
UC Irvine
ICS Technical Reports

Title
Rapid software prototyping

Permalink
https://escholarship.org/uc/item/217238b5

Author
Smith, David Andrew

Publication Date
1982-05-12

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/217238b5
https://escholarship.org
http://www.cdlib.org/

2L

ds
hQ- ///

__Rapid Software Prototyping

by

David Andrew Smith
' !
i^n

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in Information and Computer Science

Computer Science Department
University of California
Irvine, California 92717

Technical Report Number 187
May 12, 1982

This work was supported in part by the Defense Advanced
Research Projects Agency of the United States Department of
Defense under contract MDA-903-82-C-0039 to the Irvine
Programming Environment Project, The views and conclusions
contained herein are those of the author and should not be
interpreted as necessarily representing the official
policies, either expressed or implied, of the Defense
Advanced Research Projects Agency or the United States
Government„

(C) Copyright 1982, David Andrew Smith, All Rights Reserved

DEDICATION

To John David Smith and Minnie Louise Elizabeth Smith,

my father and mother.

11

CONTENTS

ACKNOWLEDGMENTS B»oo®«oeooo«»ooooooo V

ABSTRACT vil
CHAPTER i: INTRODUCTION. = 1

DEFINITION AND MOTIVATION, 1
AN EXAMPLE o,,,,,,,,,©,,©,,,*©®, 2
BENEFITS OF RAPID PROTOTYPING. , ..,,.© © © . © 3
SELECTION OF AN APPROACH 5
SCOPE OF THIS THESIS , , © , . ©•© . © © . © . © . » 8

CHAPTER 2: PRINCIPLES OF RAPID PROTOTYPING 14
MOTIVATIONS FOR RAPID PROTOTYPING. .©,.©©,.© 17

The Software Lifecycle, „,..o .©©,.». . 17
Improved Feedback to Requirements Analysis, © . . 19
Validation of Novel Designs 20
One-Time Applications ,,.„,, © ©,©©,, © 22
Rapid Prototyping During Maintenance© „.©©.© 22

WHAT TO SACRIFICE FOR RAPID PROTOTYPING. ,.©..© 23
Efficiency ©o©,,,®,,©©©©©©©©©©© 23
Scope of Problem Size ,„©,,,.©,©©©©© 24
Functional Capability ©.,,,.,©..©,©. 24

CHAPTER 3; METHODS OF RAPID PROTOTYPING. ,„©.©.© 26
EXAMPLES OF RAPID PROTOTYPING. ,,..,,©.©©. 27

Automated Flight Service Station, 27
Custom Microprogram Assembler ©..©...©©. 32
St© Lawrence Seaway Traffic Control System, © © . 35

METHODS OF RAPID PROTOTYPING©©,©©. 36
Reduction of Scope, ,.©,,©.© © 36
VHLL's and Program Generators ©©,,,,©©©© 38
Reusable Software .,©,©©,.©...,©»= 38
Simulation© ©©©©©©o©©©©,,©©©©©© 39
Reconfigurable Test Environments, .©©©,©,© 40

RAPID PROTOTYPE PROGRAMMING. ©©,,.,„©,©.. 41
CHAPTER 4; RAPID PROTOTYPE PROGRAMMING ENVIRONMENT . , 42

THE TARGET LANGUAGE, ADA ©©©,©©,,.©©©.© 43
PROTOTYPE DEVELOPMENT IN CASTOR, ©©,„,©©«©© 46
SWITCHING CONTEXTS DURING PROBLEM SOLVING. © , © . . 47

Calling Forms in Castor ©©©©..©..©..© 47
Aide Management of Calling Forms© ,„,©©©.. 49

PROGRAMMING BY REFINEMENT© 51
Program Attachments , © © © © © © © © © © © © « © 56

AN EXAMPLE; THE EIGHT QUEENS PROBLEM, ©,©©.©© 64
CHAPTER 5.; THE USE OF CALLING FORMS© ,,©©,,©©© 69

CALLING FORMS ©o©,,©,©©©©©©©©©©©©® 69

111

Ij0xicsl Cori'SxdGjrstxonSo o © • • o • » » © © © © © VI
Subprogram Calling Forms. 74
LanguagG Extonsion© ©©©©©©©oooeoooo 75
Programming Worlds© „..,©..© © © © © © . » 77
Program Transformations .©.©..©©©©©©• 78

THE USE OF PARAMETERS© © „..,©.,©©©..© © 79
SELF"REPLACING FORMS ©©©••©.©.©e©©©©© 81
CALLING FORM MACRO EXPANSIONS© „©...©..©©. 87

Macro Definitions © .©...© ..©,.©©. © 88
Data Types Used In Macros 89
Syntactic Validation Of Macro Expansions, , © , © 91
Generating Program Fragments,©.©... 92
Substituting Into Program Skeletons ,,,.©,, 93
Aggregates of Nodes ©.„,©,.©©,,©©». 95
Additional Features . . © © © © . . © 98

PROGRAMMING WORLDS ©.©,,©©.©.©..©©.© 101
CHAPTER INTERACTIVE PROGRAM MANIPULATIONS © © , . . 108

EXPLOITING DATA TYPES© 109
Reducing Verbosity of Data Types, 110
Type Checking •©©©©©•©©•©©©o©©©© 112
Uniform Notation© ©©©©.©.,©,©©©©.. 113

INTERACTIVE PROGRAMMING CONSIDERATIONS ©©©.©,© 118
Automatic Command Completion, ,„©©„©©,,© 118
Deeply Nested Calling Forms „,©©.©,„©,© 119

CHAPTER 7.* RELATED WORK© ©©©©©©©©©a©,©©© 120
PROGRAM DESIGN LANGUAGES ©,©©,.,©,,.,©, 120
ANNOTATION OF PROGRAMS ©,,©©©,©.©,©©., 122
INTERACTIVE DESIGN SYSTEMS ©©,©©©©©©©.©, 123
TRANSFORMATION SYSTEMS ,©,©©,©,©©©©©,© 126
VERY HIGH LEVEL LANGUAGES, ,©,.©...©©,©, 128

CHAPTER 1: CONCLUSIONS AND DIRECTIONS FOR FUTURE WORK, 130
RAPID PROTOTYPING© © ©©©©©©,,©©.©©©© © 130

CASTOR AS A PROGRAM DESIGN LANGUAGE, .©,©.,.© 132
THE ADA PROGRAMMING LANGUAGE ©©,©©,©,©©,, 135
SPECIFICATIONS ©©©©©©©©©©©©©©©©a©, 137

BIBLIOGRAPHY ©©©©©©©©©©©©©©©©©©©©e© 138
APPENDIX At AN EXAMPLE OP RAPID PROTOTYPING. . © © © © 144

OBJECTIVES OF THE PROTOTYPE, .,©.©©©©,,©© 145
A SET OF FUNCTIONS TO SELECT FROM© .©.©©,,., 147
THE MODEL SYSTEM ©©e©©©,©©©©©©©©©©© 150

Basic Concepts© ©©o©,©©©©©©©©©©©© 151
File Management Commands© ©©©,©,©©©,©, 152
Document Templates ©. ©©,©,.©©©.©©©©, 154
Editor Commands ©o©©©©©©©©©©©©©©© 154
Alarm Functions ©©©©©©©©©©©©©©©o© 155
Document Forms In The Model System© ,©©©,©, 156

FUNCTIONS SELECTED FOR THE PROTOTYPE ,©.©©©©. 160
THE TOP LEVEL OF THE PROTOTYPE ©©.©.©©.©©© 161
A REFINEMENT OF THE PROTOTYPE© ©,©©©,,.,,© 164
MODULARIZATION OF THE PROTOTYPE. © , © © © 170
USE OF MACROS IN THE PROTOTYPE ©©©©,©©©©,© 173

IV

ACKNOWLEDGMENTS

I V70uld like to thank Tim Standish^ ray advisor, for his

guidance, technical advice, and meticulous reading, and

particularly for his continuous patience and enthusiasm

which made completion of this work possible.

I would also like to thank the members of my committee.

Rick Granger and Dennis Kibler, for their reading and

helpful suggestions.

I would like to acknowledge the implementors of the

first DCI experimental interactive Ada system. Without this

system built by Preston Bannister, Dan Eilers, John Long,

Tami Taylor, Stephen Willson, Kathy Velick, and Steve

Whitehill, the implementation of Castor would have been

physically impossible, A full-screen editor written in Ada

by Scott Ogata was used as the basis for the editor

component of the prototype "electronic office" described in

the appendix.

Jim Meehan has made available a powerful set of tools

in the UCI LISP/MLISP system. He has provided me with

consistent, personal help with the system on many occasions.

V

This work was accomplished while I was a Member of the

Technical Staff and a Staff Engineer of the Hughes Aircraft

Company, Ground Systems Group, and a holder of a Fellowhsip

under the Hughes Staff Doctoral Fellowship Program. I also

received support on Professor Standish's National Science

Foundation Grant MCS75-13875 entitled "Interactive Program

Manipulation." Computer time for the development of Castor

was provided by the Irvine Programming Environment Project,

under DARPA contract MDA903-82-C-0039.

I am grateful to Debra, my wife, and to Ronalyn Choco

for their assistance in proofreading the manuscript.

I feel it is proper to acknowledge the hand of the Lord

who has blessed me temporally and with needed inspiration

during -this time.^^.p

VI

ABSTRACT

Rapid Prototyping is an approach to software
development which emphasizes quick implementation of a
working program. This dissertation makes two principal
contributions. First;, it provides concepts, techniques, and
a philosophy of Rapid Software Prototyping and characterizes
the benefits and limitations of its use. Second, it makes a
contribution to programming environments which support Rapid
Prototyping, An experimental language. Castor, is described
which was implemented to validate this approach in the
prototyping of Ada programs*. The following summarize the
main results of this research;

1. A statement of the purpose and value of Rapid
Prototyping; Rapid Prototyping provides accelerated
feedback to the early stages of analysis in the
software lifecycle. This can be of great benefit when
there are areas of risk that only experience with a
working system can resolve.

2. A statement of the limitations of Rapid Prototyping;
Rapid Prototyping cannot show the behavior of the final
system in all respects. Careful planning is therefore
necessary to determine the objective of the prototype
and what sacrifices can be made in areas of low risk.

3. Techniques for Rapid Prototype Programming: Castor is
both a Program Design Language (PDL) and an
implementation language. The PDL nature of Castor
arises from the use of free form descriptions called
"calling forms." An agenda of undefined calling forms
is provided interactively. Contributions in this area
are that;

a) Castor implements a refinement paradigm for the new
language, Ada;

*) Ada is a trademark of the United States Department of
Defense,

Vll

b) Castor macro facilities are easy to learn and
remember;

V-"'' * • ' ^

C - - r"^j

c) the Casto'f macro language is independent of the
underlying program representation„

A stock of ideas for an "Ada laundry"; An Ada laundry
allows the user to relax temporarily the rules of pure
Ada. This helps compensate for aspects of Ada which
orient it more toward long program life than short term
ease of expression.

Castor was used to build a prototype of moderate size
which is described in an appendix.

Vlll

CHAPTER 1

INTRODUCTION

DEFINITION AND MOTIVATION

Rapid Software Prototyping is an approach to software

development v/hich emphasizes quick implementation of a

working program. Software Prototyping is a valuable tool

for the same reasons that prototyping is important in other

fields of engineering a prototype gives the system users

and implementors experience with a working version of the

proposed system at an early point in the development cycle.

This early feedback makes it possible to adjust, it

necessary, the system concepts and goals before large

investments have been made in a production—quality

implementation. As a software development tool. Rapid

Prototyping can reduce wasted implementation effort and can

help make the final product more responsive to the user's

needs.

AN EXAMPLE

To illustrate this process, consider how one might

develop software for a desk-top computer to automate the

data handling normally done on paper in a business office.

One is given a statement of functional requirements stating,

for example, that the system must manage meeting agendas,

appointment calendars, telephone number lists, and so on. A

specification would then be developed, possibly in

conjunction with the users, defining basic data structures,

operations, and patterns of interaction between the computer

and its operator. Supposing this to be a new application,

we may perceive a certain amount of risk in whether or not

the requirements statement has correctly captured the true

needs of the prospective users and whether the system we

have specified will meet those needs.

We can use prototyping to respond to these perceived

risks by implementing a working system or subset of the

system as soon as possible to get user feedback. We could

do this using a high-level, interactive language on a host

timesharing system separate from the required target

machine. This host system could be exploited in a number of

ways using, for example, its virtual memory, its file

system, its inter-user communication features, and other of

its utilities, as required. By cutting corners and perhaps

by implementing a subset of the system functions —

appointment calendars and telephone number lists, for

example — we could expose users to behaviors of the

intended system at a very early point in the development.

The users could then evaluate the prototype by using it

on real or typical problems. They would be able to assess

the effectiveness of the user interface and the functions

provided and possibly they would discover unanticipated

problems with the system in actual use. The users would

also be in a good position to evaluate whether the system

requirements had been adequately captured and correctly

articulated. Using a prototype, this valuable experience is

gained before embarking on further and usually costly steps

of design, review, and documentation -- practices required

for a product v^ith significant implementation constraints

and a long expected maintenance lifetime. And the risk has

been reduced that the user might not like the final system

or might find that it doesn't serve his needs adequately.

BENEFITS OF RAPID PROTOTYPING

We view Rapid Prototyping as a means of reducing risk

in a software development. There is, of course, no way to

eliminate all uncertainties before actual completion of a
n - - r^'i

system. However, in a novel system there may be certain

areas of particular uncertainty or risk. We may have new

algorithms or hardware devices, new modes of user

4

interaction^ or the introduction of computer usage into a

previously unautomated environment= We may be uncertain

whether system requirements have been articulated correctly

or v;hether a system built to given specifications will

actually meet the user's needs. What is more, actual

introduction of the system into its new environment may

significantly change the environment.in unforseen ways.
O •• - O

In summary, there are times when it may pay to observe

and experiment with the behavior of the system. Careful

formulation of requirements, specifications, and design are

important. But behavioral feedback may reveal information

that is difficult to discover by analysis of a static system

description. This is particularly so when the user is not

trained to understand technical system descriptions. In the

traditional lifecycle model — v^hich in many cases is firmly

embodied in procurement policy — this behavioral feedback

becomes available only at the end of a lengthy development.

Rapid Prototyping is a way of shortening this feedback path

in key risk areas before large investments have been made in

the development.

The experience gained in building a system prototype

can also be applied profitably during full-scale

implementation. The prototype can serve as a vehicle for

experimentation and learning if the same implementors are

involved in the follow-on work. Prototyping techniques may

also prove useful for exploring alternative problem

solutions or providing quick solutions to one-time problems.

We note that there is growing recognition of Rapid

Prototyping as an important research area in computer

science. For example, as of this writing a Workshop on

Rapid Prototyping has been held by ACM SIGSOFT and the

National Bureau of Standards [Workshop 82a, Workshop 82b].

Rapid Prototyping has also been mentioned as a potential

thrust area for the Software Technology Initiative being

examined for possible sponsorship by the Deputy

Undersecretary of Defense.

SELECTION OF AN APPROACH

In order to restrict the problem area which our

research addresses we have chosen to investigate Rapid

Prototyping systems which have the following

characteristics. A Rapid Prototyping system musts

1, provide the earliest possible behavioral feedback by

creating executable system descriptions early in the

software lifecycle;

2. provide the means, to achieve a smooth, practical

transition from initial system descriptions into

executable Ada programs;

6

3. minimize the difficulty of learning hov7 to use the

system; and

4. provide a rapid, powerful programming capability V7ith

the ability to trade off ease of expression for program

performance„

A variety of available approaches satisfy these

characteristics and each approach has particular research

issues and background literature., ' Among these approaches

ar e:

Software Reuse. This includes the technical issues

of describing and cataloging software components.

Also of concern are mechanisms for retrieving and

composing components and integrating them to solve a

given problem.

Parameterized System Generation. When a class of

programs is well understood, it is sometimes possible

to view thGm as specialize.d instances of a common

abstract model. Such programs can be automatically

generated, given a set of appropriate parameter

values.

Programming By Refinement. This general purpose

approach is to provide a tool set for supporting

program development by stepwise refinement„ This can

be done to aid fast design and implementation or

instead can emphasize the structuring and recording

of decisions for later use during program

maintenance o

Investigating all of these technical approaches would be too

broad an undertaking for a doctoral dissertation»

Consequently, in this thesis we have chosen to investigate

only a system of the last kind, providing the ability to

write high-level program designs and then refine them easily

into executable programs.

Thus our technical approach is aimed at finding a

prototyping a system that is easy to use, yields executable

results rapidly, offers expressive power and flexibility,

produces executable programs in Ada, and supports

programming by progressive refinement.

In considering the above system characteristics it is

apparent that any technology that is useful for rapid

programming may also be of benefit in Rapid Prototyping.

The converse is not necessarily true, however. Our

requirement for programming power and flexibility may not

always be compatible with good program structure,

documentation, and maintainability. Naturally these are

important considerations, but they are not as important in

Prototyping as when a program is to be documented and

maintained for a long period of time„

SCOPE OF THIS THESIS

This thesis makes two principal contributions. First,

it provides concepts, techniques, and a philosophy of Rapid

Software Prototyping and characterizes the benefits and

limitations of its use. Second, it makes a contribution to

programming environments which support Rapid Software

Prototyping.

The first part of this thesis establishes what Rapid

Prototyping is and shows v/hat can be expected from its use.

We claim that Rapid Prototyping is a valuable practice,

where appropriate, and has an important role to play in the

software lifecycle. Chapter 2 discusses the need for and

the usefulness of Rapid Software Prototyping. Chapter 3 is

a discussion of prototype design methods, partly in the form

of case study examples. The reader wishing to develop a

more intuitive concept of software prototyping may find it

helpful to read these examples before proceeding with

Chapter 2.

The remainder of the thesis is concerned with

programming environment issues in support of Rapid

Prototyping. Our technical approach is based on using the

power and flexibility of Program Design Languages (PDL's)

for both design and implementation» PDL's have been

available in the industry for a number of years as

semi-formal software design aids and are finding

increasingly widespread use [Caine 75, Waugh 80, Hart 81],

Although PDL's resemble programming languages, there is in

practice no formal link between the PDL representation of a

program and its final implementation„ Our approach is to

integrate the PDL and the implementation language so that a

program can be progressively .transformed from one

representation to the other. This approach is of particular

benefit in prototyping because it minimizes the cost of the

transrition step^^ofrom design to' implemerita'tion „ If a small

amount of design work is appropriate before launching into

the detailed implementation, it can be expressed without

digression in the same medium as the rest of the

development. If the design itself is quite involved, the

system will hold the entire design data base and will manage

its progressive refinement into an executable program.

The system also participates in the refinement process

by helping the user manage an agenda of the prototype

development. This is not a technologically difficult

function to perform, but as an interactive aid it is quite

helpful for quick assessment of the current status and for

planning the remaining work to be done.

10

These concepts have been implemented in an experimental

Rapid Prototype Programming environment. This system

supports a language called Castor which is an extension of

Ada. The following are the main system features which

support the goals described above:

lo tpr g911ipg forms. These are the main syntactic

extension of Ada and give Castor its dual nature as a

programming language and as a PDL, A calling form is a

descriptive program element with parameters and can be

used in place of a type, a declaration, a variable

name, an expression, or a statement. Refinements are

performed by the user to transform a Castor program

into an executable Ada program. A calling form may be

refined by providing a suitable procedure or function

definition, by providing a suitable macro definition,

or by replacing it with more detailed program text.

2, MadfOg. These are used when a refinement is to be

given for a calling form used as a type, a declaration,

or a variable name. They may also be used for

expressions or statements where an Ada function or

procedure is not applicable — for example, if the

calling form represents a novel control structure with

statements as parameters. A macro facility for a

highly structured language such as Ada requires

11

consideration of a number of issues, including

representation of macro definitions, representation of

program fragments, and provision for access to the

symbol table and the actual parameters supplied in a

macro invocation. Macro definitions are written in

Castor itself with suitable built-in data types and

primitive operations. Program fragments are specified

in terms of the source language. This involves some

overhead of lexical scanning and parsing during macro

expansion but makes it possible to guarantee syntactic

validity of the resulting program using limited local

checking. This also makes the macro language

independent of the underlying representation of

programs in the system, A number of special functions

are provided for interrogating the symbol table and

examining a macro's actual parameters.

3, Repregentation. fii refinements. The system employs a

mechanism of program attachments for representing the

accumulation of multiple program refinements. This

makes it possible at any time to look back at the state

' 'Of the progpsim prior to any given refinement,

4. Definition checking. The system also provides a

limited capability for static analysis of the current

state of a program for occurrences of undefined calling

12

formsp variables^ types, packages, and exception names=

This is for use in obtaining an agenda of work to be

done in further refinements.

To give a brief idea of the use of calling forms, let

us suppose we wish to write a procedure which operates on a

binary tree with an integer at each node. This procedure is

to be given a non-empty tree and is to set the value at the

root to the maximum value among all the leaves, provided

that is greater than the current value at the root. We

might write such a procedure as follows:

procedure Maxleaf (T: Binary Tree Of (Integer)) is
begin

For Each Leaf (L) Below (T) Loop

If. Value At (L) > Value At (T) then
Value At (T) 1= Value At (L);

end;

end;

This example shows calling forms used in place of a type

name, "Binary Tree Of (Integer)," a variable name, "Value At

(X)," and a control structure, "For Each Leaf (L) Below (T)

Loop begin ... end." The use of calling forms is described

further in Chapters 4 and 5,

Chapter 4 is a description of the environment

considerations for Rapid Prototype Programming. Calling

forms are introduced here along with our notion of

13

refinement and the concept of program attachments» Chapter

5 is a more detailed discussion of the use of Castor calling

forms, particularly pertaining to the definition and

expansion of macros„ Chapter 6 discusses some of the

interactive issues in Rapid Prototype Programming, with

particular attention given to the issues of verbosity and

clarity in the language. Chapter 7 discusses some of the

literature which is related to Rapid Software Prototyping,

and Chapter 8 presents conclusions,and suggested directions

for future work.

Appendix A shows how the principles described in this

thesis can be applied in a prototype development of moderate

size. The subject Is a prototype for an "electronic office"

that is, a computer system which performs many of the

functions of a business office that are traditionally done

with paper. This prototype was about a thousand lines long

in final form and required an estimated three to four

man-weeks for design and implementation.

The Castor system is an extension of an interactive Ada

programming environment written at Irvine, This system

provides a parser, a pretty printer, and an interpreter for

a subset of Ada, as well as a number of other experimental

tools. The system and its Castor extensions are written in

UCI MLISP, with the Castor extensions consisting of about

three thousand lines of MLISP code.

CHAPTER 2

PRINCIPLES OF RAPID PROTOTYPING

"Rapid Prototyping" is a comparatively new term in

connection with software engineeringo To help establish

what it means^ it is helpful to compare the concept of

software prototyping with prototyping as used in other

engineering disciplines.

The prototype of any engineered artifact is a first

working model or version of the artifact. It may not have

all the polished features that later versions will have, but

it is built in order to validate the principles upon which

later models will be based. Particular attention is paid to

those features whose realization is most uncertain in the

final model — whether it will indeed perform a novel

function or will perform a set of known functions in

concert.

Frequently in engineering a series of prototypes will

be built while refining the technical approach to a problem.

Each version suggests improvements which can be made in the

next design, either with regard to functional performance or

producibility, Usually producibility is a minor

14

15

consideration at first, and fabrication of the initial

prototypes is quite different from that of the production

model.

