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Abstract
Background: The world is experiencing another pandemic called COVID‑19. Several mathematical 
models have been proposed to examine the impact of health interventions in controlling pandemic 
growth. Method: In this study, we propose a fractional order distributed delay dynamic system, 
namely, EQIR model. In order to predict the outbreak, the proposed model incorporates changes in 
transmission rate, isolation rate, and identification of infected people through time varying deterministic 
and stochastic parameters. Furthermore, proposed stochastic model considers fluctuations in population 
behavior and simulates different scenarios of outbreak at the same time. Main novelty of this model 
is its ability to incorporate changes in transmission rate, latent periods, and rate of quarantine through 
time varying deterministic and stochastic assumptions. This model can exactly follow the disease trend 
from its beginning to current situation and predict outbreak future for various situations. Results: 
Parameters of this model were identified during fitting process to real data of Iran, USA, and South 
Korea. We calculated the reproduction number using a Laplace transform‑based method. Results of 
numerical simulation verify the effectiveness and accuracy of proposed deterministic and stochastic 
models in current outbreak. Conclusion: Justifying of parameters of the model emphasizes that, 
although stricter deterrent interventions can prevent another peak and control the current outbreak, the 
consecutive screening schemes of COVID‑19 plays more important role. This means that the more 
diagnostic tests performed on people, the faster the disease will be controlled.

Keywords: COVID‑19, EQIR epidemic model, fractional differential equation, stochastic 
differential equation
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Introduction
In December 2019, the epidemic was created 
by a member of coronaviruses, namely, 
2019‑nCoV. Till now, the virus has been 
spreading worldwide, and millions of people 
have been infected. Extensive mathematical 
studies in various fields have been done to 
find the policies to control the disease in 
its prevalence. Mathematical models can 
indicate how infectious diseases spread and 
what the trend of epidemic is. They can be 
divided into two general purpose models, 
forecasting models and mechanistic models. 
Forecasting models try to fit curves to data 
using different methods from extrapolations 
using simple models such as exponential 
growth[1] to machine learning methods[2] 
or regressions.[3] These models are simple 
and are only used in the early days of the 
outbreak. Mechanistic models can be divided 
into two groups as follows.

Self‑exciting branching point process[4]:  

These models can easily fit to data and 
are used to estimate reproduction number 
and estimation rate. However, they can be 
used in initial phase of epidemic when the 
number of infected individuals are small 
compared to the population size.[5]

Dynamic epidemiological models[6]: In 
these models, the population is divided 
into several states or compartments, and 
different parameters are attributed to 
each state such as transmission rate and 
mortality rate. Then, considering specific 
assumptions for the population, differential 
equations for each state of the system 
are obtained and solved. In fact, these 
models are one of the best ways to explore 
long‑term epidemiologic outcomes and 
to implement various assumptions about 
disease and controlling measures.[7,8] They 
have been widely used for the COVID‑19 
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epidemic because of its simplicity, parametric approach, 
and good results. Some of these models have contributed 
improvements in susceptible‑infected‑recovered 
model with a variable total population[9] and time 
varying parameters.[10‑12] Some others tried to use 
susceptible‑exposed‑infected‑recovered (SEIR) models[13,14] 
including control strategies in the SEIR model,[15,16] and 
utilizing fractional order of differential equations in 
SEIR.[17,18] Meanwhile, some studies have been done to 
find new dynamic models with more states and relations to 
achieve more accurate results such as.[19‑22]

However, time frame, randomness, basic assumptions of 
model, model generality, and amount of data matching 
are some important factors in evaluating a model, while 
a simple model may not satisfy all these conditions. 
Assumptions such as social knowledge, fluctuation in the 
behavior of populations, and randomness of transmission 
rate must be inserted in model through fractional stochastic 
differential equations (SDE).[23,24] SDE has been widely used 
in modeling of long range dependent events to indicate the 
memory of the systems.[25,26]

