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Abstract

Background: Conventional patent-based drug development incentives work badly for the developing world, where
commercial markets are usually small to non-existent. For this reason, the past decade has seen extensive experimentation
with alternative R&D institutions ranging from private–public partnerships to development prizes. Despite extensive
discussion, however, one of the most promising avenues—open source drug discovery—has remained elusive. We argue
that the stumbling block has been the absence of a critical mass of preexisting work that volunteers can improve through a
series of granular contributions. Historically, open source software collaborations have almost never succeeded without
such ‘‘kernels’’.

Methodology/Principal Findings: Here, we use a computational pipeline for: (i) comparative structure modeling of target
proteins, (ii) predicting the localization of ligand binding sites on their surfaces, and (iii) assessing the similarity of the predicted
ligands to known drugs. Our kernel currently contains 143 and 297 protein targets from ten pathogen genomes that are
predicted to bind a known drug or a molecule similar to a known drug, respectively. The kernel provides a source of potential
drug targets and drug candidates around which an online open source community can nucleate. Using NMR spectroscopy, we
have experimentally tested our predictions for two of these targets, confirming one and invalidating the other.

Conclusions/Significance: The TDI kernel, which is being offered under the Creative Commons attribution share-alike license
for free and unrestricted use, can be accessed on the World Wide Web at http://www.tropicaldisease.org. We hope that the
kernel will facilitate collaborative efforts towards the discovery of new drugs against parasites that cause tropical diseases.
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Introduction

There is a lack of high-quality protein drug targets and drug leads

for neglected diseases [1,2]. Fortunately, many genomes of

organisms that cause tropical diseases have already been sequenced

and published. Therefore, we are now in a position to leverage this

information by identifying potential protein targets for drug

discovery. Atomic-resolution structures can facilitate this task. In

the absence of an experimentally determined structure, comparative

modeling can provide useful models for sequences that are

detectably related to known protein structures [3,4]. Approximately

half of known protein sequences contain domains that can be

currently predicted by comparative modeling [5,6]. This coverage

will increase as the number of experimentally determined structures

grows and modeling software improves. A protein model can

facilitate at least four important tasks in the early stages of drug

discovery [7]: prioritizing protein targets for drug discovery [8],

identifying binding sites for small molecules [9,10], suggesting drug

leads [11,12], and optimizing these leads [13–15].

Here, we address the first three tasks by assembling our

computer programs into a software pipeline that automatically and

on large-scale predicts protein structures, their ligand binding sites,

and known drugs that interact with them. As a proof of principle,

we applied the pipeline to the genomes of ten organisms that cause

tropical diseases (‘‘target genomes’’). We also experimentally tested

two predicted drug-target interactions using Nuclear Magnetic
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Resonance (NMR) spectroscopy. By virtue of pairing specific

proteins with already known drugs, our pipeline has the potential

of increasing the efficiency of target identification, target

validation, lead discovery, lead optimization, and clinical trials.

The current project is part of our efforts within the Tropical

Disease Initiative (TDI, http://www.tropicaldisease.org) [16].

TDI was conceived as a decentralized and web-based open source

drug discovery effort in which academic and corporate scientists

volunteer to work together on discovering drugs for neglected

diseases. TDI’s open source approach complements many new

initiatives that have been proposed over the last decade [1,8,16–

25]. However, relatively few volunteers have so far truly engaged

in these efforts and their impact is still difficult to assess [26]. Based

on our experience with The Synaptic Leap (TSL) online discussion

forum of TDI (http://www.thesynapticleap.org), we suggest that a

major stumbling block for open source drug discovery has been

the absence of a critical mass of preexisting work that volunteers

can build on incrementally. Here, we address this bottleneck by

introducing a ‘‘kernel’’ to facilitate drug discovery for tropical

diseases. This kernel (v1.0) includes 297 potential drug targets

from the target genomes and is freely available via web 2.0

dissemination tools on the TDI web site.

We begin by describing our computational pipeline as well as

the experimental procedures for testing two selected targets

(Methods). Next, we describe the modeling of proteins in ten

pathogen genomes, prediction of binding of known drugs to the

modeled proteins, and experimental testing of these predictions for

two select protein targets (Results). Finally, we discuss how we

expect a full-scale TDI open source project to use the kernel and

its potential impact on open source drug discovery (Discussion).

