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Abstract Because far memory is slower than local memory, existing

systems have all utilized local memory as a cache for far mem-

Far memory, where memory accesses are non-local, has be-
ory, with two approaches. The first is to transparently swap

come more popular in recent years as a solution to expand
memory size and avoid memory stranding. Prior far mem- memory pages between local and far memory (8, 9, 30, 58, 68].
ory systems have taken two approaches: transparently swap These systems all suffer from the coarse granularity of a 4 KB
memory pages between local and far memory, and utilizing page, which is often larger (2.3 to 31x [17]) than what is
new programming models to explicitly move fine-grained actually read/written by an application. Data amplification
data between local and far memory. The former requires not only consumes extra network bandwidth but could also
no program changes but comes with performance penalty. slow down overall application performance. The second far-

The latter has potentially better performance but requires memory approach is to use a new programming model or
significant program changes. extend an existing one with new APIs for far-memory ac-

cesses [26, 31, 56, 65]. Through explicit and precise control
of what to access in far memory, this approach reduces am-
plification but requires non-trivial application-programmer

We propose a new far-memory approach by automatically
inferring program behavior and efficiently utilizing it to im-
prove application performance. With this idea, we build Mira.

Mira utilizes program analysis results, profiled execution in- or library-writer effort. ‘ o
formation, and system environments together to guide code These two approaches respectively perform optimizations
compilation and system configurations for far memory. Our dynamically by a run-time system and statically by program-

mers. The former is a completely transparent system-level
approach that treats user programs as a black box, while the
latter is a white-box approach that puts the responsibility
of optimization on programmers. Is it possible to overcome
the drawbacks of these approaches, harness their benefits, and
even surpass their best-case performance?

evaluation shows that Mira outperforms prior swap-based
and programming-model-based systems by up to 18 times.
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research: program-analysis tools and compilers. With com-
1 Introduction pilers, we can automatically convert programs written for

local memory to accessing far memory, optimize the trans-
ferred code for better performance, and do so without any
programming burden. Program analysis can reveal informa-
tion unknown to run-time systems or even programmers.
For example, it can detect indirect memory accesses like
for (i=0; i< size; i++) B[A[i]]++;. With this knowl-
edge, a compiler can insert prefetching operations like
%1=(fetch A[i+distance]) and fetch B[%1] atdistance
elements ahead. In contrast, without program knowledge,
a runtime-based far-memory system often exhibits ampli-
fication or prefetching of incorrect data based on history.
® While static program analysis and code optimization offer
many benefits, a key limitation is their inability to incor-
Al porate run-time information, which may result in subopti-
mal decisions. As with prior solutions to static approaches’

As memory becomes one of the most contended hardware re-
sources in data centers and as more applications require huge
memory to execute, a promising and popular approach is to
allow applications to use memory beyond traditional main
memory, such as unused memory on a remote server [25],
disaggregated memory blades in a server or a rack [33, 46],
and other forms of slower but cheaper memory [43, 57]. Some
of these non-local memory has attached computation power
(e.g., an ARM processor) [31, 56]. In this paper, we call all of
them far memory.

This work is licensed under a Creative Commons Attribution International

4.0 License. T . .

SOSP '23, October 23-26, 2023, Koblenz, Germany limitations [35, 51], we can leverage run-time profiling of
© 2023 Copyright held by the owner/author(s). applications and utilize profiling outcomes to steer program
ACM ISBN 979-8-4007-0229-7/23/10. analysis and compilation for far-memory systems.
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We leverage program analysis, compiling, and profiling to-
gether to automate and optimize far-memory accesses. These
technologies have been extensively studied in a traditional
server setting for optimizing the performance of CPU cache
and main memory [19, 42, 48, 51]. However, cache for far
memory is fundamentally different in one key aspect: cache
for far memory is DRAM-based and can be controlled by soft-
ware. This feature gives us a great opportunity to customize
the cache for program behavior (which we acquire from
program analysis and run-time profiling) and to generate
and optimize code for far memory based on the customized
cache configurations using a compiler. Together, they call
for the co-design of program analysis, compiler, profiling, and
run-time cache systems for far memory. This co-design oppor-
tunity also brings significant challenges: while traditional
compiler optimizations target a fixed CPU cache architec-
ture, we need to configure our cache based on our program
analysis and profiling, and our compiler should generate and
optimize code for far memory via this non-fixed cache.

To leverage opportunities and confront challenges, our
core idea is to separate the local cache into spaces dedicated
to and configured for different program behaviors. We ob-
serve that a program often exhibits several different memory
access patterns with different objects or at different phases,
and they benefit from different cache configurations. For ex-
ample, sequential accesses fit a small directly mapped cache
with a cache line size of multiple consecutive data elements,
while accesses with good locality but large working sets fit
a relatively large set-associative cache. With this observa-
tion, we propose to divide the local cache into different cache
sections, each tailored to a distinct access pattern. Based on
the analyzed and profiled behavior of one program scope
for one object or multiple objects with the same behavior,
we configure a cache section’s size, cache structure (e.g., set-
/full- associative), cache line size, prefetching and eviction
patterns, and communication method (e.g., one-/two-sided
RDMA). Our compiler then optimizes code in that scope to
best fit the configuration. Section separation allows us to cus-
tomize cache configurations for one access pattern at a time
and to in turn optimize code for one cache configuration at a
time. Additionally, we decompose a whole-program-whole-
cache co-design problem into manageable per-access-pattern
subproblems that we can more precisely solve.

With this core idea, we build Mira, a far-memory sys-
tem that co-designs program analysis, compilation, a con-
figurable cache layer, and run-time profiling. It follows an
iterative approach shown in Figure 1. Initially, Mira profiles
the application running on our generic swap layer to identify
scopes for analysis. For these scopes and based on analysis
and profiling results, Mira identifies objects to place in far
memory, generates far-memory accessing code, and opti-
mizes the code and cache configuration. Additionally, Mira
identifies and compiles functions to offload to far memory
with computation power, also based on program behavior.
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The next iteration uses the new configuration and code. If
high overhead is detected, Mira performs another optimiza-
tion iteration, until user-specified stopping criteria is met.

Apart from the co-design challenge with a configurable
cache, Mira confronts two unique challenges in a far-memory
environment: 1) inefficient implementation of far-memory
pointers and their dereferences will largely hurt application
performance; 2) larger program scopes and more objects
need to be potentially analyzed, as far-memory accesses are
slower and local cache is larger than CPU cache. For 1), we
design a novel far-memory pointer dereferencing mechanism
that is performance efficient and metadata-space efficient, by
leveraging program behavior to turn as many dereferences
into native memory loads as possible. For 2), we perform
coarse-grained, cache-section-specific profiling to narrow
down program scopes and objects to those with the highest
potential gain from further optimization, and we analyze
and optimize each of them while globally optimizing the
partition of local cache space across them.

We implement Mira’s static parts on top of MLIR [44],
a Multi-Layer Intermediate Representation ecosystem that
allows us to choose the proper abstraction levels to build our
program analysis and compiler and to support a variety of
front-end programs and back-end execution architectures.
We build all run-time parts as user-level libraries. We evalu-
ate Mira using micro-benchmarks and three real programs:
MCEF [10], DataFrame [34], and GPT-2 [50] inference [7]. We
compare Mira with FastSwap [9], a kernel-level swap-based
far-memory system, Leap [8], a run-time pre-fetching solu-
tion for swap-based far-memory system, and AIFM [56], a
far-memory system with a new programming model. Our
results show that Mira outperforms these prior swap-based
and programming-model-based systems by up to 18 times.