In this study inspiring by Chen et al.,[27] we use a dynamic 
stochastic and deterministic model of fractional order 
to describe the regional outbreaks of COVID‑19 and to 
predict its future trend. In the proposed model, in addition 
to considering specific states for different parts of the 
population, latent periods, isolation, and treatment durations 
are also considered by adding distributed delays to the 
model. Furthermore, we include memory effects in the model 
dynamics by means of fractional derivatives. The stochastic 
nature of population behavior is also considered in this 
model by assuming the transmission rate as a realization of 
Brownian motion stochastic process. All these assumptions 
lead to solve a fractional ordered distributed delay SDE.[28] 
We also obtain the basic reproduction number of the epidemic 
model. After finding parameters of deterministic model from 
available data through fitting process, results show a good 
performance of the model in fitting and prediction the trends 
of epidemic, besides its ability to justify the real behavior 
of different communities against disease. Stochastic model 
is used to explore short‑term and long‑term trajectories of 
COVID‑19 and determines the range of outbreak size.

This paper is organized as follows. After this introduction, 
we explain deterministic and stochastic model and their 
parameters in Section 2. In this section, we also discuss 
about existence and persistence of the model by calculating 
reproduction number. The numerical results of the model 
are presented in Section 3. Discussion about the model and 
conclusions are presented in Sections 4 and 5.

Materials and Methods
Model description

The important point in spreading trend of COVID‑19 is 
transmission from an exposed patient with no symptoms to 

others which is challenging in SEIR models. We propose 
an EQIR model,[27] in which the population is divided into 
four states. The first state is exposed (E) individuals with 
no symptoms, due to government decisions some of the 
exposed individuals may be isolated in their latent period. 
Hence, the second state (Q) contains the quarantined 
individuals. Third state (I) includes individuals who are 
confirmed and have no ability of spreading disease. The 
last state contains removed (R) people (recovered or dead). 
Since environmental fluctuations can impact transmission 
rate β, it can be assumed a time‑varying function such as 
exponentially decreasing function.[29,30] This decreasing 
trend may be caused because of government interventions 
such as isolations and public closures at specific time. 
Here, we assumed following function for transmission 
rate.

( ) ( )( )
0

0

                 0
exp     

t T
t

d t T t T
β

β
β

≤ ≤=  − − >
 (1)

where T is the time of starting interventions and d is 
decaying coefficient. Another approach to display the time 
varying nature of transmission rate is considering a random 
generating process for it by adding a white Gaussian noise 
to transmission rate β. Hence, we expect extra random 
curves around the main curve indicating how far the 
outbreak will be from controllability in short terms. Further 
assumptions and parameters are adopted for both stochastic 
and deterministic models. Some important assumptions such 
as considering extremely large population of susceptible, 
independency, and homogeneity of infected individuals, and 
disease equilibrium condition are implicitly considered.
1. We assume that it takes averagely 𝜏E days for an 

exposed individual to have symptoms and be identified. 
After this latent period, the exposed individual comes 
to infected state and in this state can no longer transmit 
the coronavirus to others

2. The second assumption is about those exposed 
individuals who are in the incubation period and are 
isolated from others. They cannot spread the disease 
and will be diagnosed during next 𝜏Q days. After 
𝜏Q ≤ 𝜏E days, they will be identified as infected ones. 
We assume q as the isolation rate of currently exposed 
people

3. Infected individuals averagely experience 𝜏R days 
before complete cure or death. We indicate mortality or 
recovery rate of this disease by parameter δ. We ignore 
the natural mortality in our population

4. We assume that every exposed, isolated, and treated 
individual experiences different time period to change 
his/her states. This can be considered by means of 
distributed delay functions hE(t), hQ(t), and hR(t) 
respectively. Where h is a Gaussian probability 
distribution function. The mean value of this distribution 
is adopted to parameters 𝜏E, 𝜏Q, 𝜏R. Different variances 
of each distribution can be determined by fitting the 
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model to real data. Zero variance value, converts 
h(t) to a Dirac delta function and means that all 
individuals experiences same latent. These parameters 
can determine how fast the exposed individuals are 
identified and isolated

