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The diversity of cell types is a challenge for quantifying aging and its
reversal. Here we develop ‘aging clocks’ based on single-cell transcriptomics
to characterize cell-type-specific aging and rejuvenation. We generated
single-cell transcriptomes from the subventricular zone neurogenic region
of 28 mice, tiling ages from young to old. We trained single-cell-based
regression models to predict chronological age and biological age (neural
stem cell proliferation capacity). These aging clocks are generalizable
toindependent cohorts of mice, other regions of the brains, and other
species. To determine if these aging clocks could quantify transcriptomic
rejuvenation, we generated single-cell transcriptomic datasets of
neurogenic regions for two interventions—heterochronic parabiosis and
exercise. Aging clocks revealed that heterochronic parabiosis and exercise
reverse transcriptomic aging in neurogenic regions, but in different ways.
This study represents the first development of high-resolution aging clocks
from single-cell transcriptomic data and demonstrates their application to
quantify transcriptomic rejuvenation.

Agingis the progressive deterioration of cellular and organismal func-  isnotinexorable. At the same chronological age, some individuals have
tion. Age-dependent declineislinkedinlarge parttothe passageoftime  better organismal and tissue fitness (biological age) than others. Fur-
and therefore the chronological age of anindividual. Butsuch decline  thermore, aging trajectories canbe slowed, and some aspects of aging
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canbe reversed by specificinterventions, including dietary restriction,
exercise, reprogramming factors, senolytic compounds and young
blood factors'®. As aging is the primary risk factor for many diseases,
particularly neurodegenerative diseases’®, a better understanding
of aging and ‘rejuvenation’ strategies could yield large benefits for a
wide range of diseases.

Aging is complex and difficult to quantify. One quantification
approachis to use machine learning to build age prediction models—
‘aging clocks’—which can serve as integrative aging biomarkers. Such
clocks should also accelerate our understanding of existing interven-
tions and help identify new strategies to counter aging and age-related
diseases. Machine learning models trained on high-dimensional data-
sets (for example, DNA methylation, transcriptomics and proteomics)
can predict chronological age withremarkable accuracy. For example,
regression-based aging clocks trained on DNA methylation profiles
from multiple tissues (‘epigenetic aging clocks’)’™ or blood plasma
protein profiles*" have striking performance to predict chronological
age in humans. Aging clocks directly optimized to predict biological
age have also been developed on functional phenotypes™"*'® or time
remaining until death®. Interestingly, beneficial health interventions
such as diet and exercise”** and genetic manipulations®° result in
younger predictions from epigenetic aging clocks trained on chrono-
logical age. Thus, epigenetic aging clocks, despite being trained on
chronological age, also capture dimensions of biological age.

Sofar, molecular aging clocks have largely relied on datasets built
using bulk tissue input or purified cell populations’™*?*, Bulk tissue
profiles (and even purified populations) average the molecular profiles
from many cells, integrating tissue composition changes and cell-
type-specific responses. Hence, the cell-type-specific contributions to
aging and rejuvenation detected by these clocks remain unclear. While
single-cell DNA methylation and transcriptomic data have started to be
used to classify age® ¥, cell-type-specific transcriptomic aging clocks
have notyetbeengenerated. Thus, itremainsto be determinedif aging
clocks of different cell types ‘tick’ at different rates, which cell types
predict age most accurately and how specific cell types respond to dif-
ferentinterventions. Therapid advance of single-cell RNA-sequencing
(RNA-seq) technologies provides agreat opportunity to explore these
unaddressed questions and identify new molecular aging clocks to
study interventions to counter aging and age-related diseases.

Results

Cell-type-specific transcriptomic aging clocks

As a paradigm for tissue aging and functional decline in the brain, we
focused on the neurogenic region located in the subventricular zone
(SVZ) of the adult mammalian brain. The SVZ neurogenic region (or

‘niche’) contains neural stem cells (NSCs) that give rise to differentiated
cells (neurons, astrocytes) that areimportant for olfactory discrimina-
tion and repair upon injury®**. Importantly, this neurogenic region
contains at least 11 different cell types and experiences age-related
changes correlated with deteriorationin tissue function*>***’, We built
cell-type-specific aging clocks trained to predict the chronological or
biological age of the SVZ neurogenic niche. To train these clocks, we
performed single-cell RNA-seq on neurogenic regions from 28 mice,
tiling 26 different ages from 3 months (young adult) to 29 months (geri-
atricadult; Fig. 1a). Given the constraining cost of single-cell RNA-seq,
we used lipid-modified oligonucleotide (LMO) labeling (MULTI-seq;
Methods)*® to multiplex samples within fourindependent cohorts, each
with4-8 mice (Supplementary Table1). After demultiplexing and qual-
ity control, we obtained 21,458 high-quality single-cell transcriptomes
(Extended Data Fig. 1a,b). Clustering and uniform manifold approxi-
mation and projection (UMAP) visualization confirmed the presence
of 11 cell types in this neurogenic region, including differentiated cell
types (microglia, endothelial cells, oligodendrocytes) and cells from
the NSC lineage (astrocytes and quiescent neural stem cells (QNSCs),
activated neural stem cells (aNSCs), neural progenitor cells (NPCs)
and neuroblasts; Fig. 1b, Extended Data Fig. 1c and Supplementary
Table 2). This analysis also corroborated the decline of proliferating
NSCsin this region during aging (Fig. 1c,d,f)*’. Our dataset provides a
high temporal resolution resource to characterize aging in aneurogenic
regionin the brain.

To develop robust single-cell-based aging clocks, we focused
on the six most abundant recovered cell types in the SVZ neurogenic
region—oligodendrocytes, microglia, endothelial cells, astrocytes-
qNSCs (which cluster together; Fig. 1b and Methods), aNSC-NPCs
(whichcluster together; Fig. 1b and Methods) and neuroblasts. We first
developed chronological age models that maximize correlation and
minimize error between predicted and true chronological age. We built
different models (lasso and elastic net regression® ) from single-cell
transcriptomic data for each of the six cell types asaninput (Methods).
We evaluated the performance of the models on true chronological age,
by building models on 3 of the 4 cohorts and validation was performed
ontheremaining cohort (cross-cohort validation). This strategy avoids
performanceinflation caused by training and evaluating on correlated
cells from the same animal or animals from the same cohort. Our result-
ing top-performing chronological aging clocks, termed ‘bootstrap’and
‘ensemble’, are groups of lasso and elastic net models trained on either
bootstrap-sampled or randomly partitioned and merged meta cells,
termed BootstrapCells or EnsembleCells (Methods). For the bootstrap
models, 100 BootstrapCells were generated by taking 100 random
samples of 15 cells for each cell type and animal combination, such that

Fig.1]| Cell-type-specific transcriptomic aging clocks for neurogenic regions.
a, Training data for single-cell transcriptomic aging clocks. 10x Genomics single-
cell transcriptomics on SVZ neurogenic regions from four independent cohorts
of 4-8 male mice, aged 3.3 to 29 months (Supplementary Table 1). SVZ regions
from the same cohort were multiplexed using LMO labeling (MULTI-seq).

b, UMAP projection of 21,458 high-quality cells from SVZ single-cell
transcriptomes across cohorts. Each dot represents the transcriptome of an
individual cell with transcripts detected from at least 500 genes. ¢, Same as in
bbut colored by mouse age. Two pairs of mice had the same age, resulting in

26 age colors (28 mice). d, Same as in b but colored by the predicted cell cycle
state based on Seurat’s CellCycleScoring function. e, Schematic depicting the
generation of BootstrapCells for training chronological clocks. From each
celltype and sample, 15 cells were sampled and combined to generate one
BootstrapCell. This process was repeated 100 times per cell type and sample
combination, to generate a training dataset that equally weighted each SVZ
sample.f, SVZ proliferative fraction (cells predicted to be G2/M or S phase) as a
function of chronological age. R represents Pearson’s correlation coefficient. The
gray band corresponds to the 95% confidence interval. g, Schematic depicting
the process of generating BootstrapCells for training biological age clocks.

Biological age was defined as the SVZ proliferative fraction (f). h, Predicted
biological age as a function of predicted chronological age. R represents
Pearson’s correlation coefficient. Gray band corresponds to 95% confidence
interval. i, Performance of BootstrapCell chronological age prediction across
cell types. Density of BootstrapCell predictions is depicted in color and overlaid
black dots represent the median prediction for each sample. Performance is
based on cross-cohort validation. R values are Pearson’s correlation coefficients
atthesamplelevel.j, Asinibut for BootstrapCell biological age score prediction
across cell types. Biological age scoreis alinear transformation of the SVZ
proliferative fraction. k, Overview of Pearson’s correlation coefficients

and median absolute error (MAE) values for various methods of predicting
chronological age across cell types. SingleCell uses bona fide single-cell
transcriptomes with minimal processing as input to a lasso regression model.
BootstrapCell uses the preprocessing method depicted in e and alasso model.
EnsembleCell involves repeatedly partitioning cellsinto groups of 15 cells