Mira is available at https://github.com/WukLab/Mira.

2 Related Works
2.1 Existing Far-Memory Systems

Page-based far-memory swapping. A common way to
build far-memory systems is via page-based memory swap-
ping. InfiniSwap [30] is the first RDMA-based remote mem-
ory swap system. FastSwap [9] improves InfiniSwap’s per-
formance with better scheduling and polling mechanisms.
Leap [8] prefetches memory pages to avoid remote-memory
accesses in the critical path based on a process’ majority
access pattern. Canvas [68] and Hermit [54] are two recent
works that improve Linux’s swap system by enforcing better
isolation mechanisms in a multi-application environment
and by executing non-urgent but time-consuming tasks asyn-
chronously. LegoOS [58] is a non-Linux based system that
swaps 4 KB pages between a compute node’s “extended cache”
and disaggregated memory.
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These swap-based systems all suffer from two common
problems: 1) they are all 4 KB page based. Such coarse gran-
ularity could result in huge network bandwidth wastage
and reduced application performance [17]; 2) they are all
agnostic to program semantics. As we will show, program
semantics are crucial in enabling a variety of optimizations.

3PO [15] is a recent system that uses an offline process to
analyze memory accesses of oblivious applications, whose
memory accesses are independent of program inputs. 3PO
then uses the analysis results to perform prefetching. 3PO
still performs prefetching in 4KB-page granularity. Moreover,
it only works for completely oblivious applications.
Cache-line-based and other far-memory systems.
New hardware like CXL [22] and research-based proto-
types [18, 29] enable access to far memory in cache-line
size and with much faster speed than today’s network
communication. Moreover, CXL allows CPU cache misses
being directly served by a memory device connected to
the CPU. Software systems on top of these hardware
technologies can utilize the high speed and/or fine access
granularity to improve far-memory performance [17, 46].
Unlike Mira, none of these existing software systems
consider program semantics or configure local cache
based on program behavior. Note that even though our
implementation of Mira focuses on RDMA-based remote
memory, our general designs apply to a broad definition
of far memory, including CXL-based memory pools, local-
or remote-node persistent memory, and slower storage
layers, because Mira’s optimizations can adapt to different
far-memory accessing speeds and computation power.
New programming models. In addition to transparent ap-

proaches, another type of far-memory solution is introducing
new far-memory-specific programming interfaces. FaRM [25,
26] and many other RDMA-based systems [31, 59, 65] use
simplified or richer APIs for programmers to perform re-
mote memory allocation, read, write, etc. AIFM [56] pro-
poses a new programming model for far memory, including
remotable pointers, dereferencing scope, eviction handler,
etc. To avoid application programmers’ burden, AIFM tries to
confine far-memory-specific programming within libraries.
A common limitation of these works is their burden on appli-
cation or library developers, who can also make unoptimized
decisions. Moreover, these works only optimize their added
APIs or library calls and do not analyze other program be-
havior for further performance optimization opportunities.
Finally, systems like AIFM incur high runtime overhead, as
each far-memory pointer dereferencing requires the manip-
ulation of fair amounts of metadata.

2.2 Non-Far-Memory Optimizations

Memory accesses in a traditional, non-far-memory environ-
ment have been highly optimized at various layers. However,
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as far as we know, there is no work that co-designs program
analysis, compiler, and a configurable cache.
Compiler and system optimizations for CPU cache. A

host of compiler-level and system-level solutions have been
proposed to optimize applications’ performance on CPU
caches. They can be roughly categorized into three types.
The first transfers programs and/or data layout to make
memory accesses more cache friendly, e.g., via data structure
padding, peeling, field reordering, hot-cold code region sep-
aration, etc. [19, 42, 48]. The second allocates different CPU
cache spaces to different parts of applications. For example,
CPU cache coloring assigns different memory regions to dif-
ferent cache regions to avoid cache conflicts across memory
regions [23, 71]. The third guides memory-access optimiza-
tions using run-time profiling results (i.e., PGO) [51]. For
example, APT-GET [35] improves prefetching of memory ac-
cesses to the CPU cache using profiling information collected
from CPU counters.

These techniques cannot directly be used in a far-memory
setting. Unlike Mira, they do not target a software config-
urable cache environment, do not co-design program analy-
sis, compiler, and cache systems, do not work for far memory
or perform any of our far-memory-oriented optimizations,
and do not support function offloading.

Software-defined and configurable cache. There have

been several works proposing configurable CPU cache ar-
chitectures and software mechanisms to utilize such re-
configurable cache architectures [45, 64, 70]. For example,
Jenga [64] proposes to assign different parts of CPU cache to
different hierarchies (levels) based on measured cache miss
curves for each application. Lee et al.[45] build a customized
cache for streaming applications based on offline analysis of
memory access traces. These solutions focus on the architec-
ture and systems level, without the understanding or usage of
program behavior and lack compiler optimization. Moreover,
they all require non-traditional CPU cache hardware. Mira
configures DRAM cache for far memory based on program
behavior, with a run-time cache system, program-analysis,
compiler, and profiling co-designed approach.

Another software-manageable cache hardware is scratch-
pad memory. Several works have focused on finding good
ways to schedule what data to place in the space-limited
scratchpad memory [36, 62, 66]. For example, Susu et al. [62]
use static analysis and code transformation to perform space
planning on scratchpad memory for an accelerator. Unlike
Mira, these works do not configure scratchpad memory based
on program behavior and instead seek good data placement
and scheduling to fit the scratchpad.

Finally, TriCache [28] proposes to customize DRAM cache
using a user-space block cache with a virtual memory inter-
face to access fast storage devices. Unlike Mira, it does not
utilize program behavior when configuring its block cache,
and its usage scenario and cache designs are both different.
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Figure 1. Mira Overall Flow.

3 Mira Overview

Mira consists of program analysis tools, a compiler, a run-
time system for local nodes, a run-time system for far-
memory nodes, and a profiling system. They work together
to iteratively adapt system configurations and user programs
for far-memory accesses, as shown in Figure 1. Figure 2
shows the run-time architecture of Mira. Mira takes an un-
modified program as input and generates 1) a cache configu-
ration based on the program’s behavior and 2) a compiled
code that runs on far memory via the Mira run-time system.
Overall flow. Initially, without run-time information or pro-
gram analysis, Mira configures the local cache as a universal
swap section and places all heap objects and static data in
it (we never use far memory for stack or code, as they are
small and frequently accessed). The initial execution works
almost the same as traditional page swap-based systems, ex-
cept for the profiling code our compiler inserts. At this and
each of the later profiling runs, we collect per-function miss
rate, miss latency, hit overhead (i.e., the additional latency
to access data in cache over a regular memory load), and
function execution time. Additionally, we collect allocation
sizes of all data objects.

We then decide how to split cache sections (initially, only
the swap section) based on profiled per-function perfor-
mance results and object sizes (§4.1). As each non-swap
section needs program analysis and code generation/opti-
mization, having many of them increases the static tools’
complexity and is often unnecessary. Thus, we identify the
functions that “suffer the most” from executing on the cur-
rent cache configuration and compiled code, and we find
larger objects in them to place in their own sections for
further optimization.

Figure 3 illustrates the type of program analysis we per-
form and how we use the analysis results together with
profiling results to determine various cache section configu-
rations (details in §4.2). Overall, we use lifetime analysis to
determine when to start and end a section, the amount of

Figure 2. Mira Runtime.
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Figure 3. Deciding Cache Configuration.

(batched) data accessed with profiled network performance
to determine cache line size, and memory access sequences
together with profiled cache section performance to deter-
mine cache structure. We determine the sizes of cache sec-
tions by globally optimizing the overall performance based
on each section’s profiled performance characteristics (§4.3).