5. Ordinary compartmental models implicitly follow 
a Markov epidemic process, in which the states of 
individuals are independent from previous steps at each 
time. This process is so‑called memory less. However, 
when a disease spread within a human population, 
knowledge of individuals affects their response and 
it shows an implicit memory. However, the effect of 
memory of earlier times decreases over time. This 
decay of long‑range memory can be controlled by the 
order of the fractional derivatives in the corresponding 
non-linear fractional differential equations of the 
system.[31] We assume such a fractional order model 
and use the Riemann-Liouvile definition of fractional 
derivative of order α as follows:[32]

( ) ( )
( )

( ) 1
0

1 nt

t n

f s
D f t ds

n t s
α

αα − +=
Γ − −∫  (2)

where function is Γ() Gamma function and n is an integer. 
Considering above assumptions, the continuous time of 
deterministic EQIR model is constructed as:
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where αi, i = 1 …4 can be obtained by parameter 
identification. In order to simulate this model, we use 
discrete time implementation of the model in two cases 
deterministic and stochastic models, both of them are 
presented in Appendices A and B.

Optimization problem

Each model has several parameters which must be 
carefully determined. Some of them must be extracted 
from epidemiological texts and others must be identified 
by fitting models to the available data. In second case, we 
encounter an optimization problem. For this purpose, Let θ 
denotes vector of parameters of specific state which must 
be estimated, then our parameters identification problem 
has the following form:

( ) 2,θ θ − Objmin t   (4)

where ∁obj denotes the available data of that component 
and ║║2 is related to the 2‑norm. In order to solve this 

problem, we use Levenberg-Marquadt (LM) method[37] for 
deterministic model. This method uses an iterative 
algorithm to solve nonlinear least square problems. In 
stochastic disease modeling, xt is real number of infectious 
individuals which may be controlled by parameters 
θ   such as transmission rate, yt is reported data, and the 
goal of modeling is determining the posteriori distribution 
of parameters that is p(θ│yt).

[38] An ordinary approach to 
estimate distribution of parameters is pseudomarginal 
Markov Chain Monte Carlo (PMCMC) method.[39] In this 
method, samples of desired probability density function 
p(θ│yt) are generated by using a proposal function which 
usually considered a normal distribution. A sampler 
generates some samples (particles) from proposed 
distribution. Then, the acceptance ratio of each sample 
is calculated and decision is made to keep or reject 
that sample. After lots of iterations, remaining particles 
represent p(θ│yt).

Reproduction number

By means of the same method used in Kiskinov, Zahariev 
and ÖZalp, Demirci’s study,[40,41] one can show that 
there exists a unique, nonnegative solution for fractional 
differential equations depicted in Equation 2. For analysis 
the stability of the model, we adopt a Laplace transform 
approach to show the prevalence of individual in each 
state explained in.[42] For this purpose, we describe the 
basic reproduction number, typically denoted with R0, of 
the model. For a deterministic epidemic model, if R0<1 
the disease dies out and if R0<1 the disease persists and 
outbreak will happen, meaning that there exists an epidemic 
equilibria, in addition to the disease‑free equilibria. For a 
stochastic model, this number indicates existence of unique 
stationary disease‑free distribution or Epidemic distribution 
in states. There are several methods to estimate R0.

[43] 
However, in an ordinary SEIR model, R0 = βµ1 where µ1 
is average infectious latent period. In our proposed model, 
we generalize the SEIR model by first assuming that 
latent periods follow a Gaussian distribution and second 
by using fractional order derivatives. It is shown[41,44] that 
the fractional order of model does not affect R0, however, 
distribution of latent periods affects it, and controlled 
reproduction number is defined as Rc = βµ̄1.

[42] Where 
β̄ indicates reduction in β due to system outflows occurred 
before exposed state. is defined as follows:

( )
0

( )x
I I Ie F x dx L Fωµ ω

∞
−  = =  ∫  (5)

where ꞷ denotes the outflow of state, F̄1 is survival function 
and L [.] denotes Laplace transform. For ~ ( , )I I If N τ σ we 
have:

( ) 2 21 11 exp( )
2I I IL F s s s

s
σ τ   = − −    

 (6)