Materials and Methods

Computational pipeline
We have assembled a computational pipeline that relies on

several databases and programs, taking as input protein sequences

and producing an output containing protein models as well as

predicted locations of binding sites for small molecules on their

surfaces and predicted types of molecules they bind. The pipeline,

which relies on the MODPIPE package [27] and the AnnoLyze

program [9], has been applied to genomes of ten pathogens that

cause tropical diseases. The output of the pipeline has been stored

in a relational database for easy searching and dissemination over

the web.

TDI target genomes
We selected the following ten target genomes based on both

disease burden and the completeness of published sequences:

Cryptosporidium hominis (CyrptoDB [28]), Cryptosporidium parvum

(CryptoDB [28]), Leishmania major (GeneDB [29]), Mycobacterium

leprae (OrthoMCL-DB [30]), Mycobacterium tuberculosis (TubercuList

[31]), Plasmodium falciparum (PlasmoDB [32]), Plasmodium vivax

(PlasmoDB [32]), Trypanosoma brucei (GeneDB [29]), Trypanosoma

cruzi (GeneDB [29]), and Toxoplasma gondii (ToxoDB [33]). We

then mapped the transcript sequences onto UniProt ids [34].

Annotation databases
Functional annotation for predicted binding sites in our models

relied on the following databases: (i) UniProt [34], which contains

385,721 sequences from the SwissProt database and 5,814,087

sequences from the TrEMBL database, was used to annotate the

transcripts from the target genomes; (ii) MODBASE [6], which

contains 6,805,385 comparative models calculated by MODPIPE

for domains in 1,810,521 proteins, was used to store all

comparative models; (iii) DBAli [35], which contains 1.7 billion

pairwise alignments generated by an all-against-all comparison of

known protein structures, was used to identify structure relation-

ships between our modeling templates and other known protein

structures; (iv) LigBase [36], which contains 232,852 structurally

defined ligand-binding sites in PDB, was used as a resource for

AnnoLyze to predict ligand binding sites on pathogen protein

models; (v) MSDChem [37], which contains 8,287 small ligands,

was used as an annotated repository of small molecules in the PDB

database; and (vi) DrugBank [38], which contains 4,765 drug-like

compounds (including 1,485 FDA-approved small molecule drugs,

128 FDA-approved biotech drugs, 71 nutraceuticals, and 3,243

experimental drugs), was used to identify small molecules in the

MSDChem database that have similar chemical composition to

known drugs.

Comparative protein structure prediction
Models for all sequences from the ten target genomes were

calculated using MODPIPE, our automated software pipeline for

comparative modeling [27,39]. It relies primarily on the various

modules of MODELLER [40] for its functionality and is adapted

for large-scale operation on a cluster of PCs using scripts written in

PERL and Python. Sequence-structure matches are established

using a variety of fold-assignment methods, including sequence-

sequence [41], profile-sequence [42,43], and profile-profile

alignment [43,44]. Odds of finding a template structure are

increased by using an E-value threshold of 1.0. By default, ten

models are calculated for each of the alignments [40]. A

representative model for each alignment is then chosen by ranking

based on the atomic distance-dependent statistical potential

DOPE [45]. Finally, the fold of each model is evaluated using a

composite model quality criterion that includes the coverage of the

modeled sequence, sequence identity implied by the sequence-

structure alignment, the fraction of gaps in the alignment, the

compactness of the model, and various statistical potential Z-scores

[45–47]. We only used the models that were predicted to have a

‘‘correct’’ fold (i.e., a MODPIPE quality score higher than 1.0);

based on our benchmarking studies, we expect the true positives

rate of 93% and the false positives rate of 5%.

