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1. Introduction and Summary

This report presents the first results of a new analytical study of the
hydrological transport of a radioactive contaminént through a planar fracture
in porous rock. The purpose is to predict the space-time dependent concentra-
tion of the contaminant in the groundwater, as affected by advective transport
within the fracture and by molecular diffusion of the contaminant into and out
of pores that intersect the fracture surfaces.

Previous analytical solutions of this problem have neglected dispersion
and sorption within the fractures1 or have presented results with untested
approximationsl. In the present report we formulate the transport problem
for a sorbing radioactive contaminant with no decay precursors, assuming an
exponentially decaying step and band functions source ét the boundary.

Analytical solutions are obtained for zero-dispersion and non-zero dispersioﬁ
in the fracture, and are comﬁared with the solution for the one-dimensional
transport through porous media. As the fracture retardation coefficient or
the fracture width increases, or as the porosity of the rock matrix surrounding
the fracture or the pore diffusion coefficient decreaées, concentration pro-
files in the fracture approach those for the one-dimensional transport through
porous media. A criterion for using porous media solutions instead of fractured
media solutions is obtained by studies of numerical results.

Solutions for dispersive transport are also compared numerically with those
for non-dispersive transport. The differences between the quantities calcula-

ted for non-zero. fracture dispersion and for zero fracture dispersion become
w/RYE 2
- £ 3

® = 200/R

observable when a criterion is satisfied by the ratio, -
)

ZDRf

where v/Rf represents the contaminant velocity in the fracture and D/Rf the
fracture dispersion coefficient divided by the fracture retardation coefficient,

R If w becomes greater than some value, which is obtained by numerical

£
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results, the differences between these two cases become negligible, and one
can use the zero dispersion solution with reasonable accuracy.

Future studies will be extended to include the effects of neighboring
fractures, other source boundary conditions, and the effects of radioactive
decay of migrating decay precursors.

2. Single Fissure Surrounded by Infinite Matrix, No Dispersion

2.1 Formulation of the Problem, Assumptions

Consider a rock matrix containing planar fissures extending in the z
direction. Here the fissures are assumed to be parallel and widely separated,
so that each fissure can be assumed to be surrounded by infinite porous rock.
Within the fissure ground water flows at a constant velocity v in the z
direction, but the water in the micropores in the rock is assumed to be at
rest. ‘The contaminant source at z = 0 is assumed to be uniformly distributed
over the breadth of the fissure (normal to z). We seek to calculate:

a. the contaminant concentration N(z,t) in the water in the fissure

at distance z along the fissure and at time t,

b. the contaminant concentration M(y,z,t) in water in the rock pores,

at a distance y into the pore from the fissure surface,

c. the advective mass flux J(z,t) of the contaminant at position z

in the fissure, and

d. the time-dependent cumulative release of the contaminant across

a plane at z, and normal to z, in the fissure.

The concentration N(z,t) is the concentration averaged across the fissure
thickness, and the concentration M(y,z,t) is averaged across the pore cross section.
For the purpose of the first analysis, dispersion within the fissure is neglected.
Additional assumptions are:

a. the contaminant source yields a specified exponentially decaying

boundary concentration at z = 0, beginning step-wiée at t =0,

b. there is no decay precursor of the contaminant in the ground water.

-2-
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C.

d.

the contaminant sorbs on the fissure walls and within the pores,
and

sorption is governed by linear sorption isotherms.

2.2 Governing Equations

The transport terms and geometry are shown in Figure 2.1. Here, for

completeness, dispersive transport is included. It will be later set equal

to zero for the first analytical solutions. The terms that enter into the

conservation equations, expressed as amount per unit time per unit area of

fissure surface, are:

A.

where

contaminant entering the control volume

bvN(z)dt by convection
-bD N dt - by dispersion
3z |z=z Y P

contaminant leaving the control volume by fissure-water transport

bvN(z+dz)dt = bv(N(z)+dN)dt , by convectidn_
oN _ aN 10N . -
-bD 37 | z=g+ dzdt = fbD (—37 =z * d(a_z) dt by dispersion

contaminant sorbed on the fissure surface

ffdzdt

contaminant diffusing into the rock pores
qdzdt
contaminant undergoing radioactive decay within the control volume

AN{z)bdzdt

N(z,t) = concentration of the radioactive contaminant in fissure

water, kg/m3

-radioactive decay constant, yr_l

rate of diffusion from the fissure into pores, per unit

area of fissure surface,-kg/mzyr

-3
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Fig. 2.1 A discrete fracture surrounded by a semi-infinite rock

matrix. Quantities (A) - (E) are explained in the text.



= rate of sorption from the fissure onto fissure surface,

Te .
2
kg/m"yr
b = half width of fissure,.m’
v = water velocity averaged across the fissure width, m/yr
D = coefficient for dispersive transport in fissure water, mz/yr.

A mass balance on the control volume yields:

bdzaN = (bvNdt - bD 3N dt) - (bwide + budndt

o0 N ae - opa(BYat)+ #dzdt + qdzdt + ANbdzdt,
and so :
§E+Vﬂ_D§_2ﬂ+)\N+ﬂ+f£=0 (2.1)
ot 3z 322 b b T :

Denoting the concentration of sorbed contaminant on the fissure surfaces as
Ns(z,t) (kg'per"m2 of surface), and neglecting surface diffusion, the following
rate equation applies:

BNé ‘
Pr ANs - Tp = 0. . o (2.2)
Assuming a linear sorption isotherm:

Ns(a,t) = KfN(z,t), ' _ (2.3)
where Kf is the sorption distributibn coefficient for the fissure surface (m).

Substituting (2.3) into (2.2), we obtain:

oN

Kf a3t * XKfN - ff =0, ) (2.4)
and combining (2.4) and (2.1) yields:
. 2 '
a_N" ?.Ii - B__N. 9; = ’ ' ’
Rf T Va3 D 3z2 + RfAN * 5 0, (2.5)

where Re is the retardation coefficient for fissure transport:

Ke , | ,
Re =1+ . (2.6)



On the other hand, the governing equations for nuclides in the rock pores
can be expressed by considering one-dimensional molecular diffusion in pore
water, radioactive decay and sorption from pore water to pore surface and

neglecting surface diffusion,

e - D, -sy—zl‘zq e +at = 0»‘, (2.7)
and :
a EIii§-+ aM -aft =0 ' : (2.8)
p 9t P PP ’ o
where (2.7) is for the water phase and (2.8) is for the sorbed contaminant on
pore surfaces, and where |
M(y,z,t) = concentration of the radioactive éontaminant in pore watér,
kg/m3
Ms(y,i,t) = concentration of sorbed contaminant on the pore surfaces,
| | kg/m2 of pore surface
€ = porosity of rock excluding the pores which are no£ connectéd
"to the fissure |
ap = pore surface area per unit volume of rock matrix, m2 of
surface/m3 of rock |
Dp = diffusion coefficient Qf contaminant in pores, mz/yr
fp = rate of sorption from pore water 6nto pore surfaces,
kg/m2 yr. |
Assuming a linear sorption isotherm:
Mg (7,2,t) = K M(y,z,t) | | (2.9)
where Kp is the sorption distribution coefficient for th¢ pore surface (m).
By (2.7), (2.8) and (2.9), we obtain
oM BZM |
R.p 3% " Dp 5;7-+ RpXM =0, » - (2.10)



where Rp is the retardation coefficient for rock pore transport:

a
R =1+-2 K . | 2
% € P : (
By using the quantity, M(y,z,t), we can evaluate the quantity, q, in (2.3) as
follows:
q=-ep M

p 3y |y=b ° (2

2.3 Analytical Solutions for No Dispersion
By setting D = 0 in (2.5) we have the following governing equations for the

case with no dispersion in the fracture:

oN oN q = |
Resx+ Ve +RAN+d=0,¢t>0,z250, | .
and
oM 3°M _ '
Rp H-Dpa—}',-2—+RpM1f0,t>O’y>baZ->0) (.
where
oM
q-=- er -3—}-; |y=b, t > 0, A 0, (2'
Kf |
R-=1+—, and . : (2.
f
b .
a _
R =1+-2 K. | .
P € P

The initial and boundary conditions are

N(z,0) = 0, z>0° ’ (2.
M(y,z,0) = 0, 250,y .
N(O,t) = ¥(t) t>0 - (2.
N(~,t) = 0, t>0 (2.
M(b,z,t) = N(z,t), t>0,z>0 (2.
M(w,z,t) = 0, ‘ t S 0, z>0. ‘ (2.

