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Abstract

Health emerges from coordinated psychobiological processes powered by mitochondrial energy 

transformation. But how do mitochondria regulate the multisystem responses that shape resilience 

and disease risk across the lifespan? The Mitochondrial Stress, Brain Imaging, and Epigenetics 

(MiSBIE) study was established to address this question and determine how mitochondria 

influence the interconnected neuroendocrine, immune, metabolic, cardiovascular, cognitive, 

and emotional systems among individuals spanning the spectrum of mitochondrial energy 

transformation capacity, including participants with rare mitochondrial DNA (mtDNA) lesions 

causing mitochondrial diseases (MitoDs). This interdisciplinary effort is expected to generate new 

insights into the pathophysiology of MitoDs, provide a foundation to develop novel biomarkers 

of human health, and integrate our fragmented knowledge of bioenergetic, brain–body, and mind–

mitochondria processes relevant to medicine and public health.
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Human psychobiology and energy

The psychobiological processes that sustain health or falter in disease are often referred 

to as ‘mind–body’ processes. This dualistic nomenclature is overly simplistic but reflects 

the interplay of evolutionarily rooted processes embedded in modern scientific culture 

and research approaches. Typically, subjective human experiences are the domain of the 

‘mind’ without clear biological mapping, while the objectively quantifiable biological 

and physiological processes are the domain of biomedicine and of the ‘body’. Both are 

expressions of the same system [1]. Major gaps in knowledge remain to decipher how mind–

body processes interact to allow individuals to enjoy long, meaningful, and healthy lives, or 

to exhibit increased disease risk.

To sustain health, the subjective mental states must constantly interact with the biological 

body–brain (see Glossary) system [2]. The central nervous system evolved to ensure 

physiological and energetic readiness to anticipated threats [3], accomplished by transducing 

subjective mental states into biological processes [4]. For example, psychosocial (dis)stress 

increases heart rate and blood pressure within seconds, elevates circulating glucocorticoids 

and blood glucose within minutes, and changes gene expression followed by cellular and 

organ-level recalibrations over hours to months [5]. All of these processes consume energy 
derived from mitochondria [6]. These energy-dependent brain-mediated pathways [7,8] 

act through neuroimmune and inflammatory processes [9], plus other psychobiological 

pathways integral to health and resilience [10]. Thus, energy-based mind–body processes 

are core determinants of human health [11,12].

Over time periods spanning months to years, subjective experiences ‘get under the skin’ 

and shape health outcomes. Positive and negative psychological states, social connections, 

loneliness, trauma, and chronic stress affect childhood development and growth [13], 

cardiovascular diseases [14,15], diabetes [16], some aspects of cancer biology [17], 

psychiatric disorders [18,19], neurodegeneration and dementia [20], wound healing and 

resistance to viral infections [21,22], biological aging [23,24], and lifespan [25–28]. 

Therefore, to achieve a satisfactory understanding of the forces that shape human health 

across the lifespan, we must build a science that integrates the constellation of mechanisms 

fueling our intertwined psychobiological experience. This requires the incorporation 

of mechanisms across levels, from social and environmental exposures to molecular 

mechanisms, within an integrative model that includes the crosstalk among the mind and 

mitochondrial bioenergetics [29] – or the mind–mitochondria connection.

In this article, we outline the rationale for the development of the Mitochondrial Stress, 

Brain Imaging, and Epigenetics (MiSBIE) study, a quantitative data platform to examine 

the mind–mitochondria connection in health and mitochondrial diseases (MitoD). We first 

illustrate some hallmarks of psychobiology and highlight general principles to guide studies 

aiming to link mind–body processes. We then discuss key aspects of the MiSBIE study 

design and protocol (available in full in the supplemental information online), describe the 

available outcome measures and biobank, and discuss outstanding questions for relevant 

fields ranging from psychology and neuroscience to immunometabolism and mitochondrial 
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medicine. Together, this interdisciplinary work will contribute to elucidate the role of 

mitochondria and energy in human psychobiology, disease risk, health, and well-being.

The mind–mitochondria connection

As pathways of mind–body interactions are uncovered, initial work has pointed to 

mitochondrial energy metabolism and signaling as key regulators of stress biology [30]. 

Mitochondria are energy-transforming organelles that transduce information across levels 

of complexity, from organelle to organism [31]. Mitochondria provide energy for the brain 

and all other tissues, including endocrine glands that orchestrate the elaborate interorgan 

crosstalk [6,32]. In turn, these energized systems sustain allostasis [33] – the anticipatory 

adaptation that ensures that our physiological states match dynamic mental states [34]. 

When threatened, stress responses promote recalibrations that drive reactivity and recovery 

to stressors, which shape endophenotypes determining vulnerability, resistance, and/or 

resilience over time [35–37]. However, stress responses and allostasis are energetically 

demanding. As a result, they can divert energy away from longevity-promoting growth, 

maintenance, and repair (GMR) processes [38]. In response to chronic stress, this diversion 

of energy from restorative processes towards stress response systems may account for the 

stress ➔ disease and stress ➔ aging cascades that shape the pace of aging [38]. These 

energy-restricted pathophysiological processes help us better explain how psychosocial 

stressors damage the body and mind [23,24,39] and how contemplative practices may 

promote restoration and healing [40]. Energy flow not only sustains but also instructs 

adaptive brain–body processes [31,41]. Thus, mitochondrial bioenergetics has emerged as 

a key substrate regulating how cells and organs are bound and function together as an 

integrated collective shaping the human experience.

The growing evidence that mind–body processes are regulated by mitochondria suggests 

that energy is a critical layer of analysis – or a dimension – that our molecular 

and anatomical reductionist models have overlooked [42,43]. This has led to the mind–

mitochondria hypothesis, which proposes that psychobiological processes link subjective 
human experiences to molecular and energetic processes within mitochondria [30]. The 

connection goes both ways: mental states may influence mitochondrial biology, and 

mitochondria may influence psychological processes. If supported by empirical evidence, 

this would mean that a significant portion of the naturally occurring differences in mind–

body processes that shape health and disease risk between individuals [5,44] are driven by 

inherited and acquired variations in mitochondrial biology and functioning.