For code ranges in each non-swap cache section, Mira
compiles code to access the cache section or in the case of
a cache miss, the far memory (§4.4). Mira converts mem-
ory operations like allocation, read, and write to remotable
operations at the IR level, which then is lowered to either
cache or network accesses. Afterward, we perform various
code optimizations based on program analysis and profiling
results, e.g., prefetching data, batching far-memory accesses,
flushing and marking data evictable, etc. (§4.5). We also gen-
erate code to access different network stacks of Mira based
on program behavior (§4.7). Finally, we instrument the com-
piled code with coarse-grained profiling operations for the
next round of profiling execution.

In addition to the above, we consider per-function compu-
tation load and network traffic to determine which functions
to offload to far memory for optimal performance, and Mira
generates binaries for them (§4.8).

Input adaptation. To adapt our compilation and cache con-

figurations to inputs, we invoke profiling on sampled inputs.
When the current compilation and cache configurations’ per-
formance degrades, we trigger a round of iterative code op-
timization in the background while the user invocation of a
program keeps using the current compilation. Each iteration
uses the previous iteration’s profiling results to potentially
set a new cache configuration and generates a new compi-
lation. System administrators of Mira set an optimization
target for each round (e.g., at most 10 profiling-optimization
iterations, or keep optimizing until no further gain is ob-
served). The final compilation of a round is used for sub-
sequent invocation of the program until another round of
iterative optimization is needed. Each round of optimization
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edges, nodes = malloc()
void traverse_graph(struct edge xedges) {
for (int i = @; i < num_edges; i++)
update_node (edges[i], edges[i].from, edges[i].to);
// edges[i].from and edges[i].to point to nodes

[SNET I NI U

}

Figure 4. (Simplified) Code Example of Graph Traversal.

converges fast, usually in two to three iterations, and our
profiling adds negligible performance overhead (§6). Our iter-
ative approach reduces analysis and optimization scopes and
complexity at each iteration while allowing for inaccuracy
in one iteration to be fixed in the next one.

Overall, this sample-based input-adaptation approach
has been taken by most prior profiling-guided-optimization
(PGO) works [12, 35, 39-41, 51, 61, 63] and has been adopted
in production [20, 51, 55]. As we (§6) and prior works show,
this approach has only little mis-profiling overhead. This is
because production workloads’ inputs change slowly [20],
and a fair amount of datacenter applications like machine
learning benefit from the same sets of optimizations regard-
less of their inputs [15]. Additionally, as we will show in §4,
many of Mira’s designs are resistant to input changes.
Targeted applications. Mira optimizes code with memory
access patterns that can be inferred from static analysis and
dynamic profiling. Many datacenter applications fit this fea-
ture. Our evaluation results show the benefits of Mira for
data analytics, machine learning, and graph processing ap-
plications (§6). Apart from our evaluated applications, Mira
is potentially beneficial to other types of applications such
as key-value stores and event-triggered applications. For
applications or parts of an application that Mira does not
optimize, we guarantee performance that is on par with ex-
isting swap-based far-memory systems.

Note that we assume each application to have its own
cache space, far memory space, and cache runtime that are
isolated from other applications. A datacenter/cloud manager
can decide the amount of local/far memory space and CPU
cores assigned to each tenant (application) and then run Mira
in each tenant’s container/VM.

4 Mira Design

This section presents Mira’ design, including how we per-
form and utilize profiling, how we configure cache sections
and their sizes, how we generate and optimize remote-access
code, how we support multi-threading, different communi-
cation methods, and automated function offloading. We use
a simple graph traversal program shown in Figure 4 as the
rundown example of Mira’s major designs. It traverses an
edge array sequentially and updates the edge’s source and
destination nodes in a node array. Figure 5 shows the overall
superior performance of this example when running on Mira
as compared to FastSwap [9], Leap [8], and AIFM [56] for all
local memory sizes. Figure 6 summarizes the effect of Mira
techniques on this example. Here, and throughout the paper,
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we show relative performance that is normalized over native
execution on full local memory (i.e., no far memory).

4.1 Profiling for Cache Configurations

As discussed in §3, to make program analysis more manage-
able, we leverage profiling results to pinpoint specific seg-
ments of a program that require analysis. Moreover, profiling
results aid in identifying configurations that are challenging
to determine through static analysis alone.

Profiling mechanism. Traditional profiling that happens

at the run-time system can add fairly high-performance over-
head that is not necessary for our profiling purpose. We in-
strument profiling code during compilation and only profile
coarse-grained cache section performance at the function
level or at allocation sites. Most of our profiling is related
to a cache section’s behavior (e.g., miss rate, miss latency,
hit overhead). These metrics are collected only when a non-
native cache event happens, leaving native memory access
intact and achieving lightweight profiling.
Determining cache sections and analysis scopes €.
We leverage Mira’s overall iterative flow to adaptively
decide what data and code regions to place in a cache
section, improving section selection with each iteration.
After a profiling run, Mira collects the cache overhead
and execution time of all functions. We compare the cache
performance overhead across all functions and pick the
highest 10% functions to analyze. Here and throughout the
paper, we define cache performance overhead as the ratio
of time spent in Mira runtime over the remaining program
execution time, where the former includes handling cache
hits (e.g., cache lookup), misses (going across the network to
fetch cache lines from far memory), and evictions. When
selecting a function, we also implicitly select all its callee
functions recursively for analysis. In the next iteration, if
more optimization is needed, Mira uses new profiling results
to pick the highest 20% functions to analyze, and so on (i.e.,
30%, 40% in the subsequent iterations until iteration stops).
After picking functions, we further nail down the analysis
scope to large objects, as they need more space and will likely
cause more cache misses. Similarly, we pick the largest 10%
objects in the first iteration. If this function still needs to be
analyzed in later iterations, we pick the largest 20% objects.
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Users can set their own thresholds to replace these values
we use for functions and objects. Even if we pick non-ideal
objects and functions to optimize (e.g., because of program
input changes), our optimizations still improve application
performance over generic swap-based systems.

After performing an analysis of the selected functions and
objects and knowing their access patterns (§4.2), we group
similar patterns into one section and leave different patterns
in different sections. That means multiple objects can be in
one section if their access patterns are similar, while one
object can be in different sections at different times if its
access pattern changes. Note that with the complexity and
uncertainty of cache/code optimizations, separating a cache
section may worsen its functions’ performance. In this case,
we roll back to the previous iteration’s configuration.

Figure 7 shows the performance of Mira when not sepa-
rating and separating cache sections with the graph traver-
sal example. We also show AIFM [56]’s performance as a
reference. Cache separation significantly improves Mira’s
performance. After initial iteration, Mira separates out two
sections, one for the node array, and one for the edge array.
To further understand where the benefit of cache separation
comes from, we measure the miss rate of accessing the node
array in Figure 8. In a joint cache, the sequentially accessed
edge array could evict the randomly accessed node array and
end up taking more space than what it needs (a few lines
because of the sequentiality). After cache separation and
assigning appropriate sizes (§4.3) to each section, the node
array’s miss rate drops by 44%-78%, while the edge array’s
miss rate stays the same. Cache separation also allows us
to apply different cache structures to each section (more in
§4.2), which further reduces the node array’s miss rate.

4.2 Program Analysis for Cache Configurations

For the code regions selected using the profiling results (§4.1),
we perform static program analysis to infer their access pat-
terns, including their lifetime, access sequence, access gran-
ularity, access being read or write, and what data are often
accessed together. We then use these analysis results together
with profiling results to determine various cache section con-
figurations to be used for the application’s execution.

