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PREFACE

I was led to the problem of differentiating maps induced by functional calculus by an
Ito-type formula in free stochastic calculus—namely, [BS98, Prop. 4.3.4]—the reinterpretation
and extension of which ended up being the subject of [Nik22] and thus Chapter 7. Before I
started graduate school, my advisors and their coauthor, Brian Hall, had tried to use this formula
for some of their calculations in (the first version of) [DHK22]. Ultimately, they found the
formula too computationally inflexible and resorted to a power series—based argument using the
polynomial version of the formula, [BS98, Prop. 4.3.2]. Unsatisfied with this, they asked me to
look into it. Eventually—with the help of research notes from one of my advisors, Bruce Driver,
and some discussions with Adrian Ioana—I was led to the vast and rich literature on multiple
operator integrals (MOIs), surveyed helpfully in [ST19]. After learning about MOIs and their
applications, e.g., to differentiating maps induced by functional calculus, I was able to make the
key connection: The terms in the formula [BS98, Prop. 4.3.4] are MOIs and have much more
computational flexibility than it seems at first glance.

The rest is history. Well, actually, the rest is this dissertation. It is based primarily on the
papers [Nik22, Nik23a, Nik23b, Nik23c| and upgrades to the results therein. The main upgrades
are (1) a generalization of many of the main results in [Nik23c| to symmetrically normed ideals
of unital C*-algebras via the introduction and study of “Varopoulos C* functions” in Chapter 3
and (2) a more streamlined proof of [Nik23b, Cor. 4.2.11 & Thm. 4.2.12] (i.e., Corollary 5.6.10
and Theorem 5.6.11) via Theorem 5.2.7. To motivate and, in some sense, complete the story, I

also included a chapter on differentiating maps induced by the holomorphic functional calculus.

A word on formatting. There are two formatting quirks of which the reader should take note.
The first is the numbering scheme. It is common for (labeled) display relations to be numbered
independently from definitions, lemmas, propositions, theorems, etc. In this dissertation, however,
the numbering scheme includes relations. For example, the first three numbered items in §3.3
are a definition, a relation, and a proposition; they are labeled Definition 3.3.1, (3.3.2), and
Proposition 3.3.3. Second, the standing assumptions for each chapter are declared right at the
beginning in “Standing assumptions” environments. When in doubt about, e.g., “what H is,”

please check the beginning of the chapter.
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ABSTRACT OF THE DISSERTATION

On differentiating maps induced by functional calculus
and applications to free stochastic calculus

by

Evangelos A. Nikitopoulos

Doctor of Philosophy in Mathematics

University of California San Diego, 2024

Professor Bruce K. Driver, Chair
Professor Todd A. Kemp, Co-Chair

A combination of the method of perturbation formulas and polynomial approximation is
employed to compute the k" derivatives of (1) maps on symmetrically normed ideals of a unital
Banach algebra induced by a holomorphic function, (2) maps on the self-adjoint elements of
symmetrically normed ideals of a unital C*-algebra induced by functions of a real variable that
are “slightly better than C*,” and (3) maps on the self-adjoint elements of integral symmetrically
normed ideals of a von Neumann algebra induced by functions of a real variable that are “slightly
better than C* and Lipschitz.” Along the way, the “separation of variables” approach to defining
multiple operator integrals on non-separable Hilbert spaces is developed. As an application to
free probability, a free It6 formula of P. Biane and R. Speicher is extended, reinterpreted, and

made more computationally flexible.
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Introduction

If A is a (possibly unbounded) linear operator on a Banach space or element of a Banach
algebra, a functional calculus for A is a “well-behaved” map I14 from a collection F4 of scalar
functions to the space of operators or Banach algebra to which A belongs. The point of II4 is to
provide a sensible definition of f(A) for f € Fju, so “well-behaved” usually entails a combination
of algebraic properties, e.g., linearity and multiplicativity, and analytic properties, e.g., continuity.

The functional calculi of interest in this dissertation are as follows:
e the holomorphic functional calculus for an element of a unital Banach algebra (§2.1),

e the continuous functional calculus for a self-adjoint—more generally, normal—element of

a unital C*-algebra (§3.2), and

e the Borel functional calculus for an unbounded self-adjoint—more generally, normal—

operator on a complex Hilbert space affiliated with a von Neumann algebra (§4.2).

For all these functional calculi I14, the dependence of f(A) =I14(f) on f is an elementary, even
definitional, matter. However, the dependence of f(A) on A is sometimes difficult to analyze. For
example, relating the smoothness properties of A — f(A) to those of f can be a delicate matter.

As a warm-up, let us consider the holomorphic case, where no significant difficulties arise.
Let B be a unital Banach algebra, let U C C be an open set, and let By be the set of a € B such
that the spectrum o(a) of a is contained in U. If a € By, then the holomorphic functional
calculus for @ is the unique continuous, unital algebra homomorphism HY : Hol(U) — B sending
the inclusion t;: U < C to a (§2.1). The standard construction of HY is via a Cauchy-type

integral formula:

f@) = 1Y) = o [ F() - Mz e B, f e HolU),
™ Jr



where I' is any cycle surrounding o(a) in U. Now, for f € Hol(U), write fz: By — B for the
map a — f(a) induced by f via this holomorphic functional calculus. We claim fz: By — B is

holomorphic. Indeed, we can differentiate the definition of f(a). If a € By and b € B, then

O fula —ab/f (2 — a) 2m/f ) Oh(z — a)”
2m/f (z—a) (2 —a) tdz,

where 0, denotes differentiation in direction b. (The technical details are unimportant for the

present discussion.) Differentiating under the integral in this way repeatedly yields the following.

Theorem 1 (Holomorphic case). If f € Hol(U), then fs € Hol(By; B), and
-1 1 —1
Dby, -+ Op, f(a =5 Z /f (2=a) " br1y - (2—a) brpy (2—a)” dz, a€ By, bj €B,

where Sy is the symmetric group on k letters.

The k" derivative formula above is worth pondering. To this end, we introduce more
notation. Write #: BE=(k+1) By, (Bk; B) for the bounded linear map, written u#,b == #x(u)[b],

determined by
(al R ® ak,‘-i—l)#k[bl? cey bk] = albl s akbkak‘—i-l) g, b.? € B.

Here, @, is the projective tensor product of Banach spaces, and B, (Bk; B) is the space of bounded
k-linear maps B*¥ — B. Now, fix a € By, and write @; == 18- @ g ® 19(k+1-0) ¢ BO=(k+1) for

all i € {1,...,k + 1}. In this notation, Theorem 1 says

abk ce ablfB(a) = Z <I/Ff(z) (Z - a)_l R ® (z — a)_l dZ) #i [bﬂ(l), ce ,bﬂ(k)]

2
TESk

- (;T [ ) <z—a1>-1---<z—akm—ldz)#k[bw(n»--~,bw<k>}

TES

1 .

for all by, ..., b, € B. Next, we explain how to write (27i)~ fF (z—ay)™ ' (z—apy1) tdz

in terms of a multivariate version of the holomorphic functional calculus (§2.4).



For f € Hol(U) and k € Ny, define

Wy — L f(2) _ kil
[ (A)._M/F(Z_M)W(Z_Akﬂ)dz, A=(Ay.ens Apg) € URFL

(Strictly speaking, the right-hand side is not defined for all A € U¥*!. We sweep this under the
rug for now; please see §1.3 for a proper treatment.) Then f (%] is a holomorphic function of k + 1

variables—i.e., f¥l € Hol (U k“)—that is characterized by the following properties:
e fl% = f (by Cauchy’s integral formula); and

o if ke Nand Aj,..., A\y+1 € U are distinct, then

BN, ) = AU O, X1, A1)
[k] M Loy Ab—15 Akl )
f ()\1’“'7)\k+1) )\k_Ak+l ° ( )

We shall take this recursion to be the definition of f [k]()\l, ...y Aga1) whenever f is an arbitrary
function defined on a subset of C. More precisely, if S C C and f: .S — C is any function, then
f9 .= . and fI* is defined recursively by Equation (2). The function fI¥ is called the kth

divided difference of f.

Theorem 3. Suppose f € Hol(U), a = (a1,...,a,41) € By, and @; = 19079 @ q; @ 180¢-+170)

foralli e {1,...,k+1}. If we define

f(gc] (a) = f[k] (&1’ L 7dk'+1) c B®7r(k+1)

via the multivariate holomorphic functional calculus (§2.4), which makes sense because BE=(k+1)

is a unital Banach algebra and [a;,a;] =0 for alli,j € {1,...,k + 1}, then

<§[Z>k](a) = QLM /F f(Z) (Z - dl)_l R (Z _ ak+1)—1 dz.

In particular, by Theorem 1,

abk s 8blfg(a) = Z fé[gk](a, .. ,a)#k [bﬂ(l), .. ,bﬂ(k)], a € By, bj € B.
WESk k-+1 times



Generalizations of Theorems 1 and 3 are proven in Chapter 2.

Next, we move to the “real C* case.” Let A be a unital C*-algebra, and write Ag,
for the real Banach space of self-adjoint elements of A, i.e., A, = {a € A : a* = a}. If
a € Ag,, then the continuous functional calculus for a is the unique (isometric) unital
*-homomorphism ®,: C(o(a)) — A such that @4 (t5()) = @ (§3.2). As in the holomorphic case,
we write f(a) = ®,(f) € A for all f € C(o(a)).

Now, if f: R — C is a continuous function, then we write f,: As, — A for the map
a f(a) = (flo(a))(a) induced by f via the continuous functional calculus. It is elementary to
prove that f,: Asy — A is continuous. Indeed, if f(A) = D1 ¢; A € C[A] is a polynomial, then
fala) =3 ye;a’, so the conclusion is obvious. If f € C(R) is arbitrary, then Weierstrass’s
approximation theorem provides a sequence (¢n(\))nen in C[A] converging to f uniformly on
compact subsets of R. Since the functional calculus ®,: C(o(a)) — A is an isometry, (gn)4 — fa
uniformly on bounded subsets of Ag, as n — oo. Thus, f, is continuous.

It therefore is natural to wonder whether f € C*(R) implies f4 € C*(Aga; A) whenever
k € N. It turns out this is not generally true. Take A = B(H ), where H is an infinite-dimensional
complex Hilbert space, in which case f4 = fg(m) is called the operator function induced by f.
By [AP16, Thm. 1.2.9], if f € C(R) and fsu) € CY(B(H)sa; B(H)), then f is locally operator
Lipschitz, i.e., 5 |{acB(H)w:||a|<r} i Lipschitz with respect to the operator norm ||-|| whenever
r > 0. Yu. B. Farforovskaya showed in [Far72, Far76] that there exist functions f € C'(R)
that are not locally operator Lipschitz. In particular, there exist functions f € C'(R) such that
fow & CHB(H)sa; B(H)). Please see [Pel85] and [AP16, §1.2 & §1.5] for more information.

To elucidate the difficulties with differentiating operator functions and to motivate some
of this dissertation’s constructions and results, we examine the finite-dimensional case, i.e., we
take H = C", in which case B(H) = M, (C) = {n x n complex matrices} and fgu) = fu,(c) I8
called the matrix function induced by f. If a € M, (C) and X\ € o(a) = {eigenvalues of a},
then we define P{ € M,,(C) to be the orthogonal projection onto the A-eigenspace of a. The
spectral theorem from linear algebra has a nice restatement in terms of the spectral resolution
{P¢:Xeo(a)} of a: A matrix a € M,(C) is normal (a*a = aa*) if and only if PYPY =65, Py

for all A\, u € o(a) and ZAGU(Q) P} = I,,, in which case a = Z)\Ea(a) A P{. Consequently, we can



write down a nice expression for the continuous functional calculus in the algebra A = M, (C).

Indeed, if a € M,,(C)sa—more generally, if a is normal—then

flay=Y OB (4)

A€o (a)
for any (continuous) function f: o(a) — C.

Theorem 5 (Matrix function derivatives). If f € C¥(R), then fu, ) € C¥(My(C)sa; My (C)), and

Boy, Oy Frnor(@) = D Y ) PL ey Pobry PR,y 0:bi € Mp(Clea. (6)

mESE A€o (a)ktl
Above and throughout, we write X :== (A1,..., Agt1)-

This result is due essentially to Yu. L. Daletskii and S. G. Krein [DK56], though it was
proven in approximately the above form by F. Hiai as [Hial0, Thm. 2.3.1]. We discuss two
proofs in Chapter 3.

Now, let us ponder Equation (6) to hint at the technical difficulties in the infinite-
dimensional case. First, in view of Equation (4), it appears as though 0y, - - - Op, fui,.(c)(a) is a

symmetrization of the #g-action on (by,...,by) of the tensor
(@@ I, .. I ©.a) € M (C)PHHD),

defined using multivariate continuous functional calculus [DL90, App., §5]. (Given our discussion
of Theorems 1 and 3, perhaps this does not come as a surprise.) This can be made rigorous
in the finite-dimensional case but not in general. To understand why, let A be our arbitrary
unital C*-algebra. Recall that #j is defined on A®’f(k+1), which is a Banach algebra but not
necessarily a C*-algebra. Since continuous functional calculus is defined only in C*-algebras, it
is not generally possible to make sense of f¥! (a® 1%k ..., 1% @ a) in A®x (k1) for an arbitrary
f € C¥(R) and element a € Ag,." In Chapter 3, we overcome this difficulty by requiring that

fIEL REFL 5 C s “slightly better than continuous.”

'The most natural setting for f¥1(a ® 19%,...,1%* ® a) is the minimal C*-tensor product A®min(*+1) Hyg 4,
is not defined on this algebra. In fact, #j is not even defined on the maximal C*-tensor product A®max(k+1)



Definition 7 (Varopoulos C* functions). A function f € C*(R) is called Varopoulos C¥ if

f[k]h_r Akt € C([-r, r])®“(k+1) for all 7 > 0.2 In this case, write f € VC*(R).

We thoroughly study the space VC¥(R) in Chapter 3. In particular, we show that if
f is “slightly better than C*,” e.g., if f belongs to the Besov space Bf’OO(R) (Definition 3.6.1)
or the Holder space C{ZCE(]R) (Definition 3.6.13), then f is Varopoulos C*. We also show that
polynomials are dense in VC* (R) in an appropriate sense, which implies that VC’k(R) may be
identified with the space C*.(R) introduced and briefly studied by D. A. Jekel in [Jek20, Ch. 18];
please see Remark 3.4.13 for more information.

Now, let a = (ay,...,ap41) € AEFL If r == max{||a;|| : i € {1,...,k + 1}}, then

C(0(a1)) & - - @rC(0(aps1)) = C([—r, r])E=*+D) | so that

Q[Qk](a) = (<I>0L1®7r ) "®w‘1’ak+1)( flkl ‘ € A®n(k+1) (8)

0’(0,1 X XU(CLk+1))

makes sense whenever f € VOF(R).

Theorem 9 (Real CF case). If f € VCK(R), then fi € CF(As; A), and

a abl f.A Z [k] a, . #k [bﬁ(l)v SRR bw(k)] ) a,b; € Asa,

FES}C k+1 times
where fgd(a, ...,a) is defined as in Equation (8).

A generalization of Theorem 9 is proven in Chapter 3. Combining this generalization
with the paragraph before the statement of Theorem 9 yields extensions and improvements of
results in [Pel06, ACDS09].

Next, we ponder Equation (6) in a different way to hint at a different set of technical
difficulties. Let H be a complex Hilbert space. In the spectral theorem for self-adjoint—or
normal—operators on H, the matrices {P{ : A € o(a)} are replaced by a projection-valued
measure P*: B, — B(H) on the Borel subsets of ¢(a), and the sum in Equation (4) becomes an

integral, i.e., f(a) = fa(a) f(A) P*(dA) whenever f: o(a) — C is continuous (or even measurable,

2Here, we take for granted that if Qq,...,€Q,, are compact Hausdorff spaces, then C’(Ql)@)7T - ®.C(Qm) can
be identified as a subalgebra of C'(2; X - - X Q) called the Varopoulos algebra (§3.3).



§4.2). Taking this view and naively turning sums into integrals, Equation (6) becomes

Doy -~ O, Foim(a) = Y / w FHE) PUAN) by - - PYANE) brgy PA(dNkg1)  (10)

k-+1 times
for all a,by,...,by € B(H)sa (perhaps even with a unbounded). However, standard theory
only allows for the integration of scalar-valued functions against projection-valued measures;
while the innermost integral fa(a) FRI (AL, .. Ajg1) P(d)1) makes sense using standard theory,
it already is unclear how to integrate the map Ay +— fa(a) PRI, Az, A1) PA(dA) br(1)
against P®. It therefore is unclear how even to interpret—Ilet alone prove—Equation (10) in
the infinite-dimensional case. In their seminal paper [DK56], Daletskii and Krein dealt with
this by using a Riemann-Stieltjes-type construction to define fst ®(r) P*(dr) € B(H) for certain
operator-valued functions ®: [s,t] — B(H), where o(a) C [s,t]. This approach, which requires
rather stringent regularity assumptions on @, allowed them to make sense of the right-hand
side of Equation (10) as an iterated operator-valued integral, i.e., a “multiple operator integral,”
when f € C?*(R). Furthermore, they proved Equation (10) (with by = --- = by,) for f € C?*(R).

As we have seen already, the assumption f € C?¥(R) is far too strong. Historically (and
when differentiating at unbounded operators, discussed below), the key to relaxing it is finding a
different way to interpret the multiple operator integral (MOTI) on the right-hand side of Equation
(10). For our purposes, the right way to do so is to use the “separation of variables approach”
developed originally for separable H in [Pel06, ACDS09]; this approach is extended to general,
i.e., not necessarily separable, H in Chapter 5. For much more information about MOIs and
their applications, please see A. Skripka and A. Tomskova’s book [ST19].

Next, we briefly address the generalizations of Theorems 1, 3, and 9 mentioned above as
well as the case of unbounded operators. Recall that B is a unital Banach algebra. Let Z C B be an
ideal of B, i.e., a linear subspace such that arb € 7 whenever r € Z and a,b € B. If ||-||; is a norm
on Z such that (Z, ||-||;) is a complex Banach space, the inclusion (Z, ||-||;) < (B, |-||) is bounded,
and ||arb||; < |lal|||r]|£]|b]] whenever r € T and a,b € B, then (Z,|||;) is a symmetrically
normed ideal of B, written (Z, ||-|[;) <5 B. As can be seen by considering the case when f is

a polynomial, it is reasonable to expect that if (Z,|-|;) <s B, a € By, and f € Hol(U), then



fla+0b)— f(a) € Z whenever b € Iy, == {c € Z: a+ ¢ € By}, and the map

Tva3 b faz(b) = fla+b) - fla) €T

is holomorphic with respect to ||-||z. This is, indeed, the case and is established in Chapter 2.
Similarly, it is proven in Chapter 3 that if (Z, ||-||;) is a symmetrically normed ideal of the unital

C*-algebra A, a € Aga, and f € VCF(R), then the map

Tsa =ZNAsa2b— for(b) = fla+b)— fla) €T

is well defined and C* with respect to ||-|;. Furthermore, appropriate modifications of the
formulas in Theorems 1, 3, and 9 hold for the “perturbed” maps b — f(a +b) — f(a).

One can also try to differentiate the map b+ f(a + b) — f(a) when a is an unbounded
operator. To be more specific, let H be a complex Hilbert space, let M C B(H) be a von
Neumann algebra, let (Z, ||-|;) Is M, and let a be an unbounded operator on H affiliated with M
(Definition 4.2.16). If f: R — C is Lipschitz and b € M, then f(a +b) — f(a) is densely defined;
if f is slightly better than Lipschitz, then f(a + b) — f(a) extends to a bounded linear operator
on H belonging to M. In this case, we may consider the question of when the perturbed
operator function Zg, 3 b+ f, (b) == f(a+b) — f(a) € T is well defined and C* with respect
to [|||z. This is the focus of Chapter 6. Therein, we use the MOI results from Chapter 5 to
prove formulas like Equation (10) for perturbed operator functions. Our results generalize and
improve the best-known such results from [Pel06, ACDS09].

Finally, in Chapter 7, we apply MOIs and derivative formulas like Equation (10) to free
stochastic calculus. Specifically, we extend, reinterpret, and make more computationally flexible

a free It6-type formula of P. Biane and R. Speicher [BS98].
Dissertation summary

With the discussion above in mind, here are the problems considered in this dissertation.

(P.1) Let B be a unital Banach algebra, and let (Z,||-||;) be a symmetrically normed ideal

of B. If a € B, U C C is an open set containing o(a), and f: U — C is a holomorphic



(P.2)

function, when can one say that the map Z 3 b +— f(a+b) — f(a) € Z is well defined and
holomorphic (with respect to ||-||) in a neighborhood of 0 € Z7 In this case, how does

one compute its derivatives?

Let A be a unital C*-algebra, and let (Z, ||-||;) be a symmetrically normed ideal of A.
If a € Asa, ice., a* = a, and f: R — C is k-times continuously differentiable (C*), when
can one say that the map Zsy = Aa NZ 3> b f(a+b) — f(a) € Z is well defined and

C* (with respect to ||:||;)? In this case, how does one compute its derivatives?

Let M be a von Neumann algebra, and let (Z, ||-||;) be a symmetrically normed ideal of
M. If a is a self-adjoint operator affiliated with M and f: R — C is C*, when can one
say that the map Zs, 3 b — f(a+b) — f(a) € T is well defined and C*? In this case, how

does one compute its derivatives?

This dissertation’s main contributions to these problems are as follows.

(C.1)

(C.3)

The map in question in (P.1) is always well defined and holomorphic in a neighborhood
of 0 € Z, and its k' derivative may be computed in terms of the k™ divided difference
fI¥ of f via theories of multivariate holomorphic functional calculus. This is the subject

of Chapter 2. The methods therein serve as motivation for those used in (C.2) and (C.3).

In Chapter 3, we prove that if f: R — C is Varopoulos C* (Definition 7), then the map
in question in (P.2) is well defined and C*, and its k™ derivative may be computed
in terms of fl¥ via a projective tensor product—valued kind of multivariate continuous
functional calculus. Our results vastly generalize (the bounded cases) of results from
[Pel06, ACDS09]. This dissertation also seems to be the first place bounded operators
(elements of C*-algebras) are treated by themselves, i.e., not as special cases of unbounded

operators. As a result, we are able to simplify previous developments substantially.

In Chapter 6, we prove that if Z is an integral symmetrically normed ideal (a new notion,
Definition 6.2.2), f € Bf’oo(R), and f’ is bounded, then the map in question in (P.3) is
well defined and C*, and its k" derivative may be computed in terms of f*! via multiple
operator integrals (Chapter 5). We also use vector-valued integral techniques and the

theory of symmetric operator spaces (§6.3) to provide large classes of interesting examples



of integral symmetrically normed ideals. Our results vastly generalize those of [Pel06] and,
in symmetric operator space—-induced examples of interest, generalize and dramatically
weaken the regularity hypotheses in the results of [ACDS09], thereby making substantial

progress on [ST19, Prob. 5.3.22]; please see §6.1 for details.

Hidden in the discussion of (C.2) and (C.3) is the fact that the results in [Pel06, ACDS09]
are only for (von Neumann algebras in) B(H ), where H is a separable complex Hilbert space.
Our results, however, never require separability assumptions due to the following additional

contribution of this dissertation.

(C.4) In Chapter 5, we develop the “separation of variables” approach to defining multiple
operator integrals (MOIs) on Hilbert spaces that are not necessarily separable. Previously,
only separable Hilbert spaces had been treated. The general case requires a great deal of

technical care with vector- and operator-valued integrals.
Finally, we apply our results to free probability—specifically, free stochastic calculus.

(C.5) In Chapter 7, we explore a connection between free stochastic calculus and the the-
ory of MOIs by proving an Ité formula for Varopoulos C? functions—more generally,
noncommutative C? functions (§3.8)—of self-adjoint free It6 processes. Specifically, we
reinterpret the free It6 formula [BS98, Prop. 4.3.4] of Biane—Speicher by identifying the
terms therein as MOIs. This enables us to enlarge the class of functions for which one can
formulate and prove a free It6 formula as well as to improve the computational flexibility

of the theory greatly.
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Chapter 1

Background 1

In this chapter, we lay out background material that is essential to the entire dissertation.
(Additional background relevant only to certain chapters is covered later.) Specifically, we cover
elementary aspects of infinite-dimensional calculus (§1.1 and §1.2), divided differences (§1.3),
Banach algebras (§1.4), and projective tensor products (§1.5). The exposition assumes the reader

is comfortable with topological vector spaces; please see [Rud91, Pt. I] for the relevant material.

Standing assumptions. Fix a choice of base field F € {R,C}. Unless otherwise specified, all
vector spaces are [F-vector spaces, and all linear maps are F-linear. In §1.1, (Q,.%, ) is a measure
space, and V' is a Hausdorff, locally convex topological vector space (HLCTVS) with topological
dual V*. In §1.2, k € N; Vi,..., Vi, V, W are normed vector spaces; and U C V is an open set.
In §1.4, F = C always. In §1.5, k € N, and Vi, W1y, ..., Vi, Wi, V., W are Banach spaces.

1.1 Vector-valued integrals

Here, we begin a discussion of a “weak” notion of V-valued integration that we shall
continue in §5.3. In most of this dissertation, we cite external sources for the proofs of well-known
results. However, we err on the side of proving rather than citing results on vector-valued

integrals, as they play a central role in several delicate arguments.

Notation 1.1.1 (o-algebras). If S is a set, then Q° := {functions S — Q} and 2° := {subsets of S}.
If . C QF then o(.#) C 2% is the smallest o-algebra on S with respect to which all members of
7 are measurable. If X is a topological space, then BS := o (C(X;R)) is its Baire o-algebra, and

Bx is its Borel o-algebra. Unless otherwise specified, a topological space carries its Borel o-algebra.

11



Let (£,%) be another measurable space. Note that a function f: = — S is (¢4, 0(.¥))-

measurable if and only if so f: E — Q is (¢, .%)-measurable whenever s € .. Also, B C Bx.

Definition 1.1.2 (Weak measurability and integrability). A map F': Q@ — V is weakly mea-
surable if it is (%, 0(V*))-measurable. A weakly measurable map F: Q — V is weakly or
Gel’fand—Pettis (u-)integrable if [, [¢ o F|du < co whenever £ € V* and there exists a

(necessarily unique) vector [ Fdu = [ F(w) pu(dw) € V such that

€</§2qu> :/Q(EOF) dp, LeV™ (1.1.3)

In this case, [, F'du € V is the weak or Gel’fand—Pettis (u-)integral of F.

The uniqueness of fQ Fdu is a consequence of the fact that V* separates points, i.e.,
v =0 if and only if ¢(v) = 0 whenever ¢ € V*; please see [Rud91, Thm. 3.4]. Also, o(V*) C B{,,
so Baire measurable maps {2 — V are weakly measurable. Finally, by the comment after Notation

1.1.1, F: Q — V is weakly measurable if and only if fo F': ) — T is measurable whenever ¢ € V*.

Example 1.1.4 (Finite-dimensional case). When V' = F", F': Q@ — V is weakly measurable
(respectively, integrable) if and only if its components are measurable (respectively, integrable, in

which case the components of fQ F dp are the integrals of the respective components of F').

Definition 1.1.5 (Simple and o-simple functions). Let = be a set. A function f: Q — E is

simple (respectively, o-simple) if f(Q2) is finite (respectively, countable) and

FHUO ={we: flw)=¢EeF, (€&

A simple map F: Q — V is (p-)integrable if u(F~1(V \ {0})) < cc.
Note that if f: Q — Z is o-simple, then f is (.#,2%)-measurable.

Example 1.1.6 (Simple maps). If F': Q — V is o-simple, then F is (%, 2" )-measurable and thus
weakly measurable. Also, if F': @ — V is simple and p-integrable, then F' is weakly p-integrable.
Indeed, define

w = Z vu(F1(v) = Zv,u(Ffl(v)) ev,

veF(Q) veV

12



where 0 - 00 := 0 € V. (Note that we have broken the standard notational convention for scalar

multiplication; we shall do so regularly without further comment.) If £ € V*, then

()= Y twu(Fw)= ¥ ¢ Y u(F W)

veF(Q) c€l(F(Q)) veF(Q):4(v)=c
.S cu((ﬁoF)_l(c)):/(éoF)du.
cel(F(Q)) &

(Above, we used that p is finitely additive and the collection {F~'(v) : v € F(Q), {(v) =c} is a
partition of (¢ o F)~!(c).) In other words, w = [, F dp.
Proposition 1.1.7 (Basic properties). Let W be another HLCTVS.

(i) Linear combinations of weakly measurable (respectively, integrable) maps are weakly

measurable (respectively, integrable, and the weak integral is a linear operation).

(il) If F: Q — V is weakly measurable (respectively, integrable) andT: V — W is a continuous
linear map, then TF =T o F: Q — W is weakly measurable (respectively, integrable, in

which case T [ Fdp = [ TFdu).

Proof. As we encourage the reader to verify, these properties follow easily from the definitions

and the fact that Equation (1.1.3) characterizes [, F dpu. O
Next, we study one situation in which weak integrals exist and behave exceptionally well.

Definition 1.1.8 (Strong measurability and integrability). A map F': Q — V is strongly or
Bochner measurable if there exists a sequence (F},),en of simple maps 2 — V' converging

pointwise to F'. If, in addition, we can arrange that F, is u-integrable for all n € N and

lim [ a(F,—F)du=0 (1.1.9)

n—oo Q

whenever « is a continuous seminorm on V', then F' is strongly or Bochner (u-)integrable.

Since simple maps 2 — V' are Baire measurable and the pointwise limit of a sequence of
Baire measurable maps is Baire measurable, strongly measurable maps are Baire measurable.

In particular, if F': Q — V is strongly measurable and a: V' — Ry = [0,00) is a continuous
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seminorm, then a(F):  — Ry is measurable. Consequently, the integral in Equation (1.1.9)
makes sense. If, in addition, F' is strongly integrable, then [, a(F)du < co. Indeed, if (F},)nen is
as in the second part of Definition 1.1.8, then [, a(F)du < [ a(F — F,)dp+ [ a(F,)dp < oo
for sufficiently large n. Finally, suppose that . C RK is a collection of seminorms generating
the topology of V. If « is an arbitrary continuous seminorm on V', then there exist a C' > 0 and
ai,...,om, € 7 such that « < CY " o;. It follows that if Equation (1.1.9) holds whenever

a € ., then Equation (1.1.9) holds whenever « is an arbitrary continuous seminorm on V.

Proposition 1.1.10 (Bochner integral). Suppose V is sequentially complete, F: Q — V s

strongly integrable, and (Fy,)nen is as in the second part of Definition 1.1.8.
(i) (fQ E, d,u)neN converges in V', and its limit is called the Bochner (u-)integral of F'.
(ii) F is weakly integrable, and fﬂ Fdp = limy, 00 fQ F, dpu.

