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Abstract

While Escherichia coli has one of the most comprehensive datasets of experimentally verified transcriptional regulatory
interactions of any organism, it is still far from complete. This presents a problem when trying to combine gene expression
and regulatory interactions to model transcriptional regulatory networks. Using the available regulatory interactions to
predict new interactions may lead to better coverage and more accurate models. Here, we develop SEREND (SEmi-
supervised REgulatory Network Discoverer), a semi-supervised learning method that uses a curated database of verified
transcriptional factor–gene interactions, DNA sequence binding motifs, and a compendium of gene expression data in order
to make thousands of new predictions about transcription factor–gene interactions, including whether the transcription
factor activates or represses the gene. Using genome-wide binding datasets for several transcription factors, we
demonstrate that our semi-supervised classification strategy improves the prediction of targets for a given transcription
factor. To further demonstrate the utility of our inferred interactions, we generated a new microarray gene expression
dataset for the aerobic to anaerobic shift response in E. coli. We used our inferred interactions with the verified interactions
to reconstruct a dynamic regulatory network for this response. The network reconstructed when using our inferred
interactions was better able to correctly identify known regulators and suggested additional activators and repressors as
having important roles during the aerobic–anaerobic shift interface.
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Introduction

Decades of research on the bacterium Escherichia coli have led to

the accumulation of a large knowledge base about transcriptional

regulation within this prokaryotic model organism. Researchers

have electronically encoded in databases (such as EcoCyc and

RegulonDB) thousands of activation and repression relationships

among transcription factors (TFs) and genes [1–3]. However,

while E. coli has one of the most comprehensive datasets of

experimentally verified transcriptional regulatory interactions of

any organism, it is still far from complete. For instance, the

experimentally verified and curated TF-gene interactions provides

regulatory relationships for only approximately 1000 genes, which

is well below the more than 4000 genes predicted to be present in

E. coli. This relatively low coverage of the experimentally verified

and curated interaction network presents a challenge when

attempting to reconstruct the active regulatory network for a

condition of interest based on microarray gene expression data.

When analyzing microarray experiments, researchers often need

information about the set of genes predicted or known to be

regulated by various TFs. This information can then be used to

determine the influence of the TFs in the condition of interest by

indirectly observing the activity of the regulated genes, even for

cases in which the TF is post-transcriptionally regulated [4–6].

A traditional computational approach to identify additional

gene targets of a TF, which has been applied to E. coli, is to

characterize the DNA sequence binding preferences of a TF based

on an alignment of known binding sites of the TF, and then use

this alignment to scan the promoter region of genes for sites

matching the preferences [7]. In some cases researchers have used

conservation as an additional filter [8–10] or extended the

alignment based approach using a biophysical based model [11].

While it has been shown that for some TFs in E. coli the presence

of a motif can be highly predictive of true binding [12], for other

TFs the motif pattern is more degenerate leading to reduced

accuracy. An additional limitation in E. coli, where genes are

organized into transcriptional units and many TFs function as

both activators and repressors [2], is that motif scanning only

determines the binding site location, which is not sufficient to

determine if a specific binding site is being used to activate or

repress a specific gene [13].

Another approach researchers have taken to predicting TF-gene

interactions utilizes just mRNA expression data by evaluating

whether the expression level of the TF and the target gene are

consistent with a regulatory relationship. Faith et al. [14] surveyed

and evaluated a number of these methods using a compendium of

E. coli gene expression data. They also introduced a new method

for this task: The context likelihood of relatedness (CLR) which
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extends Relevance Networks [15]. CLR was found to be the top

performing method by Faith et al. at recovering known

interactions. Other methods considered by Faith et al. include

ARACNe [16], Bayesian Networks [17] and linear regression

networks. The Relevance Network approach directly ranks TF-

gene interactions based on a statistical measure such as the

correlation coefficient or mutual information of the expression

profile pairs. CLR extends Relevance Networks by considering the

distribution of values obtained by the statistical measure for all

pairs involving the same TF or regulated gene. The authors found

in their evaluation that for CLR and Relevance Networks the best

results were obtained using mutual information and the square of

the correlation coefficient, respectively. As these methods predict

network interactions exclusively from expression data this provides

the advantage of being broadly applicable to organisms for which

prior knowledge on gene regulation is limited. However in the case

of E. coli these methods are unable to take advantage of known

interactions or DNA sequence binding information to improve the

accuracy of the predicted interactions. In particular these methods

can only identify interactions for factors that are transcriptionally

regulated, which may lead to missing many interactions for post-

transcriptionally regulated factors.

In this paper we introduce a new method, SEREND (SEmi-

supervised REgulatory Network Discoverer), to predict TF-gene

regulatory interactions in E. coli (Figure 1). SEREND is an iterative

semi-supervised computational prediction method that takes

advantage of known regulatory interactions in E. coli and extends

them by leveraging TF sequence binding affinities and a

compendium of expression data. Similar to other methods [4–6]

SEREND does not assume that a TF is necessarily transcriptionally

regulated. Instead SEREND uses expression data in the context of

known or predicted TF-gene interactions. However, these previous

methods assume a fixed set of TF-gene interactions, while the

purpose of SEREND is to predict additional TF-gene interactions.

These predictions can later be used as input to these other methods,

as we demonstrate for one method on a new expression dataset.

Other methods performed iterative analysis as SEREND does here

[18,19]. However, unlike SEREND, which focuses on classification,

the goal of these prior methods was clustering or gene set module

identification leading to different treatment for the features used and

different meanings for the resulting sets. Another method [20] used

curated interactions and expression data along with Gene Ontology

(GO) and phylogenic similarity to predict additional gene targets,

but did not use an iterative or semi-supervised approach or motif

information as we do here. We chose for our method not to use GO

annotations in generating predictions giving us the advantage of

being able to use GO for an unbiased assessment of the functional

role of predicted targets.

In evaluating SEREND, we first establish that SEREND can

successfully recover many direct gene targets implicated in

chromatin immuno-precipitation (ChIP)-chip experiments and

compare its ability to do so with other methods. To further test the

predictive capability of SEREND and to assess the functional

relevance of the newly-predicted TF-gene interactions, we

combine them with new temporal microarray gene expression

data obtained during the switch from aerobic to anaerobic growth

conditions in E. coli. For this we use a recently introduced

computational method, Dynamic Regulatory Events Miner

(DREM) [4], that allows us to analyze and model the dynamics

of the transcriptional regulatory network in response to this

environmental change. As we show, the reconstructed network

response agrees well with known responses during the E. coli

aerobic-anaerobic switch. Moreover, by using the new TF-gene

interactions predicted by SEREND, DREM is also able to suggest

additional TFs as controlling different stages of the aerobic-

anaerobic switch response in E. coli.