Binding site prediction
The AnnoLyze program [9] was used to predict binding sites for

small molecules on all well-assessed models. Briefly, AnnoLyze

predicts ligand-binding sites on the surface of a model by

Author Summary

Open source drug discovery, a promising alternative
avenue to conventional patent-based drug development,
has so far remained elusive with few exceptions. A major
stumbling block has been the absence of a critical mass of
preexisting work that volunteers can improve through a
series of granular contributions. This paper introduces the
results from a newly assembled computational pipeline for
identifying protein targets for drug discovery in ten
organisms that cause tropical diseases. We have also
experimentally tested two promising targets for their
binding to commercially available drugs, validating one
and invalidating the other. The resulting kernel provides a
base of drug targets and lead candidates around which an
open source community can nucleate. We invite readers to
donate their judgment and in silico and in vitro experi-
ments to develop these targets to the point where drug
optimization can begin.

TDI Kernel
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transferring known ligands in the LigBase database [36] via the

target-template alignment. Such predictions are made in a two

step process (Figure 1): (i) transfer of a binding site between known

structures (i.e. a ligand co-crystallized with a protein structure is

transferred to another known structure if at least 75% of the

LigBase-defined binding site residues are within 4 Å of the

template residues in a global superposition of the two structures

and if at least 75% of the binding site residue types are invariant);

and (ii) transfer of a binding site to a comparative model using as a

reference the alignment to its template (i.e. a ligand predicted in

the previous step to bind the template or a ligand co-crystallized

with the template is transferred to the comparative model if the

binding sites are conserved at the same level as in the previous

step). Using these cutoffs, approximately 30% of the selected

models had at least one predicted binding site for small molecules

(Table 1), which were then mapped to MSDChem entries.

From ligands to drugs
The jcsearch program from the JChem package [48] was used

with default parameters to match related compounds in

MSDChem and DrugBank. Four types of matches were collected:

(i) exact matches (i.e. their SMILES strings [49] matched with a

Tanimoto score [50] equal to 1.0); (ii) supra-structure matches in

which a matched DrugBank query molecule is a part of an

MSDChem molecule; (iii) sub-structure matches in which an

identified MSDChem molecule is a part of a DrugBank query

molecule; and (iv) similar matches with a Tanimoto score between

MSDChem and DrugBank molecules of at least 0.9.

Protein production and purification
The tested proteins (i.e., a putative thymidylate kinase from P.

falciparum and a nucleoside diphosphate kinase from M. leprae)

were produced by cloning the full length annotated ORFs into

pET47b plasmids (Novagen). The resulting plasmids were

purchased from GeneArt (http://www.geneart.com, Regensburg,

Germany) and sequenced using conventional methods to confirm

the intended constructs were obtained. The proteins were then

over-expressed as fusion proteins using BL21 (DE3) Codon plus

cells (Strategene). Purification of the proteins was facilitated by a

hexa-His tag at the N-terminus and an engineered cleavage site for

the TEV protease. Purification to homogeneity was carried out

using metal-affinity chromatography (Talon, Clontech), followed

by TEV cleavage.

NMR-based experimental testing of predictions
All spectra were recorded at 300 K with a Bruker Ultrashield

Plus 600 MHz NMR spectrometer equipped with a 5 mm TCI

cryogenically cooled probe. A typical NMR sample contained a

concentration of 5 mM of protein, 100 mM of ligand, 100 mM of

glucose as a negative control, 100 mM NaCl, and 25 mM

phosphate buffer at pH 7.0.

The concentration of ligand for the Saturation Transfer

Difference (STD) experiments was 500 mM. For each sample, a

1D 1H reference, a Water-LOGSY [51] and a STD [52]

experiment were recorded. 8 K points were used for a sweep

width of 9,600 Hz and a total of 1 K and 512 scans were

accumulated for the Water-LOGSY and STD experiments,

respectively.

Data storage, sharing, and licensing
The entire kernel, including all predicted models and binding

sites, is freely available over the web (http://www.tropicaldisease.

org/kernel). The server uses the WordPress package (http://www.

wordpress.org), a widely used platform that facilitates easy

creation, storage, and dissemination of each target entry in our

database. WordPress supports numerous ‘‘plugins’’, including a

rating system that allows TDI web site users to rate targets for

‘‘druggability.’’ The package also supports bookmarking by most

Figure 1. AnnoLyze protocol. (A) Prediction of a binding site in a known structure based on its structural alignment to a known binding site in
another structure. (B) Prediction of a binding site in a model based on its structural alignment to a known or predicted binding site in the template
structure used to construct the model.
doi:10.1371/journal.pntd.0000418.g001
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web-based social networks. In particular, each of the TDI kernel’s

target pages includes a ‘‘blog it’’ button that allows registered users

of The Synaptic Leap (TSL, http://www.thesynapticleap.org) to

post TDI entries directly into the TSL discussion panels. TSL is

our web-based ‘‘collaboratory’’ portal that is designed to host open

source drug discovery projects in much the same way SourceForge

hosts software collaborations.