In software engineering the notion of prototyping takes

on a somewhat different meaning^ In particular, there is no

recurring manufacturing effort in producing a program, since

the released version is merely copied as needed. We note in

passing that a kind of "recurring manufacturing cost" may be

associated with specializing a highly parameterized program

(such as an operating system) to various application

environments. As a rule, however, this "recurring" cost is

very much less than the cost of building the parameterized

system in the first place, so the development-intensive

nature of software manufacturing still holds. For practical

purposes, all the efforts of programming are for a

production run of one unit.

To use prototyping in software engineering, we can

write a first version of the program, analyze the result,

and then write a final version of the program. The cost of

writing programs, though, is very high, and it is desirable

to save on the costs of the protoype if there is any

likelihood that the result will be discarded. As described

above, the techniques used in prototyping may differ from

standard producti->G'n techniques. Interestingly though, while

engineers may use more expensive, special tooling and

16

processes in building a prototype, we as programmers wish to

do the opposite. Anticipating the possibility of extensive

revision, we want our prototypes to be cheap to build and

experiment with. Because of this different emphasis, we

call our undertaking not just Prototyping, but Rapid

Prototyping.

A rapidly generated prototype is not just a first

version of the program; it is a cheap version of the

program, or "key" parts of it, built for limited

experimentation. Because of this the prototype only

approximates the production program, and hence there are

limits on the inferences that can be made about the final

version. If the functional requirements specified by the

user are in question, Rapid Prototyping can be most helpful

in demonstrating the specified capabilities in a working

model. If, on the other hand, the efficient performance of

the program is an area of uncertainty, a cheap prototype may

not do much to establish the program's feasibility. In this

latter case, system analysis or simulation may be required,

together with detailed implementation of critical system

components. Although such modeling is a kind of

prototyping, it is not Rapid Prototyping in the sense we

have defined.

We note that a prototype is not to be confused with a

mockup. In engineering practice, the latter is a dummy

17

version which has no functional capability — for example^ a

computer cabinet carved out of wood and covered with

metallic paint„ This can be considered a prototype only in

simulating very csimple properties of the working article —

physical dimensions, appearance, weight, etc. There is no

real correspondence to the mockup in software engineering,

except perhaps as a limiting point where all input/output

behavior is simulated with stored data and no computation

takes place.

MOTIVATIONS FOR RAPID PROTOTYPING

Tiljg. SQftyar^ Litecvcle

A number of models have been proposed for the phases a

program passes through during its creation and subsequent

evolution. It is recognized that these phases are not

necessarily strictly disjoint intervals of time. Still they

represent qualitatively different activities which all take

place. The following set of five stages is typical of

models of this sort:

Rgquirepigntg Analysis This stage of the
program development provides a description of the
needs of the user, • This concentrates on what
functions are to be provided and indicates the
kind of a system that will provide them. The
requirements form the basis for the detailed
specification of the system.

Specification This stage of the program
development establishes precise constraints the
system is to meeto This provides a description of
the precise input/output behavior of the program
and may also constrain the program performance and
resource utilization. In a real sense, the
Specifications constitute a refinement of- the
Requirements Analysis.

Design The design of a program is a first
cut at describing how the program is to perform
its work. Major components of the program are
identified, major data structures and interfaces
are defined, and major algorithms may be
specified.

Implementation In this phase, algorithms are
provided in a given language for the identified
program components so that an executable program
is produced. For our present purpose we consider
this to include the process of testing,
integration, and debugging the program written.

Maintenance This is the conventional name
for the remainder of the software lifecycle after
program release. The term Evolution seems more
appropriate for this phase since, in general, more
programming effort is spent on changing the
functions of programs than correcting errors
[VanHorn 80, Ramamoorthy 79],

18

Feedback is a very important process in this cycle of

development. During any phase it'may become necessary to go

back and modify decisions which were made at earlier stages.

Without realizing this, the above model can be quite

misleading. Since users, specifiers, designers, and

implementors are each fallible, it may eventually become

necessary to revise the work of any of them.

We note in passing that the maintenance phase of a

program may involve incremental replay of any or all of the

19

four developmental activitiesf depending on the scope of

changes that are incorporatedo We also note (for "closure")

that as the four developmental phases are a general problem

solving paradigm, they may be employed recursively for

solving any subproblems encountered within the development.

Improved Feedback Requirements Analysis

Building a software prototype can provide much

accelerated feedback to the Requirements Analysis phase of a

program development. Since the requirements for a program

do not "come from" anywhere, it is very difficult to "check"

them to ensure they are right. It is possible, in

principle, to demonstrate that an implementation satisfies a

design or to show that a design satisfies a set of

specifications or requirements. But to see that the initial

requirements are "correct," the system behavior must be

presented to the user and the user's ^satisfaction must

somehow be measured. In the lifecycle model this is the

longest feedback loop in the program development — from the

final program product to the very beginning. Hence this is

potentially the most expensive design iteration to engage

in „

Rapid Prototyping can provide a means for shortening

this feedback cycle greatly. There may not be cause for

concern if the application is a familiar one, but for a

novel system with a long development time there is a risK of

20

much^-wasted effQ,.r:.; if the system is not what the user really

needs. In a situation involving successive procurement

cycles, this may mean much faster convergence to a

"satisfactory" solution. In a situation where the

development is simply not to be iterated, this may mean a

better, more responsive final product, or may even mean the

difference between a product which is usable and a product

which is not.

Another problem which arises . in the procurement of

large systems is that requirements may be changed "on the

fly," as it were, during the design and implementation

phases of the program. Such perturbation can result in cost

increases and schedule delays, but this cannot be helped

when the alternative is to cancel a multi-year development

or to complete it with an unacceptable product. If one or

more prototyping phases are performed, it may be possible to

stabilize the system goals sooner and protect the final

implementation effort from this kind of disruption.

Valxdation of. Novel Designs

Rapid Prototyping can be used to evaluate alternative

design approaches while limiting the investment which is

risKed. This permits a well-founded, objective decision

about whether an approach is feasible. It may also provide

a quick and handy framework for further tuning.

21

In this same vein^ a prototype program can provide

objective evidence of the real bottlenecks in a process by

the use of dynamic performance monitoring. Experience has

shown that programmers are typically very bad at predicting

where the bottlenecks are in their programs [Knuth 71],

Naturally, the conclusions which can be drawn depend on the

quality and completeness of the prototype. Measuring the

frequency of execution of various program components may

give excellent guidance in choosing which functions to

implement efficiently.

Used in this manner. Rapid Prototyping provides

acceleration of the so-called software learning curve

[Boehm 73]. It is well known that program quality is

improved and that development cost is greatly diminished

when the programmer or programming team has had prior

experience building the same program or type of program.

This is emphasized by the following aphorism attributed to

Ivan Sutherland: "Programs are like waffles — you should

always throw the first one away." This "throw away"

approach amounts to an iteration of feedback to the Design

Phase of the program, analogous to the feedback to

Requirements Analysis described above.

22

One-Time ^EPXic^tj.QPS

Rapid Prototyping techniques can also be envisaged as

helping speed up the completion time on "one shot"

applications. These are programs which are to be written,

run once to get an answer, and then discarded. In such

cases, the cost of obtaining the program results may be

dominated by the costs of writing and compiling it. In this

case it makes no sense to worry much about efficiency, since

the increased cost of developing a highly efficient program

might far outweigh the cost of running an inefficient one.

Rapid Prototyping techniques will be of help in such an

application to the extent that they are also rapid

programming techniques.

Prototyping During Maintenance

Rapid Prototyping may also be useful for major program

modifications during the maintenance and upgrade phase of

the software lifecycle. Maintenance activities frequently

involve partial replay of the design processes due to

changing system requirements. In fact, the more extensive

the modifications, the more the maintenance job constitutes

a redoing of the earlier development phases of the program

lifecycle.

23

WHAT TO SACRIFICE FOR RAPID PROTOTYPING

Our objective is to speed up the process of

implementing a working program„ Since we aim to exceed the

productive capacity of conventional software production

techniques, we must expect to make some sacrifices while

cutting corners. Ultimately we can sacrifice any or all of

the following (in order of increasing distance from the

final production software);

1, Efficiency
2„ Scope of problem size
3. Functional capability

This gives us a rough scale for measuring the degree of

approximation of a prototype.

Efficiency

Efficiency is the first thing we think of sacrificing

when writing a program quickly. This may mean the heavy use

of general procedure calls, ignoring loop optimizations, or

use of language features which are convenient to write but

inefficient to execute. Efficiency can also be traded off

by choosing data structures and algorithms which are easy to

describe and understand, resistinw the impulse to use more

efficient techniques which are more intricate and demand

closer attention to details. If an interactive, interpreted

language environmont is used instead of a compiled language,

this may place limitations on the ultimate run-time

24

efficiency of the program. We may also use generalized

software packages which offer a great savings in programming

time, but which may be less efficient than specially coded

software.

Scope fii Problem Size

Another way to speed development of a working program

is to reduce the scope of the problem to be solved. This

may make a much simpler approacb-to 'the- problem feasible,

simplifying development but placing the full scale problem

out of reach. In such a case, the complexity of the chosen

algorithm may become intractable for larger problems, or

unoptimized data structures may grow beyond the constraints

of the machine size. Great simplification can be achieved

if the use of peripheral storage can be eliminated in favor

of in-core storage. For example, it is far easier to build

a one-pass compiler that builds small procedures in main

memory than to build a multi-pass compiler that will

optimize and cross reference large programs.

Functional Capability

Another way to save time in writing a program is not to

implement everything the program is supposed to do. Instead

of just reducing the scale of the problem, we omit parts of

the solution altogether — these are qualitative sacrifices

as opposed to the quantitative sacrifices described above.

25

Naturally if this principle is applied extensively the

prototype will not be representative of the final product.

The art of engineering prototyping is in implementing just

those features which allow resolution of uncertainties in

the final product; there must be a purpose for building the

prototype, and the functions to be implemented should be

chosen with that purpose in mind. The measure of an

effective prototype, then, is its ability to run meaningful

scenarios of the actual system.

In the Flight Service Station Information System cited

in the next chapter, the prototype used canned weather

information in place of on-line information, served a

reduced number of users, and provided navigational aids for

only a limited area of the country. This was sufficient to

show what a system was like to use, but could not be used

fully by a pilot planning a real trip.

In the next chapter we shall consider this and other

examples in greater depth.

CHAPTER 3

METHODS OF RAPID PROTOTYPING

In this chapter we show a number of different

approaches v/hich can be used in Rapid Prototyping, We begin

with a few examples of the use of Rapid Prototyping in

software development. The first example is a prototype of

an Automated Flight Service Station, This example shows how

system functions can be selectively implemented to get

feedback on important issues — in this case the human

engineering of a user interface and the computational load

of the basic system operations. The second example is a

Custom Microprogram Assembler. This shows hov; great

programming power can be achieved by using existing software

in novel ways. The third example is the St. Lawrence Seaway

Traffic Control System. This shows how a well-structured

program can be significantly abstracted and respecialized

for a new purpose„> In the remainder of the chapter we shall

discuss other techniques for rapid prototype implementation,

including the software component approach, program

generators, simulation, and reconfigurable test

environments.

26

27

EXAMPLES OF RAPID PROTOTyPING

Automated Flight Service Station

Our first example concerns automation of the functions

provided in a ^Flight Service Station (FSS), The Federal

Aviation Administration (FAA) currently operates Flight

Service Stations at airfields across the country for general

aviation pilots — that is, for .pilots of private and

non-scheduled commercial aircraft. It is here that a pilot

gets information he needs for planning a flight and it is

here that he files the flight plan for his trip. Necessary

information includes current weather conditions, local

weather forecasts, general area forecasts, and forecasts of

the winds he will encounter while aloft. In addition he may

receive briefings on navigation aids which may be out of

service or other exceptional flying conditions. A flight

plan is filed with the FAA for safety purposes indicating

the destination of the flight, the route, and the estimated

time of departure and arrival. In the event that the flight

does not arrive as scheduled, this information may be used

to guide search and rescue operations. The pilot may also

be planning a route through a High Density Terminal Area

(HDTA). If so then he must also check appropriate

restrictions and enter a reservation for this restricted

28

airspace„

A proposed" automation of the FSS functions would help

reduce the expense of operating these stations and would

help provide quality service to the increasing volume of

general aviation traffic. One scheme for partial automation

would place a computer terminal in each Service Station for

use by the FSS personnel. This terminal would provide

access to a nationwide network of computers containing

up-to-date information on weather and and flying conditions.

In additionj, flight plans and HDTA reservations could be

entered and would be managed by the computer system.

Complete automation would make the FSS terminal

available to pilots on a self-service basis. While very

desirable from a cost standpoint,- this approach also raises

considerations of safety and usability of the terminal by

pilots unfamiliar with computer equipment. Care must be

taken to check the user's input for consistency and

practicality, just as live FSS personnel would. In addition

the system must be flexible in recognizing the user's input,

give self-explanatory prompting, and print the information

it furnishes in a legible format. These are important

issues affecting the usability of an automated FSS and are

difficult to evaluate in a paper design. This is a case in

which a prototype would make it possible to observe the

system in action, as it is exercised by a variety of users.

29

Pilots who are not computer experts cannot be expected to

evaluate a written description of a computer system, but

given an operational terminal they can objectively evaluate

hov; easy it is to use and whether it serves their needs.

The prototype would also show how users learn to use the

system and would help pinpoint areas of confusion or

ambiguity.

Since an automated FSS terminal puts general computing

pov/er at the disposal of the pilot,, it is natural to ask if

there are other desirable functions which might be provided.

For example, commercial airline pilots are provided with a

computer-printed flight log prior to flight. The log breaks

down the flight into routing segments, giving distances and

estimated flight times. Such a flight log must be generated

for each trip in order to incorporate current information on

the direction and strength of winds aloft. Such a printout

could be generated and printed at an automated FSS using

known information and would be a great convenience,

providing airlino-quality information 'to general aviation

pilots. Pilots are also responsible for the weight and

balancing of their aircraft, and the automated FSS could

also be of assistance in performing these computations.

A prototype of the FSS software described above was

actually built in the course of a study for a proposal to

the FAA [Taylor 81]. This prototype was built to show the

30

system functions as they v7ould be seen by a user, without

the trouble and expense of supporting real-time weather data

or a- large nuj^oer of geographically separated terminals.

This prototype showed what a user would do when requesting

weather and winds aloft data and when calculating and filing

a flight plan. It had commands to make HDTA reservations,

generate flight logs, perform weight and balance

computations, and send messages to various destinations. It

also provided separate modes of interaction for casual users

and expert users, and system commands were implemented for

entering and updating the system data base.

While providing these important functions and

interactive features, the prototype also cut a number ot

corners. Instead of using on-line weather data, a canned

set of data covering a twelve hour period was used.

Furthermore, information on airways and navigational aids

was restricted to the northeast corridor. Only one user

terminal was served, and the entire system was implemented

in an interactive language on a timesharing computer system.

Since the size of the system data base was reduced, it was

possible to place it all in main memory rather than on

secondary storage. This simplified the data management

aspects of the program considerably. The entire prototype

was v^ritten in about two man-weeks and was used in a live

demonstration at FAA Headquarters in Washington, D.C.

31

The prototype described here was also used to measure

objectively the processing load and program size for each of

the functions of the system. Since the prototype was built

using an interpreted interactive language, these figures

were at best estimates for a production-quality

implementation. Still they were objective measures and

showed that a custom design would run at least as fast as

the prototype and could be made to fit in the same space if

necessary.

Care must be taken in extrapolating performance

measurements from a prototype to the final system. In the

current example one would have to be very careful in

predicting the system response characteristics when many

terminals are added and when data files are placed on

secondary storage. This is to be expected since the

prototype was not designed with the purpose of demonstrating

these features. A rapidly generated prototype is not built

to demonstrate all system features and behaviors at once

only a full scale implementation can do that. The main

purpose of prototyping is to verify responsiveness of a

program specification to the real needs of a user.

Predicting system performance is only a secondary purpose,

and prototyping should not be considered a replacement for

careful analysis in this area.

32

Custom Microprogram Assembler

For our next example we consider the development of an

assembler for programs to run on a custom designed

micro-processoro We are given that the micro-processor

architecture has been defined and that an assembly language

is to be specified and implemented. The assembler over its

lifetime v/ill be used in the development of a small number

of programs, each with a size ranging from about one

thousand to four thousand instructions, and the assembler is

to be used by a limited community of users. Advanced

assembler features are desired, but development costs are to

be kept to a minimum.

The approach described below was used to build a

practical assembler with important and useful features

including macrosconditional, assembly, listing control, and

cross ' reference-^'^capability [Allen 76]. This entire design

and development was made in about one and a half man-months.

This includes analysis and design of the language and design

and implementation of various semantic checking rules

imposed by the architecture of the microprocessor. It was

decided to make the language as uniform and high-level as

possible, resembling conventional assembly languages, rather

than requiring the programmer to specify each instruction

field fully. This meant that certain combinations of

features had to be forbidden, even though they were

33

syntactically validp because they could not be realized by

the hardware in a single instruction. Semantic checking was

therefore required in the assembler.

The construction of this assembler is described below

and illustrates the Rapid Prototyping philosophy of

utilizing existing software whenever possible^ even in

unusual ways not anticipated by the original software

developers. In this particular case the assembler continued

to be used in its "prototype" form, although modifications

and improvements continued to be made over a period of time.

The microprogram assembler was written to take

advantage of the features provided by the IBM 370 Operating

System Assembler [IBM 72], Each machine instruction of the

micro-processor was defined by a unique 370 Assembler macro

definition. Conflicts with the 370 instruction set were

eliminated by suppressing all of the 370 machine instruction

mnemonics. Semantic checking and instruction formatting

were accomplished by a few system macros which were heavily

parameterized and were called by the individual

micro-processor "instruction" macros. In the end, each

instruction was assembled as a "define constant" command to

the 370 Assembler,

It was necessary to put the assembled object program

into a form suitable for loading into the Read Only Memory

(ROM) of the micro-processor. Having used the existing 370

34

software to generate the object program, it was most natural

to use the existing 370 loader to handle reading the

relatively complex 370 object program formats Hence the

object code was simply loaded into memory together with a

specially written program called the "postpass," This

program was written to produce the desired object program

format directly from the in-core memory image.

The postpass had one other function which could not be

performed by any exisitng software — reading the 370

assembly listing. It was necessary to edit the listing to

remove the "define constant", statements generated by the

macros, while retaining the printed value of each assembled

instruction. It was also necessary to change the addresses

displayed from byte addresses (the 370 address space) to

word addresses (the micro-processor address space), In

addition to these functions, the postpass also performed

simple clerical functions such as re-paginating the listing

and filling out the object program to the size of the Read

Only Memory chips.

This example illustrates a way in which a prototyping

effort can take advantage of existing software. In this

case, there were existing assembler functions already

available for parsing, symbol table maintenance, code

generation, macros, conditional assembly, and cross

referencing. These were coupled with a meta language (370

35

macros and conditional assembly language) in which it was

possible and convenient to express the logic of the custom

application. Because of this there was no need to deal with

the internal program structure or data formats of the 370

assembler — the "borrowed" software was utilized as a

whole. It was necessary^ however, to write a small,

low-level program, the postpass, but the cost of this plus

the macro definitions was minute in comparison with the cost

of writing such a system from scratch,

5b. Bawtehce 5e^way Traffic Control Svstem

This is an example of a prototyped system based on

existing software by using selected-internal modifications.
G --

The original software was a computer graphics program for

simulating a radar air-traffic control system, A video

display was used to show moving aircraft symbols. These

symbols, with associated description data blocks, were

maintained in position on a background map of the airspace.

The movements of the aircraft were modeled and displayed to

simulate the behavior of an entire air-traffic control

system,

A new application v/as proposed for the needs of the

managers of the St. Lawrence Seaway. A capability was

needed to help monitor and control the shipping traffic on

the Seaway [Taylor 81], Because of the good modularization

of the air-traffic simulation program, it was possible in a

36

few days to modify it to simulate a sea-traffic control

system. The time and distance scales of the system were

changed and equations for ship motion were substituted for

the aircraft modeling equations. Display symbols were

changed to indicate ships and the background map was changed

to show the geography of the seaway. This is an application

that was not forseen by the designers of the air-traffic

simulator, but because the system was well modularized and

parameterized it was comparatively easy to reuse the general

structure of the program with new parameter values, table

contents, and selected subroutine definitions.

METHODS OF RAPID PROTOTYPING

Reduction fif gcope

The examples given above illustrate several different

methods of Rapid Prototype implementation. The first of

these is selective choice of just how much to implement.

Naturally this choice .depends ,on the reasons for building
•

the prototype in the first place. In the Automated FSS

example, the primary purpose of the prototype was to

demonstrate the interactions between the user and an FSS

terminal. The judgement was made that the system response

time to requests v/as not a crucial factor to model and

verify. It was therefore unnecessary to simulate

37

competition among independent terminals, and a prototype

serving one terminal was therefore sufficient. In addition,

the purpose of this prototype-could also be satisfied by
^ -- Q

using canned weather data rather than real time data and by

restricting the system to a limited region of travel.

Another common capability which can sometimes be

bypassed in a prototype system is detailed error handling

and error recovery. Naturally in some systems this will be

an important consideration, particularly if the error

handling has a great impact on the user interface. In many

cases, though, error analysis and handling are best

postponed until the main functional cases are fully explored

and understood. Where canned data replaces real-time or

user-supplied data, it may be convenient to skip checking

that would be necessary in the full operational system.

Again like the FSS example, it makes sense to limit the

size of data structures so that they will fit into main

memory. This not only simplifies the writing of the

prototype but also makes it much more flexible with respect

to algorithmic or functional changes. By taking advantage

of the random access properties of the computer memory it is

possible to experiment with different algorithms which would

require complicated redesign of disk or tape handling

algorithms.

38

VHLL's and Program Generators

The Microprogram Assembler example is an instance of

using a very high level programming capability^ Viewing a

general purpose assembler with macros as a meta-assembler

(that is, an assembler capable of being specialized to any

of several assembly languages) , the job of implementing a

given assembler becomes a programming task in a very

specialized higher level language. Similar capability is

provided by a compiler compiler [Brpoker 63]. Other related

systems are business oriented program generators such as BDL

[Goldberg 75] or PROTOSYSTEM I [Martin 74]. Very high level

languages for general purpose use have also been developed,

such as SETL [Dewar 78], VERS2 [Earley 74, Earley 75], and

MADCAP VI [Wells 72].

ReusahXe Software

Another approach to Rapid Prototyping is to adapt or

use parts of programs already written, as in the St,

Lawrence Seaway example. The effectiveness of this method

depends greatly on the flexibility of the program structure

and the quality of its documentation. A program necessarily

contains assumptions about the ways in which it may be

changed. Unfortunately it is never possible to anticipate

all of the ways in which a program may be changed or

generalized, but good programming practice demands some

consideration of this issue during design and

39

implementation,

The Component Software approach is a formalization of

the process of reusing software [Neighbors 81], In this

approach there is a large preliminary effort made in

preparing reusable fragments for a particular programming

domain,, Also associated with a domain are parsing rules,

optimizing program transformations, and pretty-printing

rules. Operations in one domain are expanded in terms of

operations in other domains, with transformation rules being

applied to simplify the resulting program. For this

approach to be effective, a considerable effort must be

expended to define the entities and operations in a domain.

Included in the analysis of the entities and operators of a

domain is the assumption that the operations so defined are

the ones which are to be re-used in different contexts. The

power of the method lies in the use of the transformation

system to integdrate the assembled program fragments (which

are typically rather small) and to customize the resulting

system.

