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1. Introduction and Summary 

This report presents the first results of a new analytical study of the 

hydrological transport of a radioactive contaminant through a planar fracture 

in porous rock. The purpose is to predict the space-time dependent concentra­

tion of the contaminant in the groundwater, as affected by advective transport 

within the fracture and by molecular diffusion of the contaminant into and out 

of pores that intersect the fracture surfaces. 

Previous analytical solutions of this problem have neglected dispersion 

and sorption within the fractures1 or have presented results with untested 
. . 1 approx1mat10ns In the present report we formulate the transport problem 

for a sorbing radioactive contaminant with no decay precursors, assuming an 

exponentially decaying step and band functions source at the boundary. 

Analytical solutions are obtained for zero-dispersion and non-zero dispersion 

in the fracture, and are compared with the solution for the one-dimensional 

transport through porous media. As the fracture retardation coefficient or 

the fracture width increases, or as the porosity of the rock matrix surrounding 

the fracture or the pore diffusion coefficient decreases, concentration pro-

files in the fracture approach those for the one-dimensional transport through 

porous media. A criterion for using porous media solutions instead of fractured 

media solutions is obtained by studies of numerical results. 

Solutions for dispersive transport are also compared numerically with those 

for non-dispersive transport. The differences between the quantities calcula­

ted for non-zero_fracture dispersion and for zero fracture dispersion become 
2 

observable when a criterion is satisfied by the ratio, (v/Rf) v2 

w = Z(D/Rf) = ZDRf 

where v/Rf represents the contaminant velocity in the fracture and D/Rf the 

fracture dispersion coefficient divided by the fracture retardation coefficient, 

Rf. If w becomes greater than some value, which is obtained by numerical 
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results, the differences between these two cases become negligible, and one 

can use the zero dispersion solution with reasonable accuracy. 

Future studies will be extended to include the effects of neighboring 

fractures, other source boundary conditions, and the effects of radioactive 

decay of migrating decay precursors. 

2. Single Fissure Surrounded by Infinite ~~trix, No Dispersion 

2.1 Formulation of the Problem, Assumptions 

Consider a rock matrix containing planar fissures extending in the z 

direction. Here the fissures are assumed to be parallel and widely separated, 

so that each fissure can be assumed to be surrounded by infinite porous rock. 

Within the fissure ground water flows at a constant velocity v in the z 

direction, but the 'vater in the micropores in the rock is assumed to be at 

rest. TI1e contaminant source at z = 0 is assumed to be uniformly distributed 

over the breadth of the fissure (normal to z). We seek to calculate: 

a. the contaminant concentration N(z,t) in the water in the fissure 

at distance z along the fissure and at time t, 

b. the contaminant concentration M(y,z,t) in water in the rock pores, 

at a distance y into the pore from the fissure surface, 

c. the advective mass flux J(z,t) of the contaminant at position z 

in the fissure, and 

d. the time-dependent cumulative release of the contaminant across 

a plane at z, and normal to z, in the fissure. 

The concentration N(z,t) is the concentration averaged across the fissure 

thickness, and the concentration :M(y, z, t) is averaged across the pore cross section. 

For the purpose of the first analysis, dispersion within the fissure is neglected. 

Additional assumptions are: 

a. the contaminant source yields a specified exponentially decaying 

boundary concentration at z 0, beginning step-wise at t = 0, 

b. there is no decay precursor of the contaminant in the ground water. 

-2-

v 



v 

c. the contaminant sorbs on the fissure \'lalls and within the pores, 

and 

d. sorption is governed by linear sorption isothenns ~ 

2.2 Governing Equations 

The transport terms and geometry are shown in Figure 2.1. Here, for 

completeness, dispersive transport is included. It will be later set equal 

to zero for the first analytical solutions. The terms that enter into the 

conservation equations, expressed as amount per unit time per unit area of 

fissure surface, are: 

where 

A. contaminant entering the control volume 

bvN(z)dt 

-bD aN I dt az z=z 

by convection 

by dispersion 

B. contaminant leaving the control volume by fissure,water transport 

bvN( z +dz) d t = b v(N ( z) +dN) d t by convection 

-bD ~~ I z=z+dzdt = -bD ( ~~ I z=z + d(~~)) dt by dispersion 

C. contaminant sorbed on the fissure surface 

D. contaminant diffusing into the rock pores 

qdzdt 

E. contaminant undergoing radioactive decay within the control volume 

AN(z)bdzdt 

N(z,t) =concentration of the radioactive contaminant in fissure 

water, kg/m3 

q 

-1 = radioactive decay constant, yr 

= rate of diffusion from the fissure into pores, per unit 

area of fissure surface,. kg/m2yr 

-3-
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XBL 857-6497 

Fig. 2.1 A discrete fracture surrounded by a semi-infinite rock 

matrix. Quantities (A) - (E) are explained in the text. 
v 
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v 

D 

= rate of sorption frOIIi the fissure onto fissure surface, · 

kg/m2yr 

= half width of fissure,. m· 

= water velocity averaged across the fissure width, m/yr 

= coefficient for dispersive transport in fissure water, m
2
/yr. 

A mass balance on the control volume yields: 

bdzdN = { bvNdt - bD ~~ dt) - { bvNdt + bvdNdt 

:..bD ~ dt '- bDd(~~)dt)+ rfdzdt + qdzdt + >.Nbdzdt, 

and so 

Denoting the concentration of sorbed contaminant on the fissure surfaces as 

(2.1) 

N (z,t) (kg perm2 of surface), and neglecting surface diffusion, the following s 

rate equation applies: 

aN 
ats + >.Ns - rf = o. 

Assuming a linear sorption isotherm: 

where Kf is the sorption distribution coefficient for the fissure surface (m). 

Substituting (2.3) into (2.2), we obtain: 

Kf ~~ + >.K~ - t f = 0 , 

and combining (2.4) and (2.1) yields: 

R oN + v aN - D a2N + R >.N + g_ = 0' 
f at az az2 f b 

where Rf is the retardation coefficient for fissure transport: 

Kf 
Rf = 1 + b 

-.5-
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On the other hand, the governing equations for nuclides in the rock pores 

can be expressed by considering one-dimensional molecular diffusion in pore 

water, radioactive decay and sorption from pore water to pore surface and 

neglecting surface diffusion, 

aM a~ 
£ at - eDP -;2 + e:\M + a r = 0 , 

. ay p p 

and 
aM 

a ~+a:\M -ar =0, p at p s p p 

where (2.7) is for the water phase and (2.8) is for the sorbed contaminant on 

pore surfaces, and where 

M(y,z,t) = concentration of the radioactive contaminant in pore water, 

kg/m3 

M (y,z,t) = concentration of sorbed contaminant on the pore surfaces, 
s -

D p 

r p 

kg/m2 of pore surface 

= porosity of rock excluding the pores which are not connected 

to the fissure 

= pore surface area per unit volume of rock matrix, m2 of 

surface/m3 of rock 

2 diffusion coefficient of contaminant in pores, m /yr 

= rate of sorption from pore water onto pore surfaces, 

kg/m2 yr. 

Assuming a linear sorption isotherm: 

M (y,z,t) = K M(y,z,t) s p , 

where K is the sorption distribution coefficient for the pore surface (m). 
p 

By (2.7), (2.8) and (2.9), we obtain 

R aM _ D a
2

r-.1 + 
p at p ay2 Rp:\M = 0, 

-6-
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where Rp is the retardation coefficient for rock pore transport: 

a 
R = 1 + _£ K . 
p £ p 

By using the quantity, M(y,z,t), lve can evaluate the quantity, q, in (2.3) as 

·follows: 

aM 1 q = - £DP ay y=b • 

2.3 Analytical Solutions for No Dispersion 

(Z.ll) 

(2.12) 

By setting D = 0 in (2. 5) we have the following governing equations for the 

case with no"dispersion in the fracture: 

aN aN 
Rf at + v az + RfA.N + S = 0, t > 0, z > 0, 

and 

R aM n a ~'1 + R n1 = o t o h o 
P at - P ay2 PAl' . ' > ' Y > ' z > ' 

where 

q = - ED aM I p ay y=b, t > o, z > o, 

Kf 
Rf = 1 +- , and 

b 

a 
R = 1 + _£ K . 
p £ p 

TI1e initial and boundary conditions are 

N (z, 0) = 0, z > 0 

:M(y,z,O) = 0, z > 0, y >b 

N(O, t) = \jJ (t) t > 0 

N(oo,t) 0, t > 0 

M(b,z,t) =N(z,t), t > 0, z > 0 

M(oo,z,t) = 0, t > 0, z > 0 
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(2.10) 

(2.12) 

(2.6) 

(2.11) 

(2.14a) 

Cz.l4b) 

(2.14c) 

(2.14d) 

(2~.14e) 

(2.14f) 



We will first derive the solutions for a general release mode, lji(t), where 

lji(t) is any integrable function. By Laplace transformation of (2.10) we obtain 

D d~ pi\r = _QR - - AM (2.15) 
p dy2 

where 

Joo -pt 
M(y,z,p) _ e M(y,z,t) dt. 