The TDI kernel is fully searchable and downloadable through

our Web site (http://www.tropicaldisease.org/kernel/). Options

include direct downloads of individually requested targets, pre-

defined sets for each of our ten target genomes, and user-defined

batch downloads. Additionally, all our predictions are available as

supporting information files to this article (Datasets S1, S2, S3, S4).

Users receive the data with no restriction in accordance with the

Science Commons protocol for implementing open access data

[53] that was designed to embody normal academic attribution

norms and facilitate tracking of work based on the kernel. While

our predictions are in the public domain, some of the drugs used in

our predictions might be subject to patents.

Results

Comparative modeling of protein structures from the ten
target genomes

The accuracy of our comparative protein structure models built

using MODPIPE was predicted by a variety of criteria, including

target-template sequence identity, coverage of the target sequence,

fraction of gaps in the alignment, and statistical potential scores.

One third of the total models (21,031) were assessed to have

sufficient accuracy for predicting the location and type of their

binding sites for small compounds (i.e., at least 50% of their Ca
atoms are predicted to be within 3.5 Å of their correct positions,

corresponding to the correct fold and at least an approximately

correct alignment with the template structure). These models

covered 11,714 protein targets, corresponding to 17% of all

proteins in the ten target genomes (Table 1 and Figure 2). There

are an average of ,2.5 models per protein target, each model

potentially based on a different template structure and/or covering

a different domain of the modeled sequence. Different genomes

presented different levels of difficulty to our modeling procedure:

75% of the models for M. leprae proteins met our accuracy

standards, while only approximately 10% of T. gondii models did.

These coverage correspond to accurate predictions for 3,070

targets in Trypanosoma cruzi (15.7% of the genome) and 300 targets

(3.9% of the genome) for T. gondii (Table 1).

Predicted binding sites in comparative models
We applied our AnnoLyze program to predict the binding sites

for small molecules in the MSDChem database on 11,714 well-

modeled targets. A total of 3,499 (,30%) of these targets had a

predicted binding site from their comparative modeling template

or a known binding site transferred from a structurally similar

protein. Once again, the T. cruzi genome had the largest number

of predicted binding sites located in 769 targets, while T. gondii

contained only 138 targets with a predicted small-molecule

binding site (Table 1 and Figure 2). In general, there was an

almost linear relationship between the genome size and the

number of targets with predicted binding sites. The M. leprae

genome provided a notable exception, with accurate models

covering domains in 55.6% of the proteins and predicted binding

sites for a small molecule in only 310 of these targets.

Comparison of results for the ten target genomes
The coverages of comparative modeling and ligand binding site

prediction vary from one genome to another (Table 1). For

example, T. gondii has poor structure coverage of its 7,793 genes

predicted in ToxoDB (3.85%). This poor structural coverage may

be partly a result of a relatively inaccurate current assignment of

genes, as suggested by differences between four methods for

predicting genes from a genome [54]; these annotations agreed in

only 12% of the genes. Moreover, 3,837 genes in ToxoDB are

poorly annotated with keywords such as ‘‘hypothetical’’, ‘‘putative’’,

Table 1. TDI target genomes.