Results

Ranking New Predictions for a TF
Figure 1 outlines our strategy to generate ranked predictions of

additional targets of a TF, including the direction of the

Figure 1. Method overview. SEREND takes as input a compendium
of expression data [14], a curated set of E. coli TF–gene interactions with
direct evidence [1], and scores for TF–gene motif association based on
the PWMs present in RegulonDB [2]. SEREND uses a logistic regression
ensemble-based classification method where all non-confirmed targets
were initially treated as unregulated by the TF. SEREND then relaxed
this assumption using a self-training method. We evaluated the ranked
predictions of SEREND using published ChIP-chip data, and by
combining SEREND’s predictions with a new set of time series gene
expression data on aerobic-anaerobic shift response in E. coli.
doi:10.1371/journal.pcbi.1000044.g001

Author Summary

The proper functioning of transcriptional gene regulation
is essential for all living organisms. Several diseases are
associated with loss of appropriate transcriptional regula-
tion. Even in relatively simple organisms, such as the
bacterium E. coli, response to environmental stress is a
complex and highly regulated process. This process is
controlled by a set of transcription factors that causes an
increase or decrease in the expression levels of their
target’s gene. However, identifying the set of targets
regulated by each of these factors remains a challenge.
Even after decades of experimental research on E. coli, only
a quarter of all gene products have a known regulator.
Here, we develop a method that extends the known set of
regulator–target relationships with additional predictions.
Our method utilizes the DNA sequence control code and
expression levels of known targets in a variety of
conditions, as well as genes for which it is not known if
they are targets of a specific regulator. We show that our
method more accurately identifies true targets of known
regulators than previous methods suggested for this task.
We then applied our predictions to identify active
regulators involved in the dynamic response that occurs
in E. coli when it is deprived of oxygen.

Predicting TF–Gene Interactions in E. coli
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interaction (activator or as a repressor). We first extracted from

EcoCyc 11.5 all genomic targets of TFs among the 4205 genes that

we considered that have been validated by direct experimental

evidence (see Materials and Methods). We also extracted the

directions of these interactions. This gave us 1760 interactions

corresponding to 123 TFs and 974 genes. See Table S1 for the

distribution of the number of confirmed targets across TFs. We

also obtained the expression value of all the genes across a diverse

set of 445 experimental conditions based on a previously

assembled compendium including genetic knockout experiments,

overexpression experiments, and environmental stress conditions

[14]. Finally for 71 of the 123 TFs we obtained a sequence binding

affinity matrix from RegulonDB. We used these matrices to

determine a score for the maximum agreement of the TF with a

potential binding site at the promoter region of each gene (see

Material and Methods). For the remaining 52 TFs the motif score

was set to a constant 0, but otherwise the method remains the

same.

We next used these features to obtain a ranked prediction of

new interactions for each TF. Our method, SEREND, would first

train two logistic regression classifiers for each TF. The first

classifier uses the expression compendium to predict whether a

gene is activated by, is repressed by, or is not a target of the TF. A

challenge in training such a classifier is that there is no available

list of genes which are confirmed not to be targets of the TF

(negative information). SEREND initially sets the label for all

genes without confirmed evidence in EcoCyc to not being

regulated by the TF, though later the method will revisit these

assignments. The second classifier uses motif information,

specifically the score of the best binding site of the TF for each

gene. The motif classifier labels are binary, denoting whether a

gene is a target of the TF or not. Initially these labels also

correspond to whether or not there is direct evidence in EcoCyc

supporting the interaction. These two classifiers are then

combined using a third ‘‘meta’’ logistic regression classifier. The

reason we had SEREND keep the two sets of features separate

initially is because of the large number of expression features, as

opposed to the single motif feature. A classifier that directly uses

both motif and expression data would likely be vastly emphasizing

the expression data, whereas by combining the two classifiers

SEREND can learn accurate weights independent of the available

features. This approach is similar to ensemble methods such as

stacking [21] and mixture of experts [22].

As we noted above, to generate a negative set SEREND used all

genes without a direct evidence annotation in EcoCyc. While a

vast majority of the genes in this set are indeed not regulated by

the TF, some are real targets that have not been discovered to

date. We thus had SEREND modify the labels for some of these

genes using a type of semi-supervised classification method called

self-training [23]. Semi-supervised methods of classification use

unlabeled data in conjunction with labeled data to improve

classification (Figure 2). The self-training method of SEREND

would change the label of genes from not being regulated by a TF

to being regulated by the TF if the probability with which the

meta-classifier classifies the gene for being regulated by the TF was

sufficiently higher than expected (see Materials and Methods). The

method then combined these new target predictions with the

targets from the previous iteration and used them in a new

iteration to re-train a classifier and repeated the process until

convergence (no labels changed during an iteration).

On the Supporting Website, we provide for each TF the rank

ordering of all genes including activator or repressor prediction

labels. In Table 1, we present SEREND’s top prediction for the 25

TFs with the most curated targets in our input set. We note that six

of these predictions are already curated in EcoCyc based on

indirect experimental evidence (this information was not used

when training). We also provide in Table 1 brief comments on

many of these interactions based on a literature search. In a

number of cases we found additional evidence to support the

predictions, including in some cases direct evidence that is not

presently curated into EcoCyc.

Evaluation of Predictions: Comparison with ChIP-chip
Data

We initially focused our evaluation on the ability of methods to

recover gene targets implicated in ChIP-chip experiments for five

global regulators CRP [24], Fis [25], FNR [26], IHF [25], and H-

NS [27]. For each of these we extracted the interactions that are

not currently present in the EcoCyc database with direct evidence.

As the authors of these papers only reported the genes immediately

adjacent to or overlapping the signal peak, we extended their lists

to include any gene sharing the same transcriptional unit based on

the RegulonDB defined transcriptional units. We note that these

sets of genes will not necessarily include all genes regulated by the

TF. In some cases these TFs have been reported to bind at many

places in the genome with a weaker and more ambiguous signal

level than for the lists we are using [24,25]. In other cases targets of

a TF may not be recovered because of condition specific binding

or technical limitations of the ChIP-chip protocol [26]. Despite

these limitations, we still consider these lists to be a valuable

resource for comparing methods aimed at identifying additional

direct targets of a TF.