(iii) (Triangle inequality) If a: V' — Ry is a continuous seminorm, then

Q(AFM)SAMDQL

Proof. First, if G:  — V is an integrable simple map and «: V — R is any seminorm, then

a</QGd,u> :a< 3 W(Gl(v))> < Y a(0)u(G ) :/Qa(G)du.

vEG(Q) veG(Q)

The last identity above holds by a calculation like the one in Example 1.1.6. We conclude that
the triangle inequality holds in this case. With this in mind, we take each item in turn.

(i) If a: V' — Ry is a continuous seminorm and n,m € N, then

(<Aaw_4mm)y%émﬁﬂmgSAM&_%MM

g/a(Fn—F)du+/a(F—Fm)du—>O
Q Q

as n,m — oo by the previous paragraph and the assumptions on (F),),en. We conclude that

(fQ F, du)nEN is Cauchy in V. Since V is sequentially complete, (fQ F, d'u)neN converges in V.

14



(ii) We already observed after Definition 1.1.8 that F' is weakly measurable. Now, let
£ € V* and write v := lim,_, fQ F, du for the Bocher integral of F. Since || is a continuous
seminorm, [, [¢ o F|du < oo, and

= lim
n—oo

E(v)—/g(foF)d,u

E( QFndu> —/Q(EoF)d,u

/Qﬁo(FnF)d,u

= lim
n—oo

< lim/|£o(FnF)|d,u:O.

Thus, F' is weakly integrable, and v = [, F'dp.
(ili) Take the limit as n — oo in the inequality o( [o, Fr dp) < [o a(Fy) dp from the first

paragraph of the proof. O

Corollary 1.1.11 (Dominated convergence theorem). Suppose V' is sequentially complete and
(Fy)nen 1s a sequence of strongly integrable maps Q — V. If (F,,)nen converges pointwise to a

map F: Q —V and

/ sup a(Fy,) dp < oo
Q neN

whenever o is a continuous seminorm on V, then F' is weakly integrable, and

/Fd,u: lim /Fndu. (1.1.12)
Q n—0o0 Q

Sketch of proof. Since F' is the pointwise limit of a sequence of weakly measurable maps,
it is weakly measurable. By Fatou’s lemma, fQ a(F)dp < oo whenever « is a continuous
seminorm on V. By the triangle inequality and the scalar-valued dominated convergence theorem,
( Jo Fn d,u) nen 18 Cauchy and therefore convergent in V. By repeating the proof of Proposition
1.1.10(ii), we see that F' is weakly integrable and Equation (1.1.12) holds. O

Remark 1.1.13. Actually, by Theorem 1.1.17 below, the map F' from Corollary 1.1.11 is strongly
integrable if V' is a Fréchet space (a metrizable, complete, locally convex topological vector space).
Also, the triangle inequality and dominated convergence theorems presented above are special
cases of more general results for weak integrals that we shall not need until Chapter 5; please see

Propositions 5.3.3 and 5.3.4.
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Proposition 1.1.10 enables us to construct the Bochner integral (against a finite measure)

of a continuous map from a compact interval to a sequentially complete HLCTVS.

Notation 1.1.14 (Partitions). Fix a,b € R such that @« < b and a map F': [a,b] — V.

(1) Pla,p) s the set of partitions of the interval [a,b], i.e., the set of finite subsets of [a, ]
containing a and b. If II € P, ) and t € I, then ¢ € II is the member of II to the left of
t; precisely, a— = a and t_ = max{s € [ : s < t} for t € I\ {a}. Also, At :=¢—1t_,

AF = F(t) — F(t_), and |II| == max{As : s € IT} is the mesh of II.

(ii) Pﬁl’b] is the set of augmented partitions of [a, b], i.e., the set of pairs (II, ), where IT € Pjq )
and &: IT — [a, b] satisfies ¢, == £(t) € [t—,t] whenever ¢t € II. If (IL,§) € P,y then

FUO = F(a) gy + > F(t) 1g_ g [a,b] = V.
tell
The sets Plqp) and 73[“; p) Are frequently directed by refinement. We direct them instead
using the mesh | - |, i.e., Il < TI" and (IT, &) < (I, ¢’) whenever |II| > |II'|. Below, we record what

it means for nets indexed by P, and 73[*; ] to converge; we leave the proof to the reader.

Lemma 1.1.15 (Limits as [II| — 0). Let X be a topological space, and fix a net x: Plqp — X.
Fory € X, limnep, , xz(I) = y holds if and only if for all open neighborhoods U of y, there
exists a 6 > 0 such that |II| < § implies x(I1) € U; this happens if and only if for every sequence
(I1,)nen in Play) such that limy, IIL,| = 0, we have lim,, o x(IL,) = y. In this case, we write
limjr o () = y or say that x(Il) — y as || — 0. One can characterize and notate the

convergence of nets x*: 77[”; by X similarly.

Example 1.1.16 (Continuous maps). Take (Q,.%) := ([a,b], B, ), and assume pu([a,b]) < co.
We claim that if F': [a,b] — V is continuous, then F is strongly integrable. Indeed, if (I, &) € PE; b]

and « is a continuous seminorm on V', then

a(FUM — F) = S a(F(t.) - F) 1y < sup{a(F(s) — F(1) : |s — 1 < I} 2% o

tell

because F is continuous and [a,b] is compact. Since F(9): [a,b] — V is a simple map, F is
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strongly measurable. By the same estimate,
- alFO = F) du < ) supla(Fs) = FO) s =t < 11} 25 0

Thus, F is strongly integrable, as claimed. By Proposition 1.1.10 (and Lemma 1.1.15), more is
true whenever V' is sequentially complete: F' is weakly integrable, and

Fdp= lim FI9 dp = F(a) p({a}) + lim > F(t) p((t-, 1))
/[a,b] iy n=Fla)ni{al) mm% (£4) (1))

If p is the Lebesgue measure, then we write
b
/ F(t)dt = Fdp= lim F(t.) At.
a [a,b]

The right-hand side above is, of course, the (V-valued) Riemann integral of F'.

In many situations, e.g., in Chapter 2, integrals as in Example 1.1.16 are enough. In
others, e.g., in Chapter 3, a more general criterion for the existence of Bochner integrals is
required. We end this section by quoting such a criterion—in fact, an alternative characterization
of strong measurability and integrability. (In yet other situations, e.g., in Chapter 5, the Bochner

integral is insufficient, and other results on the existence of weak integrals are required.)

Theorem 1.1.17 (Pettis’s measurability theorem). Suppose V' is metrizable.

(i) If F: Q@ — V is strongly measurable, then F is Borel measurable, and F(Q2) is a separable

subset of V. If F is weakly measurable and F(Q) is separable, then F is strongly measurable.

(ii) A strongly measurable map F': Q — V is strongly integrable if and only if [, o(F)dp < oo

whenever « is a continuous seminorm on V.

This result is well known and present in many books when V is a Banach space; please
see, e.g., [Coh13, App. E]. When V is only a metrizable, locally convex topological vector space,
the proof is similar, but the details are more involved. For the sake of completeness, and because
the author is unaware of a reference that treats this level of generality, we provide a proof in

Appendix A (specifically, §A.1).
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1.2 Fréchet derivatives

Here, we review some definitions and facts related to Fréchet differentiability and deriva-
tives. Specifically, we define (higher) Fréchet differentiability, list some basic properties of Fréchet
derivatives, study a topology on a certain space of C* maps, and conduct a brief discussion
of holomorphicity and the convergence of nets of holomorphic maps. We also compute the

derivatives of a homogeneous polynomial as an important example.

Notation 1.2.1 (Bounded multilinear maps). If 7: Vj x --- x Vi, — W is a k-linear map, then

"T||Bk(V1><--~><Vk;W) = Sup{HT[Ul)' . "Uk]HW VRS V;’ HleVz <l, i€ {17 . ’k}} € [0,00]

is the operator norm of T, and By(Vj x .-+ x Vj; W) is the space of bounded k-linear maps
Vix--x Vi — W, ie., the space of k-linear maps Vi X --- x V, — W with finite operator
norm. Also, (BOVAW), | i) == (Bi(Vis W), I - Iyqnan), BOV) = BOV:W), and
By (VO; W) := . Finally, if F is needed in the notation, then B" will be used in place of B.

Note that By (Vi x -+ x Vii; W) = B(V; Bg—1(V1 x - -+ X Vi_1; W)) via the isometry
T (v = ((v1,...,05-1) — T[v1,...,0x])). (1.2.2)

In particular, by induction, if W is a Banach space, then so is B (V) x -+ x Vi; W).

Definition 1.2.3 (Fréchet differentiability). Let F': U — W be a map, and fix v € U.

(i) The map F' is (once) Fréchet differentiable at v if there exists a (necessarily unique)

DF(v) = D'F(v) € B(V;W) = B¥(V; W) such that

1o IF@+ 1) = F(v) - DF@)hllw

ho0 Tl

= 0. (1.2.4)

If F' is Fréchet differentiable at points in U, then F' is (once) Fréchet differentiable
in U, and the map U > w — DF(w) € B(V;W) is its (first) Fréchet derivative.

(ii) Higher Fréchet differentiability is defined recursively: For k > 2, F' is k-times Fréchet

differentiable at v if it is (k — 1)-times Fréchet differentiable in a neighborhood—say
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(iii)

(iv)

U for simplicity—of v and D*1F: U — By,_;(V¥~1; W) is Fréchet differentiable at v.
In this case, D*F(v) is the element of B, (Vk; W) mapping to D(Dk_lF) (v) under the
isomorphism By (Vk; W) = B(V; Byj_1 (kal; W)) from Relation (1.2.2). If F is k-times
Fréchet differentiable at all points in U, then F' is k-times Fréchet differentiable in

U, and the map U 3 w — D*F(w) € By, (Vk; W) is its kth Fréchet derivative.

If F is k-times Fréchet differentiable in U and D*F: U — B, (Vk; W) is continuous, then

F is k-times continuously (Fréchet) differentiable—or C* for short—in U.

The map F is holomorphic in U if F = C and F is C! in U. Explicitly, V and W are

complex normed vector spaces, and DF(v): V — W is C-linear in this case.

We shall omit “in U” from the terminology whenever confusion is unlikely. Also, we set the

following notation for spaces of maps.

(v)

(vi)

If X and Y are topological spaces, then C(X;Y) = C°(X;Y) is the space of continuous
maps X — Y, BC(X;W) = BC°(X;W) is the space of bounded continuous maps
X =W, C0(X)=CX):=C(X;C), and BC(X) = BC*(X) := BO(X;C).

C*(U; W) is the space of C* maps U — W, C®(U; W) = (,,cy C™(U; W) is the space of
smooth maps U — W, and C"(U) := C™(U;C) whenever n € NU {oo}. (In the previous

sentence, C is viewed as an F-vector space.) If F = C, then Hol(U; W) is the space of
holomorphic maps U — W, and Hol(U) = Hol(U; C).

As an important example that will be of use to us, we compute the Fréchet derivatives of

a homogeneous polynomial, i.e., a multilinear map evaluated diagonally.

Notation 1.2.5. Let m € Ny.

(i)
(i)
(iii)
(iv)

If Sis a set and s € S, then s(,,) == (s,...,8) € 8™ To be clear, S(0) 1s the empty list.
Isa = (o1,...,0pm) € NI is a multi-index, then |a| == aq + - + auy, is its order.

Sp is the symmetric group on m letters, i.e., the group of permutations of {1,...,m}.
If T e By, (V™; W), then

1
S(T)[v1y...,vm] = ) Z T[vw(l),...,vﬁ(m)], Vlyevry Um € V.

" wESm
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Proposition 1.2.6 (Derivatives of a homogeneous polynomial). Fizn € Ny and T' € B, (V™ W).
If P: V. — W is defined by v — T [v(n)] = S(T)[v(m)], then P € C(V; W), and

DkP(’U)[hl,,hk] = 1k§n S(T) [hl,...,hk,’u(n_k)] (127)

(n—k)!
- Z Z T[v(a1)7 h7r(1)7 < Uayg)s hﬂ'(k)? v(ak+1)]a v,hi €V.

TESE |a|l=n—k

NkJrl

The final sum above is over multi-indices o € with order n — k, and empty sums are zero.

Proof. We prove Equation (1.2.7) and leave the remaining elementary combinatorics to the
reader. To this end, we may and do assume that T is symmetric, i.e., T'= S(T"). We proceed by

induction on k. For the base case (k = 1), observe that if v,h € V, then

n—1
P(’U + h) - P(U) = Z (T[(U + h)(i+1)7 U(nfifl)] - [(’U + h)( ) V(n— 1)])
=0
n—1 n—1
=D T+ )y, hvueion] = D Ths (v + )y, i)
=0 =0

because P(v) =T [v(y)], the first sum telescopes, and T'is n-linear (and symmetric). It follows
from the bounded n-linearity of T" that
|P(v+h) = P(v) = n T [h,v,1))

Hth I

h—0
< ZHT (v + D)y vn—i-n] = T vm-p ]|l = 0-

Thus, P is once continuously differentiable, and the desired derivative formula holds. This

completes the proof of the base case. Now, assume we have proven the result with £ > 1. If

k > n, then the induction hypothesis says D¥P(v) is constant in v € V. Therefore, DFtlp =,

which completes the induction step in this case. Next, assume k < n, and define

Tolh,v] = ——=Th,v]e W, (hv)eVixV"F=y"

Then the map V"% 5 v — Ti[v] == Ty[-,v] € By (V¥ W) is bounded, (n — k)-linear, and
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symmetric, and the induction hypothesis says precisely that D*P(v) = T} [v(n,k)] for all v e V.

Consequently, the base case applies to D*P and says
D(D*P)(v)h = (n— k) Ty [h,v(—p—1)] = (0= k) To [, B, vg_p—1y], v, hEV.

A moment’s reflection on the definition of Tj yields the desired formula for D1 P, O

We now focus on the necessary general theory. To begin, we list some basic properties.

Proposition 1.2.8 (Basic properties). Let F': U — W be a map, and let v € U.

(i) If F is Fréchet differentiable at v, then F is continuous at v.

(ii) Linear combinations of maps that are k-times Fréchet differentiable at v are k-times

Fréchet differentiable at v, and F +— D¥F(v) is a linear operation.

(iii) (Directional derivatives) If F is k-times Fréchet differentiable at v, then

d
DkF(’U)[hl,.. . ,hk] = 8hk ".8h1F(v) = d—
Sk

d

F ho h
o der (v+s1hy + -+ sghy)

s1=0

for all hy,..., h € V.
(iv) If F is k-times Fréchet differentiable at v, then D¥F(v) is symmetric: If 7 € S}, and
hi,...,hx €V, then DkF(U) [hﬁ(l), ce hﬂ(k)] = DkF(U)[hl, ce hk]

Proof. The first two items follow easily from the definitions. The third item follows by induction

and testing Equation (1.2.4) on h = thy with ¢ — 0. The final item is [HJ14, Thm. 1.76]. O

Next, we introduce a topology on a space of C* maps with a certain boundedness property.
Definition 1.2.9 (CE (U; W) and its topology). The space of continuous maps U — W that are
bounded on closed balls contained in U is denoted by C,,(U; W) = CO (U; W). If k € NU {00},
then CE (U; W) is the space of C¥ maps F: U — W such that D'F ¢ C’bb(U; BZ-(Vi;W))
whenever 0 < i < k + 1; here and throughout, D°F := F. If k € Ny U {co}, then CF (U; W) is
endowed with the C{fb topology: the locally convex topology generated by the seminorms

CE(U;W)3 F— sup }|DiF(w)HB_(Vi_W) eR,, 0<i<k+1, B (v)CU.
weB(v) o
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Example 1.2.10 (Finite-dimensional case). Recall that closed balls in V' are compact if and
only if V is finite-dimensional. In this case, if k € Ng U {oo}, then C (U; W) = CF(U; W), and
the C¥ topology is the topology of locally uniform convergence of all derivatives of order strictly

less than k + 1, i.e., the C* topology.

Example 1.2.11 (Homogeneous polynomials). By Proposition 1.2.6, if n € Ng, T' € B, (V"; W),
and P: V — W is defined by v — T'[v(,], then P € C(V;W).

To prove the basic topological properties of Cfb(U ; W), we record a criterion for the

Fréchet differentiability of the limit of a sequence of Fréchet differentiable maps.

Theorem 1.2.12 (Differentiability of a limit [HJ14, Thm. 1.85]). Assume W is complete and U
is convex and bounded. Let (Fy,)nen be a sequence of k-times Fréchet differentiable maps U — W.
If (Dan)neN converges uniformly and there exist zq,...,xx_1 € U such that (DiFn(a:i))neN

converges for all i € {0,...,k — 1}, then there exists a k-times Fréchet differentiable map

F: U — W such that (DZFn) converges uniformly to D'F whenever i € {0,...,k}.

neN
Proposition 1.2.13 (Properties of C% (U; W)). Let k € No U {c0}.

(i) CE(U;W) is an HLCTVS. If W is complete, then so is CF (U; W).

(ii) If there is a countable family 7 of closed balls contained in U such that every closed ball

contained in U is covered by finitely many members of .7, then CF (U; W) is metrizable.

Proof. We take both items in turn.

(i) The C{fb topology is defined by a collection of seminorms that separates points, so
CF (U; W) is locally convex and Hausdorff. Now, assume W is complete. We show that C% (U; W)
is complete when k < co. The k = oo case follows from the finite-k case.

Let C be a closed ball contained in U, and consider the map

k
Cr(U;W) 3 F s TgF = (Fle = D°F|e,...,DFF|c) € X = [[ BC(C; B;(Vi; W)).
=0

Also, for v € C, we define ev,: X — Hf:o B;(V5;W) by (Go,...,G) = (Go(v),...,Gr(v)), ie.,

by evaluation at v. By definition of C{fb(U; W) and X, T¢ and ev, are continuous linear maps.
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Next, let (F});e; be a Cauchy net in CE (U; W), and retain the ball C C U from the
previous paragraph. Since T¢ is continuous, (1¢F;)ics is a Cauchy net in X. Since X is complete,
(T¢F)ier converges to an element (Fg, . ,Fé“) € X. Since the evaluation maps are continuous,
Fg is the pointwise limit of (DjFi|c)i€1 for all j € {0,...,k}. Consequently, if j € {0,...,k},
then there exists a map F7 € Cy, (U; B; (Vj; W)) such that F7|¢c = Fé for all closed balls C C U.

Finally, we claim that if C = B,.(v) is a closed ball contained in U, then F°| Bo(v) = F| B, (v)
is k-times Fréchet differentiable, and D7 (FO\BT(U)) = Fg|BT(v) = Fj\BT(U) for all j € {1,...,k}.
Indeed, since X is first countable and (T¢ F;);c; converges to (Fg, . ,Fck), there exists a sequence
(in)nen in I such that (T¢F;, )nen converges to (FCO, e FCk) as well. By definition of T¢, an
appeal to Theorem 1.2.12 completes the proof of the claim and thus also this item.

(ii) Under the stated hypothesis, the C’{fb topology is generated by the countable family

{F + supyec||D'F(w :0<i<k+1,Ce.%} of seminorms that separates points.

The desired result follows. O

Note that the hypothesis of Proposition 1.2.13(ii) is satisfied when U = V or V is
finite-dimensional. In the former case, we can take . = {Bn(()) 'n € N}; in the latter, we can
take .# to be a countable family of closed balls in U whose interiors cover U.

We end this section with some results on holomorphic maps.

Theorem 1.2.14 (Characterizations of holomorphicity [HJ14, Thm. 1.160]). Let F = C, and
assume V' and W are complete. A map F: U — W is holomorphic if and only if it is C* in U

(with C-multilinear Fréchet derivatives since F = C), if and only if it is analytic in U. Please see

[HJ14, Def. 1.15}] for the definition of analyticity.

Remark 1.2.15 (Taylor series expansion). By [HJ14, Thms. 1.140 & 1.146], more is true under
the hypotheses of Theorem 1.2.14. Specifically, if F' € Hol(U; W) and w € U, then there exists

an r > 0 such that B,(w) C U and

OES %a:;_wF(w) S %D”F(w) [(v—w)m], € Br(w),
n=0 n=0

where the series on the right-hand side converges absolutely uniformly on B, (w).
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The essence of the first equivalence in Theorem 1.2.14 is that we can upgrade C! to C*
in the complex case. The essence of the next result is that we can upgrade the local uniform

convergence of a net of holomorphic maps to the local uniform convergence of all its derivatives.

Theorem 1.2.16 (Convergence of holomorphic maps). Let F = C, and assume V and W are
complete. If (F;)ier is a net in Hol(U; W) converging locally uniformly to F: U — W (i.e., for
all v € U, there exists a neighborhood Uy C U of v such that (F;|y,)ier converges uniformly to

Flu, ), then F € Hol(U; W), and (DkFi)ieI converges locally uniformly to D¥F whenever k € N.

Sketch of proof. Fix v € U, let ¢ > 0 be such that B.(v) C U and (Fi|]§g(v))¢e converges

I
uniformly to F|B€(v), and define § := /2. By Cauchy’s estimates [HJ14, Cor. 1.164] (and the

polarization formula for multilinear maps [HJ14, Prop. 1.11]), if i, € I and k € N, then

k

k _
< ¢ sup [[Fi(w) = Fj(u)lly,  we Bs(v),

kG (w) — DF®
HD Fi(w) — DF; (w)‘ By (VW) — oF u€B;(w)

because F; — F; € Hol(U; W) and Bs(w) C B.(v) C U whenever w € Bs(v). Consequently,

k

k
<2 Fi(u) — F; .
vy S 5 uesgap(v)ll (u) = Fj(u)lly

D¥F(w) — DFF (w)‘

sup
weBs(v)

It follows that (DkFl] BE(U)>i ¢; 1s uniformly Cauchy and therefore uniformly convergent. An
appeal to Theorem 1.2.12 then completes the proof. (We encourage the reader to fill in the

details of the last two sentences.) O

Corollary 1.2.17. Under the assumptions of Theorem 1.2.14, Hol(U; W) N Cy,(U; W) is a
closed linear subspace of Cy,(U; W).

Proof. This is immediate from Theorem 1.2.16 because a C\,,-convergent net is automatically

locally uniformly convergent. O

By combining Example 1.2.10, Proposition 1.2.13, and Corollary 1.2.17, we see that if
F = C, V is finite-dimensional, and W is a Banach space, then Hol(U; W) is a Fréchet space

with the topology of locally uniform convergence.
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1.3 Divided differences

In this section, we define divided differences and collect their relevant properties.

Definition 1.3.1 (Divided differences). Let S C C. For a function f: S — C, recursively define
fl9 .= f and, for k € N and distinct i, ..., A1 € S,

FEI O ) = IO, e, Ae)

KA, A =

The function f¥ is the k** divided difference of f.

Notation 1.3.2 (X,,, Ay, and py,). If m € N then

m={5=(s1,....8m) ERT : [F] =81+ +sm <1},

= (t1,. oy tms1) ERT ity + ot = 1)

| i
/—Aﬂ

Also, py, is the pushforward of the m-dimensional Lebesgue measure on 3, by the homeomorphism

Ym 28— (5,1—15|) € Ay, Explicitly, pp, is the Borel measure on A, characterized by

/A (t) p(dt) = / o5 1= |5)ds, @€ ®(Am Ba,).

In particular, p,,(A,,) = 1/m!, as the reader may verify.

Proposition 1.3.3 (Basic properties). Fiz S C C, functions f,g: S — C, k € N, and distinct
ALy ooy A1 € 5. Also, write A == (A1, ..., Agt1)-

(i) fHIN) = Zk+11 (i) T2 (N — )7L In particular, fI s symmetric.
(if) (Product rule) (fg)F(A) = g f (A, Arn) g% (i, - M)

(iii) Suppose S C R is an open interval or S C C is open and convex. If f € CF(S), then

k 2
FEX) = [ Bt X) pe(dt) = /2 F® (ZSMz‘ + (1 - Z&) )\k+1> dsy -« - dsg
s i=1 i=1

A

In particular, if U is an open subset of R or C and h € C*(U), then Rk extends uniquely

to a continuous function U1 — C. We use the same notation for this extension.
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Proof. All three items are proven by induction on k. The arguments for the first two items are
straightforward and left to the reader. For the third item, suppose f € C'(S), and let A1, Ay € S
be distinct. By the fundamental theorem of calculus,

) — f(A

(1] —
f (>\17 )\2) )\1 )\2

/ f S )\1 + (1 - 81))\2) d81

This establishes the base case. Now, assume the desired formula holds on C*(S) with k > 1. If

feCH(8) and Ay, ..., Ao € S are distinct, then, writing i :== (\1,...,\x) € S¥, we have

(k) 1—[5])A (k) 1—[5])A
SR A1, Aeg2) = FOE 5 O 2 18D M) = SO 5 (1 151D M) ds (1.3.4)
S Akt1 — Akt2
N )
= A=l (£9) 5 (= DA (1= 5D Ase) s
k

1
— [l [ G @[S + (1 M) dedS (135)
Yk 0

1-15]
— / / FED (T 5+ sp e + (1= [8] = skp1)Akg2) dspga d5 (1.3.6)
Xk
k+1 k+1
_ / D) (Z si\i + (1 — Z sz> )\k+2> dsy - dspi1.
Ypy1

Equation (1.3.4) holds by definition of f*+1 and the inductive hypothesis, Equation (1.3.5) holds

by the base case, and Equation (1.3.6) holds by the change of variable si41 :== (1 — |5])t. O

It is perhaps worth noting that the product rule in Proposition 1.3.3(ii) is somewhat
strange, as the left-hand side (fg)*/(A1,..., \g11) is symmetric in (A, ..., \gt1), while the terms
f[i]()\l, cey Nig1) g% (Nit1, ..., A\eg1) in the decomposition are not.

Now, here is a useful consequence of Proposition 1.3.3(iii).

Corollary 1.3.7. Retain the assumptions from Proposition 1.3.3(iii). If f € C*(S), then
)f[k] ’ i sup{’f ‘ 3€conv(/\1,...,)\k+1)}, e SF
where conv(Ay, ..., Agt1) s the convex hull of {\1,..., A\g11}. Furthermore,

FON) =k Nyy) =k LN, Aes.
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Proof. Both claimed relations follow from Proposition 1.3.3(iii) and the fact that py(Ag) = (k!)~L.

For the inequality, we also need the observation that {t-A:t € Ap} = conv(\y,..., A\gr1). O
Next, here are some important example calculations of divided differences.

Example 1.3.8 (Polynomials). Let n € Ny, and define p, () := A" € C[\] C Hol(C). We claim
that if £ € N, then

= Y M= Y e, Aectl aag)

[v[=n—k 7€N§+1:|7|:n7k

Since pw is continuous, it suffices to establish Equation (1.3.9) for A = (A1,..., A1) € CFH

such that Aj,..., A\g41 are distinct. To do so, we proceed by induction on k. The base case is

the well-known identity

n—1
A —\2 ) 1
PO A) = T2 =2 M = Y AR M
! 2 =0 T +y2=n—1

Now, suppose Equation (1.3.9) holds. If \xyo is distinct from Aq, ..., Agy1, then

pw(Aly-'w)\k—H)_pw(Alw--,)\ka)\k—i-Z)
Ak+1 = Ak42
_ ¥ o A Ay
; D
1= A2

PRI O, Meg2) =

Iy|=n—k

\61 16
- Z ( Z >"1Y1"‘)‘Zk)‘ki1>‘k12>

|[v|=n—k \d1+d2=vp41—1

_ gt Vh+2
- Z Al ')‘k+2
WEN§+2:H/\:TL—I€—1

by the inductive hypothesis and the base case. This completes the proof of the claim. In
particular, if p(A) € C[A], then pFl(\1, ..., X\es1) € C[A1,..., Apg1], for all k € N.

Example 1.3.10 (Rational functions). Let U C C be an open set, and fix zg € C\ U. Define

1
T'z()()\) = zoﬁ’ Arel.
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Of course, 7, € Hol(U). By an easy induction argument, if k& € N, then

1
rlE () = \c Uk, 1.3.11
L Al A v O S Y (1.3.11)

By combining Equation (1.3.11) with the previous example, the product rule in Proposition
1.3.3(ii), and the fundamental theorem of algebra, we see that if () is a rational function with
poles outside of U and k € N, then there exist and polynomials g1 (A),. .., ge+1(A) € C[A] with

roots outside of U and a multivariate polynomial P(A) € C[A] = C[Aq,..., A\g+1] such that

P(A)
q1(A1) - ey (Aeg)

() = . AeUuktt

This observation will come in handy in §2.4.

Notation 1.3.12. Let (2,.#) be a measurable space.
(i) £°(2, %) is the set of (F, B¢)-measurable functions  — C, and £>°(€2,.%) is the set of
f € 0(Q,.F) such that || f]p(q) = sup,eq |f(w)| < oo.
(il) M(£2,.%) is the space of complex measures on (£, .%). If p € M(Q,.%#), then |u| is the
variation measure of p, and ||p|| = |p|(£2).
Definition 1.3.13 (Wiener space). If 4 € M (R, Br) and k € No, then pgy = [ 1E1F ] (d€) is
the “,k'™ moment” of |u|. The k*® Wiener space W (R) is the set of functions f: R — C such

that there exists a (necessarily unique) p € M(R, Br) with ;) < oo and f(\) = [ e p(dg)
for all A € R.

Example 1.3.14 (Wiener space). Let k € N. If f = [; "¢ pu(d€) € Wi(R), then f € CH(R).

More specifically,

k
0 = [ Fpente = [0, Aer. (1.3.15)

In particular,

) = / / ()P NE () pp(dt), A e RFFL (1.3.16)
Ap JR

by Proposition 1.3.3(iii).
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We end this section with another useful expression for the divided differences of a

holomorphic function. To this end, we review some complex analysis.

Definition 1.3.17 (Cycles, trace, and index). Let U C C be an open set. A cycle I'in U is a
finite collection (v;: [a;, b)) — U)™; of piecewise C! closed curves in U. The trace of T is the set

I =" 7i(lai, bi]) CU. If V is a complex Fréchet space and ¢: I'* — V is continuous, then

n b;
[ oteraz = > / Cent) e .

Finally,

1 1
Indp(z) =5 Fmdw, z e C\ I,

is the index or winding number (function) of T'.

Theorem 1.3.18 (Properties of Indr [Rud86, Thm. 10.10]). If U C C is an open set and I is a
cycle in U, then Indr(z) € Z for all z € C\T'*, Indp: C\I'* — Z is constant on each connected

component of C\ I'*, and Indr(z) = 0 whenever |z| is sufficiently large.