.11)

.12)

13)

10)

12)

6)

11)

14a)
14b)
14¢)
14d)
l4e)
141)



We will first derive the solutions for a general release mode, y(t), where

y(t) is any integrable function. By Laplace transformation of (2.10) we .obtain

D . .
pM=l—QP—d—Z[\—21——AM, . (2
p dy -
where - ,
M(y,z,p) = f e Pt M(y,z,t) dt. (2

0
The solution which is physically admissible is

M(y,z,p) = ¢; exp { -B(y-b) vp*X }, (2

where c, constant

1
D s YT /m . (2

B = .18) -
P

By Laplace transformation of the boundary condition (2.1l4e), we obtain

Icl(b,z,p) = I:I(z, ) = cy-
Therefore, (2.17) becomes

M(y,z,p) = N(z,p)exp { - B(y-b) vp*X }. (2.19)
From this, one can calculate the Laplace-transformed q as

G = ep M

q. - EDp d}r y:b

= €D B /X N(z,p) . (2.20)
By Laplace transform of (2.13), we obtain
F. v N, FLd. |

pN + ﬁ;- z AN + b - 0. (2.21)
On substitution of (2.20) into (2.21), we have

aN | Re 7 Y+ |

(_1—Z_+V_- P+ A+ A N=‘0, (2.—22)

.15)

.16)

.17)
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where
bR

e 4 % ' :
A= » YT . (2.23)
‘/ii R .
“pp
Then eq. (2.22) can be solved with respect to z;
~ - Rf 1
N(z,p) = v(p)exp {- ~ (p+r+ x VPt )z} , (2.24)
using the Laplace-transformed boundary conditions:
N(o,p) = ¥(p), (2.25)
N(=,p) = 0, | | | | (2.26)
and - _ ‘
~ _ -pt
I(p) = f e Ply(t)dt. (2.27)
0 .
Next we make the inverse transformation:
-AZ - -ZA-p -7V ~ .
N(z,t) = e MR 171 [ TFARBR i) ] (2.28)
R.z VR |
where Z = AR and L © [. ] stands for inverse Laplace Transform. (2.29)
Making use of the formula,
1 [6(p)e'PE] = ®(t-E)h(t-E), E > 0 o (2.30)
where h(t) is Heaviside step function, (2.28) becomes
N(z,t) = e MA ht-z0L ) exp (-2/57% )] (2.31)
’ p)exp (~4vp t>t-ZA .
where the remaining inverse transform can be made by using the convolution rule:
72
e~ _ t w0 - At .
sme ] - f bty —E— e T, (2.32)

2/mt'3

(o)

Subétituting (2.32) into (2.31) gives the analytical solution for N(z,t):



- Z
t-ZA -At! :
N(z,t) = e'*ZAh(t-ZA)] Vtzat) —E e A gp
Zvﬁt"’s
t>0,2>0. (2.33)
By (2.24) and (2.19),
~ o~ AIA A ' '
M(y,z,p) = v(ple exp(-pZA)exp {- (Z+B(y-b))vp+x }. (2.34)

By a derivation similar to that for N(z,t), we obtain the analytical solution

for M(y,z,t):

2
t-ZA ' . z?
M(y,z,t) = e ““hn(t- ZA)[ ¥ (t-ZA-t" ) 2 oM g g
_ ZVﬁtJ
t>0,y>b,z>0 ~(2.35)
where Z' = Z + B(y-b). . (2.36)

The advective mass flux at position z in the fracture is defined as

J(z,8) = W(z,t) - D3N t50, 25 0. | | (2.37)
By setting D = 0, l \
J(z,t) = W(z,t), t >0, z > 0. ’ (2.38)

Finally, the time-dependent cumulative release across a plane at z in the

fracture can be written as

t t-ZA . tZA-t' 2 ot
Z 4t’ et
fJ(z,t') dt' = ve h(t ZA)[ f Y(7)dy —=2=2—e dt' |
1/ '3
o . 2Vmt
t>0,z>0. (2.39)
For a step release,
v(t) = Nh(t)e T (2.40)

the solutions are obtained by substituting (2.40) into (2.33), (2.35), (2.38)
and (2.39):

N_ =F(z,t), t> 0,220 (2.41)

NO

-10-



M—o = F,(y,z,t), t >0, y >b, 2>0

Z.

Y i

= vFl(z,t), t>0,z2>0

=

t .
l J—(—gz’);c—')dt' = Fs(z,t),_ t>0,z>0
0 N - -

h where

and

the solutions are obtained by the superposition method:

Fl(Z,t) = h(t-ZA) e Merfc ( Z )
2/t-ZA,
F,(y,2,1t) = h(t-zA) e Mt erfc (_Z+B(x-b))
2/t-ZK

F;(z,t) = %fh(t-ZA) [e-AZA- %_-{e/XZ erfc(

~VAZ

e erfc( L__ . /)TE—TA))} -_e_xterfc( 2 )]
2Vt-ZA : 2vt-ZA

Z
2Vt-ZA

KT

N° is the initial concentration of the contaminant at z = 0.

For a band release,.

w(t) = N {h(t) - h(t-T)},

N _ AT ]

1:1—6 = Fl(Z,t) e Fl(Z,t T), t > 0, z > 0

ll =F (}’,Z,t) - e-)\TF (y,Z,t-T), t>0,y> b, z2>0
N° 2 2 - - -
J _ . _-AT )

;6 = V{Fl(Z,t) e Fl(Z,t T)} , t > 0,2z>0

NO
-0

where T is the leach time.

-11-

t ' _ :
f T2t gt = Fo(z,0) - e ME(2,tT), £20, 2 > 0

(2.

(2.

(2

(2.

(2

(2.

(2.

(2.

(2

(2

42)

43)

.44)

45)

.46)

.47)

48)

49)

50)

.51)

.52)



2.4 Computer Code

2.4.1 Quantities Calculated

The following quantities can be calculated by FIS003 for the step release
and by FIS007 for the band release:

a. the relative concentration, N/No, in fracture water, given by (2.41)
or (2.49),

b. the relative concentration, M/No, in pore water in the surrounding
rock, giVen by (2.42) or (2.50),

c. the normalized advective mass flux, J/No, in the fracture, given by
(2.43) or (2.51), and

t
d. the normalized time-dependent cumulative release, Jr J/Nodt‘, given

by (2.44) or (2.52). °
N/N° is computed by the same subroutine fof M/NC by setting y=b, because
(2.41) or (2.49) is a subcase of (2.42) or (2.50), respectively.
2.4.2 Algorithm |
See Figure 2.2.

2.4.3 Input Data Format

See Table 2.1.

2.4.4 Parameter Ranges for Calculation

All the four quantities can be calculated for any (y,z,t) or (z,t) with
reasonable accuracy.

3. Single Fissure Surrounded by Infinite Matrix, with Dispersion

3.1 Formulation of the Problem, Assumptions

The problem and assumptions are the same as stated in Section 2.1 except
that dispersive transport in the fissure along the direction of z is now

considered.

"12.



V, POR, XL, D, DP, RF,RP -

TITLE
#* =0
y.1, Tt L FLAC O oees
Y.Z T
Yes
IO
No
Yes
calc J/N° output
cale [ «i/N'dt’ .2, MWN
output
Y,Z,MN°, U/N°,
JUN°aY
. ]
4 1
END
XBL 857- 6490

Fig. 2.2 Algorithm of the computer codes.
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Table 2.1 Ihput Data Format

(a) For fixed time
name in
parameter the codes Format
1. velocity \ E10.3
2. porosity POR E10.3
3. half width of fracture B E10.3
4, decay constant XL E10.3
5. leach time(*) TLEA E10.3
6. dispersion coeff. D(**),DP 2E10.3
7. retardation coeff. RF , RP 2E10.3
8. TFLAG(**%) 12
9. time T E10.3
10. location Y,Z 2E1073
| |
El (****)
ECF 9.999E+3, 9.999E+3
(b} For fixed location
E name in
parameter the codes Format
1. velocity \ E10.3
2. porosity POR E10.3
3. half width of fracture B E10.3
4. decay constant XL E10;3
5. 1leach time(*) TLEA E10.3
6. dispersion coeff. p™*) pp 2E10.3
7. retardation coeff. RF, RP 2E10.3
8. 1rLac ™) 12
9. location Y,Z 2E10.3
10. time T E10.3
| I
|
EOF 9.999E+3 (")

(*) only for the band release (FIS007, FIS017)

(**) must be input zero for zero dispersion (FIS003, FIS007)
(***) for fixed time, input 0; for fixed location, input 1.
(***%) end-of-data mark.