Figure 1 shows the block diagram of the proposed model. 
It is worthy to mention that COVID‑19 can spread 
during latent period and transmission rate is considered 
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for exposed state and β̄  = β What about infectious latent 
period? We assumed that individuals in state E are isolated 
with rate q and the out flow of this state is q. Isolated 
individuals are no longer infectious; they may recover 
or die after a latent period of distribution hQ(t) or they 
may become symptomatic and escape to state I with 
outflow rate of q. Furthermore, Exposed individuals may 
become symptomatic and identified after a latent period of 
distribution hE(t) and will recover or die after a removal 
latent period of distribution hR(t). Thus, Rc can be estimated 
as follows:

( )( )1c Q E RR θβµ θ βµ βµ= + − +  (7)

where ( ), |R R pr isolated exposedµ τ θ= = and µ̄E, µ̄Q defend 
as follows:

2 21 11 exp( )
2Q Q Qq q

q
µ σ τ = − − 

 
 (8)

2 21 11 exp( )
2E E Eq q

q
µ σ τ = − − 

 
 (9)

Parameter Rc can be decreased by either increasing q or 
decreasing 𝜏E and 𝜏Q and this can be done by identifying 
exposed individuals via screening schemes. Parameter θ 
can be considered equal 0.5 and means for every exposed 
individual the probability of being isolated or not is the 
same.

In stochastic case, we assumed that infectious rate β follows 
a normal distribution 0~ ( , ),Nβ β σ  that is Rcs also has a 
normal distribution as follows:

2
0~ ( , )csR N c cβ σ  (10)

( )( )1Q E Rc θµ θ µ µ= + − +  (11)

It is clear that any change in transmission rate can directly 
be interpreted as change in the reproduction number.

Results
In this section, we provide numerical solutions to illustrate 
main theoretical results on the proposed deterministic 
and stochastic models. For this purpose, the model is 
implemented in MATLAB 2017a. Starting points are 
considered to be ( ) ( ) ( ) ( )0 2, 0 0, 0 0, 0 0.E I Q R= = = =
Parameters of these models and their corresponding 
descriptions are shown in Table 1.

Model fit was done using cumulative confirmed, dead, 
and recovered regional data available on World Health 
Organization documents.[45] Based on the model, we used the 
LM and PMCMC methods to solve the optimization problem 
and identify parameters. To show that our model can adapt to 
changes in parameters over time, we fitted it with accumulated 
data of Iran, USA, and South Korea with two scenarios of 
short and long term of predicting data. Identified parameters of 
models for three selected countries are illustrated in Table 2.

In the left panel of Figure 2, we illustrated the sample 
distribution of transmission rate acquired from PMCMC 
method for three countries up to August [Table 2] for more 
clarity. According to this figure, posteriori distributions 
of transmission rate follow Gaussian distribution due to 
random walk assumption of transmission rate. In the right 
panel, we provided a plot of Rc with respect to parameters 
of (10), (11). As revealed in this figure, in the stochastic 
assumption, Rc has a normal distribution with mean value 
equals to the Rc of deterministic model and a variance 
depending on the variance of β.

Results of deterministic model

Short term prediction

We started from the accumulated data of South Korea (from 
February 20 to May 5). This country was very 
successful in controlling the spread of the disease in 
early stages [Figure 3]. Besides low transmission rate, 
delay parameters (𝜏E, 𝜏Q, Eσ ) were also very low which 
indicated that the exposed people have been identified 
and isolated very soon. The variance of this identification 
time, confirmed that approximately all exposed people 
were identified after at most 11 days. We then fitted the 
model to data of USA (from March 1 to May 5) and 
Iran (from February 20 to May 5) which their confirmed 
cases have been growing rapidly [Figure 4]. The spread 
rate of disease and delay parameters have higher values 