Theorem 1.3.19 (Cauchy’s integral formula). Let U C C be an open set, let V' be a complex
Banach space, and let F': U — V be a holomorphic map. IfT is a cycle in U such that Indp(z) =0

whenever z € C\ U, then

1 F
Indp(z)F(z):Tm Fw(—w,)zdw’ zeU\T".

Proof. The scalar case (V = C) is [Rud86, Thm. 10.35, Eq. (2)]. The general case follows from

the scalar case applied to the functions {f o F': { € V*}. O
We are now prepared for the final result of this section.

Proposition 1.3.20 (Holomorphic divided differences). Let U C C be an open set, and let T' be

a cycle in U. If f € Hol(U) and k € Ny, then

(mdpf)wc}()\):;ri/r(z_m‘f(z_ml)dzj e (U\ T
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In particular, if V = {z € U\ I'* : Indr(2) = 1}, then

B = - /() kel
) =5 | e e eV

Consequently, f¥ € Hol (U,

Proof. As with essentially all properties of the k' divided difference, we proceed by induction
on k. The base case (k = 0) is precisely Cauchy’s integral formula. Now, write g := Indr f, and

assume the desired formula for gl¥! holds with k > 0. If Aj,..., A\yyo € U \ I'* are distinct, then

1 f(2) 1 1
L5 VIR :_/ B dz
g (A1 k+2) 21 Jp (2= A1)+ (2 — M) M1 — Akr2) <z—)\k+1 Z—)\k+2>

1 () L

S 2w Jr (2= M) (2= Aera)

by definition of g1 and the inductive hypothesis. An appeal to the continuity of both sides in

(A1, ..., Aga2) completes the proof. O
1.4 Banach algebras

In this section, we lay out a few basics of Banach algebras, spectral theory, and resolvents.

We also say a few words about C*-algebras and von Neumann (or W*-)algebras.

Definition 1.4.1 (Banach algebra). A Banach algebra is a complex Banach space (B, ||-||z)

together with a(n associative) C-algebra structure on B satisfying

labllg < llaligllbllz, @, b€ B.

We often shall say “B is a Banach algebra” in this case, keeping the norm and algebra structure

implicit. The Banach algebra B is unital if the underlying algebra is unital and ||1]|z = 1.

Example 1.4.2 (Bounded operators). If V' is a complex Banach space, then B(V) is a unital
Banach algebra with the operator norm and the usual algebra structure in which composition is
the product operation. In particular, if n € N, then M,,(C) := {n x n complex matrices} = B(C")

is a unital Banach algebra.
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We now move on to the spectral theory of an element of a unital Banach algebra.

Notation 1.4.3 (Invertible elements). If B is a unital Banach algebra, then B,y is the group of
multiplicatively invertible elements of B, i.e., the set of b € B such that there exists a (necessarily

unique) b~! € B such that bb~! =b71b = 1.

Definition 1.4.4 (Resolvent and spectrum). Let B be a unital Banach algebra, and fix a € B.
The set p(a) = ppla) = {A € C: X —a = Al —a € By} is the resolvent set of a; its
complement o(a) = op(a) = C\ p(a) is the spectrum of a. The spectral radius of a
is the number r(a) = rp(a) = sup{|A| : A € o(a)}, and the resolvent of a is the map

p(a) > A Ry(a) = (A —a)~! € Biy.
Theorem 1.4.5 (Properties of Biny, p(a), and o(a)). Let B be a unital Banach algebra.

(i) (Geometric series) If a € B and Y .7 ||a™||z < 0o, then 1 — a € Biyy, and

(1—a)™t = Z_%a".

For example, this is the case if ||al|g < 1, in which case ||(1 — a)_luB <1/(1—|la|lp)-

(ii) If U C C is an open set, then By = {a € B : o(a) C U} is open in B. In particular,

Biny = Bey oy is open in B.

(iii) (Resolvent identity) If a,b € B, A € p(a), and p € p(b), then

Ra(a) = Ru(b) = Ra(a) (0 — A+ a—b) Ru(b).

(iv) The resolvent set p(a) C C is open, the resolvent p(a) > X\ — Ry(a) € B is holomorphic,

and o(a) is (closed and) nonempty.

(v) (Gel'fand’s spectral radius formula) If a € B, then
. n l . n l
r(a) = inflla"|lz = lim [la"|3.

In particular, r(a) < ||lal|g, so o(a) € C is compact.
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Please see [Rud91, Ch. 10] for proofs of all the items in the theorem above. The first
four items are not so difficult to prove. Also, while Gel’fand’s spectral radius formula takes some
work to prove, the inequality r(a) < ||a|z is easy to establish.

Next, we briefly discuss some special classes of more highly structured Banach algebras.

For the next definition, recall that a function f: S — S on a set S is an involution if fo f =idg.

Definition 1.4.6 (Various *-algebras). Let 4 be a C-algebra.

(i) A %-operation on A is an involution *: A — A, written a* := *(a) for a € A, such that
(Aa)* = Xa*, (a+b)* = a* +b*, and (ab)* = b*a* for all A € C and a,b € A. In this case,
A is a x-algebra. Now, suppose B is another *-algebra. A *-homomorphism is an

algebra homomorphism 7: A — B such that 7(a*) = w(a)* for all a € A.
(i) A Banach *-algebra is a Banach algebra with an isometric *-operation.

(iii) A Banach *-algebra A is a C*-algebra if
la*all 4 = lally, €A

This is the C*-identity or C*-condition.

(iv) If A is a unital C*-algebra and there exists a complex Banach space V' such that A is

isometrically isomorphism to V*, then A is a W*-algebra.

Example 1.4.7 (Bounded operators on Hilbert spaces). If H is a complex Hilbert space, then
B(H) is a unital C*-algebra with the adjoint x-operation. In particular, if n € N, then M, (C) is

a C*-algebra with the conjugate-transpose *-operation.

Example 1.4.8 (Continuous functions, commutative C*-algebras). If X is a locally compact
Hausdorff space, then Cy(X) = {f € C(X) : f vanishes at oo} is a commutative C*-algebra with
the norm |[+[|e(x) and pointwise operations. Furthermore, Co(X) is unital if and only if X is
compact, in which case Cyp(X) = C(X) and o(f) =im f = f(X) for all f € C(X). Finally, if A
is a commutative C*-algebra, then there exists a (unique-up-to-homeomorphism) locally compact
Hausdorff space X and an isometric #-isomorphism 7: A — Cy(X); if A is also unital, then X is

compact, in which case Cy(X) = C(X). Please see [Con90, §VIIL.2] for details.
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Example 1.4.9 (Essentially bounded functions, commutative W*-algebras). Let (€2,.#, ) be
a measure space such that p is not identically zero. Then L*°(u) is a unital, commutative

C*-algebra under pointwise p-almost everywhere operations, and
o(f)y=pesstanf={AeC:u{weQ:|f(w) — A <e})>0foralle >0}, [fe&L>®Qu).

Now, define M : L>®(u) — L'(u)* by

(M) (g) = /Q fodu e L), L'().

By [Fol99, Prop. 6.13], if x is semifinite, then M is an isometry. It is not hard to show, as we
encourage the reader to do, that if y is not semifinite, then M is not injective. Thus, M is
injective if and only if p is semifinite, in which case M is an isometry. 1. E. Segal established in
[Seghl, Thm. 5.1] several equivalent characterizations of the situation in which M is surjective
as well. For instance, M is an isometric isomorphism if and only if y is localizable,! e.g., if u is
o-finite. From this discussion, we learn that if p is localizable, then L>(u) is a commutative
W*-algebra. Finally, by [Sak71, Prop. 1.18.1], if M is a commutative W*-algebra, then there

exists a localizable measure space (£,%,v) and an isometric *-isomorphism 7: M — L*(v).

Remark 1.4.10 (Boundedness of x-homomorphisms between C*-algebras). In the last two
examples, we used the term “isometric *-isomorphism.” It turns out this term is redundant:
[Con90, Thm. VIII.4.8] says that if A and B are C*-algebras and 7: A — B is a *-homomorphism,

then ||7]| 4,5 <1, and 7 is injective if and only if it is an isometry.
We end this section with “concrete” characterizations of C*-algebras and W*-algebras.

Definition 1.4.11. A C*-subalgebra of a C*-algebra is a (topologically) closed subalgebra
that is closed under *. A concrete C*-algebra is a C*-subalgebra of B(H), where H is a
complex Hilbert space. A von Neumann algebra is a unital concrete C*-algebra M C B(H)

that is closed in the weak operator topology on B(H) (Definition 4.1.1(i)).

!The measure u is localizable if j is semifinite and every collection of measurable sets has a “u-essential
union,” i.e., for every . C %, there exists a set S € .Z such that u(G\ S) = 0 for all G € .¥ and whenever
So € F satisfies u(G \ So) =0 for all G € .#, we have pu(S\ So) = 0.
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Of course, a C*-subalgebra of a C*-algebra is a C*-algebra in its own right. In particular,
a concrete C*-algebra is a C*-algebra. Now, here is an algebraic characterization of when a

concrete C*-algebra is a von Neumann algebra.

Definition 1.4.12 (Commutant and bicommutant). Let H be a complex Hilbert space. If
S C B(H), then
S":={a € B(H) :|a,s] :==as—sa =0 for all s € S}

is the commutant of S, and S” := (S’) is the bicommutant of S.

Observe that if S C B(H) is closed under the adjoint, then S’ C B(H) is a von Neumann
algebra, and S” C B(H) is a von Neumann algebra containing S—in fact, the smallest such von

Neumann algebra.

Theorem 1.4.13 (Von Neumann’s bicommutant theorem [Dix81, Cor. 1.3.2]). A x-subalgebra
M C B(H) is a von Neumann algebra if and only if M" = M.

Example 1.4.14 (Essentially bounded functions again). Let (£2,.%, 1) be a measure space,
and this time, define M: L°°(u) — B(L?(u)) by M(f)g = fg € L*(p) for all f € L>°(u) and
g € L?>(u1). Then M is injective if and only if 4 is semifinite, in which case M is an isometry.
Now, another one of the conditions in [Seghl, Thm. 5.1] equivalent to p’s being localizable is
that (u is semifinite and) M (L>(u))" = M (L (1)) in B(L?(11)). Consequently, if p is localizable,
then M(L*(u))"” = M(L*(u))" = M(L*(u)), so M(L>*(n)) is a von Neumann algebra by von

Neumann’s bicommutant theorem.

)

Finally, we state two fundamental results: one justifying the term “concrete C*-algebra’

and the other saying that von Neumann algebras are “concrete W*-algebras.”

Theorem 1.4.15 (Gel’fand-Naimark—Segal). If A is a (unital) C*-algebra, then there exists a
complex Hilbert space H and an injective (unital) x-homomorphism w: A — B(H). By Remark

1.4.10, 7 is an isometry, so w(A) is a (unital) concrete C*-algebra.

Theorem 1.4.16 (Sakai). Every von Neumann algebra is a W*-algebra. Conversely, if M is a
W*-algebra, then there exists a complex Hilbert space H and an injective, unital x-homomorphism

m: M — B(H) such that m(M) C B(H) is a von Neumann algebra.
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Theorem 1.4.15 is often called the GNS theorem. For proofs of both the GNS theorem
and Sakai’s theorem, please see [Sak71, §1.15 & §1.16]. Also, since it will be useful to us in later
chapters, we discuss the first statement in Sakai’s theorem more in §4.1; specifically, the predual
of a von Neumann algebra is described in Theorem 4.1.2(iv).

In much of the modern literature, “abstract” C*-algebras are preferred to concrete C*-
algebras, while von Neumann algebras are preferred to W*-algebras. For the most part, this

dissertation will follow suit.

1.5 Projective tensor products

Finally, we briefly discuss projective tensor products of Banach spaces. For a proper

treatment, please see [Rya02, Ch. 2].

Notation 1.5.1. Write ® = @ for the algebraic F-tensor product. For v € Vi @ - - - ® Vj,, define

N k N
m(u) == inf { Z H lvinllv, : vin € Vi, u= Zvl,n ®- - ® vk,n}.
n=1

n=1i=1
Proposition 1.5.2. 7 is a norm on V1 @ -+ ®@ Vi, and w(v1 ® - @ vg) = |lv1lly, - [Jvklly,
whenever vy € Vi,..., v, € V.

In the k = 2 case, this is [Rya02, Prop. 2.1]. The same proof works in the general case.

Definition 1.5.3 (Projective tensor product). The (Banach space) projective tensor prod-

uct (Vi®r - @z Vi, [-lys 6. .41, ) is the completion of the normed vector space (Vi ®---@ Vg, 7).

The primary virtue of the projective tensor product is that it satisfies a topological
version of the universal property of the algebraic tensor product: It boundedly linearizes bounded

multilinear maps (Notation 1.2.1).

Proposition 1.5.4 (Universal property of @). If T € Bi(Vi x --- x Vi;; W), then there

exists a unique T € B(v1®7r-~-®ka;w) such that T(vl ® - @ug) = Tlvi,...,vg] for all

v € Vi,...,v, € V. Furthermore, THV1®,r~--®,rVkaW = 1Tl . (vi x--x Vi) -

We leave the proof to the reader. This has a number of useful consequences. We list

them and, once again, leave their proofs to the reader.
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Corollary 1.5.5 (Projective tensor product Banach algebra). Suppose F = C. If By, ..., By are

Banach (x-)algebras, then B1@y - - @By, is a Banach (x-)algebra with the product determined by
(a1 ® - ®@ag)(b1 @ - ®@b) = (a1b1) @ - @ (agby),  a;,b; € Bj,

(and the x-operation determined by (a1 ® --- @ ax)* = a} @ --- @ aj for all a; € By, ..., a € By).

Corollary 1.5.6 (Projective tensor product of bounded linear maps). If T; € B(V;; W;) for all
i € {1,...,k}, then there exists a unique T\ &y - T} € B(V1®7r e R Vi Wiy - - '®ﬂWk)
such that

(T1®7T : "®7er)(U1 &K ®’U]<;) =T ® - Q Ty, v; € V.

Furthermore,

HTI@” T ®”TkHV1®ﬂ~~~®ka—>W1®w"~®ﬂWk HTI“VI‘)W1 o ”TkHVk‘)Wk'

If, in addition, V; and W; are Banach (x-)algebras and T; is a (*-)homomorphism for all

i€ {l,....k}, then T\ @y - - @ T} is a (*-)homomorphism.

Corollary 1.5.7 (Commutativity and associativity). The linear isomorphisms
VoV oV, - V,=Vie(he V)
extend uniquely to isometric isomorphisms
Va@r Vi@ - @rVip = Vi®g - @2 Vie = VG (Va®r - - @2 Vi).

Corollary 1.5.8 (# operations). Suppose F = C, and let B = By, ..., By be Banach algebras.

(i) There exists a unique bounded linear map #y,: B=(k+1) 5 B, (Bk; B) such that
#r(a1 @ @ apy1)[b1, ... by] = arby - apbrag1, @i b € B.

Furthermore, the operator norm of #. is at most one.
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(ii) For everyi € {1,...,k}, there ezists a unique bounded linear map
#hi: Bi®r - @7 Bi@7Bi®r - - @By = B(Bi; Bi®r - - - @ By)
such that
#ri(a1®--®a;@bj®aj1---Qap)c=a1 @ ®a;_1 @ aich ®ai1 ®--- Qay

whenever aj € B; for all j € {1,...,k} and b;, c € B;. Furthermore, the operator norm
of #1,i is at most one.
Notation 1.5.9 (# operations). Retain the setup of Corollary 1.5.8. If u € B®”(k+1), be Bk,
(RS Bl®7r tt ®71'Bi®7r8i®7r te ®7er, and S Bi, then

u#b = #p(u)[b] and v#y ¢ = #pi(v)c.

Also, we shall write # = #; and u#b := u#,b in the k = 1 case.

The operations in Corollary 1.5.8 play a prominent role both technically and conceptually
in this dissertation, so the reader is advised to write out some examples.

We end this section with a useful concrete description of the projective tensor product.

Theorem 1.5.10 (Series description of projective tensor product). If u € Vi®y - - - @, Vi, then

there exist sequences (V1n)nen € Vi, ..+, (Vkn)nen € Vi such that

oo oo
D lorally, - lvkmlly, <oo and u=> vin @ Qupp in Vig-- &:Vi  (L5.11)
n=1

n=1

(Recall that [[vinlly, - lvkplly, = llvin @ - @ viallvig,..q,v,-) Moreover, if e > 0, then we

may choose {(vin)nen 14 € {1,...,k}} such that

o0
> lovally, - lvkmlly, < lullvig..av, +€
n=1

as well.
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Sketch of proof. We proceed by induction on k. The k = 2 case is [Rya02, Prop. 2.8]. Now,
assume the result for k& > 2 tensorands, and let V = Vo®y - - - @, Vi. We shall use Corollary 1.5.7
freely without comment. By the k = 2 case, if u € Vi®r -+ ®:Vi = V1®,V and € > 0, then

there exist sequences (V1 )neN € V¥ and (up)nen € VY such that

[e.e] [e.e]
S Ioally; lunlly < Nullyig, ., +5 and a=d"vin®un.
n=1 n=1
Now, if n € N, then there exist sequences (v3,,,)men € | 723N (Uﬁm)meN € V¥ such that
e} c e}
mz:;va’mva ekl < lenlly + 2011+ [y, ) and = mzzavg’m B @

by the induction hypothesis. But then

o0 o0
7 < HU’HV1®W®WV/¢ +e and u= Z Z Uin ® Ug,m R ® /U]T{;L,m-

n=1m=1

[ IS k
Z Z Hvl,nHvl HHU?,m‘
=2

n=1m=1

The result follows. O

Remark 1.5.12. Observe that may take the sequences {(vjn)nen : @ € {1,...,k}} in Theorem
1.5.10 to be bounded as well. Indeed, by rescaling, we can ensure that ”UlnHVZ < 1 whenever
i € {2,...,k} and [[vinlly, - llvenlly, = llvinlly, for all n € N. In this case, the sequences

{(Win)nen 17 € {2,...,k}} are clearly bounded. Since

o oo
Z:Hvl,nuv1 = Zuvl,nnvl e ”Uk,nHVk < 00,
n=1 n=1

(v1,n)nen is bounded as well.

As an immediate consequence of Theorem 1.5.10, we get that

oo k
lullys s g v, = inf { > Tlvinlly; : (vim)nen € V¥ satisfy Relation (1.5.11)} (1.5.13)

n=11i=1

for all u € Vi®@py -+ - @7 Vi.
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Chapter 2

Warm-up: Holomorphic functional calculus

In this chapter, we discuss the holomorphic functional calculus for an element of a unital
Banach algebra and compute the higher derivatives of maps on (symmetrically normed ideals of)
the algebra induced, via this functional calculus, by a holomorphic function. As we shall see in
Chapters 3 and 6, the method we use here to differentiate the holomorphic functional calculus is
quite common—nearly universal—for differentiating maps arising from other functional calculi.
In the holomorphic case, there are no serious technical obstacles to the method’s implementation,
so it is a good setting for a first demonstration. Therefore, the reader should consider this chapter

as motivation for the aforementioned later chapters.

Standing assumptions. Throughout, B is a unital Banach algebra with norm ||-||z = -],
U C C is a nonempty open set, all vector spaces are complex, and all linear maps are C-linear.

In §82.3, k€ Np. In §2.4, k € Ng, m € N, and Uy,...,U,, C C are nonempty open sets.

2.1 Definition and examples

The holomorphic functional calculus allows us to plug elements of B with spectrum
contained in U into holomorphic functions defined on U. In other words, it enables us to define

f(a) € B for f € Hol(U) and a € B such that o(a) C U. Here is the fundamental result.

Theorem 2.1.1 (Holomorphic functional calculus). If a € By = {b € B : o(b) C U}, then
there exists a unique continuous, unital algebra homomorphism HaU: Hol(U) — B such that
HY (1) = a, where 1,: U < C is the inclusion. (Recall that Hol(U) is a complex Fréchet space

with the topology of locally uniform convergence.)
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Proof of uniqueness. Let ®: Hol(U) — B be a unital algebra homomorphism mapping ¢, to
a, and write

Ry = {rational functions with poles outside of U}, (2.1.2)

viewed as a subset of Hol(U). We claim that ® is uniquely determined on Ry. To see this,
note first that if p(z) == >, ¢; 2% is a polynomial, then ply = > i ¢; . Since ® is a unital
homomorphism sending ¢, to a, we get ®(p|y) = D v ¢; ®(ep)' = > iy ¢ a’. Thus, ® is uniquely
determined on polynomials. Next, if f € Hol(U) does not vanish, then f is invertible in Hol(U)
with inverse 1/f. Since ® is a unital homomorphism, ®(f) is invertible in B, and ®(f)~! = ®(1/f).
In particular, if ¢(z) is a polynomial that does not vanish in U, then r(z) = p(z)/q(z) is a
rational function with poles outside of U, and ®(r|y) = ®(p|y) ®(¢|y)~!. This proves the claim
(and confirms that ®(r|y) is given by “plugging a into r”).

Suppose, in addition, that ® is continuous and ¥: Hol(U) — B is another continuous,
unital algebra homomorphism taking ¢, to a. By the previous paragraph, ® and ¥ agree on Ry .
By Runge’s theorem [Rud86, Thm. 13.9], Ry is dense in Hol(U). Thus, by the continuity of ®

and ¥, ® = W on all of Hol(U). This completes the proof of the uniqueness of HU. O

The construction of HY requires some complex analysis, most of which we reviewed at
the end of §1.3. In addition to this material, we need Cauchy’s theorem and a result on the

existence of cycles surrounding compact sets.

Theorem 2.1.3 (Cauchy’s theorem). Let V' be a complex Banach space, and let F': U — V be a
holomorphic map. IfT'y and 'y are cycles in U such that Indr, (2) = Indr, (2) whenever z € C\U,
then fF1 F(z)dz = fF2 F(z)dz. If Indr, (2) = 0 whenever z € C\ U, then fFl F(z)dz=0.

Proof. The scalar case (V = C) is [Rud86, Thm. 10.35, Egs. (3) & (5)]. The general case

follows from the scalar case applied to the functions {£o F': £ € V*}. O

Theorem 2.1.4 (Existence of surrounding cycles [Rud86, pf. of Thm. 13.5]). If K C U is
compact, then there exists a cycle T' in U \ K such that Indp(z) = 0 whenever z € C\ U and

Indr(z) = 1 whenever z € K. In other words, I' surrounds K in U.
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By Cauchy’s integral formula (Theorem 1.3.19), if K and I' are as in Theorem 2.1.4, then

fo)= o [ L)

= d Hol(U K. 2.1.5
5 . e W), s e (215)

Observe that if a € By and K = o(a) C U, then the right-hand side of Equation (2.1.5) makes
sense with z = a; just replace the scalar (w — z)~! with the resolvent (w —a)~! € B. As we shall

see momentarily, doing so constitutes the definition of HY(f) € B.

Proof of existence in Theorem 2.1.1. Fix a € By, and let I' be as in Theorem 2.1.4 with

K = o(a). Define

HY(f) = ;/f(w) (w—a)"tdweB, feHol(U). (2.1.6)
i Jp

The integral in Equation (2.1.6) exists because the map U \ o(a) 3> w +— f(w) (w —a)~! € B is
holomorphic—in particular, continuous. We must prove that the map Hol(U) > f — HU(f) € B
is a continuous, unital algebra homomorphism satisfying HY (1;) = a. The linearity of HY is
obvious, and the continuity of HY is an easy consequence of the dominated convergence theorem.
It remains to prove that HU(1) =1, HY (1y) = a, and HY (fg) = HU(f) HY (9).

To begin, we first claim that if zp € C\ U and f € Hol(U), then

HY (20— 10) ") = (20 — @) "HY (). (2.1.7)
Indeed, by the resolvent identity, if w € p(a), then

(w—a)"t = (20 —a)" ' 4 (20 — w) (20 — @) H(w —a)".

Since (2o — ty)~!f € Hol(U) and Indr(z) = 0 whenever z € C \ U, this gives

Li”) (w— a)_l dw = (2o —a)_l f(iﬂ)
r< —w r20—w

dw+(z — a)™* /F f(w) (w—a)™dw

=0

by Cauchy’s theorem. Dividing the equation above by 27i yields Equation (2.1.7).
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Next, we claim that

HY(M) =a", neNp. (2.1.8)

a

Indeed, write D == {z € C : |2| < R}. By Theorems 1.3.18 and 1.4.5(v), if R > |la| is
sufficiently large, then Indr(z) = 0 whenever z € C \ Dg, and o(a) C Dg. Let I'r be the
cycle consisting of the single counterclockwise circle [0,1] > t +— Re?™ € C. Now, the map
Dag\o(a) > w +— w" (w—a)~! € Bis holomorphic, Indr,,(z) = 0 = Indr(z) whenever z € C\Dag,
and Indr,(z) = 1 = Indr(z) whenever z € o(a). Therefore, by Cauchy’s theorem, the geometric

series expansion of (w — a)~! (Theorem 1.4.5(i)), and the dominated convergence theorem,

[T IEAUSERETES of - S LS

Tr k=0

By an elementary calculation,
/ w1t dw = 27i 6y, k€ No.
I'r
Consequently, Equation (2.1.9) reads
/ w" (w—a)”t dw = 27ia™.
r

Dividing both sides by 27 yields Equation (2.1.8).

Finally, we prove that HU is multiplicative. Let Ry € Hol(U) be as in Equation (2.1.2),
and write . = {(f,g) € Hol(U) x Hol(U) : HY (fg) = HY(f) HY(g)}. By the continuity of
HY and multiplication in B, .# is closed in Hol(U) x Hol(U). It is easy to see from Equations
(2.1.7) and (2.1.8), the linearity of HY, and the fundamental theorem of algebra (to factor the
denominator of a rational function) that Ry x Ry C .. Since, once again, Ry is dense in

Hol(U), we conclude that .# = Hol(U) x Hol(U). This completes the proof. O

Definition 2.1.10 (Holomorphic functional calculus). If a € By, then the map HY is the

(Dunford—Riesz) holomorphic functional calculus for a, and we write

fla)=HY(f)eB, fecHol(U)



Let us now study some examples. First, observe that the uniqueness part of Theorem

2.1.1 implies that if V' C C is an open set such that o(a) CV C U, then

HY(f)=H)(flv), [f€Hol(U). (2.1.11)

a

In other words, f(a) € B depends on the germ of f at o(a); this justifies the exclusion of U in

the notation f(a) = HY(f) and provides flexibility in examples.

Example 2.1.12 (Series). If R > r(a), where r(a) is the spectral radius of a, then o(a) C Dg.

Take U := Dpg. Any f € Hol(U) expands as the series

0o > £(n)((
f(z)zzcnzn:Zf '( )Zn’ 2 €U =Dpg,
n=0 n=0 ’

n

that converges in Hol(U). Thus,

fla) = Héf(chL3> = chHa(LU)" = cha" €B.

n=0 n=0 n=0

One of the most common examples of this form is f(z) = e*, which yields the exponential of a:

o0
1
e’ = E —a™.
n!
n=0

More generally,

n!

oo 2 r(n)(,
fla) = Z en (@ —29)" = Z 11(z0) (a—20)" € B, f€Hol(Dg(20)),
n=0 n=0

whenever o(a) C Dg(z0) = {2z € C: |z — 20| < S}.

Next, we compute f(A) for a square matrix A and a holomorphic function f defined
on a neighborhood of the eigenvalues of A using the Jordan—Chevalley decomposition of A. To
this end, in the following result, we compute f(a + b) € B for commuting elements a,b € B
with b nilpotent (b = 0 for some n € N). We provide two proofs: an illuminating but slightly
highfalutin one using our construction of the holomorphic functional calculus, i.e., Equation

(2.1.6), and an elementary but opaque one using the uniqueness part of Theorem 2.1.1.
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Proposition 2.1.13 (Perturbation by a commuting nilpotent). If a € By, b € B is nilpotent,
and [a,b] =0, then o(a +b) = o(a), and

fla+b) = Z f a)b®,  f e Hol(U).

Of course, since b is nilpotent, the series above is a finite sum.

First proof. Suppose b is nilpotent and [a,b] = 0. First, we make a useful observation, the
verification of which we leave to the reader: a is invertible if and only if a + b is invertible, in

which case
[oe)

(@+0)~'=> (=1)"a” "Dy, (2.1.14)
n=0

The identity o(a + b) = o(a) follows from this observation applied to a — A (A € C) in place of a.
Next, let I' be as in Theorem 2.1.4 with K = o(a). If f € Hol(U), then, by Equations
(2.1.6) and (2.1.14),

f(a+b):21m/rf(w)(w—a—b)_ldw

1
_ - o (n+1)zn
=% )i f(w)ng O(w a) b" dw

=5 (g f et

Therefore, if we can show that

f™(a —2m/f ~ ) dw,  f e Hol(U), (2.1.15)

then the proof is complete. To this end, define V := {z € U\I'* : Indr(z) = 1}. By differentiating

Cauchy’s integral formula repeatedly, we see that if f € Hol(U) and n € Ny, then

f(”)(z)—n!/F(f(w)dw, eV (2.1.16)

2mi w — z)ntl

Now, since the map I'* 3 w — f(w) (w — )~ € Hol(V) is continuous and Hol(V) is a

complex Fréchet space, the integral [ f(w) (w — ty) "D dw € Hol(V) exists. By applying the
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continuous linear functionals {Hol(V) 3 g — g(z) € C: z € V'} to this integral, we conclude that

Equation (2.1.16) may be rewritten as the identity

™l = 5 / flw ~ dw (2.1.17)

in Hol(V). Finally, since I" surrounds o(a) (in U), o(a) C V by definition of V. By Equation
(2.1.11), f™(a) = fM|y(a) = HY (f™])(a) whenever f € Hol(U), i.e., we may use V as our
reference open set. Since H) : Hol(V) — B is a continuous, unital algebra homomorphism that

maps ¢ty to a, we conclude from Equation (2.1.17) that

f(n)(a) :HV( n)‘v (/f —(n+1) dw)

(w— Lv)_(”+1)) dw = 2%'2 f(w) (w—a)~ " qu,

= 2 pwy By

27 @

as desired. ]

Second proof. We take the first paragraph of the first proof, namely Equation (2.1.14), as the

starting point for this proof as well. Define
Z f<”> Yo" e B, feHol(U). (2.1.18)

By Theorem 2.1.1, it suffices to prove that H: Hol(U) — B is a continuous, unital algebra
homomorphism that maps ¢, to a + b. Since the maps Hol(U) > f — f™ € Hol(U) and
Hol(U) > f — f(a) € B are continuous and linear, H is continuous and linear. Also, if f =1,
then f = 0 whenever n > 1, so Equation (2.1.18) reads H(f) = f(a) = 1; if f = 1, then
f'=1,and f™ = 0 whenever n > 2, so Equation (2.1.18) reads H(f) = f(a) + f'(a)b=a +b.