The hallmarks of psychobiology

To bridge the mind–body knowledge gap outlined earlier, we need an integrative data 

platform that enables investigators to holistically examine interorgan, multilevel processes 

underlying human psychobiology and the subjective experience of energy across complex 

systems. We highlight ten hallmarks of mind–body processes for which there is at least some 

direct evidence that these processes either (i) contribute to the crosstalk between subjective 

experiences and objective biological processes or (ii) represent a demonstrated window to 
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examine the health-relevant short-term or long-term consequences of mind–body processes 

(Figure 1).

1. Energetics include measures of mitochondrial biology ranging from least 

informative static molecular markers [e.g., mitochondrial DNA (mtDNA) copy 

number (mtDNAcn)] to more informative dynamic functional measurements 

[e.g., ATP production rates, reactive oxygen species (ROS) production] and 

signaling outcomes [e.g., cell-free mtDNA (cf-mtDNA) release] (for an 

overview see [30]). Over 30 mitochondrial functions and behaviors can be 

examined from omics data and direct functional measurements [45], including 

oxidative phosphorylation (OxPhos), which is a proxy for mitochondrial energy 

transformation capacity.

2. Cellular and molecular processes are the primary changes in the causal chain 

of processes that determine which genes are turned on or off, regulating 

their expression in a cell-type-specific manner [46]. Molecular marks including 

epigenetics (e.g., DNA methylation, histone modifications) tweak the properties 

of nodes within the organismal network, facilitating or hindering the acquisition 

of specific physiological and organismal states. Here we also include the 

microbiome, which refers to the symbiotic populations of microbes that populate 

the human body, contribute to its molecular makeup, and produce signals that 

influence brain function and psychological states [47,48].

3. Systemic energy metabolism is the dynamic metabolic state of the whole 

organism measurable from biofluids (glucose, lipids, other metabolites) [49], 

from exhaled gases (O2 consumption and CO2 production by indirect 

calorimetry) [50], or by other methods [51]. This integrated metabolic state 

emerges from the collective action of all organs and tissues coordinated by the 

mind.

4. Immune regulation and inflammation are changes in the composition or activity 

of the immune cellular repertoire, plus cytokines secreted by both immune 

and non-immune tissues [52]. Of particular relevance to psychobiology are the 

circulating immune cells (most directly accessible in blood), which are derived 

from primary and secondary lymphoid tissues and mobilized into circulation 

[53], as well as the signaling molecules (e.g., cytokines) released in response to 

acute and chronic psychosocial (dis)stress [54].

5. Stress reactivity systems include the major inducible ‘stress’ axes whose default 

state is inactive, but which exhibit robust pulsatile activity in response to 

psychological, social, physical, and other stressors [55]. The best studied systems 

are the hypothalamic–pituitary–adrenal (HPA) [56] and sympathetic-adrenal–

medullary (SAM) [57] axes, which operate together with the sympathetic 

innervation of virtually every bodily tissue [58]. Stress axes are energy-

mobilizing axes and interact with other systemic energy regulation systems 

[55], including, for example, growth differentiation factor 15 (GDF15) [59,60], 

extracellular ATP (eATP) [61], and others, which communicate the energetic 

state of a cell to other cells in paracrine or endocrine manner.
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6. Cognitive processes include functions through which individuals make sense of 

and interact with the world, form and retrieve memories of meaningful events, 

and integrate bodily sensations (interoception) [62]. This also includes allostatic 

processes that regulate energetic demands and the ability to anticipate and plan 

for future occurrences [63]. Cognitive processes intersect with self-in-context 

models that endow events with personal meaning and allow predictive control 

over behaviors and peripheral physiology, including autonomic, neuroendocrine, 

and immune functions [64,65]. These give rise to situation-specific affective and 

emotional responses and are intertwined with other psychological factors.

7. Health behaviors include daily choices and habits of activities such as sleep, 

diet, exercise, and mind–body practices such as yoga and meditation. This also 

includes all lifestyle behaviors that influence mind and body processes and 

confer resilience against or risk for mental and physical illnesses [66].

8. Psychological factors incorporate trait- and state-level mental processes, or 

subjective experiences. Psychological traits are stable yet relatively malleable 

features of each person. They include personality traits like optimism, 

conscientiousness, and neuroticism; plus evaluative aspects of well-being 

such as life satisfaction and sense of purpose, and other relatively enduring 

characteristics that influence emotional and cognitive responses to challenges – 

linked to biological/physiological signatures and health [67–71]. Psychological 

states are more labile characteristics that include moods, emotions, and processes 

such as cognitive appraisals of threat and safety, emotion regulation, and 

rumination that are co-created by afferent inputs to the brain from the body, 

together with the social and physical environment that concurrently regulate 

peripheral physiology [72]. In this domain, we also include pain, which 

comprises the perception of physical pain and social or empathic pain, also 

important in the psychobiological foundations of disease [73].

9. Social and environmental factors include the social ecosystem that envelops the 

individual’s inner and outer world, particularly social stressors and support. This 

includes adverse exposures such as traumatic experiences, particularly during 

early development, such as abuse [74], stressful daily events (a social conflict), 

major life events (divorce, loss), and chronic ongoing stressors (discrimination, 

job strain) [67]. It also includes chronic psychosocial states such as social 

isolation and loneliness, as well as positive exposures such as actual and 

perceived social support and social safety [75–77]. Finally, the social exposome 

includes the broadest range of exposures from socioeconomic resources and 

status and the structural and physical environment as well (neighborhoods, 

environmental chemicals, and weather exposures), and social policies that 

influence health [78], social position, and cultural rituals [79,80].