Table 1: Parameters of model and their descriptions
Parameter Value range Source Description
β0 0‑1 F Transmission rate
d 0‑0.1 F Decaying coefficient
T 0‑30 A Starting point of 

interventions
q 0‑1 F Isolation rate
δ 0‑1 F Mortality or recovery rate
α1, α3 1 A Order of E, Q state
α2, α4 0‑1 F Fractional order of I, R states
τE 2‑11 F Latent period
τQ 4‑10 F Isolation period
τR 7‑12 A Recovery period
σE 1‑10 F Latent standard deviation
σQ 1‑10 F Isolation standard deviation
σR 0‑5 A Treatment standard deviation
σ 0‑0.1 F Variance of β
F - Fitted with real data, A - AssumedFigure 1: Block diagram of the proposed dynamic model
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in the USA and Iran than South Korea’s which indicate 
weaker performance to identify exposed cases. Indeed, 
approximately all exposed people were identified after 
at most 16 days [Table 2]. We assumed that, for both 
countries, government interventions have been applied 
10 days after beginning of the epidemic (T = 10). According 
to prediction results, if these interventions continued, the 
COVID19 pandemic could have been controlled in Iran by 
June and in the USA by August.

Figure 5 shows epidemic trajectories in the presence and 
absence of interventions in the USA and Iran. We plotted 
the effective reproduction number over time reflecting the 
impact of transmission rate reduction. It can be seen that 
although interventions effected the trend of epidemic and 
limited its spread, but does not decrease very much. We 
tried to find an appropriate decaying coefficient to predict if 
epidemic stops sooner. For d = 0.008 reproductive number 
decreases more rapidly and equals to one late in June and the 

Figure 2: Left: Normal distributions of transmission rate in three countries up to August. Right: Variation of Rc with respect to parameters depicted in 
Equations (10), (11) for q E E R 0= 2 ,  = 5 ,  = 2 ,  = 8 ,  = 11 ,  = 0 .27 , q = 0 .45 ,  = 0 .04βσ τ σ τ µ σq

Table 2: Fitted parameters of the countries
Parameter S.K USA Iran

Up to 
August

After 
August

Up to 
June

June to 
September

After 
September

Up to 
June

June to 
September

After 
September

β0 0.248 0.27 0.33 0.34 0.36 0.328 0.34 0.37
d 0 1e‑4 2e‑4 2e‑4 1e‑4 1.5e‑3 1.2e‑3 8e‑4
q 0.5 0.45 0.65 0.5 0.47 0.64 0.64 0.62
δ 0.02 0.032 0.1 0.07 0.07 0.06 0.056 0.07
α2 0.8 0.8 0.95 0.95 0.95 0.93 0.92 0.95
α4 1 1 0.7 0.7 0.7 1 0.98 0.98
σE 1.4 2 2 3.2 3.5 1.9 2.2 2.5
τE 8 8 14 14 14 11 11 11
σQ 1.4 2 2 3.2 3.5 1.9 2.1 2.4
τQ 5 5 11 11 11 8 8 8
σR 0 0 0 0 0 0 0 0
τR 11 11 11 11 11 11 11 11
σ 0.05 0.04 0.03 0.02 0.02 0.08 0.06 0.06
Rc 1.7 1.82 2.16 2.25 2.5 2.14 2.16 2.35

Figure 3: Numerical results of data fitting in deterministic model for South Korea. (a) Cumulative confirmed, (b) daily confirmed, (c) cumulative dead, 
(d) daily dead cases. Continuous line is prediction result and grey dots correspond to real data

dcba
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epidemic completely goes to extinction in the USA and Iran. 
Comparing with current decreasing trend of transmission rate, 
either stricter rules must be enforced or patient screening 
schemes must be implemented continuously.

Long‑term prediction

In early stage, South Korea was so successful in handling 
the COVID‑19 pandemic, but this country experienced the 
second wave of infection from August 2020. We updated 
model’s parameters and depicted the results in Figure 6. 
According to this figure, this pandemic will be controlled 
in South Korea by the end of 2020.

Furthermore, in Iran and the USA, social limitations 
decreased in June when public places, jobs, administrative 

activities, etc., were reopened. Contact rate of individuals 
increased, and consequently, transmission rate was 
intensified, while isolation rate decreased. This caused 
spreading the disease into new populations or resurging in 
places that let down their guard too soon. We applied these 
points in our model by changing parameters of model from 
June to September (second peak) and after September (third 
peak) fitting to new data in Iran and the USA. Since 
readjustments of parameters have been done at a certain 
time (like a step function) and the derivative function of 
cumulative data has been used to indicate daily infected and 
death persons, discontinuities have been created in the daily 
curves (like Dirac delta functions) according to Figure 7c, f, 
k, and n. In order to precisely follow the outbreak trend, we 