Determining cache line size @). A cache line in our sys-
tem can contain one or multiple data items. We determine
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the cache line size of a section based on several factors. On
the one hand, we want a cache line to be no larger than the
data access granularity to avoid read/write amplification. On
the other hand, if data items are accessed contiguously, we
want to enlarge the cache line to cover as many of them as
possible, as long as the line size is not bigger than what the
network can transmit efficiently at a time. This is because
accesses to each cache line need to go through a relatively
costly pointer dereferencing process but accesses to an offset
within a dereferenced cache line do not incur this overhead
(§4.4). We take into consideration all these factors when
setting cache line sizes.

Figure 9 shows the cache performance overhead (4.1) when
using different cache line sizes for the node and the edge
sections. For the node array, a smaller size is better, as it is
accessed randomly. 128 bytes is the smallest size that can
hold the accessed data unit. The edge array is accessed se-
quentially and thus benefits from larger line sizes. The cache
overhead decreases dramatically when the line size is smaller
than 2 KB because of our measured network characteristics.
Determining cache section structure €). Mira currently
supports three cache section structures: directly mapped, set
associative, and fully associative, following classical CPU
cache architectures. Future works can add other structures.
As with CPU cache, full associativity has the best utilization
of cache space (i.e., no conflict miss) but has a higher run-
time overhead for cache lookup. This tradeoff shifts the other
way with set associativity and then direct mapping,.

To determine the structure of a cache section, we first
analyze the access sequences of the program scope for a
section to estimate the potential amount of conflicts that
contend for a cache set or a direct location. If the access
pattern is sequential or stride, then we use a directly mapped
cache, as there will be no conflict. Otherwise, we analyze the
locality set (i.e., the entries of data that need to live in the
local cache at the same time) and addresses in the locality
set. If we cannot identify a locality set, we set the section
to be fully associative. If we can find locality sets, we infer
the potential amount of conflicts when using a K-way set-
associative cache and set K accordingly.

Figure 10 shows the effect of using different cache struc-
tures on the node section. When local memory is large, full
associativity has a constant overhead over set associativ-
ity and direct mapping. As local memory gets smaller, full
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associativity turns better than set associativity. Note that
even though different cache structures for the node section
have small differences, choosing the right cache structure
for different sections has a larger impact on performance.

4.3 Determining Cache Section Size

As discovered by previous far-memory systems [9, 56, 58],
the amount of local cache can largely impact far-memory
system performance. Different from previous systems that
only consider the effect of total cache size for an application’s
performance, we consider the effect of each cache section’s
size, as different objects and their access patterns can be
affected differently by the amount of local cache. We use
sampling and profiling to determine section sizes. @

We first sample a few sizes for each section. In each sam-
pled run, we profile the cache performance overhead of the
section. Sequential and strided cache sections only need a
small size that can fit enough prefetched data to hide network
delay. Beyond this size, the performance of these sections
would stay the same. Thus, we only need to sample very few
sizes to find a sequential/strided section’s optimal size. For
other cache sections, we sample a few section sizes as ratios
of total local memory size (e.g., 20%, 40%, 60%, 80%). After
acquiring the relationship between section size and section
performance for them and with our program analysis results
of section lifetime, we construct an integer linear program-
ming (ILP) problem with the target of minimizing the total
cache overhead and the constraint that during any time, the
total size of live sections should be no larger than the total
application’s local memory space. The solution to this ILP
problem is the sizes we use for these sections.

Figure 11 shows different cache sections’ performance
overhead when sampling different section sizes. As the
edge array is accessed sequentially, a small size can already
achieve the same performance as the full size. The node ar-
ray’s accesses are indirect, and its section cache overhead
is non-linear from our sampled results. To make the section
size selection problem more interesting, we add a third array
that is accessed uniformly randomly to be in another sec-
tion, which also exhibits non-linear behavior with different
section sizes. Figure 12 shows normalized application per-
formance when partitioning the local memory differently
across multiple sections and the partition ratios Mira’s ILP
solutions give (which are the optimal ratios). As expected,
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1 @_redges, @_rnodes = remotable.alloc(..)

2

3 // parameter uses internal edge struct representation

4 remotable. func @trvs_graph_rmt(%argd: !remotable<struct<edge>>){
5 scf.for %i = %0 to %num_edges { // scf is an MLIR dialect

6 // dereference remote pointer to local pointer

7 %1 = rmem.
8 %2 = rmem.
9 %3 = rmem.
func.call

deref %arg@[%0]
deref %1->from
deref %1->to
@Qupdate_node (%1,

%2, %3)

Figure 13. Convert to Remotable for Graph Example.

the optimal selection between node and edge arrays is to
give most memory to the non-sequentially accessed node
array. The ratio between the node array and the third array
follows their sampled performance results.

4.4 Conversion to Remote Code

Converting to remote pointers and operations.  Our
compiler generates explicit remote operations for objects
in non-swap cache sections; swap sections run the original
code. As explained in §4.2 and discovered by previous
API-based far-memory solutions [56], explicit remote
operations can more precisely control far-memory accesses
and thereby improve application performance. Specifically,
Mira turns all pointers that point to selected objects (as
in §4.1) in non-swap sections to remote pointers (defined
in Mira’s IR §5.1). It then turns allocation, load, and store
operations of these remote pointers to their corresponding
remote APIs (e.g., remote load/store, see §5.1). Figure 13
shows a simplified code converted to remote operations for
the graph-traversal example, using notations in §5.1.
Lowering remote operations @. When a remote pointer
is dereferenced, resolving it could involve three steps: 1)
looking up the pointer in the local cache; 2) if not found in the
cache, fetching the data from far memory to the local cache;
and 3) the actual data access. The third step is unavoidable.
We perform prefetching to hide the overhead of far-memory
accesses (step 2), to be discussed in §4.5.

We now describe how we optimize the first step of cache
lookup. Normally, each cache lookup would require a set of
instructions to locate whether or not and where the pointed-
to data sits in the local cache. However, if we have already
accessed a cache line and know that it is still in the local
cache, we would know its local memory address. For fu-
ture accesses of any data item in the same cache line, we
can directly resolve the dereferencing by using the already
obtained local address and an offset in the cache line. In
these cases, the Mira compiler converts a remote pointer
dereferencing to a native memory load instruction.

Note that the above optimization is only possible if the
cache line is in the cache when the dereferencing happens.
In a single-threaded program, Mira knows from program
analysis whether or not there are any potential accesses to
data that may fall into the same cache set (set-associative) or
cache slot (direct mapped) before the dereferencing site. If
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%SEdge
%SNode

rmem.cache_section {#type #line =

rmem.cache_section {#type

"direct",
"full", #line =

M, ...}
1288, ...}

1

2

3

4 func.func @trvs_graph_opt(%arg@: !remotable<struct<edge>>){
5 scf.for %i <- %0 to %num_edges step %elements_per_line {
6 // prefetch %n_ahead elements ahead from far memory

7

8

rmem. fetch %SEdge, %arg@d + %i + %n_ahead

// wait for current requested data (at %i) to be in cache
9 rmem.wait %SEdge, %arg@ + %i
10 // get corresponding phyiscal address (paddr) of cache line
11 %wide_cache_line = rmem.paddr %SEdge, %argd + %i

scf.for %j = %0 to %elements_per_line {
// directly load element in (already resolved) cache line
%1 = memref.load %wide_cache_line[%j]

// use later element in the line to prefetch node elements
%2 = memref.load %wide_cache_line[%j + %n_ahead_node]