0 

The solution which is physically admissible is 

M(y,z,p) = c1 exp { -B(y-b) lp+A }, 

where c1 constant 

~/ , yr m • 

By Laplace transformation of the boundary condition (2.14e), we obtain 

- -
M(b,z,p) = N(z,p) = c

1
. 

Therefore, (2.17) becomes 

M(y,z,p) = N(z,p)exp { - B(y-b) lp+A } • 

From this, one can calculate the Laplace-transformed q as 

q = c-D dM I 
-c- p dy y=b 

= sD B lp+A N(z ,p) . 
p 

By Laplace transform of ( 2 .13) , we obtain 

- -- vdN- n pN+- -+AN+.::l.= O. 
Rf dz · b 

On substitution of (2.20) into (2.21), we have 

ciN R f ( lp+ A ) --+- p+A+ N=O ili v · A · ' 

-8-
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where 
A :: bRf 

e:IDPRP 

~ 
' yr . 

Then eq. (2.22) can be solved with respect to z; 

- { Rf 1 } N ( z , p) = ~ (p) exp - v (p+ >. + A lp+ >. ) z , 

using the Laplace-transformed boundary conditions: 
- -N(o,p) = ljJ(p), 

N(oo,p) = 0, 

and 

~(p) = L 00

e -pt$(t)dt. 

Next we make the inverse transformation: 

N(z,t) = e-AZA 1 -1 [e-ZA·pe-Zip+>. ~(p)) 

Rfz ~ -1 . 
where Z = vA , yr , and L [ ] stands for mverse Laplace Transform. 

~nking use of the formula, 

L-l[~(p)e-pE) = IP(t-E)h(t-E), E > 0 

where h(t) is Heaviside step function, (2.28) becomes 

->.ZA -1 -
N(z,t) = e h(t-ZA)L [ljJ(p)exp (-Zip+>. )] t~t-ZA 

(2. 23) 

(2.24) 

(2. 25) 

(2.26) 

(2. 27) 

(2.28) 

(2. 29) 

(2.30) 

(2.31) 

where the remaining inverse transform can be made by using the convolution rule: 

-1[- -Zip+>.] L ljJ(p)e = f\ct-t') 
0 

z 
21ii1'3" 

z2 
-4t' -At' 

e dt'. 

Substituting (2.32) into (2.31) gives the analytical solution for N(z,t): 

-9-
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1 
t-ZA 

N(z,t) = e-AZA h(t-ZA) ljJ(t-ZA-t') 

0 

z 

t~O,z>O. (2.33) 

By (2.24) and (2.19), 

- - -AZA . 
M(y,z,p) = ljl(p)e exp(-pZA)exp {- (Z+B(y-b))/i)+A}. (2.34) 

By a derivation similar to that for N(z,t), we obtain the analytical solution 

for M(y,z,t): 

AZA. It- ZA M(y,z,t) = e- -h(t-ZA) ljl(t-ZA-t') 
0 

Z' -At' -e 

2W 
t ~ 0, y ~ b, z > 0 (2. 35) 

where Z'- Z + B(y-b). (2. 36) 

The advective mass flux at position z in the fracture is defined as 

J(z,t) = vN(z,t) - D ~~ t > 0, z > 0. (2.37) 

By setting D = 0, 

J(z,t) = vN(z,t), t ~ 0 , z > 0. (2.38) 

Finally, the time-dependent cumulative release across a plane at z in the 

fracture can be lvritten as 

t J J(z,t') 

t-ZA t .. zA-t 1 

dt' = ve-AZA h(t-ZA)l ·1 lji(T)d'r 
0 0 

z2 
- 4t' ->-t' 

Z e dt' 

0 2D 
t ~ 0, z > 0. 

For a step release, 

the solutions are obtained by substituting (2.40) into (2.33), (2.35), (2.38) 

and (2.39): 

N = F1 (z,t), t > 0, z > 0 
No 

-10-

(2.39) 

(2.40) 

(2.41) 

v 



M F 2 (y, z , t) , t ~ 0, y ~ b , z > 0 

J 
No= vF1 (z,t), t ~ 0, z > 0 

where 

J(z,t ')dt' = F
3
(z,t), t ?._ 0, z > 0 

No 

F1 (z, t) = h(t-ZA) e -Aterfc ( Z ) 
Zlt-ZA 

F2(y,z,t) = h(t-ZA) e-At erfc (Z+B(y-b)) 
. 2/t-ZA 

F
3

(z, t) = :-!.. h(t-ZA) [e -AZA. !_ fe/Xz erfc( z + l!t(t-ZA)) 
A 2 ~ · 2/t-ZA 

+e -v'Azerfc ( Z - lit (t-ZA)) } -e -Aterfc ( Z ) ] 
2/t-ZA · 2/t-ZA 

and N° is the initial concentration of the contaminant at Z = 0. 

For a band release, 

~(t) = N°e-/..t {h(t) - h(t-T)}, 

the solutions are obtained by the superposition method: 

N -ItT -a= F1(z,t) - e F1(z,t-T), t ~ 0, z > 0 
N 

M -ItT No= F2(y,z,t) - e F2(y,z,t-T), t ~ 0, y ~ b, z > o 

~0 = vv1 (z,t) - e-/..TF1{z,t-T)}, t ~ 0,. z ~ 0 

f_t~~z,t') dt' = F3(z,t)- e-/..TF3(z,t-T), t ~ 0, z > 0 

0 

where T is the leach time. 

-11-
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(2. 51) 

(2. 52) 



2.4 Computer Code 

2.4.1 quantities Calculated 

The following quantities can be calculated by FIS003 for the step release 

and by FIS007 for the band release: 

a. the relative concentration, N/N°, in fracture water, given by (2.41) 

or (2.49), 

b. the relative concentration, M/N°, in pore water in the surrounding 

rock, given by (2.42) or (2.50), 

c. the normalized advective mass flux, J/N°, in the fracture, given by 

(2.43) or (2.51), and 

d. the normalized time-dependent cumulative release, itJ/N°dt', given 

by (2.44) or (2.52). 

N/N° is computed by the same subroutine for M/N° by setting y=b, because 

(2.41) or (2.49) is a subcase of (2.42) or (2.50), respectively. 

2.4.2 Algorithm 

See Figure 2.2. 

2.4.3 Input Data Format 

See Table 2.1. 

2.4.4 Parameter Ranges for Calculation 

All the four quantities can be calculated for any (y,z,t) or (z,t) with 

reasonable accuracy. 

3. Single Fissure Surrounded by Infinite Matrix, with Dispersion 

3.1 Formulation of the Problem, Assumptions 

The problem and assumptions are the same as stated in Section 2.1 except 

that dispersive transport in the fissure along the direction of z is now 

considered. 

-12-
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V, POR, XL, 0, OP, RF, RP · 

output 
T, MIN~ .JIN•, 

/JIN°dt' 

output 
Y, Z. M/N°, J/N°, 

/Jhtdt' 
.....--~ 

Fig .. 2. 2 Algorithm of the computer codes. 
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Table 2.1 Input Data Format 

(a) For fixed time 

parameter 

1. velocity 
2. porosity 

3. half width of fracture 

4. decay constant 

5. leach time(*) 

6. dispersion coeff. 

7. retardation coeff. 

8. 

9. time 

10. location 

name in 
the codes 

v 
POR 

B 

XL 

TLEA 
D(**),DP 

RF,RP 
I FLAG(***) 

T 
y ,Z 

Format 

El0,3 

El0-3 
El0.3 

El0.3 

El0.3 

2El0-3 
2El0.3 

12 
El0,3 

2El0.3 

I 
I 

EOF 9.999E+3, (****) 9.999E+3 

(b) For fixed location 

name in 
parameter the codes 

1. velocity v 
2. porosity POR 
3. half width of fracture B 

4. decay constant XL 

5. leach time(*) TLEA 
6. dispersion coeff. oC**),DP 

7. retardation coeff. RF,RP 
8. I FLAG (***) 

9. location y ,Z 

10. time T 

EOF 

(*) only for the band release (FIS007, FIS017) 
(**) must be input zero for zero dispersion (FIS003, FIS007) 
(***) for fixed time, input 0; for fixed location, input 1. 
(****) end-of-data mark. 