Figure 2. Motivating the self-training method. We abstractly
represent the space of expression feature values in two dimensions
(though in reality they form a high-dimensional space). The symbol (+)
represents an activated target of the TF and the symbol (?) represents
genes for which we have no information for this TF. In this example, the
?s on the left side of the rectangles are actually true targets of the TF,
while those on the right are not. Without self-training we assume all
unknown genes are unregulated by the TF (denoted by ‘‘0’’) when
forming our final classification boundaries. On the right, the self-training
procedure would change the labels of some of the unknown genes to
being activated targets of the TF before the final classification, which
leads to a better classification boundary.
doi:10.1371/journal.pcbi.1000044.g002

Predicting TF–Gene Interactions in E. coli
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In Figure 3, we plot separately for each TF on the x-axis the

number of gene predictions a method made up to either 500, or in

the case of CRP 700, excluding predictions that already have direct

evidence in EcoCyc. On the y-axis, we show the number of matches

to the set of genes in our ChIP-chip defined gene set, for each

number of predictions. We compare the predictions of SEREND to

those that would be generated by it if it did not use the self-training

procedure. We also compare these results to motif-based predictions

and the previously reported predictions of the CLR method with

mutual information [14]. As a baseline, we also compare the

expected number of matches with a method that simply randomly

orders the genes. In each graph, we plot a point representing the

number of genes curated in EcoCyc to be a target of the TF based

only on indirect evidence (e.g. gene expression data or presence of a

binding site motif). For the FNR and CRP graphs we also compare

to the Tractor DB method [8] and a prediction ordering we derived

based on RegTransBase (see Materials and Methods), both methods

use motif and conservation information. Tractor DB did not make

any predictions for H-NS, IHF, and only one for Fis, and

RegTransBase did not directly support these TFs.

As the charts in Figure 3 show, for Fis, IHF, and H-NS there is a

sizeable improvement for SEREND derived from its use of the

self-training procedure. For FNR the results of SEREND as

compared to a version without the self-training procedure are

about the same, and for CRP the version without self-training

achieves more matches over the first several hundred predictions.

Table 1. Top gene predictions.

TF Gene
Prediction
Direction EcoCyc Indirect CLR Network Tractor DB Comments

CRP b1498, ydeN 1 Yes Also implicated based on conserved motif analysis in [10]

IHF b1748, astC 1 DNaseI footprinting evidence [58]

Fis b3864, spf 1 ChIP-chip signal peak in promoter region that did not
meet stringent threshold [25]

FNR b1256, ompW 1 1 Yes LacZ reporter with mutant evidence [33]; evidence from
microarray expression of mutant [28]

ArcA b2210, mqo 21 LacZ reporter with mutant evidence [59]

H-NS b1951, rcsA 21 21 LacZ reporter with mutant evidence [60]; ChIP-chip
evidence [27]

NarL b1588, ynfF 21 Yes Evidence from microarray expression data of NarXL
mutant [28]

Lrp b1480, sra 21 Gel shift assay and site-directed mutagenesis evidence
confirmed binding, regulates neighboring gene [61]

ModE b1223, narK 1 DNaseI footprinting evidence of binding, but hypothesis
binding is used to regulate neighboring gene [43]

CpxR b2252, ais 21

ArgR b0860, artJ 21 21 Microarray and RTq-PCR expression evidence [62]

FruR b2168, fruK 21 21 Yes Confirmed with direct binding evidence in Salmonella
typhimurium [63]

NarP b1224, narG 1

FlhDC b1070, flgN 1 1 Yes Confirmed with direct binding evidence in Proteus
mirabilis [64]

IscR b1901, araF 21

Fur b1452, yncE 21 Yes Evidence from microarray expression of mutant [65]

PurR b1849, purT 21 Yes LacZ reporter with mutant evidence [66]

CysB b2762, cysH 1 1 Confirmed with direct binding evidence in Salmonella
typhimurium [67]

PhoB b4068, yjcH 1

NagC b2677, proV 21

FhlA b1924, fliD 1

LexA b1061, dinI 21 Yes Yes Gel shift assay and site-directed mutagenesis [68]; ChIP-
chip evidence [12]

OxyR b4367, fhuF 1 DNaseI footprinting evidence [69]

SoxS b2530, iscS 1

GadE b3506, slp 1 Yes Inferred from microarray expression analysis that gene is
either directly regulated by GadE or by YdeO [70]

For each of the 25 TFs with the most curated direct evidence targets, the table shows the top prediction of SEREND of an additional gene target and whether the
prediction is that the TF is an activator (‘‘1’’) or repressor (‘‘21’’) of the gene. Also noted is whether the interaction is curated into EcoCyc based on indirect evidence, as
well as whether the interaction is present in the CLR 60% confidence network [14] or Tractor DB [8]. CLR and Tractor DB do not specify activator or repressor
relationships. The last column contains comments about literature evidence supporting the interaction.
doi:10.1371/journal.pcbi.1000044.t001

Predicting TF–Gene Interactions in E. coli
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For all TFs joint predictions based on expression and sequence are

better than expected from randomly ordering genes. We found the

motif scores to be significantly predictive of in-vivo binding for all

but one of the TFs we looked at. Unlike the other TFs, for Fis

higher motif scores were not associated with higher likelihood of

binding. Combining the motif scores with expression data using

SEREND led to a clear overall improvement in all cases except for

CRP, where the relative performances varies depending on the

number of predictions. Predictions based on RegTransBase [9]

and the Tractor DB [8] method for identifying motif targets, both

of which used conservation information about motifs, did not show

overall improvement in recovering genes in the validation sets for

Figure 3. Comparison of methods to predict gene targets implicated in ChIP-chip experiments. The graphs show an evaluation of several
methods in terms of predicting targets of the global regulators CRP [24], Fis [25], FNR [26], H-NS [27], and IHF [25] implicated by ChIP-chip
experiments, but not curated into the EcoCyc database with direct evidence (see Materials and Methods). We compared SEREND to a version of
SEREND without self-training, the CLR method [14], just using our motif values (Motif), and random predictions. We also compare at a single
prediction level with the genes curated into EcoCyc from the literature as targets of the TF based on indirect evidence. For CRP and FNR we compare
with the Tractor DB predictions [8] and predictions based on RegTransBase [9], and for H-NS with the results of a different ChIP-chip experiment [25].
The x-axis represents the number of predictions made by the method (excluding targets already in EcoCyc with direct evidence), and the y-axis
represents the cumulative number of matches recovered. Note the x-axis scale for CRP and the y-axis scale for Fis and H-NS are different than the
others.
doi:10.1371/journal.pcbi.1000044.g003

Predicting TF–Gene Interactions in E. coli
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FNR and CRP than just using our motif scores for genes, which

does not consider motif conservation. Interestingly we note our

predictions for H-NS are competitive with the set of targets

reported by a second ChIP-chip experiment of [25], indicating

that for this TF the quality of our predictions are within the

tolerance expected from differences in laboratory experimental

protocols and other experimental noise. The plots also indicate

that in all cases except for CRP, SEREND either outperforms or is

essentially equivalent to the literature curated interactions without

direct evidence, and has the added benefit of allowing more

flexibility in the number of predictions selected. See the Text S1

for extended versions of these plots including a comparison with

Relevance Networks [15] using the square of the correlation

coefficient, and knockout experiments for FNR [28].