and training an ensemble of elastic net models. Pseudobulk involves naive
pseudobulking all cells from the same cell type and sample and using alasso
regression model. Performance is based on cross-cohort validation. I, As in k but
evaluating biological age prediction.
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each animal contributed equally to the training data (Fig. 1e). For the
ensemble model, arandom partitioning and elastic net model training
process was repeated 20 times and then combined to generate asingle
ensemble model for a given cell type, such that each cell contributed
equally. In our cross-cohort validation, these two models performed
well to predict chronological age. For example, oligodendrocyte boot-
strap models predicted chronological age with a correlation R=0.91
and an error =1.6 months and microglia Bootstrap models predicted
chronological age with a correlation R=0.92and an error = 2.1months
(Fig.liand Supplementary Table 3). Such performancein a cross-cohort
validation scheme suggests that these chronological aging clocks
are not batch dependent. Overall, these models had R values ranging
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from 0.71to0 0.92 and errors ranging from 1.6 to 5.4 months, and they
uniformly surpassed the performance of raw single-cell trained clocks
and pseudobulked clocks (that is, pool of all cells from each cell type;
Fig. 1k, Extended DataFig.1d, Supplementary Table 3 and Methods).
We also developed ‘biological aging clocks’ from our single-cell
transcriptomic data-that is, clocks that are trained on a functional
metric of the tissue, rather than chronological age. While chronologi-
cal aging clocks can record aspects of biological age'>**** and predict
disease probability***, clocks trained on functional metrics linked
to biological age may be particularly useful for intervention assess-
ment"*, The primary functional role of the SVZ neurogenic region is
to harbor proliferating NSCs that can produce new neurons, whichin
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Fig. 2| Generalization of aging clocks to independent datasets and other
neurogenicregions. a, External validation of BootstrapCell chronological age
prediction models (chronological aging clocks) on single-cell transcriptomic
data from young (blue) and old (orange) SVZ samples by Dulken et al.*s.
Density plots show separated age prediction distributions, indicating ability
todiscriminate age. b, Asinabut evaluating biological age prediction models
(biological aging clocks). ¢, Density plots to assess the generalizability of
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chronological aging clocks (BootstrapCell) to another mouse neurogenic region
using a dataset from Harris et al.*°. Transcriptomes of analogous cell types were
collected from the dentate gyrus of the hippocampus (another neurogenic
region) instead of the SVZ in mice of different ages. There were no microgliain the
dataset at the 1-month time point. d, Density plots to assess the generalizability
of biological aging clocks (BootstrapCell) to another mouse neurogenic region
using adataset from Harrisetal.®®asinc.

turn integrate into functional neural circuits®***, The proliferative
capacity of NSCs in the SVZ neurogenic region declines with age, and
this decline may be considered a functional metric of biological aging
of this region®*~’, To define neurogenic region ‘fitness’, we quantified
the proliferative fraction of cells (consisting almost exclusively of
aNSC-NPCs and neuroblasts) in the neurogenic regions from each of
the 28 mice, based on cell cycle signatures (Fig. 1d). The fraction of
cells predicted to be proliferative (in G2/M and S phases, the ‘prolif-
erative fraction’) decreased with age, as expected (Fig. 1f). Here we
used proliferative fraction as a functional metric of the neurogenic
region, which we defined as ‘biological age’. We trained a suite of clocks
analogous tothose described above, except using aNSC-NPC prolifera-
tive fraction as biological age (Fig. 1g). These biological aging clocks
achieved robust prediction performance, although slightly dimin-
ished in comparison to chronological aging clocks (R = 0.41-0.89,
error = 2.3-4.6 months; Fig. 1j,1). The predicted biological age was
positively correlated with the predicted chronological age for each
mouse (R = 0.84; Fig. 1h). Even though all biological aging clocks were
trained on aNSC-NPC ‘proliferative fraction’, the microglia and oligo-
dendrocytes biological age clocks performed better than aNSC-NPC
ones (Fig.1j,1).

Collectively, these datareveal that single-cell transcriptomes can
be used to build accurate chronological and biological aging clocks
for different cell types.

External validation and generalization of aging clocks

To externally validate these cell-specific aging clocks, we retrained
chronological and biological aging clocks on all 28 mice and applied
them to independent datasets. Our single-cell-based models eas-
ily separated young and old samples in an independent single-cell
RNA-seq dataset from SVZ neurogenic regions of young and old
mice*® (Fig. 2a,b). All cell-type-specific clocks effectively sepa-
rated young and old samples, although the exact month of pre-
dicted age was more accurate with chronological clocks from
some cell types (for example, microglia) compared to others (for
example, neuroblasts; Fig. 2a,b).The successful application of our
aging clocks to these independent datasets demonstrates their
robustness.

We next asked if chronological and biological aging clocks could
generalize to the same cell types in other regions of the brains and in
other species. We first used a publicly available single-cell RNA-seq
dataset with the same cell types from the other neurogenic region
in the brain—the dentate gyrus of the hippocampus—in mice of dif-
ferent ages®. Our aging clocks properly separated samples of dif-
ferent ages in the dentate gyrus of the hippocampus, even samples
only 1 month apart in age (Fig. 2c,d). We then used a publicly avail-
able single-nucleus RNA-seq datasets with oligodendrocytes and
astrocytes from the middle temporal gyrus of the brain of humans
of different ages®. Our chronological aging clocks could predict
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correspond to 95% confidence intervals. e, Expression trajectories as a function
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ages from both cell types, and these ages correlated

ages of the humans (R = 0.75 for oligodendrocytes; R = 0.43 for astro-
cytes; Extended Data Fig. 1e). Thus, cell-type-specific aging clocks

with the actual

derived from mouse SVZ neurogenic regions generalize to the
same cell types in other regions of the brain and to other species,
including humans.
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We also determined if the approach we used to build cell-type-
specific chronological aging clocks was generalizable to other cell
typesintissues other thanthebrain. Chronological aging clocks gener-
ated from endothelial cells from limb muscle, naturalkiller T cells from
spleenand podocytes fromkidney, using single-cell RNA-seq data from
the multi-tissue aging atlas Tabula Muris Senis®* also exhibited great
performance (R values ranging from 0.94 to 0.98) to predict actual
chronological age (Extended Data Fig. 1f). Hence, cell-type-specific
aging clocks canbe derived from single-cell transcriptomics datasets
fromvarious cell types and tissues.

Genes that contribute to the cell-type-specific aging clocks
What makes these aging clocks ‘tick’—that is, what are the genes that
contribute to the aging clocks ineach cell type? In the process of train-
ing, each clock selects top genes useful for accurate prediction and
weighs the importance of each. To analyze selected genes and their
relative contributions, we visualized each chronological or biological
aging clock as adonut plot with genes that contribute the most at the
top (Fig.3aand Extended DataFig. 2a,b). Gene sets contributing to the
chronological and biological aging clocks in different cell types ranging
from 96 to 359 genes (for chronological clocks) and 174 to 399 genes
(for biological clocks), and they encompassed genes whose expres-
siongenerally increased or decreased with age (Fig. 3a, Extended Data
Fig.2a,b and Supplementary Table 4). Genes selected by the aging
clocks generally had higher mean expression and greater variability
between mice (relative to expression level) compared to other genes
(Extended Data Fig. 3a,b) and were differentially expressed during
aging (Extended Data Fig. 4a,b).

Thetop genes contributing to the aNSC-NPC chronological aging
clockwere AC149090.1and Ifi27, which are both upregulated with age
(Fig.3a).AC149090.1is orthologous to human PISD, agene encoding a
phospholipid decarboxylase involved in lipid metabolism (phosphati-
dylethanolamine production), linked to autophagy, and localized to
theinner mitochondrial membrane®***. [fi27 (also referred to as Isg12)
isatranscript upregulated inresponse to type linterferons® (Fig. 3a).
Thus, aging clocks identify many genes, including inflammation and
lipid metabolism genes, whose expressionis most predictive of aging
inaparticular cell type.

Toinvestigate whether each cell-type-specific clock selects similar
or unique genes, we compared intersections of chronological or
biological aging clock gene sets (Fig. 3b and Extended Data Fig. 2c).
Interestingly, AC149090.1, was selected by chronological aging
clocks fromallsix different cell types (Fig. 3b) and [fi27 was selected by
chronological aging clocks from five of six cell types (Fig. 3b). In con-
trast, most genes selected by the cell-type-specific clocks were cell-type
specific (Fig. 3b and Extended Data Fig. 2c). The cell-type specificity
of the clocks exceeded what would be expected from transcriptome
cell-type specificity alone (Extended Data Fig. 5a,b). However, shared
selected genes carry a disproportionate weight within the clocks,
with coefficients approximately 40% larger in magnitude (Fig. 3c
and Extended Data Fig. 2d,e). Cell-type-specific genes (Fig. 3d) and
evenshared genes (Fig. 3e) exhibited differences in trajectory shapes
(Ferlsand Crif2in microglia) and expression magnitudes (for example,
Ifi27in different cell types from the NSClineage) during aging in differ-
entcelltypes. Thus, cell-type-specific clocks capture useful cell-type-
specific expression differences and dynamics that would be missed
by bulk methods.

While genes selected by the aging clocks are mostly cell-type
specific, the pathways to which they belong could still be widely shared
across cell types. To test this possibility, we examined the pathways
enriched in the specific or shared genes selected by the chronologi-
cal aging clocks. Interestingly, gene-set enrichment analysis (GSEA)
on the specific genes from each chronological or biological clock
revealed enrichment for different biological processes in each cell
type (Fig. 3f and Extended Data Fig. 2f), for example, stress response

for oligodendrocytes and chemotaxis for microglia (Fig. 3f). Thus,
pathways for specific genes selected by the clocks are also largely
cell-type specific and may reflect age-dependent changes in function
ineach celltype. There were afew biological processes most enriched
inshared genes, including response to type l interferon and cytokine
signaling (Fig. 3f and Extended Data Fig. 2f). Hence, our dissection
of the genes composing the clocks highlights specific and common
features of cellular aging, including stress response, lipid metabolism
and inflammation.

Cell-type-specific clocks generated in one cell type did not per-
form as well on a different cell type (Fig. 3g), even though there are
shared genes across all clocks and these are more heavily weighted.
Thus, generating an aging clock from a specific cell type is helpful
for accurately predicting the age of an individual from that cell type
(Extended DataFig. 1f).

Together, these data indicate that single-cell-based clocks
select highly cell-type-specific genes to predict the age of the individual
they come from, suggesting different aging trajectories in distinct
celltypes.

