignment differences (as a proxy for synthesis errors) along the designed oligo 

sequences. Errors are distributed evenly along the designed sequence, with deletions 

dominating the observed differences, similar to previous libraries generated in a similar 

manner (Inoue et al., 2017). We characterized the abundance of oligos further by focusing 

only on the barcode sequences. Barcode sequences were identified from the respective 

alignment positions of the alignments created above. To match the RNA/DNA count data 

analysis (see below), we only considered barcodes of 15-bp length. The number of barcodes 
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per CRS are shown in Figure S3C. The distribution of the abundance of barcodes is available 

in Figure S3D.

The lentiMPRA library was packaged into lentivirus using Lenti-Pac HIV expression 

packaging kit (GeneCopoeia) and the lentivirus was concentrated using Lenti-Pac lentivirus 

concentration solution (GeneCopoeia) according to manufacturer’s protocol. The lentivirus 

was titrated as described previously (Inoue et al., 2017). In brief, H1-hESCs were plated at 

1-2 × 105 cells/well in 24-well plates and incubated for 24 hours. Serial volume (0, 2, 4, 8, 

16, 32 μl) of the lentivirus was added with 8 μg/mL polybrene. The infected cells were 

cultured for 3 days and washed with PBS three times. Genomic DNA was extracted using 

the Wizard SV genomic DNA purification kit (Promega). Copy number of viral particle per 

cell was measured by qPCR as previously described (Inoue et al., 2017).

Lentiviral infection and DNA and RNA extraction—H1 hESCs cultured in a 10 cm 

dish at 80%-90% confluency were split at 1:4 ratio and re-plated on Matrigel-coated 10 cm 

dishes in mTeSR1 media supplemented with 10 uM Y-27632. After 24 hours, the cells were 

infected with the lentivirus library with a multiplicity of infection (MOI) of 5-8 along with 8 

μg/mL polybrene (Sigma) and incubated for 3 days with a daily change of the media. Three 

independent replicate cultures were infected. The infected cells were harvested right before 

differentiation (0 hours), or differentiated into neural lineage as described previously until 

appropriate time points (3, 6, 12, 24, 48, and 72 hours). In order to distinguish the barcode 

expression level between short time gaps (i.e., 0 versus 3 hours, and 3 versus 6 hours), we 

collected nuclear RNA from all time points and analyzed the nascent state of barcode RNA 

expression as below. The cells were washed with PBS three times and dissociated with 

Accutase. The cells were then precipitated with centrifugation at 500 g for 3 minutes and 

washed with PBS. To isolate cell nuclei, the pellet was lysed in 500 μl lysis buffer [(10 mM 

Tris-HCL, pH 7.4, 10 mM NaCl, 3 mM MgCl2,0.1% (v/v) Igepal CA-630,1U/μl RiboLock 

RNase inhibitor Thermo Fisher Scientific)]. The cell nuclei were precipitated with 

centrifugation at 500 g for 10 minutes, and lysed in RLT plus lysis buffer (QIAGEN) 

supplemented with 2-mercaptoethanol. Genomic DNA and nuclear RNA was purified using 

an AllPrep DNA/RNA mini kit (QIAGEN). Copy number of viral particle per cell was 

confirmed by qPCR and shown in Figure S3E. RNA was treated with Turbo DNase (Thermo 

Fisher Scientific) to remove contaminating DNA.

RT-PCR, amplification, and sequencing of RNA/DNA—Sequencing libraries were 

prepared as previously described (Inoue et al., 2017). Briefly, 25 μg nuclear RNA was used 

for reverse transcription with SuperScript II (Invitrogen) using a primer downstream of the 

barcode (pLSmP-ass-R-UMI-i#, Table S7, sheet 1), which contained a sample index, unique 

molecular identifier (UMI), and a P7 Illumina adaptor sequence. Barcode sequence was 

amplified with NEBNext high-fidelity 2X PCR master mix (New England Biolabs) for three 

cycles using this same reverse primer paired with a forward primer complementary to the 3′ 
end of EGFP with a P5 adaptor sequence (BARCODE_ lentiF_v4, Table S7, sheet 1). PCR 

products were purified with 1.8× volume of SPRIselect and underwent a second round of 

amplification for 22 cycles with the same forward primer and a P7 primer. The PCR 

products were gel-extracted and purified with MinElute reaction cleanup kit (QIAGEN). To 
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amplify barcode sequence integrated into the genome, 4 μg of genomic DNA was used for 

PCR amplification as the RNA. The amplified DNA was quantified on a Bioanalyzer 

(Agilent) using the DNA High Sensitivity kit, and sequenced with an Illumina HiSeq4000 

with 100 bp paired-end read. The BARCODE-SEQ-R1-v4 primer was used for read 1 (Table 

S7, sheet 1). The same primers as pre-library sequencing with MiSeq were used for read 2 

and index reads.

The forward and reverse reads on this run each sequenced the designed 15-bp barcodes as 

well as an adjacent sequence to correctly trim and consensus call barcodes. We obtained a 

total of 398.9, 406.5 and 415.1 million reads for replicate 1, 2 and 3 respectively; full 

statistics of read counts is presented in Table S3, sheet1. Across replicates and time points, 

95% of barcodes were of the correct length of 15 bp when matched against the designed 

barcode; full counts and barcode statistics is presented in Table S3, sheet 1-3.

Luciferase assays—To analyze enhancer temporal changes via luciferase assays, we 

engineered a lentiviral reporter vector pLS-mP-Luc (Addgene, #106253, 

RRID:Addgene_106253) to have a destabilized form of the luciferase gene by placing a 

degeneration sequence, hPEST, downstream of the luciferase gene. The hPEST sequence 

(including 3′ partial sequence of the luciferase gene) was amplified from pGL4.11 

(Promega) using the following primers (forward, TTCGAGGCTAAGGTGGTGGA; reverse 

TACGAAGTTATTAGGTCCCTC GACGAATTCTTAGACGTTGATCCTGGCGC), and 

inserted into AgeI and EcoRI sites of the pLS-mP-Luc. OTX2 ESC 

(chr14:57385639-57386304; hg19), NANOG ESC (chr12:7940151-7940848; hg19), ENSA 

ESC (chr1:150613721-150614409; hg19), EDNRB ESC (chr13:78427691-78428404; 

hg19), TMEM132D ESC (chr12:130255696-130256309; hg19), PAX6 IR 

(chr11:31832507-31832981; hg19), PARD3 IR (chr10:34716118-34717054; hg19), CRIM1 

IR (chr2:36688268-36688907; hg19), PCLO IR (chr7:82434703-82435321; hg19), OTX2 

NPC (chr14:57313599-57314370; hg19), CTNNA2 NPC (chr2:80235184-80235754; hg19), 

DLK1 NPC (chr14:101306429-101307069; hg19), MYB NPC 

(chr6:135571820-135572468; hg19) enhancers were amplified from the human genome and 

inserted into XbaI site of the vector. Primers used for cloning are shown in Table S7, sheet 2. 