10. Brain anatomy and function refers to the structural and functional properties of 

the brain as they emerge from the connectivity of anatomical areas that differ 

in their cell type composition, neurochemistry, activity patterns, and brain-wide 

connectivity [81,82]. The brain is the integration and predictive inference hub for 

Kelly et al. Page 6

Trends Endocrinol Metab. Author manuscript; available in PMC 2024 November 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



sensory information [4], whose function is regulated by mitochondrial biology 

in a brain-region-specific manner [83–85]. The brain is directly or indirectly 

connected to every part of the organism through the peripheral nervous system.

These hallmarks of mind–body processes are not an exhaustive list of research-worthy 

topics. Rather, we outline these to paint the rough yet integrative contours of mind–

body science and to illustrate the broad spectrum of relevant psychobiological processes. 

Each hallmark or facet of this model is imperfectly categorized as psychological (left) 

or biological (right), but together they subsume a set of well-studied variables that can 

be quantified – sometimes dynamically, over different timeframes. Some hallmarks are 

potential targets that can be perturbed to derive experimental evidence of their role in 

stress adaptation and resilience [86] or that can potentially be targeted therapeutically (e.g., 

neuroendocrine pathways, health behaviors) to enhance resilience and health.

We also highlight some core design principles integral to research aiming to examine, 

define, and understand dynamic psychobiological interactions (Box 1). These principles 

were central to the design of the MiSBIE study.

The psychobiological network

These facets of psychobiology are interconnected through complex patterns of interactions 

among them. This is illustrated in the network of interconnected nodes and edges (i.e., 

graph) in the central portion of the diagram in Figure 1A. Each node represents a measurable 

domain of psychobiological function, and connecting edges represent a documented 

connection between two nodes.

High connectivity exists among both psychological and biological features. For example, 

in Figure 1 on the left side, the personality traits extraversion and openness to new 

experiences influence the tendency to socially affiliate with others and shape psychological 

states and moods in challenging situations, manifesting as idiosyncratic distributed brain 

functional connectivity patterns or signatures [87,88]. On the right side, a specific epigenetic 

imprint altering the expression of the glucocorticoid receptor in hippocampal neurons 

can blunt sensing of circulating cortisol, impair feedback signaling, and contribute to 

HPA axis hyperactivity [89], suppressing immune functions [90] and triggering excess 

energy consumption – or hypermetabolism [38,91]. Thus, all living systems exist as 

distributed networks of information exchange, using energy to bind elements together in 

an organized coherent whole [92,93]. Establishing the nature of these connections and their 

inter-regulation is a grand challenge for biomedicine [94,95] and the life sciences in general 

[10].

In terms of regulation, the activity among each hallmark necessarily entails energy 

consumption. This means that their existence and regulation are not only contingent on 

the availability of the brain–body hardware (nerves, glands, vasculature, etc.) but also 

require the constant and proper regulation of energy metabolism [29]. Overactivation of 

these systems can lead to hypermetabolism [38]. This reinforces the rationale for examining 

how the central hub of energy metabolism in breathing animals – mitochondria – regulates 

psychobiological processes. Figure 2 illustrates how a psychosocial stressor propagates or 
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‘ripples out’ across the psychobiological network and how altered mitochondrial biology 

may alter the propagation of the stressor.

Evidence for mitochondrial psychobiology processes

Two main lines of research support the central role of mitochondria in mind–body processes. 

Here we provide a brief and minimalist overview of this rapidly developing literature.

Mind ➔ mitochondria

Psychological stress and positive psychological states influence multiple mitochondrial 

functions measured in brain, immune, and other cell types [96–102]. The underlying 

mechanisms that transduce mental states into molecular changes in mitochondria remain 

mostly to be defined but certainly involve hormones acting directly on mitochondria, 

through the nucleus where they trigger bioenergetic recalibrations, or by diverting energy 

away from repair processes towards stress mechanisms [23,103,104]. Abnormal states 

of mind that alter behaviors, such as manic and depressive phases of bipolar disorder 

[105] and suicidality [106], are also linked to alterations in mitochondrial respiration 

and circulating metabolite signatures reflecting mitochondrial overload. Interestingly, both 

severe psychological distress in suicidality [107] and acute psychosocial stress trigger the 

release of cf-mtDNA [108,109]. Thus, acute and chronic psychosocial stress can alter 

mitochondrial biology and lead to mitochondrial allostatic load (MAL).

Mitochondria ➔ mind

Interindividual differences in rodent and human brain mitochondrial biology account for 

a sizeable portion of interindividual differences in complex social and anxiety-related 

behaviors and physiological stress responses [84,110,111]. Syngenic mice (i.e., ‘twins’ 

with the same nuclear genome) with different genetic mitochondrial perturbations respond 

differently to evoked stress, acutely mobilizing distinct multisystem strategies to the same 

external stressor [41]. This demonstrates that different aspects of mitochondrial biology 

are upstream regulators of stress appraisal, physiology, and/or other regulatory nodes. 

Moreover, experimental manipulation of mitochondria in specific neuronal types or brain 

areas confirms that mitochondria influence brain function and behaviors, as well as how an 

animal’s physiology responds to mental stress [83,112,113].

Clinically, primary genetic mitochondrial defects that impair energy transformation by the 

OxPhos system, such as those studied in MiSBIE, are associated with a greater rate of 

psychiatric symptoms [114,115]. The effectiveness of nutritional metabolic interventions 

– namely, nutritional ketosis – as a treatment for serious mental illness [116] offers 

converging, indirect evidence that mitochondria contribute to mental health in humans 

[117,118]. Moreover, in older adults, positive and negative psychosocial factors are linked 

to brain mitochondrial biology; specifically, OxPhos complex I protein abundance and gene 

expression in glial cells from the prefrontal cortex (DLPFC) [119].