-14-



3.2 Governing Equations

The complete derivation is shown in Section 2.2, but for further reference,

we repeat the governing equations:

R N, N ﬁN_ q .
Rf 5—-+ 52 D ; + Rka + b 0, t>0,z>0
Z
R M_p 82M+RAM 0,t>0,y>b, z>0
p 3t pay P
with
K
_ £
Re=1l+g
a
R =1+-2 K
P € p
- . M
q = er 3y |y=b t>0,z>0
and
N

J(z,t) = vN(z,t) - D ,t>0,z>0

3z

~ subject to the same initial and boundary conditions as (2.14a) to (2.14f).

3.3 Analytical Solutions for Non-Zero Dispersion

First, we will solve these governing equations for the general release

mode, ¥(t), and then substitute (2.40) into those general solutions.

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

By Laplace transform of (3.2), we obtain the same equation as (2.15), and

SO we have, for ﬁ(y,z,p),

M(y,z,p) = N(z,p) exp {- B(y-b) vp*x }
and for a,

q = erBVr——' N(z,p),

both of which are obtained by the same derivation through (2.15) to (2.20).

Laplace transform of (3.1) and substitution of (3.8), we obtain

d2

dz

Re 1 ~
—ﬁ-(p+A+ x VptA ) N =0, z > 0.

2

&
Ol<
&2,

-15-

(3.7)

(3.8)

By

(3.9) .



The solution of (3.9) is generally expressed as

+ -
N(z,p) = C,(p)e””

where C2 (p) and Cs(p) are constants,

’ L
v [11’ {1+82(p+>\+ %»’pﬂ )} 2] , (3.
v = v/2D and , (3.
4R D .
i .
v .
Cz(p) and C3(p) are to be determined by the boundary conditions. rt, v, 82 and
A have been used for short-hand notation. ,
The Laplace transforms of the boundary conditions yield
N(0,p) = ¥(p) e Cy(p) + Cgep) = v(D) (3.
N(,p) = 0 L Cyp) = 0. (3.
Therefore, (3.10) can be written as
N(z,p) = b(p)e Zexp [-\)z {l+82(p+}\+ % /p+)\)}l/2] . (.
In order to avoid the difficulty of the double square root in (3.16), we apply
the formula:
2 ' ' '
o 2 X X
et 2 dg = /n e'z’-»(, X > 0. (3
o € 2 _ _
Then, (3.16) becomes :
RN
-E - .
~ - vz -2 o0 4£2
Nez,p) = b@e” = | e exp [ -WpK - YY) de 3.
)
where
\)28222 : ,
Y = 5 (3
4A8™

Now we obtain the inverse Laplace transforms of (3.18):

~16-

. Cs(p)ezr » | | . (3.

10) -

11)
12)

13)

14)
15)

16)

.17)

18)

.19)



2.2
- V'z

o 2 ; - X
N(z,t) = 2 e\’ZI AL L'l[w(p)e'Y“P” e’YA(p““]dg. (3.20)

m

Using the formulae:

L eeE] = o(t-B)h(t-E), E > 0 (3.21)
and Y2
: Y CAt-
L-l[e-Y/—pH\J = —— ¢ 4t (3.22)
2/nt3 ’
we obtain the following as the solution to N(z,t) for the general release mode,
w(t) : o gl - v2z2
2 -
N(z,t) = & e\’zf e 85 MR g vy
o
£YA R SEppYe
. Y(t-YA-t') —— e 4t" dt'dg, t >0, 2> 0 (3.23)
o /e'3
Substituting (3.18) into (3.7) yields
- N g2 __vzzz '
M(y,z,p) = v(p)e /E,/’ e 452 exp {-Y'Vp+A - YA(p+2) } dg (3.24)
o
where
Y' =Y + B(y-b). (3.25)

Now we can obtain the inverse Laplace transform of (3.24) as the solution to

M(y,z,t) for the general release mode, ¥(t):

2 szz
Lo T ar  ava A
M(y,z,t) = - e e e h(t-YA) Y y(t-YA-t")
o (o]
yr? :
1 e 7@ "M dtdg, t>0,y>b, z>0. (3.26)
V'3

oN

In order to calculate J(z,t), we need %

Differentiating

(3.18) with respect to z yields
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s 2 ,
i;] =2 eVZ{[ (\) .y 3) f(€;2) g (8,p;z)dg
vl 7o 28

® 2.2
f YEZ f£(g52) R g(E,psz)de

°°\)2822
f : £(£;2) (pA)g(E,p;2z)dE
o 2t
where

2 vZZZ
f(£;z) = exp {-& - 7
48

g(£,p32) = U(p) exp [- {/pX + A (p*A)}Y]

were used for short hand notation.

and

Now we will obtain the inverse Laplace transform of (3.27). Let

K, = L [e(E,p52)]
K, = L'l[»/per g(€,p;z)], and

~
11

o = L o)gE,psn)].

K1 can be obtained in the same way as (3.20) to (3.23), so that

t_YA - X_Z_ - At'
1
= h(t-YA) e MA [ P(E-YAt) ——— e 4t dt'.
o 2/t '3
Noticing that
Y
_ _ 4t
Lt [/5'e‘n4;] =2 H, ('QQ:)
4/nt3 2/t
where
: d
H, (X = X _—7' (e'x )
and (3.21), we can write K2 as follows:
t-YA y? y2 ,
-AYA A A
= h(t-YA)e Y(t-YA-t') —— e dt'.
o 4/mt'3

(3.

(3.

(3.
(3.

(3.

(3.

(3.

(3

(3.

.27)

28)

29)

30)
31)

32)

33)

34)

.35)

36)



Similarly, by using the identity

Y2
3 -
71 [pe_Y'/ﬁ] -1 (%— - 6Y> e “t (3.37)
8vmt>
and (3.21), we can write K3 as follows
t-YA ' YZ '
“AYA 1 y> T g M
K, = h(t-YA)e y(t-YA-t') — - 6Ye dt'. (3.38)
3 ' o- 8/t t

Using (3.33), (3.36) and (3.38), we obtain the expression for %g—. Therefore

J(z,t) can be written as

I(z,6) = W(z,t) - D5} (2,0,
or vzzz
vz [~ 2wk v [T e
J(z,t) = S— h(t-YA)e e T e v(t-YA-t')
’ 21
o o
YZ

- . 1 . .

1 o e At vy {1+ V2 + vZDBZZ Y + XE—-SY 1

; %\} dt'dt , t >0, 2> 0. (3.39)

Then, the time-dependent cumulative release 1s
t o ) - —5 t-YA ,t-YA-t'
vz 4
fJ(z,t')dt' =& ];h(t—m)e‘g ‘*YA[ f v(n)dr
(o]

- Yi - At! |

.]. e4t‘ VY 1+\i‘_z_ +\)DBZ ( ' __)l'

o3 . 2&2 2t t
; %} dt'de, t >0, z > 0. (3.40)
At

For a step release, Yy(t) = Noh(t)é_ , the solutions are obtained by substituting

(2.40) into (3.23), (3.26), (3.39) and (3.40):

= Fy(2,t), t>0,2>0 | (3.41)
N .