Aging clocks capture the rejuvenating effect of parabiosis

Do single-cell-based aging clocks—whether trained on chronological or
biological age—capture known ‘rejuvenating’ interventions? Arobust
rejuvenating intervention across tissues is heterochronic parabiosis—
the sharing of blood circulation between young and old animals®®"".
Parabiosis with ayoung animal canrestore aspects of cell function (for
example, NSC proliferation and vascular remodeling) in neurogenic
regions of an old animal, and part of the effects can be recapitulated
by theinjection of young blood or plasma®®’®”°, To test how our single-
cell-based aging clocks recorded theimpact of exposure to young and
oldblood on neurogenicregions, we generated multiplexed single-cell
RNA-seq data on SVZ neurogenic regions from heterochronic parabi-
osed young and old mice and isochronic parabiosed controls. Intotal,
we collected 25,595 single-cell transcriptomes from the SVZ neurogenic
regions of 22 mice across 2independent cohorts (Fig. 4a, Extended Data
Fig. 6a,b, Supplementary Table 1 and Methods). Mean gene expres-
sion was similar in both cohorts for most clock genes (Extended Data
Fig. 6b). This dataset represents a single-cell RNA-seq resource for
heterochronic parabiosis in the SVZ neurogenic region.

Applying our suite of cell-type-specific aging clocks, we predicted
boththe chronological and biological ages of individualsin response
to heterochronic parabiosis. Interestingly, mice exposed to young
blood showed a striking rejuvenation effectin aNSC-NPCs, across both
cohorts for chronological age (rejuvenation of 5.38 months in cohort
land 3.66 monthsin cohort2;4.52 months, averaging both cohorts;
Fig. 4b,c and Extended Data Fig. 6¢-€e) and to a lesser extent for bio-
logical age (rejuvenation of 3.57 monthsin cohort1and 1.44 monthsin
cohort2;2.51months, averaging both cohorts; Fig. 4d,e and Extended
DataFig. 6f-h). The effect of young blood was statistically significant
atthe mouselevel (P=0.019) in aNSC-NPCs, for chronological aging
clocksincohort2 (which had 4-6 mice per condition; Extended Data
Fig. 7a,b). In other cell types, there was a tendency toward a rejuve-
nation effect, particularly in microglia and neuroblasts (although
with less consistency between cohorts; Fig. 4c,e and Extended Data
Figs. 6¢c-h and 7a,b). Overall, the first cohort (21 months difference
between young and old) showed a stronger rejuvenation effect than
the second cohort (15.5 months difference between young and old;
Fig.4c,e), suggesting animproved effect of exposure to young blood
onolder animals (or agreater magnitude when the difference in age
in parabiontsis larger). There was no correlation between rejuvena-
tion effect size and clock performance, suggesting that differences
in intervention effects across cell types was not primarily due to
differencesin the performance of their respective cell-type-specific
aging clocks. Conversely, aging clocks also revealed that young
mice exposed to old blood experienced an increase of predicted
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Fig. 4 | Effect of heterochronic parabiosis on cell-type-specific aging
clocks. a, Schematic of parabiosis cohorts and corresponding UMAP
projections from each cohort. Parabiosis cohort 1 dataset was generated with
young (5 months) and old (26 months) male mice (number of mice indicated in
parentheses); 11,771 high-quality transcriptomes were collected, using one SVZ
sample per 10x lane. Parabiosis cohort 2 was generated with young (5 months)
and old (21 months) male mice; 13,824 high-quality transcriptomes were
collected, using LMOs to multiplex SVZ samples across three 10x lanes. UMAP
projection and cell type clustering of SVZ single-cell transcriptomes in cohorts
land 2. Each dot represents the transcriptome of an individual cell. Colored by
age and intervention (heterochronic parabiosis). For coloration by cell type,
see Extended Data Fig. 6a. b, Density plots of the predicted chronological ages
for aNSC-NPCs from cohort1and cohort 2. Green arrows illustrate the median
shiftin predicted age between old aNSC-NPCs exposed to young blood (old
heterochronic) and old aNSC-NPCs exposed to old blood (old isochronic,
control). Density plots for individual mice, and their cohorts of origin, are

Effect

-5 -83-2-1012 3 5

provided on the right. ¢, Summary of heterochronic parabiosis effects on
chronological age scores across cell types. Effect sizes were calculated by
taking the difference in median predicted ages between conditions. Blue color
indicates a decrease in predicted chronological age (‘rejuvenation’). Red color
indicates anincrease in predicted chronological age (‘detrimental impact’).

d, Density plots of the predicted biological age scores for neuroblasts from
cohortland cohort2. Green arrows illustrate the median shiftin predicted age
between old neuroblasts exposed to young circulation (old heterochronic)
compared to old neuroblasts exposed to old circulation (old isochronic,
control). Density plots for individual mice, and their cohort of origin, are
provided on the right. e, Summary of heterochronic parabiosis effects on
biological age scores across cell types. Effect sizes are calculated by taking

the difference in median predicted ages between conditions. Blue indicates
adecrease in predicted chronological age (‘rejuvenation’). Red indicates an
increase in predicted biological age. For statistical analysis at the mouse level,
see Extended Data Fig. 7a.

chronological age across several cell types (Fig. 4c,e), confirming the
detrimental impact of old blood in other tissues™ 7780784,

Thus, single-cell-based aging clocks, even when trained on
chronological age, can be used to quantify the impact and magni-
tude of rejuvenation and pro-aging interventions on different cell
types. Furthermore, these clocks uncover cell-specific rejuvenating
effects in old neurogenic regions exposed to young blood focused
on proliferating NSCs.

Aging clocks capture the rejuvenating effect of exercise

We asked if other interventions that are beneficial for health also
had a‘rejuvenating’ effect on cell-type-specific aging clocks. Thus, we
applied clocks to another systemic intervention—exercise. Exercise
viavoluntary wheel running has beneficial effects on the brain, increas-
ing hippocampal neurogenesis and improving memory®*, and
boosting SVZ neurogenesis in several cases’ . We exercised young
(4.5 months) and old (21.5 months) mice by providing 5 weeks of
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Fig. 5| Effect of exercise on cell-type-specific aging clocks. a, Schematic

of voluntary wheel running experiment and UMAP projection of single-cell
transcriptomes. For the exercise cohort, 4 young (4.5 months) or 3-4 old (21.5
months) male mice were transferred into cages with either a freely spinning
wheel or no wheel. Wheel rotations were tracked to verify that mice indeed
exercised. After 5 weeks, SVZ niches were collected, so mice were ~6 months and
23 months at time of collection, and 15 lanes of 10x Genomics transcriptomics
performed without sample multiplexing. UMAP projection and cell-type
clustering of SVZ single-cell transcriptomes in the exercise cohort. Each
dotrepresents the transcriptome of anindividual cell. Colored by age and
intervention (exercise) or by cell type (UMAP; Extended Data Fig. 8a). b, Density
plots of predicted chronological ages of oligodendrocytes by age and exercise
condition. Exercise consistently rejuvenated oligodendrocyte transcriptomes

regardless of age. ¢, Summary of exercise effects on chronological age scores
across cell types and ages. Effect sizes were calculated by taking the difference
inmedian predicted ages between conditions. Blue indicates a decrease in
predicted chronological age (‘rejuvenation’). Red indicates anincrease in
predicted chronological age (‘detrimental impact’). d, Density plots of aNSC-NPC
predicted biological ages. Exercise rejuvenated aNSC-NPC transcriptomes of
both young and old mice. e, Summary of exercise effects on biological age scores
across cell types and ages. Effect sizes were calculated by taking the difference
inmedian predicted ages between conditions. Blue indicates a decrease in
predicted biological age (‘rejuvenation’). Red indicates anincrease in predicted
chronological age (‘detrimental impact’). For statistical analysis at the mouse
level, see Extended Data Fig. 7b.

access to freely spinning wheels (or no wheels as controls) and
verified that mice with this paradigm exercised (Fig. 5a, Extended
Data Fig. 8a and Supplementary Table 1). We then generated 79,488
single-cell transcriptomes from the SVZ neurogenic region from
young and old, exercised and non-exercised controls—a total of 15
mice (Fig. 5a and Methods). These single-cell RNA-seq data represent
agreatresource for the young and old SVZ neurogenic niche response
to exercise.

Applying our chronological aging clocks to the exercise
transcriptome dataset revealed that exercise had a small rejuvena-
tion effect in oligodendrocytes (1.4 months in young, 2.0 months

in old, not significant at the mouse level; Fig. 5b,c) and in aNSC-NPCs
(1.9 months in young, 0.3 months in old; Extended Data Fig. 8b).
Biological aging clocks also captured a small rejuvenation effect in
oligodendrocytes and aNSC-NPCs (0.6 months in young, 0.8 months
in old; and 1.4 months in young, 1.2 months in old, respectively;
Fig. 5d,e and Extended Data Fig. 8c). The effect of exercise in
young mice was trending at the mouse level (P=0.057) in oligoden-
drocytes for chronological aging clocks (Extended Data Fig. 7c,d).
Hence, single-cell-based aging clocks also identify rejuvenating
trends for exercise in neurogenic regions, notably in aNSC-NPCs
and oligodendrocytes.
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Fig. 6| Comparison of exercise and parabiosis interventions on cell-type-
specific aging clocks. a, Bar plot comparing effects of different interventions.
Bar represents the difference (in months) between predicted chronological ages
between controls and intervention. Parabiosis cohorts1and 2 were averaged.b,
Pie charts of the directional effect and overlap of intervention impact on aNSC-
NPC chronological aging clock genes (BootstrapCell). Genes are called ‘reversed’
when the sign of the log fold change of gene expressioninintervention versus
controlis opposite to the sign of the coefficient of the gene in the clock (indicated
ontop of the pie charts). Top GO biological process terms and representative
genes are listed underneath. ¢, Venn diagram representing the overlap of DEGs
inaNSC-NPCs between young and old mice (‘age’), old heterochronic mice and
old isochronic mice (‘youngblood’) and old exercised and old sedentary mice
(‘exercise’). Differential expression thresholds required a minimum1.1-fold

expression change with a false discovery rate (FDR) < 0.1. For aging, mice

were grouped as either young (<7 months) or old (>20 months). DEGs shared
between age and young blood were interferon-stimulated genes. DEGs shared
between age and exercise were genes involved in proliferation, metabolism and
development. d, Violin and box plots of gene signatures (sum of normalized gene
expression for allgenesin the gene set) for ‘interferon-y response’ and ‘negative
regulation of neurogenesis’ for aNSC-NPCs in the parabiosis cohort1and cohort2
combined. In the box plot, the line represents the median and the box represents
theinterquartile range. Pvalues were obtained from the two-sided Wilcoxon
rank-sum test (n = 668,149 and 146 cells for ‘young isochronic’, ‘old isochronic’
and ‘old heterochronic’, respectively). e, Asind but for aNSC-NPCs in the exercise
cohort (n=2,243,503 and 1,170 cells for ‘young sedentary’, ‘old sedentary’ and ‘old
exercise’, respectively).