Thus, animal and clinical studies suggest that the functioning of mitochondria is linked 

to subjective states of mind and to psychobiological stress responses. One robust test 

of this hypothesis in humans would involve examining interactions among the hallmarks 
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of psychobiology in individuals exhibiting a spectrum of mitochondrial health, including 

individuals with MitoDs. If the hallmarks of psychobiology are differentially regulated in 

individuals with and without MitoD, or if their activity and/or interactions can be predicted 

on the basis of baseline differences in mitochondrial OxPhos capacity or another domain 

of mitochondrial functioning [45], this would provide support for the mind–mitochondria 

hypothesis. If specific psychobiological processes are unrelated to measurable mitochondrial 

properties, mitochondria (energy transformation or signaling functions) may not regulate 

specific domains of human psychobiology.

What are mitochondrial diseases?

MitoDs are a heterogeneous group of disorders caused by inherited or sporadic molecular 

genetic mitochondrial defects generally affecting mitochondrial functions [120]. The 

majority of patients with MitoDs have maternally inherited or spontaneous mutations in 

mtDNA, although others have disorders caused by mutations in autosomal genes encoding 

proteins that reside and operate in mitochondria [121]. Mutations in mtDNA genes affect 

the synthesis of OxPhos proteins responsible for transforming chemical energy into the 

electrochemical gradient across the mitochondrial inner membrane, which ultimately powers 

ATP synthesis and several other functions [45]. Thus, genetic mitochondrial defects also can 

contribute to maladaptive mitochondrial recalibrations resulting in MAL in affected cells 

and tissues.

Because there are 100s to 1000s of mtDNA copies per cell, mtDNA mutations exist 

as a mixture of normal and mutant copies, a state termed heteroplasmy [122]. This 

generally varies between 0% and ~90%, as 100% pathogenic variants completely abrogates 

OxPhos activity and is therefore incompatible with life. A higher percentage of mtDNA 

mutation is generally associated with more severe disease burden [123], but the molecular–

clinical correlation is imperfect [124]. Collectively, the heterogeneous clinical disorders and 

syndromes caused by OxPhos defects are termed mitochondrial disorders or MitoDs. On 

average, affected individuals have a life expectancy 30–40 years shorter than the average 

adult [125], notwithstanding pediatric cases where infants or children can fail to properly 

develop and die prematurely [126]. There are multiple causes of mortality in MitoD, with 

infectious conditions being pre-dominant [127].

Mitochondrial gene defects affecting OxPhos have profound consequences for the human 

mind–body system. Since every nucleated cell contains mitochondria, virtually all organ 

systems can be affected. Therefore, MitoDs are multisystem diseases associated with 

impaired cognitive function [128,129]. Although the underlying pathogenic mechanisms 

for OxPhos defects remain unclear, it is apparent that the cause of disease is not limited to 

ATP depletion, which rarely occurs in vivo[91]. Indeed, individuals with OxPhos-deficient 

mitochondria show exaggerated activation of cellular and tissue-level stress responses, such 

as the integrated stress response (ISR) [130] and angiogenesis that grows additional blood 

vessels around affected cells [131], likely as an attempt to restore health. Previous studies 

using exercise to understand the (patho)physiology of affected patients have identified 

exaggerated cardiovascular, respiratory, and endocrine responses to mild exercise challenge 

[132–134]. Thus, mitochondrial OxPhos defects appear to trigger abnormal or exaggerated 
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physiological responses across organ systems to physical challenges, which may contribute 

to hypermetabolism, or chronically elevated resting energy expenditure among individuals 

with MitoD [91,125].

Thus, probing the hallmarks of psychobiology in women and men with rare genetic 

mitochondrial lesions causing MitoD offers a unique opportunity to: (i) develop a causal 

understanding of the role of mitochondria in the psychobiological processes that underlie 

human health; and (ii) discover potential modifiers of MitoDs that can help to improve care 

for affected patients.

The MiSBIE study

The MiSBIE study was designed to address the role of mitochondria across the hallmarks 

of psychobiology. Its primary objective is to create a data platform of unprecedented 

depth in the domains of mitochondrial biology, psychobiology, psychoneuroendocrinology, 

psychoneuroimmunology, and other fields, which can be made available to the scientific 

community upon requests (see File S1 in the supplemental information online for an 

overview of the protocol and Table S1 in the supplemental information online for 

the dimensionality of the dataset). This National Institutes of Health (NIH)-funded, 

multiyear interdisciplinary research study (ClinicalTrials.gov #NCT04831424) is the human 

translation of preclinical studies in mouse models with distinct mitochondrial defects [41]. 

A key study design element is the inclusion of individuals with genetically defined MitoD 

(Box 2). The study inclusion and exclusion criteria are listed in File S2 in the supplemental 

information online. MiSBIE stems from an international collaboration addressing each 

hallmark of psychobiology and the core principles of psychobiology discussed earlier.

The MiSBIE study was designed to understand each participant as holistically as possible. 

The extensive 2-day MiSBIE protocol (Figure S1 in the supplemental information online) 

includes three broad components detailed in Box 3: (i) baseline measurements; (ii) stress 

reactivity measures that capture the reactivity and recovery of systems over rich time series 

of electrophysiology, biofluid (blood and saliva), and affect ratings (visual depiction of 

measurement parameters and intervals in Figure S2 in the supplemental information online); 

and (iii) home-based assessments that capture diurnal saliva hormone patterns together 

with self-reported psychosocial factors (Home Logbook in File S3 in the supplemental 

information online) and actigraphy to objectively assess physical activity and sleep 

behaviors.

The supplemental material associated with this article provides details around all elements 

of the study design and database. These include psychosocial questionnaire packages 

covering broad domains (demographics, health related-behaviors such as sleep and 

exercise, physical symptoms, aging, social life, personality, stress, affect/mood, and mental 

health) strategically administered across the 2-day visit (Table S2 in the supplemental 

information online), biospecimen collection and cryostorage procedures (Figure S3 in the 

supplemental information online), laboratory methods and assays for processing biofluids 

and isolating and cryopreserving immune cells, mitochondrial phenotyping on fresh and 

frozen immune cells, clinical assessments of disease severity and functional capacity, 
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an extensive neuropsychological assessment covering multiple domains (e.g., premorbid 

functioning, intellectual functioning, visuospatial, language, memory, executive functioning 

and attention), and a 2-h neuroimaging session for structural (T1/T2), functional [(blood-

oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI)], and 

diffusion-based imaging of white matter anatomy, among other procedures described in 

full in File S4 in the supplemental information online.