M

- = Fs(y,z,t), t>0,y>b,z>0 (3.42)
. > > >
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I

== F (z,t), t>0,2>0

zZ

t v
f wdt'=F7(z,t),t>0,z>0
o)

N
where \)Zz2

o] - —

27
Fy(z,t) = 1% evzf h(t-YA)e—g 487 oAt erfc(
0

2/t-YA,

dg

o2

[e 0]

2" .2
Ec(y,z,t) = 7‘? e"zf hit-yaA)e s 48 e erfe (M))da,
(o]

1)

22
vz

°° 277
Fe(z,t) = 1 e"zf h(t-YA)e > Mt [./1? v (14 \_)_27)
™ o ) 2

' Roz 2
Y £ 2t-YA Y
° erfC + exp - - dE,
(Z/t-YA) 6% A(t-YA)Y? { it YA_)}]

2,2
°° -YZ YA

.
1 11 4
F,(z,t) = - & Felz,t) + ¢ Z—e"Z[ h(t-yae s

-[V<1+ % ) P(Ezt)

R.z
f 2t-YA
+ - A(t-YA)
ZEZ A(t- YA)3/2 { 4(t-YA) }
R.z
+ I
€ A
P (&5z,t) = - '/_erfc( + YA(t- YA))
- 2Vt-YA -
+e-Y'/>T erfc( - V/A(t-YA) )
2vVt-YA

v20-.-

(3.43)

(3.44)

(3.45)

(3.46)

(3.47)

(3.48)

(3.49)




For a band release, one can obtain the solution by using the superposition

method:
N -AT
§5'= F4(z,t) - e F4(z,t-T), t>0,z>0
Mo Rzt - e M (y,z,t-T), t >0, y>b,z2>0
NO 5 5 - - o
J_ . F_(z,t) - e_ATf (z,t-T), t >0, z>0
N° 6 6

¢
QLElEll.dt' = F_(z,t) - e-Alf (z,t-T), t >0, z > 0.
N° 7 7

S"“\

(3.50)

(3.51)

(3.52)

(3.53)

The verification for the solutions for the step release is given in the Appendix.

3.4 Computer Code

3.4.1 Quantities Calculated

To evaluate the integrals in the solutions, we introduce a variable trans-

formation so that the integration interval becomes finite. By introducing
-2 [or 1 N
I n_ T
z Rf £’

. z
the 1nterval,.§- It

we rewrite the exponential term as

_EZ_Y.Z_.Z_Z-f-\)Z'_\) DE _-Z_.-- R_flz
2 “Vr Pz Ve @
4t _ f

. =€ . ’ :
otherwise, if z increases, eV% soon becomes too large for computers.

After changing the integration interval, one can use Gaussian quadrature
to make numerical integrations. However, since each integrand function
expressed with y has such a sharp peak in 0 < u < 1 that the function value
exceeds the computer lower limit in a very small interval in 0 < p < 1, one
must compress the integration interval to the interval where the function is

evaluated to be non-zero by computers.

-21-

(3.54)

,R' : ' :
£ <. & <o becomes 0 <y < 1. To avoid computer overflow,

(3.55)



‘For example, the magnitude of the integrand in N/N® will be determined

by the following 2 terms:

R 2
/Dt oz W’ f 1
exp{-(\) '@ M 7 ﬁf u ) }and
R
tp“+A ]—JE (y-b)
erfc P
2A Ve (1-1%)
In case of
2
WlDt \/ 1 > 25.‘92,
u —

-291, which is the limit of the computation.

(3.56) becomes smaller than 10
When greater than 25.9, (3.56) is replaced by zero.

Considering the asymptotic expansion of erfc(X)s,

-X

erfc(X) e S

1

[~
¥l

where

M L1eZeoeene (2m-1)

S=1+Y) (-1 ,IargX|<4§'n,
m=1 o2
(2X%)
, 2 |
the magnitude of erfc (X) at very large X depends upon e = . Therefore if

this argument of (3.57) becomes 25.9, (3.57) is also replaced by zero. There-
fore, the integration interval must be compressed to the range of the union of
the following intervals:

from (3.56), u_ <wu <M, and

from (3.57), 0 < n< g

where
_125.9 + /670.81 * 2wz

Hy
- zv-‘/gi
£

-22-
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(3.59)



-670.81-p/2A%+ (670.81% B3t x 670.81)7\
. X 817

u3_

R
p=aV R b .

p

and

s In-Figure 2.3, one can observe a few representative examples which illus-
trate the actual interval for mumerical integration. As shown in the figure,
the interval becomes smaller.as't increases. 1In the GauSsian quadrature method,
which is used in the codes FISO13 and FISO17, the abscissae are distributed in
the compressed interval for accurate integration. Thus we integrate between u-
and p+ instead of between 0 and 1.

Inithe same way, wé obtain the same interval as (3.58) and (3.59) for
N/N®, J/N° and f J/N°dt' except that p is set to zero.
3.4.2 Algorithm |

The algorithm for FISO13 and FISOl7 is the same as that for FIS003 and
FISO17. For the mumerical integration, the package subroutine DPIAJF of NAG
library is called. The relative error of the numerical integration is set to

less than 1 x 107°.

3.4.3 Input Data Format
Same as Table 2.1

3.4.4 Parameter Ranges for Calculation

For the values of

1 to 104,

4

- Re:
R:1tol0
p

- D : up to 100 (mz/yr),
t :up to lOg(yr), and
z @ up to'1060n),

calculations were completed successfully.
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3 <A Q) .
(0) t=10 > : ] . b#

o p- M+ M |
(i) Integrand<10¥ (i) Integrand>1072°
- =0.04736 |
H+=02112
/-L_3=0.9927
RN
(b) t=10° A— 1 .
()Il" H+ M3 |
- p-=0.004736
[-l-+=0.02||2
H3z =0.7414

(c) t=10 DEB——I , |
| TR - C

pt-=0.0004736

H+= 0.002112
H3 = (0.2804

XBL 857-6499

Fig. 2.3 Compressed integration intervals for several t values.

Integration is made between p- and u+.
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4. Examples of Numerical Evaluations

Here we will show some examples which illustrate the effects of the dis-
persive transport in the fracture (i.e., D) and the sorption in the rock pores
(i.e, Rp) on the profiles of the concentrations, the advective mass flux and
cululative release. The parameter values used in this report are obtained
from our previous reportl.

In Figures from 4.1 to 4.4, one can observé the profiles at 10,000 years
for a step release, of the relative concentration in the fracture (Fig. 4.1),
the relative concentratioh in the rock pores at a distance of 100 m from the
repository (Fig. 4.2), the advective mass flux in the fracture (Fig. 4.3), and
the cumulative release in the fracture (Fig. 4.4), respectively. Effects of
Rp are clearly observed in each figure. As R.p inc?eases by a factor of 100,
the distance from the repository, z, where the values of the vertical axes
become-O.l percent of the initial values at the repository, decreases by a
factor of about 10. On the other hand, the differences between the values for
D=0andD =1 mz/yr,are so small that they cannot be distinguished on the
figures, even though the values for D=1 mz/yr are slightly greater than those
for D = 0.

Figures 4.5, 4.6 and 4.7 depict the change of the quantities in time up
to 109 years for a step release. Again the effect of D is very small. The
relative concentration in the fracture at z = 100 m (Fig. 4.5) reaches a
maximum of 0.9855 at 10000 years. This graph shows that the contaminant reaches
the point, z = 100m, at t = 10 years, corresponding té the nuclide travel time
Z/(V/Rf) = 10 years. After the maximum, the concentration decreases because of
the radioactive decay. After 107 years, the concentration becomes smaller than

-140

1x10 . The advective mass flux in the fracture (Fig. 4.6) at z = 100 m has

a very similar profile to Fig. 4.5. Figure 4.7 shows the change of the cumula-

tive release in the fracture in time. This quantity has an upper limit because,
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in (2.44) as t > =

P Ja,t) ger - ¥ SMNAAL

lim ) X N for small A. As shown in

oo N
0

>|<

the figure, the cumulative release approaches V/x = 3.084 x 107(m).

In Figures 4.8 to 4.14 we show the profiles for a band release with a
leach time of 5000 years. In Figures 4.8 to 4.11, one can observe the profiles
at 10,000 years, when the leaching is finished, for the four quantities. Again
effects of D are too slight to distinguish. Effects of Rp are very similar to
those for a step release. Because of the band release, each profile has its
peak except for Fig. 4.11. After the leaching has stopped, there is no con-
taminant flowing out of the repository, and uncontaminated water begins to flow
in the fracture. However, there is still contaminant in the rock pores. Because
the concentration in the rock pores is now higher than that in the fracture, the
contaminant begins to diffuse back to the fracture. This situation is depicted
in Fig. 4.9. 1In Fig. 4.9, the profiles for R.p = 1 and 100 show the concentra-
tion gradient from inside of the ro;k to the fracture. For Rp = 10,000,
however,lthe opposite gradient still exists. For R.p =1 aﬂd 100, the position,
z = 100m, is located at the left hand side of the peak in the profile in Fig.
4.8, while for Rp = 10;000, at the‘riéht hand side of the peak.