Figure 4: Numerical results of data fitting in deterministic model; (a), (b), (c), (i), (j), (k) for IRAN. (d), (e), (f), (l), (m), (n) for USA. Continuous line is prediction 
result and gray dots correspond to real data

d

j
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b
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e m
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l

Figure 5: (a and c) Epidemic trajectories derived from the decaying and non‑decaying transmission rates during the first 100 days of the epidemic for 
USA and Iran respectively. (b and d) Effective reproduction number over time reflecting the impact of transmission rate reduction for two decaying factors
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have detected the amount of restrictions and cumulative data 
in mentioned countries to adjust the decaying coefficient, 
d, in (1). For interventions leading the reduction of β, we 
decreased decaying coefficient at the time point of starting 
interventions, and we increased decaying coefficient when 
the restrictive interventions decreased. We have done the 
precise adjustment by a new fitting of updated cumulative 
data to the model and have predicted outbreak trend.

We found that, as it was predicted, transmission rate 
and delay parameters have increased while isolation 
rate has decreased [Table 2 and Figure 7]. According 
to prediction results, if these conditions continued, 
COVID‑19 pandemic will be continued in Iran and the 
USA by the end of 2020. Hence, unfortunately, there 
will be a deplorable situation. This indicates that stricter 
and more effective preventive laws and more diagnostic 
tests should be considered to avoid more disasters. We 
have considered a decreasing function to determine the 
decreasing nature of the transmission rate. Indeed, when 
countermeasures such as voluntary social distancing 

by the population, short‑ term interventions such as 
global local lockdowns and general quarantine occur, its 
effect slowly decays the transmission rate for a period 
of time. Further abrupt changes in these interventions 
can be incorporated by adjusting the value of decaying 
coefficient at certain times. However, if restrictions were 
not sufficient from the beginning time (T) or were not 
observed properly, their effect in reducing the transfer rate 
may disappear sooner, and amounts of underestimation 
may occur in the prediction when the model is used for 
long‑term predictions. This may necessitate more increase 
in decaying coefficients.

Results of stochastic model

In order to simulate the stochastic model, we used 
all fitted parameters of deterministic model except β. 
Parameter β  identified in the deterministic model, was 
used as an initial guess of transmission rate for the 
PMCMC method to estimate variance of transmission rate 
[Figure 2 (left panel)]. Documentation and implementation 
of MATLAB example of this method are available on.[46] 

Figure 6: Numerical results of data fitting in deterministic model for South Korea.(a) Cumulative confirmed, (b) daily confirmed, (c) cumulative dead, (d) 
Daily dead cases. Continuous line is prediction result and grey dots correspond to real data

dcba

Figure 7: Numerical results of data fitting in deterministic model; (a), (b), (c), (i), (j), (k) for Iran. (d), (e), (f), (l), (m), (n) for USA. Continuous line is prediction 
result and gray dots correspond to real data
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Since transmission rate follows the random walk, general 
trend of epidemic is preserved during ensemble realization 
of the model. These fluctuations in transmission rate can 
model daily changes in the number of infected cases better 
than deterministic model

Results of stochastic model are shown in Figures 8 and 9. 
Corresponding to Figure 8 (short‑term prediction), if health 
restrictions had been continued, probability of outbreak 
with greater size would have been very low and the 
outbreak would have been going to be slowly disappeared 
by the end of June in Iran and by the end of August in the 
USA.

However, due to removal of restrictions, we changed the 
parameters of model as we described in section 3.1.1 and 
observed that if current conditions remain, the pandemic 
will last at least by the end of 2020 in mentioned countries, 
corresponds to Figure 8 (long term prediction), and more 
and more spreading peaks will occur. In Figures 8 and 
9 the corresponding distributions of outbreak size of 
cumulative [b, f, j] and daily [d, h, l] numbers are also 
represented for three countries. According to Figure 9, the 
distribution of outbreak size tends to have a large cumulative 
and daily frequencies of small sizes meanwhile a very 
heavier tail than its corresponding distribution in Figure 8. 
It indicates that final size of outbreak will dramatically 
increase compared to the scenario that could happen in 
short-term prediction. It confirms that in the absence of 
comprehensive controlling efforts, the transmission rate has 
increased rapidly, resulting in a sizable epidemic.