Comparison between heterochronic parabiosis and exercise
We compared the effect of heterochronic parabiosis and exercise
on cell-type-specific aging clocks. Overall, heterochronic parabiosis
(merging cohorts 1and 2) had a larger rejuvenating effect than exer-
cise across cell types (Fig. 6a). Young blood had a strong rejuvenat-
ing effect on old mice in aNSC-NPCs and had a smaller rejuvenating
effect on microglia and neuroblasts (Figs. 4c,e and 6a and Extended
Data Figs. 7a,b and 9a). Exercise also had a small rejuvenating effect
on aNSC-NPCs and oligodendrocytes (Fig. 6a and Extended Data
Figs. 7c,d and 9a). Together, these results suggest that exposure to
young blood may be a stronger intervention than exercise, at least at
the transcriptomic level, and may impact both shared (aNSC-NPCs)
and distinct cell types.

We next examined the genes responding to either or both
of these interventions in a cell type (aNSC-NPCs) responding to
both interventions, albeit with a different magnitude. In aNSC-
NPCs, heterochronic parabiosis mostly reversed clock genes that
increased in expression with aging (such as those associated with
atypel interferon response; Fig. 6b and Extended Data Fig. 9b). In
contrast, exercise mostly reversed clock genes that decreased in
expression with aging (such as those associated with transmem-
brane transport; Fig. 6b and Extended Data Fig. 9b). These results
suggest that young blood and exercise target different genes and
pathways.

To independently test whether heterochronic parabiosis
and exercise impact different genes, we examined differentially
expressed genes (DEGs) in aNSC-NPCs during aging and in response
to each intervention (Methods and Fig. 6¢). There was minimal
overlap between parabiosis-responsive and exercise-responsive
genes (by DEG), corroborating that these interventions impact
the aging transcriptome differently (Fig. 6¢). This minimal over-
lap was not due to a drastically different overall pattern of gene
expression between the parabiosis and exercise datasets (Extended
Data Fig. 10). Young blood reversed the age-associated increase
in interferon-stimulated genes (including the shared gene /fi27;
Fig. 6¢). In contrast, exercise reversed the age-associated decline of
several genes involved in proliferation and neurogenesis, including
Dbx2, which is implicated in age-related SVZ neurogenic decline’
(Fig. 6¢). Young blood but not exercise reversed the age-associated
increase in genes involved in the ‘interferon-y response’ signature
(Fig. 6d). Exercise but not young blood reversed the age-associated
decrease in the ‘negative regulation of neurogenesis’ signature
(Fig. 6e), consistent with the ability of exercise to boost neurogenesis
in old mice®*?"’, DEG analysis also confirmed that the impact of
youngblood on DEGs was stronger than that of exercise across most
cell types (Extended Data Fig. 9c). Together, these data corroborate
that the transcriptional responses of old neurogenic regions to
heterochronic parabiosis and exercise differ.
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or control’ state on the transcriptomes from mice of different ages to assess
intervention relevance to aging. b, Classification results based on logistic
regression for the parabiosis intervention in aNSC-NPCs. Correlation between
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actual chronological age of aNSC-NPC BootstrapCell transcriptomes. Old
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that the gene signature that distinguishes exposure to young and old blood
isrelevant to aging. Ris the Pearson correlation. Higher correlation indicates
that the main intervention signature overlaps with and reverses age-related
changes. ¢, Summary of correlations between intervention state prediction and
chronological age across cell types and interventions, with a separate classifier
built for each. The exercise classifiers were built to distinguish old sedentary
from old exercised transcriptomes for each cell type. The lower correlation
between intervention state predictions and age for the exercise samples implies
that the signatures that distinguish exercised and sedentary mice are less related
to aging than those derived from parabiosis intervention classifiers.

Relevance of rejuvenation interventions to aging

Importantly, we determined whether the main effects of exposure to
youngblood and exercise are indeed relevant to aging (Fig. 7a). To this
end, instead of training regression clocks on age to compare rejuvena-
tioninterventions, we trained classifiers on rejuvenationinterventions
(‘rejuvenated’and ‘control’) and determined if different chronological
ages were classified asrejuvenated or control. With the classifier built
on heterochronic parabiosis, younger mice showed a greater likeli-
hood of being classified as ‘rejuvenated’ whereas older mice showed a
greater likelihood of being classified as ‘control’ (Fig. 7b). This effect was
particularly strongin aNSC-NPCs and microglia (Fig. 7b,c). In contrast,
with the classifier built on exercise, younger mice showed a greater
likelihood of being classified as ‘rejuvenated’ in only two of six cell
types (aNSC-NPCs and oligodendrocytes; Fig. 7b), which were also
the same two cell types that showed the strongest rejuvenation from
aging clock analysis (Fig. 6a). This analysis indicates that exercise and
young blood induce changes that are indeed relevant to aging and
corroborates the comparatively larger effects of young blood as an
intervention. Collectively, these machine learning analyses have the
potential to identify differences in rejuvenation interventions.

Discussion

Here we show that single-cell RNA-seq data allow the generation of
quantitative aging clocks that can be trained on chronological age or
on aspect of tissue fitness (defined here as ‘biological age’)—that is,
the proliferative fraction of stem cellsin the neurogenic region. To our
knowledge, these are the first quantitative aging clocks in distinct cell
typesbased onsingle-cellRNA-seq. We also generate three datasets that
represent valuable stand-alone resources: a high temporal resolution
single-cell RNA-seq aging dataset of a neurogenic niche and single-
cellRNA-seq datasets for aneurogenic niche following heterochronic
parabiosis and voluntary exercise. These datasets will be helpful to
identify additional cellular and molecular changes during aging and
rejuvenation.

Our clockaccuracy (forexample, R = 0.92 in microglia) approaches
that of bulk DNA methylation and proteomics™">*° while preserving
cell-type specificity and avoiding biased sorting procedures. Single-cell
DNA methylation and proteomic methods have suffered from sparsity
and scaling challenges, although there is rapid innovation to address
theseissues®’®, While the methods described here preserve cell-type
specificity without relying on cell sorting, ‘pure’ single-cell trained
clocks were not as effective as our BootstrapCell and EnsembleCell

approaches (Fig. 1k,1). Thus, using small pools of 15 single-cell transcrip-
tomes can mitigate some technological (for example, gene dropouts)
or biological (forexample, transcriptional bursting) challenges inher-
enttosingle-cell RNA-seq datasets. Nevertheless, increased gene vari-
ability (transcriptional noise) is itself a feature of aging®'°*, and it will
beimportantto model this feature in the next-generation aging clocks.

Alimitation of the application of chronological age-trained clocks
is that interventions stimulating age-associated compensatory path-
ways (for example, stress responses) will reflect as age-acceleration
interventions despite their functional benefit to the cell, the tissue or
the organism. Thus, thereis aneed for abetter understanding of genes
contributing to the aging clocks and their function as well as continued
development of functional and phenotypic-trained models. Here, we
built clocks based onafunctional phenotype of the neurogenic region
(NSC proliferative capacity), but more comprehensive phenotyping
approaches will be important to pursue. Overall, functional-aging
clocks are likely to be instrumental in understanding the biology of
aging and rapidly evaluating interventions necessary to extend healthy
lifespan.

The observation that heterochronic parabiosis and exercise can
‘turn back’ the single-cell-based aging clocks provides a proof of con-
ceptthatthese aging clocks, even when trained on chronological age,
can record aspects of aging biology. This is in line with other aging
clocks built on bulk datasets™*2**"32, Our results also highlight cell-
type specificity for aging and possibly for rejuvenationinterventions.
Thisisunique tosingle-cell-based clocks and will allow a better under-
standing of cell heterogeneity in tissue aging and rejuvenation. Our
dataalsoreveal different potential for rejuvenation strategies, at least
atthetranscriptional level. These results raise the exciting possibility
thataging clocks canservetorapidly test the efficacy of rejuvenation
interventions and to support combining specific interventions to
counter aging and age-related diseases.

Methods

Our research complies with all relevant ethical regulations (AAALAC),
under Institutional Animal Care and Use (IACUC) protocols 8661 and
16246 at Stanford University and VA Palo Alto Committee on Animal
Research, ACORP LUO1736.