Figures 4.12, 4.13 and 4.14 show the change of the quantities in time for a
band release. Up to the end of leaching, the profiles are identical to the
corresponding profiles for a step release. After the leach time, N/N° and J/N°
suddenly decrease. Figure 4.14 shows the upper limit because in (2.52),

tJ(z’t') dt!' = %7 (1_e'>\T)e">\ZA'/5\Z

1im 5

o N
o
=~ %I(AT) = vT for small A. As shown in the figure, the cumulative

release approach vT = 5 x 104(m).
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Fig. 4.1 Concentration profiles of 237Np in the fracture for a step release.
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Fig. 4.2 Concentration profiles of 237Np in the micropores, for a step release.
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37Np at position z in the fracture, for a step release.
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Fig. 4.4 Cumlative release o Np across a plane at z and normal to

z ‘in the fracture, for a step release.
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Fig. 4.5 Time dependent concentration of 237Np at position z = 100 m in
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Fig. 4.6 Time dependent advective mass flux of 237Np at z = 100 m, step release.
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Fig. 4.10 Advective mass flux of 237Np at position z in the fracture,

band release.

-36-



t , ,
[J(Z.t)/N°dt, m

5
10 T T ! |
D=0, D=1.0 m¥%y
10’k -
oy = _
v=10 m/y
0%  e=00i =
2b=0.0lm
AB"Np) =3.24x107T/y
Dp=0.01 m?/y
Re=
10k f
t= IO4y B
T=5x03%y
Band release
| i 1 | 1
| 10 102 103 104 10°
- Distaonce along fracture,z, m
’ X8L 857-63510

Fig. 4.11 Cumulative release of 237Np across a plane at z and normal to

z in the fracture, band release.
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Fig. 4.13 Time dependent advective mass flux of 237Np at z = 100 m, band release.



_Ov_

10

- —4996xi0* — — — —

E 4
k3 10 [~ D=0, D=1.0 m%/y
pa
x I03— v=10 mfy -
= £=00!
= 232b=0.0l m 7
- 2 A(23Np)=3.24x10" 7y _
w -
© Dp= 0.0l m%y
R¢= |
o] 5 Rp= | -
z2=100m
18 T=5x10%y i
|0-' | I 1 i 1 1 J
N 10 o> 10> 10t 10 0® 10 o  10°
Time, yeor

Fig. 4.14 Time dependent cumulative release of 237Np at z

XBL 837-6513

= 100 m, band release.



5. Effects of the Retardation and Dispersion in the Fracture

As was shown in the previous chapters, the solutions for D # 0 (non-zero
dispersion in the fracture) are more complicated than those for D = 0. How-
ever, from the computed numerical values for D = 1 mz/yr and D = 0, we find
that the differences are so small that we cannot distinguish two cases in the
graphs.

Several questions then arise:

(1) At what value of D will these two profiles be separated?

(ii)‘Are there any other factors which affect the shape of the profiles?

(iii) What are these effects?

Next, we will study the relation between the fractured-media solution and
the porous-media solution for a step release, and the effects of fracture
dispersion. |

5.1 Consideration of the Solutions for Fractured Media with No Dispersion

Analytical solutions to the concentration in the fracture, eq. (2.33),
the advective mass flﬁx, (2.38), and the time-dependent cumulative release,
(2.39) for a general release, Y(t), at the repository are rewrittén as, by

setting a new variable,

Tn =.(#Rf) , . (5.1)

t-Tn 2
e T (¢t-Tn) f $(t-Tn-t') /A _ exp{- /A~ xt'} dt '(5.2a)
[¢]

N 2ies T

J(Tn,t) = vN(Tn,t), ' ‘ (5.2b)

and

o 2/mt'3

2
© exp {- Qr_lé_ﬁ)'_ - At'} dt’', ’ (5.2¢)

respectively. These equations show that profiles will be the same for the same

t t-Tn t-Tn-t!
fJ(Tn,fc')dt' =Ve_Tn>‘h(t-Tn)f f Y (t)drt TIn/A_
o) ) ,
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value of parameter A for‘a_fixed time t if one dr@ws_profiles in the domains of
Nvs Tn, J vs Tn or Jdt' vs Tn. The variable Tn .is.the nuclide travel time
(yr) when nuclides are transported through a medium where water is flowing with
velocity v and nuclides are retarded by the factor of Rf,;
Considering the governing equation (2.13) for the transport in the fracture,
if the rate q/be of diffusion into rock pores across the y =b plane is negli-
gible, this equation becomes that for transport in a one-dimensional. porous

medium, i.e.,

BN , v oN _ .
= * ﬁ;- =5 tAN=0,0<z¢< (5.3)

subject to the side conditions:

N(0,t) =y(t), t>0 | | (5.3a)
N(,t) =0, t>0 (5.3b)
N(z,0) =0, z>0. (5.3c)

Hence one can expect that one of the extreme cases of (2.13) is (5.3), so it will
be useful to compare the solutions of (2.13) with those of (5.3). The solutions

to (5.3) are, by using Tn,

N(Tn,t) = e "™h(t-Tn)y(t-Tn) . | (5.4a)
J(Tn,t) = VN(Tn,t) and (5.4b)
t t-Tn :
fJ(Tn,t')d . =ve'Tmh'(t—Tn)f v(1)dr. (5.4c)
(o] 0

Comparing (5.2a), (5.2b), and (5.2c) with (5.4a), (5.4b), and (5.4c), one
can say that, if A tends to infinity, (5.2) becomes (5.4). For illustration,

let us derive the solutions for a step release. For the fractured media,

N(Tn,t) = IJOe-Mh(t-Tn) erfc(?—n—@—) y (5.5a)
. ‘ 2vt-Tn
J(Tn,t) =

vN(Tn,t), and (5,5b)
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g . Ko

L LA TR i e

e
L

t s
fJ(Tn,t')dt' = ¥ N°n(t-Tn) e-)‘Tn%- e A erfc(—T—ni'ﬁ + AT )
o o 2/t-Tn

v eIV o (———ﬁT“/A - /r(iTT))} |

2/t-Tn
—e-}‘terfc(r—r—l—l-/—‘l}——— . - (5.5¢)
2vt-Tn

For the porous media,

N(Tn,t) = N% *th(t-Tn), o (5.6a)
J(Tn,t) = vN(Tn,t), and o , (5.6b)
t | A
f J(Tn,t')dt' = -} N°h(t-Tn) [e'”“—e' t] . | (5.6¢)
o _

Again if A tends to infinity (5.5) becomes (5.6), as is illustfeted in Fig. 5.1.

5.2 Consideration of the Solutions for; Fractured Media with Non-Zero Dispersion

With non-zero dispersion, we find results similar to those described for D = 0.
Let us compare the fractured media solutions with the solutions for one-dimensional
porous media. The governing equation for porous media is obtained by neglecting

the q/be term in the fractured media governing equation:

aN
3t

cL D AN L N, 0czce (5.7)
f f 23Z

subject to the same side conditions as (5.3a,b,c). By using the variables, Tn,

and 2
(v/R.) 2 '
f7 _ v
w = = R (5.8)
2(D/Rg) f
the solutions for a step release in fractured media can be rewritten as
' 2 w’Tn? wIn® 1
: R i
N(Tn,t) = 2NT wIn At [ e erfc —————————;- dg, :
v — 2 \/t- wTn
‘ 2t n 2&2 (5-98)
-43-




. (5.9b)

n

' CJ(Tn,t) _N° 1 wTn "ot TP
J(Tn,t")dt! = - S+ ——e e
(o]

v (e XY pr g5,
2 g€
2
2t - “’T‘;
£ A

2 3/2
2 A( _ anz)
2
28

2 2
© exp<- %_(UJT]’ZI ) 1 > - 3 (t ~ (DTTZI ) dg , (5.9¢)
S 2E°A ¢ - wTn 2

262
where ‘ 91121_2 1
2 . A 2
P;(EV;TH,'C) = ieXp(ﬁrzl- /)T) erfc S >\( - w_T_Tz}__)
- ' 28 5 _ wTnZ 28
26
, wTn’ 1
2 2 A 2
+e@<ﬂ%,ﬁ>erfc 2¢ 2- )(-‘*’lel)
% 2 Vi _wln 2¢
2
2
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And the solutions to (5.7) for a step release in porous media are

: ) sznZ
N° 2
N(Tn,t) = wWTn, At[ e de | (5.108)
W/w
7T Tn
® gZ_ QEI?Z
© 2
Jn,t) = v AL ey ‘*iT—%) de, (5.10b)
v 2
w
5= Tn
and . 2t " _gz ) wZTn 5 anz
J(Tn,t")dt' = - :;_J, % I}__ eanf . 4 2%
T
© V %—-Tn
t
. (1+ ‘”T_El ' an a - ' (5.10¢)
28 £

Again if A tends to infinity,.(5.9a,b,c) becomes (5.10 a,b,c).