Simulation

Although not exactly a prototyping technique,

simulation is an analysis technique which can be used for

some of the same purposes. This is particularly so when the

effect of an algorithm cannot be analytically predicted.

Consider for example a proposal for unified traffic signal

40

control in a large metropolitan areao A prototype to

control a subregion of the entire area would not be

particularly beneficial. The technology for monitoring

traffic and controlling intersections is well established,

and the novel aspect of this proposal is the centralized

nature of the control. The usefulness of such a global

scheme would best be demonstrated by a computer simulation

of the system, using randomly generated or previously

recorded data.

Simulation is more for design validation than

requirements validation. Simulation and prototyping share

the same need for careful planning and the same problems if

critical system considerations are misunderstood or ignored.

Reconfigurable Test Environments

"Embedded systems" are computer applications in which

the computer acts as only one of many integrated system

components, DeveLppment of the software for such a system

generally takes ^"place in an artificial environment where

external inputs and controls can be easily simulated and

monitored while exercising the embedded computer software.

Thus the software for a torpedo, a satellite, an air-traffic

control system, or a hospital patient monitoring system is

fully exercised in a laboratory environment before being

turned loose in the real world.

41

To accomplish Rapid Protptyping of an embedded system

it ' rs" importanfe^to be able to configure a test environment

rapidly as well. Just as tools for developing software

systems come in families depending on the general nature of

the task, it also makes sense for a general application area

to have reconfigurable hardware and associated software to

support testing. Examples of typical capabilities are

clocks, radar or sonar sensor inputs, gyroscope or

accelerometer inputs, facilities for collection of system

performance^data, and data analysis tools.

RAPID PROTOTYPE PROGRAMMING

The methods of software prototyping described above are

case studies of techniques which may or may not be

applicable in any given situation. For our theory of Rapid

Prototyping to be practical we also need techniques v/hich

can be applied more generally. In the following chapters of

this thesis we develop concepts for a programming

environment for Rapid Prototype Programming. The purpose of

such an environment is to facilitate the rapid, high-level

description of a program followed by its refinement into an

executable representation. This environment can be used to

help develop programs quickly, incorporating where possible

the techniques described in this chapter.

CHAPTER 4

RAPID PROTOTYPE PROGRAMMING ENVIRONMENT

In this chapter we consider how a programming

environment may support the activity of Rapid Prototyping.

This includes both language features and mechanical tools

for rapid development of prototype programs. We note that

the techniques described here may also apply to some extent

to rapid development of any software -- a goal we may call

Rapid Programming. In order to emphasize that our concerns

are more limited^ and that where necessary we are v/illing to

sacrifice program efficiency for ease of development, we

call the object of our investigation Rapid Prototype

Programming.

We have two main goals in a Rapid Prototype Programming

environment. Our first is the rapid and convenient

expression of what a program is to do. The second is to

facilitate changing implementation decisions as the

programmer's approach to the problem evolves. We support

programming by refinement. By this we mean that the

programmer at first expresses his program as a high-level

description v/hich is free from commitment to detailed

42

43

decisions. The programmer subsequently refines the meaning

of various parts of the program, interpreting them in terms

of known language features or in terms of still other

abstractions which will themselves be refined in time. By

keeping a history of these developments, the system can

assist the user in retracing and revising the steps from any

given point in the development. This approach shares

aspects of philosophy with the Harvard Program Development

System [Cheatham 79]„

THE TARGET LANGUAGE, ADA

A software prototyping facility must produce programs

in an executable language, and for our discussion of

prototyping we shall use Ada-as our target language[Ada 80],

While appropriate^''for systems programming and for "embedded"

computer applications, Ada is, in fact, a general purpose

implementation language and shows promise for widespread

use. In addition to giving us a real and practical context

in which to explore prototyping, this choice also gives us

the opportunity to evaluate this new language from a novel

and important point of view.

We note that there is also current active interest and

research into the development of integrated programming

environments for Ada [Stoneman 80, Standish 80,

UCI Workshop 78]. These environments are unified

collections of tools for the development and maintenance of

software. In this setting we propose that a Rapid

Prototyping facility may be a valuable tool for programming

environments of the future and should be integrated within

such a system to take advantage of the presence of other

tools»

The choice of Ada as a target language quickly brings

up important issues about the particular requirements for

software prototyping. The design goals of Ada and the goals

of Rapid Prototyping are somewhat at odds with each other

since they emphasize the concerns of different phases of the

software lifecyql^e. In the design of Ada, emphasis was

placed on the long-term life of programs and the legibility

of programs for documentation and maintenance. For this

reason sacrifices were made in the compactness of the

language and the ease of writing an initial program. The

programmer must specify a great deal in writing a program,

sometimes with considerable redundancy for both visual and

mechanical program checking.

For prototyping, on the other hand, compactness and

ease of expression are at a premium. We want to write

concise programs which are free from redundancy and

low-level implementation details. Redundancy is

particularly to be avoided since we want a medium in which

decisions can be expressed and changed easily.

45

These conflicting needs for completeness and brevity

cannot be met simultaneously. We take the view that an

explicit mechanical conversion is required from the

prototype form to the executable form. Such a

transformation, performed by an "Ada laundry" process,

allows a prototyper to . express., himself in a streamlined

language, while allowing for conversion to the pure language

at a later time. The only feature of this kind implemented

in Castor is the allowance made for omitting the redundancy

of package specifications. A number of other concepts for

an Ada laundry are proposed in Chapter 8.

Another important transformation is from the prototype

to the final production-quality implementation. As we have

seen, these two representations may address radically

different forms of the problem or approaches to its

solution. Still the use of the same target language allows

the implementors to incorporate portions of the prototype

whenever this is possible. In addition, it may be possible

to take advantage of program fragments generated from

library components in the prototyping system. The same

programmers should be involved both in the prototyping

effort and in the final design and implementation. This

gives the implementors the significant advantage of prior

experience with the problem and approaches to its solution

[Boehm 73] .

46

PROTOTYPE DEVELOPMENT IN CASTOR

C2>

•4*-^' '' " -i.

^Ih writing prototypes we shall use a language extended

from Ada which we call Castor„ (This name derives from

Castor canadensis, the scientific name for that

indefatigable species of architect and engineerp the North

American beaver,) We shall also refer collectively to the

program manipulation functions which handle Castor programs

as the Aide, As mentioned above, ohe of the purposes of the

Aide is to "launder" Castor programs, removing those

liberties which have been taken with the rules of "pure"

Ada, Another important function of the Aide is to manage

and to assist the development of Castor programs by

refinement from very abstract program descriptions to fully

executable programs.

Our view of a programming environment is that programs

may be entered and output as text files, but within the

system a program is represented in a structured internal

form. This structure is tree-like and reflects the

syntactic phrase structure of the language imposed by the

Reference Grammar [Ada 80], We find it desirable, however,

to keep the details of this representation hidden from the

user as much as possible. The user only sees and expresses

program fragments in the source language. This means that

the user is spared having to learn a new language and the

47

mapping between it and the external program form. This also

means that the system/user interface can be common among

systems using different choices of internal representation.

An integral component of the Aide is a

structure-oriented editor by which the user may enter,

modify, and refine Castor programs. Because the editor

knows the syntax of the language and maintains programs in

their internal form, it can maintain their syntactic

validity. By appropriate prompting and checking this can

give the user immediate feedback on syntactic errors and

gives him a higher conceptual level of discourse for dealing

with his program. Since this kind of editing facility has

been described elsewhere [Feiler 79, Teitelbaum 81], our

main concern in this thesis is to describe the program

manipulation concepts particular to Rapid Prototyping,

SWITCHING CONTEXTS DURING PROBLEM SOLVING

An important capability in developing a program is to

be able to switch easily from consideration of one problem

to consideration of related problems. In order to encourage

and facilitate this we introduce Castor calling forms. In

use, a calling form is written much like a procedure call

and acts as a self-documenting description of what the call

48

does. Briefly stated, a calling form is v/ritten as a

sequence of identifiers with interspersed parenthesized

parameters — for example;

Find The Deepest Leaf (L) In Tree (T);

In programming by refinement a programmer writes a

solution assuming the availability of procedures not written

yet. Later, definitions of these procedures are written

which may in turn use still other unwritten procedures.

This process continues until all needed procedures have been

written. This process is also called "top-down

programming."

Virtually all high-level languages, including Ada,

support the use of procedures in this manner, allowing the

program structure itself to reflect the development process.

This principle of development can be applied to other

aspects of the program as well. Most high-level languages

also have function calls — these are used to represent

value computations which are defined in a textually distinct

part of the program, Pascal and Ada also allow the naming

of data types which are remotely defined, and Ada has a

limited capability for parameterizing references to such

types.

In Castor we permit the use of calling forms as

statements (in which case they act as procedure calls) and

49

as expressions (in which case they act as function calls),

In addition we can also use them as declarations (of

objects, types, subprograms, and so on), as types (in

defining type identifiers, constants, variables, and

parameters), as variables names, and as control structures.

The various uses of calling forms in Castor are described in

more detail in Chapter 5,

The premise of prototyping is that at times it is best

to bypass details in doing a job in order to get some kind

of "finished product," however preliminary. The calling

form is a way for the programmer to avoid digressing into

details so that he can finish a chain of reasoning or

description at a given level of discourse. Used in this way

a calling form can serve as a brief description and a

reminder of what needs to be done later. This serves a dual

purpose as the name of the subprogram and as an in-line,

self-documenting description of the function to be

performed, A calling form may later require a full

definition of details by the programmer, or such a

definition may be invoked from a library of definitions

known to the Aide.

Aide Managembht oL Calling foxms

During development, a program may have a number of

calling form references which need to be refined. Known to

the Aide, these constitute a formal agenda of the work that

50

remains to be doneo At any time the Aide can report on the

status of various modules of the program under development

and can automatically prompt the programmer to choose a new^

unimplemented calling form to define as successive

refinements are completed.

The Aide can also keep track of the points of use of

each calling form. For a calling form yet to be defined

this helps the programmer remember the context and

requirements for the new definition. For both defined and

undetined forms this is useful for reviewing the contexts of

invocation and for revising these contexts or calls when

necessary.

Sometimes it is desirable instead to write the

definitions of calling forms before writing the components

that use them. Applied consistently, this is the

"bottom-up" approach to programming. This can also be done

using the Aide, and the Aide can be of some assistance in

showing those calling forms that have been defined but which

have not yet been used. Merely using the defined calling

forms at least once does not provide a precise measure of

progress toward the final program goal, however. Even if

all calling forms have been used at least once, this does

not mean that the program is finished, and there is no

indication of what needs to be done next. Bottom-up

programming does not give the Aide quite as much opportunity

51

to assist, therefore, since the Aide has less information

about the programmer's plans and what remains to be done.

These features of the Aide help the programmer switch

from one problem to another„ The use of calling forms helps

the programmer to manage the development of his program,

helps him articulate a given line of reasoning quickly

without digressing into unnecessary details, and provides a

formal agenda and framework for switching among the many

problems he must eventually solve, ,

PRO,CRAMMING BY Re£iNEMENT' '

There are two ways in which a user may wish to define a

calling form. The first is to update the program text at

the point where the calling form is used this is most

appropriate when the calling form is used only once. The

second is to provide a definition elsewhere and leave the

calling form invocation as a reference through a suitable

symbol table mechanism. We call the first method in-place

retinement and the second remote refinement.. We shall

discuss in-place refinement in the remainder of this chapter

and shall describe Castor features for remote refinement in

Chapter 5.

When a calling form is refined in-place, we do not want

to lose the unrefined text of the calling form. The calling

form can still act as a compact description of the refined

52

program text. Furthermore5. at some time in the future the

user may wish to undo the refinement. It is also desirable

to be able to view the program in its initial unrefined form

as a form of program documentation.

An in-place calling form refinement can be displayed in

the following manner:

—(A2) Merge Elements (XI,X2) In Partition (P);
declare

Y; Set Of (T);
begin

Y := Union (XI,X2);
Remove (XI) From (P);
Remove (X2) From (P);
Add (Y) To (P);

end;

In this example a statement operating on a set partition is

refined so that the same action is expressed in terms of

basic set operations. Since a partition can be implemented

as a set whose elements are sets, the merging of two

partition elements can be expanded as the computation of a

new .element valj.^;,e, Y, which is' the set" union of the given

elements, XI and X2,

The first line appears as a comment and contains the

unrefined calling form. This comment represents an entity

managed by the Aide called a program attachment. These are

described later in this chapter.

The Aide supports the notion that refinements are

grouped together. The term "A2" in the program attachment

53

is the name of such a refinement group — this name is

simply an arbitrary identifier. In this example of

refinement, the decision to represent a partition in terms

of set primitives motivated the refinement shown. In a real

program we would naturally expect this decision to influence

the refinement of other parts of the program as well. The

places referring to P might include the declaration of P,

the point where P is initialized, and points where P is

examined or modified. The name of the group may be used to

sequence through the refinements for listing or editing, and

it may also be used to undo the refinements all at once, it

necessary.

Frequently, refinement groups are independent of each

other and can be introduced and possibly removed in any

order. For each refinement in a group the Aide replaces the

old program fragment (a calling form) with a new program

fragment and associates the old unrefined fragment with the

new fragment by means of a program attachment.

The programmer will naturally introduce the refinements

of his program in some order. It may happen that later

refinements depend on refinements v/hich have already been

made. For example, one might further refine the partition

example above by a group, B2, giving a linked-list

implementation for sets. Thus every point refined by A2 to

implement partitions with sets will now be further refined

54

by B2 to implement those set operations in terms of other

primitives. If the programmer wishes to undo the A2 group,

this naturally entails the undoing of all of B2 as well.

It can also be that two refinement groups interact

without either being totally dependent on the other. For

example, suppose the partition P discussed above were

declared and used as follows;

—(A2) P: Partition Of (T)
P; Set Of (Set Of (T))?

e 9 o

Find Arbitrary (X) In (P);
if (A) In (X) then.

• 9 0

end li;

Note that refinement group A2 has refined the declaration

from a partition to a set of sets. Suppose we now wish to

refine T to be a limited range of integers, 1 to N. We then

get the following;

~(B2)
T is 1 , . N;

9 0 0

— (A2) P; oPartition Of (T) ;
.~(B2) P;,^Set Of (Set Of "(T))';
P; Set Of"~(arraY (T) of. boolean)?

eve

Find Arbitrary (X) In (P);
i£X(A) then —("C B2) (A) In (X)

see

md It;

55

In this version of the program we note that the declaration

of T has been introduced by group B2. Rather than being a

refinement of a calling form, it has simply been introduced

out of nov7here„ The declaration of P has been refined again

to permit the use of boolean arrays to represent sets of

elements of T» The if condition "X(A)" now replaces the

previous calling form "(A) In (X)," meaning that this test

is now accomplished by using A to index the appropriate

boolean in the array X, The comment

B2) (A) In (X)

indicates a program attachment which is attached to the

expression "X(A)" rather than the whole ii statement. Other

ways of specifying program attachments are given below.

The point we wish to make here is that neither A2 nor

B2 is strictly dependent on the other, although they do

interact. If the programmer decides to undo A2 it is

necessary to undo those refinements of B2 which are

dependent on refinements of A2. Nevertheless it may be

meaningful and desirable to retain those parts of B2 which

are not dependent on A2„ In this example, the declaration

line would have to be completely undone back to its original

form:

P: Partition Of (T)

56

but the declaration of T might still be retained?

— (B2)
T is 1 . . N ;

Note that the if. condition "X (A)" is well-detined if X

is known to be an array^ but this is only known if the B2

declaration is in force. Hence this refinement should be

undone' too. Eor this reason, the Aide will expect to undo

all refinements of B2 if any refinement of B2 is dependent

on A2. However, the user may also use the Aide to examine

the refinements of B2 which are independent of A2 on an

individual basis and remove them selectively instead.

We wish to retain the refinements of an undone

refinement group, just in case the programmer again changes

his mind. Undone refinements are also represented as

program attachments. An undone refinement is displayed as

follows;

— (Undo B2) P: Set Of (array (l..n) ef. boolean);
--(Undo A2) P; Set Of (Set Of (T));
P: Partition Of (T);

Prpgram Attachments

A prpgr^jm attachment is much like a comment in that it

contains information distinct from the program text which is

associated with a specified portion of the program. The

presence of a program attachment is generally ignored except

57

under specified circumstances. Comments themselves are a

kind of attachment whose only form of "recognition" is to be

printed in listings of the program. The concept of an

attachment is more general, though, since it is associated

with a fragment of the program, rather than just a point in

the text; in general an attachment is associated with a

phrase or sequence of phrases in the program, as defined by

the grammar of the language. Program attachments are a

powerful programming environment concept and can be used for

a variety of purposes, including software development

status, program measurement counters and breakpoints,

update-version information, and comments intended for

different audiences or points of view [Standish 80].

Since we have stipulated that the user interfaces with

the system only in terms of the source language, it is

necessary to represent in source language where an

attachment is made as well as its value. We therefore adopt

conventions for representing program attachments as comments

in the source language form of a program. In this way

attachments can be interactively displayed in source

language . terms and can be stored in a normal source program

file to be re-read later.

In Ada a comment appears at the end of a text line

(which may be otherwise empty), beginning with two hyphens,

"—." For example,

58

A s= B; — This is a comment about A;=B

We use the convention that a left parenthesis or a number

following the two hyphens distinguishes a program attachment

from a regular comment. Text within the parentheses

identifies the kind of attachment and the information being

attached, A refinement, for example, is represented by

attaching the old calling form to the refined program text.

The following is such a refinements

—2(A1) Set (X) To The Maximum Value Among (X,y,Z)
if. y _> X then X : = y ;
end .uf,
if. z > X then X s= Z|
end if.;

The number "2" indicates that the attachment is being made

to the two statements which follow. If this number is

omitted, the default is one, as in our previous examples.

We have noted that a refinement may be introduced from

nowhere, as with

— (B2)
type T ia i,.n;

When this is undone, the attachment must remain as a place

holder attached to no statements, A "group" of zero

statements serves this purpose;

—0(Undo B2) type T Ig. l..n;

59

We make the convention that an attachment is continued

to another line if the following line is empty except for a

comment beginning with three hyphens. For example:

—{B2) Find The Root Mean Square Noise Level Of The
Current Sampling Interval

R ;= RMS_Noise(I)?

We have seen at least two kinds of attachment:

refinements and undone refinements. In general an

attachment consists of the information to be attached, an

attachment type, and one or more parameters associated with

the type. For example, a refinement has the refinement type

"Refinement" and one parameter which is the group name. We

can write an attachment generally as

—(attachment_type param_l param_2 ...) value

When the attachment_type is omitted, it is assumed to be

"Refinement."

The convention described above is convenient for

attaching to phrases in the language which are written on

successive lines. These include statements, declarations,

the alternatives in a "case" statement, and others. For

smaller phrases we must show not only the position but also

the size of the phrase. One possible solution is to place

directions in the comment which specify the beginning and

end of the phrase. A more concise convention can be

60

established, however, using the position of the comment in

the text. The motivation for this correspondence can be

seen in the following figure:

/

X

X

/

\
I

/~
1

A

A +

T T
I I
I I
I 1.

\
I

B

T T
|_ X ;= A + B;
_ B
_ A + B
_ A

_ X := A + B

_ X

In the center of this figure vertically is the statement

"X:=A+B;," Above this statement is a parse tree showing the

operator symbols "+," and as internal nodes of the

tree and the operands as leaves. Below the statement are

indicators showing each possible point where a comment might

be inserted. For each such point a phrase of the statement

is identified. We note that each possible comment location

can be identified with exactly one subtree of this tree and

that each subtree is represented once. The convention used

is that we examine the token immediately to the left of the

comment locus. The designated subtree is the subtree having

61

that token at its root» If the token is a leaf such as "X,"

then the subtree naturally has only one element^ the leaf

itself,

It is necessary to define the phrases of the language.

The most natural definition is to use the reference grammar

and say that a phrase is any string derived from a single

nonterminal of this grammar [Ada 80].

We determine what phrase an attachment is attached to

by the following steps:

1, Determine the terminal symbol, T, in the program which
is associated with the attachment,

2, Let "N -> rhs" be the production in the parse of the
program where T is generated — i„e„, T appears in rhs.

3, Then the desired phrase is the terminal string
generated in the program by this instance of N,

We illustrate this convention' by_,.the., following example:

1) if. i > j then
2) A s= B|
3) else
4) X := Y;
5) end if;

The following table shows which phrases are selected by

which terminal symbols, (Terminals appearing in more than

one line are distinguished by their line number,)

o

nonterminal phtase selected

if (1) if i>j then ,,. end if
then if i>j then .., end if
else if i>j than n,a end if
end if i>j hhbn an. en^ if
il(5) if i>j hhnn .«. end if
";"(5) if i>j then a a. ?n<^ if
n ^ n i>j

(2) A; =B;
(2) A; =B;

(4) X: =Y;
";"(4) X s =Y,«

62

(Note that the introductory parse tree given above to

motivate this development does not follow this rule

precisely since it shows and ";" on different internal

nodes in the tree,)

The most natural token for a comment to refer to is the

token immediately before the comment. This works out nicely

for structured statements. In the following, the comment

refers to the whole if. statement:

ii, X > M then
M := X;

end r f,

— Assure current maximum is valid

Similarly, it is easy to attach to other structured

statements at their top level;

while P loop

S;
end loop;

— attachment to while loop

case i is — attachment to case statement
when 1 => SI;
whQn 2 => S2;

end;

begin *— attachment to this block
SI;
S2;

end;

63

One-line statements, in particular, include semicolons in

their top-level syntax:

A := B; — attachment to assignment
return 5; — attachment to return statement
exit cycle when P; — attachment to exit statement

This simple method is not ideal in all cases, however.

Expressions and parameter lists, for example, can become

hard to read:

or

A := B * (C + — attachment to C+D
D) * (E - — attachment to E-F
F) ;

Prod (A + — attachment to A+5
5, B — attachment to B
, C + — attachment to C+D
D) ;

For this reason we add the ability to refer to a token

within the line by placing it in string quotes:

A ;= B*(C+D)*(E-F); —("+" A2) ,,something about C+D
—("-" A2) ..something about E-F

64

Of course instances of the desired token may appear

more than once in a line„ A number parameter, as for

statements above, is used for this;

P(A+5,B,C+D); —("+" A2) ..something about A+5
—("B" A2) ..something about B
—2{"+" A2) ..something about C+D

Using these conventions we can therefore make an attachment

to any phrase in a program or to groups of consecutive

phrases representing consecutive declarations or statements.

In most cases simply the location of the comment is

sufficient to identify the phrase being attached to. In the

prototype described in the appendix, attachments to

statements and declarations were found to be much more

common that attachments to expressions. Nevertheless,

facilities for expressions were also found to be necessary.

AN EXAMPLE; THE EIGHT QUEENS PROBLEM

In concluding this chapter we take a scenario from the

literature which illustrates development of a program by

stepwise refinement. This is a program described by Wirth

to solve the Eight Queens Problem [Wirth 71]„ In this paper

Wirth used a variant of Pascal notation to develop his

solution. The high-level program, transliterated into Ada

calling forms, is as follows;

1) procedure Eightq is
2) Boards <>;
3) Pointers <>|
4) Safes <>;
5) begin
6) Consider First Column;
7) loop
8) Try Column;
9) ii. Safe then
10) Set Queen;
11) Consider Next Column;
12) else
13) Regress;
14) end if;
15) exit when Last Col Done
16) or. Regress Out Of First Col;
17) end joop;
18) end;

65

In Castor we have extended the syntax of variable

declarations to allow the characters "<>" to be used in

place .of a data ^type. This permits 'the programmer to

identify the variable, as in lines 2, 3, and 4 above,

without deciding on a specific data type. We note that a

user may be similarly unspecific with data type definitions

and constant values.