Organism Diseasea DALYb Transcriptsc
Modeled
targetsd Coveragee

Binding
sitef Similarg Exacth

Cryptosporidium hominis Cryptosporidiosis n/a 3,886 666 17.14 197 20 13

Cryptosporidium parvum 3,806 742 19.50 232 24 13

Leishmania major Leishmaniasis 2,090 8,274 1,409 17.03 478 43 20

Mycobacterium leprae Leprosy 199 1,605 893 55.64 310 25 6

Mycobacterium tuberculosis Tuberculosis 34,736 3,991 1,608 40.29 365 30 10

Plasmodium falciparum Malaria 46,486 5,363 818 15.25 284 28 13

Plasmodium vivax 5,342 822 15.39 268 24 13

Toxoplasma gondii Toxoplasmosis n/a 7,793 300 3.85 138 13 6

Trypanosoma cruzi Trypanosomiasis 1,525 19,607 3,070 15.66 769 51 28

Trypanosoma brucei 9,210 1,386 15.05 458 39 21

Total 85,036 68,877 11,714 17.01 3,499 297 143

aDiseases in bold are included in the WHO Tropical Disease portfolio.
bDALY, Disability Adjusted Life Year in 1000’s, from WHO 2004 health report (http://www.who.int/whr/2004/en/).
cNumber of transcripts (i.e., genes that translate into proteins) in each genome.
dNumber of targets with at least one domain modeled above the accuracy threshold (i.e., MODPIPE quality score higher or equal to 1.0).
ePercentage of targets in the genome with at least one model above the accuracy threshold (i.e., MODPIPE quality score higher or equal to 1.0).
fNumber of modeled targets with at least one predicted binding site.
gNumber of modeled targets with at least one predicted binding site for a molecule within a 0.9 Tanimoto score to a drug in DrugBank.
hNumber of modeled targets with at least one predicted binding site for a molecule in DrugBank.
doi:10.1371/journal.pntd.0000418.t001

TDI Kernel

www.plosntds.org 4 April 2009 | Volume 3 | Issue 4 | e418



and ‘‘predicted’’. In contrast, M. leprae, which is a minimal

mycobacterial genome [55], resulted in the highest coverage of all

target genomes (55.64%). This high coverage is a consequence of a

larger proportion of its sequences having homologs whose

complexes with small molecules have been defined structurally.

Finally, there is an artificially large number of predictions for T.

cruzi. The T. cruzi genome was sequenced from a hybrid strain from

two divergent parental lines [56], which resulted in a large number

of its genes with duplicated entries in the GeneDB database.

Given that our computational pipeline relies on homology for

predicting the structure and binding sites of a query sequence, we

analyzed the predictions across ortholog sequences from the ten

target genomes. A total of 236 of the 297 selected targets group into

46 ortholog groups as defined by the OrthoMCL-DB database [30].

Our predictions agreed for 38 of the 46 ortholog groups (i.e., the

same ligands were predicted to bind all the orthologs within the

cluster). Only 4 of the 46 ortholog groups resulted in a complete

disagreement (i.e., all orthologs resulted in different predicted

binding ligands). Finally, the remaining 4 ortholog groups had

intermediate results (i.e., some but not all of the orthologs in the

cluster were predicted to bind the same ligand).

Protein targets predicted to bind known drugs
To link small molecules from MSDChem to chemical

compounds in DrugBank, we used JChem to perform an all-

against-all comparison of the SMILES strings from both databases

(Table 1). This linking allowed us to predict 297 proteins that are

likely to bind a known drug from DrugBank or a compound

similar to it (i.e., with a Tanimoto score of at least 0.9); 143 of these

targets were predicted to have a binding site for a known drug (i.e.,

a Tanimoto score of 1.0). Next, we outline two predictions that

make sense in the light of the known antiprotozoal activity of the

corresponding drugs.

Our pipeline correctly predicted that the known antiprotozoal

drug Trimethoprim (DrugBank identifier DB00440) interacts with

a dihydrofolate reductase (UniProt identifier A1QV37) in

Mycobacterium tuberculosis. Trimethoprim is a pyrimidine-like

inhibitor of dihydrofolate reductases that acts as an antibacterial

agent and has weak antimalaria activity [57]. Moreover, our

predictions suggest that Trimethoprim might also inhibit a

dihydrofolate reductase from M. leprae (UniProt identifier

Q9CBW1), given that its binding site is 93.3% identical in

sequence to that of dihydrofolate reductase from M. tuberculosis

(Figure 3A).