It remains to prove that H is multiplicative. To this end, we first explain briefly that
f(a)b = b f(a) whenever f € Hol(U). Indeed, if Ry C Hol(U) is as in Equation (2.1.2), then
it is easy to see by a direct computation that f(a)b = b f(a) whenever f € Ry. The claim
then follows from the density of Ry in Hol(U) and the continuity of HY and multiplication.

(Alternatively, f(a)b = b f(a) can be read off immediately from Equation (2.1.6).)
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Finally, if f,g € Hol(U), then

k=0 n=k n—k)!
3 ! 3 1 n— n—
:kZO Hf(k)(a) k’z C k)!g( k)(a)b k—H(f)H(g)

In Equation (2.1.19), we used the product rule and the homomorphism property; and in Equation

(2.1.20), we used the previous paragraph. This completes the proof. O

Example 2.1.21 (Matrices). In this example, we take B := M,,(C), A € B, and U C C to be
the union of finitely many disjoint disks centered at the eigenvalues of A. There exist unique
matrices D, N € B such that D is diagonalizable, N is nilpotent, DN = ND, and A= D + N.
This is called the Jordan—Chevalley decomposition of A, and it is covered in [Hum?72, §4.2].
Its relation to “the” Jordan normal form of A is that there exists an invertible matrix S € B
such that Dy := S~'DS is the diagonal part of the Jordan normal form of A and Ny := S™!NS
is the strictly upper triangular part of the Jordan normal form of A.

Let D, N, S, Dy, and Ny be as above with Dy = diag(A1,...,\,). It is easy to see from

the uniqueness part of Theorem 2.1.1 or Equation (2.1.6) (and Cauchy’s integral formula) that
f(D) = f(SDyS™") = Sf(Dy)S~" = Sdiag(f(A\1),...,f(A\))S™!,  f € Hol(U).

Consequently, we get from Proposition 2.1.13 that if f € Hol(U), then

[e.9]

A => 5 f(’“ ZSf(’“ (Do)S™H(SNpS™H)"

kO k=0

= S<idiag (f(k)(/\1), o f(k)()\n)) Né“) g1
k=0

This gives a way to compute f(A) explicitly.
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We end this section by computing the spectrum of f(a), as this will come in handy later.
Theorem 2.1.22 (Spectral mapping theorem). o(f(a)) = f(o(a)) for alla € By and f € Hol(U).

Proof. It suffices to prove that f(a) € Biny if and only if f(A) # 0 whenever A € o(a). Indeed,
since o(a) is compact, if f(A) # 0 for all A € o(a), then there exists an open set V' C U containing
o(a) such that f(A) # 0 for all A € V. Therefore, g := f|y € Hol(V) is invertible in Hol(V'), and
by Equation (2.1.11), f(a) = g(a) € By with f(a)™* = g(a)~! = (1/g)(a). Conversely, suppose
there exists a A € o(a) such that f(\) = 0. If h == fI(\,.) € Hol(U), then f(u) = (A — p) h(p)
for all u € U, ie., f = (A —ty)h. Consequently, f(a) = (A —a)h(a). Since [A — a, h(a)] = 0 and
A — a is not invertible, it is a basic algebra fact that the product f(a) = (A — a) h(a) cannot be

invertible. This completes the proof. O
2.2 Symmetrically normed ideals

In this section, we introduce the normed ideals of interest: symmetrically normed ideals.
First, recall that an ideal of a C-algebra A is a linear subspace Z C A such that arb € 7

whenever a,b € A and r € 7.

Definition 2.2.1 (Symmetrically normed ideals). Let Z C B be an ideal, and suppose ||| is
a norm on Z. The pair (Z,|| - ||z) is a Banach ideal of B if (Z,| - ||z) is a Banach space and
the inclusion ¢z: (Z, || - ||z) < (B,]| - ||) is bounded; in this case, we write (Z, || - ||z) < B and

Cr = ||tz]|z=B € [0,00). If, in addition,

larbllz < llallllrllzlloll,  a,be B, rel,

then (Z, || - ||z) is a symmetrically normed ideal of 5, and we write (Z, || - ||z) Is B or Z < B

when confusion is unlikely.

Remark 2.2.2. Beware that definitions of a symmetrically normed ideal vary in the literature.
Sometimes, it is required that Cz = 1. Sometimes, B is required to be a von Neumann or
C*-algebra, and 7 is required to be a *-ideal with ||r*||z = ||r||z for all » € Z. Sometimes, even
more requirements are imposed. We take the above minimal definition because it is all we need.

Please see §6.2 for more information on this matter.
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Example 2.2.3 (Closed ideals). If Z C B is a closed ideal, then (Z, ||||) = (Z, [|-||g) <s B. In

particular, the trivial ideals, Z = {0} and Z = B, are symmetrically normed ideals.

We shall see many more interesting examples of symmetrically normed ideals (of von

Neumann algebras) in Chapter 6. For now, we collect some basic properties for later use.

Notation 2.2.4. Ifa € Band S C B, then Sy :={s € S:0(a+s) CU} ={s€ S:a+s e By}

Proposition 2.2.5. If (Z,||-||;) < B and a € B, then Iy, C T is an open set in (I, |-||1).

Proof. The set Zy, is the inverse image of the open set Byy C B under themapZ > b+ a+b € B,

which is continuous because ¢7: (Z, ||-||z) < (B, ||-]|) is continuous. O
Now, please consult Corollary 1.5.8 for the notation in the next result.

Proposition 2.2.6. Let (Z,|-||;) <s B, and fix k € N. Ifu € Bo=k+D) i e {1,... k}, and
b= (by,...,bx) € B~ x T x B* then u#ib € I, and

lustibllz < Nl o s 10illz TTI051-
J#i
In particular, if b= (by,...,bx) € IF, then |lu#ib||lr < Cé_IHUHBéaW(IH-l) H§:1Hbj”z-

Proof. Let b= (by,...,b;) € B~ x I x B*~*. By definition of a symmetrically normed ideal, if

al,...,ap+1 € Band u =a; ® --- ® ag41, then

lu#iblly = lla1by - - - axbrary1llz < |larbr - - - ai—1bi—aq|| |billz]l@iv1bi - - - bragi1|]

< lar[|- - farsall 1Bill T T10s11-
J#i

The result then follows from the universal property of the projective tensor product and the

continuity of tz: (Z, [|-||7) = (B, |-]])- O
2.3 Perturbation and derivative formulas

Let (Z,|-|7) <s B, let a € By, and let f € Hol(U). The main goal of this section is to use
“perturbation formulas” to compute the derivatives of the map Zy, 3 b f(a +b) — f(a) € T.

We begin by introducing the central object appearing in the formulas.

48



Lemma 2.3.1. Fiz m € N, and let By,..., By be unital Banach algebras. If i € {1,...,m},

aeB;, and a:=1%20"1 @ q® 190" ¢ C .= B &y - - - @By, then op,(a) = oc(a).

Proof. It suffices to show that a € (B;)iy if and only if @ € Ciy. If a € (B;)iny, then
19071 @ ¢ @ 19(m~) ¢ C is the inverse of @, so a € Ciny. Conversely, suppose a € Ciny. For

each j € {1,...,m} \ {i}, let {; € B} be such that £;(1) = 1. Now, define
T =03 @nli—1@71dB,@rlis1@r -+ @nliy € B(C; B;).
Using the universal property of &, it is easy to see that
T[ua) = (Tu)a and T[au] =aTu, ueC.

Also, writing 1 for the unit in C, we have 71 = 1. Finally, let u := ¢~! € C. We claim that

a € (B)imy with b= Tu = a~!. Indeed, ab = T[au]| = T1 = 1, and ba = T[ua] = T1 = 1. Thus,

ab =1 = ba, as claimed. This completes the proof. O
Notation 2.3.2. Let ay,...,a41 € By, and write a == (ay,...,a541) € Bgﬂ. Define
FH(a) =5 / f(2)(z—a) ' (z—agyr) tdz e B, f e Hol(U), (2.3.3)
i

where I' is any cycle surrounding o(a;) U---Uo(ags1) in U. (Please see Theorem 2.1.4.) Now,

suppose B; is a unital Banach algebra and a; € (B;)y for all i € {1,...,k + 1}, and write
a; =190 @ ¢; @ 1904170 ¢ (B1& -+ @ Bry)y, i€ {l,...,k+1}.
For f € Hol(U), define fg](al, coapg) = MGy, ), e
[](al,.. ,Akt1) 27rz/f (z—a) '@ @ (2 — app1) L dz € Bi®y -+ @ Bpia,

where I' is any cycle surrounding op,(a1) U --- U op,,,(ar41) in U. (Note that we are using

Lemma 2.3.1 implicitly in the last two sentences.)
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By Cauchy’s theorem, the definition of f¥l(a) in Equation (2.3.3) is independent of the
choice of T'. Also, by Proposition 1.3.20, the element f*/(a) € B appears to be the function
f Kl € Hol (U k‘“) applied to the (k + 1)-tuple a € BF*1! via a kind of multivariate holomorphic
functional calculus. As we discuss in the next section, this can be made precise when [a;, a;] =0
foralli,j € {1,...,k+1}, e.g., for the (k+ 1)-tuple (ay,...,ars+1) in the second part of Notation
2.3.2. Please see Definition 2.4.5, Lemma 2.4.6, and Theorem 2.4.7 specifically. This point about
multivariate holomorphic functional calculus is not essential for our purposes. Regardless, here
are some examples lending additional credence to this view. The uninterested reader may skip

to Proposition 2.3.7.
Proposition 2.3.4. Let a = (a1,...,a511) € B¥L. If n € Ny and p,()\) = A" € C[)\], then
[’f] Z ast - Z‘Tll
|a|l=n—k
Recall that empty sums are zero.

Proof. This is a generalization of the proof of Equation (2.1.8), so we shall be brief. If
R > max{||a;|| : i € {1,...,k + 1}}, then the cycle I'r consisting of the single counterclockwise

circle [0,1] > t + Re?™ € C surrounds o(a;) U---Uo(agyr) in C\ Dog. Thus,

k] 1

P(a) = o / e a) e (e - apen) " de
T FR

Consequently, by the geometric series expansion of (z — a;)~! (Theorem 1.4.5(i)) and the

dominated convergence theorem,

k —« adt —apy1—1  Qk41
pl(a) = 27”/ <Zz = ) ( R ;+1>dz

a1=0 Ay 1= =0
1 ol —k—
_ : P |a]—k Lz a9t ... g+
1 k+1
271 I'r
a€N§+1
a1 AOk+1 Oék+1
E: OnJal+k @1 -Gy = E: ar’ - agy
. lal=n—k
as desired. ]
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Proposition 2.3.5. Supposea = (ai,...,ax4+1) € BEH and [a;, a;) = 0 foralli,j € {1,... k+1}.
Also, fix z0 € C\ U, and write r,, == (20 — ty) "+ € Hol(U). If f € Hol(U), then

k

(r ) (@) = (20 — ais1) ™ - (20 — arsr) " (an, . aig).

1=0

[¥]

In particular, v, (a) = (20 —a1) " -+ (20 — apy1) "L

Proof. We proceed by induction on k > 0. The k = 0 case follows from Equation (2.1.6) and
the multiplicativity of the holomorphic functional calculus. Now, assume the formula for k& € Ng,

and let k € N. If Fj(w) = (w —a1)"'--- (w —a;)"!, then

(rz ) (a) = 2%” s ZéC(iUzquﬂ(w) dw = %m A Zi(iuzu (w = aps1) " Fi(w) dw

B (w)

= i Jr ﬂ((zo - ak—f—l)_l + (20 — w)(20 — ak—i-l)_l(w - ak+1)_1)Fk(w) dw

1 w 1
= (20 — ary1) " i ). MFk(w) dw +(z0 — ap41) ! o /r f(w) Fa (w) dw
:(Tzof)[kil] (a1,...,ar) :f[k](a)
k-1 ‘
= (20— ar1) ™ Y20 — i) o (20— an) T i) + (20 — ak) T M (R)
i=0

k
= Z(Zo —ai1) 7 (20 — apgr) T an, i)
i=0

by the resolvent identity and the induction hypothesis. This completes the proof. O

Finally, here is an example related to Proposition 2.1.13; please see Remark 2.3.12.

Example 2.3.6. Let a € By, and fix a cycle I" surrounding o(a) in U. Also, recall from Notation

1.2.5(1) that agq1) = (a,...,a) € B[kfl. If by, ...,b € B commute with a and f € Hol(U), then

(gl b = 5 [ 1) =) (= ) (e — o) s

— (1Af(z) (z —a)~ k) dz> by - by :% ®) (@) by - - by,

21

by Equation (2.1.15).
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We now begin to work in earnest toward our derivative formulas. Here is how the method
of perturbation formulas works. Given a formalism for fgﬂ (a1, ..., ak11)#k]b1, ..., b, one needs
two ingredients to differentiate the map a — f(a) (or b — f(a+b) — f(a)). The first is the
establishment of perturbation formulas: identities—taking place in B, B®W("’+1), or whatever
space is relevant for the given formalism—resembling the recursive definition of f**1 in terms
of fl¥. The second is an appropriate continuity property of fg} (a1,...,ap41)#klb1, ..., bg] in

the arguments (aj,...,axy1). Here is the first ingredient in the holomorphic case.

Proposition 2.3.7 (Perturbation formulas). If f € Hol(U), then
f(a) = f(0) = f@.b)#la—b),  abeBy.
Now, suppose By, ..., By are unital Banach algebras. If f € Hol(U), then
@[ak]( Z [kH] oy @iy by b 1) # g ila; — b

fOT all a = (al,...,ak+1),b = (bl,...,bk+1) S (Bl)U X - X (Bk+1)U

Proof. Fix a,b € By and a,b € (B1)y X -+ X (Bg+1)v as in the statement. Also, let I' be a

cycle surrounding the compact set o(a) Uo(b) U UkH( (ai) Uo(b;)) in U. Finally, recall

By Equation (2.1.6) and the resolvent identity,

fla) — £(b) = % [ £6) (Re) = Ro(o) o

2m / () Bo(a)(a — b)Ro(b) dz

- 55 [ 76 R.(0)#lo — bz
<2m / e (b)dz)#[a—b}
= £} (a.b)#la —b).
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This is the first desired formula. Next, by the resolvent identity once again,

k+1

@) — m) =3 (M a, . ag, b ben) = a1 by b))
7j=1
k+1
g 2o J SO R0) 91 Rey) © (Rele) ~ Rell)) © Relly) 9+ e
Rz(a;)(a;—b;j)R=(b;)
k+1
=5 Z/ f(z @ Ri(a;) @ Ro(b) ® -+ ® Ro(bgs1))#r41,5la; — bl dz
k+1
= Z <2m / 1z @ Rx(a) ® R.(bj) @ - @ Rz (bg+1) dz> #1+1,5la; — bj
k—l—l

k
Z +1] al,...,aj,bj,...,bk+1)#k+1’j[aj—bj],

as desired. O

Here is the second ingredient.

Proposition 2.3.8 (Continuous perturbation property). Suppose Bi, ..., Bi+1 are unital Banach

algebras. The map (By)y X -+ X (Bg+1)u 2 a— K] (a) € Bi®y - - @, Biy1 8 continuous.

Proof. We begin with an observation. Write (C, [|-||o) = (B1®x -+ @z Bp+1, ”'HB1®W~-®WB;€+1)’

let a,b € (B1)y X -+ X (Bg+1)v, and fix a cycle I' surrounding the compact set +11 o(a;) inU.

If e = Z’C'HHaZ — bi||, is sufficiently small, then I' surrounds Uf:“ll (o(a;) Uo(b;)) in U, and

) k+1
1750l < 5 [ TT1R-(015, 12

k+1

/HHR a;)(1 = (bi — ai) Ra(a;)) || 5, 1]

1 — [ R(a; HB Hb - QZHB
Gy ’“ﬁl ¢
- 27 Pl 1-— ci||ai - bi”l’)’i’

where £(I") is the sum of the lengths of the curves comprising I' and ¢; := sup ¢p« || Rz (a:)||5,, by

the triangle inequality, the resolvent identity, and Theorem 1.4.5(i). For this argument to work,
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we need [|a; — bil|5. < 1/¢; and € to be small enough that I' surrounds Uf:ll(a(ai) Uo(b;)) in
U. Next, let (a,)nen be a sequence in (By)y X - -+ X (Bk11)y converging to a. By Proposition
2.3.7 and the estimate we just proved, if I' is a cycle surrounding Ul 1 O'(G,Z> inU and n € N is

sufficiently large, then

k k k1]
Hfg[o}( Ma, ) < Z Hf[ 1 (@1, iy iy - -y G 1) #5100 — an ] ||
e
+1
Z 175 @, ag, g, gt ) || g6 68,6 Bio B Bey, 13— Oniills,
-1
) ) k41 .
< ZHaz_ 'CiH J e 0,
27 j=i 1- CJHG’] anvj B]'
as desired. ]

We now move on to the main result of this chapter.
Lemma 2.3.9. If (Z,||-|l;) <s B, a,b € By, f € Hol(U), and a — b € Z, then f(a) — f(b) € Z.

Proof. By Proposition 2.2.6, u#c € T whenever u € B&,B and ¢ € Z, so the conclusion follows

from the first formula in Proposition 2.3.7. 0

Theorem 2.3.10 (Derivatives of holomorphic functional calculus). Let (Z, ||-||;) <s B. If a € By

and f € Hol(U), then the map
Zua 3 b foz(b) = fla+b) - fla) €T

is holomorphic with respect to ||-||z. (This map is well defined by Lemma 2.8.9.) Furthermore, if
beZy, and by,..., by €L, then

Opy, - -+ Opy fa,z(b) Z s ((a =+ b) (k1)) #: [br(1)s - - - b (o]

WESk

=5 Z/f (z—a—"0)" lb() --(z—a—b)_lbﬂ(k)(z—a—b)_ldz,
T

where T is any cycle surrounding o(a +b) in U.
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Proof. Let b € 74, and let h € Z be such that b+ h € Zy;,. We prove the claimed derivative

formula by induction on k. For the base case, note that

£(h) = H,jHHfa,Iw + 1) = faz(®) — fY(a+b,a + D)4,

]Va+b+m fla+b)— fmm+ba+b#w

Hth
_ 7Hfg](a +b+h,a+b)#h— fH(a+ba+ b)#hH
IRl z
<lf @+ b+ hatb) - f“@+ba+®LABM%i$O
O

by Propositions 2.3.7, 2.2.6, and 2.3.8. Now, assume the claimed derivative formula for the k'

derivative. If by,...,br € Z and bgx11 == h, then

1
e(br,...,bgy1) = ||h|| Oy, -+ Oy faz(b+h) — Oy, -+ - Op, fa,z(b)
z
Z f[k-l—l] +b) k+2))#k+1 [b (1)s - '7b0(k:+1)]
0ESk+1 7
1
— Tl Z ( [k]((a+b+h) (1)) — f® ((a+0)gt1))) #8[br(1)s - - -+ b
TESK

-2 P (@4 B gsn) #a [boays - boger)]

O'ESkJrl

A

Z Z k+1] a+b+ h)(z)? (CL + b)(k+27i))#k+1 [bﬂ'(l)7 SR bﬂ(ifl)a h, bﬂ‘(i)? B bﬂ(k)]

|h||I meSy i=1
k+1 i
- Z Z i ] (@ 4 B) ) ) #tr1 [Py, - - D) P iy - > D)
TES i=1 z
k k
k' ||b1|| [ +1] +b+h)(z)7(a+b)(k‘+2—z)) - ([®+1]((a+b)(k’+2))‘ B (k+2)
k k
< K CE bl - (@4 b+ )y, (a4 D) prasy) — F2 N ((a+ b)(k+2))‘ B (b42)

by the induction hypothesis and Propositions 2.3.7 and 2.2.6. Writing

F(a)[b1,...,bpq1] = Z f[kH] (ahr2)) #r+1[bo(1)s - > boern)], @ € Bu, b €,

O‘ES}C+1
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we then conclude from Proposition 2.3.8 that

[ D fuse(b 1) + DF fu®) ~ Fla )

k1
<k'CIZka+1 ((a+b+h)u, (@+b) i) — f[k+1]((a+b)(k+2))HB®ﬂ-(k+2)

Hth By, (T%:T)

lI7llz—0
— 0.

This completes the proof. O

Corollary 2.3.11. If f € Hol(U), then the map fs: By — B defined (via the holomorphic

functional calculus) by a — f(a) is holomorphic. Furthermore,

Oby, +++ O, fs(a Z i (a(et1)) #5 [br(1ys - - bxy ], @ € By, bi € B.

TES

Proof. Apply Theorem 2.3.10 with (Z, ||-||;) = (B, ||||) and a = 0. O

Remark 2.3.12 (Taylor series expansion). Fix a € By and f € Hol(U). By combining Remark

1.2.15 and Theorem 2.3.10, we get that if b € Zyy, is sufficiently near 0 € Zy 4, then

f((l—i—b Z 8bfa1 Zf@ n+1 n[b(n)]a

where the series above converges absolutely in (Z, ||-||;). In particular, if [a,b] = 0 as well, then

Example 2.3.6 gives
(n
fla+b)— Z i

which generalizes the formula from Proposition 2.1.13.

2.4 A word on multivariate holomorphic functional calculus

In this section, we make precise that f¥l(a), as defined in Equation (2.3.3), is the
holomorphic function f*! of k + 1 variables applied to the (k + 1)-tuple a. This necessitates the
development of a “baby” multivariate holomorphic functional calculus. A proper treatment of
“adult” multivariate functional calculi is out of the scope of this dissertation; we refer the reader

to [Cur88] for more information and references.
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Notation 2.4.1. For each i € {1,...,m}, let S; be a nonempty set. Also, write S := S; x---x S,

and V.=U; x --- x U, CC™.

(i) If f; € C5 for all i € {1,...,m}, then

(f1®”'®fm)(s) = fl(sl)"'fm(sm)v S = (817"'78m) €S.

Of course, f1 ® - ® fin € cs 1

(ii) Recall from Equation (2.1.2) that Ry C Hol(U) is the set of rational functions with poles

outside of U. Define
Ry = span{rl Q- @rym 11 € Ryyye s Tm € RUm} C Hol(V).

Also, define Holp(V') to be the closure of Ry in Hol(V).

By Runge’s theorem,

{(1® @ fom: f1 € Hol(UY), ..., frm € Hol(Up)} C Holo(V).

Regardless, if m > 2, then Holp(V') C Hol(V) in general. This is part of what complicates
holomorphic functional calculus in the multivariate case. To avoid this and other complications,

we construct a functional calculus defined only on Holp(V).

Theorem 2.4.2 (“Baby” multivariate holomorphic functional calculus). Write V := Uy x---xUp,.
Also, suppose a = (a1,...,am) € By, X - x By, is such that [a;,a;] =0 for alli,j € {1,...,m}.
There exists a unique continuous, unital algebra homomorphism HY : Holg(V) — B that maps

the coordinate function 1201 @ 1, @ 12m=0 to a; for alli € {1,...,m}.

Proof. By the argument from the proof of uniqueness in Theorem 2.1.1, if &, U: Holy(V) — B
are two unital algebra homomorphism sending z — z; to a; for all i € {1,...,m}, then & = ¥ on

Ry . Since Ry is dense in Holp(V), if ® and ¥ are also continuous, then ® = ¥ on Holy (V).

!Using a result like [Rya02, Prop. 1.2] (and the comments thereafter), one can show that the linear map
CHr@---@C% — C determined by f1i @ -+ ® fm — (($15---58m) — fi(s1) -+ fm(sm)) is injective, so our
notation is justified.
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Now, for each i € {1,...,m}, let I'; be a cycle in surrounding o(a;) in U;, and define

1
(2mi)™

HY(p) = / /1“ O(21,. -y zm) (1—a1) " (zm—am) Tz dzy, € Holg(V).
m 1

Clearly, HY : Holg(V) — B is linear. By the dominated convergence theorem, HY is continuous.

By Equation (2.1.6), if f; € Hol(U;) for all i € {1,...,m}, then

HX(f1®...®fm) / A fl(Zl)(Zl—a)fl"'fm(zm)(zm—am)*ldzl-"dzm

(217” N fi(z) (z — al)fl dz) e <2lm /Fm fm(2) (z — am)f1 dz)

In particular, HY is unital and maps 120-1 @ Ly, ® 1%(m=1) 6 q; for all i € {1,...,m}. Finally,
we show that HX is multiplicative. Indeed, observe that if a € By,, b € By,, and [a,b] = 0, then
[f(a),g(b)] = 0 for all f € Hol(U;) and g € Hol(Usz). Consequently, if f;, g; € Hol(U;) for all

ie{l,....om}, o =f1® - Q fm, and ¥ := g1 ® - -+ ® g, then

HY (o) = HY (fir @+ @ frmgm) = (f191)(a1) -+ (fmGm) (am)
= fi(a1) g1(a1) -+ fm(am) gm(am) = fi(a1) - - fm(am) g1(a1) - - - gm(am)

=H (f1® @ fn) HY (91 ® -~ @ gin) = Hy (p) Hy ()

by Equation (2.4.3) and the properties of the (single-variate) holomorphic functional calculus. It
follow that H) is multiplicative on the subalgebra Ry C Holg(V). Since Ry is dense in Holg (V)

and HY is continuous, we are done. O

Remark 2.4.4. It is actually the case that if

1
D(p) = / - / @21, 2m) (1 —a1) " o (2m — am) T dzy - dzm, @ € Hol(V),
(2mi)™ Jp,, r

then ®: Hol(V) — B is a unital, continuous algebra homomorphism sending z — z; to a; for all

i€ {1,...,m}, but it takes slightly more work to prove that ® is multiplicative. More seriously,
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uniqueness is a delicate issue for functional calculi defined on all of Hol(V'). Unlike the single-
variate case, the proper formulation of uniqueness results, e.g., [Put83, Thm. 1], requires the
introduction of more refined notions of “joint spectrum” for m-tuples of (commuting) elements,
e.g., the Taylor joint spectrum [Tay70b, Tay70a] or the Harte spectrum [Har72b, Har72a]. Once

again, we refer the interested reader to [Cur88] for more information and references.

Definition 2.4.5 (“Baby” multivariate holomorphic functional calculus). The map HY from

Theorem 2.4.2 is the (baby) holomorphic functional calculus for the m-tuple a € B™, and
o(a) = HY (o) € B, e Holg(V)=Holg(U; x - x Up).

We are now prepared to formulate and prove the main result of this section.
Lemma 2.4.6. If f € Hol(U), then f¥ € Holy (U**1).

Proof. Write Dy: Hol(U) — Hol (Uk“) for the k™" divided difference map f — f*. As was
observed at the end of Example 1.3.10, Dy Ry € Ryw+1 € Holp (UkH). By Proposition 1.3.20,
the map Dy,: Hol(U) — Hol (U*!) is continuous. Since Ry is dense in Hol(U) and Holy (UF+1)
is closed in Hol (Uk+1), we conclude that Dy, Hol(U) C DRy C Holg (Uk“), as desired. d

Theorem 2.4.7 (Justification of Notation 2.3.2). Let a = (a1,...,axt1) € B(kJH be such that

lai,aj] =0 foralli,j e {1,....,k+1}. IfT' is a cycle surrounding UZ Lo(a;) in U, then

f[k]( )= HUkH f[k] / fN (z—=a1) ™t (z —app1) tdz,  f € Hol(U).

Proof. By the uniqueness part of Theorem 2.4.2, if V' C U is an open set such that a € B‘k,ﬂ,

then p(a) = HY"" (¢p|yrn) for all ¢ € Holg (UF1). If V i= {z € U\ T* : Indp(z) = 1}, then

a

Proposition 1.3.20 implies
FH) s = / £2) (2 = 1) ™) ®* W dz € Holy (VFH), £ € Hol(D), (2.4.8)

where the right-hand side is Bochner integral in the Fréchet space Holy (Vk+1). Applying the

continuous homomorphism H)' **! to both sides of Equation (2.4.8) then completes the proof. [
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Chapter 3

Differentiating at bounded operators

Let A be a unital C*-algebra. In this chapter, we discuss the continuous functional calculus
for normal elements of A and compute the higher derivatives of maps on (the self-adjoints of)
symmetrically normed ideals of A induced, via the continuous functional calculus, by sufficiently
regular functions of a real variable. Specifically, we introduce and study a space VC¥(R) C C*(R)
of “Varopoulos C* functions” such that the following result holds: If Z is a symmetrically normed
ideal of A, a € Asa, and f € VC*(R), then the map Zs, 3 b — f(a+b) — f(a) € T is well
defined and C*, and the formula for its k" derivative may be written in terms of a projective
tensor product—valued kind of multivariate functional calculus. Furthermore, we prove that
VC*(R) contains all functions for which comparable results are known. Specifically, VC*(R)
contains the homogeneous Besov space Bf’oo(R) and the Holder space C{ZE (R). We highlight,
however, that the results in this chapter are the first of their kind to be proven for an arbitrary
symmetrically normed ideal of an arbitrary unital C*-algebra. At the end of the chapter, we give
an invitation to the theory of multiple operator integrals (MOIs) by introducing and studying a
space NC¥(R) C C*¥(R) of “noncommutative C* functions” containing VC*(R) and such that if
f € NCF(R), then the map A, 3 a — f(a) € A is C*, and the formula for its k*" derivative

can be written in terms of MOIs.

Standing assumptions. Throughout, m, k € N. In §3.2 and §3.5, A is a unital C*-algebra, and
I-lg = [I-]l- In §3.3, Q1,...,Qy, are compact Hausdorff spaces, and € := €3 x --- x Qy,. In §3.8,
Q1,...,Q, are Polish spaces (complete, separable metric spaces), == Q1 X -+ x Q,,, Ais a

unital C*-algebra, H is a complex Hilbert space, and M C B(H) is a von Neumann algebra.

60



3.1 Introduction

Let a € Asa == {b € A:b* =b}. The continuous functional calculus for a is the unique
(isometric) unital *-homomorphism ®,: C(o(a)) — A sending the inclusion ¢y, : o(a) = C to

a. We discuss its construction in the next section. If o(a) C S C C, then we write

f(a) = @a(f|g(a)) €A, fe C(S).

Recall from the dissertation introduction that if f € C'(R), then the map

A 2 a s fa(a) = f(a) = Po(flow@) € A

is continuous; however, it is not generally true that f € C*(R) implies f, € C*(Ag;A). In
particular, it is not generally true that if a € A, (Z, ||-|;) <s.A (Definition 2.2.1), and f € C*(R),
then the map Z, = Z N As 2 b+ f(a+b) — f(a) € T is well defined and C* with respect to
|]l7- We deal with this by asking f to be slightly more regular than C*. To shed some light on

our approach, we examine the matrix case, i.e., we take A = M,,(C).