-14-
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El0.3 

El0.3 
El0.3 

El0.3 

El0.3 

2El0.3 
2El0.3 

12 
2El0.3 

El0.3 

I 
I 

9.999E+3 (****) 

\.· 



3.2 Governing Equations 

TI1e complete derivation is shown in Section 2.2, but for further reference, 

we repeat the governing equations: 

with 

and 

0, t > 0, z > 0 

R aM - D a 1.t + R ""1 = 0 t 0 > b > 0 
2 fUV t > t y ' z 

p at p ay p 

Kf 
R = 1 + 

f b 
a 

R =1+--..£. K 
p E: p 

q = cD a~f I t > 0 z > 0 - "' p ay y=b ' ' 

J(z,t) = vN(z,t) - D ~~ , t > 0, z > 0 

subject to the same initial and boundary conditions as (2.14a) to (2.14f). 

3.3 Analytical Solutions for Non-Zero Dispersion 

First, we will solve these governing equations for the general release 

mode, 1/J ( t) , and thew substitute ( 2. 40) into those general solutions. 

By Laplace transform of (3.2), we obtain the same equation as (2.15), and 
-so we have, for M(y,z,p), 

-M(y,z,p) = N(z,p) exp {- B(y-b) lp+A } 

' -
and for q, 

-q = e:D Blp+A N(z ,p), 
p 

(3.1) 

(3. 2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

both of which are obtained by the same derivation througl1 (2.15) to (2.20). By 

Laplace transform of (3.1) and substitution of (3.8), we obtain 

d2N v ciN Rf 1 -
dz 2 - IT dz - D (p+ A+ A lp+ A ) N = 0 ' z > 0 . (3.9) 

-15-



The solution of (3.9) is generally expressed as 

+ - zr zr N(z,p) = c2(p)e + c3(p)e 

where c2(p) and c
3

(p) are constants, 

+ [ + ~ 2 1 ~ }~] r- = v 1-\!-+B (p+;\+ A vp+>. ) , 

\) = v/2D and 

. 2 4RfD 
s = -2-

v 

c2(p) and c3(p) are to be determined by the boundary conditions. r:, \), s2 and 

A have been used for short-hand notation. 

The Laplace transforms of the boundary conditions yield 
- -N(O,p) = IJ!(p) 

N(oo,p) = 0 

c2(p) + C3cp) = IJ!(p) 

•• C
2
(p) = O. 

Therefore, (3.10) can be written as 

- - \)Z [ { 2( 1 )} t ] N(z,p) = .1/J(p)e exp -\)Z l+S p+>.+ Alp+>. ~ • 

In order to avoid the difficulty of the double square root in (3.16), we apply 

the fonnula: 

ITT -zx 
di;= ~ e X>O. 

becomes 

- - \)Z N(z,p) = IJ!(p)e 

2 2 
-1;2 - :Y_2_ ;. L: 4<

2 
exp [ -Yip+ A - YA(p+A)) dl; 

Now we obtain the inverse Laplace transforms of (3.18): 

-16~ 

(3 .10) . 

(3.11) 

(3.12) 

(3 .13) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

(3.19) 



J 
ctf 2 

2 \IZ -N(z,t) =- e e t_; 

ITI 
0 

Using the formulae: 

2 2 \) z 

- 4t_;2 L -1 [ ~(p)e -Y/p+A e-YA(p+J-) 1 dt.;. 

L-l( ¢(p)e-pE] = ci>(t-E)h(t-E), E > 0 

and y2 
-1 [ -Yip+A J = _Y_ e-At- 4t 

L e 2ht3 ' 

(3. 20) 

(3. 21) 

(3.22) 

we obtain the following as the solution to N(z,t) for the general release mode, 

\ji(t): 2 v2z? 
co ""t.: - -

N(z, t) = ~ e vz f e 4t.:
2 

e -J-YA h(t-YA)Y 
0 

(t-YA 
· Jo \ji(t-YA-t') 

y2 
1 e- 4t' - At' dt'dt_;, t ~ 0, z > 0 

lt'3 
(3. 23) 

Substituting (3.18) into (3.7) yields 

- 2 (co t_;2 v2z2 
M(y,z,p) = \ji(p)evz ITI)o e- - 4 t_;2 exp {-Y'Ip+A- YA(p+A)} dt_; (3. 24) 

where 

Y' = Y + B(y-b). (3.25) 

Now we can obtain the inverse Laplace transform of (3.24) as the solution to 

M(y,z,t) for the general release mode, \ji(t): 

2 v2z2 
co -t.: - -. -2 

1 vzJ 4t_; M(y,z,t) =TIe e 
0 f

t-YA 
e-AYA h(t-YA) Y' .. \ji(t-YA-t') 

a 
Y'2 

1 e - 4 t I - At I dt I dt_;' t ~ 0' Y ~ b' Z > 0 • (3.26) 

It'! 
aN In order to calculate J(z,t), we need az. Differentiating 

(3.18) with respect to z yields 
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- ~ f(~;z) lp+f. g(t,;,p;z)dt,; f
oo 2 2 

o 2t,; 2A 

f oo 22 } \) s z - ------ f(t,;;z)(p+f.)g(t,;,p;z)dt,; 
0 2t,; 2 

where 

and 

g(t,;,p;z) = ~(p) exp [- {/p+f. +A (p+f.)}Y] 

were used for short hand notation. 

Now we will obtain the inverse Laplace transform of (3.27). Let 

- -1 K1 = L [g(~,p;z)] 

K2 = L-1[/p+f. g(t,;,p;z)], and 

- -1 
K

3 
= L [(p+f.)g(t,;,p;z)]. 

K1 can be obtained in the same way as (3.20) to (3.23), so that 
2 

f
t-YA - I_ - At I 

K
1 

= h(t-YA) e -f.YA ~ (t-YA-t ') Y e 4t' dt'. 
o 2/ift13" 

Noticing that 

y2 
- 4t 

= _e __ 
4/nt3 

where 
2 

= 4X -2 

and (3.21), we can ·write K2 as follows: 

t-YA 
-f.YAJ K2 = h(t-YA)e 

0 

~(t-YA-t') 
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y2 
- 4t' - f.t' 

e dt'. 

(3.27) 

(3. 28) 

(3.29) 

(3.30) 

(3.31) 

(3. 32) 

(3.33) 

(3.34) 

(3. 35) 

(3.36) 



Similarly, by using the identity 

y2 
- 4t 

e 

and (3.21), we can write K3 as follows 

t-YA 

K
3 

= h(t-YA)e -AYA 1, Ht-YA-t ') 

y2 
1 (y3 ~ - 4 t I - At I 

-- 6Y e dt 1
• 

8v'rtl5" t I 

Using (3.33), (3.36) and (3.38), we obtain the expression for~~. Therefore 

J(z,t) can be written as 

aN J(z,t) = vN(z,t) - D az (z,t), 

or 2 2 \) z 

J(z,t) 
vz ioo 2 - -z ( t-YA 

= ~TI h(t-YA)e-t; 4t; e-I..YA ),.. 1/J(t-YA-tl) 
0 0 

y2 

Then, the time-dependent cumulative release is 

2 2 
+ v DS z 

2t;2 

2 2 

{( 
y3 y2 ~ 1 
2t 1 +A-3Y;t~ 

(3. 37) 

(3.38) 

(3.39) 

[ ~(Z,t 1 )dt 1 = evz (
00

h(t-YA)e-t;
2

- :t;~ o 2TI Jo !a 
t-YA!at-YA-t I 

-AYA e 0 0 1/J(-r)dT 

. _l_ e- !! ' -At' L (1 + vz ) 

1!'3" L 2t;2 
2 2 {( 3 2 ~ + v DS z :L_ + '!____ _ 3y 1:_ 

2 2t I A t I 
2t; 

(3.40) -i}] dt'dl;, t > 0, z > 0. 