The empty pLS-mP-Luc vector was used as a negative control. The plasmids were 

individually packaged into lentivirus together with Renilla luciferase vector, pLS-SV40-mP-

Rluc (Addgene, #106292, RRID:Addgene_106292) at 1:1 molar ratio using Lenti-Pac HIV 

expression packaging kit (GeneCopoeia) and the lentivirus was concentrated using Lenti-X 

concentrator (Takara) according to the manufacturer’s protocol. H1 hESCs seeded 24 hours 

before were infected with the lentivirus along with 8 μg/mL polybrene (Sigma). Three 

independent replicate cultures were infected. After 48 hours, the cells were induced into a 

neural lineage using the dual-Smad inhibition method described above. The cells were lysed 

in buffer PLB (Promega) at 0 (before neural induction), 12 and 72 hours after neural 

induction. Firefly and renilla luciferase activities were measured on a Glomax microplate 

reader (Promega) using the Dual-Luciferase Reporter Assay System (Promega). Enhancer 

activity was calculated as the fold change of each plasmid’s firefly luciferase activity 

normalized to Renilla luciferase activity.
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CRISPRa—To generate a H1 hESC line that stably expresses dCas9-VP64, the lenti dCAS-

VP64_Blast vector (Addgene, #61425, RRID:Addgene_61425) was transduced into H1 

hESCs via lentivirus at a MOI of 0.2 along with 8 μg/mL polybrene (Sigma) and incubated 

for 2 days to allow genomic integration. The cells were further cultured for 5 days in a 

media supplemented with 2 μg/mL blasticidin for selection. Individual colonies were 

isolated to obtain clonal cell populations and expanded for 2 weeks in blasticidin media. 

sgRNA sequences for SOX1, IRX3, OTX2 enhancers, PAX6 promoter and non-targeting 

negative control sequence were amplified as a part of PCR primers (Table S7, sheet 3) using 

the pLG1 plasmid (gift from Prof. Jonathan Weissman) as a template and cloned into XhoI 
and BstXI site of the pLG1. The sgRNA plasmids were transduced into dCas9-VP64 ESCs 

via lentivirus at a MOI of 5 along with 8 μg/mL polybrene (Sigma) and incubated for 2 days 

to allow genomic integration. The cells were further cultured for 2 days in a media 

supplemented with 2 μg/mL puromycin for selection. Total RNA was collected using 

RNeasy mini kit (QIAGEN). Reverse-transcription was carried out using SuperScript III 

first-strand synthesis system (Invitrogen). qPCR was performed using SsoFast EvaGreen 

supermix (Bio Rad) according to the manufacturer’s protocol. Primer sequences used for 

qPCR are shown in Table S7, sheet 5.

Immunocytochemistry—TF-overexpressed cells were fixed using 4% paraformaldehyde 

(Thermo Fisher Scientific) for 10 minutes and washed three times with PBS. Blocking was 

performed using blocking/staining solution (0.05% sodium azide, 0.1% NP40, 0.4% BSA, 

4% normal goat serum in PBS) for 1 hour. Mouse anti-MAP2 antibody (Thermo Fisher 

Scientific, catalog# 13-1500, RRID: AB2533001) and Donkey anti-Mouse IgG conjugated 

with Alexa Fluor 488 (Thermo Fisher Scientific, catalog# R37114, RRID:AB2556542) were 

used for immunostaining.

Overexpression and RT-qPCR—Total RNA was collected from neural progenitor cells 

differentiated from hESCs by dual-Smad inhibition as described above. The total RNA was 

reverse-transcribed using SuperScript III first-strand synthesis system (Invitrogen) according 

to manufacturer’s protocol. cDNA of ELF3, FOXB1, HOMEZ, ID4, IRX3, LHX5, OTX2, 

PAX6a, SMAD1, SMAD4 and SOX1 were amplified. BARHL1 (catalog#, 

MHS6278-213245170), MAF (catalog#, MHS6278-202806268), NR2F2 (catalog#, 

MHS6278-202800802), NR3C1 (catalog#, MHS6278-202832263), POU3F2 (catalog#, 

OHS6271-213587035) and SOX2 (catalog#, MHS6278-202826163) cDNA clones were 

obtained from Dharmacon. SOX11 (clone ID, OHu15579D) and SP5 (clone ID, 

OHu03497D) cDNA clones were obtained from Genscript. BACH2, DMBX1, FOSL2, 

NFE2, OTX1, SOX5 and TCF7L2 cDNA sequences were synthesized by Twist Bioscience. 

The EGFP gene (negative control) and T2A fragment were also amplified using the pJA291 

vector (Addgene #74487, RRID:Addgene_74487) as a template. Sequences synthesized by 

Twist Bioscience and primers used for the cloning are shown in Table S7, sheet 4. The 

gene’s cDNA fragment and T2A fragment were assembled into pJA291 vector that had been 

digested with EcoRI and XcmI to generate overexpression vectors that expresses PuroR-

mCherry-T2A-cDNA under the control of EF1-alpha promoter. For BACH2, SOX5 and 

TCF7L2, as their cDNA are quite long (i.e., 3 kb), 5′ and 3′ parts of the sequences that 

overlap each other were separately synthesized by Twist Biosciences and assembled when 
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cloned into the vector. The sequences of cloned cDNA were confirmed by Sanger 

sequencing. The overexpression vectors were individually packaged into lentivirus using 

Lenti-Pac HIV expression packaging kit (GeneCopoeia) and the lentivirus was concentrated 

using Lenti-X concentrator (Takara) according to the manufacturer’s protocol. The lentivirus 

were titrated with H1-ESCs by qPCR, as described above. H1-ESCs cultured in a 24-well 

plate for 24 hours were infected with the lentivirus with a MOI of 5 along with 8 μg/mL 

polybrene (Sigma) and incubated for 2 days to allow genomic integration. The cells were 

further cultured for 2-7 days in a media supplemented with 2 μg/mL puromycin for 

selection. Three independent replicate cultures were infected. Total RNA was collected 

using RNeasy mini kit (QIAGEN). Reverse-transcribed using Superscript III first-strand 

synthesis system (Invitrogen). qPCR was performed using SsoFast EvaGreen supermix (Bio 

Rad) according to manufacturer’s instruction. Primer sequences used for qPCR are shown in 

Table S7, sheet 5.