// node elements may be in cache already, fetch if not
rmem. fetch_if_not_in_cache %SNode, %2 -> from

rmem. fetch_if_not_in_cache %SNode, %2 -> to

// wait for node elements to be in cache and access
rmem.wait %SNode, %1 -> from

%3 = rmem.paddr %SNode, %1 -> from

rmem.wait %SNode, %1 -> to
%4 = rmem.paddr %SNode, %1
func.call @update_node (%1,

-> to
%3, %4)

}

// flush used %i element for eviciton hint
rmem. flush %SEdge, %i

32 3}

33}

Figure 14. Mira Optimizations for Graph Example. We show opti-
mizatios of prefetching and eviction flush, not showing others for simplicity.

no such “conflicting” accesses exist, we can safely know that
the cache line will not be evicted and can perform the above
optimization for that dereferencing site. When our analysis
finds conflicting accesses or is unsure about the occurrence
of conflict accesses, Mira can mark cache lines as “dont-evict”
to indicate that evicting them would cause a huge overhead.
Our runtime would choose to evict them the last. When our
intended dereferencing sites all finish for a dont-evict cache
line, we will remove the mark.

With these optimizations, we reduce not only the run-
time overhead but also the metadata needed for far mem-
ory. Compared to Mira, AIFM’s [56] library-based remote
operation implementation has a much higher run-time over-
head. AIFM needs to perform pointer dereferencing for each
remote data item (e.g., an element in a remote array), as
ATFM does not perform program analysis and cannot apply
native-instruction optimizations like ours. Moreover, AIFM
maintains a significant amount of metadata for each remote
pointer, e.g., a “dereferencing scope” to manage pointer life-
time. It encounters high run-time overhead using and book-
keeping the metadata. Mira’s analysis directly infers object
lifetime and other information and uses them to compile
code as native memory instructions if possible. Mira does
not need any metadata for cache lines whose lifetime it can
fully control. For example, in a loop whose accessed far-
memory data can all be prefetched and do not have cache
line access conflict, we do not need to maintain or access any
metadata like cache line tags and pointers referencing to the
line, all accesses are compiled as native memory instructions.
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Figure 15. Effect of Prefetch and Eviction Hints.
4.5 Program Optimization

Apart from generating remote code, our compiler performs
code optimizations in various ways as discussed below. @
These program-based optimizations provide benefits across
different inputs without the need for recompilation.
Adaptive prefetching. Prefetching is a common technique
used to reduce the overhead of far-memory data accesses.
Previous systems [8, 16] use generic policies to determine
what data to prefetch based on run-time access history. In-
stead of predicting future accesses based on run-time history,
we use program analysis to determine what will be accessed
in the future. For example, for a multi-level loop over a set
of memory accesses, we prefetch them based on the loop
pattern. Different from traditional CPU cache prefetching,
we determine when to prefetch based on system environ-
ments (e.g., measured network delay). Our compiler inserts
prefetch operations at the program location that is estimated
to be one network round trip earlier than actual access.
Eviction hints. From our program analysis (§4.2), in many
cases, we can find the last access of a data element in a
program scope (e.g., a function). In these cases, our compiler
inserts an asynchronous cache-line flushing operation after
the last access and marks the line as evictable. When inserting
a new cache line, we check which existing lines are marked
evictable and evict those first. As the least useful lines are
marked with our program-guided hints, Mira improves the
local cache utilization. If there is no line marked as evictable,
Mira uses a default LRU-like eviction policy.

Figure 15 shows the benefit of adding prefetching and
eviction hints in Mira when running the graph-traversal
example. Prefetching hides the latency for sequential edge
accesses, and early eviction hides the write-back overhead
behind the performance critical path. For this application,
the former has a larger impact. We also evaluate Leap [8],
which performs majority-history-based prefetching. Leap
only aims at capturing global access patterns and cannot
properly prefetch for an interleaved access pattern like this
example. Moreover, Leap uses the default Linux global evic-
tion policy, not getting any benefits from program hints.
Selective transmission. A major problem with swap-based
systems is their coarse far-memory access granularity. New
programming models like AIFM [56] allow programmers to
define the exact data structures to move between local and far
memory. However, programmers could make unoptimized
decisions and fetch more data from far memory than needed.
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For example, if a programmer defines a large data structure
asaremotable object, AIFM fetches the entire data structure
from far memory even when only a few fields are accessed.
To solve this problem and minimize traffic between local
and far memory, our approach is to use program analysis to
determine the parts in a data structure that are accessed in
each program scope (e.g., a function). We then generate code
to only fetch or prefetch these parts.
Data access batching. For most networks and intercon-

nects, one large communication event (e.g., a message with
multiple scatter-gathered data pieces) is more efficient than
multiple smaller communication events. We seek program
transformation opportunities leveraging this feature. If our
program analysis identifies multiple addresses to be accessed
at different locations, we batch them into a single network
message by transforming the code. For example, when we
identify two arrays to be accessed by two adjacent loops, we
fuse the loops and batch access the two arrays.

Read/write optimization. In many cases, a read-only or

write-only access pattern can be leveraged to achieve better
performance. If a loop only contains read operations, we can
safely discard the local cached objects after the loop. If it
only contains writes that cover whole cache lines, we can
avoid fetching the objects from far memory.

4.6 Multi-Threading Support

Multi-threaded programs have non-deterministic shared
memory access behavior, bringing new challenges. Our so-
lution for supporting multi-threading differs for programs
that have no shared-memory writes and those that have
them. For the former, i.e., multi-threaded programs that are
shared-nothing, read-only, or have unique ownership [13],
we create separated cache sections for each thread. If multi-
ple threads read the same data, each thread’s cache section
will have a copy of it. Thus, we could treat each cache section
in isolation and apply all our optimizations discussed above.

We use shared cache sections for writable shared-memory
multi-threading. We configure shared sections in a conserva-
tive way: full associative with cache line size being the largest
access granularity among all accessing threads. We apply
all optimizations presented in §4.5 except for eviction hints.
Shared cache sections complicate the no-conflict analysis
discussed in §4.4, as static analysis alone cannot determine
whether a cache line could be evicted by another thread be-
fore it is accessed by the current thread. Instead, we mark a
cache line as "dont-evict" from a thread’s dereferencing time
until the end of the line’s lifetime in all threads. We perform
lifetime analysis for “dont-evict” cache lines by keeping the
reference count for each shared object and decreasing the
count when all accesses from a thread finish.

Finally, traditional thread synchronization methods such
as locks still work as is on Mira since we never make syn-
chronization primitives remotable, and real data accesses
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only occur at local caches that are protected by traditional
synchronization primitives.

4.7 Data Communication Methods

An important part of far-memory systems is the data commu-
nication between local and far-memory nodes, either over the
network or over a local bus/interconnect. Many prior works
have studied the benefits and use cases for one-sided com-
munication where data is directly read/written from/to far
memory vs. two-sided communication where data is sent as
messages and far-memory nodes copy the messages to their
final locations [65, 69]. These works manually design the
communication methods for specific application domains.

We decide what communication method to use for each
cache section based on its access pattern @. If our program
analysis finds that a section’s access pattern is reading/writ-
ing the entire data structure, then we use one-sided com-
munication for this section to directly read/write the data
structure with zero memory copy. If a section only accesses
partial data structure (e.g., one or two fields of it), then we
use two-sided communication to only transfer the partial
structure, avoiding read/write amplification. To achieve this,
our compiler inserts code to prepare/process a message by
copying from/to the partially accessed data fields.