At this point the user may wish a summary of what

remains to be specified, and the Aide prints the following

list:

type of Board

type of Pointer
type of Safe

procedure Consider First Column
procedure Try Column
procedure Set Queen
procedure Consider Next Column
procedure Regress
function Last Col Done

function Regress Out Of First Col

66

Following Wirth's development, the programmer's next

step is to refine the procedure "Try Column," which he does

as follows:

procedure Try Column is
bfigln

looE
Advance Pointer;
Test Square;
exit when Safe or. Last Square;

end loop;

end;

Assuming the user chooses to make this refinement

in-line, the programmer v/ould now look as follows (choosing

to name this refinement "Rl"):

1) procedure Eightq is.
2) Board; <>j
3) Pointer: <>?
4) Safe: <>i
5) begin
6) Consider First Column;
7) loos
8) —(Rl) Try Column;
8.1) loop
8.2) Advance Pointer;
8.3) Test Square;
8.4) exit when Safe 0£. Last Square;
8.5) end loop;
8.6)
9) if Safe then
10) Set Queen;
11) Consider Next Column;
12) else
13) Regress;
14) end if;
15) exit when Last Col Done
16) ^ Regress Out Of First Col;
17) end loop;
18) end;

67

We note that at any time the Aide may display the current

form of the program in three ways with respect to this

refinement Rl (with the same choices independently available

with respect to other refinements as well):

1. Show the program prior to Rl.

2. Show the program with Rl in effect, together with an
indication of the unrefined version of the program,
using program attachments (as in the print-out above),

3. Show the program with Rl in effect, without any display
of its unrefined form.

At this point the user's request for status would no longer

show the need to furnish "Try Column," but would show the

following new items:

procedure Advance Pointer
procedure Test Square
function Last Square

58

At this point the user would pick another unresolved

item and would proceed as above. We note that this

particular program is evidently a highly tuned example of

refinement, anticipating in some unrepresented way the exact

refinements that will take place later. Nevertheless, this

example serves quite well to illustrate this family of

functions in the Aide, A more extensive example may be

found in Appendix A,

• O

CHAPTER 5

THE USE OF CALLING FORMS

CALLING FORMS

Our basic method of extending the Ada language is by

the use of program calling forms. This name reflects their

origin as a general notation for procedure and function

calls. We will also use the term "calling form" to refer to

analogous extensions in other parts of the language.

The basic calling form consists of a string of

identifiers, separated by spaces if necessary, with

parameters interspersed. A calling form may begin with

parameters or identifiers and may likewise end with either

parameters or identifiers. If a calling form has no

parameters then it must have two or more identifiers to be

distinguished from an ordinary Ada identifier.

Our notation is motivated by the parameter commenting

convention of Algol 60- [Naur 63], In this language a

procedure call could be written:

MOVE (A, B, C)

69

70

or :

MOVE(A) FROMj(B) T0;(C)

In this latter forin the strings ")FROM:(" and ")T0:(" are

defined in Algol to be syntactically equivalent to the

commas in the first call„ The character strings "FROM" and

"TO" are treated as comments and are not checked for

consistent use with the procedure definition or among

different calls.

For Castor calling forms we consider all the

identifiers to be significant — together they constitute

the name of the calling form. In our notation the procedure

call above would be written;

Move (A) From (B) To (C);

This is defined to be equivalent to the following pure Ada

statement:

Move_From_To (A, B, C);

Parameters to a calling form may be names, expressions,

or nested calling forms. In certain cases they may also be

Ada declarations, discrete ranges, or lists of statements.

When the parameters are statements, they are set off with

"kissln »= • end" rather than ordinary parentheses -- this is

for the sake of appearance since this is how statements are

71

grouped in other parts of the languageo We note

particularly that the statements are not necessarily

executed in the sequence shown — they just form a list

which can be disassembled under the direction of a suitable

macro definitiono This is a possible drawback, since in

other parts of the language such statements are always

executed in sequence. A possible modification of this

convention might be to introduce one or two new reserved

words for this purpose.

The following are examples of legal calling forms:

1) Move (A) On Board (B) To Position (X+l,Y+2)
2) (X) Is A (Set Of (Integer ranee l.,10))
3) Maximum Execution Time Of

begin

P1(X) ;
P2(X) ;
P3(X) ;

end

4) (N) Factorial
5) The Last Leat In Level Order

Lexical Considerations

We note that in the examples above a number of the

calling form identifiers are also Ada reserved words ("Is,"

"Of," "In"). These and other reserved words are necessary

if writing of calling forms is to be at all natural. One

way to make these available would be to allow reserved words

as identifiers, but only within multi-identifier calling

forms? This r,;/le gives us the closest possible

72

compatibility with pure Ada but causes some difficulty in

parsing. For a pathological example, consider the following

two statements:

1) bsain 5-i)
2) for I iQ Integer loop
3) begin
4) ,00
5) £M;
6) end loop;
7) end;

8) begin 5-2)
9) For I In Integer Loop
10) begin
11) . , ,
12) end;
13) aod; .. , ,

Statement 5-1 contains an Ada for loop comprising lines 2

through 6, and statement 5-2 contains a calling form

comprising lines 9 through 12. If we allow reserved words

in calling forms, the parser can only distinguish 5-2 from

5-1 by finding the end of line 13 before finding an end loop

(line 6), Note that there might be an arbitrarily large

number of statements to parse after line 5 (or 12) before

that determination could be made. In the first case these

statements would belong to the for loop, but in the second

case they would belong to the enclosing begin block. Since

the parsing handle cannot'be identified v;ith any bounded

lookahead, the grammar cannot be LR(k) for any k.

An expedient was chosen in Castor which requires

bending one of the rules of Ada — namely, the rule that

73

upper case and lower case letters in identifiers are not

distinguished. Instead, we require reserved words to be

written all in capitals? regular identifiers may contain

upper and lower case letters, except that an identifier

spelled the same as a reserved v7ord must contain at least

one lower case letter, A rule such as this naturally causes

some compatibility problems, but we note the following:

1, To read a valid Ada program into Castor it is only

necessary to capitalize all letters in identifiers. A

switch setting causes Castor to do this, and hence

Castor can read any valid Ada program,

2. To read a Castor program into another Ada system, we

will have no problems provided that the only use of

reserved words is in multiple-identifier calling forms.

When the program is made into legal Ada, calling form

identifiers will either disappear during macro

expansion or will be merged into legal identifiers,

such as:

The_Last_Leaf_ln_Level_Order

This method of distinguishing reserved words V7as arbitrarily

chosen, and a number of alternatives might have served

equally well. In the body of this thesis, reserved words

are showed underlined (for. etc.), while in the Castor

74

transcripts in the appendix reserved words are shown

capitalized as they appear in actual use (FOR, etc.)=

The only other modification of the Ada lexical rules is

the introduction of one additional reserved word, macro, as

described later in this chapter.

gubprogr^m calling Forms

There are different ways to interpret calling forms

used in a prototype program. As we saw in Chapter 4, the

calling form may disappear altogether through the process of

refinement before the program is ever executed. The

simplest way to interpret the calling form, leaving it

unchanged, is to use it as a straightforward Ada subprogram

inVQC^txon» a more powerful method is to give a macro

definition which computes a program fragment to replace the

calling form. This makes calling forms a tool for language

ektCPSiPh. Still greater power can be achieved by providing

macro and subprogram packages for different application

areas. We shall now consider these methods in greater

detail„

We can interpret an executable calling form as a call

to a procedure or function subprogram. The identifiers of

the calling form together constitute the name of the

subprogram. In this primitive application, the user writes

a calling form as a descriptive name for a subprogram which

he will write in detail later. The following restrictions

75

apply:

1. Subprogram calling forms may only appear in executable
statements or expressions. Objects, types, and so on
must be declared in normal Ada declarative parts.

2. A subprogram definition with type declarations for its
parameters must be provided for every calling form.

3. Occurrences of the same calling form must be consistent
with respect to the Ada types of arguments. If they
are not, then the calling form is an overloaded
subprogram call, and corresponding multiple definitions
of the subprogram must be given.

With an Ada compiler of full capacity we can get more

efficiency by the use of the INLINE pragma which causes the

subprogram text to be substituted at the point of call.

Conditional compilation can also be achieved by the use of

conditional statements which the compiler executes at

compile time. These features together constitute a

primitive macro capability. They do not, however, increase

the expressive power of the language; they only serve to

make the compiled^, program more efficient, and possibly

somewhat larger.

Language Extension

Procedures and functions are simple methods of language

extension, but there is much more that we can do both in

declarative and executable parts of a program. There are

two levels of extensibility which can be found in

contemporary extensible programming languages.

76

The first level of language extension is the ability to

create abstract gata types and operations .on thein= In some

languages the programmer can create new operators for use in

expressions, associating each operator with a specified

function which takes one or two arguments, Ada provides

this capability within limits. Only the predefined

operators of the language may be used -— these become

overloaded so that the function actually invoked depends on

the operand types.

Another language feature with bearing on extensibility

is the ability to hide the details of implementation of an

abstract data type. In Ada the details of a data type may

be hidden so that only the software implementing the defined

operations can depend on those details. In Ada an abstract

data type may be endowed with the language defaults for

assignment and equality-test. As a further option, even

these operators may be forbidden.

The second and more general level of language extension

gives the user "self-replacing" calls as a counterpart to

"value-returning" calls. As with subprograms, this kind of

programming is a two-stage process of expression. The user

writes a program in terms of self-replacing calls. He is

then required to define an exchange rule, or "macro

definition," which produces a program fragment to be

substituted at the point of invocation.

77

This second level of language extension can be

generalized by permitting the user to extend the syntax of

the language when invoking these new constructs. Language

extensions of this sort are called syntax macros

[Leavenworth 66], The alternative, as found in LISP and

many macro assemblers, is to impose a uniform syntax on all

macro invocations. Our present proposal uses the fixed

syntax of Ada calling forms with limited syntactic entities

in the argument slots.

The method of language extension by macro expansion can

be used in support of Rapid Prototype Programming as a more

powerful method of interpreting and expanding calling forms.

This gives the user more control over the generated program

since it gives the user language extension in declarations,

in control structures, and in naming variables or data

objects.

Prbgramming worlds

Having generalized the syntax of subprogram calls and

having described a language extension mechanism, greater

increases in power can best be achieved by providing

families of functions in selected application areas.

Certain high-level data types and operations have been found

very useful and powerful in contemporary very high level

languages. These include mathematical sets, sequences,

functional mappings, pattern matching, and variants of

78

predicate calculus quantifiers as programming operators»

Some languages of interest in this regard are SETL

[Dewar 79] , VERS2 [Earley 74]^ Madcap VI [Wells 72], and

MLISP [Meehan 80]. Some examples of this kind of packaging

can be found in Appendix K, but it is beyond the scope of

this thesis to explore any of these programming domains in

great detail.

Program Transformations

Program transformations are used by optimizing

compilers for improving mechanically generated programs. A

transformation system might be very valuable for improving

the quality of code provided by in-line procedure

substitution or by language extension features. Since the

problem of improving program efficiency by program

transformations has been studied elsewhere, we do not pursue

this topic further in this dissertation [Standish 76,

Lovemgn-77, KiblerQ78, Smith 79].' " '

We note that pattern-directed program transformations

can also be used as a limited language extension capability.

In this approach, pattern-directed substitution rules are

given to provide meaning to novel language constructs. A

possible extension to Castor would be to provide

pattern-directed transformations on calling forms, based on

the identifiers in the calling form name. This feature for

building general purpose application packages is also beyond

79

the scope of this dissertation.

THE USE OF PARAMETERS

The Eight Queens program given in Chapter 4 shows the

use of calling forms in a fairly basic way. In the

refinements shown all data manipulations in the program are

performed by parameterless procedures. Since there is no

explicit indication of which procedures change (or access)

which variables, all variables must be considered global.

In prototyping, a programmer may wish to write calling

forms with parameters. This makes for a more detailed

program but also helps limit the scope of the individual

subproblems. Parameter notation is, of course, perfectly

suited to situations in which the same operation is to be

performed on different operands.

For an example of program development we consider the

following program which plays Tic Tac Toe interactively

against a human player. We omit the definition of "Board"

in line 4 for the moment— note, however, that we have
C>

allowed" "Board (m).i?c'to appear on the left of an assignment in

lines 20 and 23.

1) procedure Tic Tac Toe is
2) Move is
3) record
4) RrC: Integer range l.,3;
5) ond rocord?
6) Occupancy is (' 'X', '0');
7) Board s
8),,.. Coinputer_Token ,User_Token:
9) Occupancy range 'X',.'0';
10) Users_Turns Boolean;
11) Tokens_On_Boards Integer range 0oo9 ;= 0;
12) M2 Move;
13) begin
14) User_Token ;= Request User Choice Of Token;
15) Users_Turn i= (User_Token = 'X');
16) ii Users_Turn then Coraputer_Token s= '0';
17) else Computer_Token ;= 'X.';
18) end if;
19) iQOP
20) ii Users_Turn then
21) Display (Board);
22) M := Request A Valid Move On (Board);
23) Board(M) := User_Token;
24) else
25) M := Generate A Move On (Board);
26) Board(M) := Computer_Token;
27) end if;
28) Tokens_On_Board ;= Tokens_On_Board + 1;
29) exit when (Tokens_On_Board = 9)
30) SJL Game Is Won On (Board) By (M)
31) SI. Game On (Board) Cannot Be Won;
32) Users_Turn ;= not Users_Turn;
33) end loop;
34) Display (Board);
35) if. Game Is Won On (Board) By (M) then
36) ii Users_Turn then Humbly Congratulate;
37) else Gloat Insufferably;
3 8) end if.;
39) else Announce A Draw;
40) end ii;
41) end Tic Tac Toe;

80

This program was written virtually as is by a

programmer (myself) who had never before written an

algorithm to play this game„ It captures all of the

behavior and structure of the program while leaving the

81

details of strategy and winner detection unspecified,

A list of unspecified items provided by the Aide would

be as follows:

typ£ of Board
function Request User Choice Of Token
procedure Display (Board)
function Request A Valid Move On (Board)
function Generate A Move On (Board)
function Game Is Won On (Board) By (M)
function Game On (Board) Cannot Be Won
procedure Humbly Congratulate
procedure Gloat Insufferably
procedure Announce A Draw

SELF-REPLACING FORMS

So far we have used calling forms as procedure calls

and function calls. In addition there are features we would

like to have in a Rapid Prototyping language which cannot be

realized by procedure and function calls^ for example:

1. Data types (in type definitions or variable
declarations)

2. Variable locator expressions (target of an assignment)

3. New control structures

As a first example, in the Tic Tac Toe program given

above we would like to define Board as a map from the

squares on the board (the space of possible Move's) to the

contents of that square (an 'X', an '0', or a blank). We

write this (line 7) as follows:

82

7) Board; Map (Move) Into (Occupancy) Initially(' ')?

This means that Board is to be a total function defined on

the domain of possible Move's, The initial value for each

move is ' ',

Note that the definition above is different from;

X; array (1..3^ l.,3) af. occupancy?

This latter definition could be used as a representation for

the former^ but they are logically different from the

programmer's point of viev'/ — the array has two arguments,

while the map has one argument,

"Map (-) Into (-) Initially (-)" is a calling form

which must be a self replacing call. This means that there

is a definition which takes the calling form arguments as

written and calculates a program fragment which is to

replace the calling form in the text. In an environment

where compilation takes place, this is to be done at compile

time. In an interpretive environment, this replacement can

be done the first time the calling form is encountered

during interpretation. This kind of macro facility is also

used in LISP [Meehan 79]„ One way to handle "Map (-,-,-)

Into (-) Initially (-)," for example, is to replace it with

a program fragment of the form "array (-,-,-) of. (-) := (-)"

when the argument types are all discrete. Clearly there are

many alternatives [Dewar 79].

83

Associated with this in-place replacement of the

declaration must be some rules for interpreting references

to the defined object in the subsequent text — these are

themselves other calling forms. For example,•line 23 has

the following statement;

23) Board(M) := User_Token;

in which we must assign some meaning to the calling form

"Board (M)," We might consider -implementing this as a

subprogram (function) call, but the only way to do this

would be to have a function returning a pointer value. Even

so, to achieve legal, Ada we would have to rewrite the

statement using ."all" as follows:

Function namefMKall := User_Token;

Thus we have no choice: this calling form has to be

rewritten by some macro definition. This is our second

example of the need for self-replacing calling forms.

With the array implementation of Board described above,

each occurrence of "Board(M)" in the program body can be

rewritten as "Board_Variable(M.R,M.C)." This representation

is equally valid both on the left and right of an

assignment, given that the text is substituted in place.

To give a third example of self-rewriting forms we

consider a definition that might .. be . provided for the

84

procedure "Generate A Move On (Board)o" Let us suppose the

writer wants to use a plan notation of the following form

(which does not conform to our notation of calling forms)s

TRY stmt_l,°
TRY stmt_2?

0 e o

TRY stmt_n;
OTHERWISE Stmt_n+1;

meaning

First try stmt_l.
If that doesn't work, try stmt_2

0 e o

If that doesn't work, try stmt_no
If that doesn't work, then do stmt_n+l

This control structure bears some resemblance to the

exception handling facility of Ada, v;here a procedure or

function can return normally or transfer control to an

exception handler„ A natural indication of failure of any

"stmt_i" is to raise an exception during its execution.

This leads to the following realization of the above program

fragments

bsaln
stmt_l;
goto done;

exception

when othets => null;
end;

begin

stmt_2;
ggto done;

exception
when others => null;

end;

begin

stmt_n;
goto done;

exception

when others => null;
and;

stmt_nH-l ;

85

<<done>>

rmli;

In this realization, the statements to be attempted

have been embedded in a sequence of begin blocks, each of

the form:

begin
stmt_i;
goto done;

exception

when others => null;
end;

This means that "stmt_i" is executed, and in the normal case

control passes to the next statement. This in turn is a

goto statement which transfers control to the end of the

86

sequence^ If the statement generates an exception, then

control is given to the exception handler at the end of the

begin block. The Ada notation here means that when any

exception is encountered a null statement is executed and

then control passes out of the begin block and on to the

next block in sequence.

We consider now hov; to represent our plan in

self-replacing calling forms, A straightforward description

of the plan would be as follows:

Try (Win On (Board) For (Computer_Token));
Try (Block (Win on (Board) For (User_Token)))j
Try (Fork On (Board) For (Coraputer„Token))?
Try (Block (Fork On (Board) For (User_Token)))
Otherwise (Random Move On (Board));

The problem with this notation is that "Try" and "Otherwise"

cannot be defined using our macro expansion paradigm. This

is because they will perform substitutions only at a level

below the sequencing implied by the semicolons. The

resulting substituted statements would all be executed,

regardless of the success of any preceding attempts.

Therefore these statements must be combined into a single

calling form invocation, as shown in the following

refinement of "Generate A Move On (Board)";

87

1) function Generate A Move On (B)
2) return Move is.
3) >?ogip
4) Attempt Plan
5) bogin
6) win On (B) For (Computer_Token)
7) Block (Win On (B) For (User_Token))j
8) Fork On (B) For (Computer_Token);
9) Block (Fork On (B) For (User_Token));
10) Otherv?ise (Random Move On (b)),=
11) end;
12) end Generate A Move;

1) function Block (M) return Move is.
2) begin
3) return M;
4) end;

We will consider the mechanics of expanding self-replacing

calling forms in the next section.

CALLING FORM MACRO EXPANSIONS

There are two settings in which macro expansion may

take place: during interpretive execution of a program or

during static refinement of a Castor program to pure Ada

text. In either case the same macro definition is applied,

although the operations that it directs are implemented

differently. In Castor only dynamic expansion is provided.

Macro calls are invoked as they are encountered, outermost

first. We use the term macro expansion or macro execution

to refer to the process of generating a program fragment to

be substituted at the point of invocation.

88

The language in which macros are written is the same

language that programs are written in. Special data types

and operators are provided for performing the actual program

modifications. In this way the specific details of the

internal program representation are hidden from the user.

Macro Definitions.

We classify macros as subprograms in Castor? although

they are quite different in meaning from procedures and

functions. As with procedures and functions? a definition

must be provided for each macro that is used. In keeping

with the pattern of Ada? a "macro specification" defines the

parameters and results of a macro, and a "macro body" gives

a macro specification followed by all internal information.

Since, as we shall see, a macro has only one kind of

argument, there is no need for generic macros. A typical

macro specification might be as follows;

macro a (X) B (Y1,Y2) C (Z) return T;

while the corresponding macro body would be written in the

following form;

A (X) B (Y1,Y2) C (Z) return T Ig.
— declarations go here

bagin
— statements go here

find;

A macro is like a function in that the type of the result is

89

declared and a return statement must be exe.cuted to identify

the returned value and end the macro execution.

Data Types Used In Macros

No types are specified for macro parameters because all

macro parameters are of the same type^ "Intnode." This type

definition is provided as part of the predefined package

MACRO_STANDARD„ All identifiers in this package are

automatically visible in any macro body, just as identifiers

from the package STANDARD are initially visible in all

programs. This package also provides a number of functions

for manipulating internal program structures.

The internal form of a program is assumed to be a parse

tree of the program according to a grammar resembling tbe

Reference Grammar of Ada [Ada 80], The details of the

grammar used are not specified for our purposes, nor is

explicit traversal of the tree necessary.

The type of any node of the tree is "Intnode," This

type is pfivate, meaning that the only operations that can

be applied are assignment, equality test, and those provided

in the MACRO_STANDARD package. We specify five additional

types, corresponding to the kinds of node we can generate

with a macro. These are as follows; a type, a declaration,

a name, an expression, and a statement. The following

definitions appear in the visible part of the MACRO_STANDARD

package;

type Intnode is private?
tYES- Typenode private
typg. Declnode ig private
type Nameno^e is. private
type Exprnode is private
type Stmtnode is private

The operations provided by MCRO.STAMDARD are suitably

overloaded so that any of these five types can be converted

to an Intnode and used as sucho Intnodes can be moved

around and put in listSj, but to be converted to one of these

five node types (and hence to affect the result of the

macro) an Intnode must be unparsed and reparsed by a

function which generates one of these five designated types

of node. This guarantees the syntactic Validity of any of

these nodes as the corresponding kind of phrase„

In addition to the above^ we have the following;

typg Intnode_List is private?
Typenode_List is private?

typg Declnode_List is private;
typs Namenode_List is private?
typg Exprnode_List is private?
iypg Stmtnode_List is private?

These are data structures which represent lists of the

various node types described above.. In addition to the

types mentioned above, a macro in the operating version of

Castor may also return a Stmtnode_List or a Declnode_list.

This could meaningfully be extended to include names and

expressions as wello

90

91

Syntactic Validation Of Macro Expansions

We wish to -' ensure- that „the - pro,gr^in after macro

expansion is syntactically valid — that is^ that the

internal program representation, after macro expansion,

represents the parse tree of a syntactically valid programo

We do this by defining five different nonterminals in the

syntax of Castors

type_calling_form
decl_calling_form
name_calling_form
expr_calling_form
stmt_calling_form

For simplicity each of these nonterminals is defined by a

production with the same right-hand side,. However, each of

these nonterminals can only appear in the right-hand side of

one rule. For example, ''stmt_calling_form" can only occur

in Castor as a statement. A calling form appearing as an

expression, on the other hand, will only be recognized as an

instance of "expr_calling_form." The appropriate calling

form nonterminal must be recorded at the corresponding node

of the parse tree.