For a step release, ljJ(t) = N°h(t)e-At, th~ solutions are obtained by substituting 

(2.40) into (3.23), (3.26), (3.39) and (3.40): 

N 
0 = F 4 ( z, t), t ~ 0, z > 0 
N 

M 
10 = F5(y,z,t), t ~ o, y ~ b, z > o 
N 

(3 .42) 
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J - = F
6 

( z ., t) , t > 0 , z > 0 
No 

t 
( J(z~t') dt' = F

7
(z,t), t > 0, z > 0 

Jo N 

1 vz -l
ao 2 

F6 (z, t) ~ 1T e 
0 

h(t-YA)e s 

( 
y ) · erfc 

2./t-YA 

e-At erfc (Y+B(y-b)\ds, 
2/t-YA j 

P± (s;z,t) =: e Y./f erfc( _Y_ .+ lt.(t-YA)) 
2/t-YA 

+e erfc · - lt.(t-YA) -Yif ( Y ) 
2/t-YA 

(3 .43) 

(3.44) 

(3 .45) 

(3.46) 

(3 .4 7) 

(3 .48) 

~· 

(3 .49) 



For a band release, one can obtain the solution by using the superposition 

method: 

N -ItT F4(z,t) - e F4(z,t-T), t ~ 0, z > 0 (3. 50) 

-A. I 
F5(y,z,t) - e F5(y,z,t-T), t ~ o, y ~ b, z > o (3.51) 

J -A.T -a= F6(z,t) - e F6(z,t-T), t > 0, z > 0 
N 

(3. 52) 

(3. 53) 

The verification for the solutions for the step release is given in the Appendix. 

3.4 Computer Code 

3.4.1 Quantities Calculated 

To evaluate the integrals in the solutions, we introduce a variable trans-

formation so that the integration interval becomes finite. By introducing 

1 
~' 

(3. 54) 

-z- tR; 
the interval, l(~ S~ < oo becomes 0 S ~ < 1. To avoid computer overflow, 2 Dt 

we rewrite the exponential term as 

e 

2 2 2 
1:" v z + vz 

-.., - 4~2 
-( /Dt" - !,_ -...fi- !)2 
~ VR£ 2 Dt ~ 

= e 

vz otherwise, if z increases, e soon becomes too large for computers. 

After changing the integration interval, one can use Gaussian quadrature 

to make numerical integrations. However, since each integrand function 

expressed with ~ has such a sharp peak in 0 s ~ S 1 that the function value 

exceeds the computer lower limit in a very small interval in 0 < ~ < 1, one 

must compress the integration interval to the interval where the function is 

evaluated to be non-zero by computers. 

-21-
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For example, the magnitude of the integrand in N/N° will be determined 

by the following 2 terms: 

exp{~~ "- T ..fir ~ )2

} aM 

(t1,12~~ (y-b)) 
erfc -~· r;;;;==--

2A 1t(l-1,12) 

In case of 

(3.56) becomes smaller than lo- 291 , which is the limit of the computation. 

When greater than 25.9, (3.56) is replaced by zero. 

Considering the asymptotic expansion of erfc(X) 3, 

where 

erfc(X) _ 1 

liT 

00 

s = 1 + I 
m=l 

(-l)m 1·3·······(2m-l) 

(2X2) m 

3 ' I arg XI < 4 7T 

. -x2 
the magnitude of erfc (X) at very large X depends upon e · . Therefore if 

this argument of (3.57) becomes 25.9, (3.57) is also replaced by zero. There-

fore, the integration interval must be compressed to the range of the union of 

the following intervals: 

where 

from (3.56), 1,1 < 1,1 < 1,1 and - - - + 

from (3.57), 0 ~ 1,1 ~ 1,1 3 

~ 25.9 + /670.81 + 2vz 

2v- fDt 
"VR£ 

-22-

(3.56) 

(3. 57) 

(3. 58) 

(3. 59) 



·' ' 1 

= (-670.81-p/2A
2
+(670.81

2
+ 7 X 670.81)~ )'2 

J.l3 t/2A2 . . . ' 

and 

p =A~ (y-b) . 
p 

In Figure 2.3, one can observe a few representative examples ·which illus­

trate the actual interval for numerical integration. As shown .in the figure, 

the interval becomes smaller as t increases. In the Gaussian quadrature method, 

which is used in the codes FIS013 and FIS017, the abscissae are distributed in 

the compressed interval for accurate integration. Thus we integrate between ]J-

and ]J+ instead of between 0 and 1. 

In the same way, we obtain the same 

N/N°, J/N° and j( J/N°dt' except that p 

3.4.2 Algorithm 

interval as (3.58) and (3.59) for 

is set to zero. 

The algorithm for FIS013 and FIS017 is the same as.that for FIS003 and 

FIS017. For the numerical integration, the package subroutine D01AJF of NAG 

library is called. The relative error of the numerical integration is set to 

less than 1 x 10-6. 

3.4.3 Input Data Format 

Same as Table 2.1 

3.4.4 Parameter Ranges for Calculation 

For the values of 

Rf: 1 to 104, 

R: 1 to 104 
p ' . 

D up to 100 (m2/yr), 

t up to 109(yr), and 

z up to 106(m), 

calculations were completed successfully. 

-23-



<a> t = 103 __ ..... · ~-~ W.L.I(....L..~"""U"""~ ..... ~""'"·'*. :~_-_-_ -_u_>~-_-_-_-_-_:i --"-• .. fL 
0 fL- fL+ fL3· 

(b) t = IO'J 

(c) t= 107 

(L) Integrand <I0-291 (ii > Integrand >I0-291 

fL- = 0.04736 
fL+= 0.2112 
f'-3 =0.9927 

---~·~~~L-------------------~·---------._---~~fL 
0 fl- fL+ fL3 

. fL- = 0.004736 
JL+ = 0.02112 
fl-3 = 0.7414 

----~·0~-----~·~------------------------~--~~fL 
OJL+L+ fL3 I 

JL- = 0.0004736 
JL+=0.002112 
fL3. 0.2804 

·XBL 8!57-6499 

Fig. 2.3 Compressed integration intervals for several t values. 

Integration is made between ~- and ~+. 
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4. Examples of Numerical Evaluations 

Here we will show some examples which illustrate the effects of the dis-

persive transport in the fracture (i.e., D) and the sorption in the rock pores 

(i.e, R ) on the profiles of the concentrations, the advective mass flux and p 

cululative release. The parameter values used in this report are obtained 

1 from our previous report . 

In Figures from 4.1 to 4.4, one can observe the profiles at 10,000 years 

for a step release, of the relative concentration in the fracture (Fig. 4.1), 

the relative concentration in the rock pores at a distance of 100 m from the 

repository (Fig. 4.2), the advective mass flux in the fracture (Fig. 4.3), and 

the cumulative release in the fracture (Fig. 4.4), respectively. Effects of 

~ are clearly observed in each figure. As R increases by a factor of 100, 
p . 

the distance from the .repository, z, where the values of the vertical axes 

become 0.1 percent of the initial values at the repository, decreases by a 

factor of about 10. On the other hand, the differences between the values for 

D = 0 and D = 1 m2/yr are so small that they cannot be distinguished on the 

figures, even though the values for D=l m2/yr are slightly greater than those 

for D = 0. 

Figures 4.5, 4.6 and 4.7 depict the change of the quantities in time up 

9 to 10 years for a step release. Again the effect of D is very small. The 

relative concentration in the fracture at z = 100m (Fig. 4.5) reaches a 

maximum of 0.9855 at 10000 years. This graph shows that the contaminant reaches 

the point, z = lOOm, at t = 10 years, corresponding to the nuclide travel time 

z/(v/Rf) = 10 years. After the maximum, the concentration decreases because of 

the radioactive decay. After 107 years, the concentration becomes smaller than 

1 x l0-140 . The advective mass flux in the fracture (Fig. 4.6) at z = 100m has 

a very similar profile to Fig. 4.5. Figure 4.7 shmvs the change of the cumula-

tive release in the fracture in time. TI1is quantity has an upper limit because, 
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in (2.44) as t -+ oo 

lim r J(z,t') dt' v -AZA-I'fZ v for small A. As shown in = I e ~I t-+oo No 
0 

v 7 the figure, the cumulative release approaches /A= 3.084 x 10 (m). 

In Figures 4.8 to 4.14 we show the profiles for a band release with a 

leach time of 5000 years. In Figures 4.8 to 4.11, one can observe the profiles 

at 10,000 years, when the leaching is finished, for the four quantities. Again 

effects of D are too slight to distinguish. Effects of ~ are very similar to 

those for a step release. Because of the band release, each profile has its 

peak except for Fig. 4.11. After the leaching has stopped, there is no con-

taminant flowing out of the repository, and uncontaminated water begins to flow 

in the fracture. However, there is still contaminant in the rock pores. Because 

the concentration in the rock pores is now higher than that in the fracture, the 

contaminant begins to diffuse back to the fracture. This situation is depicted 

in Fig. 4.9. In Fig. 4.9, the profiles for R = 1 and 100 show the concentra­
p 

tion gradient from inside of the rock to the fracture. For R = 10,000, 
' p 

however, the opposite gradient still exists. For R = 1 and 100, the position, 
p 

z = lOOm, is located at the left hand side of the peak in the profile in Fig. 