4.8 Function Offloading

Certain types of far memory nodes have computation power
that can execute application code [31, 56], allowing the of-
floaded computation to access data in far memory locally,
reducing the network transfer overhead. To exploit this ben-
efit, existing works require programmers to decide what
computation to offload to far memory nodes and sometimes
even rewrite offloaded computation. Mira automatically de-
termines and offloads computation to far memory in the
following program- and profiling-guided manner €.

To reduce the program-analysis complexity, we only con-
sider program functions as the unit of offloading and func-
tions that do not have shared writable data. Future work
could include functions with shared writeable data with the
support of new coherence hardware like CXL [22]. Among
the candidate functions, we determine which ones to offload
to far memory based on their amount of computation and
required network communication. As far-memory nodes usu-
ally have less computation power (e.g., with a low-power
ARM processor), it is more beneficial to offload computation-
light functions to far memory. Additionally, it reduces net-
work communication to offload functions whose accessed
data are already in far memory. Thus, we consider both fac-
tors when choosing functions to offload.

To implement function offloading, we insert code at the
compute node to flush the local cache that contains data the
function accesses before invoking the function. The compute
node then calls the offloaded function with an RPC call and
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sends the function inputs to far memory. After the far mem-
ory node finishes executing the offloaded function, it sends
the return data to the local side.

Currently, Mira only supports offloading to CPU-based
far-memory nodes. It could be extended to support other
types of computing units by leveraging MLIR’s capability
of generating code for accelerators like GPU [38] and co-
processors [1]. Similar to CPU-based nodes, offloading deci-
sions for accelerators could be made based on computation
needs and data-movement overhead.

5 Implementation

We implement Mira’s program analysis and compiler on
top of MLIR with 7.7K LOC in C++. We implement Mira’s
runtime libraries that run on the local node and far-memory
node with 12.1K LOC in C++. This section discusses some of
the implementation details.

Mira currently runs on one compute and one memory
node. Supporting multiple memory nodes, or memory pool-
ing, can be done via the integration of Mira and a distributed
memory management layer such as the one used in Le-
go0S [58], where Mira decides what objects and functions to
offload and the distributed memory manager decides which
memory node to offload them to.

5.1 Far-Memory MLIR Abstractions

MLIR. MLIR (Multi-Level Intermediate Representation) [44]
is a compiler ecosystem that allows multiple abstractions
at different levels. Each abstraction is called a dialect. Cur-
rently, MLIR supports tens of dialects for common operations,
such as memory accesses, control flow, arithmetic, machine
learning, and LLVM [4]. We choose to build our compiler in
the MLIR ecosystem because it supports multiple frontend
languages and backend architectures. Moreover, it allows
us to easily add various far-memory abstractions and code
optimizations as dialects at different layers while reusing
existing MLIR dialects and their optimizations. Note that
Mira analyzes and optimizes all libraries whose source code
is available (e.g., C++ STL), in the same way as application
programs. We run pre-compiled library calls on our generic
swap cache.

We add two new MLIR dialects for far memory:
remotable. The remotable dialect defines a new abstraction
for data objects in non-swap cache sections and for func-
tions that can be offloaded. Lines 1 and 4 in Figure 13 shows
the allocation of a remotable object and the definition of a
remotable function.
rmem. The rmem dialect defines operations to access and ma-
nipulate remotable objects and functions, including two
main types. The first is basic object accesses such as load
and store, by extending traditional pointer operations and
memref [5] operations in MLIR to work with remotable ob-
jects. For example, lines 7 and 8 in Figure 13 perform memory
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loading from remotable objects %arg0[%0] and %1. The sec-
ond type is code optimizations such as prefetch. For example,
lines 7 and 9 in Figure 14 perform an asynchronous fetch
of an object to be accessed in a future loop iteration and
blocking wait the data needed for the current iteration.

5.2 Static Analysis and Code Generation

We now discuss how we analyze programs and generate code
with the remotable and rmem dialects. Our analysis is sound,
as we trade completeness for correctness and fast analysis
time. There could be rare cases where our analysis cannot
infer (i.e., “undecidable”), and we avoid their optimizations.

5.2.1 Implementing remotable and rmem. We now dis-
cuss how we implement remotable and rmem abstractions.
Converting to remotable and rmem. Mira identifies data
objects to place in far memory based on analysis explained
in §4.1 and turn them into remotable objects. If a field in
a structure is identified, we turn the whole structure into
remotable. Afterward, Mira finds all pointers pointing to
remotable objects via forward dataflow analysis (lattice
static-single-assignment, or SSA-based, analysis [2]) and
type-based alias analysis [24]. These pointers all become
rmem pointers, and we convert the original memory accesses
to the corresponding rmem operations.

Afterward, we perform an SSA-based backward analysis
to find all the functions where an rmem pointer is passed as
a parameter. If a function only accesses remotable objects,
stack variables, and heap variables allocated and released
within the function scope, then we mark the function as
remotable. Note that the same function may be called with
a non-remote pointer (i.e., pointing to a local object). In this
case, we create another version of the function definition
that is not remotable.

As the above backward and forward analysis involves the
whole program, we avoid invoking them as much as possible
by storing analysis results, including the relationships be-
tween functions and remotable objects and each function’s
references to remotable objects. Later compiler optimiza-
tions could reuse these results without going through the
costly whole-program analysis again.

Implementing remotable.alloc. We use the combination
of a local allocator and a remote allocator to implement the
allocation of memory space on the far memory node. The re-
mote allocator works like a low-level systems allocator (e.g.,
mmap in Linux) and performs the actual memory allocation
at far memory. The local allocator acquires allocated far-
memory addresses from the remote allocator and buffers the
addresses locally; so it works like an allocator in a language
library (e.g., malloc in clib). When a remotable.alloc is
called, the local allocator first checks if there is a buffered
memory address range that is no smaller than the allocated
size. If so, it directly assigns one to the allocation site. Other-
wise, it asks the remote allocator for more addresses. As the
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allocated addresses are the virtual memory addresses at a
far-memory node, our RDMA-based network stack can use
them to perform one-sided accesses directly (§4.7).

Loading an rmem pointer from far memory. We now ex-

plain how Mira dereferences an rmem pointer. Initially, an
rmem pointer has the value of an allocated far-memory ad-
dress for a remotable memory space. When an rmem.load
happens, Mira first checks if the data the rmem pointer points
to has been fetched to the local cache already by searching
for the far-memory address in the designated local cache
section. If not, Mira fetches the data object from far memory
and places it in the section. For the next step of this case or
for the cache-hit case, we set the section ID and the offset of
the object within the section as the value of the rmem pointer,
with the former occupying the highest 16 bits and the latter
occupying the lower 48 bits. Then to access the actual data,
we map the section ID and offset to the virtual memory ad-
dress of this cache line plus an offset within the line. This
is the virtual memory address seen by the local node MMU,
which performs the actual memory access. The Mira com-
piler generates corresponding code for all the above steps
during compilation.

Pointers to both local and remotable objects. An rmem
pointer could be set to point to a remotable object or a
local object at runtime in different executions (e.g., based on
an if condition). A potential problem of such cases is that
the rmem pointer will have a normal memory address when
pointing to a local object but address constructed as section
ID and offset when pointing to a remotable object. If we use
the same process to dereference an rmem pointer by locating
the cache section and offset, accesses to local objects would
be wrong. To solve this problem, we use a simple method:
reserving a dummy, non-existent cache section (section 0, as
the highest 16 bits for normal addresses are 0) to represent
all rmem pointers that point to local objects. When Mira finds
a cache section ID zero during dereferencing, it treats it as a
local object and maps it to the proper local address.
Generating offloaded function binaries. At compile

time, Mira turns rmem accesses within the offloaded function
into raw memory accesses and rmem pointers into raw
pointers, as the function will run on the node that contains
the remotable objects. The pointer addresses will be
assigned by the remote allocator in the remote virtual
address space. On the local node side, we implement the call
of a remotable function as an RPC call. To ensure that a
remotable function sees the up-to-date remotable objects
during its execution, we flush all cached remotable objects
that the remotable function accesses to far-memory before
calling the function.