Biological Functional Analysis of Predicted Targets of
Global Regulators

We used a GO enrichment analysis to characterize the

biological functions of newly predicted targets of global regulators

and then compared that with an analysis on the set of curated and

verified targets. We performed the analysis based on UniProt GO

annotations for E. coli (see Materials and Methods) for each of the

seven TFs with the most targets in EcoCyc (ArcA, CRP, FIS,

FNR, H-NS, IHF, and NarL). In Table 2 we list for each TF the

top ranked GO category among its predicted targets along with

the enrichment p-value, as well as the p-value for this category

among the curated targets. We observe that for ArcA, CRP, and

FNR the top ranked GO category based on the predicted targets is

significant in the analysis on the curated targets, which was not the

case for FIS, H-NS, IHF, and NarL. For FIS, the most significant

GO category among the new predictions was the structural

constituent of ribosome. FIS does have a known role in regulating

ribosomal RNA genes [29], and among our newly predicted

targets of FIS are a significant number of ribosomal proteins. For

H-NS, its involvement in transposition has been previously

demonstrated [30]. For IHF, the most significant category was

the lipopolysaccharide biosynthetic and metabolic processes. The

role of IHF in capsular polysaccharide biosynthesis has been

previously discussed [31]. For NarL, the parent category of nickel

ion binding in the GO hierarchy, transition metal ion binding, was

highly significant among curated genes (p-val ,10210). See Text

S1 for additional GO categories significant among either the

predicted or curated gene sets. These results support the

assignments made by SEREND and indicate that the newly

predicted targets for most TFs can be used to correctly extend our

understanding of the function of these TFs.

Application to Aerobic–Anaerobic Shift
The above analysis with ChIP-chip data focused on establishing

that SEREND’s predictions are significantly over-represented

within the set of direct binding targets of the TF. We also

evaluated whether the gene expression level of SEREND’s target

predictions are consistent with that of known targets of these TFs.

Additionally, we tested if the activator and repressor predictions

are accurate for TFs that function in both roles. We performed this

evaluation on new temporal microarray gene expression data

(Gene Expression Omnibus accession GSE8323) that we gener-

ated for the shift from aerobic to anaerobic growth during steady

state culture conditions of E. coli (see Material and Methods). In

this bacterium, in response to the lack of oxygen in the growth

medium, two TFs, FNR (fumarate-nitrate reductase regulator) and

ArcA TFs (aerobic respiratory control), are known to be the master

regulators of this response. FNR is a key regulator of respiration

and it controls the transcription of many genes whose functions

facilitate adaptation to growth under O2-limiting conditions [32–

36]. Under microaerobic conditions, ArcA induces expression of

several gene products of the central carbon metabolism, which are

sensitive to lower levels of oxygen, and it represses many genes of

aerobic respiration [37–39]. NarL and NarP are two other TFs

known to be involved in the aerobic-anaerobic shift response, and

both of them regulate expression of several operons in response to

nitrates and nitrites during anaerobic respiration and fermentation

[28,40,41]. However, while the roles of the TFs listed above have

been well characterized in aerobic-anaerobic response, the identity

and roles of some other TFs are less clear.

Comparison of Predicted and Curated TF–Gene
Interactions Using New Expression Data

To compare the set of interactions in the curated databases with

the new targets predicted by SEREND, we first focused on

expression values measured at the last sampled time point, 55 min

after the shift from aerobic to anaerobic growth. Since these

expression values were not used to generate our predictions they

provide an unbiased test set for our predictions. We compared the

average expression of the two sets of targets (curated and new

predictions) for each TF activity mode (i.e., a factor and its

influence as an activator or a repressor). In Figure 4, we plot the

average expression of the two sets for the top 20 TF activity modes

in terms of the number of new predictions (see Materials and

Methods). We also plot a 95% confidence interval based on 10,000

randomizations for selecting sets of the same size as the new

predictions (curated predictions confidence intervals were similar).

Figure 4 illustrates a good agreement between the average

Table 2. Top GO categories for predicted gene sets.

TF Top GO Category for Predicted Target p-Value, Predicted Targets p-Value, Curated Targets

ArcA Cellular respiration 2610210 2610215

CRP Carbohydrate transport 3610214 6610225

Fis Structural constituent of ribosome 2610233 0.84

FNR 4 iron, 4 sulfur cluster binding 461023 3610214

H-NS Transposition, DNA-mediated 261024 0.11

IHF Lipopolysaccharide biosynthetic/metabolic process 4610211 1

NarL Nickel ion binding 361027 1

The table shows the most significant GO categories for new predicted gene targets for the TFs, with the most curated targets in EcoCyc. The table compares the
enrichment p-value of this category for the newly predicted targets and the curated targets.
doi:10.1371/journal.pcbi.1000044.t002

Predicting TF–Gene Interactions in E. coli
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expression of the curated targets and the newly predicted targets

for this new expression dataset. We observe that the predicted and

curated predictions completely agree on which are the top 8 most

significantly upregulated gene sets and which are the top 5 most

significantly downregulated gene sets. From Figure 4 we also

observe that on average CRP, FNR, and IHF predicted activated

targets had an induced expression level, while the predicted

repressed targets had a repressed expression level.

Dynamic Transcriptional Regulatory Map of the Aerobic–
Anaerobic Condition

We next derived an annotated dynamic regulatory map for the

E. coli aerobic-anaerobic shift response by combining the

measured time series expression data with known interactions

from EcoCyc that we extended with SEREND’s new predictions.

We used DREM [4] to derive the regulatory response network.

DREM models gene regulation as a cascade of split events

controlled by specific TFs. Split events are points in the time series

where prior to the split genes have roughly the same expression

levels, but after the split have separate expression distributions

(Figure 5). By examining the set of genes assigned to different paths

going out of a split, DREM labels these paths with the TFs

controlling them including whether the TF regulates the genes as

an activator or a repressor.