Animals
For aging cohorts and the exercise cohort, male C57BL/6 mice were
obtained from the National Institute on Aging (NIA) Aged Rodent
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colony. For parabiosis cohort 1, old mice were male C57BL/6 mice
from the NIA Aged Rodent colony and young mice were male B6.SJL-
Ptprc? Pepc®/Boy) male (Pep boy) from the Jackson Laboratory. For
parabiosis cohort 2, old mice were male C57BL/6) and young mice were
male C57BL/6) or C57BL/6-Tg(UBC-GFP)30Scha/J from the Jackson
Laboratory. Mice were housed in the Comparative Medicine Pavilion,
ChemH/Neuroscience Vivarium or the SIM-1Non-Barrier Rodent Facil-
ity at Stanford, or in the Veterinary Medical Unit at the Palo Alto VA.
Allthese facilities provide equivalent standard conditions with a12-h
light-dark cycle, ad libitum food and water, ~21 °C temperature, and
~50% humidity. All mice were acclimated to their vivarium for at least
2 weeks before use in any experiment.

Tissue and cell collection for the subventricular zone
neurogenic niche

For single-cell RNA-seq datasets, SVZ neurogenic niches were collected
and processed as described in ref. 5, Briefly, mice were sedated with
1mlof2.5%vol/vol Avertin (Sigma-Aldrich, T48402-25G) and perfused
with 15 ml of PBS (Corning, 21-040-CV) with heparin sodium salt (50 U
ml™; Sigma-Aldrich, H3149-50KU) to remove the blood, and brain col-
lection was performed immediately. As previously described'*, the
SVZ from each hemisphere was microdissected and dissociated with
enzymatic digestion with papain at a concentration of 14 U ml™, rock-
ing for 10 min at 37 °C. Note that the samples also contained some of
the surrounding striatum, which contributed to the oligodendrocyte
populationinourstudy. The dissociated SVZ was triturated inasolution
containing 0.7 mg ml™ ovomucoid and 0.5 mg ml™ DNase I (Sigma-
Aldrich, DN25-100MG) in DMEM/F12 (Thermo Fisher, 11330032). The
dissociated cells from the SVZ were centrifuged through 22% Per-
coll (Sigma-Aldrich, GE17-0891-01) in PBS to remove myelin debris.
After centrifugation, cells were filtered through a 35-pm snap-cap
filter (Corning, 352235), washed once with 1.5 ml of FACS buffer (HBSS
(Thermo Fisher, 14175103), 1% BSA (Sigma, A7979) and 0.1% glucose
(Sigma-Aldrich, G7021-1KG)) and spun down for 5 min at 300g. Cells
were resuspended in 120 pl FACS buffer with live/dead staining per-
formed using 1 pg ml™ propidium iodide (BioLegend, 421301) and
kept on ice until sorting. FACS sorting was performed on a BD FACS
Ariall sorter, using a100-pm nozzle at 13.1 PSI. Cells were sorted into
low protein binding microcentrifuge tubes containing 750 pl of PBS
with 1% BSA and 0.1% glucose. When not applying sample multiplexing
(parabiosis cohort1and exercise cohort), cells were then centrifuged
(300gfor5 minat4 °C) and resuspended in 50 pl FACS buffer, counted
and then immediately run on 10x Chromium to capture single-cell
transcriptomes.

Cohorts of mice of different ages

To generate the single-cell RNA-seq dataset from mice of different ages
and train aging clock models, we used four independent cohorts of
aging mice. Each cohort had 4-8 male C57BL/6 mice from the NIA Aged
Rodent colony, for a total of 28 mice. These 28 mice tiled 26 different
ages (two pairs of mice had the same age), ranging from 3.3 months
(young adult) to 29 months (geriatric adult).

Lipid-modified oligonucleotide multiplexing

Sample multiplexing was performed using LMOs, amethod also known
asMULTI-seq™. Lipid anchor and co-anchor reagents were kindly pro-
vided by the Gartner Laboratory at the University of California, San
Francisco and customoligonucleotides were ordered from Integrated
DNA Technologies. We used MULTI-seq primer: 5’ CTTGGCACCCGA
GAATTCC; and Universal.I5: 5’ AATGATACGGCGACCACCGAGATCTA
CACTCTTTCCCTACACGACGCTCTTCCGATCT®.

We followed the exact protocol outlined by McGinnis et al.*® with
the following modifications: (1) all labeling with LMOs was performed
ina4 °C cold room because, in our hands, the quality of labeling was
very sensitive to temperature; (2) to avoid cell loss and cell clumping,

cellsweresorted into PBS with 2% BSA, and BSA was then removed using
three PBS washes; (3) concentrations and volumes were adjusted to
account for low cellnumbers: 7.5 pl of 1 mM lipid anchor with oligonu-
cleotide barcode mix was added to a 70 pl volume of resuspended cells
followed by 7.5 pl of 1 mM lipid co-anchor; (4) labeling reactions were
quenched with 2% BSA then samples were pooled before subsequent
1% BSA PBS washes to further reduce cell loss. The combined sample
was resuspended at 50 pl for cell counting and single-cell RNA-seq.

Single-cell libraries and RNA sequencing

Single-cell RNA-seq was performed using a 10x Chromium machine
and 10x Genomics V3.0 Transcriptomics kits (aging cohorts, parabio-
sis cohort 2 and exercise cohort) or a10x Genomics V2 kit (parabiosis
cohort1). For sequencing, 10,000 cells per lane were targeted but
typical yields were approximately 5,000 cells. Library preparation
was done according to the manufacturer’s protocol (10x Genomics
V3.0 or 10x Genomics V2 for parabiosis cohort 1). Sequencing was
done to target a minimum of 25,000 reads per cell for transcriptome
characterizationand 5,000 reads per cell for LMO label recovery. The
aging cohorts and the parabiosis cohort 2 samples were multiplexed
with 4-8 samples per 10x Chromium lane. The parabiosis cohort 1
and the exercise samples were not multiplexed with LMO reagents.
Sequencing was performed on either an Illumina HiSeq 4000 (aging
cohorts and parabiosis cohort 1) or a NovoSeq using the 2 x 150-bp
setting (parabiosis cohort 2 and exercise).

Analysis (quality control)

Cell Ranger (version 3.0.2) default settings were used to distinguish
cells from background. Subsequent analysis was performed using R
(version 3.6.3). Cells were filtered out in Seurat (version 3.2.3)'%'%¢ if
they contained fewer than 500 genes or greater than 10% mitochondrial
reads. Small clusters of doublets that shared several marker genes from
pure populations were identified and removed. LMO demultiplexing
was performed using Seurat’s HTODemux function. A complete view
ofthe data processing and quality-control parameters can be found at
https://github.com/sunericd/svz_singlecell_aging_clocks.

Cell type annotation
Cell types in all datasets were manually annotated as described in ref.
*8 and cross-referenced with annotations present in the single-cell
database PanglaoDB'”. Identification of major clusters was performed
with the FindClusters() algorithm in the Seurat package, which uses a
shared nearest-neighbor modularity optimization-based clustering
algorithm'®, Marker genes for each major cluster were found using
theSeurat (version 4.1.1) function FindAlIMarkers() using the Wilcoxon
rank-sum test. Cell types were determined using marker genes identi-
fied from the literature and the marker genes were cross-referenced
withannotations presentin the single-cell database PanglaoDB'”’. This
analysis identified ~11 clusters of cells (depending on the dataset),
including astrocytes and qNSCs, aNSCs and NPCs, neuroblasts, neurons,
oligodendrocyte progenitor cells, oligodendrocytes, endothelial cells,
‘mural’ cells (pericytes or smoothmuscle) and microglia. The genes used
foridentificationareincluded inSupplementary Table2and a clustering
of asubset of these genes is presented in Extended Data Fig. 1c.
Consistent with our previous study*®, we did not observe sufficient
differences in transcriptomic signatures to separate astrocytes from
qNSCs and aNSCs from NPCs. We have described these clusters as
‘astrocyte-qNSCs” and ‘aNSC-NPCs’ throughout this study. Some cell
types were not identified when using the LMO protocol (for example,
Tcells), probably because cellssuch as T cells are small and their mem-
branes may not allow for efficient LMO labeling. We also identified only
afew ependymal cells in several of our datasets, although these cells
are known to be numerous in the SVZ neurogenic niche. This is prob-
ably because ependymal cells are too big to be efficiently uploadedin
droplets and/or they are sheared in the 10x microfluidic device.
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Cell cycle annotation and proliferative fraction
For cell cycleannotation (G1,S, G2/M) of cellsinthe SVZ neurogenic niche,
we used Seurat’s CellCycleScoring function with default parameters. This
annotation was used to calculate the ‘proliferative fraction’ in the SVZ
neurogenic niche, that s, the percentage of cells predicted tobein S or
G2/M phase. We used the proliferative fraction (ProliferativeFraction)
asafunctional metric of the SVZ neurogenic niche and used it to define
‘biological age’ in this study (‘Age prediction and validation strategy’).
Totest the correlation between chronological age and proliferative
fraction in the SVZ neurogenic niche, we used Pearson’s correlation.
There was a negative correlation (Pearson R =-0.8) between chrono-
logical age and proliferative fractionin the SVZ.

Age prediction and validation strategy

Chronological or biological age (‘label’) was regressed onto all log-
normalized gene expression values In((gene transcripts / cell tran-
scripts) x 10,000) (‘features’) in a particular cell type using the R
package glmnet (version 4.0.2)°". To determine the most robust method
to predict age fromsingle-cell RNA-seq data, we tested various preproc-
essing approaches: SingleCell, Pseudobulk, BootstrapCell (‘Boostrap-
Cell preprocessing’) and EnsembleCell (‘EnsembleCell preprocessing’).
SingleCell uses bona fide single-cell transcriptomes with minimal
processingasinputtoalasso regression model to predict chronologi-
calorbiological age. Pseudobulk involves naive pseudobulking all cells
from the same cell type and sample before using a lasso regression
model to predict chronological or biological age. BoostrapCell uses
lasso regression models and EnsembleCell uses elastic net models
(described separately below)*’. There was no manual filtering of genes.
Bothlassoregressionand elastic net regression enforce sparsity in the
model coefficients with tunable parameter such that only a subset of
geneswillhave nonzero coefficientsin the trained aging clock models.