CRISPRi—sgRNA sequences for BARHL1, IRX3, LHX5, OTX1, OTX2, and PAX6 
promoters were cloned into pLG1 as described above. sgRNA plasmids and pHR-SFFV-

KRAB-dCas9-P2A-mCherry (Addgene, #60954, RRID:Addgene_60954) were co-packaged 

and transduced into H1 hESCs via lentivirus at a MOI of 5 along with 8 μg/mL polybrene 

(Sigma). Cells were incubated for 2 days to allow genomic integration and further cultured 

for 2 days in mTeSR media supplemented with 2 μg/mL puromycin for selection. At day 4 

after infection, the cells were replated and cultured in mTeSR supplemented with 

puromycin. At day six, cells were induced into a neural lineage by dual-Smad inhibition. At 

day 9 and 12 (72 hours and 6 days post neural induction), total RNA was collected using 

RNeasy mini kit (QIAGEN) and reverse-transcribed using SuperScript III first-strand 

synthesis system (Invitrogen). qPCR was performed using SsoFast EvaGreen supermix (Bio 

Rad) according to the manufacturer’s protocol. sgRNA sequences and primers used for the 

plasmid construction and RT-qPCR are shown in Table S7, sheet 5.

QUANTIFICATION AND STATISTICAL ANALYSIS

Computational pipeline for RNA-seq, ChIP-seq and ATAC-seq—For RNA-seq, 

reads were aligned to the hg19 human genome assembly with Tophat2 (Version 2.1.1) (Kim 

et al., 2013), and low quality reads were trimmed or removed with Trimmomatic (Version 

0.3.2) (Bolger et al., 2014). Reads that aligned to more than one gene as well as chimeric 

fragments were excluded. We also removed genes that failed to be quantified in at least one 

sample by Cufflinks (Trapnell et al., 2010). We implemented a quality control (QC) pipeline 

that computes an extensive set of quality metrics, relying in part on FASTQC (Version 0.3.2; 

Babraham Bioinformatics) and the PICARD suite of alignment metrics (Version 2.5.0 with 

samtools 1.3.1). Transcript levels were determined using RefSeq transcript annotations, and 

counting the number of reads aligning to every gene (defined as the union of all splice 

forms) with featureCounts (Version 1.5.0-p3) (Liao et al., 2014).

For both ChIP-seq and ATAC-seq, we used the FASTQC pipeline (Version 0.3.2; Babraham 

Bioinformatics) on our reads, and aligned them to the reference genome (hg19) with bowtie 

version 1.1.1 (Langmead et al., 2009) (for ChIP-seq) and bowtie2 version 2.2.9 (Langmead 

and Salzberg, 2012) for ATAC-seq, retaining only reads that mapped to a unique position in 
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the genome [“−m 1”]. We marked duplicate reads in the bam files using PICARD and 

checked for contamination of primer sequences using Trimmomatic (Version 0.3.2) (Bolger 

et al., 2014).

For each of our H3K27ac and H3K27me3 ChIP-seq replicate pairs per time points peaks 

were called using MACS2 version 2.1.0 (Zhang et al., 2008), with the relevant control input 

file with default parameters (setting the FDR to 0.05 and default hg19 human genome size). 

For each mark in each time point, we intersected the peaks from the two replicates. We then 

took the union of all of these peaks from all time points per mark while merging regions 

with maximum distance of 1,000 bp using bedtools (Quinlan and Hall, 2010). This resulted 

in 40,170 H3K27ac peaks and 4,446 H3K27me3 peaks (Table S1, sheet 1).

For ATAC-seq, after alignment of the reads to the reference genome, reads aligned to the 

positive strand were moved +4 bp, and reads aligning the negative strand were moved −5bp. 

For each of our two replicate pairs per time point, we called peaks using MACS2 version 

2.1.0 (Zhang et al., 2008) with default parameters (setting the FDR to 0.05 and default hg19 

human genome size). For each time point, we intersected the narrow peaks from the two 

replicates. To generate our final universe of peaks for the LentiMPRA experimental design, 

we took the union of all peaks from all time points while merging regions with maximum 

distance of 100 bp using bedtools (Quinlan and Hall, 2010), resulting in 40,486 peaks (Table 

S1, sheet 1).

Differential activity analyses—We used the 40,042 H3K27ac peaks that did not 

intersect with H3K27me3 peaks (excluding intersecting peaks per time point) to test for 

differential activity. We counted the number of H3K27ac reads that fell inside each peak 

region for each time point, for each of the two replicates. We extracted the shifted ATAC-seq 

cut sites from our data and counted the number of cut sites that fell inside each of the 40,486 

ATAC-seq peak regions for each time point, for each of the two replicates. We used the read 

count for each transcript across time points and replicates for the RNA-seq. We then used 

DESeq2 (Love et al., 2014) for all three assays to identify the differential abundance of reads 

and provide normalized reads (by a scaling factor) matrices. We performed all pairwise 

comparisons of the seven time points and recorded the FDR for each such comparison for 

every region/gene.

As an additional analysis of DE/activity over time, we used ImpulseDE (Sander et al., 2017), 

a package that fits impulse like functions to temporal data and reports differential signals 

across a time course by assigning an FDR value to each region/gene. To call differential 

H3K27ac, ATAC-seq or RNA-seq signal we used a cutoff of FDR <0.01 from ImpulseDE 

and FDR <0.05 for DESeq2, while taking a maximum of 500 top regions/genes per every 

two time point comparison. This resulted in 2,435 H3K27ac regions, 2,024 ATAC-seq 

regions (for the 7 time points experiment) and 2,172 genes that showed differential and 

temporal activity (Table S1, sheet 2). To call differential H3K27me3 signal, we used a more 

relaxed cutoff of FDR < 0.1 from ImpulseDE and FDR < 0.05 for DESeq2. This resulted in 

248 H3K27me3 regions that showed differential and temporal activity.
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ChIP-seq, ATAC-seq and RNA-seq clustering—Considering those regions/genes 

defined as differential in the previous section, we created for each assay, a matrix with the 

number of reads in each peak region or gene scaled according to the DESeq2 scaling factor 

and averaged between the two replicates for each time point. We clustered these matrices 

using the K-means clustering algorithm with 6 clusters (Figures 1B–1D and S1B; Table S1, 

sheet 3). We also computed for each cluster the significance of its intersection with a cluster 

from a different assay (Figure 1E) using the hypergeometric test with Bonferroni correction 

for the p value. For the intersection between H3K27ac and ATAC-seq peaks, we used 

bedtools (Quinlan and Hall, 2010) to determine if two peaks share at least 1 bp. For the 

intersection between H3K27ac/ATAC-seq peak region and a gene, we assigned the closest 

gene to a region (up to 1MB) using GREAT (McLean et al., 2010).