Another comparison can be made between (5.5 a,b,c) and (5.9 a,b,c), namely,
between zero dispersion and non-zero dispersion. As can be seen after some math-
ematical manipulation,vif w tends to infinity, (5.9 a,b,é) can be reduced to e
(5.5 a,b,c), corresponding to taking D »~ 0. This situation is illustratéd in
Fig. 5.1.

Knowing the criteria at which more complicated solutions can be approximated
by simpler solutions can save computation time. In the next section we seek
numerical values of these criteria.

5.3 Computational Results and Discussions

The sets of parameter values which were taken for numerical study are
listed in Table 5.1.

For relatively small values of A and large values of D, the computation
could not be completed with the present code, because the integrand functions
dealt with in the computer code have very sharp peaks and numerical errors

are significant. However, one of the consequences derived from the discussion
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for fixed time

ol I N N "N _—porous media (D=0)
£ Sy A—® (5.6 ,b)
~— N X - )
I wrw =0 \\\_ 400 .__porous media (D#0)
-
Iy i\'\ "‘ vy ::“_ (5.10 q,b)
- ' LK ' '
& V) \ \/,_::A‘/froctured media (D#0)
% ' Ve I (594,b)
'y
]
]

: ' fractured media (D=0)
(5.5 a,b)

Ta=2 /\V/Rf), year

Finite dispersion

A-> o Finite dispersion
in fractured media fixed‘ —* in porous media
(59 q,b,c) @ (5.10 q,b,c)
fi)l(\ed lw_.oo u‘_an\nelw ~o
Zero dispersion | A -+ 00 Zero dispersion

in fractured media
(5.5 q,b,c)

infinite w "

in porous media
(56 a,b,c)

X8L857-6515

Fig. 5.1 Relations among the solutions for a porous medium and for a fractured

medium; for zero dispersion and non-zero dispersion.
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Table 5.1

R =1
[ . ]
R '
D\\5 1(A=5) 10 (A=50) 100 (A=500) .. | 1000 (A=500) -
O = © W = .m=oo w =
1 w = 50 w =75 w = 0.5 o = 0.05
10 ®=5 @ = 0.05 w = 0.05 @ = 0.005
100 0 =0.50 ¢ =0.005d «=0.005 © = 0.0005
[R = 100]
P
R _ _ o _
p\%¢ 1(A=0.5) 10(A=5) 100(A=50) 1000 (A=500)
0 W = o w:c{o @ = o W =
1 @ =50 w =25 w=0.5 @ = 0.05
10 w =25 w = 0.5 @ = 0.05 w = 0.005
100 w=0.50 «=0.050 & =0.005 © = 0.0005
[R_ = 10000].
D\ 1(A=0.05)|  10(A=0.05)|  100(A=5) 1000 (A=50)
0 (;U-_-OO W = o W = oo W = o
1 w = 50 w =75 w = 0.5 w = 0.05
10 w=5 0 @=0.50] «=0.05 w = 0.005
100 ©=0.5 © = 0.05 ® = 0.005 @ = 0.0005

Note:

-47-

"O'" indicates that the computation could not be completed.

v=10m/y

e=0.01

2b=0.01m
A=3m24x10X10—7/y
D_=0.01m’/y

P
t=10000 Y




in the previous sections is that, for the same values of A and w, the pro-
files become identical with respect to Tn. Therefore, even if the computation
cannot be made for some set of values of the parameters, one may try another
set of values, keeping A and w the same. For example, for (Rﬁ,RffD) = .
(100,10,100j, computation was not completed, while for (Rp,Rf;D) = (10000,100,10)
we could obtain the answer.

Figure 5.2 shows the profiles of N vs Tn. There are curves for different

values of A and w. From this figure, one can tentatively say that if

bR, |
A=—=E_ 5> 1/2
e/ﬁpR_p 3 500, yr'/2, (5.11)

the solutions can be approximated with those of a porous medium. If we
observe the factor A, the numerator be consists of the parameter relevant to
the fracture; be is a kind of '"capacity" of the fracture for contaminant
transport. The denomihafor e/ﬁEﬁE is a parameter of the porous matrix sur-
rounding the fracture. The fact that the medium can be regarded as a one-
dimensional porous medium when A becomes very large ﬁeans that, if the relative
significance of the fracture transport compared with the matrix diffusion
becomes large, one can ignore the diffusive transport into the rock matrix.

In order to confirm this, let us consider the flux of contaminant diffusing
into the rock matrix from the fracture, q, which is defined by eq. (2.12).

For a step release and D = 0, for simplicity, 9/R b can be calculated as
imp £

(Tn/)°
) : -
& = M) Lo AT (5.12)
£ mA vt-Tn

This shows that as A becomes large, q/be becomes negligible. This means that
the flux diffusing into the rock matrix becomes smaller because:
the amount sorbed on the fracture wall becomes large, and the relative

amount diffusing into the rock is reduced, or
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the capacity of the rock matrix for contaminant is reduced and the

relative importance of fracture transport becomes large.
Thus, if the amount of contaminant in the fracture and that sorbed.on the
fracture wall is considerably larger than that diffusing out of the fracture,
the fractured medium can be regarded as a porous medium.

The criterion for using the solutions with zero dispersion instead of

those with non-zero dispersion can be obtained from the numerical results. - From
Fig. 5.2, the values of Wit
from the D = 0 curve, depends upon the value of A:.

, at which the D # 0 curves start to deviate

A: i 0.05 0.5 5 50 , A 0prip 0.05 yr-l/z
Worit ~1 ~0.1 ~0.01 ~0.001 -
A increases, o .. decreases. If A o is greater than A w , then one can

? Tcrit crit’
use the solutions for zero dispersion with reasonable accuracy instead of those

for non-zero dispersion.
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)] o
I Solution for
}porous medio|
| D=0
|
-l |
10 | -
=2
10 n
o
2
=
- 3
- 107 -
= 0 v=10 msy
> £=00I
2b=0.0lm waco,
MZ"Np)=324407% 005
4 D= 0.0l m2y A ' 005
101 t=10% -0.0005 -
A= bR¢/€/DpRp
w= v¥/2 DRs¢
Step release
10°}- .
+6 | ] I
0
| 10 102 10 . 10 10°
Nuclide travel time, T,= /Ry year
.XBL837-6314

Fig. 5.2 Concentration profiles of 237Np in the N-Tn domain, step

release.
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Appendix
Verification of the Solutions for the Single Fractured_ Media with Finite

Fracture Dispersion.

We will verify that

- 2 vzzz
g
N(z,t) = 2 N evz_)‘tf e erfc Y ) d, t>0,2>0 (3.41)
/T Vz8 2vVt-YA
2/t
and o _Ez'_. vZz?