In a second example, our predictions shed light on the

molecular mechanism of aroyl-pyrrolyl-hydroxyamides, a class of

histone deacetylase inhibitors, which have previously been

reported to have antileishmanial activity [58,59]. Although the

structure of Leishmania major’s histone deacetylase is unknown

(UniProt identifier Q4QCE7), it can be modeled using the

structure of the human histone deacetylase as a template (sequence

identity is 36.0%). Using the ligand binding site prediction

protocol of AnnoLyze, we predict a binding site for SSH

(octanedioic acid hydroxyamide phanylamide) in the human

histone deacetylase (PDB identifier 1t64A), as found in the Aquifex

aeolicus histone deacetylase (PDB identifier 1c3sA). The coverage

and sequence identity of the binding site for SHH, which is an

exact match to the drug Vorinostat (DrugBank identifier

DB02546), was 100.0% and 90.9%, respectively. Thus, our

predictions suggest molecular details of Vorinostat’s mechanism

of action as an inhibitor of L. major histone deacetylase (Figure 3B).

Experimental testing of targets Q8I4S1 and Q9CBZ0
Two additional predicted drug targets were used to test our

computational methods using NMR spectroscopy: (i) a putative

thymidylate kinase from Plasmodium falciparum (UniProt identifier

Figure 2. Genome coverage by comparative protein structure models versus the number of targets with at least one predicted
binding site for a small molecule. Pie charts for each of the ten target genomes indicate the percentage of targets with at least one model above
and below the accuracy threshold (i.e., MODPIPE quality score 1.0) in the green and red colors, respectively. The total area of each pie chart is
proportional to the corresponding genome size.
doi:10.1371/journal.pntd.0000418.g002
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Q8I4S1) predicted to bind Zidovudine (a nucleoside reverse

transcriptase inhibitor) and (ii) a nucleoside diphosphate kinase

from M. leprae (UniProt identifier Q9CBZ0) predicted to bind

Fludarabine (a DNA polymerase alpha, ribonucleotide reductase

and DNA primase inhibitor). Both targets were selected based on

the feasibility of NMR experiments (i.e., protein shorter than 250

amino acid residues in length), non-trivial modeling (i.e., the target

and the template were globally aligned with less than 75%

sequence identity), and non-trivial prediction of the ligand (i.e.,

using only similarity matches).

Thymidylate kinases (TMPK) catalyze the reversible phosphor-

ylation of deoxythymidine monophosphate (dTMP) to deoxythy-

midine diphosphate (dTDP) and are essential for the survival of

the organism. In particular, the TMPK from P. falciparum was

recently expressed and biochemically characterized in terms of its

molecular affinity to several substrates and appears to be a good

target for drug discovery, especially for binding to purine-based

inhibitors [60]. We predicted that TMPK from P. falciparum binds

ATM (39-azido-39-deoxythymidine-59-monophosphate). ATM is

highly similar to Zidovudine, which lacks only the 59 monophos-

phate of ATM. Zidovudine is a dideoxynucleoside that prevents

the formation of phosphodiester linkages needed for the

completion of nucleic acid chains. It has been used as a potent

inhibitor of HIV replication, acting as a chain-terminator of viral

DNA during reverse transcription. An experimental structure of P.

falciparum TMPK is not available, but can be predicted by

comparative modeling based on 41% sequence identity to a known

structure of the yeast TMPK (PDB identifier 3tmkA). 3tmkA also

has a predicted binding site for ATM, which was transferred from

another crystallized structure of yeast TMPK (PDB identifier

2tmkA).

Using NMR Water-LOGSY and STD experiments, we have

tested the binding capacity of both ATM and Zidovudine to the

surface of P. falciparum TMPK. In the Water-LOGSY experiments,

the large bulk water magnetization is partially transferred via the

protein-ligand complex to the free ligand in a selective manner. As

a consequence, the resonances of the ligand have a sign opposite to

that of non-interacting compounds; their signal also appears

stronger. To test the applicability of the Water-LOGSY

experiment to P. falciparum TMPK, we tested glucose as a negative

control (i.e., non-interacting ligand) and dTMP as a positive

control (i.e., a known ligand for TMPK), resulting in the expected

negative and positive interacting signals, respectively (Figure 4A).