The resulting unique MiSBIE study biobank (File S5 in the supplemental information 

online) and database (Data Dictionary, File S6 in the supplemental information online) 

will allow investigators across diverse fields to relate common psychobiological outcomes 

to bioenergetic parameters and clinical features. Specific questions of high priority that 

MiSBIE makes possible to address, among many others, are listed in the Outstanding 

questions. The MiSBIE study population, sample approaches, and data modalities are 

summarized in Figure 3.

Study limitations

The MiSBIE study was carefully designed to enhance data quality and reliability through 

a highly standardized protocol that prioritized consistent meals, rest times, and activity 

levels, together with several other procedures implemented at each study visit (File S4). 

Nevertheless, the MiSBIE study has limitations. We highlight six main limitations that 

should be considered in this and other psychobiological studies.

1. Participants with mtDNA defects often present clinically with comorbid 

medical conditions that are treated or palliated with medications (i.e., often 

polypharmacy), which could influence psychophysiological parameters.

2. Recruitment was performed systematically to match control participants to 

participants with MitoDs based on four parameters: sex, age, physical activity 

levels, and ethnicity (to control for potential effects of mtDNA haplogroups 

[44,135]). This has yielded a relatively homogeneous sample driven in part 

by the more homogeneous ethnic distribution of our clinical populations. 

Nevertheless, the larger control group sample size allowed recruitment of ethnic 

minorities across the age range (37% of the control group is non-White).

3. Although the 40 participants with MitoD span a broad range of disease 

severity and symptoms, the demands of the MiSBIE protocol precluded the 

enrolling of some of the most severely affected participants with mitochondrial 

encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) and Kearns–

Sayre syndrome (KSS). Therefore, a portion of this sample present with 

relatively mild symptoms.

4. This first phase of MiSBIE is cross-sectional and does not enable us to draw 

conclusions about whether stress responses predict disease progression, for 

example. This limitation may be addressed in subsequent waves of follow-up.

5. Although each outcome measure was collected with the greatest possible rigor, 

the breadth and number of outcome measures made it impossible to measure 
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each hallmark of psychobiology in as much detail as more focused studies would 

have enabled.

6. Depending on the study question, the total sample size (n = 110) is relatively 

small. Therefore, novel findings must be replicated in larger cohorts or future 

studies to establish their external validity and generalizability.

Concluding remarks and future perspectives

We have described the rationale for examining how mitochondrial biology and bioenergetics 

in general influence mind–body processes and human health. MiSBIE represents, to 

our knowledge, the first large-scale transdisciplinary [136] effort to bring an energetic 

dimension into a psychobiology study. MiSBIE systematically examines this question 

using a two-pronged approach: (i) by exploring novel molecular- and physiological-level 

mind–mitochondria associations in healthy individuals with a naturally occurring spectrum 

of mitochondrial energy production capacity; and (ii) comparing healthy controls with 

individuals with rare molecularly defined mtDNA lesions, representing a unique scientific 

opportunity to directly evaluate the influence of mitochondrial OxPhos capacity on both 

well-established and novel mind–body processes.

The MiSBIE study covers several hallmarks of human psychobiology and applies core 

interdisciplinary principles to quantitatively capture mind–body interactions. Therefore, the 

study protocol summarized earlier (available in full detail in File S4) represents a portable 

design and foundation for future cross-sectional and longitudinal studies. The MiSBIE data 

platform represents a unique opportunity to formulate and test several novel hypotheses 

linking subjective human experience with molecular, biological, physiological, cognitive, 

behavioral, and other processes reflecting the (inter)action of multiple organ systems over 

time (see Outstanding questions). MiSBIE is an initial step in connecting the science and the 

human experience of energy.

What can we learn from interrogating the mind–mitochondria question in MiSBIE? 

Immediate potential outcomes of MiSBIE and future mitochondrial psychobiology studies 

include new insights spanning three main levels.

1. Personalized medicine: Realizing the promise of personalized medicine requires 

understanding the origins of interindividual variation in human health, including 

how people respond to challenges [95]. MiSBIE will systematically map 

organelle-to-organism determinants of individual differences in stress reactivity 

and recovery, thereby informing an energy-focused framework to integrate 

brain–body processes with biomedicine’s core molecular and cellular focus.

2. Mitochondrial medicine: MiSBIE will identify new potential pathophysiological 

mechanisms for genetic MitoDs and their clinical manifestations. This includes 

initial evidence to either disprove or support the stress ➔ disease cascade and 

the discovery of novel disease biomarkers in multiple biofluids, which may 

eventually improve diagnosis and/or treatment strategies.
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3. Science of health: By capturing the dynamic, multisystem properties that emerge 

from the complex interactions across psychobiological domains (brain, immune, 

energetics, etc.) and levels of analysis (molecule, cell, organ, whole person, 

interpersonal), MiSBIE establishes a general research framework to develop 

dynamic biomarkers of human health. Results will need to be projected and 

validated onto other populations and cohorts to establish their usability and 

generalizability.

Mapping the mind–mitochondria connection and building a holistic model of human health 

calls for science at the intersection of disciplines, where so much remains to be discovered. 

The MiSBIE study is a step in this direction. We call on investigators across fields to 

include a broad scope of psychological and biological measures, as outlined in Figure 1, and 

suggest that energetic principles outlined above and elsewhere [38,137–139] will help move 

us towards an integrative and actionable model of human health.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Glossary

Allostasis
energy-dependent, anticipatory recalibrations triggered by potential stressors or actual 

environmental demands, to maintain stability of vital functional parameters. Allostasis is 

epitomized as ‘stability through change’.