To check the syntactic validity of a macro expansion,

the interpreter proceeds as followss

1. It encounters a calling form node which has the name of
a macro.

2, It determines the nonterminal associated with this node
— say, "type_calling_form."

92

3o It checks this nonterminal against the return type
declared in the macro definition •— in this case it

must be the subtype "Typenode,,"

4o It executes the macro and replaces the calling form
node with the returned program fragments In the case
of ''Declnode_List" or "Stmtnode_List," a list is
returned which is spliced into the list of
corresponding items in the enclosing program^

In order to guarantee the syntactic validity of the

resulting program^ it is sufficient to guarantee that the

data item computed within the macro is indeed a program

phrase of the corresponding typoo But this is' just the

property we have stipulated aboveo

This syntactic checking can be performed efficiently

and involves only local information from the parse tree and

information about the macro which may be stored in a

dictionary^ We note that this checking described so far can

be done statically^ if desired, without expanding any macro

calls,

Generating Program Fragments

The operators which synthesize or modify program

fragments are also provided in the MACRO_STANDARD package.

For portability and user convenience they are oriented

toward the surface representation of Ada programs. The

following five functions take a character string, parse it,

and return a node of the appropriate type. Associated with

each function is an implied nonterminal which is the ^start

93

symbol" for the parse„

function Gentype(SsString) return Typenode?
function Gendecl(SsString) return Declnode;
function Genname(S;String) return Namenode?
function Genexpr(SsString) return Exprnode?
function Genstmt(SsString) return Stmtnode?

The following are examples of valid calls;

T s= Gentype ("Integer range 5<.,10")|
D ;= Gendecl("Xs Boolean;");

To improve readability, we allow an ending semicolon to be

omitted:

S s= Genstmt ("e..xit when B;"); — is the same as
S ;= Genstmt("exit when B"); — (no semicolon)

Into Program Skeletons

In general a macro must perform substitution into

skeleton program fragments. The string argument S has a

special form when substitutions are desired. Each point of

substitution is denoted by a dollar sign preceding an

identifier, for example "$A." (Note that dollar sign is an

otherwise illegal character.) The identifier is the name of

a variable or parameter in the macro environment and must be

an Intnode or one of the other node types. The current

value of this variable is unparsed and is substituted into

the string before parsing begins. If a particular item is

to be substituted into two places in the string, it is

94

simply used twice in the list„ Note that these functions

are by no means ordinary Ada functions since they have

access to variables in the macro in this unusual manner.

The following is an example of substitution:

SI s= Genstmt("X := X+Z");
82 := Genstmt("exit when X>100")|
S ;= Genstmt("iQQp $S1? $82? loop");

This is equivalent to

8 s= Genstmt (
"ifiSE " &

"X ;= X+Z; " &
"exit when X>100; " &

"end loop");

(Ampersand, "&/' denotes concatenation, permitting a string

to be broken over consecutive lines,) The items substituted

by this means may be constructed by previous computations,

like 81 and 82 above, or may be formal parameters of tne

macro,

This scheme for manipulating program fragments has the

advantages that it is straightforward to implement, it is

easy for the macro programmer to get used to and remember,

and the skeleton program fragments are visually similar to

the source language. The user has no need to know or

remember the actual internal representations of program

phrases„

95

Aggregates af. Nodes

Frequently we wish to deal with groups of nodes, often

in varying numbers. We therefore provide macros that can

accept a variable number of arguments in a given position.

This is indicated in the macro specification by the keyword

array as an argument type, for example;

macro The Set (V; array) return Exprnode;
macro Loop Forever (Zs array) return Stmtnode„List;

The formal parameter so indicated is of type ''Intnode_List „"

This is not really an array, but rather a list; "arrav" is

used because it is a reserved word that is suggestive of the

true meaning.

Parameters are furnished in the invocation of such a

macro simply by giving as many as desired in the appropriate

place, for examples

X := The Set 0;
X ;= The Set(A);
X s= The Set(A,B,C);
Loop Forever

Copy Input To Output;
Report Progress;

end;

In- order to .jpanipulate lists of nodes the following set

of representative functions is defined;

98

There is a fine point to consider when splicing a list

of nonterminals into a program fragmento It is not

sufficient simply to unparse the list of nodes and

substitute the result into the program string before

parsing. The parser expects items in lists to be separated

by either semicolons or commas, depending on the context.

In order to specify whether commas or semicolons are to be

provided, the substitution mechanism checks to see if a

semicolon immediately follovi?s the substitution locus in the

target string. If not, commas are placed between the items.

If a semicolon is found, then a, semicolon will follow each

item, unless the number of items is zero, in which case the

flag semicolon will be removed. Castor supports just these

two delimiters, though experience may indicate whether other

kinds of list delimiter tokens are also desirable.

Additional Features

In addition to the above capabilities, there are some

miscellaneous functions which are required in practical

macros. The following subprograms have been found to be

useful:

99

function New_Id (IsIntnodesString) return Namenode?
function-New Id (SsString;!sintnode) return Namenode;
function New_Id (II,12;Intnode) return Namenode;
function Test_Decl (Islntnode) return Boolean;
procedure Add_Decl (DsDeclnode);
procedure Set_Tag (Islntnode; Kslnteger; Vslntnode);
function Tag (Islntnode; Kslnteger) return Intnode;
function Type_Of (EsIntnode) return Namenode;
function Def_Of (Islntnode) return Intnode;
procedure Match (I°Intnode; SsString);
function Subst (New,01d,BodysIntnode) return Intnode;

Note that where a parameter of type Intnode is specified an

actual parameter ,.^ of any of our restricted node types may

also be furnished'."'

The function New_Id is used to create a node

representing a new identifier. The Intnode argument or

arguments each represent an identifier or a series of

identifiers (as in a calling form). The character string

(if present) is also an identifier. These identifiers are

concatenated with the underscore character, as a

separator, and this new identifier is the result.

The function Test„Decl takes a node representing an

identifier and returns the value True if that identifier is

as yet undetined.

The procedure Add_Decl adds the given declaration to

the innermost enclosing declarative part.

The procedure Set_Tag is used for making arbitrary

extensions to the symbol table. The first parameter is an

identifier and the second is an arbitrary integer. This

integer selects a value slot in the symbol table extension

100

for the identifier. No such slots are predefined in

meaning. The third parameter is an arbitrary Intnode to be

placed in the slot.

The function Tag is for accessing a value stored by

Set_Tago The first parameter is the specified identifier,

and the second parameter is the slot number.

The function Type_Of takes an Intnode representing an

expression, variable, or type identifier and determines its

base type. The identifier associated with the base type is

returned. If the argument is a macro calling form, it is

expanded before the above determination.

The function Def_Of takes a type identifier as its

argument and returns an Intnode representing the type

definition of that identifier. This is the program fragment

previously specified in a statement of the forms

type identifier is. type_definition;

In this definition all record fields, "A,B,C; T," are

distributed, "AsTj B:T| CsT;," and all subtype indications

for discrete types are expanded to have the form

Typeid ranee Minvalue ,. Maxvalue

The procedure Match takes an Intnode and matches it

against a program phrase in a character string. Pattern

variables may be indicated in the character string by use of

101

the dollar sign^ just as for the parsing functions. "$A"

indicates that "A" is to be assigned the corresponding

sub-phrase; "$$A" indicates that a list of sub-phrases is to

be matched. If no match is founds an exception is raised.

The function Subst is used to substitute an Intnode,

"New," for all occurrences of a second Intnode, "Old," which

occur in a third Intnode, "Body," This modified copy of

Body is returned.

We have shown in some detail a powerful but

straightforward method for building program fragments in an

implementation independent way. These features are

sufficient for writing practical macro expansion

definitions, but future experience will undoubtedly reveal

other desirable features. Examples of the use of Castor

macro definitions may be found later in this chapter and in

Appendix A.

PROGRAMMING WORLDS

At this point we suppose the programmer wishes to write

the detailed algorithms for playing Tic Tac Toe. These are

most naturally expressed in a-mathematical notation in the

style of SETL [Dgwar 78] or VERS2 [Earley 74], We shall see

that high-level operators of this kind can also be expressed

quite conveniently and legibly in Ada calling forms.

102

One of the first things we want to do is define the set

of paths in the Tic Tac Toe board. To paraphrase the

following mathematical statement

Let Row(I) = {Move'(I,C) | C = l,o3}

we could write the following calling .form;

(Row{I)) IS
(The Set (Move'(I,C)) For(C) In(1..3));

(The notation Move'(I,C) is an Ada "qualified expression"

and means that an object of type Move is to be constructed

from I and C,)

Considering how we might wish to implement this^. some

alternative possibilities come to mind. First, we might

wish "Row(I)" to be a function;

function Row(I:Integer ranee l.,3)
Set Of(Move) is

b^gih
The Set(Move'(I,C)) For(C) In(l.,3)?

£M;

This, however, would require some fairly deep analysis to

discover a type for "I" and for the return value. We could

force the programmer to provide this additional information,

but there is an easier way.

Another possibility would be to define a map and

initialize its values accordingly. Again we have the

problem of discovering a domain and a range type.

103

The simplest way to interpret this calling form is to

use the textual substitution model for subroutine

invocation. We simply replace every occurrence of

Row(X)

with

The Set(Move®(X,C)) For(C) In(l.o3)

This eliminates the problem of finding the type of I and of

the return value. There is a potential for conflict with

the bound variable C, but it . is natural to expect the

calling form "The Set(-) For(-) ln(-)" to bind this variable

in a begin block.

To accomplish this substitution we use the function

Subst(A,B,C), introduced above, which substitutes Intnode

"A" for all occurrences of Intnode "B" in Intnode "C." We

want the following macro definition to be created;

madro Row(Param) return Exprnode is.
Free_var; Intnode s= Tag(Genname("Row"),1);
Expr ; Intnode s= Tag(Genname("Row"),1);

begin
return Subst(Param,Free_var,Expr)?

sM?

To do this, "Is" must be defined as follows;

104

n^acro (Lhs) Is (Rhs) return Declnode is
Naine^Free_var; Intnodei

begin

Match (Lhs y $Naine ($Free_var) ") |
Set_Tag(Name^lyFree_var);
Set_Tag (Name^ 1Rhs) i
return Gendecl (

"piacro. $Naine (Param) return Exprnode ig. "&
"Free_vars Intnode s=Tag(Genname(%$Name%)^1);
"Expr ; Intnode s=Tag(Genname(%$Name%)^2);
"begin

" rgtiiiji Subst (Param ^Free_var^Expr) ? %
"end; ")?

and;

(The percent character is an alternative string delimiter in

Ada,) Introduction of this capability gives us great

flexibility in using mathematical calling forms, as we shall

see,

A similar calling form, "(-) if (-)," can be used to

perform the identical function described above for "Is."

This reads more meaningfully when the map or function is

boolean valued (a predicate). For example,

((X) Is Even) If (X ffiod 2=0)?

defines the predicate "(X) Is Even" in the natural way.

The calling form

The Set (F(X)) For (X) In (S)

is similar to the "iterators" of SETL and VERS2. It might

be rendered in English as "the set of all y such that y=F(X)

for some X in S," or "the set formed by taking each X in S

105

and collecting the values F(X)." This is implemented as a

macro whose expansion depends on the particular

representation chosen for sets.

We note the need and usefulness of expressions of this

kind, without attempting to define a comprehensive

repertoire. This kind of package of definitions may become

standardized in years to come. Some additional calling

forms are as follows?

The Set (A) the singleton set {A}

The Set (A,B) the set {A,B}

The Set (X) In (S) St (P(X))
the set of all X in S such
P(X) is true

that

The Set (F(X)) For (X) In (S) St (P(X))
the set of all values F(X)
is in S and P(X) is true

where X

Similar iterative operations based on predicate

calculus and having parallels in other languages are;

Exists (X) In (S) St (P(X))
a boolean valued calling form which
returns the value True and sets the

value of X when a suitable X can be

„ found in S
•1^-' •• , ,

Any (X) In fS^ St (P(X))
a function which sets the value of
X if such an X is found and v?hich
also returns the value of X —

otherwise an exception is raised

Find (X) In (S) St {P(X))?
a statement similar to the above —
X is set if such a value is found,
otherwise an exception is raised

106

For (X) In (S) Assert (P(X))
For (X) In- (S) St (Q(X)) Assert (P(X))

a boolean valued calling form which
returns True if P(X) is True for
all suitable values of X

These calling forms, though limited to sets for our

purposes, provide a very flexible and natural means for
- - .-n

rapid writing of both specifications and programs.

Straightforward implementation of each of these is possible,

and while the resulting implementation may be inefficient,

this is of much less concern in a prototyping situation than

in a production programming environment. This can be seen

in the following very natural definitions for the Tic Tac

Toe programs

1) (Row(I)) Is (The Set(Move'(I,C)) For (C) In (lo.3)))
2) (Col(I)) Is (The Set(Move'(R,I)) For (R) In (1..3)))
3) (Dia(l)) Is (The Set(Move' (I, I)) For (I) In (1,,3)))
4) (Dia(2)) Is
5) (The Set(Move'(I,4-1)) For (I) In (lo.3)));

6) (The Rows) Is (The Set (Row(R)) For (R) In (1..3));
7) (The Columns) Is (
8) The Set (Col (C)) For,, (C) In (1..3))?
9) (The Diagonals) Is (
10) The Set (Dia(I)) For (I) In (1..2));
11) (The Paths) Is (
12) The Rows + The Columns + The Diagonals);

1) (Game Is Won On (B) By (M)) If
2) (Exists (P) In (The Paths) St (
3) (M) In (P) and
4) For (X) In (P - The Set (M))
5) Assert (B(X) = B(M))));

97

expressions in a data aggregate,. For splicing we use

another special notation in the skeleton program, as we did

above for substitutions,, A locus for splicing is indicated

by two dollar signs followed by an identifier, for example

This identifier denotes a macro variable or

parameter which is a list of nodes„ The following is an

example of this kind of splicing:

A: Stmtnode_List;
B: Exprnode?
SfC: Stmtnode;

Clear List (A) j
Appendl (GenstmtCX :=X+Z")) To (A) ;
Appendl (Genstmt("Put(I)")) To (A)f
B := Genexpr ("X<100")j
C := Genstmt("I := I+l");
S s= Genstmt("while $B loop $C; $$A; mid loop")?

The result is equivalent to the following

S: Stmtnode;

S := Genstmt(
"while X<100 loop "

"I := I+l; " &
"X := X+Z; " &
"Put (I) ; " &

"md loop") I

Our use of the word "splicing" indicates that the nodes

of the list are successively unparsed -- this process does

not have to check any structure into which the items are

being spliced, however. If there is a problem in this

context it v/ill be detected by the parser.

96

procedure Clear List (L; Intnode_List);
function.Is Empty (L; Intnode_List) return Boolean;
procedure Push (X; Intnode) On (L: Intnode_List);
function Pop (L; Intnode_List) return Intnode;
procedure Appendl (X; Intnode) To (L; Intnode_List);

"Clear List" makes a list empty. "Is Empty" is a predicate

to test whether a list is empty,.. "Push,(-) On (-) " adds an

element to the beginning of a list^ and "Pop" removes an

element from the beginning of a list. "Appendl (-) To (-)"

adds an element to the end of a list.

As we mentioned above, it is necessary to overload

these operations so that conversions from our special node

types to Intnode are permitted and the reverse conversions

are not. This is achieved by the following:

procedure Clear List (L: Typenode_List);
function Is Empty (L: Typenode_List) return Boolean;
procedure Push (Xs Typenode) On (Ls Typenode_List);
procedure Push (X; Typenode) On (Ls Intnode_List);
function Pop (L; Typenode_List) return Typenode;
function Pop (L; Typenode_List) return Intnode;
procedure Appendl (Xs Typenode) To (LsTypenode_List);
procedure Appendl (X: Typenode) To (L:Intnode_List);

Corresponding definitions are also given for Declnode's,

Namenode's, Exprnode's, and Stmtnode's.

It is also necessary to be able to splice a list of

internal nodes (for example aggregate parameters like V and

Z above) into a program skeleton to form a list or part of a

list of items in the language. For example, we may have a

sequence of statements in a loop body or a sequence of

107

1) (Win On (B) For (Token)) is
2) (Find- (M) In (Move) St (
3) Exists (P) In (The Paths) St (
4) (M) In (P) Mkd
5) B(M) = ' ' aM
6) For (X) In (P - The Set (M))
7) Assert (B(X) = Token))));

1) (Fork On (B) For (Token)) is
2) (Find (M) In (Move) St (
3) B(M) = ' ' aM
4) Exists (P1,P2) In (The Paths) St (
5) For (P) In (The Set (P1,P2)) Assert (
6) (M) In (P)
7) Exists (M1,M2) In (P - The Set(M)) St (
8) B(M1) = ' ' and
9) B(M2) = Token))))) 8

CHAPTER 6

INTERACTIVE PROGRAM MANIPULATIONS

Various models of software development have been

advanced which view the design as a step by step process.

Such models include "top-down" designj, "bottom-up" design,

"module-by-module" design, and others [Freeman 80]. No

realistic model, however, proposes that design can proceed

monotonically by any kno\a?n method without iteration and

backtracking. The essence of program development is the

process of feedback, incremental evolution, and convergence

to a solution. One of the features of the Aide is to offer

program transformations which arise frequently during

program development. Of particular interest are

transformations which are conceptually simple but lengthy to

describe in basic terms.

Given support for the mechanics of program change, it

is • s'till best if^-^changes can be avoided altogether. We can

do this by reducing the information that must be specified

and by reducing the redundant information distributed

through a program. In short, we wish to take liberties with

the rules of the language in order to reduce the verbosity

108

109

of programs^ This not only makes the initial articulation

of the program easier, but also means there is less to

change when changes become necessary. Localizing the

information relevant to individual design decisions makes it

easier to remake those decisions and update the program

representation. Also the less redundant, distributed

information there is, the less thought and effort are

required in the first place to make the program complete and

consistent vs/ith itself.

In general our approach is to provide rules and

mechanical means for transforming such programs into pure

Ada so that standard compilers and other tools can be used.

This set of features in the Aide we call a "laundry," since

it takes sloppy or "dirty" programs and cleans them up.

In this chapter we first consider features of the Ada

"laundry" and transformations involved in its operation. We

also discuss some high-level program editing transformations

and conclude with some suggestions for interactive

programming,

EXPLOITING DATA TYPES

-a —

The above coifsiderations should not be construed as an

argument for terse, cryptic language features. Certain

kinds of redundancy are conceptually helpful and conducive

to orderly thinking and correct problem solving. One of

110

these is type declaration and type checking as found in

languages like Ada and Pascal. The information provided

permits both static and run-time checking of the program for

consistency. For example^ the user can be protected against

passing an integer as a floating point parameter^ exceeding

the bounds of an"array, or using-the wrong- template for the

data area referenced by a pointer. We consider first some

ways to streamline the data typing facilities in Castor,

Reducirig Verbosity af. Data Types

It is time consuming and wordy to supply the type

definitions of procedure or function parameters. If we are

doing top-down programming and have already v;ritten one or

more calls to a procedure, the types of the formal

parameters can be inferred from the types of the actual

parameters in the procedure call or calls. We can put this

burden of type attachment on the Aide •— in general these

induced types should be taken to be unconstrained. Note

that consistency checking may be done among several actual

calls, and the user may be informed that overloaded

definitions are required.

Another feature of Ada is that complex types must be

defined by chains of definitions, with type identifiers

describing the intermediate constituent types. This makes

for a certain style in Ada programming and forms a special

kind of self documentation in the program. From the point

;' 111

of view of flexible program changes this is quite awkward,

however. The intermediate identifiers and their

declarations are burdensome and redundant, and if major

changes are made in the program, the investment in writing

them may be wasted. It is much handier to employ special

purpose editing transformations which will generate the

appropriate correct Ada representation. Suppose that the

following type declaration is input (in the style of Pascal,

lacking intermediate type identifie,rs) :

author;

record

name:

record

first, middle, last: string;
end record;

residences: access array (1,2) af. city_address;
record;

The Ada laundry automatically introduces the required

intermediate type identifiers. As an option the user may

wish to choose the specific identifiers to be introduced, as

in the following:

name_type:
record

first, middle, last: string;
end record;

residence-list: array (1,2) ai city_address;
residence_list_ptr: access residence_list;
personal_data:

record

name: name_type;
residences; residence_list_ptr;

end record;

author: personal_data;

112

In this example there are four type identifiers the

programmer did not have to create^ check for uniqueness and

specify in his first v^riting of the programo

There are two ways in which we may wish to display a

Castor program. We may wish to view it and edit it as

written^ or we may wish to see the inferred parts of the

program displayed as if they had been written by the user.

Thus it may be desirable to have a print-out which

distinguishes "real" text from -"inferred" text — as in

editions of the King James Bible where words are italicized

which are interpolations into the text of the original

language. This is done by implementing these

transformations as automatic program refinements which

introduce program attachments^ as described in Chapter 4.

In this way the user retains the ability to make localized

changes and have the Aide automatically update the

"inferred" areas of the program.

Checking

We offer the user a chance to specify data types

without having to create intermediate type identifiers, as

we have said. As a programming option the user may wish to

adopt a style where he avoids type identifiers and simply

specifies type structures. For example,

Xs array (lo.5) af. integer?
Ys array (loo5) af. integer;

113

In strict Ada, these variables X and Y have different types

and are therefore incompatible for assignment, passing as

parameters, and so on. The user may wish to loosen the type

checking rules of Ada to make such variables compatible, as

in Pascal,

Unj-foym Notation

Ada has a variety of notations which can all represent

the following abstract relationship;

The (A) Of (B)

They are,

B(A) Element (A) Of Ari^y (B)
'-^BvA Fipld (A) Of Record (B)
A(B) Function (A) Applied To (B)
B'A Attribute (A) Of (B)

This is a somewhat confusing set of alternatives. For

example, if "Fred" is a data item denoting an individual,

the age of "Fred" might be represented and accessed in

several different ways;

Fred(age) "Fred" is an array, "age" is an index value
Fred.age "Fred" is a record containing an "age" field
age (Fred) The age is computed by function "age"

(An attribute cannot be used in this example because in Ada

all attributes are predefined and are fixed in meaning.) If

we decide to change from the record representation to the

114

functional representationj, for examplejr we must change the

appropriate declarations and must change all references of

the form "Fred,age" to "age(Fred)," This is also necessary

for all other objects with the same type as "Fred^" and may

also be necessary for other operators besides "age,"

The least that the Aide can do is provide assistance in

finding and changing all of the appropriate references in a

situation like this. The following discussion provides

motivation for additional assistance from the Aide,

In three of these forms the "operator," A, is written

to the right of the "operand," B, and in one form A and B

are written in the opposite order. This varied

left-application and right-application can be an impediment

in writing and inspecting a program. When writing a nested

expression it is much easier to follow the sequence of

operations if all the operators are left binding (or all are

right binding). For example, suppose that T1, T2, T3, T4,

and T5 are data types and we have the following

declarations;

A(p: T2) return Tlj
functiQh B(ps T3) return T2;
function C(p: T4) return T3;
function D(p: T5) return T4;
X; T5;

The following is quite easy to program and easy to readj

either from left to right or from right to left;

115

A(B(C(D(X)))) 6-1)

D, C, B, and A are applied in order and it is easy to do

type checking visuallyo D is v/ell defined on X (type T5) , C

is well defined on any output of D, B is well defined on any

output of and A is well defined on any output of B and

returns a value of type T1»

We now consider what happens if we decide that D and B

can be "efficiently" represented as fields within record

types. The equivalent definitions are as follows;

function AA(ps TT2) return TTl;

type. TT3 is.
record

e • o

BB; TT2;
e e •

end recordg

function CC(p: TT4) return TT3;

TT5 is
record

O 9 9

DD; TT4;
• 99

mid record;

XX; TT5;

Our expression now becomes;

AA(CC (XXoDD) ,BB) 6-2)

We can check that DD is well defined on XX, CC is well

defined on XX.DD, BB is well defined on CC(XX„DD), and AA is
lO.

