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a b s t r a c t

In a multinomial set-up with k possible outcomes, we develop estimation under a ‘‘mid-
dle censoring" paradigm, which is as defined in Jammalamadaka and Mangalam (2003).
This problem has many special features because of the inter-dependent probabilities,
which we explore here.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we discuss a ‘‘middle-censoring’’ scheme when the data comes from a multinomial experiment. Middle
censoring occurs if the actual value of a data point is not observed but is known to fall inside a specific interval. In
particular for our multinomial setup, some individuals choose exactly one of the k possible categories whereas some
others, choose intervals covering several categories. Well known censoring schemes such as right- and left-censoring can
be seen as special cases of such a middle censoring by picking suitable censoring intervals.

Considerable ground has been covered with regard to middle censoring problems over the last decade and a half.
One may refer to Jammalamadaka and Mangalam (2003) where the authors develop self-consistent and non-parametric
maximum likelihood estimators (MLEs) for the unknown Cumulative Distribution Function (CDF) for such middle censored
data. Jammalamadaka and Iyer (2004) establish approximate self consistency for middle censored data. Iyer et al. (2008)
considered a parametric middle censoring scheme using exponential lifetime data. Davarzani and Parsian (2011) discussed
middle censoring in a discrete setup by taking observations from a geometric distribution. More recent references include
Jammalamadaka and Leong (2015) where the authors discuss a middle censoring scheme for geometric random variables
in the presence of covariates, and Ahmadi et al. (2017) who consider middle censoring in the context of competing risks.

An outline of the paper is as follows. In Section 2 we develop the likelihood function for middle censored data
from a multinomial model, in the most general setup. However, because of the complicated dependencies between the
multinomial probabilities as well as the observed frequencies, explicit expressions for the MLEs for individual probabilities
and their large-sample variances in such a general setup are not easy to get, and may have to be obtained numerically.
To illustrate these ideas, we consider three different scenarios covering the middle censoring scheme—one where there
is just one interval allowed, a second one where there are 2 non-overlapping intervals, and the third case that allows
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intervals that overlap. Section 3 develops a Bayesian framework for estimating the required probabilities. The final
ection 4 contains bootstrap estimates and variances of the unknown probability vector. This section also provides a
imulation analysis comparing the Bayes estimates, and the estimates one gets from the different methods proposed
ere. We also present an example using real data, in the form of ratings given by a group of students for their experience
n using a particular software for remote lectures.

.1. The problem

Consumers are constantly asked to rate products that they buy on a website like Amazon. Or in market research, a
ompany which plans to launch a new product, wants to gauge the user response in terms of the preference-ratings
r the ‘‘star-ratings’’ the product gets, as part of a pilot study. Assume that the company contacts n individuals, each
f them being asked to rate the product in terms of {1, 2, . . . , k} stars, according to his/her liking for the product. Let

fj stand for the number/frequency of people giving j stars. If we denote the true probabilities of giving 1, 2, . . . , k stars
by p1, p2, . . . , pk respectively, we have the standard multinomial scheme with

∑k
j=1 fj = n and

∑k
j=1 pj = 1, which is a

classical and well-studied problem. Alternatively, assume that out of these n individuals some of them hedge their bets,
and assign an ‘‘interval rating’’ for the item. To get started and to illustrate things, let us say e.g. a given number f12 of
people are undecided between the ratings 1 and 2, and say their rating falls in the interval [1, 2] comprising both the
ratings between 1 and 2. This refers to either 1 or 2 stars but s/he is not convinced over one particular rating between
these two. This is what we shall refer to as an ‘‘interval rating’’ from now on. Given this new additional category, say
with probability p12, we now have p12 +

∑k
j=1 pj = 1 and the total frequency f12 +

∑k
j=1 fj = n. We are interested in

etermining how the estimated probabilities for each individual category would change if the scheme also allows such
nterval ratings. In other words, we wish to figure out the estimated probabilities, p̂1, p̂2, . . . , p̂k under this new scheme.