Enrichment of genomic variants—We compared enrichment of variant groups in 

H3K27ac and ATAC-seq temporal regions to their respective full set of peaks using Fisher’s 

exact test. Variant groups included: the full GWAS catalog as downloaded in February 2018 

(MacArthur et al., 2017), relevant disorder subsets of the catalog: alcohol, alzheimer, 

anxiety, autism, bipolar, borderline, brain volume, cognitive, depression, epilepsy, major 

depression, OCD, psychosis, schizophrenia, a combined list of disorders (schizophrenia, 

attention deficit disorder (ADHD), autism, bipolar and major depressive disorder), nervous 

system disorders obtained using the Experimental Factor Ontology (EFO) (Malone et al., 

2010) and negative control height variants. For nervous system disorders and height variants 

we extracted all variants in linkage disequilibrium (r2 > 0.8) using the SNP Annotation and 

Proxy Search (SNAP) tool Version 2.2 (Johnson et al., 2008). We also examined eQTLs 

from different studies (Leslie et al., 2014) and eQTLs from brain tissues (GTEx Consortium, 

2015). All variants were converted to hg19 genomic location using the LiftOver tool 

available on the human genome browser (Kent et al., 2002).

lentiMPRA library design—We devised five criteria to nominate a set of CRS to be 

tested for their function during neural induction. For criterion 1 we selected sequences that 

are next to genes involved in neural differentiation or known enhancers that were validated 

(Table S2, sources of manually curated enhancers were shown in the column “References”). 

Criteria 2 and 3 require the closest gene to be induced upon neural induction; to satisfy this, 

we require the gene to be included in one of clusters 2 to 6 in Figure 1B. For criterion 4, we 

selected the most significant 20 (sorted by FDR) of each of the following tests: 1) RNA-seq 

differential expression over time (using ImpulseDE); differential signal in one of the 

following: 2) ATAC-seq 3hr versus 0hr (using Deseq2); 3) ATAC-seq 72hr versus 0hr 

(Deseq2); 4) H3K27ac 3hr versus 0hr (Deseq2); 5) H3K27ac 72hr versus 0hr (Deseq2); 6) 

RNA-seq of nearest gene 3hr versus 0hr (Deseq2); 7) RNA-seq of nearest gene 72hr versus 

0hr (Deseq2). The criteria were applied sequentially (in the order in which they were 

described), and the respective sets of candidate enhancers are mutually exclusive. To focus 

on neural induction, we excluded regions that are adjacent to the pluripotent factors SOX2, 

KLF4, MYC, NANOG, and POU5F1.

Notably, all selection criteria use a subset of our ATAC-seq data (0, 3, and 72 hours), which 

was available during the design of the library. Furthermore, we excluded from the design 

Inoue et al. Page 23

Cell Stem Cell. Author manuscript; available in PMC 2019 November 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



sequences that overlap with regions in the hg19/ ENCODE blacklist (https://

sites.google.com/site/anshulkundaje/projects/blacklists) (Table S2).

Due to limitations of the procedure of oligonucleotide synthesis, the assayed sequence are 

required to be 171 bp long. If a selected candidate region is shorter than 171 bp, we 

extended it equally from each side. If it is longer than 171 bp - we record all 171 bp options 

with a sliding window of 1 bp. For each such 171 bp sequence candidate we recorded motif 

hits using Fimo (Grant et al., 2011) with FDR < 10−4 cutoff using the motif list from 

ENCODE (Kheradpour and Kellis, 2014) and chose the candidate sequence that has the 

maximal number of hits and satisfies the following criteria: 1) The sequence should not 

contain EcoRI (GAATTC) and SbfI (CCTGCAGG), because these sites were later used for 

inserting the minimal promoter (mP) and EGFP gene between the candidate regulatory 

sequence and barcode; 2) We discarded sequences with homopolymers longer than 8bp, 

since homopolymers can affect oligo synthesis; 3) There should be no more than 25% 

overlap (of the 171bp) with simpleRepeats regions from ENCODE (http://

hgdownload.soe.ucsc.edu/goldenPath/hg19/database/simpleRepeat.txt.gz).

We added to these 171 bp sequences a 5′ primer sequence (AGGACCGGATCAACT), 

along with a 14 bp spacer sequence (CCTGCAGGGAATTC) that contains two restriction 

enzyme sites (SbfI and EcoRI), to allow for the subsequent insertion of the minimal 

promoter and EGFP gene followed by a 15 bp designed barcode sequences and a 3′ primer 

sequence (CATTGCGTGAACCGA) (Figure 2B) (Inoue et al., 2017). In our final array 

design, we included 2,664 different target sequences (2,271 – sequences after filtering, 193 

controls, 200 scrambled sequences), each with 90 different barcodes to provide a robust 

readout (Figure 2B). Barcode sequences of 15 bp length were designed to have at least two 

substitutions and one 1 bp insertion distance to each other. Homopolymers of length 3 bp 

and longer were excluded in the design of these sequences, and so were ACA/CAC and 

GTG/TGT trinucleotides (bases excited with the same laser during Illumina sequencing). 

More than 556,000 such barcodes were designed using a greedy approach. The barcodes 

were then checked for the creation of SbfI and EcoRI restriction sites when adding the 

spacer and 3′ flanking sequences. From the remaining sequences, a random subset of 

239,760 barcodes was chosen for the design. The final designed oligo sequences are 

available in Data S1.

Replicates, normalization and RNA/DNA ratios—We used both the forward and 

reverse reads to sequence the 15 bp reporter barcodes and obtain consensus sequences. We 

matched the observed barcodes against the designed barcodes, and noticed that across 

replicates and sample types, ~95% of barcodes had the correct 15 bp length. Only correct 

size barcodes that are observed at least once in both RNA and DNA of the same sample 

were subsequently used for analysis (assuming basal levels of transcription through the 

minimal promoter).

To estimate the RNA to DNA ratio per barcode in each replicate, we first scaled the RNA 

and DNA read counts using the number of reads as scaling factor.
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RNA ∕ DNA ratio per barcode: RNA reads
(sum RNA reads) / DNA reads

(sum DNA reads)

Although the DNA and RNA counts of individual barcodes are highly correlated between 

experiments (Table S3, sheet 4), the noise of each measure results in a poor correlation of 

RNA/DNA ratios (Table S3, sheet 4). However, there are on average 68-72 barcodes per 

CRS in each replicate (out of 90 barcodes programmed on the array; Table S3, sheet 5). To 

reduce noise, we aggregated the RNA or DNA counts across all associated barcodes for each 

CRS.

To estimate the abundance of DNA or RNA per CRS and for each replicate (in order to 

compare replicates and time point, we use a simple averaging scheme:

D(R)NA per CRS = (106 ∗ ∑i = 1
#BC D(R)NAi ∕ #BC ∗ (sum D(R)NA reads)) where D(R)NAi 

denotes the reads of a specific barcode I among the #BC barcodes that belong to the 

respective CRS.