Notation 3.1.1. If a € M,(C)sa and A € o(a) = {eigenvalues of a}, then P{ € M,(C) is
the orthogonal projection onto the A-eigenspace of a. If a = (a1,...,an) € M,(C)Z and

p:o(ar) X -+ x o(ay) — C is any function, then
pe(a) = > P(N) P @ - ® Pim € M, (C)®™
A€o(ar)x-xo(am)

Above, ® is the tensor product over C, and A = (A1,..., \p).

Theorem 3.1.2 (Derivatives of perturbed matrix functions). Suppose A C M,,(C) is a unital
x-subalgebra, and let T A. If a € A and f € C¥(R), then the perturbed matriz function

vzt T — T defined by b — f(a+b) — f(a) is well defined and C*. Furthermore,
Ja, y

Opy, -+ - Opy fa,z(b) Z f[k] @+ ) (1)) #h [br(1)s - > ey ], Dy bs € Tsa, (3.1.3)
TESE

where (a+b)11) = (a+b,...,a+b) € A**! (Notation 1.2.5(i)) and #y, is as in Notation 1.5.9.
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With Z = A = M,,(C), this result is due essentially to Yu. L. Daletskii and S. G. Krein
[DK56], though it was proven in approximately the above form by F. Hiai as [Hial0, Thm. 2.3.1].
One way to prove Theorem 3.1.2 is to use the method of perturbation formulas; please see the
proof of [ST19, Thm. 5.3.2] for this kind of argument. This is currently the standard approach
to proving such results since it can be adapted to differentiating operator functions at unbounded
operators; please see, e.g., [dPS04, Pel06, ACDS09, AP16, Pel16, CLMSS19, LMS20, LMM21]
as well as Chapter 6. The classical approach (of Daletskii—Krein) is by polynomial approximation:
Establish Equation (6) first when f is a polynomial, and then deduce the general case from the
density of polynomials in C*(R). The details of both methods provide important inspiration
for this chapter. Since we already saw an example of the method of perturbation formulas in
Chapter 2, we go through the polynomial approximation argument in §3.10.

Looking at Notation 3.1.1 and Equation (3.1.3), we can see what must be done in the

general case. In view of the fact that

fl@)= Y AP, aeMy(Ca f€Clofa)) =C7,

A€o (a)
it seems as though ¢g(a) € M,,(C)®™, as defined in Notation 3.1.1, is the m-variate (continuous)
function ¢: o(ai) X -+ X o(ay,) — C applied to the m-tuple

(LY @ a; & IFMO) 1 € (M (C)F™)™

of commuting elements. To make sense of this when M,,(C) is replaced by our arbitrary unital
C*-algebra A and M,,(C)®™ replaced by A®=m (so that we may apply the # operations), we ask
that the function ¢: o(ai) X ---o(am,) — C be slightly better than continuous. More precisely,
we ask that ¢ € C(0(a1))®x -+ @xC(c(am)). The algebra C(o(a1))®x -+ @,C(c(an)) has a
concrete description as a subalgebra of C(o(aj) X --- x o(ay,)) called the Varopoulos algebra,
which we study in §3.3. For functions in the Varopoulos algebra, we can define the kind of

functional calculus we need. (Please review Corollary 1.5.6.)

Notation 3.1.4 (Projective tensor product functional calculus). If a = (ay,...,an) € AZ and

¢ € C(0(a1))®r - &rC(0(am)), then gy (@) = (B, @ - - 2By, ) () € A,
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Now, to ensure that Equation (3.1.3) makes sense for general A and (Z, ||-|;) <s A, we

simply demand that f[k]‘[_T w1 € C([—r, 7“])®"(k+1) for all r > 0.

vl

Definition 3.1.5 (Varopoulos C* functions). A function f € C*(R) is Varopoulos C¥, written

feVCrHR),if fM] | e O([-r, 7))@=+ for all > 0.

It turns out C*(R) C VCF~1(R) (taking VCO(R) := C(R)), so that VC*~1(R) C VC¥(R).
We conduct a thorough study of VC¥(R), including a natural topology it carries, in §3.4, §3.6,
and §3.7. This chapter’s first main result comes in the form of a summary of this study, including
some examples of Varopoulos C* functions that paint the picture that a function only has to be
“slightly better than C*” to be Varopoulos C*. To state our result, we note that Wj(R) is the k!
Wiener space (Definition 1.3.13), B;?(R) is the homogeneous (s, p, ¢)-Besov space (Definition
3.6.1), and C’{Zf(R) is the space of C* functions such that f*) is locally e-Holder continuous
(Definition 3.6.13). In addition, if S C C¥(R), then Sjo. is defined to be the set of all f € C*(R)

such that for all 7 > 0, there exists g € S such that g|_, ,] = f|—-

Theorem 3.1.6 (A study of VC*(R)). If k € N and € > 0, then
(i) BY™(R) C VCk(R),
(i) Clt(R) C VCK(R),
(iif) Wi(R)oe & VO*(R) C CH(R), and
(iv) Wi(R) and C[\] are dense subspaces of VCOF(R).

Proof. The first item is part of Theorem 3.6.10. The second item (ii) is Theorem 3.6.17. The
first containment in the third item (but not its strictness) follows from Example 3.4.3 and
Proposition 3.4.4(ii); an example demonstrating its strictness is given in Theorem 3.7.1. An
example demonstrating the strictness of the second containment in the third item is given in

Theorem 3.9.1. Finally, the fourth item is Theorem 3.4.12. ]

Remark 3.1.7. As a consequence of Theorem 3.1.6(iv), VC¥(R) may be identified with the
space CF.(R) introduced and briefly studied by D. A. Jekel in [Jek20, Ch. 18]. Please see Remark

3.4.13 for more information.
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Our second main result concerns the higher differentiability of (perturbed) maps induced

via the continuous functional calculus by Varopoulos C* functions.

Theorem 3.1.8 (Derivatives of perturbed operator functions). Let (Z, |-||7) <s\A. If a € Asa and
f € VC¥(R), then the perturbed operator function f, ;: Is, — T defined by b — f(a+b)— f(a)

is well defined and belongs to CE (Zs; T) (Definition 1.2.9) with respect to ||-||z. Furthermore,

Doy Oy faz(0) = S FI((@+0) i) #8[Orr)s - bay]s b0 € Taa

TESE

Remark 3.1.9. The term “(perturbed) operator function” is used because of the historical

importance of the case when A = B(H), where H is a complex Hilbert space.

Corollary 3.1.10 (Derivatives of operator functions). If f € VCO®(R), then the operator
function f,: As, — A defined by a — f(a) belongs to CF (Asa; A). Furthermore,

By O fa(@) = D I (agern)) #a [brqr)s - bagy]s @b € A

TESE
Proof. Apply Theorem 3.1.8 with (Z, ||-||;) = (A, ||-]|) and a = 0. O

Inspired by the two proofs of Theorem 3.1.2 mentioned above, we provide two proofs
of Theorem 3.1.8 in §3.5. Together, Theorems 3.1.6(i) and 3.1.8 yield a vast generalization of
previously known results on the k-times differentiability of perturbed operator functions. Indeed,
let H be a separable complex Hilbert space. The case when Z = A = B(H) and f € Blf’oo(]R) was
established in [Pel06]; and the case when A C B(H) is a von Neumann algebra, Z has property
(F) (86.1), and f € Wi41(R) is established in [ACDS09]. These results are discussed in more
depth in §6.1. The only other such result in the literature that we do not recover is the case
when (Z, ||-||l7) = (Sp(H), HHSP) is the ideal of Schatten p-class operators (Definition 4.3.1) with
1 < p < co. In this case, perturbed operator functions induced by C* functions are well defined
and C* in the Schatten p-norms; please see [LMS20].

The papers referenced in the previous paragraph make use of multiple operator integrals
(MOIs), which are prominent in Chapters 5-7. In §3.8, we provide an MOI-based approach to

the polynomial approximation argument for computing higher derivatives of operator functions.
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3.2 Continuous functional calculus

In §2.1, we covered the basics of the holomorphic functional calculus for an element a
of a unital Banach algebra. In this section, we show that this calculus can be extended to all

continuous functions on o(a) when the Banach algebra is a C*-algebra and a is normal.

Definition 3.2.1 (Normal, unitary, self-adjoint, and positive elements). An element a € A is
normal if a*a = aa*, unitary if a*a = aa™ = 1, self-adjoint if a* = a, and positive if it
is self-adjoint and o(a) C [0,00) = R;. Write A, U(A), Asa, and Ay for the sets of normal,

unitary, self-adjoint, and positive elements of A, respectively.
Observe that Ag, C A is a closed, real-linear subspace. Thus, A, is a real Banach space.
Lemma 3.2.2 (Spectrum of unitary). If u € U(A), then o(u) C S*:={z € C: |z| = 1}.

Proof. First, note that ||u]?® = ||u*ul| = ||1]| = 1. Thus, o(u) C {z € C : |z| < 1}. Now, since
u*=u"! if A€ Cand [\ <1, then A —u = —u(1 — Au*). Since [[Au*| = [A|[Ju] = |A] < 1, we

conclude from Theorem 1.4.5(i) that A\ — u is invertible. Thus, o(u) C S, as desired. O
Lemma 3.2.3 (Spectrum of self-adjoint). If a € Asa, then o(a) C R.

Proof. First, it is easy to show that if B is a unital Banach algebra and b, ¢ € B satisfy [b,c] =0,
then ¢ = ePe®. Now, if a € A, then (e)* = €. Consequently, if a € Ag,, then u = €™ is

unitary. Next, let A € C, and write

Ry B
by = ev‘zﬁ(a—)\)" L
n=1 "

Then

e —u=—e? (ei(“_)‘) —1) =byx(A—a).

Since [A — a,b)] = 0, it is a basic algebra fact that if the product by(A — a) is invertible, then
both A — a and by are invertible. Consequently, if A € o(a), i.e., A — a is not invertible, then
e —u = by(\ — a) is not invertible, i.e., e € o(u). By Lemma 3.2.2, this implies |e*| = 1.

Thus, A € R, as desired. ]
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If B is a unital Banach algebra, C C B is a closed unital subalgebra, and a € C, then it is
possible that og(a) C o¢(a); please see [Con90, Exs. VIL.3.2 & VIL.5.1]. From Lemma 3.2.3 and
the classification of commutative unital C*-algebras, we get that the analogous pathology cannot

occur in a unital C*-algebra. (Please see [Con90, Prop. VIII.1.14] for another proof.)

Proposition 3.2.4 (Spectrum computed in C*-subalgebras). Let B C A be a unital C*-subalgebra.

If a € B, then g 4(a) = o(a).

Proof. We begin by showing that if a € Bs, and a is invertible in A, then ¢~ € B. Indeed, if C is
the smallest unital C*-subalgebra of A containing a and a~!, then C is commutative. As mentioned
in Example 1.4.8, there exists a compact Hausdorff space X and an isometric *-isomorphism
w: C — C(X). Write f :=n(a) € C(X). Since a* = a, f is real-valued. Since a is invertible in C
(by construction), f never vanishes, and w(a™') = 1/f. By the (real) Stone-Weierstrass theorem
applied to the compact set f(X) C R\ {0}, there exists a sequence (g, (A))nen in R[A] such that
qn o f — 1/f uniformly as n — oo. If follows that g,(a) = 7~ (g, 0 f) = 7 1 (1/f) =a ' inC
as n — oo. Since g,(a) € B for all n € N, we conclude that a~! € B, as desired.

Now, we claim that if @ € B is arbitrary and invertible in A, then b := a~! € B. Indeed,
in this case, a* is invertible in A with inverse b*. Thus, a*a € B, is invertible in A with inverse
bb*. By the previous paragraph, bb* = (a*a)~' € B. Thus, b = b(a*)"'a* = (bb*)a* € B, as

desired. The result follows. O

There are two key ingredients to the construction of the continuous functional calculus:
the spectral mapping theorem for non-holomorphic polynomials (Theorem 3.2.6) and the spectral

radius formula for normal elements (Lemma 3.2.7).
Notation 3.2.5. If B is a unital C-algebra and P(X) = 7|, /<4ca A" € C[A] = C[\y,..., A,

then we define

P(a)::ana‘fl---a%meB, a=(ay,...,ay) € B™.
la|<d

This is well defined because {A* : a € N’} is a basis for C[A].

66



Theorem 3.2.6 (Spectral mapping theorem for P(a,a*)). If a € A, and P(\, p) € C[A, pl, then
o(P(a,a*)) ={P(X\A) : A€ a(a)}.

If a* = a, then Theorem 3.2.6 is a special case of the spectral mapping theorem for the
holomorphic functional calculus (Theorem 2.1.22) because P(a,a*) = P(a,a) = p(a), where
p(A) == P(A,A) € C[A]. The general case is substantially more difficult. By the GNS theorem
(Theorem 1.4.15) and Proposition 3.2.4, it suffices to treat the case when A = B(H), where H is
a complex Hilbert space. In this case, there are multiple approaches. S. J. Bernau gives a (long)
elementary proof in [Ber65]; please see [Ber65, Thm. 2] specifically. R. E. Harte gives a proof in
[Har72a, Har72b] based on his notion of the joint spectrum of m-tuples of elements of a unital
Banach algebra; please see [Har72b, Eq. (4.3.3)], as well as [Har72b, Thms. 3.4 & 4.3] and the
comments at the end of [Har72b, §3|, specifically. Finally, B. C. Hall gives a proof in [Hall3]
based on “almost eigenvalues” and the spectral theorem for bounded, self-adjoint operators;

please see [Hall3, Thm. 10.23] specifically.
Lemma 3.2.7 (Spectral radius of normal). If a € A,, then r(a) = ||al|.

Proof. If a € As,, then HaQH = |la*a|| = ||a||*. By induction,
|a*"|| = lall”", neN.

Therefore, by Gel’fand’s spectral radius formula (Theorem 1.4.5(v)),

S n % _ 1 2n 2% _
r(a) = lim [la"|* = lim [[a®[]>" = [al|.
Consequently, if a € A is arbitrary, then r(a*a) = |ja*a|| = ||a||*. To complete the proof, we
claim that if a € A, then r(a*a) = r(a)?. Indeed, in this case,
2
la™|* = l[(@")"a"[ = [I(a*a)"[l, neN,
so the claim follows from two more applications of Gel’fand’s spectral radius formula. O
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Theorem 3.2.8 (Continuous functional calculus). If a € A,, then there exists a unique unital

x-homomorphism ®q: C(o(a)) — A sending t,.) to a. Furthermore, ®, is an isometry.

Proof. Fix a normal element a € A, and write P*(c(a)) C C(o(a)) for the set of functions of
the form o(a) > A — fp(A) == P(\,A) € C for some P(\, ) € C[A, p]. If ®,0: C(o(a)) - A
are unital *-homomorphisms sending ¢, to a, then ® and ¥ clearly agree on P*(c(a)). By
the Stone—Weierstrass theorem, P*(o(a)) is dense in C(o(a)). By Remark 1.4.10, ® and ¥ are
continuous, so they must agree on all of C(o(a)). This takes care of the uniqueness part.

For the existence part, observe first that if P(\,u) € C[A, ], then P(a,a*) € A,.

Therefore, by Lemma 3.2.7 and Theorem 3.2.6,

1P(a,a®)|| = sup{|u| : € o(P(a,a"))} = sup {|[P(\,N)| : A € a(a)} = (1Pl (o(ay)-

Consequently, the map P*(o(a)) > fp — 7(fp) = P(a,a*) € A is a well-defined isometry. By
an easy calculation, 7: P*(o(a)) — A is also a unital *-homomorphism sending ¢, to a. Since
P*(o(a)) is dense in C(o(a)), it follows that 7 extends to an isometric, unital *-homomorphism

®,: C(o(a)) — A sending t,(, to a. This completes the proof. O

Remark 3.2.9 (Another approach). Another, perhaps more common, approach to the con-
struction of ®, proceeds through a finer analysis of the classification of unital, commutative
C*-algebras. Specifically, if C is the smallest unital C*-subalgebra of A containing a, in which
case C is commutative, then one constructs a #-isomorphism 7: C — C(o(a)) from the Gel’fand
transform of C and takes ®, := 7~ 1. Please see [Rud91, Thm. 11.19] or [Con90, §VIIL.2] for this
approach. We favor going through Theorem 3.2.6 because doing so leads to a very easy proof in

the self-adjoint case, which is the primary case of interest in this dissertation.
We end this section with a few useful consequences.

Corollary 3.2.10 (Agreement with holomorphic functional calculus). If a € A, and U C C is
an open subset such that o(a) C U, then ®4(f|y()) = HY(f) for all f € Hol(U).

Proof. The map Hol(U) 3 f — @ f|0(a)) € A is a unital, continuous algebra homomorphism

sending ¢y to a, so the result follows from the uniqueness part of Theorem 1.2.14. O
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Consequently, the following does not clash with Definition 2.1.10.

Definition 3.2.11 (Continuous functional calculus). The map ®, from Theorem 3.2.8 is the

continuous functional calculus for a, and we write f(a) = ®,(f) € A for all f € C(o(a)).
Corollary 3.2.12 (Spectral mapping theorem). o(f(a)) = f(o(a)) foralla € A, and f € C(o(a)).

Proof. Let C be the smallest unital C*-subalgebra of A containing a. Since, in the notation
of the proof of Theorem 3.2.8, P*(c(a)) is dense in C(o(a)), the map ®,: C(c(a)) — C is a
*-isomorphism. Consequently, if f € C(c(a)), then o(f(a)) = (@, (f(a))) = o(f) = f(o(a));

in the last identity, we used Example 1.4.8. This completes the proof. ]

Corollary 3.2.13 (Normal with real spectrum is self-adjoint). If a € A, and o(a) C R, then

a € Aga. In particular, if a € A, and o(a) C R4, then a € Ay.

Proof. If a € A, and o(a) C R, then a* = @4(t,0))* = Pq (Tm)) = Pu(lo(ay) = a. O
3.3 Varopoulos algebra

In this section, we discuss the Varopoulos algebra, a concrete representation of the
projective tensor product C(€)®y - - - ©,C(Qy,,) named after N. Th. Varopoulos [Var67]. Recall

that Qq,...,Q,, are compact Hausdorff spaces and 2 = Q1 x --- x Q,,

Definition 3.3.1 (Varopoulos algebra). Let ¢ € C(Q2), and suppose, for each i € {1,...,m},

there exists a sequence (¢ n)nen in C(€2;) such that

(e}

> T lIeimlleeo) < o0 and p(w) = (P10 @+ @ Pmn)(w), weQ. (3.3.2)

n=11i=1 n=1

(Please see Notation 2.4.1(i).) Then we define

o0

lellvion,....0m) = inf { S T #inlles ) : (@imdnen € C(2:)Y satisfy Relation (3-3-2)}-
n=1i=1

If no such sequences exist, then [|¢|ly(q,, .. 0,) = 0o. Finally, the Varopoulos algebra is

defined to be the set

V(Q,...,0n) ={pecC(): lellv@r,...om) < 0o}
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In the next proposition, we list the basic properties of V(€,...,,,). The proof is

standard and therefore is left to the reader.

Proposition 3.3.3. The Varopoulos algebra V(1,...,Qn) is a unital x-subalgebra of C(Q),

and (V(Qu,...,Qm), H'”V(Ql,...,ﬂm)) is a unital Banach x-algebra. Furthermore,

1€l y < vy, am)y:  © € C(Q).

In particular, the inclusion V(Qu, ..., Q) — C(2) is continuous.

Example 3.3.4 (Multivariate polynomials). Let m € N, and suppose

PA) =Y caX'= 3 XA € b, Al = CIAL
la|<d aeNT:|al<d

Ifr; >0and Q; :={2€ C:|z| <r} forallie{l,...,m}, then

1Pl x-x0u vy, om) < D Ical H Sup P\O” > leal 1,
jal<d i=1IMil<r jo<d
where r = max{ry,...,ry,}. Since V(Q1,...,Q,,) is closed under complex conjugation, (the
restrictions of) multivariate polynomials in A and A belong to V(Q1,...,Q,,). Actually, such

polynomial functions are dense.

Proposition 3.3.5 (Density of x-polynomials). Suppose Q; C C is compact for alli € {1,...,m}.
The set P*(Qq,..., Q) CV(Q,...,Qn) of functions of the form Q> X — P()\, 5\) € C, where

P, ooy A i1y e ooy fim) € CIAL ooy Ay 1y« -+ ], 98 dense in V(Q, ..., Q).

Sketch of proof. By definition of V/(Q1,...,Q),

N
T(Ql7"')Qm) = {Zgol,n@"'@SDl,n : N € N and ((pi,n)izvzl € C(QZ)Nv (&S {Lam}}

is dense in V(Q1,...,Q,,). By the Stone-Weierstrass theorem, P*(2;) is dense in C(€;) for
all i € {1,...,m}. By approximating the ¢;,’s by elements of P*(€;), we conclude that
P*(Qq,...,Qy) is dense in T'(24,...,Qp,). The result follows. O
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We now give a description of V(21,...,8,) (with Q,...,Q,, metrizable) inspired by the
integral projective tensor products (Definition 5.5.3 below) from the theory of multiple operator

integrals (MOIs, Chapter 5).

Lemma 3.3.6. Suppose Q,...,Q, are metrizable, and let (3, 7) be a measurable space. If,
foralli e {1,...,m}, ;: Qi x ¥ — C is product measurable, i.e., (Bq, ® A, Bc)-measurable,

and p;(-,0) € C(Q;) whenever o € X2, then the map
Y30 pi1(0)®@--@pn(,0) e V(Q,...,0,)

18 strongly measurable.

Proof. We first prove the lemma assuming m = 1, in which case Q; = Q and ¢ = ;. By the
Riesz—Markov theorem, C(Q)* = M (2, Bo) (Notation 1.3.12). Now, if u € M (2, Bg), then the
function X 3 o — fQ (-, 0) dp € C is measurable by a standard measure theory argument; please
see Lemma 5.6.2 below. Therefore, the map ¥ 3 o — ¢(+,0) € C(Q) is weakly measurable. Since
Q2 is a compact and metrizable, C'(2) is a separable Banach space. The strong measurability of
Y30 p(,0) € C(Q) then follows from Pettis’s measurability theorem.

Next, let m € N be general, and fix ¢ € {1,...,m}. By the previous paragraph, the map
Y30 Fi(o) = ¢i(-,0) € C(§) is strongly measurable. Let (s;,)nen be a sequence of simple
maps ¥ — C(£;) converging pointwise to F;. Then (s1,(:) ® - -+ ® spmn(-))nen is a sequence
of simple maps ¥ — V(£1,...,Q,,) converging pointwise to F(-) := Fi(-) ® - -- ® Fy,,(-), which

shows that F'is strongly measurable. O

Theorem 3.3.7 (Integral description of Varopoulos algebra). Suppose Q1,...,Qy, are metrizable.
Let (X, .7, p) be a measure space, and for alli € {1,...,m}, let p;: ¥ x Q; — C be a product

measurable function such that @;(-,0) € C(§;) whenever o € ¥. If

/ZZ];[l”SDi('aU)||eoo(Qi)P(dU) < oo and ¢(w) fZ/ZZ];[lsoz‘(wi,a)p(da), weQ, (3.3.8)

then

o= / P1(0) @ -+ ® om(,0) p(de) € V(Qu, -, Q)
>
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as a V(q,...,Qy,)-valued Bochner integral, and

T / lo1( )o@y - - [m(es )l g,y p(do): (3.3.9)

Proof. By Lemma 3.3.6, the map
Y30 Flo) =pi1(,0) @ @om(,0) € V(Q,...,0)

is strongly measurable. Since

/2 1F v ... dp = / lo1 (oMl - om0l g,y (o) < oo,

we get that F' is strongly p-integrable. The identity ¢ = fz F dp then follows by applying the
evaluation functionals {V(Q,..., Q) 3 ¢ = ¢(w) € C:w € Q} to [, F'dp. Finally, Inequality

(3.3.9) follows from the triangle inequality for Bochner integrals. O

The reason for the name of Theorem 3.3.7 is the following immediate consequence. If
Q4,...,Q,, are metrizable, then V(Qq,...,$,,) is precisely the space of functions ¢ € C(£2) such
that there exists a measure space (X, .77, p) and functions ¢1: ¥ xQ; = C, ..., ¢on: ¥ xQ,, — C

as in Theorem 3.3.7 satisfying

p(w) = /E<P1(w1,0’)---<,0m(wm,a) p(do), we.

Furthermore,

are as in the previous sentence

lellvoy,..0m) mf{/HH% ,0)lgse (2 p(dor) = (s p) and @i, o } (3.3.10)

In the terminology of MOIs, one might say that the Varopoulos algebra V(Q1,...,Q,,) is the
“integral projective tensor product C(1)®; - - - ©;C(Qy).”

Using Theorem 3.3.7, we provide one more example: “Fourier transforms” of complex
measures. First, we set some notation for the case when ; = --- = €, is a compact interval in

R since this case plays a special role.
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Notation 3.3.11. If ¢ € C(R™), then

ﬁr,m(gp) = H(p“—'r’,'r}mHV([_TJ“](M)) = H<'0|[_T’T]mHV([—T,T’],...,[—T’,T‘]) € [0,00], r > 0.

Example 3.3.12. Let v € M(R™, Bgm) (Notation 1.3.12), and define

= [ Muag = [ M@ l@e. Aern.

Since €€ = ¢Méi ... gPAm&m  Theorem 3.3.7 yields that ¢|q € V(Q,. .., Q) whenever ; C R

is a compact set for all i € {1,...,m}; furthermore,
sup Brm(¢) < [V[(R™).
r>0

Consequently, if k € N and f = [ e"*u(d€) € Wi(R), then

sup Bran (F9) < [ 16 (ou@ lul)(de dg) =112 (3:3.13)
r>0 ApxR !

by Example 1.3.14.

We end this section by proving that V(Qy,..., Q) = C(Q1)@y - - @,C(,) whenever
Q,...,Q, are (general) compact Hausdorff spaces. We shall find this result most important in

§3.5, where we define g (a).