• •= - ,.Q

116

well defined on CC(XX.DD),BB and returns a value of type

TTl. It is more difficult to check this, however, since the

definitions for AA, BB, CC, and DD are now dissimilar, and

we have to scan the expression from the "inside" outward,

checking which operator is applied at each point.

Visual inspection of expression 6-2 does not readily

show what is going on — namely, that we are taking a single

value, XX, and are applying four operators to it in

sequence. Nor is the sequence ih which the operators are

applied clearly sfown. If we read from left to right, we

find AA applied and CC applied, but as we go on we are

surprised to find BB applied in betweeni Expression 6-2

cannot be read from right to left either. The eye must

somehow find the "center" of the expression and then work

from the inside outward, as we did above in doing the type

checking. Naturally, this becomes even more complicated

when the functions take more arguments and the other

arguments are also compound expressions. The programmer who

writes these expressions has similar difficulties.

One might argue that the fault in the preceding

predicament is in the programmer who writes expressions

which are too complex. We could easily rewrite expression

6-2 as follows:

XXI := XXoDD; 6-3)
XX2 ?= CC (XXI) ;
XX3 := XX2.BB;
XX4 s= AA(XX3)?

117

and then use XX4 in the context v;here expression 6-2 was to

be used. This is counter-productive for Rapid Prototyping,

however, because it slows the programmer down, returning to

a style of programming resembling assembly language. It

also requires the declaration of otherwise useless variables

and the creation of unique names for them.

The problem with 6-2 lies in the inconsistent

association of the various functional notations -- sometimes

requiring an operator to be written on the right and

sometimes on the left. The problem arose in this case

because of the user trying to take advantage of an

"efficient" record implementation too soon. If the

programmer had initially written everything with

left-applied functions, all v?ould be well. But it is all

too easy to leap to the use of record types or some other

"efficient" implementation just through the force of habit.

The answer we propose is to use left-applied operators

at all times. This can be achieved by automatically

defining suitable calling forms whenever a record type is

introduced. This also relieves the problem of changing from

one representation to another — in the case of records and

functions •— since the notation at points of reference

remains unchanged.

Instead of attempting to work arrays into this scheme,

we suggest that they should only be used for applications

118

which are clearly array-like in nature, and in case of any

uncertainty the functional notation should be used.

INTERACTIVE PROGRAMMING CONSIDERATIONS

Automatic Command Completion

Given the heavy use of lengthy calling forms in a large

program, it may become a troublesome clerical task to ensure

that all references to the same calling form are spelled and

worded exactly the same. Similarly the programmer may not

remember the exact wording or choices- available for a

library calling form. In an interactive environment it is

possible to lighten this burden by having the system help

with typing in the calling forms. The TENEX or TOPS-20

operating systems provide a facility of this kind for

automatic command completion. The user types in as much of

a lengthy command as is necessary to identify it uniquely.

Then instead of typing the remainder he may press the Escape

key, and the system automatically fills in the rest of the

command text. We can envision a similar facility for

managing calling form names. If there remain parameters to

be provided, the automatic type-in fills in up to the next

left parenthesis and then waits for the user to complete the

pararneter with a^-right parenthesis, at which point automatic

type-in can be continued using the Escape key. If the

119

automatic type-in reaches a point of ambiguity^ the user can

request a menu of choices with the question mark key^ After

disambiguation has been provided, type-in may be continued

by the Escape key.

Deeply. Nested Calling Forms

When calling forms are deeply nested, help may also be

required in balancing parentheses. The use of square

brackets ("[.,] "4^-^as "super parentheses," as in LISP, is

useful for this purpose [Meehan 79], By convention, a right

bracket matches as many left parentheses as necessary to go

back to the preceding left bracket. If there is no matching

left bracket, it matches as many left parentheses as

necessary to close off the expression.

CHAPTER 7

RELATED WORK

Software Prototyping is a new topic in computer

science^ although, as we have noted, there is growing

interest in this subject,, A body of literature on

Prototyping has yet to appear, but there are a number of

related areas that have a bearing on our approach,

PROGRAM DESIGN LANGUAGES

In his paper on Stepwise Refinement, Wirth employed a

Pascal-like language using descriptive procedure and

function names as place holders [Wirth 71], The term

"stepwise refinement" was introduced in this paper as a

concept for training programmers in systematic, top-down

design. This high-level programming style was evidently

conceived as a teaching tool and a manual tool students

could use in developing their own programs. The Eight

Queens example in Chapter 4 is taken from this paper,

Caine's Program Design Language, or "PDL," represents a

similar use of a formal program structure enclosing English

action descriptions [Caine 75], A syntax is defined using a

120

121

small set of reserved words and structured statement

formats. PDL is a documentation tool and is used to record

high-level program design information in a machine readable

form. This data base can be edited and updated as the

design progresses and serves as system documentation and a

guide for the program implementation phase. Various

documents can be generated from the data base, including a

table of contents, the text of the data base in

pretty-printed form, a cross reference, and a listing of

reference nestings. PDL was developed to produce

human-readable documentation rather than executable

programs, and so refinement of programs is by strictly

informal means,

A number of other PDL's are in use, although as a rule

these languages tend to be developed and used internally

within commercial organizations rather than being described

in the public literature. The PDL of Caine, Farber and

Gordon, Inc., described above is a notable exception, A

similar though unsupported PDL is described in

[Zelkowitz 79]. Another PDL using the program structuring

of Ada is under development along with a corresponding set

of analysis tools at TRW [Hart 81]„ This language is called

"Ada ^ PDL" and is characterized by the use of free format

(uninterpreted) text for program statements, package

declarations, and type definitions. IBM Federal Systems

122

Division has taken a more restrictive approach with their

"PDL/Ada," using a proper subset of the syntax of Ada and

allowing free format descriptions only in comments

[Waugh 80].

As we have discussed earlier, the purpose of a PDL is

to be a semi-formal design aid. Although some PDL's offer

various kinds of automatic analysis, in general there is no

mechanical assistance past the design stage. In fact, the

PDL and the implementation language may be totally

unrelated. A synchronization problem can therefore arise

between the design data base and the executable code, since

changes made during implementation (or later on) may or may

not be properly incorporated back into the design data base.

The approach of Castor, by contrast, is to provide a formal

interpretation of the free form text used in high-level

design. In this way the program is represented in only one

medium instead of two, and there is continuity between the

design and implementation phases of the development. The

Harvard PDS system described below also addresses this

problem.

ANNOTATION OF PROGRAMS

ANNA is a language being developed and studied at

Stanford which i>s an extension of Ada to include formal
o ,-0

annotations concerning program behavior [Krieg 80]. ANNA

123

uses formal comments of two kinds; virtual Ada text .and

annotations. These appear to an Ada parser to be comments,

but they have their own particular syntax and semantics.

These formal comments are intended for use in program

verification and for writing formal program specifications.

They resemble Castor refinements which are also displayed as

comments. Furthermore, in both systems an attachment has an

associated scope. In ANNA the scope of a declarative formal

comment is lik^e.a that of a declaration, and the scope of a

statement formal comment is the preceding statement. Castor

attachments have to be more general since refinements can

operate on parts of statements or on multiple statements.

Given certain extensions in the language to handle the text

v^ithin attachments, an environment supporting Castor

refinements could also readily support ANNA annotations,

INTERACTIVE DESIGN SYSTEMS

The PDS system (Program Development System) built by

Cheatham ^ formally manages the levels of refinement of

a program [Cheatham 79, Conrad 76], This has been done in

an extensible language environment in such a way that

user-supplied refinement rules can be used to generate

alternative implementations of the language extensions. In

PDS a system data base is provided so that multiple

representations of a program module are all available, A

124

high-level module can be modified to yield another version

by interactive commands or by a saved series of commands.

The transformations leading from one version of a module to

another are remembered by the system as a history of the

derivation^ and in the event of program modifications the

history can be used to replay the derivation sequence.

In the PDS system a program can be refined by manual

editing or by applying a r ev;rite-rule facility. A

refinement transformation of the' latter sort is a

pattern-directed program transformation. This rewrite

facility can be used to supply the definition of a

previously undefined program construct. It can also be used

to improve executable code by replacing or restructuring a

computation. Rewrite rules, like subroutines or macros, are

viewed as a two-level method of writing a program, rather

than as a means of communicating with a standard system

library.

The Harvard PDS system and Castor are similar in

philosophy. The PDS rewrite facility is like the Castor

macro facility as a mechanism for refining undefined program

fragments. While Castor macros are invoked by name, PDS

macros are invoked by pattern matching on the source

program. Macro invocation is therefore more efficient in

Castor but more general in PDS, since the occurrence of

consecutive expressions or statements can be used to trigger

125

a replacemento Expression of transformations is almost

certainly easier in PDS when it happens that the desired

replacement can be expressed as a pattern substitution. The

designers of the PDS rewrite facility foresaw, however, the

need to substitute computed program fragments. Castor

handles this situation more uniformly and does so in a

language that is largely independent of the internal program

representation, PDS macros on the other hand, like LISP

Macros [Meehan 79], must build the .exact list structure to

be substituted, piece by piece. The two systems also take a

similar approach to refining programs to produce executable

code; while Castor retains all forms of the program

concurrently, something like the PDS method of separating

versions into modules may be mandatory when large programs

are involved.

The Incremental Program Construction component of the

Carnegie-Mellon University Gandalf system is an interactive

program development tool for Ada [Feiler 79] , The Cornell

Program Synthesizer is a similar system for editing and

interactively executing PL/CS programs (a dialect of PL/I)

[Te.it^elbaum 81], ^These systems each "offe'r a source-language

oriented editor for creating and modifying programs. The

editor knows the syntax of the language and prompts the user

with statement skeletons to be filled in. Since text is

parsed and checked as it is entered, the resulting program

126

is necessarily syntactically correcto These systems also

offer interactive debugging, permitting the user to make

source language corrections and invoke incremental

re-translation of^the program-.

Structure-ofiented editors of this kind are of great

interest in a Rapid Prototype Programming environment.

Since editing operations are defined only in terms of the

grammar of the language, the problem of dealing with

syntactic errors is completely eliminated. This facilitates

refinement transformations particularly, and such an editor

capable of handling program attachments would be ideal. The

lack of such an editor was found to be an inconvenience in

Castor.

TRANSFORMATION SYSTEMS

Transformation systems are based on an approach

summarized by Knuth;

The programmer using such a system will write his
beautifully structured, but possibly inefficient,
program P; then he will interactively specify
transformations that make it efficient. Such a
system will be much more powerful and reliable
than a completely automatic one. ... The
original program P should be retained along with
the transformation specifications, so that it can
be properly understood and maintained as time
passes. ...

A "calculus" of program transformations is
gradually emerging, a set of operations which can
be applied to programs without rethinking the
specific problem each time. [Knuth 74](page 283)

• 121

A broad catalog of such transformations has been compiled,

addressing in particular the conditions of transformation

validity [Standish 76a]c Work has also been done on

chaining of transformations [Loveman 77, Kibler 78] and

verification of transformation correctness [Kibler 78]„

Consideration has also been given to the question of

detecting areas of a program where transformations ought to

be applied [Wegbreit 76],

DRACO is a transformation system which implements the

Component Software approach described in Chapter 3

[Neighbors 81]» This system ^ supports both refinement

transformations and optimizing transformations. This

involves the creation of large transformation data bases on

an application domain basis. To reduce the amount of

direction provided by the user, the system has detault

refinements that it can make, and the system will also

suggest applicable transformations based on the most recent

actions. Rules for chaining transformations are called

"metarules" and are automatically generated by the system

when a new transformation is added to the data base.

The Transformation Implementation (TI) project of

Balzer ai is aimed at automating the refinement of

executable programs from much more abstract program

specifications [Balzer 79, Goldman 80], Although such

systems are intended ultimately to be fully automatic.

128

research is still being done to reduce the amount of human

supervision required [Fickas 80]„

In Castor, refinement is a purely manual process,

although there is potential for coupling these technologies

in the future to automate the refinement and optimization

processes in a prototyping system^ Transformational

Implementation will be particularly desirable for

prototyping to the extent that programming in high-level

program specifications becomes practical.,

VERY HIGH LEVEL LANGUAGES

Very high level languages are basically a continuation

of the historical development of more and more powerful

languages. SETL is a very high level language developed

under the direction of J. Schwartz and is so named for its

emphasis on the mathematical concept of sets [Dewar 78],

The basic data types are integers, reals, bit strings, and

character strings. Structured data types are tuples, which

are ordered collections of values, and sets, which are

unordered collections of unique values. Maps are sets of

ordered pairs which can be accessed using mathematical

functional notation. Maps can also be multi-valued — that

is, they can be multi-valued relations. The language also

provides control structures which iterate over sets or

sequences using the predicate calculus quantifiers "exists"

129

and "for all."

The VERS2 language bears a number of similarities to

SETL [Earley 74, Earley 75]. In VERS2 a distinction is made

between tuples and sequences ~ a tuple is an ordered

collection of predetermined size consisting of heterogeneous

elements, whereas a sequence is an ordered collection of

unbounded size containing homogeneous elements. VERS2 also

has sets and relations. The most interesting aspect of

VERS2 is the formalization and unification of the "iterator"

concept. An iterator is basically an implied loop over a

data structure —— either over a set or a sequence.

Conditions can be added to filter the iteration values, to

control the termination of the iteration, and to combine

iterations in various v;ays. So-called "iterative operators"

are driven by iterators to do various things — for example,

replace elements, build sets or sequences, delete elements,

check universal and existential quantification, or execute

some general language statement VERS2 is .also endowed with

a pattern matching capability in conjunction with iterators.

The primitives of languages such as these are

suggestive of programming domains that could be made

available in function libraries for Rapid Prototyping in

specific problem modeling domains.

o.

.O

CHAPTER 8

CONCLUSIONS AND DIRECTIONS FOR FUTURE WORK

RAPID PROTOTYPING

Rapid Software Prototyping is stage in the software

lifecycle where the attempt is made to squeeze all the

remaining development stages • into as short a time as

possible. When applicable, this offers much faster feedback

to the early phases of the lifecycle — namely, the

requirements analysis and specification phases. By doing

this, wasteful pursuit of uncertain or incorrect goals can

be avoided. The benefits from this are less wasted effort

and expense in the "serious," production-quality

development, and a final product that is more responsive to

the users' true needs. The final program may also be better

designed and implemented, by virtue of the added experience

on the part of the implementors.

The key issue is therefore to determine just v/hen a

prototyping effort is called for and just what purpose the

prototype is to serve. Prototyping is most attractive when

the proposed system is radically new in some regard. The

130

131

system may be new because such a system has never been built

or it may simply be that the specifiers and ultimate users

have limited experience with that particular type of system

or with automated systems in general. Rapid Prototyping is

most valuable when there is uncertainty about the early

stages of analysis that can only be resolved by experience

with a working system.

The purpose of building the prototype should be clearly

defined, since one of the most, effective ways to speed

prototyping is to leave out inessential functions. Since

the prototype cannot reproduce faithfully all the properties

of the final system, care must be taken in selecting what to

implement, A prototype plan should identify both aspects of

the system that are in need of confirmation as well as those

in which there is adequate confidence and understanding.

With these criteria clearly identified, the prototyping

effort can be kept to the least possible scope.

Prototyping is a subject for which it is difficult to

provide experimental validation. As in most software

engineering studies, the most important phenomena are

associated with large, expensive projects, and it is tnese

projects that are the most difficult to produce in quantity

for experimental purposes. It would be most unattractive

(to anyone having to pay for it) to run two parallel

developments of the same large project simply as an

132

experimental control on the use of prototyping. On the

other hand, with the growing interest in Rapid Prototyping

and the strong case for its use in selected applications,

its seems likely that Rapid Prototyping may soon be

officially incorporated into the procurement of some

software systems,

CASTOR AS A PROGRAM DESIGN LANGUAGE

Castor is a language extension' of Ada designed with

Rapid Prototyping in mind. Calling forms give Castor the

flexibility of a PDL, allowing program designers to sketch

out their ideas and to move from problem to problem easily.

Calling forms can later be refined by replacing them with

suitable program fragments or by leaving the text as written

and adding remote definitions. Because the design and

implementation are both represented in the same data base,

the transition from design to implementation can be

continuous and can be managed entirely within the machine.

In addition, the tools of design analysis are available for

use during implementation — this makes it convenient, for

example, to get reports on calling forms not yet defined and

on consistency of module interfaces. The problem of update

consistency is reduced, but not eliminated, because broad

changes need to be made consistently at all pertinent levels

of refinement. Having all this information in one place

133

helps toward this end^ however»

The use of" macros in Castor allows calling forms to be

used as data types^ novel control structures, and variable

names„ This is in addition to their more conventional

interpretation as procedure or function calls o Macro

definitions themselves are written in Castor using built-in

data types and functions for dealing with program fragments

in their internal form. Program fragments are initially

specified as character strings with indicated substitution

points, A certain amount of overhead is incurred since the

lexical analyzer and parser must be used when generating an

internal node; in addition to this, a preliminary unparsing

action is also required whenever an existing internal node

is to be substituted into such a fragment. The benefit of

this is that it makes macro definitions independent of the

method of program representation, and the writer of macro

definitions is spared from learning and remembering the many

details of such ac.representation,

In Castor, program refinements are represented by

attachments made at various points in the program. In

general an attachment is associated with a phrase or a

sequence of phrases of the program, and the value attached

can in principle be anything. For Castor refinements the

value attached consists of another program phrase or a

sequence of phrases, an indication that the attachment is a

134

refinement, and the refinement name^ This representation of

refinements makes it possible to view the program at any

previous state of refinement and to restore it to that state

if necessarye

In the actual use of Castor a few problems arose„ One

of these was the need for a structure~oriented editor for

managing program refinements» The LISP structure editor was

pressed into service for Castor, and a few editor macros

were added for convenience. The result was adequate, but

hardly an ideal tool. Fortunately, interactive

structure-oriented editors of this kind are under

development and will certainly be important for Rapid

Prototyping, In addition, it was found that explicit

management of program attachments can be distracting and

error prone. These should be implemented in an error—proof

way as part of the editor.

Another area for future development is the construction

of library packages and macro definitions for prototyping.

Input/output in Ada is very basic, and the ability to direct

input and output by some kind of grammar notation would be a

great enhancement ^to the prototyping power of the language.

Other packages -=±br list handling and other high-level data

structures such as relations, mappings, and sets would be

most worthwhile. One particularly important concept would

be to provide a systematic distinction between value and

135

pointer references — for example^ reflecting the difference

between

X s= The (y) In (S) Such That (P(y)),°

and

Let (X) Be In (S) Such That (P(X))i

In the latter case only^ the following would be a meaningful

subsequent operation;

Delete (X);

An ample stock of ideas and concepts is to be found in the

very high level language literature, as we have discussed in

Chapter 7c

THE ADA PROGRAMMING LANGUAGE

A number of difficulties with Castor as a prototyping

language were caused by the characteristics of Ada, The

choice of Ada was made attractive by Ada's potential to

become a widespread standard, A language for writing

programs that are portable to a large variety of systems is

particularly attractive,- especially when it also means that

it is portable to the "understanding" of a large number of

programmers. It is also desirable to have access to an

ever-growing set of programming tools, as is expected to

136

develop for Ada environmentso

Unfortunately for our purposes, when Ada was created a

primary design goal was maintaining program integrity over

long-term program life„ It was stipulated from the

beginning that the language designers might sacrifice the

ease of writing programs to meet this end„ In a way,

however, this conflict is a good one from a research

standpoint, since it points out the trade-offs most clearly«

An Ada "laundry" is a proposed'mechanism for allowing

programmers to relax the rules of the language and for

automatically or at least interactively introducing the

kinds of redundancy required by the pure language. As a

future research area, such a tool could provide the

following in support of Rapid Prototype Programming;

1. Introduction of intermediate type identifiers for
compound data type declarations.

2. Declaration of the types of formal parameters of
procedures and functions.

3. Construction of package specifications,

4. Ordering of the declarations in declarative parts to
eliminate forward references, and introduction of
subprogram specifications where necessary.

5. Transformation of a procedure definition to a function
definition and vice versa,

5, Elimination of the verbiage associated with simple
function definitions.

7, A facility for passing structured values between two
points in a program without having to provide a type
declaration (and possibly variable declarations) in a
third place.

137

8« Implicit type declaration of identifiers by some
convention— for examples "Integer_l s= Y + Z?,"

We note that many of these services cannot be completely

automatic since the user should provide intelligible

identifiers and other information.

SPECIFICATIONS

Another issue not addressed by the Castor system is the

issue of formal specifications. Formal specification

languages are currently under development, but they do not

yet constitute an established technology [Goldman 80], As

we have noted, automatic refinement of languages of this

sort is a very attractive prospect for Rapid Prototype

Programming, if not for ordinary programming. However, much

remains to be done before this will be achieved.

Specification languages may still prove useful in

prototyping before then by helping to control the transition

from a prototype program to a later full-scale

implementation. In this way the relationship between the

prototype and the final system would be formally

established„

BIBLIOGRAPHY

[Ada 80]
Referenc.e. Manual fQr. tim Ada. Programming Language;
Proposed Standard Document. United States Department
of Defense, Jul 1980.

[Allen 76]
Allen, R.Ec, and D.A. Smith. "Functional Specification
HMP-1632 Microprocessor," Hug'hes Aircraft Company.
HMP-1670 ENB 5.1.1A, Aug 1976.

[Balzer 79]
Balzer, Robert, "Transformational Implementation; An
Example." ISI Draft, Aug 1979,

[Boehm 73]
Boehm, Barry W. "Software and Its Impact; A
Quantitative Assessment." Datamation, 19(52). May
1973, 48-59.

[Brooker 63]
Brooker, R.A,, I.R. MacCallum, D, Morris, and J.S,
Rohl. "The compiler-compiler." Annual Review of
Automatic Programming, 1, 1963, 229-275,

[Caine 75]
Caine, Stephen H., and E. Kent Gordon. "PDL — A tool
for software design." in Software Design Techniques.
P. Freeman and A.I. Wasserman (eds), IEEE Press,
Catalog No. EHO 161-0, 1980,

[Cheatham 79]
Cheatham, Thomas E,, Jr., Judy A. Toiirnley, and Glenn H„
Holloway, "A System for Program Refinement." Fourth
International Conference on Software Engineering. Sep
1979, 53-62. • ^

138

139

[Conrad 76]
Conrad, William E, "Rewrite User's Guide,," Harvard
University", Center for Research in Computing
Technology, Apr 1976o

[Dewar 78]
Dewar, Robert BoK, "The SETL Programming Language
Computer Science Dept., Courant Institute, NYU, 1978.

[Dewar 79]
Dewar, Robert B.K,, Arthur Grand, gt al- "Programming
by Refinement, as Exemplified by the SETL
Representation Sublanguage," ACM Transactions on
Programming Languages and Systems, 1(1), Jul 1979,
27-49,

[Earley 74]
Earley, Jay. "High Level Operations in Automatic
Programming." SIGPLAN Symposium on Very High Level
Languages, Mar 1974, 34-42.