.2. The likelihood under a general scheme

Developing the maximum likelihood estimates along with their properties such as asymptotic variances under the
tandard multinomial setup, has been considered extensively in the literature. One may, for instance, refer to Alam
1979) or Kunte and Upadhya (1996) where the authors have discussed both the MLEs and UMVUEs under the classical
ultinomial setup.
First we consider the likelihood function under our general multinomial scheme which allows interval ratings, for

hich we introduce some notations. Let I represent an interval (say e.g. j1 to j2) of categories/scores with corresponding
robability PI =

∑
j∈I pj for this interval. When such interval scores are allowed, out of the n individuals, let us say m (≤ n)

f them provide interval-ratings that belong to the intervals {Ij; j = 1, 2, . . . ,m} with r of these intervals being distinct.
he remaining (n − m) individuals provide specific single ratings, of which let us say there are k. Then the probabilities

satisfy
r∑

j=1

PIj +
k∑

i=1

pi = 1. (1.1)

urther assume that the frequency in the interval Ij is Fj and the frequency in the k individual categories is fi. Then
r
j=1 Fj = m and

∑k
i=1 fi = n − m, so that

r∑
j=1

Fj +
k∑

i=1

fi = n. (1.2)

hen the likelihood for the vector p given m, n − m, {fi}, and {Fj} is given by:

L ∝

r∏
j=1

P
Fj
Ij

×

k∏
i=1

pfii (1.3)

ubject to the conditions (1.1) and (1.2) with the corresponding Log-likelihood

logL = constt. +
r∑

j=1

Fj.logPIj +
k∑

i=1

fi.logpi. (1.4)

This likelihood in Eq. (1.3) is comparable to Eq. (4) in Iyer et al. (2008) or Eqn. (1) in Jammalamadaka and Leong
2015), except for the additional restrictions imposed by the conditions (1.1) and (1.2) due to the dependence among the
ategories, and their frequencies. Estimation for individual p′

is which is our main goal, becomes even more cumbersome
hen some of the intervals overlap. In such cases, analytical solutions may not be possible, but one can obtain estimates
hrough numerical methods.

To illustrate these ideas, we develop three successively more complex scenarios—labeled Cases 1, 2, and 3, and show
ow they can be handled. The following sections introduce corresponding likelihood functions for these three cases,
rovide estimators for p ≡ (p , p , . . . , p ) and discuss their asymptotic variances, in each of these cases.
1 2 k
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2. Maximum likelihood estimators in some special cases

We now propose three interesting scenarios with increasing levels of complexity and provide appropriate MLEs for
the probability vector p. First, in ‘‘Case 1’’, we start by assuming that the individuals are allowed just one pre-specified
interval rating besides the singleton ratings. Similarly ‘‘Case2’’ assumes that two such ‘‘non-overlapping’’ interval ratings
are allowed besides the singleton ratings, whereas ‘‘Case 3’’ assumes that two such ‘‘overlapping’’ interval ratings are
possible. More general scenarios are possible, and follow similar ideas.

2.1. Case 1

Assume that we only have a single ‘‘interval rating’’ namely [i, j], with fij number of individuals opting for that. Clearly
the probability of any individual giving that rating is pij = pi + pi+1 + · · · + pj. Given that this is an additional category
that is being allowed in the multinomial scheme, we further have

pij +
k∑

i=1

pi = p1 + · · · pi−1 + 2(pi + pi+1 + · · · + pj) + · · · + pk−1 + pk = 1. (2.1)

The likelihood function is then proportional to

pf11 . . . pfii . . . p
fj
j . . . pfkk p

fij
ij , (2.2)

where 1 ≤ i < j ≤ k, with the log-likelihood

log L = f1 log p1 + · · · + fk log pk + fij log pij, (2.3)

where pk = (1 − p1 − · · · − 2pi − 2pi+1 − · · · − 2pj − · · · − pk−1). To obtain the MLEs, one needs to solve the following
simultaneous equations,

f1
p1

+
−fk
pk

= 0, . . . ,
fi−1

pi−1
+

−fk
pk

= 0,
fj+1

pj+1
+

−fk
pk

= 0, . . . ,
fk−1

pk−1
+

−fk
pk

= 0

and,
fi
pi

+
−2fk
pk

+
fij
pij

= 0, . . . ,
fj
pj

+
−2fk
pk

+
fij
pij

= 0

which lead to the following MLEs,

p̂1 =
f1
n

, . . . , p̂i−1 =
fi−1

n
, p̂j+1 =

fj+1

n
, . . . , p̂k =

fk
n

(2.4)

nd,

p̂l =
fl
2n

(
fi + fi+1 + · · · + fj + fij

fi + fi+1 + · · · + fj

)
=

fl
2n

(
1 +

fij
fi + fi+1 + · · · + fj

)
, (2.5)

here l = i, (i + 1), . . . , j.

emark 1. Now if fij = 0, i.e. no one opts for the interval rating even after being given that choice, the MLEs for the pl in
his interval will suffer because of that and reduce to become p̂l = fl/2n. This is justified in view of Eq. (2.5).