To determine the RNA/DNA ratios per CRS and for each replicate we used two strategies:

Ratio of sums:
∑i = 1

#BC RNAi
(sum RNA reads)

∑i = 1
#BC DNAi

(sum DNA reads)

(1)

Sum of ratio:
∑i = 1

#BC RNAi
(sum RNA reads) / DNAi

(sum DNA reads)

#BC

(2)

We added a pseudo count of 1 to the numerator and denominator to stabilize signal from 

CRS with low numbers of reads. Table S3, sheet 6 shows DNA or RNA abundance and 

RNA/DNA ratios per CRS between every two replicates per time point. Table S3, sheet 7 

shows DNA or RNA abundance and RNA/DNA ratio (using the two schemes) per CRS for 

each replicate, comparing every two time points. Notably, the two schemes are largely 

consistent. In the remainder of this study, we used the second scheme (sum of ratios). We 

also compared between DNA, RNA and ratio per time point for each replicate. We observed 

low correlation between RNA/DNA ratios and DNA counts, indicating that enhancer activity 

was not influenced by the number of DNA integrations (Table S3, sheet 8).

Although normalized individually, the three replicates do not seem to be on the exact same 

scale (Table S3). To combine replicates, we therefore first divided the RNA/DNA ratios 

observed in each sample (time point/ replicate) by the median ratio and then obtained the 

final RNA/DNA ratio by averaging the normalized values across replicates.
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Determining differential and temporal CRS activity using MPRAnalyze—
MPRAnalyze is a statistical framework for analyzing MPRA data (Ashuach et al., 2019), 

using a parametric graphical model to infer the enhancer induced transcription rate. The 

model assumes a linear relationship between the latent plasmid (DNA) and transcript (RNA) 

counts, relating them through scaling by the transcription rate α. The plasmid counts are 

assumed to follow a log-Normal distribution, and the RNA counts are assumed to follow a 

Negative Binomial distribution. This model incorporates external covariates, such as batch 

effect, barcode-specific effect and conditions of interest, by fitting two nested generalized 

linear models, one fitting the latent plasmid counts from the DNA counts, and the other 

fitting the transcription rate from the latent plasmid counts and the observed transcript 

counts. This model was designed to leverage the statistical power of multiple barcodes. 

More details are provided in Ashuach et al. (2019).

Quantification and classification of active enhancers: to classify active CRS, estimates of α 
were extracted for each time point from the model described above. The α values 

corresponding to control enhancers are used as the baseline, and a modified z-score is 

computed for each CRS. The scores are computed as the distance from the median of the 

control α values, normalized by the median absolute deviation (MAD): 

scorei = αi − median(αC) ∕ K ⋅ MAD(αC), where the constant K is set to ensure that the scores 

behave asymptotically normal, and aC is the vector of values corresponding to control 

enhancers. P values are produced based on these scores compared with the standard normal 

distribution.

Identifying temporal CRS—To test for temporal activity, we incorporate control 

enhancers to define the null temporal behavior and use a likelihood ratio testing to detect 

significant temporal behavior. For a given CRS, the null assumption is that it behaves 

according to the null temporal behavior. We evaluate this assumption by fitting a joint model 

for the time course data of this enhancers, together with the set of negative controls. In the 

alternative model, the CRS has a temporal profile that is different form the null. To evaluate 

it, we fit a separate model for the controls and the CRS. In this scheme, a CRS with temporal 

behavior that significantly deviates from the null will have a clear benefit to the likelihood 

under the alternative model. The score is therefore computed by a likelihood ratio test 

between the two models.

Clustering MPRA data and association with other genomic assays—We 

clustered temporal MPRA regions into four rough patterns of expression, namely early, mid-

early, mid-late and late response (Table S4, sheet 1). Using the genomic location of each 

region, we retrieved the normalized number of reads using DESeq2 (Love et al., 2014) from 

an overlapping H3K27ac and ATAC-seq peaks (if any), as well as the expression of the 

nearest gene. We clustered each genomic assay separately to four clusters (similar to MPRA 

signal clustering). We then compared MPRA temporal profile to that of each genomic assay 

by measuring the overlap between the resulting clusters using a hypergeometric test and 

Bonferroni corrected FDR < 0.05 (Table S4, sheet 2).

Inoue et al. Page 26

Cell Stem Cell. Author manuscript; available in PMC 2019 November 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



TF activity score computation—To compute the activity score of each TF (represented 

by a motif or a ChIP-seq experiment) at each time point, we look for consistent sub-clusters 

that peak during that time point (in terms of MPRA signal) and that significantly overlap 

with the putative target regions of the TF (p value < 0.005, Hypergeometric test). We then 

count the number of putative target regions that appear in at least one significantly 

overlapping sub-cluster. The final score is defined by the number of regions found at each 

time point divided by the total number of regions found across all time points. As an 

additional constraint, we only consider time points in which the mRNA that encodes for the 

TF is highly expressed (6th or higher quantile of expressed genes) and significantly induced 

compared to the preceding time point [p value < 10−5; for the first time point (0 hour), we 

compare to the subsequent time point (3 hours) (Love et al., 2014)].

TF activity score ranking—The TF activity score was ranked per each one of the 4 

clusters with an unbiased approach that is based only on the data produced for this paper. It 

uses two components: (i) the p value of the overlap between the TF’s targets and significant 

sub clusters of MPRA activity (Figure 5E; Table S5) – taking the minimum p value. (ii) log 

fold of the TF’s mRNA induction according to cluster: 0-12hr for cluster 2, 0-48hr for 

cluster 3, 0-72hr for cluster 4. We rank (i) and (ii) per cluster and use their average as the 

final ranking score.

RNA-seq following TF overexpression—RNA-seq was performed by Novogene for 

the eight cell populations across three replicates, including: overexpression of BARHL1, 

IRX3, LHX5, OTX1, OTX2 and PAX6, negative control EGFP (corresponding to hESC 

state) and dSi, which were induced from hESCs via dual-Smad inhibition for 72 hours 

followed by further 72h-culture in N2B27 medium supplemented with 20 ng/mL bFGF 

(R&D systems) and 20 ng/mL EGF (MilliporeSigma). The RNA-sequencing data was 

processed similarly to the procedure described above. PCA analysis of RNA-sequencing 

these eight cell populations across three replicates, is based on the 1000 most variable genes 

(Figure 7A). For the overlap between DE genes (EGFP, dSi) and (EGFP, factor) or (EGFP, 

factor_i) and (EGFP, factor_j) we used a jaccrad score of: (∣∩ upregulated genes∣ + ∣∩ 
downregulated genes∣)/(∣∪ upregulated enes∣ + ∣ ∪ downregulated genes∣).

The hypergeometric test of the overlap used a background of all genes with TMP > 1, 

resulting in p value = 0 for all the tests (Figure 7C). We used DESeq2 (Love et al., 2014) for 

differential expression (DE) analysis for comparing each of the six overexpressed TFs to 

controls (EGFP and dSi) and comparing EGFP to dSi. Upregulated and downregulated genes 

were defined based on the cutoff of FDR < 0.05; ∣logFC∣ > 1 (Figures 7D and 7E). For the 

cell lineage analysis, we used data on lineage-restricted genes of four hESC-derived cell 

types (i.e., trophoblast-like cells (TBL), mesendoderm (ME), mesenchymal stem cells 

(MSCs) and neural progenitor cells (NPCs)), and restricted the lineage-restricted genes to 

have FPKM > 1 only in that lineage based on Table S1 in Xie et al. (2013). We examined 

their overlaps with our DE genes (EGFP, factor_i) in a similar way to the jaccard score 

described above (Figure 7B).