Chronological age was defined as months since birth. Biological
age was defined as 35 - (ProliferativeFraction x 100) where Prolifera-
tiveFraction was the number of cells predicted tobein S or G2/M phase
divided by the total number of cells from that sample. The number
35 was selected to transform biological age into the same range as
chronological age.

For validation, models were built on 3 of the 4 cohorts of mice,
and validation was done on the remaining cohort (stringent ‘leave-
one-cohort-out’ validation (cross-cohort validation)). For training of
eachmodel, hyperparameters were optimized with fivefold to tenfold
cross validation. To quantify the performance of the models, the data
were presented as a correlation between the actual chronological (or
biological) age of the mouse from which the cell originated (x axis)
and the median predicted chronological (or biological) age for that
mouse (y axis). Density of cells is represented with graded colors and
eachmouseisrepresented asadot. Wefitted alinear model (black line)
through the points as well as the 95% confidence interval (light gray)
using geom_smooth (ggplot2). Pearson’s correlation (R) isindicated on
the graph.In dot plots, both the R values and the MAE, that is, median
absolute error across all the cells, are presented.

To test the correlation between chronological age and biological
age, we used the Pearson correlation. There was a positive correlation
(R =0.84) between chronological age and biological age predictions.

BootstrapCell preprocessing

BootstrapCelluses alasso model with the following characteristics: To
generate aBootstrapCell, 15 single-cell transcriptomes were sampled
without replacement from the pool of cells of a given cell type from a
given animal (for example, oligodendrocytes from a single mouse).
Gene counts were then summed. A BootstrapCell constructed from
15 cells was empirically found to balance the tradeoff between sample
number and gene coverage per sample. This bootstrapping process was
repeated 100 times for each cell type-animal combination. Bootstrap-
Cells were used as input into lasso regression models. This approach

had the effect of normalizing the contribution of each animal rather
than each single-cell transcriptome.

EnsembleCell preprocessing

We devised and evaluated a second preprocessing and age predic-
tion technique to compare to our BootstrapCell approach and to test
robustness to changes in preprocessing and model architecture. In
the EnsembleCell approach, 20 elastic net models were trained for
each cell type. For each model, gene expression data from cells were
randomly partitioned into groups of 15 single-cell transcriptomes and
the unique transcript counts for all cells in each group were summed
to create ‘EnsembleCells’. To predict age from the gene expression
profile of a cell, we used the weighted average of predictions across
all20 models, where weights were determined by the R? (coefficient of
determination) of the model on a held-out validation set (‘Age predic-
tionand validation strategy’).

Use of aging clocks onindependent mouse datasets

We determined if the single-cell-based models (‘aging clocks’) gener-
ated from our mouse SVZ neurogenic niche dataset could be applied
to cells from an independent dataset and even to cells from another
neurogenic region in the brain. To this end, we used a single-cell RNA-
seq dataset of the SVZ neurogenic niche from young and old mice** and
asingle-cell RNA-seq dataset of the dentate gyrus of the hippocampus
from mice of three different ages®’. These datasets were preprocessed
asdescribed above using the ‘BootstrapCell’ method. We examined the
distribution of the predicted chronological or biological ages of each
cellin these datasets, color coded by the age of the mouse of origin.

Use of aging clocks on human datasets

Todetermineif the single-cell-based aging clocks generated from the
mouse SVZ neurogenic niche could apply to cells from other regions
of the brain and in other species, we used a single-nucleus RNA-seq
dataset of the middle temporal gyrus from humans of different ages®’.
The dataset was preprocessed using the ‘BootstrapCell’ method as
described above. As oligodendrocytes and astrocytes were present
bothinthe humandataset and our mouse SVZ neurogenic niche data-
set, we applied our oligodendrocyte and astrocyte-qNSC chronologi-
calaging clocks tothe corresponding cell types in the human dataset.
We rescaled the raw predictions linearly to obtain rescaled predicted
chronological ages for each human BootstrapCell (rescaled predicted
age =m x raw predicted age + b, where m =10 and b =125.5for oligoden-
drocytes; m=5and b =32.75 for astrocytes). The linear rescaling did
notchange thereported correlation between predicted chronological
age and actual chronological age. Correlation plots were generated as
described in ‘Age prediction and validation strategy’.

Cell-type-specific aging clocks using Tabula Muris Senis

To determine whether the method we used to derive cell-type-specific
aging clocks was generalizable to tissues other than neurogenicniches,
we used the count matrices fromthe single-cell RNA-seq dataset of the
multi-tissue aging atlas Tabula Muris Senis®’. We chose three diverse cell
types in different tissues: endothelial cells from limb muscle, mature
naturalkiller T cells from spleen and podocytes from kidney. For each
cell type, the data were preprocessed and aging clocks were trained
using the BootstrapCell approach described above. The performance
ofthese models was evaluated by iteratively training on all mice except
for one mouse and obtaining predictions on the held-out mouse (‘leave-
one-mouse-out’ cross validation (cross-mouse validation) instead
of ‘leave-one-cohort-out’ cross validation (cross-cohort validation)
because there were no distinct cohorts in this dataset).

Identification of genes that contribute to the aging clocks
Genes that contribute to each aging clock model were retrieved
by selecting all genes from the clocks with nonzero coefficients
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(Supplementary Table 4). The weight of a gene on each clock model
(thatis, the level of contribution based on coefficient values) and the
sign of the coefficient (positive, higher gene expression is associated
with older age; negative, lower gene expressionisassociated with older
age) are indicated using a donut plot, with sector size indicating the
gene weight and colorindicating coefficient sign. Genes with positive
coefficient are mostly upregulated with age, and genes with negative
coefficient are mostly downregulated with age. The regulation of each
chronological and biological clock gene (compared to other genes)
is presented using a volcano plot (Extended Data Fig. 4). Most genes
selected by the clocks were differentially expressed during aging. Less
than half of the genes selected by chronological and biological aging
clocks in a particular cell type overlapped (Supplementary Table 4).
To determine if chronological or biological clock genes were shared
across cell types or specific to each cell types, we used UpSet plots.
Most genes selected by chronological or biological clocks were cell-
type specific. The ‘impact’ (sum of absolute values of coefficient) and
‘count’ (sum of gene number) of shared genes or specific genes are
indicated as a stacked bar plot.

Properties of genes that contribute to the aging clocks

To determine if genes that contribute to the aging clocks have specific
properties, we examined their variability by plotting the coefficient of
variation as a function of mean expression. Genes used by the clocks
were more highly expressed and, at a given level of expression, had a
higher coefficient of variation (that is, were more variable) than genes
notinthe clock (Extended Data Fig. 3a).

We also verified that the increased variability of genes that contrib-
ute to the clocks was not merely due to sparsity in the single-cell RNA-
seqdataset. On average, the majority of cells (for each cell type) express
the genes that contribute to the clocks and this is higher than what
was observed for genes that do not contribute to the clock (Extended
DataFig. 3b).

Gene-set enrichment analysis

GSEA was performed using Enrichr'®to query cell-type-specific clock
genes for enrichment against GO biological process gene sets. Statistics
were exported from the Enrichr web tool and processed and visualized
inRwith ggplot2 (version 3.3.3) package.

Parabiosis cohorts and single-cell RNA-seq dataset

Twoindependent cohorts of heterochronic parabiosis were generated
(cohort1and cohort 2). Parabiosis cohort 1 involved six male mice
across three pairings. We collected SVZ niches from one isochronic
young mouse (5 months, control), one heterochronic young mouse
(5 months, old blood), one heterochronic old mouse (26 months,
young blood) and oneisochronic old mouse (26 months, control), for
atotal of four SVZ niches (of six mice). Old parabionts were C57BL/6
male mice from the NIA Aged Rodent colony at Charles River. Young
parabionts were B6.SJL-Ptprc Pepc’/Boy) male (Pep boy) mice from
The Jackson Laboratory and C57BL/6 male mice from the NIA. Of
the young, only the Pep boy mice were used for transcriptomics.
Congenic (rather than isogenic) pairings were performed to enable
verification of blood chimerism by FACS with antibodies specific to
CD45.1 (BioLegend, 110705; 1:100 dilution) or CD45.2 (BioLegend,
109814;1:100 dilution) alleles. Mice were 4 and 25 months old at the
start of the experiment, and parabiosis was conducted for 5 weeks
until cell collection, when mice were 5 and 26 months old. Pairs were
established as previously described®*”>*° by suturing the perito-
neums of adjacent flanks and joining skin with surgical clips. Five
weeks after the parabiosis surgery, mice were anaesthetized with
2.5% vol/vol avertin, euthanized by cardiac puncture and perfused
with 15 mI PBS with heparin (50 Uml™). SVZ dissection, digestion and
FACS were performed as describe above. 10x Genomics single-cell
transcriptome V2 libraries (one sample per 10x lane) were generated

and sequenced on one Illumina HiSeq lane by the Stanford Func-
tion Genomics Facility. Animal care and parabiosis procedures were
performed in accordance with Stanford University under IACUC
protocols 8661 and 16246.