Remark 2. If all the individual frequencies in the interval [i, j] are zero except for one category, say just the fi ̸= 0, then

p̂i =
fi
2n

(
fi + fij

fi

)
=

fi + fij
2n

,

i.e. the ith category gets all the added benefit of this interval frequency fij. This is in agreement with the Proposition 1 of
Jammalamadaka and Mangalam (2003).

2.2. Case 2

Now assume that we allow for two disjoint ‘‘interval ratings’’ namely, [i1, j1] and [i2, j2] with corresponding observed
frequencies fi1j1 and fi2j2 and respective probabilities pi1j1 , pi2j2 . The forms of pi1j1 and pi2j2 are similar to those given in
Section 2.1. We further have, pi1j1 + pi2j2 +

∑k
i=1 pi = 1. The likelihood function will then be,

pf1 . . . p
fi1 . . . p

fj1 . . . p
fi2 . . . p

fj2 . . . pfkp
fi1 j1 p

fi2 j2 , (2.6)
1 i1 j1 i2 j2 k i1j1 i2j2
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here 1 ≤ i1 < j1 < i2 < j2 ≤ k. The log-likelihood function is clearly,

log L = f1 log p1 + · · · + fk log pk + fi1j1 log pi1j1 + fi2j2 log pi2j2 (2.7)

here pk = (1− p1 − · · · − 2pi1 − · · · − 2pj1 − pj1+1 − · · · − 2pi2 − · · · − 2pj2 − · · · − pk−1). To obtain the MLEs, one needs
o solve the following simultaneous equations,

f1
p1

+
−fk
pk

= 0, . . . ,
fi1−1

pi1−1
+

−fk
pk

= 0,
fj1+1

pj1+1
+

−fk
pk

= 0, . . . ,
fi2−1

pi2−1
+

−fk
pk

= 0,
fj2+1

pj2+1
+

−fk
pk

= 0, . . . ,

fk−1

pk−1
+

−fk
pk

= 0

nd,
fi1
pi1

+
−2fk
pk

+
fi1j1
pi1j1

= 0, . . . ,
fj1
pj1

+
−2fk
pk

+
fi1j1
pi1j1

= 0,
fi2
pi2

+
−2fk
pk

+
fi2j2
pi2j2

= 0, . . . ,
fj2
pj2

+
−2fk
pk

+
fi2j2
pi2j2

= 0

which lead to the following MLEs,

p̂1 =
f1
n

, . . . , p̂i1−1 =
fi1−1

n
, p̂j1+1 =

fj1+1

n
, . . . , p̂i2−1 =

fi2−1

n
, p̂j2+1 =

fj2+1

n
, . . . , p̂k =

fk
n

(2.8)

and,

p̂l1 =
fl1
2n

(
1 +

fi1j1
fi1 + · · · + fj1

)
, p̂l2 =

fl2
2n

(
1 +

fi2j2
fi2 + · · · + fj2

)
(2.9)

where l1 = i1, (i1 + 1), . . . , j1 and l2 = i2, (i2 + 1), . . . , j2.
Again, if fi1j1 = fi2j2 = 0 i.e. no individual opts for either of these interval ratings even after being given the option,

hen the MLEs will become p̂l1 = fl1/2n and p̂l2 = fl2/2n, where l1, l2 belong to intervals given above.

symptotic Variances of the Estimates
Next we consider the large-sample variances of the estimates given in Eqs. (2.4), (2.5) for Case 1, and Eqs. (2.8) and

2.9) for Case 2. Since these estimates are all MLEs, the asymptotic standard errors of p̂i can be computed using the
orresponding information matrix. For a vector of N parameters, say θ = [θ1, θ2, . . . , θN ] in the model, a typical ijth
element in the Fisher information matrix is given by,

[I(θ )]ij = EX
θ

[(
∂

∂θi
log L(X; θ )

)(
∂

∂θj
log L(X; θ )

)]
.

Then one can obtain the large-sample variances as V (θ̂i) = [I−1(θ )]ii, i = 1, . . . ,N . Deriving these asymptotic variances
or a general scheme is not straightforward and we provide derivations for some special cases in Appendices A.1 and A.2
found in the supplement) corresponding to Cases 1 and 2 respectively.