With this validation in hand, similar experiments were performed

with ATM and Zidovudine. Both ATM and Zidovudine result in

positive Water-LOGSY signals, confirming their predicted

interaction with P. falciparum TMPK. The results were further

validated by the positive signals in the STD spectra that are better

Figure 3. Examples of known antiprotozoal drugs detected by our method. (A) Trimethoprim drug predicted to bind M. leprae
dihydrofolate reductase (UniProt identifier Q9CBW1). (B) Vorinostat drug predicted to bind L. major histone deacetylase (UniProt identifier Q4QCE7).
The original PDB structure with the ligand bound is shown in blue; the transferred binding site in the template structure is shown in green; and a
comparative protein structure model of the target sequence is shown in magenta.
doi:10.1371/journal.pntd.0000418.g003
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suited for detecting interactions between strong binders and

proteins.

Nucleoside diphosphate kinases (NDK) have major roles in the

synthesis of nucleoside triphosphates other than ATP. In

particular, the NDK from M. leprae was predicted to bind cAMP

(adenosine-39,59-cyclic-monophosphate). cAMP has a similar

structure to the known drug Fludarabine, which inhibits DNA

synthesis and has been used in chemotherapy for the treatment of

hematological malignancies. We built a comparative model of M.

leprae NDK based on 58% sequence identity to the NDK form

Thermus thermophilus (PDB identifier 1wkjA). 1wkjA has a predicted

binding site for cAMP, based on its similarity to Myxococcus xanthus

NDK (PDB identifier 1nhkR), which is known to bind cAMP.

As for TMPK, we used Water-LOGSY and STD experiments

to determine whether or not cAMP and Fludarabine bind to the

surface of M. leprae NDK. For this target, glucose and GDP, a

known NDK ligand, were used as negative and positive controls,

respectively (Figure 4B). The Water-LOGSY experiments showed

an almost undetectable interaction, between cAMP and NDK.

This finding was confirmed by the STD experiment. However,

neither of the experiments resulted in positive signs in the NMR

spectra of the interaction between Fludarabine and NDK,

invalidating our prediction.

Discussion

Identifying targets and lead compounds that have good odds for

surviving clinical trials is one of the most challenging tasks facing

the pharmaceutical industry. This challenge is particularly urgent

in the neglected disease context where the upstream end of the

development pipeline is in danger of drying up [1]. Here, we have

introduced a new computational pipeline that generates compar-

ative models of input protein sequences, the location of small

molecule binding sites on these models, and the types of

compounds that bind to them. We have applied this pipeline to

ten complete genomes of pathogens causing neglected diseases and

the set of compounds in the DrugBank database, which contains

both known drugs and related molecules. Using NMR spectros-

copy, we have also experimentally tested two predictions,

validating one of them. The high efficiency and coverage of our

computational methods is particularly important for tropical

disease research, where commercial markets are too small to

support conventional patent-based research models. Identifying

new protein targets and previously developed drugs that interact

with them have the potential of greatly simplifying experimental

validation of these new targets, lead optimization, and clinical

trials. Moreover, our approach can lead to characterizations of the

mechanism of action of already known drugs. Because tropical

diseases affect millions of people, the stakes could not be higher.

A total of 68,877 protein sequences encoded by ten genomes

were input into MODPIPE, resulting in models for 11,714 (17%)

target sequences that were estimated to be sufficiently accurate for

predicting the location and type of binding sites on their surfaces.

With these models in hand, AnnoLyze, our binding site prediction

program, was able to predict a binding site for a small molecule on

3,499 potential targets, of which 297 were predicted to bind a

molecule similar to a known drug, including 143 predicted to bind

a known drug. These protein targets, available through the TDI’s

kernel web site (http://www.tropicaldisease.org/kernel/), can be

regarded as ‘‘low hanging fruits’’ for drug discovery in tropical

diseases.

Using NMR spectroscopy, we have experimentally tested

whether or not two of these targets actually bind their predicted

drug ligands. While our experiments have not tested for either

binding site localization or binding affinity, they do confirm that

the drug Zidovudine indeed interacts with a P. falciparum

thymidylate kinase. In contrast, the prediction of the binding of

Fludarabine to M. leprae nucleoside diphosphate kinase was

invalidated. This prediction was based on the relatively low

conservation of the predicted binding site (75% sequence identity

between the binding site residues in the template and target),

indicating that such predictions should be treated with caution.