Parabiosis cohort 2 involved eighteen male mice across nine
pairings. We collected SVZ niches from four isochronic young mice
(5 months, control), four heterochronic young mice (5 months, old
blood), four heterochronic old mice (21 months, youngblood) and six
isochronic old mice (21 months, control), for a total of eighteen SVZ
niches (of eighteen mice). All mice in this cohort were sourced from
the Jackson Laboratory and housed in the Veterinary Medical Unit at
the Palo Alto VA”’. Old mice were C57BL/6) and young were C57BL/6])
or C57BL/6-Tg(UBC-GFP)30Scha/J. Mice were aged 4 and 19.5 months
at the start of the experiment, and parabiosis proceeded for 5 weeks
until cell collection, when mice were 5 and 21 months old. Surgeries
were performed as described above. Five weeks after surgery, mice
were anesthetized with 2.5% vol/vol avertin, euthanized by cardiac
puncture and perfused with 15 ml PBS with heparin (50 U ml™). SVZ
dissection, digestion and FACS were performed as describe above.
Tissue collection took place on three separate days and samples were
multiplexed with LMOs. 10x Genomics single-cell transcriptome V3
libraries were generated in-house and sequenced by Novogene on an
Illumina NovoSeq lane. Animal care and parabiosis procedures were
approved by the VA Palo Alto Committee on Animal Research and listed
on ACORP LUO1736.

Parabiosis cohort 1and cohort 2 were generated in different ani-
mal facilities, by different surgeons, in different years, and they were
analyzed with different versions of 10x Genomics single-cell tran-
scriptomics kits. For visualization, data from the two independent
cohorts were integrated on the cohortidentity using the RunHarmony
command from Harmony'*’. There were no statistically significant dif-
ferences between youngisochronic (control) predicted chronological
agesacross cohortsinall six cell-type-specific aging clocks (Wilcoxon
rank-sum test for median predicted chronological ages), suggesting
that there was not amajor batch effect that could have influenced the
age prediction.

Exercise cohort and single-cell RNA-seq dataset

C57BL/6 male mice from the NIA Aged Rodent colony at Charles
River were housed in the Veterinary Medical Unit at the Palo Alto VA”.
Young and old mice were aged 4.5 months and 21.5 months, respec-
tively, at the start of the 5-week voluntary wheel running intervention,
so they were 6 months and 23 months when tissues were collected.
During the intervention period, mice (n =4 for each age group)
were singly housed in cages accommodating a running wheel.
Control mice (n =3-4 for each age group) had no access to a wheel.
Running was verified by recording wheel revolutions. After 5 weeks,
mice were anaesthetized with 2.5% v/v avertin, euthanized by
cardiac puncture, perfused and cell suspensions from dissected
SVZs generated as described in ‘Tissue and cell collection for the
SVZ neurogenic niche’. Next, 10x Genomics V3.0 transcriptomics
kits were used to generated libraries without upstream sample
multiplexing. Tissue processing occurred across two separate
mornings. SVZ libraries were pooled and sequenced on an lllumina
NovoSeq.

Effect of rejuvenation interventions on the aging clocks
Tomeasure the effect of heterochronic parabiosis and exercise on the
aging clocks, we examined the distribution of predicted chronological
or biological ages as described in ‘Use of aging clocks onindependent
mouse datasets’. We calculated the effect by the difference in median
predicted chronological or biological age between intervention and
control. In dot plots, these differences were represented as ‘effect’,
using size and intensity of color, with blue indicating ‘rejuvenation’
andred indicating ‘aging’
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Comparison of heterochronic parabiosis and exercise effects
To compare the effect of heterochronic parabiosis and exercise, we
calculated the mean of the difference between the median predicted
chronological age for amouse for eachintervention (datafrom cohort
land cohort2for heterochronic parabiosis). Genes that were reversed
by eachintervention or by both, based ondirection of average log fold
change, were identified.

Differential expression analysis

To determine genes that were impacted by different interventions
independently of the aging clocks, we used differential expression
analysis, focusing on aNSC-NPCs (as this cell type isimpacted by both
interventions). MAST"? software was used to calculate differential
expression statistics between three different conditions: age (young
versus old), young blood (heterochronic parabiosis versus isochro-
nic old control), exercise (exercise versus sedentary in old mice). To
determine the DEGs between young and old, we defined ‘young’ as
mice <7 months and ‘old’ as mice >20 months. Permissive cutoffs of
1.1-foldchange and FDR < O.1were applied in each of the three different
conditions. Overlap was presented as a Venn diagram.

Gene signature analysis

For specific gene signature analysis, we summed the expression of
genesin one cell type from single-cell transcriptomic datasets within
a specific gene signature defined by a specific GO term. Among
the different signatures tested, we selected those that were signifi-
cantly increased with age and reversed by at least one intervention.
We focused on two signatures: the ‘interferon-y response’ signature
defined as the sum of all normalized expression values of genes in the
interferon gene set defined by Dulken et al.** and the ‘negative regula-
tion of neurogenesis’ gene signature defined as the sum of all normal-
ized expression values of genesin the GO term ‘negative regulation of
neurogenesis’ gene set (v6.21)""", Data were presented as violin plots
and statistical analyses were performed using the Wilcoxon rank-sum
testat the celllevel.

Intervention classification models

To evaluate the aging relevance of ‘rejuvenation’ interventions, we
generated cell-type-specific models trained on the intervention rather
than age as a label. We used classification models, based on logistic
regression (cv.glmnet(type.measure = ‘mse’, family = ‘binomial’) using
all log-normalized gene expression values In((gene transcripts / cell
transcripts) x 10,000) as features. These intervention classification
models were trained on single-cell RNA-seq data from heterochronic
parabiosis (young blood) versus isochronic parabiosis old (control) or
fromexercise versus sedentary old mice. The datawere preprocessed
using the same BootstrapCell approach as described above. For logis-
ticregression, the label used corresponded to either the intervention
(‘0’) or control (‘1). Cross validation was performed on held-out cells
(25% of the cells that were not used to build the models). After train-
ing and validating the intervention classification models, we applied
these modelsto the single-cell RNA-seq dataset of the SVZ neurogenic
niche from 28 mice, tiling 26 ages from young (3.3 months) to old (29
months). Datawere plotted as described in ‘Age prediction and valida-
tion strategy’, with (log(p(control) / p(intervention))) as a function of
the actual chronological age of aNSC-NPC BootstrapCell transcrip-
tomes. Old mice were more likely to be classified as ‘isochronic old
control’, whereas young mice were more likely to be classified as ‘het-
erochronic old’, indicating that the gene signature that distinguishes
exposure to young and old blood is relevant to aging. R is the Pearson
correlation. Higher correlation indicates that the main intervention
signature overlaps with and reverses age-related changes. Correlations
between intervention state prediction and chronological age across
cell types and interventions were assessed, with a separate classifier
built for each. The exercise classifiers were built to distinguish old

sedentary from old exercised transcriptomes for each cell type. The
lower correlation between intervention state predictions and age for
the exercise samplesimplies that the signatures that distinguishes exer-
cised and sedentary mice are less related to aging than those derived
from parabiosis intervention classifiers.

Statistics and reproducibility

No statistical methods were used to predetermine sample sizes; we
determined our sample sizes based on our previous analysis of similar
types of datasets*®. For study design, we used four independent cohorts
of mice, each spanning different ages, to build the age predictionmod-
els. This design allows us to test the machine learning aging clock mod-
elswitharobust cross-cohortvalidation (that s, leave-one-cohort-out’
validation). Two independent experiments of heterochronic parabiosis
were performed, involving 6 mice (4 collected, cohort1) and 18 mice
(cohort 2), with data collection spread across 4 d. One experiment
of exercise (with controls lacking a running wheel) was performed,
involving 15 mice processed across 2 d. Animals from group 3 from
parabiosis cohort 2 were excluded because sample multiplexing failed
and it was not possible to distinguish samples. The experiments were
not randomized. Investigators were not blinded to allocation during
experiments and outcome assessment, although the genomics analyses
were performed in a systematic manner. To test correlations, we used
Pearson’s correlation. To determine the statistical significance of the
differences between intervention and control, we used the Wilcoxon
rank-sum test (a non-parametric test).

Reporting summary
Furtherinformationonresearch designisavailableinthe Nature Port-
folio Reporting Summary linked to this article.

Data availability

All raw sequencing reads and key processed files are accessible at
BioProject PRJNA795276 (aging, parabiosis) and the Gene Expres-
sion Omnibus under accession GSE196364 (exercise). Processed data
files for the aging and parabiosis data can be found at https://doi.
org/10.5281/zenodo.7145399. Processed data files for the exercise data
canbefoundathttps://doi.org/10.5281/zenodo.7338746. External raw
sequencing reads for the mouse hippocampus dataset are accessible
atthe Gene Expression Omnibus underaccession GSE159768. External
data on human middle temporal gyrus are accessible at https://por-
tal.brain-map.org/atlases-and-data/rnaseq/human-mtg-smart-seq/.
External data from Tabula Muris Senis are accessible at https://figshare.
com/projects/Tabula_Muris_Senis/64982/.PanglaoDB canbe accessed
at https://panglaodb.se/.