5.2.2 Behavior Analysis. For the performance-critical
sections we identified, Mira performs a detailed analysis of
memory operations, concerning the range of addresses that
will be accessed in each section. We use memory dependency

702

SOSP °23, October 23-26, 2023, Koblenz, Germany

analysis [49] together with scalar evolution [14] to reason
about memory accesses and their patterns within a code
block (access address sequence, granularity, read/write, pos-
sible batching). We further analyze memory accesses across
code blocks and function boundaries. For example, if ad-
dresses touched within a basic block suggest certain locality,
we can batch multiple rmem pointer dereferences within that
block to reduce the runtime overhead. If this block happens
to be the body of a loop, the address representation at the
loop level will guide our prefetch optimization and reveal
batching opportunities across iterations.

5.3 Cache Section Implementation

Fully-associative cache. We maintain remote-address-to-
physical-address maps and a list of available free physical
cache lines for fully associative caches. The former is used
for cache lookup, while the latter is used for cache insertion.
For our compiler-inserted prefetch and eviction hints, we
implement the actual operations in our runtime. Additionally,
we implement an approximation of LRU eviction using active
and inactive lists for when an on-demand eviction is needed.
Swap-based cache section. Different from other sections

that use compiler-generated code for cache accesses, the
swap cache transparently executes the original code via
our implemented user-space swap system (on top of Linux
userfaultfd [11]). The line size in the swap cache is 4 KB,
consistent with OS default page size. Mira manages a physical
page pool in RDMA region for the swap section. Unlike other
sections, the mapping between virtual addresses to physical
pages in the swap section is dynamic. Mira sets up, tears
down, or changes mappings when there are userfaultfd
events, prefetching operations, or eviction hints. Mira evicts
a page based on an approximate global LRU policy.

6 Evaluation

We evaluate Mira on a Cloudlab [27] cluster of eight c6220
servers, each equipped with two 8-core Intel Xeon E5-2560
CPUs (2.6 GHz), 64 GB RAM, and a 50 Gbps Mellanox FDR-
CX3 NIC with 50 Gbps Infiniband network.

Applications. We select three applications to evaluate Mira:
DataFrame, MCF, and GPT-2 inference, representing common
code patterns (e.g., data access pattern, threading model, etc.)
and common datacenter application types (data analytic, ML
inference, graph processing), being open sourced, and having
fairly large memory consumption.

DataFrame [34] is a data analytic system written in 24.3K
LOC C++. The Dataframe system provides a set of data ana-
lytic operations, such as filtering, grouping, etc., on a collec-
tion of named columns called a DataFrame. When operating
on large data sets, DataFrame can be both compute and mem-
ory intensive, making it a good candidate for far memory.

GPT-2 [50, 60] is a transformer-based [67] large language
machine-learning model with 100M to 1.5B parameters. We
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Figure 16. DataFrame Perfor-
mance.

perform GPT-2 inference on ONNX [7], an open Al ecosys-
tem that is compatible with MLIR [6]. The MLIR representa-
tion of GPT-2 inference on ONNX has more than 36K lines
of code. We run this inference on sequences of 256-token
length with a batch size of 64 in a CPU-based far memory
environment. Both industry and academia have adopted the
use of CPU to perform large machine learning model in-
ference [3, 47, 52], as GPU is not always available (e.g., in
serverless computing services). A common technique used
by transformer inference is to cache computed values called
keys and values to avoid recomputation for better inference
latency. Key-value caches consume device memory that can
be several times bigger than the model itself [53]. Instead
of manually figuring out what data to place in far memory,
Mira automatically identifies key-value data for far memory.
MCEF [10] is a benchmark from the SPEC 2006 benchmark
suites [32]. MCF is derived from a program used for single-
depot vehicle scheduling in public transportation and per-
forms graph-based computation. It is written in C and con-
tains 1.8K LOC. Even though MCF is a smaller application
than DataFrame and GPT-2 inference, it is representative
of graph-processing applications that are common in data
centers and can benefit from far memory.
Systems in comparison. We compare Mira to three sys-
tems: AIFM [56], FastSwap [9], and Leap [8]. AIFM is a far-
memory system that introduces a new programming model.
We use AIFM’s DataFrame implementation for DataFrame
and its array library for MCF. FastSwap is a Linux-based op-
timized swap system for far memory. Leap is a Linux-based
swap system that performs majority-based prefetching.

6.1 Overall Application Performance

DataFrame. Figure 16 shows the overall DataFrame per-
formance of Mira, AIFM, FastSwap, and Leap as the local
memory size increases. For Mira, we use a compilation that
is “trained” using the 2014 year of the New York City taxi trip
dataset [37] and tested on the dataset’s 2015-2016 year data.
Mira outperforms FastSwap and Leap because Mira sepa-
rates and customizes cache sections (e.g., precise prefetching
for each section, proper cache line size, etc.). Without cache
separation, FastSwap and Leap’s swap-based global opti-
mizations do not work well for each distinct program behav-
ior. Leap performs worse than FastSwap even when it does
majority-based prefetching, mainly because of FastSwap’s

Figure 17. GPT-2 Performance.
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when running on full local memory.

4x

more efficient data-path implementation in Linux. AIFM has
significant runtime overhead in pointer dereferencing, as it
needs to resolve every access of a remotable pointer. This
overhead is also the reason why even at 100% local memory,
AIFM is still a lot slower than other systems.
GPT-2 inference. Figure 17 shows the overall GPT-2 infer-
ence performance of Mira, FastSwap, and Leap. AIFM does
not currently support any matrix or other machine-learning
operations, thus we do not evaluate GPT-2 on AIFM. For
Mira, we obtain GPT-2’s compilation from a randomly gen-
erated input sequence batch and tested it on a few other
sequence batches (e.g., sentences from wiki pages). Mira’s
performance stays the same even when local memory size
reduces to only 4.5% of full memory. DNN model inference
like GPT-2 exhibits a layer-by-layer computation pattern,
where data used in one layer (e.g., that layer’s weight matrix,
the input matrix to this layer) is not needed anymore in the
remaining layers. Our program and profiling analysis cor-
rectly capture this pattern and separate matrices in different
layers into different cache sections, end their lifetime when
their corresponding layers finish, perform batched access
of data used in each layer, and generate precise prefetching
and eviction hints. As a result, most remote access overhead
can be hidden behind performance-critical paths, and even
a small amount of local memory is enough to saturate com-
putation throughput. In contrast, FastSwap and Leap both
experience high performance downgrade as local memory
size shrinks, because without the knowledge of program
behavior, they are not able to fetch the precise set of data for
computation and end up using most of the local memory to
cache data that is not used soon.
MCEF. Figure 18 shows the overall MCF performance. We ran
MCF with the example graphs given by SPEC-2006 [32], one
being 4x larger than the other. Here, we show the results for
the smaller graph. Mira configures the default swap cache for
the larger graph, achieving similar performance as FastSwap.
Being a graph-like application, MCF’s memory accesses
are highly dependent on pointer values and also on program
control flows. Thus, it is the application that is the least
friendly to program analysis tools among the three. Never-
theless, Mira is able to make appropriate cache configuration
and prefetching/eviction decisions with our co-design ap-
proach. When local memory is larger than 70% of full mem-
ory, Mira uses the swap section for the main array (which is
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accessed indirectly by pointer values). When local memory
is small, Mira discovers performance overhead at the swap-
based cache sections from profiling and changes it to be a
set-associative section. Mira prefetches data by following
pointers, in a similar way as our rundown example.