Bioenergetics
coordinated ensemble of biochemical, enzymatic, and mitochondrial processes involved in 

energy transformation – from chemistry to electricity – fueling all cellular activities that 

support life and stress responses. The core of mitochondrial bioenergetics is the oxidative 

phosphorylation (OxPhos) system, which is partially encoded by the mtDNA.

Brain
organ responsible for integrating sensory information, including interoceptive signals, to 

energetically manage the organism through allostasis. Of all organ systems, the brain has the 

highest stable energy demand, consuming 20–25% of the total organism’s energy budget.

Cytokines
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secreted molecules from non-immune and immune cells used to convey information from 

one physiological system to another, including GDF15 that signals cellular energetic stress 

from the body to the brain.

Energy
property of the system reflecting its capacity to perform ‘work’ or to change from one 

state to another. Energy takes many forms, including but not limited to electrical changes 

across the mitochondrial or plasma membrane and ATP produced by the OxPhos system in 

mitochondria.

Hypermetabolism
excess energy consumption relative to the optimal state of the cell or organism.

Mitochondria
family of diverse, multifunctional organelles populating the inside of every cell in the body, 

involved in energy transformation and signaling within and between cells and between 

organs systems.

Mitochondrial allostatic load (MAL)
the added energetic cost and biological ‘wear and tear’ including the molecular, structural, 

and functional recalibrations that mitochondria undergo in response to genetic mtDNA 

lesions (in the context of MiSBIE) or other metabolic, endocrine, biochemical, behavioral, 

and psychosocial stressors.

Mitochondrial diseases (MitoDs)
groups of medical conditions caused by inherited or acquired mitochondrial defects, often of 

genetic origin affecting either the nuclear (nDNA) or the mitochondrial (mtDNA) genome. 

MitoDs can affect all organ systems.

Mitochondrial DNA (mtDNA) lesions
analogous to neurological lesions ablating specific brain regions that taught us basic 

lessons about brain functions; mtDNA lesions include point mutations and deletions of the 

mitochondrial genome that have the potential to teach us about mitochondrial regulation of 

human psychobiology.

Neuroimaging
a family of techniques noninvasively measuring activity in the brain. Varieties include MRI 

based and positron emission tomography (PET), among others. MiSBIE includes three 

MRI-based types – (i) T1- and T2-weighted images that map gross anatomical structures 

and gray-matter variations, (ii) diffusion-weighted images that can map white-matter tracts 

and their variation, and (iii) fMRI-BOLD images that reflect regional brain signals related to 

blood flow and oxygen consumption on a second-by-second basis.

Resilience
capacity to respond and adapt at a minimal energetic cost and to fully recover function 

following a stressor.

Skin conductance
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electrodermal activity (EDA), also known as galvanic skin response (GSR); measured as 

fluctuations in conductance (or the inverse of resistance) on the palm of the hand, reflecting 

sympathetic nervous system activation, measured continuously across the 3-h multi-stress 

session on MiSBIE Day 1.

Stress response
coordinated activation and deactivation of affective, neural, endocrine, immune, metabolic, 

cardiovascular, and other psychobiological systems triggered by a perceived or actual threat 

to one’s physical or psychological integrity. In MiSBIE, a 5-min socioevaluative speech task 

plus the effort- and pain-inducing stimuli were also used to evoke qualitatively distinct stress 

responses.
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Box 1.

Core principles of psychobiology

The following principles of psychobiology provide a roadmap for research design and 

implementation within the interdisciplinary science of psychobiology (Figure I).

Principle 1: include ‘psycho’ and ‘bio’ domains of analyses

Psychobiological studies must embrace mixed methods and include multiple domains 

of analyses ranging from subjective experiences to the basic molecular operations of 

cells and organelles. Collecting psychological and biological measures in parallel, or 

manipulating one domain and monitoring the other, is the quintessential design element 

of human psychobiological studies required to map potential mechanisms of mind–body 

processes.

Principle 2: include multiple levels of analyses

Both biological and psychological processes are nested in a complex hierarchy. Including 

multiple levels of analyses contributes to testing robustness through converging evidence 

or lack thereof, and to being more precise about the potential specificity that a specific 

psychobiological pathway may exhibit.

Principle 3: isolate mechanistic contributions, where possible

To understand how mitochondria and energetic processes influence higher-level 

psychobiological processes, we must isolate mitochondria as the independent variable 

by using an experimental or quasi-experimental design. In laboratory animals, this is 

achieved with superbly reductionist ‘knockout’ studies. The same degree of precision is 

not possible in humans, but it is possible to examine individuals with specific inherited 

genetic lesions in mtDNA (or in nuclear genes encoding mitochondrial proteins), 

thereby isolating a molecularly defined mitochondrial deficiency with as much biological 

specificity as possible in a clinical context.

Principle 4: to reveal regulation, perturb the system

Physiology is highly adaptable and capable of compensating or ‘covering up’ fairly 

high levels of dysregulation. This redundancy is likely to be responsible for the broad 

spectrum of healthy and preclinical phenotypes. Therefore, at rest, some deficiencies and 

regulatory mechanisms (e.g., how robustly a stress axis can be activated and turned off, 

how well normoglycemia is maintained) are not visible to standard assessments [140]. 

Thus, to reveal dysregulation and to recruit health-relevant psychobiological pathways 

that operate on transient timescales, the system must be perturbed.

Principle 5: reach across disciplines

Although often challenging for investigators trained within the silo of a given 

discipline, psychobiological processes are best probed, analyzed, and understood through 

interdisciplinary lenses. Human mitochondrial psychobiology studies require clinical 

methods and approaches from cell biology and theory from disciplines ranging from 
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bioenergetics, molecular biology, and psychosocial sciences to neuroscience, among 

others.

Principle 6: capture interindividual differences

The mind and its underlying psychobiology exhibit uniquely idiosyncratic features. 