4g Y+B(y-b)\ . |
: erfc( d, t>0, y> b,

2/t-YA _
vBz ' z>0 (3.42)
2/t ’
are the solutions to the problem:
R

2N N R e . 1

;;7 2v 5t D _AN» ) 0, t>0,z>0 (3.1)

%-_BZ%%-ABZM:.o,wo,_pb,z>o | | (3.2)
subjeét to the side conditions:

N(z,0) =0 | z>0 (a)

M(y,2,0) = 0 y>b,z>0 | (b)

N(0,t) = NOe At t>0 ()

N(»,t) = 0 t>0 (d)

M(b,z,t) = N(z,t) - z>0,t>0 (e)

M®,z,t) = 0 2>0,t>0 | (£)
where

- oM .
q:-EDa— ,Z>0,t>0 (g)
p 9y y=b
_ vZBZZZ _ 1_12 v 2 . 4DRf ) be
Y = 2 » B = D ’V"E,B‘_Z)A" .
4AE P v e/DpRp



[1] Side Conditions
(a) N(z,0) =0, z>0
For z > 0, the integration interval in (3.41) becomes from = to «. If
the value of the integrand evaluated at £ = «» is bounded, the integral itself
becomes zero. That value of integrand becomes zero because
2 vzzz
_g_-——z
4g

[
o

lim e
g—»oo

Y
2Vt-YA

and by letting P =

’

lim P = 1lim V2e2,2
g—>oo g+oo 4A

722 2
t>0 to0 '\/g4t-\’84z £

The last manipulation is possible because £4t goes to infinity faster than EZ

and so the denominator goes to infinity, where as the numerator is a positive
constant. Therefore, we have

lim erfc (P)v= erfc (0) = 1.

£ > o

t->0
Therefore at the limit of £ » =, the integrand becomes zero and so bounded.
Therefore

N(z,0) = 0, z > 0.
(b) M(y,z,0) =0, y>b, z>0

By setting P' = Y+B(y-b , we consider the following limit operation:

2/t-YA
lim P' = 1im vig?s? + B(y-b) |
£ » ' E > 4A€2 + -
t>0  t~>0 . vipls?




Therefore, 1lim erfc (P') = 0
£+
t>0
By the same argument, M(y,z,0) =0 for y > b, z > 0.
(©) N(0,t) = N, t50 .
Considering the integrand in N(z,t), the integrand function is integrable in
€ over every finite subinterval of C = {g > "Bz/z/f} for any (z,t) in

Sz {z>0,t>0}. The integrand function is also continuous in (z,t), & for

(z,t), £ on S, C. The integrand is bounded by

2 2 2
=T v’% 2 '
e 4g erfc Y ) < e % for all (z,t)ES and EEC.
2Vt-YA ,

Therefore, the integral converges absolutely and uniformly and is continuous in

(z,t) for (z,t)ES. Therefore, we can exchange the order of lim and j , obtaining

z>0
_€2_ \)222
lim N(z,t) = 2 Noe'xtf oo11m e 4’ erfc( ,——Y de
z>0 v o 20 5 2/t-YA
2 ot g
= =—N"e e d¢, t > 0
v o
= \° -At, t>0
by usingf e e =""/2 .
° o -At
Therefore N(o,t) =Ne ", t>0.

(d) N(»,t) =0, t >0 .
As shown in (c), the integrand is continuous in (z,t), & for (z,t), £ on S,
C, and the integral converges uniformly and absolutely in (z,t)E€S. Therefore

we can exchange the order of 1lim and f , obtaining
Z >
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2
| R (I |
1inmN(z,t) = 2= N ™M1im e 28 erfc(—Y—) dE
7 ® /TT 700 \)B;Z 2/t-YA

2/t vz\ 2
o -:(g,- 2E

=2 NOTMt 1im . erfc (——Y——)]dg .
N~ Zr 2Vt-YA

The exponential term in the integrand becomes zero as z - ». The argument of
"erfc" function tends to.zero, and so "erfc'" function to unity. Thus, the
integrand becomes zero as z -+ . Hence

N(e,t) = 0 for t > 0.
(e) M(b,z,t) = N(z,t), z>0,t>0
This is easily shown from (3.41) and (3.42) by setting y = b in (3.42).
() M(eo,z,t) =0, z>0, t>0.
The integrand in M(y,z,t) is integrable in £ over every finite subinterval of C
for any (y,z,t) inS'= {y>b, z > 0, t > 0}. The integrand is also contin-

uvous in (y,z,t), & for (y,z,t),£ on S', C. The integrand is bounded by

_g2. v¥? |
2 2
e 47 erec ( VBOb) < et for all (y,z,t) €S' and £€C,
2Vt-YA

where

2

formly and is continuous in (y,z,t) for (y,z,t)€S'. Then the order of lim and
y-—)oo

2 .
f e-g dg < il . Therefore the integral converges absolutely and uni-
(o

can be exchanged. Since

lim erfc (Y+B( -b >= 0, z>0,t>0
y > 2Vt-YA ,

the integral becomes zero as y -+ «. Therefore

lim M(y,z,t) =0, z> 0, t > 0.
y > @
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[2] Equation (3.2)
Next we will show that the proposed solution for M(y,z,t), i.e., (3.42)
satisfies the governing equation (3.2). Instead of substitutin'g‘vf(S.42)

directly into (3.2), we assume the solution of (3.2) to be of ‘tihe form of

M(y,z,t) = 2 N2 Ky, t;2) . o @)
On substitution of (A) into (3.2), we obtain an equation which K(y,t;z) should
satisfy:
3%k _ .2 K
_=B—“,t>0,'}’>b (B)
2 ot
oy
subject to K(y;0;z) = 0 y>b,z2>0
K(o,t;z) =0 ’ t>0,2z2>0
- and o K(b,t;z) = /_Lo eAt-va(z,t), t>0,2z>0
v 2N
where the side conditions for K(y,t;z) have been checked as shown in [1].
Comparing (3.42) and (A), we must show that
2 vzzz
: t T |
K(y,t;z) =,L:Z e 48" orfc ((YBO-D d,t>0,y>b,z>0 (C)
vez 2/t-YA

2/t :
satisfies (B). First we must show the validity of the differentiation operations

of the improper integral (C), so we must establish that
(i) the integral (C) converges in S' = {t >0, y>b, z> 0}

~and

, 2
oK and 3—12( converge uniformly in:S'. .

..y oK
(11) E ’ ’a_y ay

For (i), as shown in [1](f), the integral in M(y,z,t) which is identical to

K(y,z,t) is uniformly convergent and continuous in (y,z,t) for (y,z,t)ES".

For (ii),

3K vBRz 3 vRz of
o) () o [ e
ot ( 2WE ot 2WE ot
, v



where f (y,z,t;£) is the integrand of K(y,t;z).

The first term becomes zero because

S (\)26222) c
f <y,z t; vi;) =e \ 4t 8% erfc () = 0.
2

Hence we have
2.2
© o . ‘52 _ \)_;_
& = ‘ é_f_ = 4E 3 M
” f =t 4 -[ e f (&;y,2,t) d&, (D)
| vBz vBz |
2/t 2/t

| | . {Y+B(y-b)}?
—_ 2 Y+B(y-b) Tt -YA)
where f (E;y,2z,t) = — —%— e -
| - oAy ?

For£=ﬂ s £ vBz ;y,z,t)=0.

2t 2/t

For £ > —%é +e,e>0,t-YA>S>0.
2Vt

Y-B(y-b). 2/ Y e-gz

e™® 4; Ty | < B %g
- il - 2WETYR
-1/2\ 2
< L(%'\/_%:e )'e ¢
=
for all &€C and (y,z,t) €S',
- 2 o
because by setting P' = Y+B(y-b) , the function of p'e P'" has the maximum at
1 2Vt-YA
P' = — . Hence the integrand is bounded and also continuous in (y,z,t)€S' and -
V2 '

EEC. Therefore, by expressing M = %6 % e /2

T2 > 2
Y e a <t M| et a -,
vz &

0
2/t

3K
5t
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which shows K is uniformly convergent and continuous in (y,z,t)ES’'.

ot
2 .
Similarly, for QK-and 3K , where
oy ay2
» 2 vt (Y+B(y-b)}” .
2 - -
X [ e (L _B_ o AW g y,2,0es,
vBz vm o 2/t-YA
2/t
and -gz- vZZZ ;
© 2 _ _ {Y+B(y-b)}
3% _ -2 7 2 YsB(y-b) TR ,
——2— B (S] —_— ——LTZ' e d«E, (y,Z,t)GS N
dy Bz vYr 4(t-YA)
2/t |
the integrands are continuous and bounded in (v,z,t) and £ for (y,z,t)ES' and
2 .
£€EC. Hence both %%— and §_§_ are uniformly convergent and continuous in
oy

(y,z,t)ES'. Thus, we showed the validity of the differentiation operation for
the improper integral (C). e
By comparing (D) and (F), one can immediately say that (C) satisfies (B),

which verifies that (3.42) satisfies. (3.2).
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£