Evaluation of the deterministic model

In order to evaluate the model in tracking the trend of 
the outbreak, we gathered new data which was not used 
in parameter estimation of the proposed EQIR model. 
We calculated the normalized mean square error (MSE) 
between predicted, and true number of daily confirmed 
infected and dead cases as follows:

( )
( )( )2

1

1 ( )
,

ˆ
ˆ

ˆ

T

t
x t x t

TMSE x x
x x

=
−

=
×

∑  (12)

where ( ) ˆ, ( )x t x t  denote the true and x, x̂  predicted time 
series respectively and , indicates the average values of 
corresponding time series. Results of MSE calculated for 
T = 30 (from October 20,2020, to November 20,2020) are 
reported in Table 3 for more details. According to this table, 
normalized MSE of the proposed model is very low, and 
the proposed model has good performance in prediction 
of new cases. It must be mentioned that errors by day are 
probably greater than the cumulative errors. This can be 
visually observed through cumulative and daily plots as 
well [Figures 6 and 7].

Table 3: Normalized mean square error of the countries
South Korea USA Iran

Infected MSE 0.00634 0.00876 0.13468
Dead MSE 0.00176 0.05307 0.09579
MSE – Mean square error

Figure 8: Short term stochastic epidemic realizations of the proposed model in South Korea (a and c), Iran (e and g), USA (I and k).The black dots 
correspond to the actual outbreak trajectory and the cyan blue lines correspond to 500 stochastic realizations of cumulative and daily number of infected 
cases respectively. Red line indicates median. The corresponding distribution of outbreak sizes are shown for South Korea in (b and d), Iran in (f and h), 
and USA in (j and l). The vertical dashed line indicates the predicted COVID‑19outbreak size
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Forecasting the long‑term trend of epidemic in Iran

We have adjusted parameters of the proposed dynamic 
model such as transmission rate, and isolation rate at 
different time points due to the changes occurred in the 
behavior of Iranian population resulting in the growth 
of infection rate in this country and caused several 
consecutive peaks in the outbreak trend. We provided the 
numerical results of data fitting of confirmed infected cases 
for the proposed EQIR deterministic and stochastic models 
from February 20,2020 to August 01,2021. Figure 10 
shows epidemic trajectories in Iran since the beginning of 
the outbreak. We also provided prediction of number of 

patients in Iran for the next 2 weeks in Table 4. According 
to the prediction results, if these conditions continued, the 
5th peak of the COVID‑19 pandemic will be continued in 
Iran till September 2021.

Discussion
In this study, we proposed a dynamic EQIR model of 
COVID‑19 spread. State‑dependent structure of this 
model makes it possible to consider different descriptive 
parameters. We considered 14 parameters for this model 
among them up to10 parameters were fitted to real 
data using optimization methods. Fitting process can 

Table 4: Number of predicted patients and dead cases in Iran from 01 August 2021 to 14 August 2021
August 

1
August 

2
August 

3
August 

4
August 

5
August 

6
August 

7
August 

8
August 

9
August 

10
August 

11
August 

12
August 

13
August 

14
Infected 33435 34467 35293 36989 37870 39701 40652 41628 42629 43565 44710 45792 46810 48040
Dead 307 322 324 331 365 391 410 428 442 457 469 478 500 533