[Earley 75]
Earley, Jay. "High Level Iterators and a Method for
Automatically Designing Data Structure
Representation," Journal of Computer Languages, 1,
1976, 321-342,

[Feiler 79]
Feiler, Peter H, "IPC System Version 1: Incremental
Program Construction," Carnegie-Mellon University,
Department of Computer Science, 1979,

[Fickas 80]
Fickas, Stephen. "Automatic Goal-Directed Program
Transformations." First National AAAI Conference,
Stanford, 1980.

[Freeman 80]
Freeman, Peter, and Anthony I. Wasserman (eds).
Tutorial on Software Desigil Techniques. IEEE Press,
IEEE Catalog No, EHO 161-0, 1980.

[Goldberg 75]
Goldberg, P.C, "Automatic Programming." Programming
Methodology, Goos and Hartmanis (eds), Lecture Notes on
Computer Science, 21, Springer Verlag, 1975, p 347.

140

[Goldman 80]
Goldman, Neil Mo, and David S„ Wile„ Gist Language
Description» Information Sciences Institute, Nov
1980o

[Hart 81]
Hart, Halo "Ada For Designs An Approach For
Transitioning Industry Softv7are Developers» " NSIA
Software Group Conference, Alexandria, VA, Oct 1981,

[IBM 72]
IBM Corp, "OS Assembler Language," Order No,
GC28-6514-8,

[Kibler 78]
Kibler, Dennis F, Power, Efficiency, and Correctness
qL Transformation Systems. PhoD, Thesis, ICS
Department, UC Irvine, 1978,

[Knuth 71]
Knuth, Donald E„ "An Empirical Study of Fortran
Programs," Software — Practice and Experience, 1(2)i
Jun 1971, 105-133,

[Knuth 74]
Knuth, Donald E. "Structured Programming with aa to
Statements," Computing Surveys, 6(4), Dec 1974,
261-301,

[Krieg 80]
Krieg-Brueckner, Bernd, and David C, Luckham. "ANNA:
Towards a Language for Annotating Ada Programs,"
Proceedings of the ACM-SIGPLAN Symposium on the Ada
Programming Language, Boston, 128-138, Dec 1980,

[Leavenworth 66]
Leavenworth, B,M, "Syntax Macros and Extended
Translation," CACM, 9(11), Nov 1966, 790-793,

[Loveman 77]
Loveman, David B, "Program Improvement by
Source-to-Source Transformation," JACM, 24(1), Jan
1977, 121-145>.

[Martin 74]
Martin, W,A,, M,J, Ginsberg, R, Krumland, B, Mark, M.
Morgenstern, B. Niamir, and A, Sunguroff, Internal
meraos. Automatic Programming Group, MIT, 1974,

141

[Meehan 79]
Meehan, James R„ (ed)„ The New UCI LISP Manual.
Lawrence Erlbaum Associates, 1979o

[Meehan 80]
Meehan, James R„ Th& U£1 MLISP Reference Manual. ICS
Department, UC Irvine, Mar 1980o

[Meehan 81]
Meehan, James R„ F Editor Manual, ICS Department, UC
Irvine, Jan 1981,

[Neighbors 81]
Neighbors, James Milne, Software Construction Using
Components. PhD Thesis, ICS Department, UC Irvine,
Tech, Report 160, 1981,

[Naur 63]
Naur, Peter (ed) , Revised Report On The Algorithmic
Language Algol 60, CACM, 6(1), Jan 1963, 1-17.

[Ramamoorthy 79]
Ramamoorthy, C„V., and Raymond T, Yeh. Tutorial;
goftyate Methodology. Chicago; Palmer House, IEEE
Catalog No, EHO 142-0, 1979.

[Smith 79]
Smith, David A., and Thomas A, Standish, "Research on
Interactive Program Manipulation: Final Report." ICS
Department, UC Irvine, Tech, Report, Dec 1979.

[Standish 76]
Standish, Thomas A,, Dennis F, Kibler, and James M,
Neighbors, "Improving and Refining Programs by Program
Manipulation." ACM National Conference, 1976,
509-516,

[Standish 76a]
Standish, T.A,, D,C, Harriman, D,F, Kibler, and J.M,
Neighbors, Irvine Program Transformation
CatalQgqe. ICS Department, UC Irvine, Jan 1976.

[Standish 80]
Standish, Thomas A, "ARCTURUS: An Advanced
Highly-Integrated Programming Environment." Software
Engineerihg Environments, Proceedings of the Symposium
held in Lahnstein, Federal Republic of Germany, Jun
1980, 49-60.

142

[Stoneman 80]
EequiyeinentS ioi. SlSs. Proqcamming Support Environments;
"Stonepap,'" United States Department of Defense. Feb
1980,

[Taylor 81]
Taylor, Tamara, and Thomas A, Standish, "Initial
Thoughts on Rapid Prototyping Techniques," To appear
in proceedings of the ACM-SIGSOFT Second Software
Engineering Symposium: Workshop on Rapid Prototyping,
Apr 1982,

[Teitelbaum 81]
Teitelbaum, Tim, and Thomas Reps, "The Cornell Program
Synthesizer; A Syntax-Directed Programming
Environment," CACM, 24(9), Sep 1981, 563-573,

[UCI Workshop 78]
£jLQ.ceg<jing^. af. khs. Irving Workshop on Alternatives for
Environpont, Certification, ^ Control ef DoD
Compon High. Qr^er Language, ICS Department, UC Irvine,
Jun 1978.

[VanHorn 80]
Van Horn, E, "Software Must Evolve," Workshop on
Software Engineering, Academic Press, 1980.

[Waugh 80]
Waugh, D,W, "Ada As A Design Language," IBM Software
Engineering Exchange, 3(1), Oct 1980, 8-12.

[Wegbreit 76]
Wegbreit, Ben, "Goal-Directed Program
Transformation." IEEE Transactions on Software
Engineering, SE-2(2), Jun 76, 69-80,

[Wells 72]
Wells, Mark B,, and James B. Morris. "The Unified Data
Structure Capability in Madcap VI," International
Journal of Computer and Information Sciences, 1(3),
1972, 193-208,

[Wirth 71]
Wirth, Niklaus, "Program Development by Stepwise
Refinement," CACM, 14(4), Apr 1971, 221-227,

143

[Workshop 82a]
ACM-SIGSOFT, Software Engineering Symposium; Rapid
Prototyping, preprint papers, Apr 1982„

[Workshop 82bi
Proceedings of the ACM-SIGSOFT Second Software
Engineering Symposium; Workshop on Rapid Prototyping,
to be publishedc

[Zelkowitz 79]
Zelkowitz, Marvin V„, Alan C. Shaw, and John D.
Gannon, Sringigl^ ot goftwath Engineering and
Desigg. Prentice-Hall, 1979.

•a

APPENDIX A

AN EXAMPLE OF RAPID PROTOTyPING

In this appendix we show how Rapid Prototyping can be

used to develop a realistic software system of modest size.

The proposed system is for automating many of the data

structures and operations found in a business officoo In

particular g we suppose that as system designers we wish to

explore the use of a desk-top computer to perform functions

normally done on paper.

Office automation is an active area of development and

competition in the business community today, and it is not

the aim of this thesis to make a contribution in this area.

Rather, we use this domain to show the prototyping process

in action. This is an ideal case for our demonstration

since it is a fresh and evolving application area. This

example also has the expository advantage of being more or

less universally familiar, so we need not define and explain

the motivation for the basic concepts of the application

domain.

In the following we described the steps that were used

in designing and implementing an electronic office prototype

144

145

program using the Castor system^ The steps used in the

prototyping process are as follows;

1. The objectives of the prototype are identified. This
is to answer the question '̂ Why is a prototype of this
system desirable?" This also establishes criteria for
measuring the success of the prototyping effort,

2. Some broad choices are listed for the functions to be
offered by the target system,

3. A Model System is described; the document doing this is
basically a prototype system specification for the
target system. Not all of these functions need to be
in the prototype •— rather, this is another choice
space which is more limited and is described in greater
detail,

4. Functions to be implemented in the prototype are
selected. For the electronic office it appeared that
some concepts could be evaluated independently of the
actual set of office functions performed. Thus, two
prototypes were proposed, only the first of which is
considered in this appendix,

5. The top level of the prototype program is
characterized.

6. A modular design of the prototype is given,

7. The design is refined in a stepwise manner, using the
bookkeeping of the Aide to monitor progress toward a
complete implementation.

OBJECTIVES OF THE PROTOTYPE

To begin with, we consider the features we wish to

prototype and what we wish to determine from the prototype.

The object of our investigation is the use of a desk-top

computer with the characteristic of offering exclusive and

146

continuously on-line access to a local data base. We may

suppose we have access to other systems (including other

desk-top systems of this sort) via some kind of data

network. We also assume we have a high-speed video display

and either local or remote printing capability.

Beyond these basic assumptions there are a great many

design choices available. Rather than trying to make the

"best" decision for each choice^ the prototyping approach is

simply to proceed quickly, making what seem to be reasonable

trade-offs and design choices. No amount of careful

planning and design, for example, v;ill tell us with

certainty if a certain two-dimensional input device such as

a mouse or joy-stick will be perceived by users as a

valuable capability. This depends on how use of the system

evolves, and this can only be determined by letting users

gain experience with it. In fact we don't even know if the

computer itself is going to be valuable for the purposes we

are exploring — this is why we are building the prototype.

Clearly anything we might wish to do with a desk-top

computer could alternatively be done on a timesharing system

with a desk-top terminal. The most important differences

offered by the desk-top computer would be in having

continuous on-line access, having exclusive access to the

processor, and possibly in having higher data rates for

information display. These properties make the desk-top

147

computer attractive for uses which would seem frivolous if

it took time, effort, and a recurring expense to log onto a

remote system in order to use them„

Rather than build a hardware prototype of this system,

however, we will emulate its behavior by using prototype

software on a timesharing system. This will be

representative of the actual system, if

1. We can remain logged-in continuously during periods of
evaluation.

2. The display speed is comparable to the display speed of
the dedicated system.

3. The performance of the software and the response
offered by the timesharing system are good enough to be
representative of a dedicated system.

We can use the features of the prototype host system to

simulate other devices which would be reachable through the

proposed data network, such as other users' desk-top systems

or a community printing device.

A SET OF FUNCTIONS TO SELECT FROM

In this section we consider a broad set of functions

that the proposed system might offer. Here, in the briefest

possible fashion we explore various possibilities for the

proposed system, and from this list a few interesting and

representative capabilities will be chosen for the

prototype. The following items are data structures found in

148

an otfice which are generally found on paper rather than in

an electronic medium:

1= Telephone or address directories

2. Work agendas (ie, what to do today, what to do for this
project, etc.)

3. Meeting agendas

4. An appointment calendar

5. Reference lists (bibliographies), with provision for
noting books or articles loaned out

6. Project schedules (showing milestone goals and
progress)

7. Organization charts

00 Memos of various sorts (notebook entries, proposals,
reports)

9. Forms of various sorts (meeting notices, request forms)

10. Help files, account numbers, and passwords for various
computer systems

11. Time cards

12. Backups of files on various computer systems

13. Vacation schedules and history

14. A dictionary or spelling guide

15. Mail

16. Mail distribution lists

We note that of these, the last three have some counterpart

in contemporary computer systems. Spelling corrector

programs serve one of the purposes of a dictionary, though

they are not used in exactly the same way. Electronic mail

149

programs have also become quite popular and sophisticated.

The user may wish to create such data structures, edit

them, send them to other people as mail, and print them.

There are also typical file-system operations such as

listing directories of files, renaming or regrouping files,

deleting files, and so on.

Special purpose operations may also be desired such as

searching the calendar for free appointment times, looking

up an individual's phone number or address, searching a

bibliography for key words, or answering a piece of mail.

In addition to these, some real-time functions may be

desirable — for example, requesting an alarm clock setting

for a selected appointment in the appointment calendar,

having the system notify the user when new mail arrives, or

having messages sent or file protections changed on a given

time or date.

Security must also be provided. A password or other

locking mechanism is needed so that the user can leave the

computer unattended with confidence. Confidential files

must also be protected from unauthorized access over the

data network.

150

THE MODEL SYSTEM

The next step is to develop the concepts upon which the

proposed system is to be based. This may be a formal

specification of the proposed system, it may be a brief

high-level description of the prototype to be built, or it
" -- 4.

may be somewhere^"in between these extremes of scope and

detail. In the present case we describe a superset of the

functions we will prototype. This "Model System" allows us

to explore various system concepts without committing

ourselves to implementing them. In a sense this description

serves both as a prototype of the System Specification and

also as a menu of choices for the prototype we are to

implement. In the present case this document is somewhat

lengthy, but it is included here in the following pages to

indicate the level of detail which seems appropriate at this

point:

151

Basic Concepts

In the Model System the basic unit of data managed is
the document. Every document has a header and some
contents. Each header is a list of attribute-value pairs
vjhich may include a document-form type^ a creation date^ a
level of protectionf. and a document name. Each of these is
considered optional^ including the document name.

Other possible attributes might be keyword indices,
subject, author, and various kinds of document status.
Although a full implementation might offer various views of
a header, both detailed and brief, our prototype will always
display the whole header and will provide support only for a
limited set of attributes.

The form or template of a document allows the editor to
supply various information fields literally or with default
or automatically generated values. Some information can be
protected from changes, like the parts which would be
pre-printed_ on a paper form. In a space-efficient
implementation these fields might not even be stored and
would be furnished only on print-outs by programs knowing
the form type. Fields may be flagged for validity checks —
for example, checking that dates are valid, or that phone
numbers are correct or at least have the correct form, or
that names of individuals are spelled correctly.

Documents may be grouped into document files, within
which they have a sequential order, A file then is like a
filing folder in which related documents are collected. We
do not require in general that all documents in a file be of
the same kind, A file may also contain other files -— this
is analogous to a file drawer containing file folders, a
file cabinet containing file drawers, and so on. The
nesting of files may continue to a reasonable depth, A
given document file may be composed of both documents and
nested files of varying depths, and it may have zero length,
A node is an item in a file, whether it be a document or
another file. The overall system structure therefore
consists of a single file at the top level. Files also have
attribute lists, generally containing at least a file name.

In addition to this upward hierarchy, we also permit
some documents to be sequences of similar items -- for
example, days in a calendar or different entries in a
bibliography. If these repeated units are instances of a
document template, then this is called an iterated template
document,

152

In addition to documents and files^ the system will
also contain programs and template descriptions., For the
prototype we will define a fixed set of forms and programs.
In a full-scale system, extensibility of this set of
programs and forms would, of course, be an area of
particular interest.

Eiifi Management Commands

The syntax for commands dealing with files is as
follows;

In

QUAL
NODE

FILE

DOC

NODE SETl

= NAME i NUMBER | -NUMBER
= QUAL {. QUAL}
= file_NODE
= document_NODE
= NODE

FILE . *

FILE „ (QUAL : QUAL)
= N0DE_SET1 {+ N0DE_SET1}
= NAME

NUMBER

- NUMBER

NODE_SET
TOKEN

COMMAND ''PRINT" NODE_SET |
"DIRECTORY" NODE_SET ,«
"APPEND" FILE "=" NODE_SET ;
"APPEND_COPy" FILE

"=" NODE_SET ;
"DELETE" NODE_SET
"CREATE" DOC [form_NAME] ;
"EDIT" [DOC] ;
"CLOSE" DOC 7
"LOOK" DOC {Arbitrary_TOKEN}
"FIND" DOC {Arbitrary_TOKEN}
"UNLOCK"_Arbitrary_NAME ;
"LOCK" 7 "
"SET_LOCK" Arbitrary_NAME 7

this grammar notation, CAPITAL letters denote
nonterminals, {braces} denote repetition zero or more times,
[brackets] denote^ optional items, and vertical bar (1)
denotes alternative constructs. Quotes are placed around a
terminal which would otherwise look like a nonterminal or a
meta-symbol ("=" or "MOVE"). The use of a lower case word
as a prefix to a nonterminal indicates that the entity
specified must semantically turn out to be an instance of
the item mentioned in lower case letters. For example a
FILE is defined to be a file_NODE — therefore it must be a

153

NODE which turns out to be a file (and hence not a
document)»

The semantics of these commands can be described
briefly. A qualifier selects a node from the nodes of a
file, A name may be used only if the node has a name
attribute! otherwise a number may be used denoting the
node's position in the file^ or a negative number may be
used denoting the node's position from the end of the file,
A NODE_SETl is an expression whose value is a sequence of
nodeseither given by naming a single node^ by naming all
the nodes in a file^ "FILE,*," or by naming a subrange of
the nodes in a file, "FILE,(QUALsQUAL)," A NODE_SET is a
similar value which may be augmented by concatenating many
such expressions.

The file commands are largely self-explanatory, PRINT
generates a hard copy of all the documents in the specified
node set, DIRECTORY displays a list of all document headers
within^ the specified set of nodesi note that the documents
in a file expression are listed by their fully qualified
names for this purpose, APPEND creates or appends to- a
file. Documents or files appended to a file are deleted
from their original location, APPEND_COPy is like APPEND,
but does not delete the original copy of the documents or
file, CREATE is for creating a new documents the system
enters a mode where document editing commands are
recognized, and if a form npme -is ,specified then the
appropriate documQnt template is invoked. EDIT specifies an
existing document and enters edit mode accordingly,

CLOSE invokes the form-specific checking appropriate to
a given document — this is only necessary if editing of the
document was suspended without closing it, LOOK is another
form-specific operation — for example, for looking up
specific information in a calendar, dictionary, or
directory, FIND, like LOOK, is a form—specific search in a
document. In general, if LOOK has an ambiguous reference it
will display the^ first matching occurrence, FIND, on the
other hand, will display such occurrences one at a time. An
empty command line will cause FIND to sequence to the next
instance. After a LOOK or in the midst of a FIND, an EDIT
command with no document specified will cause the editor to
be invoked on the current document at the current location.

The LOCK command places the system in "locked mode"
where the only command it will accept is an appropriate
UNLOCK command, A password must be provided to unlock the
system. The SET_LOCK command is for changing this password.

154

Document Templates

In order to impose structure on some documents and
allow the system to furnish defaults and perform other
special operations^ it is necessary to define the template
of a documento The template describes the format of the
document or of repeated items in a document» A template
contains five kinds of information: inviolate text, default
text, default function names, comments (prompts), and
initial text» The notation given below indicates how these
different kinds of text appear v/hen the template is first
invoked:

Inviolate text eg. Author
Default text eg, \Prototyping Project\
Default function name eg, \(Todays_Date)
Comment or prompt eg, \<Author«s name>
Initial text eg. This just looks like text.

Fields in the template are delimited by inviolate text. In
the prototype, fields must be rectangular in shape. All the
fields present on a given line may be vertically lengthened
by inserting a blank line containing appropriate field
separators. Any insertion made over comments or defaults
causes the comments or defaults to disappear. There is no
distinction made between initial text and text which is
inserted during editing; initial text may be overwritten or
explicitly cleared. Closing a document automatically causes
any remaining defaults to be instantiated and comments to be
removed„

SditQC Commands

The editor in the Model System is patterned after the F
editor written by Jim Meehan of the University of California
at Irvine [Meehan 81]. This is a full screen editor to
which features are added for dealing v/ith document fields
and defaults. By using the framework of an established
editor we are less concerned with making sure that all
conventional editor functions have been provided for. This
also enables us to take advantage of the existing overall
design of such an editor and of the algorithms it uses. The
editor in the prototype is a modification of an F-like
editor written in Ada by Scott Ogata.

Each editor command is entered as a control character.
For example, Control—Z closes the document and leaves edit
mode, while Control—X leaves edit mode without doing the
form—specific CLOSE operation. It is also possible to close
the document but remain in the editing session — this
permits the user to preview the final document. The

155

following are conventional full-screen editing operations;

Delete One Character
Delete One Line
Move Window +10 Lines
Move Window - 10 Lines
Skip To End Of Document
Skip To End Of Line
Leave Edit Without Closing
Close And Leave Edit Mode

A Move Cursor Right
(BS) Move Cursor Left

2— Move Cursor Up
(LF) Move Cursor Down

A number

electronic

characters;

of edit commands specific to our proposed
office system are entered as two control
a Control-B which serves as an escape^ followed

by ^ 3ppropriat6 control charactGro TIigsg operations are
specific to the electronic office system;

"B"N
"B"P
'^B'^X
"B"I
"B"F
"B"Z

Skip To Next Field
Skip To Previous Field
Clear Field And Skip To Next
Invoke Another Template Instance
Instantiate Field Default
Perform Close But Continue Editing

Alarm Functions

In the Model System the only timed functions are alarms
associated with the appointment calendar„ An entry in the
calendar may be flagged with an asterisk^ indicating that an
alarm at that time is desiredo When the calendar is closed,
the timer gueue is cleared and then all alarm reguests found
in the calendar are entered (or re-entered) in the new timer
gueue. Thus to cancel an alarm the user simply edits the
calendar and deletes the selected alarm reguest.

When an alarm occurs, an audible tone sounds at the
terminal and a message is displayed, consisting of the
calendar entry causing the alarm and the immediately
following calendar entry, if there is one. In this way, the
user can reguest an alarm as a reminder some interval of
time before a particular appointment.

156

Pocumerit Forms la Model System

The Model System includes only a few of the proposed
document forms. These are chosen with the following
criteria in minds

1. To demonstrate a variety of applications of the syst em,

2, To show the usefulness of basic concepts such as
template filling and files of documents.

3, To try to find uses which seem most attractive for
prospective users^ such as managing agendas or
telephone numbers.

The following formats are described as part of the
Model System:

1. Agenda
2. Appointment Calendar
3. Telephone Directory
4. Bibliography

The formats and special operations for these documents are
given in the remainder of this section.

Agendas An agenda is a document which lists brief
items in an order of priority. Priority is indicated by
numeric labels, and completed items may be retained with a
nonnumeric label such as "xx." Numeric labels are given in
decimal with an integer part, a decimal point, and an
optional fractional part.

Functions peculiar to agendas are as follows:

Close — At the end of an edit (or any time the
document is "Closed"), the agenda items are
sorted in order of increasing priority.
Completed items (with non-numeric labels) are
moved to the bottom, preserving their relative
order. Numbered items are then renumbered
starting at 1 in increments of 1. Items with
equal priority retain equal priority and their
same relative order.

The following illustrates the
template for an appointment calendar (truncated on the right
to fit on this page):

157

SUN\<date> MON\<date> TUE\<dai:e> WED\<dat:e>

l\<appts> l\<appts> l\<appts> l\<appts> I ,1!