Theorem 3.3.14. If tg, _q,.: C()®r - @:C(Qy,) — C(Q) is the bounded linear map deter-

,,,,,

mined via the universal property of @ by

R e ((wlﬂ s ’wm) = (,01(00'1) o '(pm<wm)>v

o, 48 an injective, unital x-homomorphism.

~~~~~

., 1s injective. We prove this by induction on

,,,,,

Proof. The only nontrivial claim is that tq,
m > 2. By [Rya02, Ex. 4.2], C'(£21) has the approximation property. Consequently, the injectivity

of 1o, o, follows from [Rya02, Prop. 4.6]. Now, assume the result is true for m > 2 spaces, and
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write Z = Qg X - - - X Qy,. By the m = 2 case, the map 1, =: C(1)®-C(E) = C( x E) = C(Q)

is injective. By the induction hypothesis, the map tq,  qo,,: C(22)® -+ ©C(p,) — C(E) is

.....

injective. Since C'(£21) has the approximation property, we conclude from [Rya02, Exer. 4.1] that

the map
idC(Ql)®7TLQQ ,,,,, Qn C(Ql)®ﬂ(c(92)®ﬂ e @rC () — C(Ql)®ﬂc(5)
—C(01) @ C(m)
is injective as well. Since 1o, q,, = to,=© (idc(Ql)®7rLQ2’._.7Qm), we are done. O

am 15 as in Theorem 3.3.14, then im g, q, = V(Q1,...,Qy,), and

..........

e Qm(a’)HV(Ql,...,Qm) = lallo@)a,-o,c@m) @€ C(Q)Dx- - @C (D).

In other words, tq, is an isometric x-isomorphism C(21)®x -+ @,C () = V(Q, ..., Q).

,,,,, Qm
Proof. Combine Theorem 3.3.14 and Equation (1.5.13). O
3.4 Varopoulos C* functions

In this section, we introduce the space of “Varopoulos C* functions” and develop some
of its basic properties. First, however, we recall that if k € Ng U {oo}, then the space C*(R) is a
Fréchet space with respect to the C* topology; please see Example 1.2.10 and Proposition 1.2.13.

By Corollary 1.3.7, the C* topology is induced by the family
{F = I o iy 0 S i < k41, 7> 0}

of seminorms. In the space of Varopoulos C* functions, we shall measure fl with the family

{Brit1: 7> 0} of seminorms.

Definition 3.4.1 (Varopoulos C* functions). If m € N, then

VCR™) = {p € C(R™) : |_pyjm € V([=7,7](m)) = C([-r, 7“])®’“m for all r > 0}.
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If k€N, f € C*R), and 7 > 0, then
k 5
I fllver, = Zﬁr,i-ﬂ (fm) € [0,00] and VC*(R) := {g€ C*(R) : lgllycr s < oo for all s > 0},
i=0

ie, VC*R) = {g € C¥[R) : gl € VO(R™!) for all i € {0,...,k}}. Also, write VC*®(R) for
Nien VCF(R). If k € NU {00}, the members of VC¥(R) are called Varopoulos C* functions.

Example 3.4.2 (Polynomials). By Examples 1.3.8 and 3.3.4, C[\]| C VC*(R).
Example 3.4.3 (Wiener space). By Example 3.3.12, W, (R) C VC*(R) for all k € N.

If m € N, then VC(R™) C C(R™) is a linear subspace, and {f,,, : r > 0} is a collection
of seminorms on VC(R™). Since these seminorms clearly separate points, they make VC(R™)
into a Hausdorff locally convex topological vector space (HLCTVS). Similarly, if £ € N, then
VCF(R) C C*(R) is a linear subspace, and VC¥(R) is an HLCTVS with the topology induced
by the family {[| - [[ycr, : 7 > 0} of seminorms. Finally, VCO*(R) is an HLCTVS with the
topology induced by {|| - [y ¢k, : k € N, 7 > 0}. Here now are the basic properties of the spaces
VC(R™) and VC¥(R). In the result below, < indicates continuity of the relevant inclusion map.
Also, a Fréchet x-algebra is a complex Fréchet space with a x-algebra structure such that the

x-operation and product are continuous.
Proposition 3.4.4 (Properties of VC¥(R)). Let m € N, and let k € NU {co}.
(i) VC(R™) — C(R™), and VC*(R) — C*(R).

(ii) For S C CR", write Sio. for the set of functions ¢ € CR™ such that for all r > 0, there
exists a ) € S such that Y|_y.,ym = @|[_ppm. If S CVC(R™), then Sioc C S CVC(R™).
(The closure in the previous sentence takes place in VC(R™).) If S C VCK(R), then

Sioe €S C VCOF(R). (The closure in the previous sentence takes place in VCF(R).)

(iii) If k < o0, 7 >0, and f,g € CF(R), then
k . .
Brier1 ((f9)M) < Zﬂr,z‘ﬂ(fm) Bri—it1 (9%7) and (| fgllyer, < fllver llgllver -
=0

(iv) VO(R™) and VC¥(R) are unital Fréchet -algebras under pointwise operations.
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Proof. We take each item in turn.

(i) The continuity of both inclusions follows from the fact that |[-[|jec(_; ,jm) < Brm for
all » > 0 (Proposition 3.3.3). For the second, we also must appeal to the description of the Cc*k
topology given at the beginning of this section.

(i) If S C VC(R™), ¢ € Sioc, and n € N, then there exists a ¢, € S C VC(R™) such
that onl—pnm = @li—ppm. Ifr >0and n > 7, then B, m(on —¢) = 0. Thus, ¢ € VC(R™), and
on — ¢ in VO(R™) as n — oco. In particular, Sjoc €S € VC(R™). The second statement may
be proven the same way.

(iii) The claimed bound on B, k1 ((f g)lk ) follows easily from Proposition 1.3.3(ii) and

the fact that the Varopoulos algebra is a Banach algebra. Consequently,

kg
I f9llver . Zﬁr,gﬂ (fo)lh) §225m+1 (/1) B j—isn (g577)

j=0 j=0 i=0
= Zﬁr,iﬂ (1) Zﬁr,j—z’ﬂ(ﬂb_ﬂ) <[ fllverrllgllyer
=0 =i

as well.

(iv) We prove that VC¥(R) is a Fréchet #-algebra when k < co and leave the proofs
for VC*®(R) and VC(R™) to the reader. First, the topology of VC¥(R) is generated by the
countable family {|| - ||ycx n : N € N} of seminorms, so VC*(R) is metrizable. Next, we prove
that VCF(R) is complete. To this end, let (f,,)nen be a Cauchy sequence in VC*(R). By the
first item, the sequence (f,)nen is also Cauchy in C*(R). Since the latter space is complete,
there exists an f € C¥(R) such that f,, — f in the C* topology as n — co. In particular, if

i €{0,...,k}, then f[z] — fl) uniformly on compact sets as n — oo. Now, if i € {0,...,k} and

(fili] ’[—m"]i“)neN

is Cauchy and therefore, by Proposition 3.3.3, convergent in V([—r, 7] (z‘+1))- Since we already

r > 0, then the sequence

know that f}f] — flI pointwise as n — oo, we conclude that f[i]|[,m]i+1 € V([=r,7](41)) and
7[';]|[_7«’7~]i+1 — f[i}|[_7~’7.]i+1 in V([*T, T](i+1)) as n — oo as well. ThuS, f S VC’“(R), and fn — f

in VOF(R) as n — oo. This completes the proof that VCOF(R) is a Fréchet space.
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Finally, the previous item implies that VC¥(R) is an algebra under pointwise multiplica-
tion and that pointwise multiplication is a jointly continuous operation. Since it is also clear
that HTHVC,c . = [lfllver, whenever f € C*(R) and r > 0, complex conjugation is a continuous

-operation on VC¥(R). O
Next, we show that C*! functions are Varopoulos C* using elementary Fourier analysis.

Notation 3.4.5 (Schwartz functions, distributions, and Fourier transform). If m € N, then
Z(R™) is the Fréchet space of Schwartz functions R™ — C, and ./(R™) = . (R™)* is the
space of tempered distributions on R™. Also, if p € [1, o0], then LP(R™) := LP(u), where p is
the Lebesgue measure on R™. Finally, the conventions we use for the Fourier transform and its

inverse are, respectively,

FO=FN© = [ e wae md Jo) = o [ e p@as feri@n),

m

with corresponding extensions to ./ (R™).

Proposition 3.4.6. Let k € N.

(i) If f € BC(R) and f € L*(R), then
/ EFFO]de <00 <= feWi(R) <= f e C*R) and f® € L'(R).
R
(ii) If f € CYR) N LA(R) and f' € L*(R), then f € L*(R).

(iii) C*(R) C Wi(R)ioc.

Proof. We take each item in turn.
(i) Suppose f € BC(R) C.#'(R) and f € L(R). By the Fourier inversion theorem for

tempered distributions, the fact that J?E L'(R), and the continuity of f,

fO) =F ) = % /Re“ff(g) ¢, MeR.
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Since p(d§) = QL (§) d¢ is a complex measure with [u|(d€) = 5~ ‘f ’df,

o= [ 1€Fnlae) = 5- [ 1eFF©) ds

The first equivalence immediately follows from this observation. If f € C*(R) as well, then

FE(E) = ()" f(€), ¢eR,

in the sense of tempered distributions, from which the second equivalence follows.

(ii) If f € C*(R) N L3(R) and f’' € L%(R), then

17l = [ g+ b Ifelas = [ g (Fel+ o)) ae
<A+ 1D e WAl + 170 2) = 23w (e + 1] 2) < o0

by the Cauchy—Schwarz inequality and Plancherel’s theorem.

(iii) Let f € CKTY(R), and, for r > 0, let 9, € C>(R) be such that ¢, = 1 on [—r,7].
We claim that g := . f € Wi(R). Indeed, since g € C¥T'(R) and g has compact support, we
have that g, g®) € C*(R) N L2(R) and ¢, g**Y) € L*(R). Thus, F(g), F(¢*)) € LY(R) by the
previous item. Since g € BC(R) as well, the claim then follows from the first item. Since

9li=ry] = fl=ry) and r > 0 was arbitrary, f € Wi (R)joc. O

Corollary 3.4.7. If k € N, then C**1(R) C Wi(R) C VC*(R). (The closure in the previous

)
sentence takes place in VCF(R).) In particular, C*°(R) = VO>®(R).

Proof. Combine Example 3.4.3, Proposition 3.4.4(ii), and Proposition 3.4.6(iii). O

One also can extract from the proofs that if f € C**(R) has compact support, then

sup e (1) < oo [ 160170106 < o (60 o+ 19 e (i

r>0

We end this section by showing that both Wj(R) and C[)\] are dense in VC¥(R). This takes

some effort and may be skipped safely on a first read.



Proposition 3.4.8. If k € N, then Wi(R) and C[\] have the same closures in VC*(R).

Proof. We know from Corollary 3.4.7 that C[\] C C*+1(R) C Wk(R) Thus, C[A\] C Wi (R). It
therefore suffices to prove Wy(R) € C[\]. To this end, let f = [; €€ pu(d€) € Wi (R).
For n € N, define pi,(d§) = 1_, 5, (§) p(d§) and

falh) = /R ¢, (de) = /]R N (€ p(de),  AER

Then f,, € Wi(R), and supp |p,| C [—n,n] for all n € N. By Inequality (3.3.13) applied to f — f,

and the dominated convergence theorem,

sup By (7 = 1)) /|5| g (©) [l(dE) P50, i {0, K},

In particular, f, — f in VOF(R) as n — oo. It therefore suffices to assume supp || is compact.
Suppose R > 0 and supp || € [~R, B). Then [ || dlul < o) I o _r, s for all Borel
measurable functions f: R — C. In particular, ug,) < R™pg) < oo for all m € N. Therefore,

we may define

AOEY DIE-LITIEDy m),mffm (d€) eC]N, neN.
m=0 : m=0

We claim that ¢, — f in VC¥(R) as n — oo. Indeed, since

i)™
(m') and /RGN| |ul(d€) < M p),

o

m=

the dominated convergence theorem gives

p(d), AeR.

FO) = gn(A /Z

m=n-1

Consequently, by Equation (1.3.9) and a simple limiting argument, if j € {0,...,k}, then

F-aP) = X S feuag oA aew

m= n+1 |a| m—j
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Therefore, using the fact that { o€ N%H Cal=m — j} has (mnij) < 2™ elements, we get

. > m \rmJ o) = (2rR)™ noeo
Bron((F=a) < 3 (7 )5 <49 30 CIE 0 s
m=n+1 m=n+1
In particular, ¢, — f in VC*(R) as n — oo. This completes the proof. O

Proposition 3.4.9 (Translation). The translation operation
R™ x VOR™) 3 (p, ¢) = (1, ) = Tup = ¢(- + p) € VOR™)

is well defined and continuous.

Proof. Write

- , _ m
\u\oo-—lgl%ﬁ!uzl, o= (1, pm) € R™.

If p € R™ and R = |p|c0, then

leC+ v (=il SNV R-rriR) ) ¢ € CU=R—717+R]™), (3.4.10)

as can be seen from the definition of |-y, o). It follows from Inequality (3.4.10) that 7 is
well defined, i.e., it maps R™ x VC(R™) to VC(R™).

Next, we claim that if o € VC(R™) is fized, then the map R™ > p — 7,0 € VC(R™) is
continuous. Indeed, let 7 > 0, let (tt,,)nen = (n,1;- - -, fin,m)neN be a convergent sequence in R
with limit g = (p1,. .., i), and write R := sup, ey |Hn]oo < 00. By definition of V(Qy,...,Qp,),

there exist sequences (©1,p)peN, - - - (Pmp)pen in C([—R — r,r + R]) such that

Z H”S"i,p|’goo([_R_r,r+R]) < oo and p(A) = Z H‘Pz‘,p(Ai)7 A€[-R—rr+R™
p=1i=1 p=11i=1

Writing ¢p, == 915 ® - -+ @ ©p p, We have

m
T, P~ TuPp = E :Tum P1p& BTy i 1Pi-1,p@ (Tun,iS"i,p_Tm‘PW) T Pit1,p@ Ty Pmp-
i=1
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It follows that

o0
Brm (Tun‘P - TMSD) = HTunSD - THSOHV([fr,r}(m)) < ZHTun‘PP - THQOPHV([fr,r](m))
p=1

(o] m
< Z ZHTun,i‘Pi,p - Tm%ﬁ“gw([%r]) H||90j,p||goo([_R—r,r+R]) 0
p=1 i=1 J#

by the uniform continuity of ¢; , on [-R — r,r + R| and the dominated convergence theorem.
This proves the claim.
Finally, suppose, in addition, that (¢p)nren is a sequence in VC(R™) converging to ¢. If

r > 0, then, by Inequality (3.4.10) and the previous paragraph,

Br,m (Tpn ©n — T;L(P) < Br,m (Ty,n Pn — T, 90) + BT,m (TunSO - 7_11,90)

n—o0

< Br—i-R,m(SDn - 90) + 5r,m (Tu,LQD - T“(,O) — 0.

Since VC(R™) is metrizable, this completes the proof. O

Proposition 3.4.11. Let n € C°(R) be such that [pn(x)dx =1. If p € VC(R™) and

©e(A) = /Rn(x) oA — (e2) () dz = /Rn(x) oM —ex,-- Ay —ex)dz, AER™ >0,

then o € VC(R™), and ¢ — ¢ in VC(R™) as e \, 0.
Proof. We shall use the fact that VC(R™) is a Fréchet space freely in this proof to apply the
theory of the Bochner integral reviewed in §1.1. Let € > 0. By Proposition 3.4.9, the map

R 32— F(x) =n(x)¢(- —(ex)m)) € VC(R™)

is well defined and continuous. Consequently, F; is strongly measurable. Proposition 3.4.9 also
implies F. — F := n(-) ¢ pointwise (as maps R — VC(R™)) as € \( 0. In addition, if R > 0,

suppn C [-R, R], and r > 0, then

R
/R SUp B (Fy()) dar = / (@) Sup B (- —(02) ) A& < Brseram(9) [l < 00

0<o<e —R 0<o<e
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by Inequality (3.4.10). Since {f,., : r > 0} generates the topology of VC(R™), the inequal-
ity above implies that F. is strongly integrable and, by the dominated convergence theorem,
Jg Fe(x)dz — [ F(z)dz = ¢ [zn(z)dez = ¢ in VO(R™) as € \, 0. Finally, by applying
the evaluation functionals {VC(R™) 3 ¢ — (X)) € C : X € R™} to the Bochner integral

Jg Fedz € VO(R™), we see that ¢, = [ Fz(x)dx for all ¢ > 0. This completes the proof. [

Theorem 3.4.12 (Density of polynomials and Wiener space). If k € N, then both C[\| and

Wi(R) are dense in VCOF(R).

Proof. By Proposition 3.4.8, it suffices to prove that Wj(R) is dense in VC¥(R). We do so by

mollification. Fix n € C2°(R) such that [, n(z)dz = 1, and define n.(z) == e 'n(e~'z) for all

r€Rande>0. If f € VOF(R), then f*n. € C®(R) C Wi(R) C VC¥(R) by Corollary 3.4.7.
To complete the proof, we show that f x7. — f in VOF(R) as € \, 0. To this end, note that if

g€C),i€N, e>0,and XA € R"! then

/Ai(g*ng)(t-k)pi(dt):/Ai/Rg(t)\—x)ng(m)dxpi(dt)
= [ [ ot (3= ) o) do e
2/775(33)/ gt (A —x(41))) pi(dt) da
R

i

- /Rn(y) /Ai g(t- (A= ()n)) pildt) dy

by Fubini’s theorem and the change of variable y := e~ 1z. It follows from Proposition 1.3.3(iii)

(twice) that if i € {0,...,k} and A € R**! then

om0 = [ (F om0 2 = [ (O3 plat)
/ / FOt (XN = (ey)iz1)) pi(dt) dy
=/Rn(y)f[’](k—(ay)(m))dy
Therefore, by Proposition 3.4.11, (f * n.) — fl in VC’(R“’I) as € \( 0. In other words,
f*n. — fin VC*R) as € \, 0, as desired. O
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Remark 3.4.13 (Jekel’s space of noncommutative C* functions). In [Jek20, Ch. 18], Jekel
introduced and briefly studied a space C¥.(R) of “noncommutative C* functions” as an abstract
completion of C[A] with respect to seminorms similar to ||-[[y;cr . (but defined more algebraically
in terms of Voiculescu’s free difference quotients). The density of C[\] in VC*(R) implies that

Jekel’s space of noncommutative C* functions is isomorphic to VCOF(R).
3.5 Two proofs of Theorem 3.1.8

In this section, we provide two proofs of Theorem 3.1.8: one using the method of
perturbation formulas explained and demonstrated in §2.3 and one using the “classical” approach
of approximation by polynomials [DK56, Hial0]. Throughout this section, we use the identification
V(Q,. ., Q) = C(Q)&y - ©,C(,) from Corollary 3.3.15 without further comment.

Notation 3.5.1 (Projective tensor product functional calculus). Let Aj,...,.A,, be unital

C*-algebras, and let a = (a1,...,am) € A1y X --- X Ap, . If
¢ € V(o(ar),...,o(am)) = C(o(a1))@x - ©xC(o(am)),
then, in the notation of Corollary 1.5.6,
ps(a) = ((I)a1®7r e ®7r‘13am)(<,0) € A1®y - DpAm.

where ®,: C(o(a)) — A is the continuous functional calculus for a € A,. If S; C C is compact
and o(a;) C S;, then ¢g(a) == (@\a(al)w-xa(am))@(a) for all p € C(S1)®r -+ ®,C(Sp). Also, if

p € VC(R™), then @6 Al — A®=™ s the map a — ¢ (a)

Example 3.5.2 (Matrices). Observe that if Qq,..., €, are finite discrete spaces, then
C() @@ C(Qn) = C(N)&r -+ @rC () = V(Q,..., Q) = CL
Indeed, if ¢: @ — C is any function, then

=3 (W)l @ @1y € C(Q) ® - ® C(Qy).
weN
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Consequently, if n € N, a = (a1,...,am) € M, (C)}, and ¢: (A1) x -+ x 0(A,) — C is any

function, then (as we encourage the reader to verify)

pola) = Y eNPj@-eP,
A€o (ar)x-xo(am)
which agrees with Notation 3.1.1.

Here is a nice way to calculate pg(a) in general.

Proposition 3.5.3. Let Ay, ..., A, be unital C*-algebras, and fira € Ay, x--- X Ay, . Retain

the setting of Theorem 3.3.7, but take Q; = o(a;) for alli € {1,...,m}.

(i) If ¢ is as in Relation (3.3.8), then

pola) = / 01(01,0) @ -+ ® Pm(am, ) p(do) € A1dn - e An,
>

where the right-hand side is a Bochner integral in A1&r - RrAim,.

(ii) Suppose Ay =--- = Ay, = A, and let (Z,] - ||z) <s A. Also, fixie {1,...,m —1} and
b= (b1,...,by_1) € A7 X T x Am=170 If v is as in Relation (3.3.8), then

Pe(@)#y,_1b = / w1(a1,0) b1+ Pm—1(am=1,0) byu—1 m(am, o) p(do) € I,
D)

where the right-hand side is a Bochner integral in Z.

Proof. By Theorem 3.3.7, ¢ = [c¢1(-,0) ® -+ @ om(-,0) p(do) is a Bochner integral in
Vio(a),...,o(am)) = C(o(a1))@x - -+ @,C(c(anm)). Since

Ti=3,R; Py, : C(0(a1))@r - @:C(0(ar)) = A1®r -+ QrAm
is a bounded linear map, we get

po(a) = T(p) = /E T(61(0) ® - ® pm(-+0)) pl(do) = /E 01(a1,0) ® -+ ® pm(am, ) p(do),

as claimed in the first item.
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For the second item, apply the bounded linear map

A®m 5y U#1bET

to the Bochner integral ¢y (a) = [ ¢1(a1,0) ® -+ @ @m(am, o) p(do). O
Since we now have a formalism for fé[f] (a1,...,ap41)#[b1, .., bx] whenever f € VC*(R),
aty...,05+1 € Asa, and by, ..., b € Z, it should be no surprise—based on the development in

§2.3—that we can execute the method of perturbation formulas for Varopoulos C* functions.

We now begin this endeavor.

Notation 3.5.4 (Opposite multiplication operation). Let By and B2 be Banach algebras. Write
Mop : (Bl®ﬂ82) X (Bl®ﬂ82) — B1®xBs for the bounded bilinear map determined by

Mepla ® ¢, b ® d] = (ab) ® (dc), a,be By, ¢,d € Bs.

Also, write

w-v = Mep[u,v] € Bi®:B2, u,v € Bi®:Ba.

Lemma 3.5.5. If B is a Banach algebra, then
(u-v)#c = u#lv#c, wu,v € BB, c€ B.

Proof. By a standard argument, it suffices to check the desired identity on pure tensors. If

a1,b1,a9,ba,¢c € B, u = a1 ® by, v := as ® by then

(u - v)#c = (a1by ® baby)#c = a1bicbaas = ay(v#c)as = udt[v#c],

as desired. O

Proposition 3.5.6 (Perturbation formulas). If f € VO(R), then
f(@) = f0) = (@ b)#la b, abe Au.
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Now, let Ay, ..., Apt1 be unital C*-algebras. If a,b € Ajgq X -+ Apy16a and f € VCK(R), then
k k as k+1
W) - fMp) = ngr War, .. ai b, bt 1) #k1,6[ai — bil.

=1

Proof. Let a,b € Ag,. If f € VOY(R), then

FO) = f() = MO ) A= n), (A ) € o(a) x o (b), (3.5.7)

by definition of fl!. By viewing Equation (3.5.7) as an identity in C(o(a))®.C(c(b)), we may
apply the homomorphism ®,%,®;: C(0(a))®.C (o (b)) = A®..A to both sides to obtain

flael—-1® f0b) = fl@,b)(a®1-1ab).

Now, since im @, C A is commutative, fg](a, b) (a®1—-1®0b) = g](a, b)- (a®1—-1®b), as

the reader may verify. Therefore, by Lemma 3.5.5,

f(@) = ) = (Fl@) @ 1= 1@ [l = (fab) - (@1 - 108))#1

= @b #aw1 - 10b)#1] = fla,b)#a - b,

as desired.
Next, let a,b € Aj g X -+ X Agt15a, and write 4 == o(a1) x -+ x o(ags1) € R¥ ! and
Bi=0(b1) x -+ x o(bgy1) C RFLIf f € VCF(R), then

k+1

f[k]()‘) _f[k]</~‘l’) :Zf[k+1]()‘17"'7)‘i7ﬂiv"'7uk+1) ()‘i_,ui)u (>‘7/J‘) € Ax B, (358)
i=1

:%()\uﬂ)

by definition and the symmetry of divided differences (Proposition 1.3.3(i)). By viewing Equation
(3.5.8) as an identity in C(0(a1))@y - - @:C(0(ag11))@xC (0 (1))@ - - @7C(0(bry1)), we may
apply the homomorphism ®,, S ®7T<I>ak+1®ﬂ11>b1 R - - ®,r<I>bk+1 to both sides to obtain

k41

Ma)e1-100m) = Y (0)s(ab) (120 Va1t 101 101907 ghe19E1-0),
i=1
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where 1 = 12+ s the identity in A;&y - - - @rApy 1. Now, since im &, C A; is commutative,

(¢i)e(a,b) (1®(i_1) ®a; ®12Ft1-1) o1 19190 g p, ® 1®(k+1—i))

— (QOi)@(a, b) . (1®(i71) ®a; ® 1®(k+lfi) 21-1® 1®(i71) Qb ® 1®(k+17i))’
where we are using Notation 3.5.4 with B = A&y - - - ®7T.Ak+1, as the reader may verify. Thus,

@) - w) = (M) e1-10 HFm)w
k+1
=3 ((p)s(ab) - (120D @ a; @ 190170 @1 — 1 0 1907D @ b; @ 120H1=0) ) 1

i=1

1
= (p)e(ab)#[(1%0 N ®a; @ 190D @1 - 101907 @ b; @ 191 7))41]

i=1

k+1
= ()b 126D & (0, — b 190191

=S an, sty b)) # slas — b (3.5.9)
i=1

by Lemma 3.5.5 and unraveling the notation. (To be clear, the # operation used in the lines
before Equation (3.5.9) is the one for the algebra B = A;® - -+ ®rAg11.) In Equation (3.5.9),
we used the fact that if 1 € C(0(a1))@y - - ©:C(0(a;)) 2, C(0(b;)) @y - - - C(o(bpy1)) and

w(A7IJ’) = ¢()\17 s 7)\i7,u'i7 s 7Mk‘+1)7 (Au IJ’) € AX B7
then
s (a, b)#[1®(i_1) Rc® 1®(k+1_i)] =Yglar,...,a;,bi ... bpy1)#py16, ¢ €A

We leave the verification of this identity to the reader. (Hint: It suffices to treat the case when 1

is a pure tensor function.) This completes the proof. ]
Corollary 3.5.10. If (Z, ||| ;) <s A, a,b € Asa, f € VC'(R), and a—b € Z, then f(a)— f(b) € T.

Proof. Combine Proposition 2.2.6 with the first formula in Proposition 3.5.6. O
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Remark 3.5.11. The second perturbation formula in Proposition 3.5.6 (and its proof) generalizes
the first (the & = 0 case). Proposition 3.5.6 is stated and proven as it is in order to maximize the
first formula’s digestibility. Similar comments apply to Proposition 2.3.7.

It is also possible to prove Proposition 3.5.6 using Proposition 3.5.3 by “decomposing”
f+1 on [—r, 7]+ (with > 0 sufficiently large) as an integral (or series) of pure tensor functions.
This is the kind of approach we must take when working with unbounded operators in Chapter 6

below; please see Theorem 6.5.7.

Proposition 3.5.12 (Continuous perturbation property). If ¢ € VC(R™), then the map
Oae: Al — A®=m from Notation 8.5.1 belongs to Ch, (A A®”m) (Definition 1.2.9). Moreover,

the map VC(R™) 2 ¢+ pa e € Cup (A A®”m) is continuous.

Proof. Write C, := {a € A} : |la||, = max{||a;|| : ¢ € {1,...,m} < r} for all r > 0. First,

observe that if r > 0 and ¢ € VC(R™), then

‘|(P®(a)|’A®nm < H(‘O|U(a1)x“'><g(am)HV(U(al) )) < ﬁr,m(@); ac CT? (3513)

7"':0(am

because ®,: C(o(a)) — A is an isometry—in particular, has operator norm equal to one—

whenever a € A,. Next, observe that if

PA) =) caX* €CA| =C[A1, ..., An],
la|<d
then

Py(a)= Y caa'®---@ak", ac AL, (3.5.14)
la|<d

from which it is clear that P, € Cy, (Ag’;;A@m). Finally, Proposition 3.3.5 implies that
m-variate polynomial functions R™ — C are dense in VC(R™), i.e., if ¢ € VC(R™), then there
exists a sequence (P,(A))pen in C[A] such that P, — ¢ in VC(R™) as n — co. By Inequality
(3.5.13), (Pn)ae — Pa,0 uniformly on bounded sets as n — oo. Since (Pp) 4,6 € Chy, (AZ; A®’*m)
for all n € N, we conclude that ¢, o € Cy, (A;"a; A®’Tm), which is the first part of the proposition.

The second follows from another appeal to Inequality (3.5.13). ]

88



Remark 3.5.15 (Different algebras). The same proof shows that if Aj,...,A,, are unital
C*-algebras and ¢ € VC(R™), then the map Ajga X -+ X Apmsa D@ pg(a) € A1®r - QrAm
belongs to Cip(A1sa X *++ X A sa; A1 @y - - @A), and the assignment of ¢ € VCO(R™) to
(a+— pg(a)) is continuous as a map VC(R™) = Cuy(Arsa X+ X Amsa; A1®r -+ Qi)

We are now prepared for the first proof of Theorem 3.1.8.

First proof of Theorem 3.1.8. Let b, h € I, and recall that f, z(b) = f(a+0b) — f(a). We

prove the claimed derivative formula by induction on k. For the base case, note that

e(h) = HhH Hfalb+h) faz()—f[](a+b a+b) #hHI
Hh” Hf a+b+h)— fla+b)— m(a—i—b a+b) #hHI
= a4 b+ hya+b)#h— ﬂ%a+ha+@#w
Al T

[Allz—0
0

M +b+ha+d)— mw+ba+®w4

™

by Propositions 3.5.6, 2.2.6, and 3.5.12. Now, assume the claimed derivative formula for the k'

derivative. If by,...,b; € Zs, and bg4q = h, then

e(br,...,bgy1) = HhH Doy Opy faz(D+h) — Oy -+ Opy faz ()
T
Z k+1] (a + b)(k+2))#k+1 [ba(l), ... ,ba(k+1)]
0ESk+1 I
1 (k] [k:]
N m Z ( ((a+b+h)(k+1)) ((a+b)(k+1)))#k [bﬂ(1)7‘ : 7b7r(k)]
TES

-y FE (@ + b) (6+2)) #h41 Do (1)s - -+ Da(hs1)]

O'ES')H,l

T

Z Z f[k+1] (a+b+ h)(l), (a+ b)(k+27i))#k+1 [bﬂ(l), e ,bﬂ(ifl), h, bﬂ.(i), RN bﬂ.(k)]

HhH b
k+1 bi1]
= SN (@ ) ) #e [y bri—1)s B by by
WeSkz 1 z
k k
< B CHlbnllz - kunIZHf[ (a+b+mp, @+ Bprzn) = (@4 er2)| o,
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by the induction hypothesis and Propositions 3.5.6 and 2.2.6. Writing

F(@)bi,- b = Y 2 (a2 #a1 [Boys - bogen)]s 0 € Asa, bi € T,

O’ES}H_l

we then conclude from Proposition 3.5.12 that

HDkfaz (b+ ) + D" fuz(b) = Fla+1)|

Hth

<k:'(]’€

By(I*I)

[k—i—l] Ihllz—0

0.

a+b+h)u, (@+b) ki) — c[gkﬂ] ((a+b)(rt2)) ’

A®7‘r(k+2)
This completes the proof. O

For the second proof, we take the following result as a starting point: If (Z, ||-||;) <s A,
n € Ny, and a € A, then F,(b) := (a + b)" — a"™ € Z whenever b € Z, F,, € Hol(Z;Z), and

Do -+ Oy Fu(0) = D > (a4 5)*brry- - (a+ )™ bry(a + D)™+, b,b; € T.
TESE |a|l=n—k
This is a special case of Theorem 2.3.10 (via Proposition 2.3.4). It is also not difficult to prove
directly by induction on k using a combinatorial version of the method of perturbation formulas;

please see [Nik23c, Prop. 4.3.1] for this kind of argument.

Second proof of Theorem 3.1.8. We set some notation. If f € VC¥(R), then