.3. Case 3

For some i1 < i2 < j1 < j2, if we now allow for two overlapping ‘‘interval ratings’’ say, [i1, j1] and [i2, j2], with an
verlap of [i2, j1], the likelihood function can be written similar to Eq. (2.9) and is given by:

pf11 . . . p
fi1
i1

. . . p
fj1
j1

. . . p
fi2
i2

. . . p
fj2
j2

. . . pfkk p
fi1 j1
i1j1

p
fi2 j2
i2j2

, (2.10)

here 1 ≤ i1 < i2 ≤ j1 < j2 ≤ k. The log-likelihood function is clearly,

f1 log p1 + · · · + fk log pk + fi1j1 log pi1j1 + fi2j2 log pi2j2 (2.11)

here
∑k

i=1 pi+pi1j1+pi2j2 = 1. However because of this overlap, finding even the MLEs, leave alone their asymptotic vari-
nces, becomes very cumbersome and easy analytical solutions do not exist. However they can be obtained numerically,
s we demonstrate in Section 4.

. Bayes estimation under Dirichlet priors

Bayes estimation in a multinomial setup has been discussed by several authors—see e.g. Lehmann and Casella (1998)
r Ferrie and Blume-Kohout (2016).
In this section we will adopt a Bayesian framework to estimate the unknown probability vector. Now using notations

rom Section 1.2, the unknown probability vector is p ≡ (PI1 , PI2 , . . . , PIr , p1, p2, . . . , pk) We will now assume a prior
istribution for p. A natural choice would be the conjugate prior, namely the Dirichlet distribution. The setup is as follows:
et X = (X1, X2, . . . , Xn) denote the choices of the n individuals with each Xi taking either an interval or a specific score.
ence we can assume,

X |p ∼ Multinomial(p)

p|α ∼ π (p) ≡ Dir(α),
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where Dir(α) stands for a Dirichlet distribution with parameter vector α = (α∗

1, . . . , α
∗
r , α1, α2, . . . , αk), where α∗

i (> 0)
corresponds to the respective prior parameter on each PIj , j = 1, 2, . . . , r . The Dirichlet density is then given as:

Dir(p|α) =
Γ (

∑r
j=1 α∗

j +
∑k

i=1 αi)∏r
j=1 Γ (α∗

j )
∏k

i=1 Γ (αi)

r∏
j=1

P
α∗
j −1

Ij
×

k∏
i=1

pαi−1
i . (3.1)

Now the likelihood function (L(data|p)) is exactly similar to Eq. (1.1). Hence the posterior density is given by:

π (p|data) =
L(data|p)π (p)∫

p L(data|p)π (p)dp
(3.2)

he numerator of (3.2) can be written as,

L(data|p)π (p) ∝

r∏
j=1

P
Fj+α∗

j −1
Ij

×

k∏
i=1

pfi+αi−1
i , (3.3)

from which the posterior density can be easily written down.
We now illustrate the ideas in a simple special case namely when k = 5 and p = (p1, p2, p3, p4, p5, p12), where there

exists a single ‘‘interval rating’’ viz. [1, 2] with a frequency of f12(> 0) and having a probability of p12 = p1+p2. Also hence,
p12 +

∑5
i=1 pi = 1. We will now build upon the likelihood function along with the appropriate posterior distribution for

p. Now as in previous sections, the likelihood function can be written as,

L(data|p) =

5∏
i=1

pfii (p1 + p2)f12 . (3.4)

Further, similar to (3.3),

L(data|p)π (p) = (p1 + p2)f
∗

5∏
i=1

pfi+αi−1
i , (3.5)

where f ∗
= f12 + α∗

1 − 1, which is > 0 since we assume f12 ≥ 1 and α∗

1 > 0. The expression in (3.5) can be thought of as
a Dirichlet distribution with a different set of parameters. Further,∫

p
L(data|p)π (p)dp =

Γ (f ∗
+ 1)

∏5
i=1 Γ (fi + αi)

Γ (n +
∑5

i=1 αi + α∗

1 )
= c∗(say). (3.6)

Combining (3.5) and (3.6) we have the posterior density, from which one can obtain the Bayes estimate of p. Under
Squared Error Loss, it is given by the mean of this posterior. In particular, the Bayes estimator of pi is given by

p̂i(Bayes) =

∫
p pi

∏5
j=1 p

fj+αj−1
j (p1 + p2)f

∗

dp

c∗
=

Γ (f ∗
+ 1)Γ (fi + αi + 1)

∏5
j=2 Γ (αj + fj)

Γ (n +
∑5

j=1 αj + α∗

1 + 1)c∗

=
fi + αi

n +
∑5

j=1 αj + α∗

1

, i = 1, 2, 3, 4, 5 (3.7)