Characterizing MPRA and chromatin/mRNA inconsistencies—To investigate the 

inconsistency phenomenon at the chromatin level, we turned to the cluster- level analysis 
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(Figures 5E and S6). This analysis was designed to identify cases where regions that exhibit 

a certain temporal pattern with MPRA are likely to exhibit another pattern in their 

accessibility or H3K27 acetylation (adjusted p value < 0.05). As a general trend, the results 

indicate that ‘inconsistent’ temporal regions tend to become induced (when assayed by 

MPRA) after the occurrence of chromatin changes in their respective endogenous loci. For 

instance, we observe a significant overlap between the set of regions that become induced 

after 24 hours when examined by MPRA (MPRA cluster 3; Figure 5A), and the set of 

regions that become (or remain) accessible during the preceding time points (ATAC-seq 

cluster 1; Figure 5D). Furthermore, this pattern of delay is observed more often with 

chromatin accessibility, compared with H3K27ac (Figure S4). These results could 

potentially be explained by our previous observations that DNA accessibility precedes 

H3K27ac during neural induction, which is followed by gene expression changes (Figure 

1E), and that the temporal H3K27ac signal is a stronger indicator for MPRA enhancer 

activity (Figure 3A). In addition to inconsistency with the chromatin readouts, we also 

observe temporal CRS that show inconsistency with their postulated target genes.

Specifically, we observe temporal CRS that were active several time points before their 

postulated target genes (Figure S4B) and the opposite, where genes were active before the 

CRS (Figure S4C). The pattern of MPRA induction before the endogenous mRNA can be 

rationalized by additional constraints that may exist in the endogenous regions, but not 

necessarily in the (random) integration sites such as dependence on a wider chromatin 

context, which may be required to enable transcription. Additional technical factors of the 

assay, including the length of the assayed sequence (171 bp), may also underlie these 

discrepancies. It is also worth noting that our assays only find potential enhancers but not 

their target gene/s. Conversely, the latter pattern (mRNA before MPRA) is harder to 

rationalize and is more likely a result of the assay’s inaccuracy.

We investigated the cases in which the MPRA data of temporal CRS and the mRNA data of 

their respective genes did not match. To account for cases of CRS- gene miss-assignment, 

we removed from this analysis cases where there was another nearby gene (looking at the 

closest four) that was more correlated with the MPRA but showed inconsistency with the 

closest gene mRNA signal. To this end we first separately clustered each of the two sets 

(closest genes and the most correlated neighboring genes) to four temporal clusters. We 

declared two clusters c1 (from the set of closest genes) and c2 (from the set of most 

correlated genes) as sufficiently matching if the median of the Pearson correlation 

coefficient across all pairwise comparisons of the respective genes was larger than 0.5. We 

considered a region for further analysis if the clusters that contain its closest gene and its 

most correlated neighboring gene are sufficiently matching. Counting the number of 

occurrences of each of the two patterns, we find that the second one (mRNA before MPRA) 

is of a substantially lower abundance (137 versus 358 enhancers), and that its size is in fact 

at the level of overlap between random sets (adjusted Hypergeometric p value > 0.05) 

(Figure 5E). The resulting regions are depicted in Figure S4.
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DATA AND CODE AVAILABILITY

The datasets generated during this study are available at the NCBI Gene Expression 

Omnibus (GEO) as accession number GEO: GSE115046. The published article includes all 

code generated or analyzed during this study.
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Refer to Web version on PubMed Central for supplementary material.
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Highlights

• RNA-seq, ChIP-seq, and ATAC-seq reveal regulatory dynamics during neural 

induction

• lentiMPRA functionally characterized >1,500 temporal enhancers

• Combined genomic analyses ranked and identified key neural induction 

factors

• Overexpression or CRISPRi of 5 different factors affected neural 

differentiation
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Figure 1. The Dynamic Changes of ATAC-seq, ChIP-seq, and RNA-seq Peaks Are Sequentially 
Correlated
(A) Transcripts per million (TPM) (log2, averaging over three biological replicates) per time 

point of marker genes (neural, mesoderm, endoderm, neural crest, pluripotent, nodal/BMP 

targets, and immediate early genes).

(B–D) Heatmap of scaled read counts (log2, averaged over three biological replicates and 

standardized per row) of temporal genes and genomic regions, showing data from RNA-seq 

(B), H3K27ac ChIP-seq (C), and ATAC-seq (D). The loci in each assay were clustered into 

six groups based on their temporal patterns.

(E) Overlap between the temporal clusters in the three data modalities (Bonferroni-corrected 

p values of a hypergeometric test). Circle sizes represent the proportion of overlap between 

every two clusters. The overlap is computed either at the region level (ATAC-seq versus 

ChIP-seq) or at the gene level (ATAC/ChIP-seq versus RNA-seq; regions in the former 

assays are represented by their nearest gene).
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Figure 2. Experimental Design of lentiMPRA
(A) Sequence selection for lentiMPRA. 2,271 candidate regulatory regions (CRSs) were 

selected based on RNA-seq, H3K27ac ChIP-seq, and ATAC-seq data. Curated known 

enhancers (Table S2), 193 positive control regions, and 200 negative controls were included 

as well.

(B) Schematic showing lentiMPRA design. CRSs along with 15-bp barcodes were 

synthesized on a custom array and cloned into a lentiMPRA vector. The library was 

packaged into lentivirus and infected into hESCs. The infected cells were cultured for 3 days 

to allow genomic integration. DNA and nuclear RNA were extracted at seven time points (0, 

3, 6, 12, 24, 48, and 72 h) and subjected to sequencing followed by estimation of 
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transcriptional activity. ARE, antirepressor element; BC, barcode; LTR, long terminal 

repeat; mP, minimal promoter; WPRE, woodchuck hepatitis virus posttranscriptional 

regulatory element.
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Figure 3. lentiMPRA Signal for Different Enhancer Types
(A) Cumulative distribution function indicating the frequency (y axis) of sequences with a 

specific MPRA signal (x axis; taking the maximum signal over time). Design criterion 

number (1–5) is indicated per each tested group of CRSs.

(B and C) Similarity between the MPRA signal measured at different time points, using 

either the intersection of the sets of significantly active regions (Jaccard coefficient; B) or 

the correlation of the signals (Pearson correlation; C).

(D and E) RNA-seq (red), ATAC-seq (green), H3K27ac ChIP-seq (blue), and MPRA 

(RNA/DNA ratio heatmap) tracks around NANOG (D) and SOX1 (E). RNA/DNA ratio at 

each time point is shown as bar charts at the bottom.