[3] Equation (3.1)
Thirdly, we will show that (3.41) satisfies (3.1). Instead of substitu-

tiﬁg (3.41) into (3.1), we assume the solution of (3.1) to be of the form of

N(z,t) = 2= NO%"E At 1(z,1). | )
/r _
On substitution of (G) into (3.15, we 6btain an equation which I(z,t) should
satisfy:
O QEL_ - §£- 3L g gmvet 1ot 50,250 H)
aZ2 D ot bD N° ? ’
subject to 1(z,0) = 0, z>0
I(o,t) = vn/2, t>0
I(=,t) =0, t>0

where the side conditions for I(z,t) are already shown to be satisfied by

I(z,t) as shown in [1]. Thereforevwe must show that

- _€2_ vz
N Y
I(z,t) = jpz € erfc ( dg, (z,t)€ES 0))]
: = 2Vt-YA . '
2/t
satisfies (H). By using (E), we obtain
2 vZZZ Y2
o o BN -_2 - —
ELS -, e % 2 1 HEYA g
Y ly=p HE /WA
= 2T " |
Therefore, %ﬁ' can be written as, from the definition of g,
' : ‘€2_ vzzz )
o0 2 2
R 0 ‘ _ , 48~
%D _ ﬁ'ii jl\i_ 2 vzmat [)BZ o 2 _1 exp (. *——4(Z-YA)) dz,
s = /T 2Vt-YA
2/t
z>0, t>0.
But considering | 2
Y
a_erfc< Y )=z_ Y 1 o YA
ot 2AYR) AL e
t>0,z>0, z> 2@2,, | 0]
2/t



one can rewrite %ﬁ as

B YA 3t

% 2 vz
R T
N2 S I S -0 S f e 4g 2(§AYA2 _g_t_erfc Y ) de=0,
VBZ _ 2/t-YA

t>0,z>0.> (H)
Next, let us check the validity of the differentiation operations of the
" improper integral (J). We follow the same procedure as in the previous
section. |
For the convergence of I(z,t), we have already shown in [1](C) thét the.

integral in'N(z_,t), which is identical to‘ I(z,t), is uniformly convergent and

‘continuous in (z,t) for (z,t)€S = {z >0, t > 0}.
ol
For 3¢ 0 We have
' 2 \)Zz2 ' 2
<) -g - 2 . _ Y
al _ e 4t 2 1 Y o 4(t-YA) dE
d vez Jr 4 (t-YA)37'2
2/t
The integrand is continuous in (z,t)ES and £€EC. By the same argument as for
5K Y 2 . -£?
3t except that here P' = , the integrand is bounded by — Me
2Vt-YA 7

for all £€C and (z,t)ES. Therefore

® 2
< Zm] et a-u
/TT (o]

which shows the uniform convergence and the continuity of g—lé in (z,t)€s.
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For B_IZ_ , we have
© ._gz_ ﬁ '
2.2 452 %
91 - 1im - \’_% e erfc dg
0z, Bz 2 2/T-YA
wr 7 | |
o g2 \)222
e T2
¥ e B erfc ( L_)dg, 2>0,t>0. (L)
vBz oz 2/tYA
%3
Noting that
Y _ gl BY__BZ\)ZZZ s 0.t > 0. E > VB2
37 - 7 5'5 = 3 Z ’ s & Y
ZAE 2AE , zv't
3 Y.
55 erfc(—) can be expressed as
2/t-YA
= erfc(f—)="§' Srerfc (=) ,z>0,t>0,¢>% )
2/t-YA 2/t-YA ‘ 2/t
2 vi? |
R
Since e 4 and erfc( ) have continuous derivatives with respect
’ 2Vt-YA ' ‘

to £ in EEC = {F, > \)BZ/Z/{} , and the resultant integral is uniformly con-

vergent. in (z,r) for (z,t)€S = {z >0, t> 0} as shown below,‘one can make

the integration by parts for the second term of (L), resulting in

2 \)Zz2

- - '
: 2 2
n> S£2 2Vt-YA
o O

(z,t)€S - (L")
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By using this

: £ \)Zz‘2 _
o 2 e T 2 '
al 12 4g \
,az < f (z - ) e dg, for all (z,t)ES
o ,
By setting y = %g ,
'ﬂ Y f‘” 21 + VZZZ e 4U2 du . (*)‘
9z 2 Jo 2—117 4 .
Considering the identify(l): '
e 2 . ) . .
2 X
et T2 d£=ﬁe'2x,'X>0 , (**)
0 2 2
and its second derivative with respect to X,
“r 1 X .-gz-x—z X
f(——7+—4—)e £ dE_,=—72Te , X>0,
o \ &7 &

(this differentiation is justified since these mproper integrals are bounded
by. L—TZT , independent of X and have continuous integrands in £ > 0, which means
they are continuous and uniformly convergent for all X > 0), the integralv *

becomes

NS V22 IR
(0] 0 .

And the integrand of (L') is continuous in (z,t) and £ for (z,’tj€§, £€C.

Therefore g—i— is continuous and uniformly convergent in (z,t)E€S.

Differentiating (L') once more with respect to z, we obtain

E
9Z
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@ _gz- vz o
?_Z_I_ =[ (- 1. .l’i) (1-2&2) e 4§2 erfc( Y ) dg
3zt JUBE 2 2?2 | 2wival
/'t , S : _ '
o . _EZ_'QZZZ
'+jﬁ _ (1-2&2) % e 45 g; erfc ( Y dg,
| T v 2/t-Y
for all (z,t)€S. g2- vir2 - : (N)
1 2 4> [ Y
Since = (1-2£%)e - and erfc| have continuous derivatives
.z ' 2/t-YA -

with respect to £ in (z,t)€ES and £€C, one can make the integration by parts

for the second term in (N) as was done for (L), resulting in

g2 v
o ; _ 2
¥ 1 (6% a?) e % erfc( ) d, (N")
822 Bz z2 2vVt-YA
't
for all (z,t)€S.
By using this,
] 2 %2
31 1 2. 4 | ag?
— | < =7 (‘65"4‘5) e dg.
oz ° z '

By differentiating (**) three times with respect to X,

) 2
[ /x> =\ -£2-%X A X
*6 "—jr e EZ dg = -72 €
o g 28
Therefore ‘
C 2.2
m b v
2 : 373 .
971 < \)2 vz® 3 vz e 4u du
2 1 = 6 2 4
9z . o 8u M
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w 2 Vz
2
=v2fe hu duivzﬁz?-
O .

And the integrand of (N') is continuous in (z,t) and £ for (z,t)€S and

£€C. Therefore 8_%_ is continuous and uniformly convergent in (z,t)€S.
oz v .

By substituting (L') and (M') into the left hand side of (H'), we obtain

o 2 2,2
A Y
(1.h.s.) = VgZ ¢ (—v oy —2—) e erfc( ) dg
- z z 2/t-YA
2/1? N . N
, 2.2 |
R f‘” ‘52' v ; : oL ..
O 5F 4 (2t-YA) ( )
= e — erfc dg P
D vz | YA ot “\2&Am
Wt ' '

for (z,t)€S.

But from (K) and (M), we have

9 Y _ £ ] Y
2_ erfc = ——=___ < erfc , Q
v oo () - wmw oo ()

for (z,t)€S, £€C.

Substituting (Q) into the second term of (P) yields

© _ 2_ VZZZ : .. - . - o
o ) > s’ 23| 5 erfc (X &, (z,1)65. .
(2nd term) = [, e 7z Jd 3 2/t-YA,

z
%4 2 2
. 2.V Z
ag? 23 Y -
Since both je - —5— term and erfc ( have continuous
z 2vVt-YA

derivatives with respect to £ in £€C, (z,t)€ES; one can make the integration

by parts and obtain | 2 2
: - _ vz
2 4 2 2 Y
6g 4 2) 8% 4£° erfc dg
(2nd term) = - (—— - —3— 4 v) e < _—)
ﬁﬁ ZZ ZZ 2Vt-YA
2/t (z,t)€S. '
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Therefore (1.h.s.) =0 . |
Hence it is verified that (J) satisfies (H), and so that (3.41) satisfies
(3.1).

Hence (3.41) and (3.42) are the solutions for this problem.
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