Further,

ˆp12(Bayes) =

∫
p(p1 + p2)

∏5
j=1 p

fj+αj−1
j (p1 + p2)f

∗

dp

c∗
=

Γ (f ∗
+ 2)

∏5
j=1 Γ (αj + fj)

Γ (n +
∑5

j=1 αj + α∗

1 + 1)c∗

=
f12 + α∗

1

n +
∑5

j=1 αj + α∗

1

(3.8)

4. Parametric bootstrapping and real data analysis for the estimates and variances

As an alternative to finding the MLEs and their asymptotic variances, which as we can see, gets complicated pretty
quickly, one might adopt a parametric bootstrap to get the estimates and the variances of the estimates for the 3 cases
discussed in Sections 2.1–2.3. These are obtained by first using the relative frequencies as the initial probabilities, and
bootstrapping/simulating a large number of independent samples. As an illustration and demonstration that they provide
similar results, we first present results for such bootstrapping for ‘‘Case-1’’, alongside the results for our Bayesian setup.
Results for ‘‘Case-2’’ and ‘‘Case-3’’ can be derived similarly (see Remark at the end of Section 4.1).
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Table 1
Illustrative results for Case 1 with n = 100.
i 1 2 3 4 5 [1, 2]
fi 15 5 15 10 25 30
fi/n 0.15 0.05 0.15 0.10 0.25 0.30
p̂MLE
i

(s(p̂MLE
i ))

0.1875
(.0286)

0.0625
(0.0225)

0.1500
(0.0357)

0.1000
(0.0300)

0.2500
(0.0433)

0.2500
(0.0250)

p̂Ri
(s(p̂Ri ))

0.1873
(0.0281)

0.0623
(0.0220)

0.1493
(0.0346)

0.1016
(0.0299)

0.2495
(0.0430)

0.2497
(0.0242)

p̂i(Bayes) 0.1451 0.0691 0.1393 0.1017 0.2499 0.2946

(The standard errors are shown within parentheses).

.1. Illustrative results for case 1

We will consider the case as given in Section 2.1, where we allow a single ‘‘interval rating’’. Now let i = 1, j = 2 and
= 5. The likelihood and log-likelihood functions are as given in (2.2), (2.3) and in particular take the following forms:

L = pf11 p
f2
2 p

f3
3 p

f4
4 p

f5
5 (p1 + p2)f12 ,

nd,

log L = f1 log p1 + f2 log p2 + f3 log p3 + f4 log p4 + f5 log p5 + f12 log(p1 + p2),

here p5 = (1 − 2p1 − 2p2 − p3 − p4) and f12 denotes the only ‘‘interval rating’’. Now we first fix an observed
ector of frequencies and assume it to come from a multinomial distribution with parameter vector p, where p =

p1, p2, p3, p4, p5, p12]. We intentionally fix f12 to be higher than both f1 and f2, since it is reasonable to assume that
n any practical scenario when given an option, more people will likely opt for an interval rating instead of giving a single
umber. We then calculate the estimated probabilities using (2.4) and (2.5), which take the following forms,

p̂1 =
f1
2n

(
1 +

f12
f1 + f2

)
, p̂2 =

f2
2n

(
1 +

f12
f1 + f2

)
, p̂i =

fi
n
,

or i = 3, 4, 5. Now assuming these estimates are the actual probabilities (p̂ ≡ p), we bootstrap a large number of samples
(say R = 103) from a Mult(p) distribution, and recalculate the probability estimates using (2.4) and (2.5). We then observe
the pattern of the estimates by looking at the mean and standard errors of these estimates over the R bootstraps. Let these
e denoted by p̂R and s(p̂R) respectively. The asymptotic variances of p̂ take the following forms:

V (p̂1) =
p1[p1(1 − 2p1) − 2p1p2 + 2p2]

2n(p1 + p2)
; V (p̂2) =

p2[p2(1 − 2p2) − 2p1p2 + 2p1]
2n(p1 + p2)

;

V (p̂12) =
1
2n

(p1 + p2)(p3 + p4 + p5); V (p̂i) =
pi(1 − pi)

n
, i = 3, 4, 5.