(F) Enrichment of predicted TF binding sites in temporal CRS. Top 30 differentially 

enriched TF binding sites when comparing temporal and non-temporal CRSs are shown 

(Fisher’s exact test). TF categories are indicated on the right side.
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Figure 4. Validation of Enhancers by Luciferase Assays and CRISPRa
(A) Relative luciferase activity for each enhancer compared to Renilla luciferase activity at 

0, 12, and 72 h post-neural induction. Five ESC enhancers, four immediate response (IR) 

enhancers, four NPC enhancers, and empty pLS-mP-Luc vector (negative control) were 

tested.

(B) MPRA signal (RNA/DNA ratio) at 0, 12, and 72 h post-neural induction.

(C–F) Functional validation of enhancers by CRISPRa. sgRNAs that target enhancers nearby 

SOX1 (C), OTX2 (D), IRX3 (E), and PAX6 alternative promoters (F) or negative control 

sgRNA (NC_sgRNA) were infected into hESCs that stably express dCas9-VP64. 

Upregulation of respective genes relative to HPRT were examined by qPCR and shown as 

bar charts on the right.

Data are presented as means ± SD of three independent experiments.
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Figure 5. Activity of Temporal CRS: Comparing lentiMPRA to the Endogenous Signals
(A–D) Temporal MPRA signal (RNA/DNA ratio; A), normalized read count of the closest 

gene detected by RNA-seq (B), H3K27ac ChIP-seq (C), and ATAC-seq (D), clustered into 

four temporal groups separately. Rows are standardized.

(E) Overlap between the lentiMPRA clusters and the three genomic data modalities. Shown 

are Bonferroni-corrected p values of a hypergeometric test. Circle sizes represent the 

proportion of overlap between every two clusters. The overlap is computed either at the 

region level (lentiMPRA versus ATAC-seq or ChIP-seq) or at the gene level (lentiMPRA 

versus RNA-seq; using the nearest gene to represent each lentiMPRA region).
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Figure 6. Activity Score Identifies Novel TFs Involved in Neural Induction
(A) Heatmap of activity scores per TF per time point. Values are normalized (minimum to 

maximum) per each row and sorted by considering both the induction of the TF’s mRNA 

expression and the overlap of the TF’s targets with significant sub-clusters of MPRA activity 

for each cluster. The 26 TFs used for overexpression are marked in red font.

(B and C) TF overexpression. Marker gene expressions (pluripotent, mesoderm, endoderm, 

and neural) are examined by qRT-PCR at early (B; day 4) and late (C; days 9 and 14) time 

points post-vector transduction. Relative expression compared to the HPRT gene is shown as 

a heatmap with the scale on the right side. Grey entries indicate no significant changes 

(Student’s t test; p > 0.05).

(D) TF analyses of the PAX6 promoter region show binding sites for OTX2, IRX3, POU, 

and SOX that are evolutionally conserved between human, mouse, and frog (Xenopus 
tropicalis).

(E) MAP2 immunocytochemistry. hESCs overexpressing BARHL1, IRX3, LHX5, OTX1, 

OTX2, PAX6, and negative control (NC) were stained with MAP2. Bright field (top), MAP2 

(middle), and DAPI (bottom) are shown. Scale bars represent 200 μm.
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Figure 7. RNA-seq for Cell Overexpressing TFs and CRISPRi
(A) PCA analysis of RNA-seq for overexpression of BARHL1, IRX3, LHX5, OTX1, OTX2, 

PAX6, and EGFP (negative control) and dSi (positive control) across three replicates, based 

on the 1,000 most variable genes. x axis PC1; y axis PC2.

(B) Jaccard score for the overlap between lineage-restricted genes of four hESC-derived cell 

types (ME [mesendoderm]; MSCs [mesenchymal stem cells]; NPCs [neural progenitor 

cells]; TBLs, [trophoblast-like cells]) (Xie et al., 2013) and our DE genes (EGFP and factor).

(C) Overlap between genes that are differentially expressed between the reference conditions 

(EGFP and dSi) and genes that are differentially expressed after overexpression using a 

Jaccard score (intersection over union; note that only genes that had consistent direction of 

change [upregulated in both or down-regulated in both] were considered to be a part of the 

intersection set).

(D and E) TPM (log2, averaging over three biological replicates) for selected cell lineage 

markers (neural, mesoderm, endoderm, neural crest, and pluripotent; D) and brain regional 

markers (telencephalon, diencephalon, mesencephalon, metencephalon, and 

myelencephalon; E).

(F) TF knockdown by CRISPRi. sgRNAs that target promoters of BARHL1, IRX3, LHX5, 

OTX1, OTX2, and PAX6 or negative control sgRNA (NC_sgRNA) were infected into 

hESCs along with dCas9-KRAB. Cells infected only with dCas9-KRAB (dCas9 only) were 

used as a negative control. Marker gene expression relative to HPRT was examined by qPCR 

at 72 h and 6 days after neural induction. Upregulation (red) or downregulation (blue) 

comparing to non-treated wild-type hESCs is shown as heatmap matrices.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-Histone H3 (acetyl K27) antibody Abcam Cat# ab4729, RRID:AB_2118291

Rabbit Anti-Histone H3, trimethyl (Lys27) 
Polyclonal antibody

Millipore Cat# 07-449, RRID:AB_310624

Mouse anti-MAP2 antibody Thermo Fisher Scientific Cat# 13-1500, RRID:AB_2533001

Donkey anti-Mouse IgG conjugated with 
Alexa Fluor 488

Thermo Fisher Scientific Cat# R37114, RRID:AB_2556542

Bacterial and Virus Strains

Biological Samples N/A

Chemicals, Peptides, and Recombinant 
Proteins

Matrigel Corning Cat# 354277

Y-27632 Selleck Chemicals Cat# S1049

knockout serum replacement Life technologies Cat# 10828-028

Recombinant mouse Noggin R&D systems Cat# 1967-NG-025/CF

SB431542 EMD Millipore Cat# 616464-5MG

Complete protease inhibitor Roche Cat# 11 873 580 001

Na-butyrate Sigma Cat# B5887-1G

polybrene Sigma Cat# TR-1003-G

N-2 supplement Life technologies Cat# 17502048

B27 supplement w/o A Life technologies Cat# 12587-010

Recombinant Human FGF basic R&D systems Cat# 233-FB-025/CF

Epidermal Growth Factor (EGF) MilliporeSigma Cat# GF144

Critical Commercial Assays

LowCell# ChIP kit Diagenode Cat# C01010072

IPure kit v2 Diagenode Cat# C03010015

ThruPLEX DNA-seq kit Rubicon Genomics Cat# R400428

Nextera DNA sample preparation kit Illumina Cat# FC-121-1030

Lenti-Pac HIV expression packaging kit GeneCopoeia Cat# HPK-LvTR-40

Allprep DNA/RNA mini kit QIAGEN Cat# 80204

Dual-Luciferase Reporter Assay System Promega Cat# E1980

SuperScript II Invitrogen Cat# 18064071

SuperScript III first-strand synthesis system Invitrogen Cat# 18080051

Deposited Data

Raw and analyzed data This paper GEO: GSE115046

Human reference genome NCBI build 37, 
GRCh37

Genome Reference Consortium https://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/
human/