The key contribution of this work results from the structural

analysis of putative binding sites in the surface of protein structure

models of genes from ten organisms that cause tropical diseases.

However, it is not clear how to assess the false positives and false

negatives rates for our computational method based on the

existing experimental information. Our understanding of errors in

comparative modeling [9] and in similarity-based transfer of

functional sites between homologs [4], combined with the limited

experimental validation reported here, suggests that a useful

fraction of predictions are correct. We urge other investigators to

donate their expertise and facilities to validate our many

predictions, within the open source context.

The main goal of our exercise was to narrow down the number

of targets and identify their putative ligands for experimental

follow-up, so that the overall process is faster, more thorough, and

less expensive. We see the TDI kernel only as a beginning. For

example, our methods not only predict plausible ligands for a

target, but also localize the binding site on the surface of the

protein, a necessary step for further leveraging our results for

optimizing the lead compounds by a combination of computa-

tional and experimental methods, such as computational docking,

site-directed mutagenesis, and synthetic chemistry. We also

recognize that the kernel’s list of ‘‘hits’’ does not even remotely

exhaust the ten target genomes. Researchers who want TDI to

investigate additional candidates (whether or not previously

published) should contact us or engage in online discussions

(http://www.thesynapticleap.org). Moreover, our TDI and TSL

web sites provide a full suite of Web 2.0 tools for disseminating the

kernel for further annotation.

It would be counterproductive for TDI to patent or otherwise

seek intellectual property rights in these discoveries. Of course,

there is no guarantee that others do not claim such rights. For

example, some of the drugs in DrugBank may be the subjects of

patents. Nevertheless, the existence of unpatented targets and at

least some unpatented compounds will give sponsors bargaining

power in negotiations with patent owners, if they demanded

Figure 4. Experimental validation of two predicted target-ligand pairs. (A) P. falciparum thymidylate kinase (UniProt identifier Q8I4S1)
interactions with dTMP, ATM and Zidovudine. (B) M. leprae nucleoside diphosphate kinase (UniProt identifier Q9CBZ0) interactions with GDP, cAMP
and Fludarabine. Structures colored as in Figure 2. Each NMR spectrum shows a detail of the aromatic region for the interacting molecules, the
bottom spectra corresponding to the reference 1D 1H experiment (black line). In this experimental setting, a non-interacting compound results in
negative resonances in the Water-LOGSY experiment and no signals in the STD spectrum. In contrast, protein-ligand interactions in the Water-LOGSY
(magenta line) are characterized by positive signals or by a reduction in the negative signals obtained in the absence of the protein (reference
spectrum, grey line). In the STD experiment, a positive interaction is recognized by the presence of positive signals (green line). Signals marked with
an asterisk arise from exchangeable protons, and although positive, do not indicate an interaction between the protein and the ligand, as they also
show the same behavior in the absence of protein.
doi:10.1371/journal.pntd.0000418.g004
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excessive royalties. The net result will be to reduce the royalties

that patent owners can charge and sponsors must pay.

Many open source licenses contain ‘‘viral’’ terms, which limit

users’ ability to seek intellectual property of their own. In the case

of drug discovery, however, such strategies are likely to be

expensive and, in some cases, legally dubious [61,62]. Neverthe-

less, these obstacles are not fatal and one can imagine schemes in

which discoveries are embargoed for months or years, so that

access is limited to those who promised not to seek patents of their

own [63]. We have decided against trying to impose a viral

condition on subsequent researchers. First and foremost, open

source requires as many workers, volunteer and commercial, as

possible, implying minimal restrictions on the data, including viral

terms. Second, at least some of the organisms included in the

kernel (e.g., M. tuberculosis) have potential commercial markets large

enough to offset a fraction of sponsors’ R&D costs. Nevertheless, it

is still possible that an unscrupulous corporation, for example,

could try to patent trivial improvements to the kernel. This,

however, seems unlikely in the impoverished world of neglected

disease research, at least for the immediate future. In the

meantime, we prefer to leave the question open until open source

collaboration has been firmly established. That will put the final

responsibility where it belongs – with the volunteers whose labor

and insights we are depending on to turn TDI’s kernel into safe,

effective, and affordable cures.
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