The above expressions for the asymptotic variances are derived in Appendix A.1 (found in the supplement).
We also provide the Bayes estimates, using Dirichlet priors for the given data sets. Tables 1 and 2 outline the results

for two different values of n, for a given set of observed frequencies. For our Bayesian setup, as our first instance we fix
α = (2, 3, 1, 2, 4, 4), whereas as a second instance we fix α = (4, 6, 1, 1, 2, 4). Now if one compares values of p̂Ri and fi/n
across all values of i, the interval rating [1, 2] puts an additional mass on both p̂R1 and p̂R2 while all others stay comparable.
Intuitively, the jumps from f1/n to p̂R1 and f2/n to p̂R2 are proportional to f1 and f2.

Remark 3. One can obtain bootstrapping results for ‘‘Case-2’’ and ‘‘Case-3’’ in a similar manner. The likelihood and log-
likelihood functions for ‘‘Case-2’’ can be written down along the lines of (2.6) and (2.7), whereas the estimated probabilities
are as per (2.8) and (2.9). Expressions for the asymptotic variances of the estimated probabilities for ‘‘Case-2’’ are derived
in Appendix A.2 (found in the supplement). Further, the likelihood and log-likelihood functions for ‘‘Case-3’’ can be written
down along the lines of (2.10) and (2.11). However the estimated probabilities do not have closed-form analytical solutions
and require either a numerical maximization or parametric bootstrapping, as demonstrated in this section for ‘‘Case 1’’.

4.2. Analysis for a real data set

We now present a real data example which demonstrates the applicability of estimators discussed here. As the entire
world suffers from the current COVID-19 pandemic, there has been an ever increasing demand for a software where
a group is able to conduct online meetings and live sessions. Many competitors have cropped up in the market. The
following survey was conducted at the University of California, Santa Barbara by one of the authors recently, which asked
a class of students about their overall experience with regard to one such widely used software. They could give ratings
of 1 through 5 (5 being the highest rating) along with a couple of ‘‘interval ratings’’ consisting of [1, 2] and [4, 5]. Data is
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Table 2
Illustrative results for Case 1 with n = 500.
i 1 2 3 4 5 [1, 2]
fi 90 70 40 80 20 200
fi/n 0.18 0.14 0.08 0.16 0.04 0.40
p̂MLE
i

(s(p̂iMLE))
0.2025
(0.0144)

0.1575
(0.0140)

0.08
(0.0121)

0.16
(0.0163)

0.04
(0.0087)

0.36
(0.0100)

p̂Ri
(s(p̂Ri ))

0.2020
(0.0145)

0.1580
(0.0146)

0.0800
(0.0121)

0.1596
(0.0166)

0.0401
(0.0089)

0.3600
(0.0102)

p̂i(Bayes) 0.1814 0.1467 0.0791 0.1563 0.0424 0.3938

(The standard errors are shown within parentheses).

Table 3
Real data example for Case 2 with n = 90.
i 1 2 3 4 5 [1, 2] [4, 5]
fi 2 8 13 21 6 11 29
fi/n 0.022 0.088 0.144 0.233 0.066 0.122 0.322
p̂MLE
i 0.023 0.093 0.144 0.241 0.069 0.116 0.31

collected from a group of n = 90 students from the class. This falls in the paradigm of our current problem, in particular,
‘‘Case-2’’, given in Section 2.2, and the likelihood and log-likelihood functions take the following forms:

L = pf11 p
f2
2 p

f3
3 p

f4
4 p

f5
5 (p1 + p2)f12 (p4 + p5)f45 ,

nd,

log L = f1 log p1 + · · · + f5 log p5 + f12 log(p1 + p2) + f45 log(p4 + p5),

here p3 = (1 − 2p1 − 2p2 − 2p4 − 2p5). We then obtain the estimated probabilities (MLEs) from (2.8) and (2.9). Table 3
utlines results for these students’ observed frequencies. Note that all these results are from a single run (single question
n the survey).

As can be seen from the above table, the intervals [1, 2] and [4, 5] put a slight additional mass on p̂MLE
1 , p̂MLE

2 as well
s p̂MLE

4 , p̂MLE
5 compared to the original values of fi/n, i = 1, 2, 4, 5.

. Conclusions

In this paper we develop a middle-censoring scheme under a multinomial setup which allows outcomes to fall within
ntervals besides individual categories. Although the general framework has been presented for estimating the individual
robabilities, analytical solutions become onerous pretty quickly and may need numerical solutions. To illustrate the
deas, we consider special cases and demonstrate how the Maximum Likelihood Estimators work out, as well as under
Bayesian setup. Also provided are the asymptotic variances of the multinomial probability vector under these cases.
arametric bootstrap has been suggested for getting the estimates and their variances when the MLEs get complicated. A
eal data analysis is carried out illustrating the results derived.
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