TifO) b1, bl = > (@ +0)gopn) 0 [Brr)s - bagy]s 0,05 € Taa
TESk

We aim to prove that f, z(b) = f(a+b) — f(a) € T whenever b € T, for € CF (Zsa; T), and
Dkfa,I = Ty f. The result of the previous paragraph translates, via Example 1.3.8, to the desired
conclusion when f(\) = pp(A) = A". Consequently, we have the desired conclusion whenever
f(\) € C[\] C VCF(R).

By Theorem 3.4.12, if f € VC¥(R) is arbitrary, then there exists a sequence (g )nen of
polynomials converging to f in VC¥(R). Since ¢, — f uniformly on compact sets, if ¢ € A,

then g,(c) — f(c¢) in A as n — oo. Also, observe that ¢,(a + 0) — g,(a) =0 = f(a+0) — f(a)
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for all n € N, 50 (gn)q,z(0) = f4,z(0) in Z as n — oo. Next, for r > 0 and i € N, define

Zoayr ={b € Lsa : [Ibllz <} and |-, = ||l 5,z

sa? )

By Inequality (3.5.13), if b € Zg , R == ||a|]| + Czr, and i € {1,...,k}, then

I7:£0) = D'(@)ac®, = IT:(f = a)®); < 1| = an) (@ + b))

<acr ! - )

ABx(i+1)

<A CEB((f - Qn)[i])R,Hl‘

V(o(a+d)(it1))

In the last inequality above, we used that o(a 4+ b) C [—|la + b, ||a + b||] € [-R, R]. Thus,

n—0o0

02, P I T:£(6) = D*(an)az(®)l; Sk 1f = anllverm = 0.

Since r > 0 was arbitrary, we conclude from Theorem 1.2.12 that ((¢n)a,z)nen converges in
CF (Zsa; I). Furthermore, if F € CF (Z,; Z) is the limit of ((¢n)az)nen, then DF? = T; f for all
i€{l,...,k}, and F(b) = f(a+b) — f(a) for all b € Zg,. This completes the proof. O

3.6 Examples of Varopoulos C* functions from Besov spaces

We saw in §3.4 that only elementary methods are required to prove C*¥+1(R) C VC¥(R).
However, VC¥(R) is much closer to C*(R) than that. In this section, we use more advanced
harmonic analysis done by V. V. Peller [Pel06] to exhibit two classes of examples of Varopoulos
C* functions that illustrate this point more precisely.

We begin by defining Besov spaces and stating their relevant properties; for (much) more

information, please see [Leol7, Pee76, Saw18, Tri83, Tri92].

Definition 3.6.1 (Besov spaces). Let m € N, and fix n € C°(R™) such that 0 < n < 1
everywhere, suppn C {£€ € R™ : [{]a < 2}, and n = 1 on {{ € R™ : [{|2 < 1}. (Here and

throughout, | - |2 is the Euclidean norm.) Define

ni(€) =n(27°€) —n(27E), i€z EeR™
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Now, for (s,p,q) € R x [1,00]? and f € .%/(R™), define

£l g = ([ 2117 % 120) ezl gz € [000] and

g = 1975 Fllzw + || 2219 % Pl senlengy € 10500
We call
By (®™) = {f € 7' ®™): ||f] oo < 00}

the homogeneous (s, p, g)-Besov space and
ByP(R™) = {f € L'(R™) : ||| ps» < o0}

the inhomogeneous (s, p, g)-Besov space.

Remark 3.6.2. First, note that 7 f and 7; * f have compactly supported Fourier transforms
and so, by the Paley—Wiener theorem, are smooth; it therefore makes sense to apply the LP-norm
to them. Second, since it is easy to show that || f|| By = 0 if and only if f is a polynomial, it
is often useful to define B;’p (R™) as a quotient space in which all polynomials are zero. The
definition of By (R™) above is given in [Pee76, Ch. 3] and [Tri83, §5.1.2 & §5.1.3]. The definition
“modulo polynomials” is given in [Saw18, §2.4]. (Please see [Saw18, §1.2.5.3] also.) Finally, beware

that the positions of p and ¢ in the notation for BiP(R™) and B;?(R™) vary in the literature.

Here are the properties of Besov spaces that we shall use. Below, the symbol < indicates

(as usual) continuous inclusion, and ~ indicates equivalence of (possibly infinite) norms.

Notation 3.6.3. If k € N and f € C¥(R™), then

1llsor = 3 10 lee@m = 3 |08 - 0% | oy € [000)-

la|<k aeNG :|a|<k
Also, BCK(R) == {f € CK(R™) : || f]| per < 00}

Theorem 3.6.4 (Properties of Besov spaces). Fiz s,s1,s2 € R and p,q,q1,q2 € [1,00].

(i) (Bg"(R™), || - HB;J') is a Banach space that is independent of the choice of 7.
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(ii) s1 > s2 = B P(R™) — B2’ (R™), and q1 < g2 = Bz’ (R™) — B (R™).
(iit) If s > 0, then By™(R™) — BCls/(R™).
(iv) Define

1£lln g = 1fllze + 1 fll gze € [0,00],  f €. (R™).

(Of course, we declare || f||rr == 00 if f is not induced by a locally integrable function.) If

5> 0, then ||| g ~ ||

n,gye on S (R™). In particular, ByP(R™) = LP(R™)NBP(R™)

whenever s > 0.

(v) If V and W are vector spaces, g: V. — W is a function, and x,h € V are vectors, then

we define (recursively)

Alg(z) = Ang(x) = g(z +h) — g(z) and

Abg(e) = A (Al g) @) k22
Now, suppose s > 0. For f € L (R™), define

1
1Fllze + (S [R5 ™ AR 19, dR) 7 if g < oo,
”chl,Bg’P = .
1f 2o + supperm oy 1Al 1A fle if g = oo

If s >0, then BgP(R™) = {f € Lioo(R™) : || flle,py» < 00}, and || - | ggr ~ | - [lo,mz» on
S'(R™) N L (R™).

Here are some references for the proofs of these facts: The first two items are proven in
[Tri83, §2.3.2 & §2.3.3], the third item is proven in [Sawl8, §2.1.2.4], the fourth item is proven in

[Tri92, §2.3.3], and the fifth item is proven in [Tri83, §2.5.12].

Remark 3.6.5. It is also the case that Bfﬁn{pg} (R™) — WSP(R™) — B;Zx{p,Q} (R™) whenever
s € Rand 1 <p < oo, where W*P(R™) = LE(R™) = H3(R™) is the fractional Sobolev (Bessel
potential) space; please see [Tri83, §2.2.2, §2.3.2, & §2.5.6]. Also, in [Leol7, Ch. 17], By?(R™)

(with s > 0) is defined and studied using || - ||y, s». The equivalence || - || gz ~ || - [l ps is

proven in [Leol7, §17.7].
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The most important indices for us are (s,p,q) = (k € N,00,1). It turns out in this case

that Bf’oo(]R) C C*(R); please see Proposition B.2.7 and the comments thereafter.

Example 3.6.6 (Wiener space). We claim that if £ € N, then Wy(R) C Blf’oo (R). Indeed, if
f=[pe"tu(dg) € Wi(R), x € #(R), and X € R, then

) = [ [ @y = [ [ enaputas) = [ 76 i)

by definition of convolution and Fubini’s theorem. In particular,

(% F)(N) = /R eX(€) u(d€) and (7,  F)(N) = /R M€ p(de), i e N.

It follows that
g = I e+ 352 Sl < / (@) (d€) + 3 2 /R i (E)] |1l (€)
3 =1

fecon O £+Z s 2O
< d 2 1 :i—1 vy € [ d
—/{&R;m}' ()1 lul(de) + /RZ eema1<igca i |l m(€)] 1l (d€)

< 1l oo (I ([=2,2]) 4+ 3 - 28T ) < o0,

as claimed.
Next, we state an important result of Peller that we shall use to prove BF®(R) C VC*(R).

Theorem 3.6.7 (Peller). If k € N, then there is a constant ar, < oo such that for all f € Bf’w(R)
with f*) € BC(R), there exists a o-finite measure space (X, .5, p) and measurable functions

Oy Prt1: R X X — C satisfying @i(-,0) € BC(R) foralli e {1,...,k+1} and o € %,

/Z 110l ey~ 1o (0 ey £A0) < k(| 7D g gy + 1] ) < 00, and

IO = [ 0100,0) - orst (1, 0) p(do), A= (Arve.. s Agr) € REHL

™
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In particular, by Theorem 3.6.4(iii)-(iv), there exists a constant ¢ < 0o such that

o1l w0y (00) < cull e

whenever f € Bf’oo(R) as well.

Remark 3.6.8. Since ¢;(-,0) € C(R), we have that [[¢;(-, )|/ (r) = SuPreq [#i(A, 0)| for all

oecXYandie€{l,...,k+1}. Consequently, all the integrals in the theorem above make sense.

A slightly stronger form of this result is [Pel06, Thm. 5.5] or [Pell6, Thm. 2.2.1]. We
state this stronger form as Theorem 6.6.9 below and provide a detailed and mostly self-contained

proof in Appendix B. With this result in hand, we now begin the proof that Bf’oo(]R) C VC*(R).

Lemma 3.6.9 (Inhomogeneous Littlewood—Paley decomposition). Fiz s € R, p € [1,00], and

€ [1,00). If f € BJP(R™), then

(fn)neN = (ﬁ* f + Z\ﬂz * f)
neN

=1

is the inhomogeneous Littlewood—Paley sequence of f. In this case, f — f, € By¥(R™) for

alln €N, and ||f = fullps» = 0 as n — oc.

Proof. If n € N, then n+ Y"1, n; = n(2~™) by definition, so that
fu= (17+Zm> f=n@")xf.
Since n(27") =1 on {{ € R™ : |]2 < 2™}, we have that if ¢ € {1,. — 1}, then

N * fun=";%f and N * f, =0* f,

as can be seen by taking Fourier transforms of both sides and using the fact that 7; is supported

in the annulus {{ eR™: 271 < |€]2 < 2i+1}. Next, note that

B = @) = [0

= [l
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Therefore, by Young’s convolution inequality, ||x * fullze < ||9]lz1||x * fl|z» for all x € Z(R™).

Applying this to x = 17; and using the definition of || - | gs», we get that

L 1
If —anBs’P=(Zz’sqm*u—fﬂ)\m) s<1+|m|rL1>(Zzwqm*fu%p> X

i=n i=n

because f € ByP(R™). O

Theorem 3.6.10. If k € N, then Bf’oo(]R) C VC¥(R). Moreover, if f € Bf’oo(R) and (fn)neN

is the inhomogeneous Littlewood—Paley sequence of f, then f, — f in VCF(R) as n — oo.

Proof. First, by Theorems 3.6.7 and 3.3.7, if i € {0,...,k}, then

sup Brint (F11) < cill fll o < ill fllgroe <00, f€ BF(R). (3.6.11)

(Actually, the i = 0 case comes from Theorem 3.6.4(iii).) Thus, Bf’oo(R) C VO*(R). Next, fix
fe Bf "°(R), and let (f,)nen be the inhomogeneous Littlewood—Paley sequence of f. Note that
if n € N, then f, has a compactly supported Fourier transform. Therefore, by the Paley—Wiener
theorem, f, € C*®°(R). In particular, f, € VC¥(R) by Corollary 3.4.7. Now, by Lemma 3.6.9

and Inequality (3.6.11),

n—o0

sup [|f = fullvorr Sk If = fall groe —— 0.
r>0 1

Thus, f = f,+(f — fn) € VC¥(R), and f,, — f in VOF(R) as n — oo. Since we already observed

that f, € VCF(R) for all n € N, this completes the proof. O

Remark 3.6.12. Via Corollary 3.4.7 (and Proposition 3.4.8), Theorem 3.6.10 demonstrates
directly, i.e., without going through Theorem 3.4.12, that Bf "*°(R) is contained in the closure of
Wi(R) (and thus of C[A]) in VC¥(R).

We observe parenthetically that, by Example 3.6.6, the containment Bf ®(R) C VC*(R)
generalizes the containment W, (R) C VC¥(R). It should be noted, however, that our proof of

the former used the latter in a crucial way.
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We end this section by defining the Holder spaces, describing their relationship to the
Besov spaces, and proving that C° (R) € VC¥(R). For more information about Hélder spaces,

loc

please see [Fiol6].

Definition 3.6.13 (Holder spaces). Let (X,dx) and (Y, dy) be metric spaces. If p: X — Y is

a function and ¢ > 0, then

dy (p(z), p(y))

dx(z.9) :x,yEX,x#y}E[O,oo].

[SOJCO»E(X;Y) ‘= sup {

If [p]cos(x,yy < o0, then ¢ is e-Holder continuous, written ¢ € CY(X;Y). As usual, we

omit Y from the notation when ¥ = C. Next, if m € N and k£ € Ny, then
1
o, 12 ’ k/mm
[SO]C’%E = ( Z [a SO]CO,E(]Rm)> ’ SO € C (R )7
|a|=k

and C%¢(R™) is the set of ¢ € C*¥(R™) such that [p]or.. < 0o. Also,

lellore = llellser + [plore, @ € CHR™),

and BC*#(R™) is the set of ¢ € BC*(R™) such that [¢]cr.: < co. Finally, C{f)f(Rm) is the set

of ¢ € C*(R™) such that 0“¢|_,,jm € CO¢([—r,r]™) for all r > 0 and o € N§* with |a| = k.

Ife >1and ¢ € CO’E(Rm), then ¢ is constant. In particular, if ¢ > 1, kK € N, and

loc

pE C’k’s(Rm), then ¢ € C[\1, ..., \y]. Also, the use of the £2-norm (as opposed to the ¢!-norm)

loc

in the definition of ||, is atypical. We made this choice so that the proof of the following

proposition is more pleasant—specifically, so that Inequality (3.6.15) below holds.
Proposition 3.6.14. If k € Ny and 0 < £ < 1, then, BC*<(R™) — Bi>(R™).

Proof. Suppose k € Ny and 0 < £ < 1, and define

[plok.e = (Z[%]ék,s> , 9 =(p1,..,pn) € C*R™C").

i=1
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We claim that if ¢ € C¥(R™;C"), then

sup. | A ()], < [@lenelbl5 ™, h e R™\ {0} (3.6.15)

First, observe that if ¢ € C*(R™;C") and Vi = (9;¢i)1<i<n1<j<m € CFL(R™;C"™*™) then
[Volor-1: = [¢]cre. Now, we prove Inequality (3.6.15) by induction. If k& = 0, then it is
immediate from the definition. Now, assume the desired result holds when ky > 0, and let

k:=ko+ 1. If p € C*(R™;C") and z,h € R™, then, by the fundamental theorem of calculus,
1 1
A o(e) = Az + h) — Ap(z) = /0 V(Ak) (@ + thhdt = /0 AF (V) (@ + th)hdt,

where the juxtapositions V(A ) (z+th)h and Af (V) (z+th)h above are matrix multiplications.
It then follows from the induction hypothesis, the Cauchy—Schwarz inequality, and our initial

observation that
k+1 ! k k—1 k
A ()], < /0 | AL (V) (@ +th)|, |hladt < [Velor-relhly ™ ¥ |hl2 = [plone bl
as desired. Next, suppose 0 < e < 1. Then |k + ¢] = k, so Inequality (3.6.15) gives
1f |, prrece = [ fllLoe +§l1;13|h|5k75HA’,§“fHLw <\ fllzee + [flere <00,  f € BCH(R™).

Now, if e =1, then |k 4+ €| = k + 1. Combining Inequality (3.6.15) with the obvious fact that

[AR2 ] o < 2| AR ]| o then gives
1Al pgroe < I llzoe +2 sup Rl E AR F || oo < I fllzoe + 2[fcrn < 00, f € BCRL(R™).

An appeal to Theorem 3.6.4(v) completes the proof. O

Remark 3.6.16. In fact, BC¥<(R™) = BE°°(R™) whenever 0 < & < 1 and k € Ny. In general,
B32°(R™) is the Holder-Zygmund space C*(R™) whenever s > 0. For more information, please

see [Tri83, §2.2.2, §2.3.5, §2.5.7, & §2.5.12], [Tri92, §1.2.2, §1.5.1, & §2.6.5], or [Saw18, §2.2.2].
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As a consequence, we obtain the inclusion C{ZE (R) C VOF(R).
Theorem 3.6.17. If k € N and & > 0, then C-5(R) C VCF(R).

Proof. Fix e,r > 0, k € N, and f € C¥°(R). If ¢ > 1, then f(\) € C[\] € VCF(R), so we

loc

assume 0 < ¢ < 1. Now, if ¢, € C°(R) is such that ¢, =1 on [—r, 7], then
Ypf € BCH(R) € BEF=*(R) C BI"(R) C By"(R)

by Proposition 3.6.14 and Theorem 3.6.4(ii),(iv). Since (¢rf)|—ry] = fl—ry and r > 0 was
arbitrary, we get

f € B¥®(R)10e € B¥™(R)10e € BP™(R) C VCF(R)
from Theorem 3.6.10 and Proposition 3.4.4(ii). O

3.7 Demonstration that W;(R),. C VCO*(R)

The formula (1.3.16) for the divided differences of a function in Wy (R) is quite easy
to work with, so it is reasonable to ask whether all examples of interest can be dealt with by
“localizing” Wy (R). We already saw (Theorem 3.4.12) that Wy (R) is dense in VCOF(R), but what
we are really asking is whether the stronger statement Wj(R)oe = VC¥(R) holds as well. The

goal of this section is to prove that this is not the case.

Theorem 3.7.1. If k € N, then Wi (R)ioc € VCF(R). Specifically, we have the following

counterezample. Fiz 1) € C°(R) such that ¥ =1 on [—1,1] and suppt C [—2,2], and define

i

R(x) = Lo (@) v(@)yTe s, ek

If f € C*R) and f*) =k, then f € CHYAYR)\ Wi(R)oe € VCF(R) \ Wi (R)oc-
We break the proof into a few lemmas.

Lemma 3.7.2. Wi (R)ioc = {f € C¥[R) : nf € Wi(R) for alln € C(R)}.
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Proof. We first observe that if f = [p e u(d€) € Wi (R) and n € C°(R), then nf € Wi(R).

Indeed, note that

Fun© - [

R

o= () Fa) dar — i€ (o oo [ e
n(@)f(x)d /R /R n(z) p(dy) d /R A€ -y uldy), EER,

by Fubini’s theorem. Consequently, if i € {0,...,k}, then

/R EFIF(nf) (€] de < /R /R €[ 1€ — )] |ul(dy) dé = /R /R EF1T(E — )] d€ |l (dy)
- / / ¢+ O] dC 1 (dy) < 2 / / (ICF + ") [7(C) ] 4¢ |12l (dy)
RJR RJR

= 2 (o) [ F )| 11 + iy 17ll 1) < o0

by Tonelli’s theorem. It follows from Proposition 3.4.6(i) that nf € Wi(R).
Next, fix f € Wi(R)ioe and n € C°(R). Suppose suppn C [—r,r]. By definition of
Wi (R)joc, there exists a g € Wi (R) such that g|_,.,] = f|—,. But then nf =ng € Wi(R) by
the previous paragraph. This proves Wi (R)i,c C {f € C*(R) : nf € Wi(R) for all n € C°(R)}.
Finally, suppose f € C¥(R) is such that nf € Wi(R) for all n € C°(R). For r > 0,
let n € C*(R) be such that n = 1 on [—r,r]. Taking g = nf € Wi(R), we have that
9li=rr) = 0 H)l=ry] = fli=ry)- We conclude that f € Wi(R)ioe, which completes the proof. [

Lemma 3.7.3. Fiz g € C.(R) and h € C*(R) such that h'®) = g. Then
h € Wi(R)joe <= g€ L'(R).

Proof. Let n € C°(R) be arbitrary. Then f, := nh € Ck(R). In particular, by Proposition

3.4.6(ii), fn € L'(R). Now, by the product rule,

k k
k ; —i k 3 —1
f$k>:2<i>n(z)h(k ):nh(k)Jrz:(i)n()h(k )2779+X-
— =1

/

=X

Since no more than k — 1 derivatives fall on h in the definition of x, we have that y € C*(R).
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Since x has compact support, Proposition 3.4.6(ii) yields that ¥ € L'(R). It then follows from

Proposition 3.4.6(i) that
fo=nh e Wi(R) <= F(f{¥) € L'(R) <= F(ng) € L'(R).

We combine this observation with the characterization of W (R)joe in Lemma 3.7.2 to finish
the proof. Suppose h € Wy (R)joc, and choose n € C2°(R) such that n = 1 on suppg. Then
g = F(ng) € LY(R). Now, suppose g € L'(R), and let n € C°(R) be arbitrary. Then
F(ng) = =n+*g € L*(R) because § € L'(R) and § € L'(R). Thus, nh € Wy(R). Since

n € C°(R) was arbitrary, we conclude that h € Wi (R)jc. O
Lemma 3.7.4. If k € C.(R) is as in Theorem 3.7.1, then & ¢ L*(R).

Proof. Let £ > 0. Then

=)

(5)_/0 6i(w£+x1)¢($)\/§d$—52/0 efi\/E(ery*l)w(g*%y)\/ydy (3.7.5)

by the change of variable y := /£ x. We use the method of stationary phase to analyze the
oscillatory integral on the right-hand side of Equation (3.7.5). First, note that the phase
é(y) =y +y ' (y > 0) has a unique critical (“stationary”) point at y = 1, and this critical point
is non-degenerate because ¢”(1) = 2 # 0. Next, let x € C2°(R) be such that xy =1 on [3/4, 3/2]

and supp x C [1/2,2]. Then

L(C) r—/o e"'@(y)x(y)w(c*y)\/@dy—/o e Ny Vydy, (>2,

because ¢ = 1 on [0, 1]. Therefore, by [H6r83, Thm. 7.7.5 & Eq. 3.4.6],

2
Cle”(1)]

= Vae D2 1 O(¢TY) as ¢ — oo, (3.7.6)

L(Q) = x(1) VT et miamn@i ) +0(C)

Second, note that ¢'(y) # 0 whenever 0 < y € supp(1 — x). One can therefore apply the “method
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of nonstationary phase” (integration by parts) to prove that

L(¢) = / T eicow (1 XY (Cy)Vydy =0(¢T) as ¢ — oo (3.7.7)

0

Due to the singularities of ¢ and the square root function at zero, standard theorems do not apply
directly, so we need to prove this by hand. The calculations necessary to do so are elementary but
rather tedious, so we relegate them to the end of the section. In the end, combining Equations

(3.7.5)—(3.7.7) gives
R(E) = € 1(I(€2) + Io(€2)) = Vae "®VEDeL L 0(e71) as € - 0.

It follows that & ¢ L'(R), as claimed. O

Proof of Theorem 3.7.1. It is an elementary exercise to show that x € COY4(R). (For
instance, one can adapt the argument from [Fiol6, Ex. 1.1.8].) In particular, if f € C¥(R) and
f®) = g, then f € CHY/4R). Thus, f € VC¥(R) by Theorem 3.6.17. But f ¢ Wi(R)ic by
Lemmas 3.7.3 and 3.7.4. O

The above development provides a recipe for constructing functions in VC*(R)\ W (R)joc.
Indeed, any compactly supported g € C%¢(R) with g & L*(R) can be used to produce a function
in VC*¥(R) \ Wi(R)joe via Lemma 3.7.3; J. Sterbenz suggested g = x as an example. (In general,
for such a g to exist, one must have ¢ < 1/2. This can be proven using Remark 3.6.5 and an

argument like the one in the proof of Proposition 3.4.6(ii).)

Proof of Equation (3.7.7). Fix ¢, x € C°(R) such that ¢y =1 on [—1,1], suppvy C [-2,2],
X =1 on [3/4,3/2], and supp x C [1/2,2]. Define

oy) =y+y " and ge(y) = (1 —x@)¥(Cy) 5.¢>0

We aim to show that

I(¢) = /0 Z/% 9¢(y) e 7w gy = O(C_l) as ¢ — oo.
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To do so, we shall need to integrate by parts three times. We record a few derivatives for this

purpose. First, ¢'(y) =1 -y~ 2 =y 2(y> — 1) and ¢"(y) = 2y~>. Second,

d, 1 1

1 . _1 1y
i (¥29¢(v)) = 5u 2 9c(y) + 929 (v),
d?2 1 1 3 _1 1
a7 (929¢(9)) = —3v29cw) +y 2 9¢(y) +y>9( (y), and
B3, 3 s 3 s 3 1
7 (v29¢(w) = Su29¢(y) = 7y 29(v) + 5y 29l (y) + 7 gl (y)-

Recall now that ¢'(y) # 0 for y € supp g¢ (since g¢ = 0 near 1), and note that
(k)
sup o < 00, k€ Np.
A ch Hz (R) 0

Therefore, as { — oo, we have

I (Q) :/ Y2 gc(y) e P ay = ZC/ " <@/;;04( ))ez@)( ) dy

// 1
ZC/ <¢2yg<() ) dyygc )w
d

__2 [Ty o ! 3 ~iCo()
A LA dy( ) e dy

oL [Taf_ 1 ~iCo(y
06 ) (as'()?dy”f )

o1y L —2¢"(y) d 1 1 i)

O(¢™) C2/ ( P 4 (y 9c(y ))+¢,( )Qdy (y gc(@/))) dy

2 [®yig (y)+2y%g’(y) i L[>~ 1 a4, . »

C2/o <(y2_1)3 2 <¢<y)dyc2/0 ERT (0 ge(y)) €500 ay
o 1 oy 1 > d 1 & 1 —i¢(y)

=0(C)+0(¢(7) Z.Cg/o <¢,( AT —(y gc(y))>e dy

< [ —3¢" 2 L 3 1 .
=O(C1)—Z.§3/O ( ;g?y)(f)(ig(w 9c(y)) + ¢,<1 i ddy (y? gdy))) o) dy

=0 H+

— (01 I %yggc(y) —Gy%gé(y)—(iy?gg(y) 1 @B . ot

-0 )_243/ < (y? —1)* +¢’(y)3d7y3(y 9¢(y)) | e dy
1 o[>~ 1 &, . ,

:O(<1)+O(Cg)_¢g3/o TP = (y ge(y)) Wy,

103



(We leave it to the reader to confirm that there are no boundary terms at zero.) But

3 6 i ) 1
¢’(1 )351/ v* 9c)) = (yy—l)@y_zgdy)iy_zgé(yHZy‘?gg( )+ 2 g'(y ))

and g¢(y) = 0 whenever y > 2¢. It follows, due to the dominant y'/? term, that

00 d3 1 . 3
/0 ¢/<1 7 ays W 9cw) e W dy = 0(¢2) as (oo

Thus, I5(¢) = O(C™Y) + ¢~ 30(&) = 0(¢!) as ¢ — oo, as desired. O
3.8 The space NC*(R)

By Corollary 3.1.10, if f € VC*(R), then f, € C*(As; A), and the k' derivative of f,
may be computed, via Proposition 3.5.3, in terms of local decompositions of f¥ as an integral
(over o € X)) of pure tenor functions p1(+,0) ® -+ ® Yk+1(+,0), where p;(+,0) is continuous. In
this section, we show, loosely speaking, that we can take ¢;(-,0) to be measurable. Doing so
will require background material covered later, e.g., the (bounded) Borel functional calculus
from Definition 4.2.13, and results from the theory of multiple operator integrals (MOIs) covered
in Chapter 5; we provide “forward references” as necessary. To begin, we define /*°-projective

tensor product £°°(Q1, Ba, )®; - - - @£ (Qn, Ba,,), the idea for which is due to Peller [Pel06].

Lemma 3.8.1 (Measurability). Let Z be a Polish space, and let (X, 5, p) be a o-finite measure
space. If p: Ex ¥ — C is product measurable, then the function X3 o = |¢(-,0)| ¢ (=) € [0, 0]
18 (%p,[)’[o’oo])-measumble, where A is the p-completion of €.

Proof. Since every o-finite measure is equivalent to (i.e., has the same null sets as) a finite
measure, we may assume p is finite. By [Cra02, Cor. 2.13|, which relies on the measurable

projection theorem [CV77, Thm. I111.23], if ¢: Z x ¥ — C is product measurable and C': ¥ — 2%
is such that {(0,§) : 0 € X, { € C(0)} € # ® Bz, then the function

S50 sup |p(&0)| €10,00]
¢eC(o)

S (%p, B[Ovoo])—measurable. Applying this to the map C = = yields the desired result. O
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This measurability lemma ensures that the integral in Inequality (3.8.3) below makes

sense as a Lebesgue integral with respect to the completion of p.

Definition 3.8.2 (IPTPs). An £°°-integral projective decomposition (IPD) of a function
p: Q — C is a choice (X,p,¢1,...,9m) of a o-finite measure space (3, .7, p) and, for each
i€ {l,...,m}, a product measurable function ¢;: Q; x ¥ — C such that ¢;(-,0) € £>°(Q;, Bo,)

whenever o € X,

/E||901(-,0)Hzoo(91)---IIsOm(-,O)Heoo(Qm)p(dff)<oo, and (3.8.3)

p(w) 2/2801(W1,0)"'<Pm(wm,0) p(do), wen.

Also, for any function ¢: Q@ — C, define ||(,OHZOO(Ql,Bﬂl)®i,,,®i£oo(9m’89 ) to be

inf { /EH ||spz(, O’)Heoo(Qi) p(da) : (E,p, ©1y- -, C,Om) is a £°°-IPD of (,0},
i=1
where inf () := co. Finally, define the integral projective tensor product
EOO(Ql,Bgl)@i .. ®z£m(ﬂm,89m) = {gp € KOO(Q,BQ) : ||(,0H€00(Q17691)®i,,.®ieoo(9m7lggm) < OO}

Proposition 3.8.4 (Properties of IPTPs). The following hold.

(1) If p: Q@ — C is a function, then |||y < ||¢|]€w(917891)A 83l (U Ber, )

(ii) £%°(Q, Bay)®; -+ - @il (i, B, ) C (2, Ba) is a unital *-subalgebra, and

(500(917 Bﬂl)®z - ®i€°o(Qm) Bﬂm), || . HZ‘X’(Ql,Bnl)®i“'®if°°(9m,39m))

1s a unital Banach *x-algebra under pointwise operations.

(iii) Suppose 1,5 € {1,....m}. If ¢: Q1 x -+ xQ; — C and ¢: Qf X -+ x Q,, — C are

functions and x(w) = (w1, ...,w;) Y(wj,...,wn) for all w € Q, then

HXHZOO(QLBSH)®i"'®i[m(ﬂm18(2m) < ”SOHZO"(91,Bnl)®i“‘®if°°(9i»5szi)H¢||Z°°(Qj1BQj)®i“‘®i¢°°<9mvBszm)'
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Proof. By Example 5.5.7 below, the first and second items are special cases of Proposition 5.5.5,

but we provide proofs from scratch for the reader’s benefit. For ease of notation, write

(‘%7 H : ”@) = (eoo(Ql7 BQl)®Z e ®Z£OO(Qm7 BQm)7 H : HZOO(Ql,BQl)®i~~~®i£m(9m,8g2m))'

We take each item in turn.

(i) Let (2, p, 01, ..., pm) be an £°-IPD of . If w = (w1, ...,wpn) € Q, then

w)!é/z\sm(wha) m(Wm, )| p(do) /H<P1 e )+ lem (s, 0)lle=(@,,) p(dT).

Taking the supremum over w € Q and then the infimum over ¢*°-IPDs (X, p, @1, ..., ¢m) gives
the desired inequality. Note that this inequality implies that ||¢||4 = 0 and only if ¢ =0 on Q.
(ii) We leave it to the reader to prove |cpl|z = |c| ||¢llz = |c| ||@||z whenever ¢ € C and
@ € AB. Next, suppose (¢n)nen is a sequence in A such that > 7, [l¢n|l# < co. By the previous
item, we have > 7% [[@nllpo) < 2opey llonlla < oo, so the series ¢ == Y7 | ¢, converges in
(>°(Q, Bg). We claim that [|¢[lz < > o2 |lenllz. To see this, fix € > 0 and n € N. By definition
of || - ||z, there exists an £>°-IPD (X, pn, ¢n1,-- -, ¥nm) of ¢ such that
/ lon,1(-s Un)HéOO(Ql) T ||90n,m("0n)”é°°(9m) pn(don) < |lenllz + o

21’L

n

Define (X, 57, p) to be the disjoint union of the measure spaces {(3,, ., pn) : n € N}. Also,
for i € {1,...,m}, define x;: Q; x ¥ — C to be the unique measurable function satisfying

XilQ; x5, = ¢n,i, for all n € N. It is easy to see that (X, p, X1, .., Xm) is an £>°-IPD of ¢, so that

lollz < / 1x2( ey - [ (5 ) ey (o)

-y / lomt (s om)lle=(ay) - [mam (- ) ey (o)
n=1

9
Z (loallo + ) = 3 ol +=
n=1

Taking € \, 0 results in the desired estimate. Taking ¢, = 0 for n > 3, we conclude that Z is

closed under addition and that || - || satisfies the triangle inequality. Applying the inequality we
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just proved to the sequence (¢n+nN)nen for fixed N € N yields