In Figure 5A we number the splits, and then in Figure 5B, we

display for each split the corresponding genes assigned to a path

originating from the split. The color of the genes in Figure 5B

corresponds to the color in Figure 5A of the path out of the split to

which DREM assigned them. The map indicates that by 2 min

those genes that were eventually upregulated (gray-colored genes),

already had a different distribution than those which were

downregulated (orange-colored genes). Among GO categories,

the upregulated genes were most enriched for carbohydrate

transport (p-val ,1028), while the downregulated genes were most

enriched for biosynthetic process genes (p-val ,10230) including

translation genes (p-val ,10224). The map also indicates that

between 5 min and 25 min there was a large change in expression

distribution among the genes most activated and repressed in this

condition. The last split event in the map occurs 25 min after the

response, and the paths remain mostly unchanged thereafter,

indicating that by 35 min at the transcriptional level E. coli has

adapted to the anaerobic conditions. This also suggests that the

transitional events that have occurred between 0–35 min after

switching to an anaerobic state are events associated with the

microaerobic response. The cascade of splits occurring before

25 min of the shift suggests that E. coli cells are slowly adapting to

the anaerobic conditions during the initial phases of the shift. In

Text S1 we further discuss the GO categories enriched in these

various splits. DREM has also identified several known and new

TFs as regulators of this shift as we discuss below.

Comparison to Using Only the Curated Network
The map of Figure 5A was based on known targets from

EcoCyc and extended with our new predictions. To determine if

the added predictions improved our ability to reconstruct this

regulatory network, we compared this to the map recovered by

DREM when using only the curated interactions from EcoCyc

with direct evidence. Figure 5C presents the regulatory map

identified when using only the curated interaction data as input.

While some of the paths share the same annotations in both maps,

in the vast majority of cases the score is more significant when

using the predicted set. Figure 6A presents a scatter plot of the

most significant scores of the TFs (for those with scores lower than

0.001). Reassuringly, we observe a substantial increase in

significance for important TFs for this response, such as ArcA,

FNR, and NarP. As a control, we considered adding random

predictions and found that these did not improve scores but rather

decreased them (see Text S1).

An interesting observation is the large increase in significance of

the score of Fis activated genes when including the predicted

interactions. Furthermore, Fis is seen associated with repressed

paths for two splits in Figure 5A, but only the first split in

Figure 5C. In the left panel of Figure 6B, we show the expression

of those Fis activated genes that are in the curated input. In the

center panel of Figure 6B, we show the expression pattern of those

Fis activated targets that are in our prediction extended network.

On the right panel in Figure 6B, we plot the expression of GO

annotated ribosome genes. When using only the curated data, the

mechanism by which these ribosomal genes are regulated as part

of this response is unexplained, as only three of these genes have a

regulator with curated direct evidence. In contrast, when using the

new predictions many of these ribosomal genes are determined to

be activated by Fis (31 of the 56 genes, p-val,10228). Of these 31

genes, 21 are on the list of genes bound by Fis in [25] or are in the

same transcriptional unit as a gene from this list. The potential

importance of the effect of Fis in altering the expression of

ribosome genes in response to the aerobic-anaerobic shift is

something that would have been missed by the method had we not

extended the curated network with additional predictions.

Discussion

A large amount of experimental data has accumulated

regarding TF-gene regulatory information for E. coli. However,

Figure 4. Transcription factor target set agreement between
predicted and curated targets. The average expression values for TF
regulatory modes (TF and activator or repressor relationship) among
curated and new predicted targets at the 55-min time point of the new
aerobic–anaerobic shift gene expression data are shown. Only the top
20 TF regulatory modes in terms of the number of new predictions are
included. We excluded genes with dual annotations from the curated
averages. We included genes in the predicted set averages for which we
had a new prediction with regards to the mode of interaction (either
because they were dual-annotated or SEREND predicted the opposite
mode; this generally was for a small number of genes; see Table S1). For
each TF regulatory mode, the graph also displays the 95% confidence
interval based on 10,000 random draws of new predicted targets of the
same size set. The graph shows that the average expression for a
number of predicted TF target gene sets was significantly induced or
repressed. The graph also shows a good agreement for most TF target
gene sets between the curated and predicted sets, indicating the
accuracy of the predictions.
doi:10.1371/journal.pcbi.1000044.g004
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this information is not complete. Many of the genes in E. coli do

not have any validated regulators and it is likely that many

interactions are unknown even for those genes with one or more

validated regulators. To make optimal use of the curated

information, methods should leverage this information as much

as possible when making additional predictions of TF-gene

regulatory interactions. Such predictions would then be useful

when combined with other high throughput data measuring

responses of all E. coli genes in a condition of interest.

Here we presented a new semi-supervised learning-based

method, SEREND, which uses curated data, sequence motif

information, and a compendium of expression data to predict new

TF-gene interactions. Using ChIP-chip data, we have shown that

semi-supervised learning can improve predictions regarding TF-

gene interactions. Using new temporal gene expression data for

Figure 5. Inferred dynamic regulatory maps of E. coli response to the aerobic–anaerobic shift. (A) Dynamic regulatory map inferred by
DREM by combining the new aerobic–anaerobic shift microarray gene expression data and our prediction-extended TF–gene interaction dataset. The
numbered green nodes represent the split points. DREM assigned genes to their most likely path through the splits. Paths out of the splits are
annotated with TF regulatory modes that are associated with genes assigned to the path at a score ,1024, and the annotations are ranked ordered
using the score (see Text S2). A ‘‘1’’ after the TF symbol denotes activation mode and a ‘‘21’’ denotes repression mode. The area of a node is
proportional to the standard deviation of the expression of the genes traversing through that node. (B) The genes traversing through the nine splits
are shown in (A). The number in the upper left of the plot corresponds to the number of the split. Genes are colored based on their path out of the
split. (C) The DREM map inferred when using for the TF–gene input only curated interactions with direct evidence.
doi:10.1371/journal.pcbi.1000044.g005
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the aerobic-anaerobic switch response in E. coli, we have shown

that these predictions can improve the utility of experimentally-

verified interactions when reconstructing dynamic response

networks. While the resulting networks utilized some of the new

predictions these are primarily for TFs involved in this response. If

the TF binds the DNA without effect on transcription in this

condition these interactions would not be identified in the resulting

map.

The resulting regulatory map for the aerobic-anaerobic

response summarizes current knowledge and provides new insights

into the role of various TFs in the response. The map labels the

activators FNR, CRP, NarP, ModE, FhlA, and H-NS, and the

repressors NarL and H-NS as associated with the upregulated

genes, those assigned to the induced path in the first split. This

means that the method predicts these TFs to be major regulators

of the response, and likely the first TFs to upregulate expression of

various genes when oxygen is removed from the growth medium.