Historically, most analytical approaches have focused on deploying robust statistics 

to compare groups or deployed multivariate regression-based methods to capture 

generalizable differences and associations. Applying and developing new methods to 

identify with high confidence idiosyncratic and subgroups of ‘response patterns’ will get 

us closer to understanding the true nature of human psychobiological processes.
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Figure I. Core principles of psychobiology.
The MiSBIE study integrates all core principles of psychobiology.
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Box 2.

MiSBIE study groups

The MiSBIE study sample (n=110) includes four groups of people aged 18–60 years 

(69% females, mean age=38 years). Eligibility for each study group is determined based 

on inclusion and exclusion criteria listed in Supplemental File 2. Recruitment took place 

over a 5-year period, from June 2018 to June 2023.

• Group 1: Healthy women and men (Control, n=70) covering the normal range 

of mitochondrial energy production capacity.

• Group 2: Individuals with the most common pathogenic mtDNA point 

mutation (m.3243A>G, in the transfer RNA leucine 1(UUA/G) [tRNA 

Leu(UUR)], n=20) that impairs OxPhos and causes a spectrum of multi-system 

disease [141]. All participants in this group have the mtDNA mutation, and 

present moderate-to-mild symptoms of mitochondrial diseases.

• Group 3: These individuals also carry the m.3243A>G mutation but have 

a history of stroke-like episodes. They therefore have a clinical diagnosis 

of Mitochondrial Encephalopathy, Lactic Acidosis, and Stroke-like episodes 

(MELAS, n=5) [142]. Compared to Group 2, these individuals generally 

present more severe signs and symptoms and have a worse prognosis 

[143,144]. Since participants in Groups 2 and 3 have the same mtDNA 

mutation, for most analyses, they can be combined as the mutation group 

(Mutation, n=25).

• Group 4: Individuals with a single, large-scale mtDNA deletion, have a 

missing segment of the mitochondrial genome such that several mtDNA-

encoded genes essential to the OxPhos system are deleted [145–147] 

(Deletion, n=15).

Individuals carrying either of the two mtDNA defects (Mutation or Deletion) exhibit 

variable degrees of OxPhos deficiency and divergent clinical phenotypes, for reasons 

that remain largely unexplained. Mutation individuals tend to exhibit a predominant 

neurological phenotype with cognitive impairment, ataxia, diabetes, deafness, and 

fatigue, MELAS being the most severe form of the disease [128]. On the other 

hand, Deletion individuals tend to present with myopathy, extraocular muscle paresis, 

pigmentary retinopathy, cardiac conduction block, and fatigue, giving rise to the 

clinical syndromes termed chronic progressive ophthalmoplegia (CPEO) or Kearns-Sayre 

Syndrome (KSS) [146].

Analogous to the early days of neuroscience where precise brain lesion studies allowed 

investigators to map the involvement of specific brain regions to specific behaviors 

[148,149], and to preclinical studies [41], the inclusion of two severe and distinct genetic 

mtDNA lesions in MiSBIE allows to precisely identify the involvement of distinct 

mitochondrial defects on psychobiological processes with an unprecedented degree of 

resolution and specificity in humans.
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Box 3.

MiSBIE study components

The study is divided into three main components, distributed across a 2-day on-site visit, 

and an at-home data collection phase (Figure I).

Component 1 – Baseline resting measures.

This includes baseline anthropometric, DNA, biofluid (plasma, serum, saliva, urine), 

immune cell mitochondrial phenotyping, clinical symptom assessment, mood, and 

psychosocial questionnaires (total 39 instruments, see Supplemental Table 2), 

cardiovascular and body composition, neuropsychological testing, brain imaging, and 

whole-body resting oxygen consumption (1)Figure I). Together, these measures create 

an interdisciplinary, multi-system, and multi-level database to understand each person as 

holistically as possible. The stated goal of the study, as described to participants at the 

time of recruitment and on Day 1, was “to understand you as a person”. The MiSBIE 

study visits took place from 9 AM – 5 PM, Tuesday and Wednesday, at Columbia 

University Irving Medical Center. The full study protocol is illustrated in Supplemental 

Figure 1.

Component 2 – Stress reactivity measures.

This includes time-series of blood (plasma and serum), saliva, cardiorespiratory 

parameters (beat-to-beat heart rate, blood pressure, and respiratory rate), skin 

conductance, body surface temperature (3 locations), and positive and negative mood. 

For all parameters, the magnitude, fold-change, or other metrics of stress reactivity and 

recovery (e.g., slope, area under the curve (AUC)) can be computed (2)Figure I]. The 

stress psychophysiology session is illustrated in Supplemental Figure 2.

Component 3 – Home-based assessments of circadian biology.

This includes salivary awakening response of cortisol, GDF15, and other biomarkers, 

morning-to-evening differences in salivary biomarkers in the ecologically valid home 

setting, and actigraphy-based estimates of physical activity and sleep health, including 

timing, quantity, subjective quality, and circadian functioning (e.g., rest-activity rhythms) 

(3)Figure I]. Daily self-reported mood and sample collection times were recorded in a 

home logbook deployed on a custom-designed app (Supplemental File 3).
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Figure I. MiSBIE study components.
MiSBIE assesses all hallmarks and principles of human psychobiology. (top) The three 

major MiSBIE components include (1) highly controlled laboratory-based baseline 

measures of biomarkers, mitochondrial biology, and other outcomes, (2) a validated 

experimental speech delivery stress reactivity paradigm, and (3) home-based data 

and sample collection.① Baseline measures capture stable traits of individuals along 

the spectrum of normal and abnormal OxPhos capacity, reflecting the stable state 

of the organism. ② Stress-reactivity and recovery measures capture the robustness, 

resilience, and adaptability of the organism to psychosocial stress, deep breathing 

(DB), standing transition (ST), 30-second sit-to-stand test (SST), and cold pressor 

(CP), and metabolic rate measurement (MR). Different biomarkers exhibit distinct 

expected kinetics from which indices of reactivity, recovery, resilience, and elasticity 

can be computed. ③ Home-based data collection captures daily cycles of sleep 

and awakening in biological, psychosocial, and behavioral outcomes from four saliva 

samples per day, two sets of mood-related questionnaires (AM, evening), and continuous 

wrist actigraphy.Abbreviations: CBC, complete blood count; PBMCs, peripheral blood 

mononuclear cells.
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Outstanding questions

Are normal interindividual differences in the nature and magnitude of 

psychophysiological responses to socioevaluative stress driven by differences in 

mitochondrial phenotypes across individuals?