4.8, while for Rp = 10,000, at the right hand side of the peak. 

Figures 4.12, 4.13 and 4.14 show the change of the quantities in time for a 

band release. Up to the end of leaching, the profiles are identical to the 

corresponding profiles for a step release. After the leach time, N/N° and J/N° 

suddenly decrease. Figure 4.14 shows the upper limit because in (2.52), 

lim (tJ(z,t') dt' = v (1-e-AT)e-AZA-IAZ 
t-+oo j_ No . I 

0 

~I (AT) = vT for small A. As shown in the figure, the cumulative 
4 release approach vT = 5 x 10 (m) . 
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Fig. 4.1 Concentration profiles of 237Np in the fracture for a step release. 
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Fig. 4.2 Concentration profiles of 237Np in the micropores, for a step release . 
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Fig. 4.3 Advective mass flux of 237Np at position z in the fracture, for a step release. 
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Fig. 4.4 Cumulative release of 237Np across a plane at z and normal to 

z in the fracture, for a step release. 
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Fig. 4.5 Time dependent concentration of 237Np at position z = 100m in the fracture, a 

step release. 
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Fig. 4.6 Time dependent advective mass flux of 237Np at z = 100 m, step release . 
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Fig. 4.8 Concentration profiles of 237Np in the fracture, for a band 
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Fig. 4.10 Advective mass flux of 237Np at position z in the fracture, 

band release. 
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Fig. 4.11 Cumulative release of 237Np across a plane at z and normal to 

z in the fracture, band release. 
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5. Effects of the Retardation and Dispersion in the Fracture 

As was shown in the previous chapters, the solutions for D r 0 (non-zero 

dispersion in the fracture) are more complicated than those forD = 0. How­

ever, from the computed numerical values forD= 1 m2/yr and D = 0, we find 

that the differences are so small that we cannot distinguish two cases in the 

graphs. 

Several questions then arise: 

(i) At what value of D will these two profiles be separated? 

(ii) Are there any other factors which affect the shape of the profiles? 

(iii) What are these effects? 

Next, we will study the relation between the fractured-media solution and 

the porous-media solution for a step release, and the effects of fracture 

dispersion. 

5.1 Consideration of the Solutions for Fractured Media with No Dispersion 

Analytical solutions to the concentration in the fracture, eq. (2.33), 

the advective mass flux, (2.38), and the time-dependent cumulative release, 

(2.39) for a general release, ~(t), at the repository are ,rewritten as, by 

setting a new variable, 

(5.1) 

-TilA it-Tn T /A { (Tn/A) 2 
} N(Tn, t) = e h(t-Tn) 

0 
~ (t-Tn-t 1 ) n exp - 4t 1 - At 1 dt 1,(5. 2a) 

2l:;rtr3" 

J(Tn,t) = vN(Tn,t), 

and 

f ~ (Tn, t 1 
) dt 1 

0 L
t-Tn t-Tn-t' 

= ve-TilAh(t-Tn) f 1)J(c)dT 

0 0 

(Tn/A)
2 

} - At I dt I' 4t I 

Tn/A 

2ht 1 3 

(5.2b) 

(5.2c) 

respectively. These equations show that profiles will be the same for the same 
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value of parameter A for a fixed time t if one dr~ws profiles in the domains of 

N vs Tn, J vs Tn or J Jdt' vs Tn. The variable Tn is the nuclide travel time 

(yr) when nuclides are transported through a medium where water is flowing with 

velocity v and nuclides are retarded by the factor of Rf. , 

Considering the governing equation (2.13) for the transport in the fracture, 

if the rate q/bRf of diffusion into rock pores across the y = b plane is negli­

gible, this equation becomes that for transport in a one-dimensional porous 

medium, i . e . , 

aN v aN +- az: at Rf 

subject to the side 

N(O,t) = 1jJ (t)' 

N(oo, t) = o, 

N(z,O) = 0, 

+ A.N = 0, 0 < 

conditions: 

t > 0 

t > 0 

z > 0. 

z < ()() (5.3) 

(5 ,3a) 

(5 .3b) 

(5. 3c) 

l-Ienee one ~an expect that one of the extreme cases of (2.13) is (5.3), so it will 

be useful to compare the solutions of (2.13) with those of (5.3). The solutions 

to (5.3) are, by using Tn, 

-TnA. N(Tn,t) = e h(t-Tn)ljJ(t-Tn) 

J(Tn,t) = vN(Tn,t) and 

1 t Lt-Tn -TnA. J(Tn,t')dt' = ve h(t-Tn) . ljJ(T)dT. 
0 0 

Comparing (5.2a), (5.2b), and (5.2c) with (5.4a), {5.4b), and (5.4c), one 

can say that, if A tends to infinity, (5.2) becomes (5.4). For illustration, 

let us derive the solutions for a step release. For the fractured media, 

N(Tn,t) = N°e-A.~(t-Tn) erfc(In/A ) , 
. 2/t-Tn 

J(Tn,t) = vN(Tn,t), and 
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(5.4b) 

(5 .4c) 

(5. Sa) 
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~- \1 
\ 

f~(Tn,t')dt' = r N°h(t-Tn) [e-ATn t {elf~ erfc( Tn/A + />.(t-Tn)) 
o . . 2/t-Tn 

+ e-l'f Tn/A erfc ( Tn/A ~ />.(t-Tn))} 
2/t-Tn 

-e-Aterfc(Tn/A )] (5.5c) 
2/t-Tn 

For the porous media, 

0 -At N(Tn,t) = N e h(t-Tn), 

J(Tn,t) = vN(Tn,t), and 

(5.6a) 

(5.6b) 

JtJ(Tn,t')dt' = r N°h(t-Tn) [ e->.Tn_e-At]. (5.6c) 
0 

Again if A tends to infinity (5.5)becollles (5.6), as is illustreted in Fig. 5.1. 

5.2 Consideration of the Solutions for; Fractured ·Media with Non-Zero Dispersion 

With non-zero dispersion, we find results similar to those described for D = 0. 

Let us compare the fractured media s.olutions with the solutions for one -dimensional 

porous media. TI1e governing equation for porous media is obtained by neglecting 

the q/bRf term in the fractured media governing equation: 
I 

aN v aN D a2N 
at + Rf az - Rf azz + t.N = o, o < z < oo 

(5.7) 

subject to the same side conditions as (5.3a,b,c). By using the variables, Tn, 

and 

w 

the solutions for a step release in fractured media can be rewritten as 

__ ztP 
N (Tn, t) 

ITI 

2 w2Tn
2 

(wTn
2 

1 ) 

0
wTn

0 
-a1: -E. - 7 erfc 2?"" -A 

2 
dl;, 

:'IW Tn 2 -{t_ ~ 
~~ 2~ 
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(5.9a) 



where 

J(Tn, t) 

2 
+ Tn 2t wTn /2~2 

2c2 ( . 2 )3/2 exp s A t _ wTn 
2~2 

t 

1 J (Tn' t I ) d t I = - J (Tn' t) 
o A 

No 
+-

A 

( 2) wTn 

2~ 2A 

P~ (~ ;Tn, t) 

+ vTn 1\TI 
~2 A 

p1 (~ ;Tn, t) 

T 2 , ( ) ) 
+ exp - =.z-- , If erfc 

2~ I 

2 
2t wTn 

- 2~2 

( 2}12 A t _ wTn 
2~2 

wTn2 1 
-z? A 
--"--,.===+ _ J wTn2 
2 -yt - 2~2 

wTn2 1 

2E? A 
. 2 
wTn 

- 2~2 

. -44-
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And the solutions to (5.7) for a step release in porous media are 

and 

N(Tn, t) 

2T 2 w n 

4~2 
d~' f

ro -~2 _ 
wTn -A.t e e e 

{f;Tn 

J (Tn, t) wTn -Atj
00 

e e e d~' 

{'i[; Tn 2 2 2 

ewTn f 
oo e-~2 _ w Tn -A. wTn J ~(Tn,t')dt' = 

0 

. ( 1 + wT~ + A. 1n) . d~ . 
2~ ~ 

4~2 2~2 

1ft Tn 

Again if A tends to infinity, (5.9a,b,c) becomes (5.10 a,b,c). 