As mentioned above FNR, NarL and NarP are well known to be

important regulators in this response. FhlA (formate hydrogen-

lyase) is a well known transcriptional activator of hyc and hyp

operons in E. coli, and the FNR-mediated regulation of hyp

expression in E. coli has also been described [42], which might

indicate that FhlA acts synergistically with FNR in regulating some

genes during the anaerobic response. Published evidence has

suggested that ModE is a secondary transcription activator of the

hyc and the nar operons (encoding genes in response to nitrates and

nitrites) [43] and the dmsABC operon under conditions of

anaerobiosis [44]. The initial repressed pathway includes targets

that are associated with activation by Fis, PhoB, and PhoP

(indicating decreased activity of these TFs) and repression by FNR

and ArcA. Fis is known to play a major role in reconfiguration of

E. coli cellular processes by up-and down-regulating expression of

various genes during changes in growth conditions, and its

expression also varies dramatically during cell growth by

autoregulation [45,46]. Additional TFs that are associated with

activated genes at later split events include DcuR, TdcA, TdcR,

and IHF. CRP has been described to govern the anaerobic

transcriptional activation of the Tdc regulators (TdcA and TdcR)

[47], which supports our findings that these are secondary

responders.

While we have used ChIP-chip data in evaluating predictions

for some TFs, overall the number of TFs for which ChIP-chip data

are currently available in E. coli is limited [12,24–27,48]. In

addition, unlike SEREND, ChIP-chip experiments do not

differentiate between activator and repressor relationship. Fur-

thermore SEREND may discover genes regulated by TFs that

Figure 6. Impact of using prediction-extended TF–gene input to DREM. (A) x-axis (y-axis) is the maximum of the negative of the log base 10
score of the TF and regulatory mode at any split using the curated TF–gene input (prediction-extended TF–gene input). Any point above the diagonal
line received a more significant score using our predictions. As we show in Text S1 using randomization analysis, this is not because we used a larger
set of interactions input. The negative log base 10 score for Fis (38.2 using our predictions and 5.7 using the curated EcoCyc list) is not plotted to
keep the dimension of the scale reasonable. (B) (Left panel) The expression of non-filtered genes annotated with direct evidence in EcoCyc as being
activated by Fis. Color-coding of genes correspond to path assignments between 5 and 10 min in the maps of Figure 5. (Center panel) The genes in
the predictions extended network that are annotated as being activated by Fis. (Right panel) All GO-annotated ribosome genes in the dataset
meeting the filtering criteria. There is a significant overlap between these genes and Fis-activated genes in the predicted network.
doi:10.1371/journal.pcbi.1000044.g006
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ChIP-chip experiments would not recover due to condition-

specific binding activity or other experimental noise. Finally there

could be cases in which a TF binding is detected in a ChIP-chip

experiment, but a gene regulated by the TF is not associated with

being a target of TF due to the imperfect process of mapping a TF

binding location to a set of regulated genes. While motif input is

also sensitive to this mapping, the expression input is not, thus in

some of these cases SEREND could still predict the interaction.

One avenue for future work is to extend our semi-supervised

methodology to also include data from ChIP-chip experiments in

generating predictions. In Saccharomyces cerevisiae, a global atlas of

TF-gene interactions is available based on ChIP-chip data [49],

which researchers improved by combining the ChIP-chip data

with other evidence sources, such as sequence motif and gene co-

expression information [49–51]. Another extension is to apply our

methodology for inferring TF-gene interactions to additional

model organisms. As computational methods for integrating

interaction and expression data become increasingly available,

we expect that global atlases of TF-gene interactions will become

increasingly important resources for experimental biologists to

integrate with specific expression experiments.

Materials and Methods

Compendium of Microarray Expression Data
We obtained the compendium of mRNA expression data from

the Supporting Website of [14]. We used the Robust Multichip

Average (RMA) normalization, which was reported to represent

the optimal way of normalizing this microarray data from

divergent sources among the several major methods considered

[14]. We then transformed the data such that each expression

value for a gene was the log base two ratio of its expression value

with its average expression value over all the experiments. We

excluded from the compendium 140 previously purported genes

from this dataset that are no longer considered to be true genes in

EcoCyc version 11.5, leaving 4205 genes. We also obtained the

CLR predictions for these 4205 genes from the Supporting

Website of [14]. In the case of the dimer IHF, CLR gives two

different scores corresponding to each of the subunits, we mapped

this to one score by taking the more significant of the two scores.

Curated Regulatory Interactions
The curated regulatory interactions including direction of

interaction were from EcoCyc 11.5. Only those interactions with

the evidence annotations of Site Mutations, Binding of Cellular

Extracts, or Binding of Purified Proteins were accepted as direct

evidence. In total we used 1760 interactions among 123 TFs and

974 genes.

Motif Scanning
For the motif scanning we used the E. coli K12 genome version

U00096.2 sequence. We obtained the TF-binding site positional

weight matrices (PWMs) for 71 of the 123 TFs from RegulonDB

version 5.7 [2]. The score of a site is the log-ratio of the probability

of observing the sequence under a PWM model compared to a

background model, which is similar to the approach of [7]. We

used a zero order background model, so under both the PWM and

background model, the probability of a site is the product of the

probability at each position. Under the background model we set

the probability of observing a specific nucleotide to its overall

proportion in non-coding regions. Under the PWM model, we set

the probability of observing a specific nucleotide at a specific

position to the ratio of the count for the nucleotide at that position

over the total counts at the position in the PWM. We added a

pseduo-count to each entry in the matrix equal to the non-coding

region background probability of the corresponding nucleotide.

For each gene we obtained its RegulonDB transcriptional unit

assignment, which is based on either experimental evidence or

computational inference. Six genes were not annotated as

belonging to any transcriptional unit, and for these we assumed

each was the only gene in their respective transcriptional units. We

then determined the first gene transcribed in the gene’s

transcriptional unit, and the location of the start of the coding

sequence of the gene from RegulonDB. We then scanned

50 base pairs downstream of the start of the coding sequence

and 300 base pairs upstream, on both strands, recording the

highest scoring motif hit. If the gene was annotated to belong to

multiple transcription units with different first genes we took the

value of the highest scoring site in any of the regions. If the highest

score site for a gene was below 0 we set the gene’s motif score to 0.

In the Supporting Results (Text S1) we plot the distribution of the

number of maximum scoring sites at each position relative to the

start of the coding sequence of the first gene. From this plot we

observed a leveling off of the number of maximum scoring sites by

50 base pairs downstream and 300 base pairs upstream.