Do mitochondrial OxPhos defects causing MitoD (mutation, deletion) exaggerate or alter 

neuroendocrine stress reactivity to psychological stress?

Are the classic MitoD biomarkers GDF15, FGF21, lactate, and others sensitive to 

psychological stress?

Does acute psychological stress trigger the release of cf-mtDNA in blood and saliva, and 

under what timeframe?

Do mitochondrial OxPhos defects alter time perception and related mental experiences 

including fatigue, anxiety, and mood?

Is the brain processing of sensory, cognitive, and threat stimuli, measured as brain 

structural and functional connectivity patterns, altered by mitochondrial energetic 

defects?

Does MAL cause systemic allostatic load (AL) quantifiable with standard clinical blood 

biomarkers?

Are individuals with mitochondrial OxPhos defects more vulnerable to the biological 

embedding of stress and adverse experiences, including accelerated aging phenotypes to 

adversity?

Can we develop more sensitive and specific MitoD blood or saliva biomarkers using 

stress-reactive or awakening response dynamics, compared with baseline or convenience 

sampling?

Do genetic mtDNA defects alter OxPhos capacity in circulating immune cells 

(monocytes, lymphocytes, neutrophils, platelets)? Do immune cell bioenergetics reflect 

the (dys)function of other organ systems and correlate with disease severity?

Can we map coherent metabolite (human stress metabolome) and proteome (human 

stress proteome) signatures of acute psychological stress?

Longitudinally, can we predict disease risk or resilience based on mitochondrial 

phenotypes and/or psychological stress reactivity profiles? Is there evidence for a stress 

➔ metabolism ➔ disease cascade in MitoD?

Do variations in mitochondrial bioenergetics and/or systemic metabolic signals restrain 

the possible state space of brain activity and of the human mind?
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Highlights

Mitochondria transform the oxygen we breathe and the food we eat to power all brain–

body or mind–body processes that produce human experiences.

Experimental studies in animals with mitochondrial defects show that mitochondria 

influence the perception of stressors and/or the resulting psychobiological responses 

relevant to resilience and aging.

Different individuals exhibit qualitative and quantitative differences in their affective, 

neural, and physiological stress responses; these may in part be explained by 

interindividual differences in mitochondrial biology, a question not previously examined 

in humans.

The Mitochondrial Stress, Brain Imaging, and Epigenetics (MiSBIE) study includes 

participants with rare genetic mitochondrial lesions, plus psychobiological stress-

response paradigms to examine the mind–mitochondria connection with as much 

specificity as possible in humans.

The MiSBIE dataset and biobank include deep, multivariate phenotyping covering the 

hallmarks of psychobiology, detailed in the supplemental information online for this 

article, and data can be requested by the scientific community from the MiSBIE team.
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Figure 1. The hallmarks of psychobiology.
(A) The hallmarks of psychobiology, separated for illustrative purposes, functionally interact 

as a psychobiological network of measurable elements (nodes) and functional connections 

(edges). Psychosocial factors and behaviors include mental states and attributes of the 

mind (green nodes). Biological processes (blue nodes) overlap and functionally interact 

with psychosocial factors in more complex ways than the 2D network illustrates. (B) 

Mitochondria functionally sit at the interface of psychological and biological processes 

that together transform exposures into integrated stress responses (left), evolve over time 

and must therefore be captured dynamically via repeated measures and time-series analyses 

(middle), and operate across levels of complexity (right). Some figure elements created 

using BioRender.
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Figure 2. Model of mind–body processes emerging from information flow across the 
psychobiological network.
(A) An experimental paradigm where a standardized laboratory psychosocial stressor [e.g., 

Trier Social Stress Test (TSST) speech task] triggers proximal psychological processes 

that ripple out into diverse brain–body systems functionally interconnected and regulated 

by mitochondrial oxidative phosphorylation (OxPhos). Pre-existing disturbances (e.g., 

hunger), disorders (e.g., anxiety), and symptoms (e.g., pain) affecting specific nodes of 

the psychobiological network not illustrated here also could influence both the perception of 

the stressor and the nature and magnitude of the response elicited by the stressor. (B) Study 

design where the mitochondrial OxPhos node is perturbed, as in primary mitochondrial 

diseases. This leads to cellular and physiological recalibrations that influence how the 

same stressor as in (A) can produce distinct (exaggerated, blunted, or qualitatively distinct) 

psychobiological responses. The 2D psychobiological network is a static simplification of 

the complex dynamical system that is the human organism. Abbreviations: CORT, cortisol; 

GDF15, growth differentiation factor 15; HR, heart rate; SBP, systolic blood pressure.
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Figure 3. The Mitochondrial Stress, Brain Imaging, and Epigenetics (MiSBIE) study.
Top: multimodal approach to sample and data collection addressing the hallmarks of 

psychobiology via clinician-assessed signs and symptoms, self-reported outcomes, rich time 

series of psychophysiological signals, and diurnal/behavioral rhythms, in parallel with a rich 

biobanked tissues for every participant. Middle: the MiSBIE group composition includes 

individuals with two distinct rare, molecularly defined mitochondrial DNA (mtDNA) lesions 

and a control group recruited from the community. The Mutation and Deletion groups 

exhibit distinct molecular and clinical phenotypes. Bottom: example outcome measures 

range from molecular and cellular bioenergetic profiles, single-cell transcriptomics, and 

neuroimaging to laboratory and home-based tracking of psychological, physiological, 

behavior, stress reactivity, and recovery. Abbreviation: OxPhos, oxidative phosphorylation. 

Figure created using BioRender.
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