(5.10a) 

(5.10b) 

(5.10c) 

Another comparison can be made between (5.5 a,b,c) and (5.9 a,b,c), namely, 

between zero dispersion and non-zero dispersion. As can be seen after some math­

ematical manipulation, if w tends to infinity, (5.9 a,b,c) can be reduced to 

(5.5 a,b,c), corresponding to taking D + 0. This situation is illustrated in 

Fig. 5.1. 

Knowing the criteria at which more complicated solutions can be approximated 

by simpler solutions can save computation time. In the next section we seek 

numerical values of these criteria. 

5.3 Computational Results and Discussions 

The sets of parameter values whicl1 were taken for numerical study are 

listed in Table 5.1. 

For relatively small values of A and large values of D, the computation 

could not be completed with the present code, because the integrand functions 

dealt with in the computer code have very sharp peaks and numerical errors 

are significant. However, one of the consequences derived from the discussion 
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for fixed time 

--.. 
.s -J 

~---- """'"~,. d' (O-Q) 111.~, '", 1. ·~:.' ... .,porous me 1a -
---l~---lt-'~~'~A_ .... _00 

\' 1 (5.6 o,b) 
~w-+oo , ---porous media (0'#'0) 

, \ :\ (5.10 a, b) 
' \ ~· ~\~fractured media (D=FO) 
~ ~ IH (5~9o,b) 
' ' 

1
:, fractured media {D=O) 

L------JL..I..-1---~-__,;.... ............. ' '.._ {5. 5 a, b) 

.. --... 
~ -z 

Tn= z/(v/Rf), year 

Finite dispersion A+oo Finite dispersion 
in fractured media .. in porous media ... 

(5.9 a, b,c l fixed w (SAO a, b,c) 

fixed infinite 
w~oo 

A w~oo . A 1 

' 
Zero dispersion A-.oo Zero dispersion 

in fractured media 
infinite w 

• in porous media 
{5.5 a,b,c) {5.6 o,b,c) 

Fig. 5.1 Relations among the solutions for a porous medium and for a fractured 

medium; for zero dispersion and non-zero dispersion. 
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[R = 1] 
p 

D"f 
0 

1 

10 

100 

[R = 100] 
p 

n\.R£ 

0 

1 

10 

100 

[R = 10000] 
p 

nY£ 

0 

1 

10 

100 

l(A=5) 

w = 00 

w = 50 

w = 5 

w = 0.5 0 

l(A=0.5) 

w = 00 

w = 50 

w = 5 

w = 0.5 0 

l(A=0.05) 

w = 00 

w = 50 

w = 5 0 

w = 0.5 

Table 5.1 

10(A:::50) 100 (A=SOO) .. ' 1000(A=500)· 

w = 00 w = 00 w = 9o 

w = 5 w = 0.5 w = 0.05 

w = 0.05 w = 0.05 w = 0.005 

w = 0.005( w = 0.005 w = 0.0005 

10(A=5) 100(A=50) 1000(A=500) 

w = bo w = 00 w = 00 

w = 5 w = 0.5 w = 0.05 

w = 0.5 w = 0.05 w = 0.005 

w = 0.05 0 w = 0.005 w = 0.0005 

10(A=0.05) 100(A=5) 1000(A=50) 

w = 00 w = 00 w = 00 

w = 5 w = 0.5 w = 0.05 
w = 0.5 0 w = 0.05 w = 0.005 
w = 0.05 w = 0.005 w = 0.0005 

Note: "0" indicates that the computation could not be completed. 
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v=lOm/y 

£=0.01 

2b=O.Olm 

:\=3.24xlOxl0-7/y 

Dp.=O. 01m
2 /y 

t=lOOOO Y 

ljJ=N°h(t)e-At 

bRf 
A=---=--

£1D R 
PP 

= 5Rf 

IR p. 

2 v 
w = 2DR 

f 

- 50 
- DR£ 



in the previous sections is that~ for the same values of A and w, the pro-

files become identical with respect to Tn. Therefore, even if the computation 

cannot be made for some set of values of the parameters, one may try another 

set of values, keeping A and w the same. For example, for (Rp,RPD) = 

(100,10,100), computation was not completed, while for (Rp,Rf,D) = (10000,100,10) 

we could obtain the answer. 

Figure 5. 2 shows the profiles of N vs Tn. There are curves for different 

values of A and w. From this figure, one can tentatively say that if 

bR 
A= _f > 500 1/2 

ElffR 'II ' yr ' 
p p 

the solutions can be approximated with those of a porous medium. If we 

observe the factor A, the numerator bRf consists of the parameter relevant to 

the fracture; bRf is a kind of "capacity" of the fracture for contaminant 

transport. The denominator Ev'i>R is a parameter of the porous matrix sur-pp . 

(5.11) 

rounding the fracture. The fact that the medium can be regarded as a one­

dimensional porous medium when A becomes very large means that, if the relative 

significance of the fracture transport compared with the matrix diffusion 

becomes large, one can ignore the diffusive transport into the rock matrix. 

In order to confirm this, let us consider the flux of contaminant diffusing 

into the rock matrix from the fracture, q, which is defined by eq. (2.12). 

For a step release and D = 0, for simplicity, q/Rfb can be calculated as 
(Tn/ A) 2 

4 (t-Tn) (5.12) 

This shows that as A becomes large, q/Rfb becomes negligible. This means that 

the flux diffusing into the rock matrix becomes smaller because: 

the amount sorbed on the fracture wall becomes large, and the relative 

amount diffusing into the rock is reduced, or 
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the capacity of the rock matrix for contaminant is reduced and the 

relative importance of fracture transport becomes large. 

Thus, if the amount of contaminant in the fracture and that sorbed on the 

fracture wall is considerably larger than that diffusing out of the fracture, 

the fractured medium can be regarded as a porous medium. 

The criterion for using the solutions with zero dispersion instead of 

those with non-zero dispersion can be obtained from the numerical results. From 

Fig. 5.2, the values of w . ·t~ at which the D f 0 curves start to deviate cr1 

from the D = 0 curve, depends upon the value of A:. 

A 0.05 0.5 5 50 , A w . ~ O.OS yr-1/2 
~1 ~o.l ~0.01 ~0.001 crlt 

A increases, w .t. decreases. If A w is greater than A w "t' then one can cr1 cr1 
use the solutions for zero dispersion with reasonable accuracy instead of those 

for non-zero dispersion. 
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0 z 
......... 

-I 
10 

-2 
10 

:: -3 
A 10 

.s -z 

10 

I~ 

w=~ 1.0 
50, 0.5 5 

v=IO m/y 
E=O.OI 
2b=O.Oim 

).(237N p )=3.24xtO"'l<J 
Dp=O.OI rrfly 
t = I04y 

A= bRt/tJDpRp 

w= v2/2DRt 

Step release 

w- 0.1 
5, 

0.005 0.5 

w• 

W•m_ 

0.05 

I Solution for 
I porous media 
I o=o 
I 
I 
I 

.005 

0.0005 

Nuclide travel time, T0 = v~Rt, year . 

. X BL 857-6514 

Fig. 5.2 Concentration profiles of 237Np in the N-Tn domain, step 

release. 
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Appendix 

Verification of the Solutions for the Single Fractured ~redia with Finite 

Fracture Disper.sion. 

We will verify that 

and 

N(z, t) 2 =-

M(y ,z, t) 

2 · ,}z2 
-~- ::2 

= _2 ~evz-A.tf
00 

e 
4~ erfc(Y+B(y-b)) ~, 

.;:; 2/t-YA 
vez 
zrt 

are the solutions to the problem: 

a~ aN Rf n _ 
---., - 2v - - - A.N - .::1-- 0 t > 0, z > 0 
az£ at D bD ' 

q -B2 ~~ - A.B~ = 0, t > 0, . y > b, z > 0 
ay 

subject to the side conditions: 

N(z,o) =0 z > 0 

M(y,z,o) = 0 y > b, z > 0 

N(O,t) 0 -A.t = N e t > 0 

N(co, t) = 0 t > 0 

M(b,z,t) = N(z, t) z > 0, t > 0 

M(co,z,t) = 0 z > 0, t > 0 

z 4DRf bRf 
,v=~n,e =-2-,A=---==---

v E:IDPRP 

-52-

(3.41) 

t.:_O, y~ b, 

z > 0 (3.42) 

(3.1) 

(3 .2) 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 



[1] Side Conditions 

(a) N(z,O) = 0, z > 0 

For z > 0, the integration interval in (3.41) becomes from oo to oo. If 

the value of the integrand evaluated at ~ = oo is bounded, the integral itself 

becomes zero. 

lime 
~ +oo 

2 
-~ -

That value of integrand becomes 
2 2 \) z 

4~2 
= 0 

and by letting P = _Y __ 
z./t-YA 

limP = lim 

t+O t+O 

zero because 

The last manipulation is possible because ~ 4t goes to infinity faster than ~ 2 

and so the denominator goes to infinity, where as the numerator is a positive 

constant. Therefore, we have 

lim erfc (P) = erfc (O) = 1. 

t + 0 

Therefore at the limit of ~ + oo, the integrand becomes zero and so bounded. 