SEREND Method-Ranking Predictions for a TF
To generate ranked predictions of gene targets of a TF,

SEREND used three logistic regression classifiers: an expression

classifier, a sequence motif classifier, and a meta-classifier that

combines the output of these other two classifiers. We will first

define SEREND’s use of logistic regression in general terms and

then discuss the specifics of the three classifiers. When discussing

terms specific to a classifier we use a superscript ‘E’ for the

expression classifier, ‘S’ for the sequence motif classifier, and ‘C’ for

the meta-classifier.
Logistic regression. Let N be the number of genes (for this

application N = 4205), and p be the number of features to the

classifier. Let xi = (xi1,…,xip) where xij denotes the value of feature j

for gene i. Let M be the number of classes, and let wim denote the

weight with which gene i is of class m. Let Yim be an indicator

variable that gene i is of class m. We define

P Yim~1jxið Þ~ e
bm0z

Pp

j~1

bmj xij

1z
PM
c~2

e
bc0z

Pp

j~1

bcj xij

and we set bmj = 0 for all j when m = 1. The variables bcj are

determined by maximizing the following function:

XN

i~1

XM
m~1

wim| log P(Yim~1jxi)

 ! !
{l

XM
m~2

Xp

j~1

b2
mj

where l is the regularization parameter, that we selected based on

a limited cross-validation analysis. The Weka logistic regression

implementation [52] was used to maximize the function above.
Expression classifier. For the expression classifier

SEREND used 445 features (p = 445), and the features for a

gene were its value in each of the expression experiments from the

compendium [14]. For each TF SEREND considered, the

number of classes, M, was three, corresponding to a gene being

activated by the TF (m = 1), repressed by the TF (m = 2), or not

regulated by the TF (m = 3). Let wE
im denote the weight with which

gene i was of class m. SEREND initially assumed all genes without

direct evidence in EcoCyc [1] were not regulated by the TF, that is
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wE
i3~1, wE

i1~0 and wE
i2~0. If the gene was only curated with

direct evidence to be activated by the TF, then wE
i1~1, wE

i2~0 and

wE
i3~0. Likewise if the gene was only curated with direct evidence

in EcoCyc to be repressed by the TF, then wE
i2~1, wE

i1~0 and

wE
i3~0. If the gene was curated with direct evidence to be a target

of the TF, but not only activated or only repressed by the TF,

SEREND set wE
i1~n1= n1zn2ð Þ, wE

i2~n2= n1zn2ð Þ, and wE
i3~0

where n1 and n2 are the number of genes uniquely annotated to be

activated and repressed by the TF respectively (if both n1 and n2

were zero, then wE
i1 and wE

i2 were both initialized to 0.5). lE was set

to 10.

Sequence motif classifier. For the motif classifier there was

a single feature (p = 1), and this feature represented the maximum

agreement of the TF’s PWM with a potential binding site in the

gene’s promoter region based on our motif scanning. The number

of classes, M, was two with m = 1 corresponding to the class that

the gene was regulated by the TF and m = 2 if the gene was not

regulated by the TF. SEREND set wS
i1~1 and wS

i2~0 if gene i was

curated with direct evidence in EcoCyc to be regulated by the TF,

without respect to whether the TF functions as an activator or

repressor of the gene. If the gene was not in EcoCyc with direct

evidence then SEREND set wS
i1~0 and wS

i2~1. lS was set to 1.

Meta-classifier. The meta-classifier had two features, (p = 2),

for a gene i. The first feature was the sum of the activated and

repressed probabilities with which the expression classifier would

classify a gene, that is P Y E
i1~1 xE

i

��� �
zP Y E

i2~1 xE
i

��� �
. The second

feature was the probability the motif classifier gave to the gene for

being regulated by the TF, that is P Y S
i1~1 xS

i

��� �
. SEREND set

wC
i1~1 and wC

i2~0 if gene i was annotated with direct evidence in

EcoCyc to be regulated by the TF, otherwise SEREND set wC
i1~0

and wC
i2~1. Genes that were not in EcoCyc with direct evidence

were ranked by the value P Y C
i1 ~1 xC

i

��� �
. lC was set to 1.

Self-training procedure. The self-training procedure would

change the labels of genes that were previously annotated not to be

regulated by the TF to being regulated by the TF if the meta-

classifier described above found sufficient evidence that the gene

was regulated by the TF. The criterion for re-labeling such a gene

was that

P Y C
i1 ~1 xC

i

��� �
wk|

PN
j~1

wC
j1

N

where k is a parameter .1 that we set to 2 (see Text S1 for discussion

regarding the effects of other values of k). To provide justification for

this criterion we note that a property of a logistic regression classifier

is that the sum of the probabilities for a class equals the count of the

observed instances for the class [53] that is we have

XN

i~1

P Y C
i1 ~1 xC

i

��� �
~
XN

j~1

wC
j1

The

PN
j~1

wC
j1

N
term in the criterion for re-labeling a gene would thus be

equal to P Y C
i1 ~1 xC

i

��� �
if the probability of being regulated by the

TF was uniform across all genes. If the criterion for re-labeling a gene

was satisfied, then the classifier gave greater probability than uniform

that the gene was regulated by the TF, even though the classifier was

trained with the input that the gene was not regulated by the TF. As k

increases, the greater the probability as compared to uniform would

be needed to re-label the gene. If the criterion was met to re-label a

gene as being a target of a TF then SEREND set wC
i1~1, wC

i2~0,

wS
i1~1, wS

i2~0, and wE
i3~0. Also for all genes for which wE

i3~0, at

the start of the iteration or after the relabeling, SEREND set wE
i1~1

and wE
i2~0 if P Y E

i1~1 xE
i

��� �
§P Y E

i2~1 xE
i

��� �
otherwise SEREND

set wE
i2~1 and wE

i1~0. Note that this step specifies a prediction of

the more likely direction of interaction for dual instances, and can

change the direction for a curated target if inconsistent with other

curated targets of the same direction (this occurred for only a

relatively small percentage of genes, see Table S1). The method

terminates when no change was made to any wim for any of the

classifiers. At no point in this procedure was a gene label changed

from being regulated by the TF to not being regulated by the TF.

Again the genes that are not in EcoCyc with direct evidence were

ranked by the value P Y C
i1 ~1 xC

i

��� �
.

Combining Predictions Across TFs
In forming the prediction extended network used in the GO

enrichment analysis of global regulators and for the aerobic-

anaerobic application, we chose to double the size of the curated

network by simply taking for each TF the same number

predictions as there were confirmed targets of the TF in the input.

ChIP-chip Validation Sets
We obtained the list of ChIP-chip implicated target genes for

CRP from the Supplement of [24], for Fis and IHF from the

Supplement of. [25], for FNR from Table 2 of [26], and for H-NS

from the Supplement of [27]. As the authors generally only

reported the gene(s) immediately adjacent or covering a signal

peak, we extended their lists to include any gene sharing the same

transcriptional unit based on the RegulonDB defined transcrip-

tional units. The ChIP-chip implicated target genes we associated

with each of these TFs can be found on our Supporting Website.