Code availability

The code used to analyze genomic data and generate aging clocks in
the current study is available in the GitHub repository for this paper
(https://github.com/sunericd/svz_singlecell_aging_clocks/). A frozen
versionof the coderepositoryisavailable as Supplementary Software 1.
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Extended Data Fig. 2| See next page for caption.
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Extended Data Fig. 2| Genes that contribute to the chronological aging
clocks and biological aging clocks. a, Contribution of individual genes to the
chronological aging clocks (BootstrapCell) (see Fig. 3a for aNSC-NPCs). Donut
plots, with sector size denoting gene weight in the model and color indicating
sign of expression change with age. Total number of genes used by the clockis
provided in the center of each donut plot. Positive coefficients (orange) indicate
increased gene expression is associated with older age. Negative coefficients
(blue) indicate decreased gene expression is associated with older age. b, As in
(a) but for biological aging clocks (BootstrapCell) and their coefficients. ¢, Upset
plotillustrating the intersection of gene sets used by cell-type-specific biological

aging clocks. No genes were used in all 6 biological aging clocks. d, Count and
coefficientimpact of shared and cell-type-specific clock genes for chronological
aging clocks. Shared is defined as present in at least one of the other five clocks
(seeFig.3c for aNSC-NPCs). e, Asin (d) but for biological aging clocks. f, Top
enriched Gene Ontology Biological Process terms from gene set enrichment
analysis of genes used in biological aging clocks. Shared genes (presentin two or
more clocks) are enriched for cytokine-mediated signaling pathway and cellular
response to typel interferon. The aNSC-NPC biological aging clock genes are
enriched for cell cycle pathways.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3| Variability and mean expression of genesin the
chronological aging clocks. a, Scatter plots of the log2 coefficient of variation
(CV) of the normalized BootstrapCell gene expression as a function of the log2
mean normalized BootstrapCell gene expression for all identified genes in the
six different cell types. Red dots correspond to genes that contribute to the

chronological aging clocks for each cell type (selected by clock) and black dots
correspond to genes that do not contribute to the chronological aging clocks
(not selected by clock). b, Asin (a) but for the fraction of cells with nonzero
countsin the dataset as a function of the log2 coefficient of variation (CV) of the
normalized gene expression.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Comparison of genes in cell-type-specific aging clocks that contribute to the chronological aging clocks for each cell type (selected

and differentially expressed genes with age. a, Volcano plots of negative by clock) (orange representing genes with positive clock coefficients and blue
logl0 false discovery rate (FDR) from differential gene expression analysis representing genes with negative clock coefficients) and gray dots correspond to
using MAST for the young and old mouse groups. We defined ‘young’ as mice <7 that do not contribute to the chronological aging clocks (not selected by clock).
months old and ‘old’” as mice >20 months old. Colored dots correspond to genes b, Asin (a) but for the biological aging clocks.
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Extended DataFig. 5| Gene detection rate in cell-type-specific aging clocks. detection. Most genes are shared if a very low threshold of detection is used.

a, Unique genes detected in single cell transcriptomes from the subventricular Above 80% detection rate, transcriptomes are very cell type specific. However,
zone as a function of gene detection rate. Red dots indicate unique genes the shared core of easily detected genes in transcriptomes (70 genes) is much
detected at 2%,20%, and 80% detection rates. b, Upset plots showing larger than the shared core of genes selected by clocks (~1).

transcriptome overlaps between cell types at different levels of expression
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I:' Exercise Reversed
l:' Parabiosis Reversed

Clock Genes
|:| Reversed by Both

Increased with Age

Endothelial

3
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the proportion of genes that are differentially expressed age which are reversed
by intervention, cell type, and whether the genes increase or decrease with age
(abs(In(fold change)) > 0.1, or approximately greater than a1.1fold change with
age, FDR < 0.1). Parabiosis is effective at shifting differentially expressed genes
during aging towards a more young-associated expression levels (more green
in‘Parabiosis’ column). Reduction of expression of genes that increase with age
islarger than the induction of expression of genes that decrease with age (more
greenin‘Age Increased’ rows).

Nature Aging


http://www.nature.com/nataging

Resource

https://doi.org/10.1038/s43587-022-00335-4

Log2 Mean Gene Expression (Exercise)

Log2 Mean Gene Expression (Exercise)

Extended Data Fig.10 | See next page for caption.
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Extended Data Fig. 10 | Comparison of mean expression of genes in the

aging clocks and genes impacted by rejuvenation in the heterochronic
parabiosis and exercise datasets. a, Scatter plots of the log2 mean normalized
BootstrapCell gene expression in the exercise single-cell data as a function of the
log2 mean normalized BootstrapCell gene expression in the parabiosis (cohorts 1
and 2 combined) single-cell data for the six main cell types. Red dots correspond
to genes that contribute to the chronological aging clocks (selected by clock) and

gray dots correspond to genes that do not contribute to the chronological aging
clocks (not selected by clock). Genes that contribute to the clock are both highly
expressed in the parabiosis and exercise datasets. b, Asin (a) but colored dots
correspond to genes identified as differentially expressed by parabiosis (green)
and exercise (blue). Gray dots correspond to genes that are affected neither by
parabiosis nor by exercise (neither). Permissive 1.1-fold change and FDR < 0.1
cutoffs were applied in each of the 2 different conditions.
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For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

|X’ The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
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|X| Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
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Data collection  No software was used.

Data analysis CellRanger (3.0.2) and custom analyses in R (3.6.3) using several packages: Seurat (3.2.3), gimnet (4.0), tidyverse (1.3.0), MAST (1.10.0),
sctransform (0.3.2), harmony (1.0), ggpubr (0.4.0), ggplot2 (3.3.5). Web version of Enrichr (accessed after March 29, 2021 update) through
https://maayanlab.cloud/Enrichr/. Analysis code can will be available at https://github.com/sunericd/svz_singlecell_aging_clocks. For
reviewers the code can be downloaded from https://www.dropbox.com/s/hxd4xzn11wxe52h/svz_singlecell_aging_clocks-main.zip?dI=0.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

Lc0c Y21o

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

All raw sequencing reads and key processed files are accessible at BioProject PRINA795276 (Aging, Parabiosis) and Gene Expression Omnibus GSE196364 (Exercise,
a secure token can be obtained from Dr. Ling Liu (ref 97): lingliu@stanford.edu)). Processed data files for the Aging and Parabiosis data can be found at https://
doi.org/10.5281/zenodo.7145399. External raw sequencing reads for the mouse hippocampus dataset are accessible at Gene Expression Omnibus GSE159768.




External data on human middle temporal gyrus is accessible at https://portal.brain-map.org/atlases-and-data/rnaseq/human-mtg-smart-seq. External data from
Tabula Muris Senis is accessible at https://figshare.com/projects/Tabula_Muris_Senis/64982. PanglaoDB can be accessed at https://panglaodb.se/.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.
Sample size No statistical methods were used to pre-determine sample sizes; we determined our sample sizes based on our previous analysis of similar
types of datasets (Dulken et al, 2019).

Data exclusions  Animals from group 3 from parabiosis cohort 2 was excluded because sample multiplexing failed and it was impossible to distinguish samples.

Replication For study design, we used four independent cohorts of mice, each spanning different ages, to build the age prediction models. This design
allows us to test the machine learning aging clock models with a robust cross-cohort validation (i.e. “leave one-cohort-out” validation). Two
independent experiments of heterochronic parabiosis were performed, involving 6 mice (4 collected, cohort 1) and 18 mice (cohort 2) data
collection across spread across 4 days. One experiment of exercise (with controls lacking a running wheel) was performed, involving 15 mice
processed across 2 days.

Randomization Experiments were not randomized.

Blinding Investigators were not blinded to allocation during experiments and outcome assessment, though the genomics analyses were done in a
systematic manner.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies |:| ChlIP-seq
Eukaryotic cell lines |:| |Z Flow cytometry
Palaeontology and archaeology |:| MRI-based neuroimaging

Animals and other organisms
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Clinical data
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Antibodies

Antibodies used CD45.1 (BioLegend 110705, 1:100) or CD45.2 (BioLegend 109814, 1:100) (to verify parabiosis chimerism for parabiosis cohort 1)

Validation All antibodies were validated for the indicated applications by the manufacturer.

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals For aging cohorts and exercise cohort, mice used were male C57BL/6 mice obtained from the NIA Aged Rodent colony. For parabiosis
cohort 1, old mice were male C57BL/6 mice from the NIA Aged Rodent colony and young mice were male B6.SJL-Ptprca Pepcb/Boy)J
male (Pep boy) from the Jackson Lab. For parabiosis cohort 2, old mice were male C57BL/6J and young mice were male C57BL/6J or
C57BL/6-Tg(UBC-GFP)30Scha/) from The Jackson Laboratory. A table with further mouse details is available in Supplementary Table
1. Mice were housed at ~21 celsius degree with 50% humidity.

Wild animals No wild animals were used in the study.
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Field-collected samples  No field-collected samples were used in the study.

Ethics oversight All experiments were done with approval at Stanford University under IACUC protocols 8661 and 16246.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Methodology

Sample preparation

Instrument

Software

Cell population abundance

Gating strategy

The SVZ from each hemisphere was micro-dissected and dissociated with enzymatic digestion with papain at a concentration
of 14 U ml-1, rocking for 10 min at 37°C. The dissociated SVZ was then triturated in a solution containing 0.7 mg ml-1
ovomucoid and 0.5 mg ml-1 DNasel (Sigma-Aldrich, DN25-100MG) in DMEM/F12 (Thermo Fisher, 11330032). The
dissociated cells from the SVZ were then centrifuged through 22% Percoll (Sigma-Aldrich, GE17-0891-01) in PBS to remove
myelin debris. After centrifugation, cells were filtered through a 35-um snap-cap filter (Corning, 352235), washed once with
1.5 ml of FACS buffer (HBSS (Thermo-Fisher, 14175103), 1% bovine serum albumin (Sigma, A7979), 0.1% glucose (Sigma-
Aldrich, G7021-1KG) and spun down for 5 min at 300g. Cells were then resuspended in 120 pl FACS buffer with live/dead
staining was performed using 1 ug ml-1 propidium iodide (BioLegend, 421301) and kept on ice until sorting. FACS sorting was
performed on a BD FACS Aria Il sorter, using a 100-um nozzle at 13.1 PSI. Cells were sorted into low protein binding
microcentrifuge tubes containing 750 ul of PBS with 1% BSA and 0.1% glucose.

BD FACS Aria Il housed in the Stanford Shared FACS Facility.

No FACS data analysis was reported. Sorting was only used to enrich live cells in single cell RNA-seq dataset and to verify
chimerism of parabiosis mice cohort 1.

Sorting was only used to enrich live cells. Between 15,000 and 80,000 live cells were typically isolated from each SVZ.

Debris, doublets, and Pl-positive (dead) cells were removed.

|:| Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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