Therefore 

N(z,O) = 0, z > 0. 

~ (b) M(y,z,O) = 0, y > b, z > 0 

-- Y+B(y-b) By setting P' - - , we consider the following limit operation: 
Ut-YA 

limP' = lim 2 2 2 \) s z + B(y-b) 
~ + 00 ~ + 00 4.Ai;2 

+ 00 • 

t + 0 t + 0 -; v2s2z2 

4.Ai; 2 -53-



Therefore, lim erfc (P') = 0 

t -+ 0 

By the same argument, M(y,z,O) = 0 for y > b, z > 0. 

(c) N(O,t) = N°e-At, t > 0 • 

Considering the integrand in N(z,t), the integrand function is integrable in 

~ over every finite subinterval of C = 1[~ ~ vSz/2/t Jr for any (z,t) in 

S = {z ~ 0, t ~ 0} The integrand function is also continuous in (z,t), ~for 

(z,t), ~on S, C. The integrand is bounded by 

2 2 
-~2 v z 

I 
- 4? 

e 
( y ) I erfc . 

Ut-YA 
< 

-~2 
e for all (z,t)GS and ~GC. 

Therefore, the integral converges absolutely and uniformly and is continuous in 

( z, t) for ( z , t) ES. Therefore, we can exchange the order of lim and I , obtaining 
z-+0 

limN(z,t) 
z-+0 

2 o -At I 00 J -s2- ~:~2 ( Y )} 
= ,r,r N e o !~ L erfc zlt-YA dS 

1
00 2 

= l_Noe-At e-~ d~, t > 0 
ITI o 

= Noe-At, t > 0 

by using loo e -<
2 

di; = ,r,r/2 . 
0 o -At Therefore N(o,t) = N e , t > 0. 

(d) N(oo,t) = 0, t > 0 

As shown in (c), the integrand is continuous in (z,t), ~for (z,t), ~on S, 

C, and the integral converges uniformly and absolutely in (z,t)GS. Therefore 

we can exchange the order of lim and I , obtaining 
z -+co 
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limN(z, t) 
2 

=-
z-+ oo /IT 

N° e-A tlim { roo 31j -~n z erfc ( y . ) dt.; } 
z-+oo ) ~B z zit-YA 

00 2rt -(t.: _ vz) 2 
2 --
I7T 

No -l.i lim (e · · 
2t.: . erfc ( Y )'1 dt.; 

e z-+ oo 2/t-YA ~ 
00 

The exponential tenn in the integrand becomes zero as z-+ oo. The argument of 

"erfc" function tends to zero, and so "erfc" function to unity. Thus, the 

integrand becomes zero as z -+ oo. Hence 

N(oo,t) = 0 for t > 0. 

(e) M(b,z,t) = N(z,t), z > 0, t > 0 

This is easily shown from (3.41) and (3.42) by setting y = b in (3.42). 

(f) M(oo,z,t) = 0, Z > 0, t > 0 . 

The integrand in M(y,z,t) is integrable in t_; over every finite subinterval of C 

for any (y,z,t) inS' = {y ~ b, z ~ 0, t > 0}. The integrand is also contin­

uous in (y,z,t), t_; for (y,z,t),t_; on S', C. The integrand is bounded by 

e 

where 

2 2 \) z 

4t_;2 erfc ( Y+B(y-b)) 
2/t-YA 

for all (y,z,t) 6S' and t.;E:C 1 

L e -t_;2 I7T 
dt.; ~ :z Therefore the integral converges absolutely and uni-

formly and is continuous in (y ,z, t) for (y ,z, t) E:S'. Then the order of lim and J 
Y -+oo 

can be exchanged. Since 

lim erfc (Y+B(y-b)) = 0, z > 0, t > 0 
y -+oo Ut-YA 

the integral becomes zero as y-+ oo. Therefore 

lim M(y,z,t) = 0, z > 0, t > 0. 
y-+ 00 
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[2] Equation (3.2) 

Next we will shmv that the proposed solution for M(y ,z, t), i..e., (3 .42) 

satisfies the governing equation (3.2). Instead of substituting {3.42) 
.;;'/ 

directly into (3.2), we assume the solution of (3.2) to be of~~e form of 
,;l 

2 o vz-A.t M(y,z,t) =- N e K(y,t;z). 
liT 

(A) 

On substitution of (A) into (3.2), we obtain an equation which K(y,t;z) should 

satisfy: 

a2K 2 aK - = B - t > 0, y > b. 
ay2 at ' 

subject to K(y,o;z) = 0 y > b, z > 0 

K(oo,t;z) 

and K(b,t;z) 

= 0 t > 0, z > 0 

-liT eA.t-vzN(z,t), t > 0, z > 0 
2N° 

where the side conditions for K(y,t;z) have been checked as shown in [1]. 

Comparing (3.42) and (A), we must show that 
2 2 _t"z v z r c, --=r 

K(y, t; z) = )vsz e 4~ erfc ( Y+B(y-b))~• t > 0, y ~ b, z ~ 0 
2/t-YA 

2/t 

(B) 

(C) 

satisfies (B). First we must show the validity of tl1e differentiation operations 

of the improper integral (C) , so \ve must establish that 

(i) the integral (C) converges inS' = {t ~ 0, y ~ b, z > 0 } 

and 

( .. ) aK aK. and a2K .f rml . S' 
11 at , ay ay2 converge urn o y 1n. . • . 

For (i), as shown in [1](£), the integral in M(y,z,t) which is identical to 

K(y,z,t) is uniformly convergent and continuous in (y,z,t) for (y,z,t)€5'. 

For (ii), 

aK _ ( at - -£ y,z,t; vsz) . 
2/t 

a£ 
at d~ ' 



where f (y,z,t;~) is the integrand of K(y,t;z). 

The first term becomes zero because 

f y,z,t;-( vsz) 
Zit 

Hence we have z z 

r:z :J:z 
-~z- ~ 

4~z aK a£ 
d~ = at e 

at 

Zit zit 

where f (~;y,z,t) 
z Y+B(y-b) e 

4 (t-YA) 3/Z 
=-

For~ 
vSz =- y,z,t = o. f 

( vZSitz ·, ) 

vSz For ~ > - + s , s > 0 , t - YA > o > 0 . 
-Zit 

f(~;y,z,t) d~, 

{Y+B(y;.b)}z 
4 (t-YA) 

(D) 

z z v z --, 
4C f(~;y,z,t) < 

z { }
z _ Y+B(y- b) 

L [· Y-B(y-b) e.. Z/t'-YA ]e -~Z 
Zo 2/t-YA .. 

for all ~EC and (y,z,t) ES', 
Y+B(y-=b) -p'z .. because by setting P' = , the function of p'e has the maximum at 

l 2/t-YA 
P' =-. Hence the integrand is bounded and also continuous in (y,z,t)ES' and· 

/2 
. 1 _ff -1/2 

~EC. Therefore, by expressmg M = Z8 V 1 e 

I aK I < z 
at -liT Mf"" 

vSz 
Zit 
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which shows ~~ 
Similarly, 

is uniformly convergent and continuous in (y, z ; t) 6S 1 
• 

aK a2K for - and - , where 
ay ayz 

2 2 
00 -F,2 \) z 

-f~z 4F,2 aK _ 2 
ay - e 

/if 

2/t 

and 

"'': 
.;. .. 

{Y+B(l-b)} 2 

B e 4 (t-YA) 
df,' (y,z,t)6S 1

, 

2/t-YA 

Y+B(y-b) e 
4(t-YA) 3/ 2 

{Y+B(y-b)} 2 
4 (t-YA) 

df, ' (y 'z 't) 6S I ' 

the integrands are continuous and bounded in (y,z,t) and F, for (y,z,t)6S 1 and 
aK a2K f,6C. Hence both "Y and - are uniformly convergent and continuous in 
o ayz 

(y, z, t)6S 1 • Thus, we showed the validity of the differentiation operation for 

the improper integral (C). 