In our evaluation, we excluded genes already confirmed based on

direct evidence curated into EcoCycDB to be a target of the TF

and genes not in the set of 4205 that we considered. The total

number of gene targets in these sets for CRP was 148, for Fis was

347, for IHF was 199, for FNR was 131, and for H-NS was 1191.

For H-NS, there is another list of ChIP-chip based targets [25]

separate from those of [27]. We chose here to use the list of [27] as

the validation set, as it is larger and includes the majority of targets

with curated direct evidence, while at the cutoff at which the list of

[25] was derived it includes only one curated direct evidence

target. We did use predictions based on [25] in the comparison of

methods to identify H-NS targets implicated based on [27] (see

also Text S1 for the predictions extended by transcriptional units).

RegTransBase Predictions
We generated ranked predictions for a TF in RegTransBase [9]

based on the set of predicted genes returned in the TransTable-

View for E. coli K12 using the default setting for sensitivity on the

site score, and specifying to measure conservation based on all

genomes for the species E. coli. We ranked all genes returned by

RegTransBase, meaning the gene had one or more binding sites

within 400 basepairs upstream or 50 base pairs down stream of

the start of the gene satisfying the sensitivity threshold, based on

the maximum conservation score for a site returned for the gene.

We then extended the ranked list to include all genes in the same

transcriptional unit as listed in RegulonDB. When extended for

transcriptional unit a gene received the same site and conservation

score, as the highest ranking gene from its transcriptional unit

from the original ranked list. A version of the RegTransBase

predictions without extending for transcriptional units can be

found in the supplement, but did not perform as well.
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Tractor DB–Based Predictions
Predictions for the Tractor DB method [8] were obtained from

http://www.ccg.unam.mx/Computational_Genomics/trac-

torDB/ and http://regulondb.ccg.unam.mx/data/BindingSite-

PredictionSet.txt. The few predictions that were unique to either

of these lists were still used.

Dynamic Regulatory Maps
We used the Dynamic Regulatory Events Miner (DREM) [4] to

reconstruct dynamic regulatory maps of the aerobic-anaerobic shift

based on gene expression data and TF-gene association data.

Expression values were converted to a log base ten ratio relative to

the 0 min time point. We selected only genes with no more than two

missing time points and a log base ten fold change of at least 0.3 at

one time point, resulting in a total of 2317 genes. The TF-gene

association data were a matrix of TFs and genes with an entry being

‘1’ if the TF was predicted to be an activator for the gene, ‘21’ if it

was predicted to be a repressor, and ‘0’ otherwise. Dual regulated

genes of a TF in the curated network received the majority label

between ‘1’ and ‘21’ of the other genes regulated by the TF.

DREM uses an Input-Output Hidden Markov Model [54] that

allows TF-gene interaction information to influence transition

probabilities in a gene-specific manner. DREM assigns each gene to

its most likely path through the model based on its expression and

the TFs that control it. A TF label is assigned to a path out of a split

only if based on a hypergeometric distribution calculation its

association score with regulating genes along the path out of the

split, where a lower score indicates a stronger association, is below a

certain cutoff. Here we use 1024 as the cutoff (see Text S1 for maps

with other cut-off scores). We used the DREM method as described

in [4] except for a change in the model selection criteria. Instead of

using a held out test set to evaluate models, under the modified

criteria DREM would select models to maximize the log-likelihood

minus a regularization penalty on the number of states. This

allowed a more explicit penalization of the complexity of the model

and allowed DREM to use all data in estimating the parameters and

for model selection. See Text S2 for additional details.

Gene Ontology Enrichment Analysis
The Gene Ontology (GO) enrichment analysis was conducted

using STEM [55]. The E. coli K12 UniProt GO annotations were

obtained from the European Bioinformatics Institute (EBI) at

http://www.ebi.ac.uk/GOA/proteomes.html. The reported p-

values are uncorrected p-values computed using the hypergeo-

metric distribution; corrected p-values for multiple hypothesis

testing appear in Text S1.

Chemostat Growth Experiment
The E. coli K12 strain MG1655 (F2 l2 ilvG rfb50 rph1) [56] was

grown in a continuous culture using Luria-broth (1-L working

volume) in a 2-L bioreactor (BIOFLO 2000, New Brunswick, NJ)

under aerobic conditions (45% dissolved O2). Once the cells were

growing in a steady state (A600 nm,2.5), we collected two 10-ml

samples from the culture. After collection of these samples, the

growth medium was flushed with N2-gas to create anaerobic

conditions in the bioreactor. We collected three samples (0, 2, and

5 min) during the immediate transition period. After this, samples

were collected at 15, 25, 35, 45 and 55 minutes.

RNA Isolation, Reverse Transcription, and Microarray
Hybridization

The collected cell-culture samples were immediately mixed with

10% of ice-cold stop solution (5% phenol in absolute ethanol) to

prevent any additional transcriptional activity, followed by

centrifugation at 6,0006g for 10 min. The cell pellets were stored

at 280uC until further use. The RNA was isolated using

EpiCentre’s Master Pure RNA isolation kit (Madison, WI)

according to manufacturer’s protocol. The contaminant DNA

was removed by DNase I at 37u C treatment for 30–60 min. The

RNA was reverse transcribed into cDNA, which was then used for

microarray hybridization on Gene TAC hybridization station

(Genomic Solutions), as previously described [56].

Microarray Analysis
We scanned images from the completed hybridization using a

GenePix 4000B array scanner (Molecular Devices, Union City,

CA). Raw data were generated using GenePix Pro 3.0 software.

Two-color cDNA microarray data are never devoid of spurious

technical contributions that originate during array printing, as well

as during the collection and processing of samples, fluorescent

labeling and hybridization and scanning of the microarray images

[57]. To minimize the effect of such contributions, microarray

data were normalized, as described before [56] (see also Text S2).

Supporting Website
The URL for the Supporting Website for this paper is http://

www.sb.cs.cmu.edu/ecoli.

Supporting Information

Text S1 Supporting Results

Found at: doi:10.1371/journal.pcbi.1000044.s001 (3.41 MB PDF)

Text S2 Supporting Methods

Found at: doi:10.1371/journal.pcbi.1000044.s002 (0.19 MB PDF)

Table S1 Transcription Factors Included in the Study For

each transcription factor, the table contains information including

whether a motif was available for it, the total number of curated

direct evidence targets (the number of predicted targets was the

same), and the distribution of activator and repressor targets

among these curated and predicted targets.

Found at: doi:10.1371/journal.pcbi.1000044.s003 (0.03 MB XLS)
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