Figure 9: Long term stochastic epidemic realizations of the proposed model in South Korea (a and c), Iran (e and g), USA (I and k). The black dots 
correspond to the actual outbreak trajectory and the cyan blue lines correspond to 500 stochastic realizations of cumulative and daily number of infected 
cases respectively. Red line indicates median. The corresponding distribution of outbreak sizes are shown for South Korea in (b and d), Iran in (f and h), 
and USA in (j and l). The vertical dashed line indicates the predicted COVID‑19 outbreak size
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Figure 10: Numerical results of data fitting in deterministic and stochastic model in Iran; (a) cumulative infected cases, (b) daily infected cases
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be simply done because of the possibility of parameter 
description in real world. Furthermore, the model can be 
easily adapted with changing the interventions of human 
societies due to reality of parameters. For instance, effects 
of isolation and screening schemes of exposed people 
are expressed by isolation rate (q) and different latent 
periods 𝜏E, 𝜏Q respectively. The effect of contact rate 
decreasing activities such as home quarantine and closure 
of public places, which leads to lower transmission rates, 
is considered by an exponentially decreasing function of 
time for transmission rate. In addition, fractional order 
of differential equations determines the effect of society’s 
memory in the face of disease. This degree of freedom 
allows the model to fit better to data as we observed for 
South Korea whose fractional order of infected state was 
0.8 where for Iran and the USA this value was near one. 
We obtained the relation between parameters of model 
and reproduction number and clearly justified it through 
parameters of model. Results of model demonstrated 
that besides increasing isolation rate, decreasing 𝜏E, 𝜏Q 
by means of identifying exposed people, help societies 
effectively control the outbreak.

We also implemented a stochastic model by adding a 
Gaussian noise to transmission rate of deterministic model. 
By considering such SDEs, we could insert model some 
of real-world fluctuations behavioral trend of disease. 
Results of this model can help us to estimate maximum 
intensive care units needed per day in the worst condition. 
In addition, the stochastic model shows that if the rate of 
spread has limited changes, outbreak size will be small.

We simulated short and long‑term scenarios to predict 
outbreak size for both models and justified predictions 
due to changing in parameters in accordance to behavior 
of communities. Using different scenarios, this model can 
continuously monitor the trajectory of the disease and help 
control it.

Conclusion
In this paper, we proposed a mathematical fractional order 
distributed delay dynamic model for spreading the trend of 
COVID‑19 in two deterministic and stochastic versions. It 
is a flexible model that can observe and predict outbreak of 
diseases such as COVID‑19, which can spread during their 
incubation period. In addition, multiple model parameters 
with physical descriptions allow us to apply these changes 
to the model at any time and forecast the future outbreak 
of COVID‑19. However, some higher degrees of contacts 
such as transmission within health‑care institutions and 
households are not considered in this model. Moreover, 
Due to unknown safety period obtained after infecting 
by COVID‑19 and the possibility of renewed infectious 
after immunity, this model must be developed by adding 
new states and routes for accurate prediction of disease 
outbreak.
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Appendices
Appendix A: Discrete deterministic model

For discretization of the model we use the backward Euler scheme.[33,34] Using this discretization method, N time intervals 
t0< t0<...< tN= T with a uniform time step size   Tu

N
= are defined. For approximating the fractional derivative at time t = tn, 

the shifted Grunewald formula[35] is used as follows
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Now, let nuαλ β= where βn is discrete version of time varying function introduced in Equation 1. Let u qαγ = where q is 
isolation rate. Let uαν δ= whereδ is considered as mortality or recovery rate. Thus, discrete representation of model is 
illustrated as follows.
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where variables En, In, Qn are numerical solutions of E(tn), I(tn), Q(tn) and h (.) as explained in assumptions and defined as 
follows
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Appendix B: Discrete stochastic model

For stochastic model we consider that β is time varying function following the random walk. Modeling time varying nature 
of the transmission rate as a random walk, implicitly declare that the amount of transmission rate in one day is not much 
different from previous day. Thus, transmission rate is considered as stochastic differential equation as follows:

t td dWβ σ=  (16)

where Wt denotes the wiener process[36] and is σ fluctuation of transmission rate. If we apply Ito’s lemma to the process, we 
get:

0  t tdWβ β σ= +  (17)

Now, let 0 nA u u tα αβ σ ξ= + ∆ where 1n nt t t −∆ = − and is assumed to be equal to u. nξ is Gaussian random variable ( )0,1 .  
Let 0 Äk k

nA u u tα αβ σ ξ= + where k
nξ denotes the kth Gaussian random variable ( )0,1 . Then, Model’s differential 

equations can be written as follows (backward Euler approximation)
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where variables En, In, Qn  are numerical solutions of E(tn), I(tn), Q(tn) and h(.) as explained in assumptions and defined as 
follows
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