By comparing (D) and (F), one can immediately say that (C) satisfies (B), 

which verifies that (3.42) satisfies (3.2). 
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[3] Equation (3.1) 

Thirdly, we will show that (3.41) satisfies (3.1). Instead of substitu­

ting (3.41) into (3.1), we assume the solution of (3.1) to be of the form of 

N(z,t) =I_ N°evz-At I(z,t). 
/IT 

On substitution of (G) into (3.1), we obtain an equation which I(z,t) should 

satisfy: 

0, t > 0, z > 0 

subject to I(z,O) = 0, 

I(o,t) = hr/Z, 

I(oo,t) = 0, 

z > 0 

t > 0 

t > 0 

where the side conditions for I(z,t) are already shown to be satisfied by 

I (z, t) as shown in [1]. Therefore we must show that 

I(z,t) = J,s: 
z z . 

-~z_ v z 

. Zit 

4~z 
erfc e 

( 
y )d~ (z,t)ES 

Zlt-YA ' 

satisfies (H) • By using (E) , we obtain 

z z yZ 

- ~;z 
-~z_ v z 

aK 1 e 
4~z z 1 4(t-YA) 

ay y=b = 
e 

Zit 
hr 2/t-YA 

Therefore, fo can be written as, from the definition of q, 
z z 

-~z_ ~ 

dC 

(G) 

(H) 

(J) 

z 
hr 

vz-At r: 
e J:!yZ e 

4~z z ( z ) 
1 exp - 4(~-YA) ds, 

l7r 2/t-YA Zit 

But considering 

L erfc ( Y ) = I_ y __ l---;;~ 
at Zlt-YA /IT if (t-YA) 3/Z 

yZ 
- 4(t-YA) 

e 

t > 0, z > 0, z > vsz ' 
Zit 
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one can rewrite BIT as 

. 2 2 
00 2 \) z 

g_ liT -vz+A. t _ Rf 
bD ZNo e - D1 1 e -1; - 41;2 

(3z 

2(t-YA) a ( Y ) Y,A ~t erfc d~ , 
.· o 2/t-YA 

zit t > 0, z > 0 . 

By substituting this into (H), (H) ·becomes 

2 - v I 
Rf ar 
---
D at 

2 
2 2 \) z 

-1; - 41; 2 2(t-YA) 
e YA ~t erfc ( _Y_) ~=0, 

2/t-YA 

t>O,z>O.' (H') 

Next, let us check the validity of the differentiation operations of the 

·improper integral (J). We follow the same procedure as in the previous 

section. 

For the convergence of I(z,t), we have already shown in [l](C) that the 

integral in N(z., t), which is identical to I (z, t), is uniformly convergent and 

continuous in (z,t) for (z,t)E:S = {z ~ 0, t > O}. 
ar For at , we have 

1
00 

ar 
at = (3z 

e 

2/t 

2 1 
liT 4 

y2 

Y e 4(t-YA) d~ 
(t-YA) 3/Z 

The integrand is continuous in (z,t)E:S and ~E:C. By the same argwnent as for 

2 
integrand is bounded by ~ J.\'1e -~ aK at , except that here P' = 

y 

Zlt-YA 

for all ~E:C and (z,t)E:S. Therefore 

I ~ I < ~ Mfooe -~2 d~ = M, 
at - liT 

0 

the 
/iT 

which shows the uniform convergence and the continuity of~~ in (z,t)E:S. 
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ar For az , we have 

ar az = lim \!Bz 
n+-

2/t 

2 2 2 \) z 

( 
y ) d~ 

2/t-YA 

e "' erfc Y__ d~ , z > 0 , t > 0 . -~ - 4~ 2 d ( ) 

az 2/t-YA 

z/f 

Noting that 

erfc ( y ) = -~ .L erfc ( y ) 
az 2/t-YA z a~ zlt-YA 

0 0 ~ > vBz ,z> ,t> ,~, 

2/t 

2 \!2Z2 

-~ - 4~2 ( ) 
Since e "' and erfc Y have continuous derivatives with respect 

2/t-YA . 

(L) 

(l\1) 

to ~ in ~E:C = { ~ > \!Bz /Zit} , and the resultant integral is unifonnly con­

vergent in (z,r) for (z,t)E:S = ~z > 0, t > oJr as shown below, one can make 

the integration by parts for the second term of (L), resulting in 

ar 
az 

2 2 
-~2 \) z 

-4s2. ( y ) e erfc 
2/t-YA 

(z,t)E:S 
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By using this 

2 2 2 \) z 
-t; --2 

1:; 1 ~ r (~- ~
2

) e 4t; dt;, for all (z,t)ES 1 

0 

vz ·By setting l-1 = 2t; , 

( 

-l-1 

I;~ I ~ I fooo -~ + v~z2) e 
Considering the identity(l). 

-t; - - liT -2X L
oo 2 x2 

0 
e t;2 dt; = 2 e ; X > 0 

and its second derivative with respect to X, 

2 

oo 2) 2 x2 
f ( -1 - + ~ e-t,; - 2 dt,: =;; e-zx 

0 2t,:2 t,:4 t; 2 ' 

2 2 \) z 
- 4i 

X > 0, 

(*) 

(**) 

(this differentiation is justified since these improper integrals are bounded 

I7T by 2 , independent of X and have continuous integrands in t; > b, which means 

they are continuous and uniformly convergent for all X> 0), the integral(*) 

becomes 

L
oo 2 

I 

ar 1 v -ll - <- e az - 2 
0 

vliT = -4-~-

And the integrand of (L 1 ) is continuous in (z, t) and t; for (z ,t)ES, t;EC. 

Therefore ~~ is continuous and uniformly convergent in (z,t)ES. 

Differentiating (L 1 ) once more with respect to z, we obtain 
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00 

+ ]vsz 
Zit 

2 1 
(1-2~ ) - e z 

. 2 2 
t'2 v z -., - -::-=r 

4~ L erfc ( Y -' az zrtW d~' 

2 2 for all (z, t)ES. -~2 _ ~ _ (N) 

Since l (l-2~ 2)e 4~ 2 

and erfc '( y--) have continuous derivatives 
. z 2/t-YA 

with respect to~ in (z,t)ES and ~EC, one can make the integration by parts 

for the second term in (N) as was done for (L), resulting in 
v2z2 

-~ ( y ) erfc 
2/t-YA 

-~2 
'( 2 4) 1 -6~ + 4~ e 

2 z 
2/f 

for all (z,t)ES. 

By using this, 

By differentiating (**) three times with respect to X, 

1oo(x3 3X) -~ 2 Xz liT -2X 
o ~ 6 - 2~ 4 e - ~ d~ = 2 e 

Therefore 

2 2 2 v z 
-ll- -­. 2 

e 4ll d]..l 
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J 
oo -i- iz2 

2 4 2 2 c 
= v e J.l dJ.l < v vn 

2 
0 

And the integrand of (N') is continuous in (z,t) and~ for (z,t)ES and 
2 

~EC. Therefore 4 is continuous and unifonnly convergent in (z, t)ES. 
dZ 

By substituting (L') and (1vl') into the left hand side of (H'), we obtain 

(l.h.s.) = hs:. 
2 2 

-~2- v z 

e 4~ 2 
erfc ( y ) d~ 

2/t-YA 
2/t 

2 2 
-~2- _v_z_ 

f oo 4~2 
vSz e 

(2t-YA) 
YA L erfc( y ) d~ 

at . · z.lt-YA 

2/t'. 

for (z,t)ES. 

But from (K) and (M) , we have 

d ( y ) - erfc = 
Clt 2/t-YA 2(2t-YA) ~~ erfc ( y ) , 

z./t-YA 

for (z,t)ES, ~EC. 

Substituting (Q) into the second term of (P) yields 

[ 

2 v2z2 ] 
00 -~ - 4~2 2~3 

(2nd term) = Sz e --:-z-
z 

( 
y ) a erfc 

af 2/t-YA 
d~, (z,t)ES. 

2/f 2 2 
. [ -~2- ~ 

Since both e · 4~ 2 ~] term and erfc ( y ) have continuous 
z 2/t-YA 

derivatives with respect to~ in ~EC, (z,t)ES, one can make the integration 

by parts and obtain 

(2nd term) = - r 00 

)vE 
2/t 

( 6~2 - 4~4 
2 2 z z 

2 2 v z 
+ 2' -~ 2 - 4~ 2 

erfc ( y--) d~ VJ' e 21t-YA 

(z,t)ES. 
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• 

• 

Therefore (l.h.s.) = 0 . 

Hence it is verified that (J) satisfies (H), and so that (3.41) satisfies 

(3.1). 

Hence (3.41) and (3.42) are the solutions for this problem. 
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