The primary data is stored in seven vertical fields, each of
which is eleven characters wideo Each column, naturally,
has appointments for one day of a given week® Multiple
instances of this template are for successive weeks® The
long field of inviolate hyphens delimits the tops of the day
fields, and the inviolate vertical bars separate adjacent
day fields® The last line of the template can be replicated
to lengthen the fields vertically®

Each appointment begins with a digit (or an asterisk
followed by a digit) in the leftmost column of a vertical
field.^ This digit begins a time specification® This time
specification may stand alone or may be followed by a hyphen
and another time specification® The asterisk, if specified,
indicates that an alarm is to be generated at the time
specified (or at the first time, if two are given). The
rest of^ the information about the appointment is arbitrary
and continues until the next appointment or the end of the
vertical field® The follov'/ing is an example:

Smi JunlS MOM Junl4 2im JunlS MEH Junl6

I 18-9 Status! 1*1030 Call! ...
1 1 Review 1 1 irs 1 .®,
J- 1 1*12 Lunch 1 Auditor 1 ...
J- 1 1 Appt 1 1 , . ®

The meaning of a time specification depends on the
number of digits. One or two digits specify an hour; three
or four digits specify an hour and a minute® The time may
be followed by a letter "A" for AM or "P" for PM ~ if these
are omitted the default time is between 500A (6:00 AM) and
559P (5:59 PM)®

I'unctions particular to an appointment' calendar are as
follows:

Close— This sorts the appointments for each day in
increasing order and puts a blank line between
appointments. This also causes the timer
queue to be emptied and then causes the
document to be scanned, enqueueing (or
re-enqueueing) each alarm request that is
foundo

158

Look — The user specifies a date» This causes the
week containing that date to be displayed.
The date is specified with a three-letter
month abbreviation and a decimal day number,
either as "day month" or "month day,"

Find — The user specifies a lower bound and an upper
bound time in standard form, separated by a
hyphen. This request causes the calendar to
be searched for a free appointment time within
the specified time-of-day range. The search
starts with the current day.

Telephone Dxrectories A telephone directory is a list
of names with telephone numbers and possibly other
information, A typical line has the form

Lastname, Firstname (Alias) number number number

The numbers may have any form, and there may be comments
interspersed. Only the name fields of the line are
interpreted„

The operations associated with directories ares

Close — Sorts the document on the names.

Look — Looks up the entry associated V7ith the
specified name and displays the line found on
the terminal. In case of ambiguous reference,
all selected lines are displayed. The name
specified may have one of the following forms:
1) "Lastname," 2) "Firstname," 3) "Alias," 4)
"Firstname Lastname," 5) "Alias Lastname,"

Find — Looks up entries which match a given name.

^Bibliographies A bibliography item consists of a
bibliography name abbreviation, a series of index v/ords or
keywords, an author, a title, publication information, and a
comments field. The comments extend from the end of the
publication information until the next item or the end of
the document. The entry abbreviation is identified by the
fact that it is enclosed in brackets. The following is an
example;

159

[Brooks 79] .\Software Engineering\Management\
, ^Brooks^ Frederick P/ • • •

The Mythicgfl'' Man-Month o
Addison-Wesley, 1979,

Loaned to John Doe -- Dec 5, 1981,

The operations particular to a bibliography are as follows;

Look Looks up an item or items by abbreviated name
or by index keyword.

Find ~ Searches for an item or items matching a
particular keyword.

160

FUNCTIONS SELECTED FOR THE PROTOTYPE

Having described the Model System^ the next step is to

determine how much of this system is to be implemented in

the prototypee With this in mind we establish (somewhat

arbitrarily) the following goals for the prototypes

1. It should help us evaluate the "file" and "document"
concepts and the command language facilities for
dealing with them.

2. It should help us evaluate the "template" concept as
supported by the editor. This includes handling
fieldSj. inviolate text, and field comments (prompts).

3, It should offer one or more of the document forms
described in the Model System. For simplicity in the

version of the prototype, the only document form
implemented was the Appointment Calendar.

4, Given the achievement of the above goals, a second
iteration of the prototyping process would provide a
large number of the office document forms and
operations described above and would be used to
evaluate the true usefulness of a desk-top office
system.

Given the above goals, the design and implementation of

the prototype now proceeds in a top-down manner. Because

Castor is both a Program Design Language and a programming

language, the distinction between these two phases is not

well marked.

It would require too much space to present the entire

prototype here and would require even more to show it in its

entirety at each stage of development. In the remaining

161

sections of this appendix, therefore, we present only

selected steps "of this development in order to illustrate

the refinement process and demonstrate various features of

Castor and the Aide.

THE TOP LEVEL OF THE PROTOTYPE

The first representation of the prototype is a

top-level procedure called "Office." The following excerpt

of a Castor session shows this procedure.

$pp("office");
— Refinements;

PROCEDURE Office IS

Locked: Boolean := False;
BEGIN

LOOP

BEGIN

Get User Command;
Interpret User Command;

EXCEPTION

WHEN OTHERS =>

Issue Error Message;
END;

END LOOP;
END Office;

$def_check;
office

PROCEDURE get_user_command
PROCEDURE interpret_user_c6mmand
PROCEDURE issue^error_message

In this protocol, "$" is the system prompt character,

and the command

162

pp("office")i

is a comniand which causes the procedure "Office" to be

pretty-printed. A list of current refinements in effect is

printed (in this case the list is empty), and the procedure

is then printed. The command

def_check;

checks the last-printed procedure ("Office") for undefined

types, procedures, variables, and so on. The resulting list

shows those procedure calling forms which are undefined at

this time„

The next step is to introduce the refinement OFFICEl,

the effect of which is shown by the following:

$show("officel");
$pp ("office");
— Refinements: —OFFICEl

PROCEDURE Office IS

~2 (OFFICEl)
TYPE Commandty IS (Print, Directory, Append, Del, Create,

Edit, Closef'Look, Find, Unlock, Lock, Set_lock);
Command: Commandty;

Locked: Boolean := False;
BEGIN

LOOP

BEGIN

—2 (OFFICEl) Get User Command;
Interpret User Command;

Get (Command);
CASE Command IS

WHEN Print =>
Printcom;

WHEN Directory =>
Directorycom;

WHEN Append =>

Appendcom;
WHEN Del =>

Deletecomj
WHEN Create =>

Createcomi
WHEN Edit =>

Editcom;
WHEN Close =>

Closecom;
WHEN Look =>

Lookcom;
WHEN Find =>

Findcoin;
WHEN Unlock =>

Unlockcom;
WHEN Lock =>

Lockcom?
WHEN Set_lock =>

Set_lockcoin;
WHEN OTHERS =>

RAISE Error;
END CASE;

EXCEPTION

WHEN OTHERS =>

Issue Error Message;
END;

END LOOP;
END Oft ice;

$def_check;
office

EXCEPTION error

PROCEDURE appendcom
PROCEDURE closecom

PROCEDURE createcom

PROCEDURE deletecom

PROCEDURE directorycom
PROCEDURE editcom

PROCEDURE findcom

PROCEDURE issue_error_message
PROCEDURE lockcom

PROCEDURE lookcom

PROCEDURE printcom
PROCEDURE set_lockcom
PROCEDURE unlockcom

163

The "show" command directs that the state of the program

164

both before and after the OFFICEI refinement are to be

displayed when the program is pretty-printed. As shown, the

refinement OFFICEI has introduced two declarations (the type

"Commandty" and the variable "Command"') and has replaced the

two statements in the loop body with two new statements: a

call to procedure "Get" and a large CASE statement. At this

point we have a larger set of undefined procedure calling

forms and the exception "Error" is also found to be

undefined.

A REFINEMENT OF THE PROTOTYPE

The next step of interest in this development is the

introduction of „a package-defining most of the unresolved

procedures in theSnain program. This is done by introducing

the package as a separate compilation unit and placing a

reference to this in the procedure "Office." This kind of

reference is called a "body stub" and is Ada's facility for

supporting top-down programming. Below we show the

procedure "Office" once again with tv/o refinements in

effect: OFFICEI and COMMANDS. The notation " associated

with the COMMANDS refinement indicates that the program text

is shown before and after that refinement, while all we see

is the final form of the OFFICEI refinement.

165

$show("commands");
$pp("office");
— Refinements;' OFFICEl —COMMANDS

PROCEDURE Office IS
TYPE Commandty IS (Print, Directory, Append, Del, Create,

Edit, Close, Look, Find, Unlock, Lock, Set_lock)?
Command: Commandty;
Locked: Boolean := False;
—1(COMMANDS)
PACKAGE BODY Offcom IS SEPARATE;

BEGIN

LOOP

BEGIN

Get (Command);
CASE Command IS

WHEN Print =>

Printcom;
WHEN Directory =>

Directorycom;
WHEN Append =>

Appendcom;
WHEN Del =>

Deletecom;
WHEN Create =>

Createcom;
WHEN Edit =>

Editcom;
WHEN Close =>

Closecom;
WHEN Look =>

Lookcom;
WHEN Find =>

Findcom;
WHEN Unlock =>

Unlockcom;
WHEN Lock =>

Lockcom;
WHEN Set_lock =>

Set_lockcom;
WHEN OTHERS =>

RAISE Error;
END CASE;

EXCEPTION

WHEN OTHERS =>

Issue Error Message;
END;

END LOOP;
END Office;

166

The first version of the package "Offcom" is given

below. This shows the flexibility of Castor calling forms

as a formal program design language as the individual

command operations are broken down into constituent actions.

$pp("offcom")}
— Refinements! OFFICEl —COMMANDS
—1 (COMMANDS)

SEPARATE (Office)
PACKAGE BODY Offcom IS

PROCEDURE Printcom IS
BEGIN

For (N) In (Get Nodeset) Loop
BEGIN

For Each Document (D) In (N) Loop
BEGIN

Print Document (D);
END}

END;
END Printcom;

PROCEDURE Directorycom IS
BEGIN

For (N) In (Get Nodeset) Loop
BEGIN

For Each Document (D) In (N) Loop
BEGIN

Type Document Name Of (D);
END;

END;
END Directorycom;

PROCEDURE Appendcom IS
F; Datanode;

BEGIN

F s= Get File Node;
IF Next Token /= Eq_token THEN

RAISE Error;
END IF;
For (N) In (Get Nodeset) Loop

BEGIN

Appendl (N) To (F,Fil_val);
Delete Node (N);

END?
END Appendcom;

PROCEDURE Deletecom IS
BEGIN

For (N) In (Get Nodeset) Loop
BEGIN

For Each Document (D) In (N) Loop
BEGIN

Delete External (DoDoc_externalnarae)?
END;

Delete Node (N)?
END;

END Deletecom;

PROCEDURE Createcom IS
D; Datanode;

BEGIN

D s= Get New Node;
DcKind ;= Doc;
DcExternalname s= New External Name;
Load Form Buffer (D,Doc_forra);
Initialize Core Buffer;
Editor;

END Createcom;

PROCEDURE Editcom IS
BEGIN

D := Opt Get Node;
IF Is Empty (D) THEN

Editor;
ELSE

Load Document (D);
Editor;

END IF;
END Editcom;

PROCEDURE Closecom IS
BEGIN

Load Document (Get Node);
Close Document (D„Doc_form);

END Closecom;

PROCEDURE Lookcom IS
BEGIN

Load Document (Get Node);

67

Look (Get Search Keys)
END Lookcom?

PROCEDURE Findcom IS
BEGIN

Load Document (Get Node);
Find (Get Search Keys);

END Findcom;

BEGIN

NULL ;
END;

$def_check;
office

EXCEPTION error

PROCEDURE issue_error_message
PROCEDURE lockcom
PROCEDURE set_l6ckcom •
PRdCEDURE unloc8com

offcom

EXCEPTION error
TYPE datanode

TYPE OF d

TYPE OF doc

TYPE OF eq_token
TYPE OF n

PROCEDURE appendl_to
PROCEDURE close_document
PROCEDURE delete_external
PROCEDURE delete_node
PROCEDURE editor
PROCEDURE find

PROCEDURE for_each_document_in_loop
PROCEDURE for„in_loop
FUNCTION get_file_node
FUNCTION get_new_node
FUNCTION get_node
FUNCTION get_nodeset
FUNCTION get_search_keys
PROCEDURE initialize_core_buffer
FUNCTION is_empty
PROCEDURE load_document
PROCEDURE load_form_buffer
PROCEDURE look
FUNCTION new_external_name
FUNCTION next_token
FUNCTION opt_get_node

168

169

PROCEDURE pr int_docunient
PROCEDURE type_document_name_of

In this example calling forms are used freely» Some

appear in several places^ while others are used only oncoo

They are used as procedure calls — for example;

Type Document Name Of (D)?

as function calls;

F ;= Get File Node;

and as novel control structures;

For Each Document (D) In (N) Loop
BEGIN

Print Document (D);
END;

Note that the latter control structure is intended to be a

traversal of the leaves of a subtree in the file data

structure. This calling form can only be formally

implemented by a macro capability like that of Castor.

The definition check list shows that only five

undefined identifiers remain in the main procedure "Office,"

but that a large number have been introduced in the package

"Offcora." A number of implicit assumptions have been made

concerning the representation of files and documents, and

this is reflected in the large number of identifiers for

which types are not known. The program text assumes that

170

"Datanode" is a record type, but the fields used in the text

do not appear because "Def_check" does not handle field

identifiers o

A number of calling forms are used in the prototype

which might be part of a general list-processing package.

"Appendl (-) To "For (-) In (-) Loop and "Is

Empty (-)" are three such calling forms which are used in

this package. No such library is in fact provided, and so

these definitions must be furnished as part of the

prototype,

MODULARIZATION OF THE PROTOTYPE

While not a great deal of detailed programming effort

has been expended up to this point, enough is now known of

the structure of the problem to give a modular breakdown of

the functions that need to be provided. These are as

follows:

1. The general purpose list functions (Offlst)
2. The parser (Offpar)
3. The editor (Offedi)
4. Utility functions or subroutines of Offcom (Oftutl)

In building the actual prototype it was found later that the

lexical rules are sufficiently complex to v^arrant a separate

module s

171

5. Lexical Analyzer (Offlex)

When this program was written, the remainder of the

development proceeded in the same manner shown above, using

the Aide to provide an agenda of undefined calling forms at

each stepo Given the general modularization above, the

major design task consisted of assigning functions to the

appropriate modules and deciding on the conventions to be

used in interfacing with the parser and the editor. The

actual order of the refinements -performed is indicated by

the following list of refinement names;

OFFICEl;

COMMANDS:

0FFICE2S

PARSE;

LEX:

COMMANDS2:

PARSE2:

EDIT;

COMMANDS3s

The initial top-level program.

The package "Offcom."

The exception "Error"
error message.

The package "Offpar."

The package "Offlex."

and printing of the

Update preliminary assumptions concerning
interfacing,,with the parser and lexical
analyzer', and .^add- the Lock and Unlock

==iu'echanismo

The basic data structure for representing
file and document structures.

The package "Offedi,"

The data structure of PARSE2 is modified to
handle deletion. (This problem was
difficult to account for in the initial
design but was quite simple to implement as
a modification of the first design.)

172

C0MMANDS4s Update preliminary assumptions relating the
Look and Find actions to the editor,

OFFUTL? The package "Offutl,"

. cEDITl; ,^5^odifications td the editor for forms and
field handling.

LISTs The package ^'Offlst,"

The resulting prototype program consisted of about one

thousand lines (pretty-printed). The estimated development

time of this program is about three or four weeks, although

the actual elapsed time was longer because it included

parallel development and debugging of some of the features

of Castor and the underlying Ada system.

One feature of the Castor/Ada system which interfered

with the development somewhat was the strict prohibition of

forward procedure references. To reduce unnecessary

writing. Castor does not require package specifications

(although in pure Ada a package specification must be given

for every package body). In Castor, a package body can be

written by itself (as a subprogram body can), and in

practice this makes the expression of the program much

briefer. As a consequence, however, a certain amount of

thought is required when assigning definitions to packages

and when ordering the packages, in order to make sure there

are no forward references.

173

USE OF MACROS IN THE PROTOTYPE

In concluding this deraonstration of Castor, we give an

example of the use of macros in the prototype. The calling

forms

L: List Of (Datanode);

and

and

For (X) In (L) Loop
BEGIN

« • 9

END;

Appendl (N) To (F.Filval);

are part of what might be a general list processing library

package. Their definitions are as follows:

MACRO List Of (Element_ty) RETURN Namenode IS
Node_ty: Namenode ;= New_id {Element_ty, "node")
List_ty: Namenode ;= New_id (Element_ty, "list")

BEGIN

IF Test_decl (Node_ty) THEN
Add_decl (Gendecl ("TYPE $Node_ty;"));
Add_decl (Gendecl &

"TYPE $List_ty IS ACCESS $Node_ty"));
Add_decl (Gendecl ("" &

"TYPE $Node_ty IS " &
"RECORD " &
" Nxt: $List_ty; " &
" Val: $Element_ty; " &
"END RECORD; "));

Set_tag (List_ty, 1, Element_ty);
Set_tag (List_ty, 2, Node_ty);

END IF;

/

RETURN List_tyi
END List Of;

MACRO For (X) In (L) Loop (Ss ARRAY) RETURN Stintnode IS
List_ty: Intnode s= Type_of (L);
Eleinent_ty; Intnode ;= Tag (List_ty, 1);

BEGIN

RETURN Genstmt (" " &
"DECLARE " &
" Tmp; $List_ty ;= $L; " &
" $X; $Element_ty; " &
"BEGIN " &
" WHILE Tmp /= NULL LOOP " &
" $X ;= Tmp.Val; " &

$$S; " &
" Tmp := TmpoNxt; &

END LOOP; " &
"END;

END For In Loop;

MACRO Appendl (E) To (L) RETURN Stmtnode IS
List_ty: Intnode s= Type_of (L);
Node_ty: Intnode ;= Tag (List_ty, 2);

BEGIN

RETURN Genstmt (" " &
"DECLARE ^ "
" Tmp; $Lfst_ty s= $L; •• . &

Ptr; $&fst_ty ;= NEW $Node_ty; " &
"BEGIN •» sc
" PtrcNxt := NULL; " &
" Ptr,Val := $E; " &

IF $L = NULL THEN " &
$L ;= Ptr; " &

" ELSE "

" WHILE Tmp.Nxt /= NULL LOOP " &
" Tmp ;= Tmp.Nxt; " &

END LOOP; " &
" Tmp.Nxt ;= Ptr; " &

END IF; " &
"END; ")»

END Append! To;

&

&

174

The subprograms used in these macro definitions are

described in Chapter 5.

175

The following protocol shows two procedures which use

these macroso In this protocol they are displayed, then

executed, and then displayed in their expanded form. Note

that the type declarations produced are not shown in the

final print-out, since the enclosing declarative part is not

shown here. The calling form "List Of (-)" expands into the

type identifier "Integer_list," the calling form "Appendl

(-) To (-)" expands into a "begin" block with appropriate

declarations, and,,the "For (-) In (t) Loop BEGIN o.. END"

calling form expands into another "begin" block with

appropriate declarations and containing a "while" loop.

$pp("Idemo");

PACKAGE BODY Ldemo IS

L; List Of (Integer);

PROCEDURE Init IS

BEGIN

L ;= NULL;
FOR I IN 1 .. 5 LOOP

Appendl (101 * I) To (L);
END LOOP;

END Init;

PROCEDURE Print IS
BEGIN

For (X) In (L) Loop
BEGIN

Put (X);
New_line;

END;
END Print;

END;

$init;

$print;
101

202

303

404

505

$pp("Idemo");

PACKAGE BODY Ldemo IS

L: Integer_list;

PROCEDURE Init IS
BEGIN

L := NULL;
FOR I IN 1 ». 5 LOOP

DECLARE

Tmps Integer_list ;= L;
Ptr: Integer_list s= NEW Integer_node;

BEGIN

Ptr.Nxt ;= NULL;
PtreVal := 101 * I;
IF L = NULL THEN

L := Ptr;
ELSE

WHILE Tmp.Nxt /= NULL LOOP
Tmp s= Tmp.Nxt;

'END LOOP;
TmpoNxt s= Ptr;

END IF;
END ;

END LOOP;
END Init;

PROCEDURE Print IS
BEGIN

DECLARE

Tmp: Integer_list ;= L;
X: Integer;

BEGIN

WHILE Tmp /= NULL LOOP
X 1= TmpoVal;
Put (X);
New_line;
Tmp := Tmp.Nxt;

END LOOP;
END;

END Print;

END;

176

SECURITY L L Ab il F I L A I I U I i m b v au U { " nnn t p

REPORT DOCUMENTATION PAGE
I. report NUMQER

TR-187

4. TITLE find Subl/Nc;

Rapid Software Prototyping

7. AUTMORfO

David Andrew Smith

2. GOVT ACCESSION NO

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Programming Environment Project
Computer Science Department
University of California
Irvine, Caljfornia Q7717

11. CONTROLLING OFFICE NAME AND ADDRESS

Defense Advanced Research Project Agency
1400 Wilson Blvd
Arlington, Virgina 22209j

H. monitoring agency name a ADORESSf// d///eron(Irom ConlrolllnS OlUce)

Office of Naval Research
Western Regional Office
1030 E, Green Street
Pasadena, California 91106

15, DISTRIBUTION STATEMENT fof Ihls Report)

RSAD INSTRUCTIONS
BEFORi; COMPLETING FORM

3. RECIPIENT'S CATALOG NUMBER

5. TYPE OF REPORT ft PERIOD COVERED

Technical Report

6. PERFORMING ORG. REPORT NUMBER

Technical Report #187
8. CONTRACT OR GRANT NUMBERfa)

MDA-903-82-C-0039

10. PROGRAM element, PROJECT, TASK
AREA ft WORK UNIT NUMBERS

12, REPORT DATE

May 12, 1982
13. NUMBER OF PAGES

184

IS, SECURITY CLASS, (ol this icport)

UNCLASSIFIED

15a, DECL ASSI Fl C ATI ON/ DO WNG R ADI NG
SCHEDULE

Distribution of this document is unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, if different from Report)

Distribution is unlimited

18, supplementary notes

None

19. KEY WORDS (Continue on reverse aide if neceaaary and Identify by block number)

Rapid Prototyping
Programming Environments
Programming Design Language

Ada

Software Lifecycle
Stepwise refinement

j20 abstract (QorUinue on reverae aide if neceasary end identify by block number)
Rapid Prototyping is an approach to software

development which emphasizes quick implementation of a
working program. •This • dissertation makes two principal
contributions. First, it provides concepts, techniques, and
a philosophy of Rapid Software Prototyping, and characterizes
the benefits and ll'mitations of its use. Second, it makes a
contribution to programming environments which support Rapid
Prototyping. An experimental language. Castor, is described

DD 147 3 EDITION OF 1 NOV 65 IS OBSOLETE
S/N 0102 LF 014-6601

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE fWTion Dalm Brttafd)

t- CLASSIFICATION OF THIS PACEfinion D'l' Enttrod)

Which was implemented to validate this approach . in the
prototyping of Ada programs*. The following summarize the
main results of this research:

1. A statement of the purpose and value of Rapid
Prototypings Rapid Prototyping provides accelerated
feedback to the early stages of analysis in the
software lifecycle. This can be of great btenefit when
there are areas of risk that only experience with a
working system can resolve.

2. A statement of the limitations of Rapid Prototyping:
Rapid Prototyping .cannot show the behavior of the final
system in all respects. Careful planning is therefore
necessary to determine the objective of the prototype
and what sacrifices can be made in areas of low risk.

3. Techniques for Rapid Prototype Programming: Castor is
both a Program Design Language (PDL) and an
implementation language. The PDL nature of Castor
arises from the use of free form descriptions called
"calling forms." An agenda of undefined calling_ forms
is provided interactively. • Contributions in this area
are that:

a) Castor implements a refinement paradigm for the new
language, Ada;

b) Castor macro facilities are easy to learn and
remember; and

c) the Castor macro language is independent of the
underlying program representation.

A stock of ideas for an "Ada laundry": An Ada laundry
allows the user to relax temporarily the rules of pure
Ada, This helps compensate for aspects of Ada which
orient it more toward long program life than short term
ease of expression.

Castor was used to build a prototype of
which is described in an appendix.

moderate size

Ada is a trademark of the United States Department of
Defense.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGEfHTion DiHo Enlnred)