In contrast, FastSwap and Leap use swap regardless of
local memory size and do not prefetch data by following
pointers due to their system-level-only approach. We use
AJFM’s array library to implement MCF’s data structures al-
located in continuous memory, as the current AIFM does not
provide a library for linked pointers. Surprisingly, AIFM fails
to execute when local memory is smaller than full size. Even
at full memory, AIFM’s performance is orders of magnitude
worse than the other systems, and its performance only rises
to 26% even when the local memory size is 80% larger than
the full memory size. The reason behind this is that AIFM
requires a significant amount of metadata for their remotable
pointers, which reduces the local memory space usable by
actual data. Mira’s metadata is much smaller. Instead of main-
taining various information like lifetime with each remote
pointer, Mira directly uses such information during compila-
tion. Moreover, Mira only maintains per-cache-line metadata
and one cache line contains multiple elements. Besides meta-
data overhead, AIFM incurs costly pointer dereferencing for
every element in an array, while Mira avoids most pointer
dereferencing with the cache-line optimization in §4.4.
Runtime overhead. To understand the run-time behavior
of Mira, we measure the run-time performance overhead and

metadata overhead when running at full local memory with
the three applications, the graph-traversal example, and a
simple loop over an array for summing the array value. Other
than GPT-2, we also show the run-time behavior of AIFM.
Figure 19 shows the results compared to running original
programs on regular Linux as the baseline. Even given full
memory (i.e., no need to use any far memory), AIFM has
significant performance and metadata overhead.

Iterative Optimizations. Figure 20 shows the iterative pro-

cess of Mira in three applications with 80% local memory.
The initial iteration runs MCF on the generic swap cache.
After the first iteration, Mira identifies two large objects, and
only one of them causes high-performance overhead. Mira
analyzes it and configures a set-associative section for the
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next iteration. In the next iteration, Mira detects read am-
plification and reduces the cache line size accordingly. MCF
performance converges after iteration four. For GPT-2, from
the first iteration, we identify 122 large objects to be placed
in isolated sections. Most of them have highly predictable
access patterns and non-overlap lifetime. Mira achieves op-
timal performance in two iterations. Similarly, Dataframe
reaches the best configurations in the second iteration.

Analysis and compiling overhead. By leveraging profil-

ing results, we are able to reduce the program analysis scope
of MCF [10] from 1.8K lines of code to only three functions
with 0.3K lines of code and that of ONNX GPT-2 inference
from 1000+ allocation sites to 122. With the reduced scope,
Mira’s program analysis and compiler finish fast even for a
large program (e.g., 3.93 seconds for GPT2 with 36K LOC).
Mira’s runtime profiling adds 0.4% to 0.7% profiling per-
formance overhead for the three applications we evaluate.
Putting things into perspective, previous works [20, 40] incur
3.3% to 978% profiling overhead.

6.2 Performance Deep Dive

To understand where Mira’s benefits come from, we eval-
uate the effect of different Mira techniques by adding one
or two at a time, as in Figure 21. Different applications with
different amounts of local memory benefit differently from
these techniques, and we select several distinctive ones to
present. The baseline Mira places entire heaps in the generic
swap cache, i.e., the initial run. Below, we explain the effect
of each technique and their impact on the three applications.
Cache section separation. As shown in Figure 21, when

adding cache section separation on top of the swap-cache
baseline, all applications except for MCF have a huge perfor-
mance improvement. This is both because we use separated
sections with different configurations and because we end a
section as soon as its lifetime in the program ends, leaving
precious local memory space for other sections. The latter is
especially useful for GPT inference, as Mira promptly and
precisely release matrices used by one layer after that layer’s
computation finishes, which enables the freed space to be
immediately used by the next layer. This type of memory
management is a technique manually added in previous DNN
systems [21], and Mira automatically generates the optimal
memory usage based on program analysis and profiling. MCF
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does not benefit as much from cache separation, because a
large portion of it has access patterns that fit swap the best.
Prefetching and eviction hints. With a program analysis

approach, Mira can uncover more memory access infor-
mation such as access sequences in a program, which we
leverage to prefetch and evict data. As shown in Figure 21,
adding prefetching and eviction hints on top of separated
cache sections improves performance further. Eviction hints
have smaller improvements compared to prefetching, as they
have a longer-term, indirect impact on future accesses while
prefetching has a direct impact on the subsequent accesses.
Function offloading. Mira identifies 7 functions and basic
blocks to be offloaded to far memory for the DataFrame appli-
cation. As shown in Figure 21, function offloading improves
DataFrame’s performance, and the effect is larger when the
local memory size is low.

To further understand function offloading, we compare
Mira with AIFM which also supports function offloading. Fig-
ure 22 shows their performance under different local memory.
We evaluate our test bed where the far-memory node is a nor-
mal server (fast in the figure) and an emulated slow memory
device (e.g., a SmartNIC) where computation on the device
runs five times slower than the normal server. Both Mira and

ATFM’s function offloading improves performance over their
respective no-offloading setups, especially when the local
memory size is small. Unlike AIFM, Mira’s no-offloading
setup already achieves near-optimal performance.

With a slow far-memory device, AIFM performs much
worse than Mira. With AIFM, offloaded functions are se-
lected manually and do not adjust to far-memory devices’
capabilities. When a far-memory device is slow, offloaded
functions’ computation overhead can outweigh the bene-
fit of offloading (i.e., reducing data communication). Mira
automatically adjusts what functions to offload based on pro-
filing and system environments. With the slow device setup,
Mira only selects two offloading targets, both functions are
data-access heavy reduce operators.

Data access batching. Data access batching is an effective
optimization technique when batching opportunities ex-
ist in a program. We report this effect in Figure 23 with
a DataFrame job that performs three operators (avg, min,

max) on the same vector, whose original code has three con-
secutive loops over the vector. Mira discovers the batching
opportunity, fuses the loops together, and batch-fetches the

Figure 24. Read-only Shared
Multi-threaded GPT-2.
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vector. We compare Mira with and without batching and
with AIFM and FastSwap. Batching largely and consistently
improves Mira’s performance with different local memory
sizes. As a library-level approach, AIFM implements each op-
erator in isolation. Without program knowledge, approaches
like AIFM cannot do the type of data batching Mira does.
Multi-threading. We evaluate our support of read-only
multi-threaded applications using GPT-2 inference. Figure 24
shows the relative performance when increasing the number
of threads used for Mira and FastSwap. Mira scales much bet-
ter than FastSwap with multi-threading. By separating cache
sections to be private to each thread, Mira further improves
performance over Mira-unopt. Moreover, FastSwap’s limited
scalability is related to its Linux-based swap system, which
has various synchronization and locking bottlenecks [54].
To evaluate writable shared memory, we run the
Dataframe “filter” operator which uses multiple threads to
write to a shared result vector. As shown in Figure 25, Mira
scales better than FastSwap and AIFM, as most of Mira’s
optimizations still apply to writable shared multi-threading,.

7 Conclusion

We presented Mira, a far-memory platform that co-designed
program analysis, compiler, run-time profiling, and run-
time systems. By leveraging the unique opportunities of
far-memory environments and by overcoming challenges,
we show that Mira significantly outperforms existing far-
memory systems.
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