Experimental Models: Cell Lines

H1 hESCs WiCell Cat# WA-01, RRID:CVCL_9771

Oligonucleotides

BARHL1 Dharmacon Cat# MHS6278-213245170

MAF Dharmacon Cat# MHS6278-202806268
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REAGENT or RESOURCE SOURCE IDENTIFIER

NR2F2 Dharmacon Cat# MHS6278-202800802

NR3C1 Dharmacon Cat# MHS6278-202832263

POU3F2 Dharmacon Cat# OHS6271-213587035

SOX2 Dharmacon Cat# MHS6278-202826163

SOX11 Genscript Cat# OHu15579D

SP5 Genscript Cat# OHu03497D

Primer Sequences for lentiMPRA See Table S7 for sequences N/A

Primer Sequences for cDNA cloning See Table S7 for sequences N/A

Primer Sequences for enhancer cloning See Table S7 for sequences N/A

sgRNA Sequences See Table S7 for sequences N/A

Primer Sequences for RT-qPCR See Table S7 for sequences N/A

Recombinant DNA

pLS-mP Addgene Cat#81225, RRID:Addgene_81225

pLS-mP-Luc Addgene Cat#106253, RRID:Addgene_106253

pLS-SV40-mP-Rluc Addgene Cat#106292, RRID:Addgene_106292

pGL4.11 Promega Cat#E6661

lenti dCAS-VP64_Blast Addgene Cat#61425, RRID:Addgene_61425

pLG1 Gilbert et al., 2013 N/A

pJA291 Addgene Cat#74487, RRID:Addgene_74487

pHR-SFFV-KRAB-dCas9-P2A-mCherry Addgene Cat#60954, RRID:Addgene_60954

Software and Algorithms

Bowtie2 Langmead and Salzberg, 2012 http://bowtie-bio.sourceforge.net/bowtie2/index.shtml

bowtie Langmead et al., 2009 http://bowtie-bio.sourceforge.net/bowtie2/index.shtml

Samtools Li and Durbin, 2009 http://samtools.sourceforge.net/

Tophat2 Kim et al., 2013 https://ccb.jhu.edu/software/tophat/

Trimmomatic Bolger et al., 2014 http://www.usadellab.org/cms/?page=trimmomatic

Cufflinks (Trapnell et al., 2010 Babraham Bioinformatics https://www.bioinformatics.babraham.ac.uk/

FASTQC Babraham Bioinformatics https://www.bioinformatics.babraham.ac.uk/

PICARD suite https://broadinstitute.github.io/picard/

featureCounts Liao et al., 2014 http://subread.sourceforge.net/

MACS2 Zhang et al., 2008 https://github.com/taoliu/MACS

bedtools Quinlan and Hall, 2010 https://bedtools.readthedocs.io/en/latest/

DESeq2 Love et al., 2014 https://bioconductor.org/packages/release/bioc/html/
DESeq2.html

ImpulseDE Sander et al., 2017 https://bioconductor.org/packages/release/bioc/html/
ImpulseDE.html

GREAT McLean et al., 2010 http://great.stanford.edu/public/html/

BWA MEM Li and Durbin, 2009 http://bio-bwa.sourceforge.net/

MPRAnalyze Ashuach et al., 2019 https://bioconductor.org/packages/release/bioc/html/
MPRAnalyze.html

Cell Stem Cell. Author manuscript; available in PMC 2019 November 12.

http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
http://samtools.sourceforge.net/
https://ccb.jhu.edu/software/tophat/
http://www.usadellab.org/cms/?page=trimmomatic
https://www.bioinformatics.babraham.ac.uk/
https://www.bioinformatics.babraham.ac.uk/
https://broadinstitute.github.io/picard/
http://subread.sourceforge.net/
https://github.com/taoliu/MACS
https://bedtools.readthedocs.io/en/latest/
https://bioconductor.org/packages/release/bioc/html/DESeq2.html
https://bioconductor.org/packages/release/bioc/html/DESeq2.html
https://bioconductor.org/packages/release/bioc/html/ImpulseDE.html
https://bioconductor.org/packages/release/bioc/html/ImpulseDE.html
http://great.stanford.edu/public/html/
http://bio-bwa.sourceforge.net/
https://bioconductor.org/packages/release/bioc/html/MPRAnalyze.html
https://bioconductor.org/packages/release/bioc/html/MPRAnalyze.html

	SUMMARY
	Graphical Abstract
	In Brief
	INTRODUCTION
	RESULTS
	The Neural-Induction-Associated Transcriptome
	The Neural-Induction-Associated Regulome
	Neurological-Disorder-Associated Variants Are Enriched in Temporal H3K27ac Peaks
	lentiMPRA Identifies Regulatory Regions that Are Active during Neural Induction
	lentiMPRA Identifies Temporal CRS
	Enhancer Activity Is Consistent with the Endogenous Temporal Profiles
	TF Binding Site Analyses Identify Important Neural Induction Genes
	Activity Score Identifies Novel TFs that Are Important for Neural Induction
	Overexpression and CRISPRi Identify Novel Neural-Induction-Associated TFs

	DISCUSSION
	STAR★METHODS
	LEAD CONTACT AND MATERIALS AVAILABILITY
	EXPERIMENTAL MODEL AND SUBJECT DETAILS
	hESC culture and neural differentiation

	METHOD DETAILS
	RNA-seq
	ChIP-seq
	ATAC-seq
	lentiMPRA library generation
	Lentiviral infection and DNA and RNA extraction
	RT-PCR, amplification, and sequencing of RNA/DNA
	Luciferase assays
	CRISPRa
	Immunocytochemistry
	Overexpression and RT-qPCR
	CRISPRi

	QUANTIFICATION AND STATISTICAL ANALYSIS
	Computational pipeline for RNA-seq, ChIP-seq and ATAC-seq
	Differential activity analyses
	ChIP-seq, ATAC-seq and RNA-seq clustering
	Enrichment of genomic variants
	lentiMPRA library design
	Replicates, normalization and RNA/DNA ratios
	Determining differential and temporal CRS activity using MPRAnalyze
	Identifying temporal CRS
	Clustering MPRA data and association with other genomic assays
	TF activity score computation
	TF activity score ranking
	RNA-seq following TF overexpression
	Characterizing MPRA and chromatin/mRNA inconsistencies

	DATA AND CODE AVAILABILITY

	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Figure 7.
	Table T1