N 00 N
—
= enl| < ) llenla —>0.
n=1 B n=N+1

Combining this with the observation from the end of the proof of the previous item, we conclude
that £ is a Banach space.

Finally, we prove that if ¢, ¢ € £, then | ¢||z < |¢lzll¢¥|lz. To do so, fix £>°-IPDs
(X1, 01,01, -+, 0m) and (3o, p2, 91, ..., %) of p and 1, respectively. Next, redefine (2, 57, p)
to be the product (X1 x ¥o, 74 ® %, p1 ® p2) and x;(w;,0) = @;(w;i,01) ¥i(w;, 02) whenever
ie{l,...,m}, w; € Q;, and 0 = (01,02) € X. We claim that (X, p, x1,...,Xm) is an £°-IPD of

p 1. Indeed, by Tonelli’s theorem,

/] Huxz Do o) < [ TL o) iy 21 (o) )| TT 1 0l ey (o).
1 4=1 22 =1

which is finite. Now, by Fubini’s Theorem,

/Eil_IlXi(wz',a)p( /211_[% (wi,o1) p1(doy) / Hz/% (wi, 02) p2(doz) = p(w) P(w)

B2 i1

whenever w = (wy,...,wn) € Q. It follows that

lovla< [ TL 6oy 1 (o) )| TL 12y pafcdrs).

14— 2 i1

Taking the infimum over £°°-IPDs of ¢ and v gives the desired result.
(iii) By the previous item, it suffices to consider the cases ¢ = 1 and ¢ = 1. We leave

these cases to the reader, as they are easy consequences of the definitions. O

Remark 3.8.5. Since (*°(2;, Bg,) is a unital, commutative C*-algebra, ¢>°(£2;, Bg,) = C(X;)
for some compact Hausdorff space X;. In view of Theorem 3.3.7, one might hope that the ¢°°-
integral projective tensor product £°°(Q1, Bo, )@ - - - @£ (Qm, Bq,, ) is (isometrically) isomorphic
to the Varopoulos algebra V (X1, ..., X,,). However, the spaces X1, ..., X, are not generally

metrizable, and the hypothesis of metrizability was used very strongly in the proof Theorem
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3.3.7. Specifically, for a compact Hausdorff space X, the metrizability of X is equivalent to the
separability of C'(X), and such separability was used in the proof of Lemma 3.3.6 to establish the
strong measurability of a key map. This complication means that we cannot invoke the universal
property of the projective tensor product when working with integral projective tensor products
of ¢*°-spaces. This is precisely what makes proving results about MOIs, e.g., Theorem 3.8.15(ii)

below, so difficult.

We shall work mainly with the case 2 = --- = Q,, is a compact interval in R, for which

we use the following notation.

Notation 3.8.6. If p: R™ — C is a function, then

HC‘OHT’m = HSOH_TJ']MHEOO([—T,T],B[,T,T])@«LW € [0’ OO], r>0.

Example 3.8.7. If ¢: R™ — C is a function, then [|¢l|,.,, < Brm(p) for all r > 0. Consequently,
if ¢ € VO(R™), then [|¢l],.,, < oo for all r > 0.

Now, we introduce a new space of C* functions containing VCF(R).

Notation 3.8.8 (The space C*(R)). If k € N, f € C¥(R), and r > 0, then

e = iuﬂﬂ
1=0

L€ [0,00] and CFI(R) := {g € C¥(R) : lgllew , < oo for all s > 0},
In other words, C[¥I(R) is the set of f € C*(R) such that fll ¢ > ([=r,r], B[_T’r])@)i(iH) for all
i €{0,...,k}. Also, let CI®N(R) := N, . CHI(R).

Example 3.8.9. By Example 3.8.7, VC*(R) C C*(R). In particular, all the examples of

Varopoulos C* functions from §3.4 and §3.6 belong to C[FI(R).

By Proposition 3.8.4, C¥/(R) C C*(R) is a linear subspace and {| - ||cu ,ir>0}isa
collection of seminorms on C*! (R). Since these seminorms clearly separate points, they make
CH(R) into an HLCTVS. Similarly, C[>!(R) is an HLCTVS with the topology induced by the
family {|| - [[cw - : & € N, 7 > 0} of seminorms. Here now are the basic properties of the space

CIF(R) (k € NU {00}). Recall that < indicates continuous inclusion.
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Proposition 3.8.10 (Properties of CI*(R)). Let k € NU {o0}.
(i) VC*(R) — CH(R) — C*(R).
(i) If S € CH(R), then Sipc €S C CHI(R).

(iii) If k < 0o, r >0, and f,g € C*¥(R), then

[k] N *

k
NG, ey < ST, g™ s and Fgllow, < Il
=0

(iv) C¥I(R) is a unital Fréchet x-algebra under pointwise operations.

Proof. We address each item in turn.
(i) Since [[{lew » < [[“llyor . for all 7 > 0, it is clear that VCF(R) < CH(R). Now, let
fEC*R). If0<i<k+1andr >0, then

17 e ey < 1

by Proposition 3.8.4(i). Thus, C¥/(R) — C*(R).

(i) Let S C CIH(R). If f € Sioe and n € N, then there exists a g, € S € CI*/(R) such that
Inl(=nm) = fli=pm)- Hr>0,n>7r and 0 <4 < k+1, then ||g,, — f”c[ﬂ,r = 0. Thus, f € CH(R),
and g, — f in C¥(R) as n — oo. In other words, Sjoc € S C CFI(R).

(iii) The claimed bound on H( fg)l¥ follows immediately from Propositions 1.3.3(ii)

Hr,k+1

and 3.8.4(iii). Consequently,
k ' k J
1£lctsr = DN 0 < 2 2 18 i 97 i
j=0 7=0 =0
k

7=

k
= Hfm Hr,iJrl Z Hgb_l] Hr,jfz#l <
0 =i

as well.
(iv) We prove that CI*/(R) is a Fréchet #-algebra when k < oo and leave the k = oo case to
the reader. First, the topology of C*/(R) is generated by the countable family {||- lem v : N € N}

of seminorms, so C*/(R) is metrizable. Next, we prove that C[¥I(R) is complete. To this end, let
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(fn)nen be a Cauchy sequence in C*/(R). By the first item, the sequence (f,)nen is also Cauchy
in C*(R). Since the latter space is complete, there exists an f € C*(R) such that f, — f in the
C* topology as n — co. In particular, if s € {0,...,k}, then f}f] — fli uniformly on compact

sets as n — 0o. Now, if i € {0,...,k} and r > 0, then the sequence

( " ’[*W]i+1 ) neN

is Cauchy and therefore, by Proposition 3.8.4(ii), convergent in £ ([—r, 7], B[_T,r])&(iﬂ). Since

we already know that fr[f N fl pointwise as n — oo, we conclude that

f[i]l[frﬂ-]i-&-l S foo([—r’ T], B[fr,r])®i(i+l)

)®"(i+1) as n — oo as well. Thus, f € Cl¥l (R),

and fr[ﬂ |[_T7T]i+1 — f[i]‘[—r,r}”“rl in foo([—’l“, T’},B[_rﬂ
and f, — f in C*¥/(R) as n — oo. This completes the proof that C[¥I(R) is a Fréchet space.
Finally, the previous item implies that C [K] (R) is an algebra under pointwise multiplication

and that pointwise multiplication is continuous. Since it is also clear that H?H el = I fllew

whenever f € C¥(R) and r > 0, complex conjugation is a continuous *-operation on C [k] (R). O

This and Example 3.8.9 bring us to our main space of interest in this section. Inspired by

the proof of Theorem 3.1.2 in §3.10 (specifically, Lemma 3.10.8), we make the following definition.

Definition 3.8.11 (Noncommutative C* functions). For k € NU {co}, define NC*(R) to be

the closure of C[A] in C/*(R). The members of NC*(R) are noncommutative C* functions.

The idea for the name of NC*(R) comes from the parallel work by Jekel, mentioned in

Remark 3.4.13, on C* (R).

Theorem 3.8.12. With the topology of CIF/(R), NC*(R) is a unital Fréchet %-algebra under
pointwise operations. Moreover, VCF(R) C NC*(R), and Wy (R) is dense in NC¥(R).

Proof. Since C[\] C C*(R) is a *-subalgebra, NC*(R) is a closed *-subalgebra of the Fréchet
s-algebra C¥l(R). Thus, NC¥(R) is a Fréchet x-algebra in its own right. Since VCO¥(R) — CI*/(R)
by Proposition 3.8.10(i), the containment VC¥(R) C NC¥(R) follows from the density of C[)]
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in VCOF(R) (Theorem 3.4.12). Finally, by Proposition 3.4.8, if p(\) € C[)], then there exists a
sequence (fn)nen in Wi(R) converging to p in VCOF(R) to p. Since VC*(R) — NC*(R), the
sequence (f,)nen converges in NC*(R) to p. Thus, C[\] is contained in the closure of W (R) in
NCK(R). Since C[)] is dense in NC¥(R) by definition, this completes the proof. O

Next, we describe a very special case of the “separation of variables” approach to
defining MOIs, which is covered in detail in Chapter 5. Recall that H is a complex Hilbert
space and M C B(H) is a von Neumann algebra. Given a = (ay,...,ap41) € MEH! and

¢ € L®(o(ar), Bg(al))@)i - @il™ (o (ag+1), Ba(akﬂ)), the goal is to make sense of

(o) b] = /( ).../( )SO()‘) P (dA1) by - - P (dXg) b P+ (dAgy1) = “p(a)#5D”
Ak+1 al

in M for all b = (by,...,by) € MF. Above, P*: By(a) — M is the projection-valued spectral
measure of a € M,, (Definition 4.2.13). Heuristically, if (X, p, p1,...,prs1) is an £°-IPD of ¢,

then we should have

k+1
o / / L1 #i(Ai o) p(do) P*(AN1) by - - - P (dAg) by P+ (dAky1)
) o(ar) /¥ i=1

k+1

B / / / [ #i(xis0) PU (A1) by - - P (AAg) b P+ (dNgr1) p(do)
E U(ak+1) O’((ll)

=1

:/z </0(a1) ©01(-,0) dP“l)bl--- (/g(ak)('pk("a) dp%) bk</0(ak+1) Orr1(-,0) dpakﬂ) p(do)

= / ei(ar,o) by - pr(ar, o) by rt1(ars1,0) p(do) (3.8.13)
>

(1) [b] = /

o(akt1

in analogy with Proposition 3.5.3. Accordingly, we shall use Equation (3.8.13) as a definition.
To do so, one must address exactly what kind of integral fz -dp is being used above and whether
this integral depends on the chosen £*°-IPD of . We address these now.

Let (Z,.#, ) be a measure space. A map F': = — B(H) is pointwise weakly measur-

able if (F'(-)hy, ha): E — C is measurable whenever hy, hy € H. If, in addition,

/ [((F(§)h1, ha)| p(d€) < oo,  hi,he € H,
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then F' is pointwise Pettis (u-)integrable. In this case, F'(-)h: = — H is weakly integrable

for all h € H, and the linear map

H>hwTh= [ F(&)hu(d¢) € H

T

is bounded. Furthermore, if W*(S) C B(H) is the smallest von Neumann algebra containing
S CB(H), then T € W*(F(£) : £ € E). The operator T is the pointwise Pettis (u-)integral
of F, and we write [Z Fdu = [z F(£) u(d€) := T. Please see Lemma 5.4.1 and Remark 5.4.4 for

proofs of the assertions in this paragraph.

Lemma 3.8.14. Suppose (¥,.7) and (E,.F) are measurable spaces, P: # — B(H) is a
projection-valued measure (Definition 4.2.8), and ¢: Z x ¥ — C is product measurable. If
o(,0) ELX(E, F) for allo € ¥ and F: ¥ — B(H) is pointwise weakly measurable, then so are

F() Jz¢(&,-) P(d€): X — B(H) and |2 (&) P(d§) F(-): ¥ — B(H).

The lemma above is a special case of Proposition 5.6.3 below. Here now is the main

result that allows us to make sense of the MOI of interest.

Theorem 3.8.15 (Definition of MOIs). Fiz a = (ay,...,ap4;) € MEFL,

¢ €L (U(al), Ba(m))@i R (U(ak'i'l)’ BU(%H))’

and b = (by,...,by) € MF.

(1) If (3,0, 01y, 0ks1) s an £°-IPD of o, then the map
Y30 F(o) =¢1(a1,0) by - or(ak, o) by prr1(akr1,0) € M

1s pointwise Pettis integrable.

(ii) If F is as in the previous item, then the pointwise Pettis integral [ Fdp € M is

independent of the chosen {>°-IPD of ¢; in this case, we write

= [ [ PN b PN b P @) = [ P
o(akt1) (a1) z
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(iii) The assignment M* > b+ (I2p)[b] € M is k-linear and bounded. Furthermore, the
assignment £>° (U(al),Bg(al))®i R e (a(ak+1),80(ak+l)) 3¢ I[2p € Bk(M’“;M)

1$ linear and has operator norm at most one.

Sketch of proof. We take each item in turn. Write || - || = || - |z=#-
(i) By Lemma 3.8.14 and induction, F': ¥ — B(H) is pointwise weakly measurable. To

prove the integrability, fix hi,he € H and o € 3. Then

k+1

u<mmm<mMM(HwOIM%%

=1
k+1

< [hal] Hh2II<HHb H) T ki o) e (o(ary -
Therefore,
k+1

/r hwmwwKWMMﬁO]MD/IH%,HMM»WW<w,@M®

so F' is pointwise Pettis integrable.
(ii) For this item, it suffices to assume M = B(H). First, suppose hq, hi,... hi hy € H
and b; = (-, hy)h; for all i € {1,...,k}. Also, for ho, b1 € H, define

. k41
v=P" & --QP: )
hi,ho hgt1,hK

(This is a product of complex measures.) Then one can show without much difficulty that

<</ de>i3k+1,ho> :/ @dv. (3.8.17)
b)) o(ar)x--Xxo(ak4+1)

For this calculation or similar ones, please see the proof of Theorem 5.6.11 below, the proof of
[ACDS09, Lem. 4.3], or the proof [Pell6, Thm. 2.1.1]. From Equation (3.8.17) and k-linearity,
we conclude that [, F'dp is independent of the chosen £*°-IPD of ¢ when by, ..., by, are finite-rank
operators. Now, if H is separable and ¢ € B(H), then there exists a sequence of finite-rank

operators converging to ¢ in the strong operator topology (SOT, Definition 4.1.1(ii)). This
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allows one to use an operator-valued dominated convergence theorem to extend the claimed
independence to arbitrary by,...,br € B(H). This is what is done in [ACDS09, Pel16]. When
H is not separable, much more care is required. The claim is again extended from finite-rank to
arbitrary bounded operators by density but in a different topology: the ultraweak topology (aka
the o-WOT—please see Definition 4.1.1(iv) and Theorem 4.3.3(vi)). Indeed, one proves that, for

fixed i € {1,...,k} and by,...,bi—1,biy1,...,bp € B(H), the assignment

k
90'—>/<P1 ai, o (Hby%ﬂ aj+1,0 >C< H @j(aj,a)bj)@kﬂ(%ﬂﬂ)ﬂ(dff)GB(H)

j=i+1

is ultraweakly continuous. (Above, empty products are declared to be 1.) Proving this is quite
technical. Please see Corollary 5.6.10 and its lead-up for the details.

In the present setting, which is less general than that of Chapter 5, we can employ a
different argument to deduce the non-separable case from the separable case. First, suppose that
A C B(H) is a unital subalgebra. We claim that if A is SOT-separable and hy, ..., h, € H, then
there exists a closed, separable linear subspace K C H such that hq,...,h, € K and AK C K,

i.e., K is A-invariant. Indeed, if
K = span(.Ah1 U---u Ahn) CH

then K is a closed linear subspace of H containing hi, ..., h,. Also, K is separable because if
Ap C A is a countable SOT-dense subset, then the Q[i]-span of Aghy U--- U Agh,, is dense in K.
Finally, K is A-invariant because A is a subalgebra and closed linear spans of A-invariant subsets
are A-invariant. Next, fix hq,ho € H, and apply this result to A = W*(ay,...,axs+1,b1,...,bk)
to obtain a closed, separable, A-invariant linear subspace K C H that contains h; and hs.
(Note that A is separable in the SOT because the Q[i]-span of noncommutative monomials
in ay,aj,...,ax41,0;5,,b1,b7, ..., by, by, is SOT-dense in A.) If we write 7x: H — K for the
orthogonal projection onto K, tx: K — H for the inclusion of K into H, a; = mxaitx € B(K),
for all i € {1,...,k + 1}, and bj := mbjix € B(K) for all j € {1,...,k}, then

F(o)h = ¢1(a1,0) br -+ o (ar, 0) by prr1 (ak1,0)h, 0 €L, hEK,
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as we encourage the reader to verify using the A-invariance of K. Therefore,

<</de)h17h2> =/<F(U)h1,h2>HP(d0)
D) PG>

= /2 (¢1(a1, o) by i (ak, 0) b s (Ars1, o) ha, ha) o p(do)

= <</2901(5L170) b1 - ok (ak, 0) by pr1 (@k+1,0) P(d0)>h17h2>

By the separable case, the last quantity is independent of the chosen £°°-IPD. Since hy,ho € H

K

were arbitrary, this completes the proof of this item."
(iii) First, the k-linearity of b — (I2¢)[b] is clear from the linearity of pointwise Pettis

integrals. Second, if (X, p, 1, ..., k1) is an £°-IPD of ¢, then Equation (3.8.16) gives

[(7*e) ]| = H/Ede =sup{'<(/dep>h1,h2>

<Sup{/| 0)h1, he)| p(do) : [lhall, Azl < 1}

a1zl < 1}

<] - - ||bch/H<P1 )leoo(o(ar)) ** 1Pr+1(5 ) e (o(ap 1)) P(dT).

Taking the infimum over ¢°°-IPDs of ¢ therefore gives

a
HI ()OHB]C(Mk,M) S HSOHEOO(U(U’I)vBU(al))Ai"'®i£oo(U(ak+1)7BJ(ak+1))'

We leave the proof that ¢ — I?¢p is linear to the reader. Alternatively, please see Proposition

5.7.1(i), which is more general. O

Example 3.8.18. If a € M**! and ¢ € V(o(ay),...,0(ars1)), then

/ B / @(X) P (dA1) by - - P (dA) b, P41 (dN\p1) = po(@)#sb, b e MP,
o(ak+1) (a1)

by definition of 12 and Proposition 3.5.3(ii). Consequently, it is at least conceptually justified

to write pg(a)#,b = (Iago) [b] when ¢ € £° (a(al), Ba(a1))®i R A (U(ak+1), Bg(ak+l)).

' This argument can be made to work when a; is not necessarily bounded, i.e., when a; 71 Msa (Definition
4.2.16). We encourage the interested reader to ponder this.
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With this under our belts, we are almost ready for the main result of this section.

Lemma 3.8.19. If f € NC¥(R), a € M5! and b € MF, then

(12 p) € C*(1, a1, ... apya, b1, -, b)) C M,

where C*(S) C M denotes the smallest C*-subalgebra of M containing S C M.

Proof. Write ||| == ||l z_ - Let (¢.(\))nen be a sequence in C[)\] converging to f in NC¥(R).

First, it is clear from Examples 3.8.18 and 1.3.8 (and Equation (3.5.14)) that
(12¢®) 0] € C*(1,a1,...,ag41,b1,...,b), neN.

Now, if r := max{||a;|| : i € {1,...,k+ 1}}, then

(=) ) = (g Il = 17 ((f = an)™)) ]

k
< H(f - qn)[ }HZOO(U(al)ﬁa(al)) z‘"'®z€°°(0(ak+1)vBa(ak+l))HblH T kuH

<1(F = an) ¥, s 001l W0l < 11F = g@ullrer 0l - - [bg]] === 0

by Theorem 3.8.15(iii) and the fact that ¢, — f in NC¥(R) as n — oc. The result follows. [

Here now is the main result. Recall that A is a fixed, unital C*-algebra. Also, if f € C(R),

then f,: Asa — A is defined via the continuous functional calculus by a — f(a).

Theorem 3.8.20 (Derivatives of operator functions in terms of MOIs). Suppose the von Neumann
algebra M C B(H) contains A as a unital C*-subalgebra. If f € NC*(R), then f4 € CF (Asa; A).

Furthermore, we have

Oy, - O, fala Z/ FE) PUAN) bry) - - PH(AA) by PY(dNg1)  (3.8.21)
negJo@  Jota)
k—l—ltlmes

for all a,by,..., by € Aga.
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Proof. Equation (3.8.21) rewrites to

Dka(a) — k! S((Ia’m’af[k})

i) 0 € A (3.8.22)

Recall from Notation 1.2.5(iv) that S(T)[vi,...,vx] = (k!)~! > nesy, Tlor(1ys - -+ Vrry] is the
symmetrization of the k-linear map 7.

Now, let n € Ny, and define p,,(\) := A" as usual. Then (p,).4: Asa — A is the restriction
of the homogeneous polynomial A 5 a — o™ € A. Therefore, Equation (3.8.22) holds when
f = pn by Proposition 1.2.6, Examples 1.3.8 and 3.8.18, and Equation (3.5.14). Consequently,
by linearity, Equation (3.8.22) holds whenever f(\) € C[A].

Finally, fix f € NC¥(R) and a sequence (g,(A))nen in C[)\] converging to f in NC*(R).
By Lemma 3.8.19, if a € AL and b € A*, then (I12f¥)[b] € A. We shall take this for granted

in our notation. Now, fix r > 0 and i € {1,...,k}, and define

Aoy i={a € At flall < v} and |-l = [+ 15, (ag,.0-
Then
sup[1f(@) = ga(@)ll = I = gallex -y == 0.

Also, by Theorem 3.8.15(iii) and the previous paragraph, if a € Ag,r, then

Ia,...,a((f o Qn)m) '

7

Hi!S(I“"“’af[i]) _ Di(Qn)A(a)Hi _ i!HS(I“""’a((f _ qn)[z’]))

gi!‘
7

< i!H(f - Qn)m HEOO(a(a),Ba(a))@(iH) = i!H(f o q”)[i]HnH-l'

In particular,

3 a,...,a £[i]y _ i H < kI o , Do
lrgiagkaesESTHZ-S(I f) = D' (gn) ala) S KU = anllew , —— 0.

Since r > 0 was arbitrary, we conclude from Proposition 1.2.13 that f, € CF (As;.A) and that

Equation (3.8.22) holds. This completes the proof. O
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The purpose of M in Theorem 3.8.20 is, of course, to allow us to make sense of the
right-hand side of Equation (3.8.21), since, a priori, MOIs are defined only in von Neumann
algebras (though Lemma 3.8.19 morally says that MOIs like the ones in Equation (3.8.21) make
sense in unital C*-algebras.) Of course, if A happens to be a von Neumann algebra, then we
may take M = A. For an arbitrary (abstract) unital C*-algebra A, a reasonable choice of M is
the double dual A** of A, which has a von Neumann algebra structure with respect to which the
natural embedding A < A** is a unital *-homomorphism [Sak71, Thm. 1.17.2]. Consequently,
if a € As,, then one may always interpret the projection-valued spectral measure P® in Equation
(3.8.21) as taking values in A**, even when it does not make sense in .A. However, we highlight
that the double dual A** of a C*-algebra A is frequently quite large; specifically, it is frequently
not representable on a separable Hilbert space. This is why we must understand MOIs on

non-separable Hilbert spaces.

3.9 Demonstration that C*(R) C C*(R)

In §3.6, we saw that VC¥(R) is “close” to C*(R) in the sense that a function only has to
be “slightly better than C*” to belong to VC*(R). In particular, by Theorem 3.8.12, a function
only has to be “slightly better than C*” to belong to C!*/(R). The goal of this section is to show
that nevertheless C¥/(R) C C*(R), for all k € N. Specifically, we combine Schatten estimates for
Taylor remainders of operator functions (Proposition 3.9.7) with a construction of D. Potapov et

al. from [PSST17] (Theorem 3.9.3) to prove the following.

Theorem 3.9.1. Ifk € N, then C*/(R) C C*(R). Specifically, we have the following counterexam-

ple. Fixn € C°(R) such thatn =1 on[-1/2—1/e,1/e+1/2] and suppn C [-3/5—1/e,1/e+3/5],

and define
() |z|
h =1 , € R.
e e
If

fe(z) = 2" 1h(z), =z eR,

then fi, € C*(R) \ C*(R).

To begin, we set some notation for Taylor remainders.
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Definition 3.9.2 (Taylor remainder). Let V' and W be normed vector spaces. If F': V — W is

(k — 1)-times Fréchet differentiable and p € V', then

k—1 k—1
1, 1
i=0 i=1 ~

i times
is the k*! Taylor remainder of F at p.

Recall that if f € C*(R), then f € VC*1(R) (if VC°(R) := C(R)) by Corollary 3.4.7.
Consequently, if A is a unital C*-algebra, then f, € C*1(Az;A) by Corollary 3.1.10. In
particular, Ry r, o(b) € A makes sense whenever f € C*(R) and a,b € As,. Now, we state one
of the key ingredients of the proof of Theorem 3.9.1. If H is a Hilbert space and 1 < p < oo,
then (S,(H), || - ||s,) is the ideal of Schatten p-class operators on H (Definition 4.3.1 below), and
(Soo(H), || - ls) = (B(H), || - | 51)-

Theorem 3.9.3 (Potapov—Skripka—Sukochev—Tomskova [PSST17, Thm. 5.1]). If fx: R — C
is as in Theorem 8.9.1, then there exist a separable complex Hilbert space H and operators

a,b € B(H)sa such that b € Sg(H) and Ry, (y,), ., o(b) € S1(H).

Next, we work toward the Taylor remainder estimates that will help to disqualify fj from
belonging to C¥I(R). Please see [ST19, §5.4] for more information about the applications of MOI

theory to the analysis of Taylor remainders of maps induced by functional calculus.

Lemma 3.9.4 (Schatten estimates). Suppose p,p1,...,pr € [1,00] satisfy 1/p=1/p1+---+1/py.

If H is a complex Hilbert space, a = (ay,...,ap41) € B(H)E, and

p € £2(0(a1), Bo(a,)) @i - - il (0 (ah41)s Bo(agsr))s

then

H (Iaw) [b] H,Sp S ”SDHE"O(U(M),BU(M)) Ri@il> (0(ah+1):Bo (1)) ||b1”8p1 o ku”‘spk
for all b= (by,...,by) € B(H)*. (As usual, 0-00:=0.)

Proof. This lemma is a special case of Proposition 5.7.2 below, but we supply a proof for

the reader’s convenience. Fix b = (by,...,by) € B(H)* and an ¢*-IPD (3, p, 1, .., 0r11)
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of ¢. Also, if 0 € X, then we define F(o) = ¢i(a1,0)b1 - pr(ak, o) bk orpt1(agy1, o). If

P1s- - Pksp € [1,00] satisfy 1/p=1/p1 + -+ + 1/pg, then

1F(o)lls, < lle1(ar,0)llselb1lls,, - llor(ar, o) s 10kls,, 19k+1(ar+1,0) s

< o1 o)le @) 101lls,, = N5 o) e (o (an)) 10klls,, [[9x+1 (5 ) leso (o (asn))

by Holder’s inequality for the Schatten norms (Theorem 4.3.3(iii) below). Therefore, by the

Schatten norm Minkowski’s integral inequality (Theorem 5.4.12 below),

k+1
eyl = | [ 70| <o, s, [ TT bl i
P pINr
Sp =1
Taking the infimum over ¢°°-IPDs of ¢ then gives the desired estimate. O

Proposition 3.9.5 (Taylor remainder formula). Let A be a unital C*-algebra, and let M be a

von Neumann algebra containing A as a unital C*-subalgebra. If f € CIH (R), then

Ry p,.a(b) = / / / FELON) PO (AN b PY(dNg) - - - b PO (dNgs1),  a,b € Asa,
o(a o(a) Jo(a+b
(a) (a) /o (a+b)

k times

(3.9.6)
for all a,b € As,, where the right-hand side of Equation (3.9.6) is an MOI in M.

Proof. In this proof, we shall use perturbation formulas from Chapter 6 that were avoided
in the previous section by using polynomial approximation arguments. First, by a smooth
cutoff argument, it suffices to assume f € CI¥! (R) is compactly supported, in which case
e >R, BR)@(”D for all i € {0,...,k + 1}. (This will ensure that we can apply the
aforementioned perturbation formulas.) Under this assumption, we prove Equation (3.9.6) by
induction on k£ > 1.

To begin, we have

Rif.a(b) = fla+b)— f(a) = / " / - FE, A9) PO+ (dA) b P (dAg)
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by Equation (6.5.8) in Theorem 6.5.7. Now, assume Equation (3.9.6) holds. Then

1 a a a a a
Rii1.f.a(b) = Ry poa(b) — Hal’ffA(a) = (retbaafbyp b — (190 R B, L)
= / / / FEFUOL, 0 Ajg2) PUTP(AA) b PY(dAg) - - - b P (dAgs2)
o(a) o(a) Jo(a+b)
by the induction hypothesis, Corollaries 3.1.10 and 3.4.7, and Equation (6.5.9) in Theorem 6.5.7.

This completes the proof. ]

Proposition 3.9.7 (Taylor remainder estimates). If H is a complex Hilbert space H, f € CF/(R),

a,b € B(H)sa, and p € [1,00], then

1Rt ®lls, < 1 e 049,801 105 0,21 N

In particular, if b € S,y (H) as well, then Ry, . o(b) € Sp(H).
Proof. Combine Proposition 3.9.5 (with A = M = B(H)) and Lemma 3.9.4. O

Proof of a weaker result without Proposition 3.9.5. We prove the following weaker result
without Proposition 3.9.5 (thus avoiding the use of the perturbation formulas from Chapter 6): If
H is a complex Hilbert space H, f € NC¥(R), a,b € B(H)sa, 7 == max{||a + tb||;_, 5 : t € [0,1]},
and p € [1, 00|, then

1B guima®)lls, < NP, g pa 1015, (3.9.8)

In particular, if b € Sy, (H) as well, then Ry, ¢, . .(b) € Sp(H).
To begin, we recall one form of Taylor’s theorem [HJ14, Thm. 1.107]: If V is a normed

vector space, W is a Banach space, and F' € C*(V; W), then

1 1
Ry pp(h) = )!/0 (1—t)*1ofF(p+th)dt, pheV.

(k-1
In particular, if f € NC¥(R), then, by Theorem 3.8.20 (with A = M = B(H)), we have

1
Ry a(d) =k / (1 — t)ft (qatthmmattd gy b dt. (3.9.9)
0
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In this case, the integral above is a pointwise Pettis integral, as we urge the reader to check.

Now, if ¢ € [0, 1], then o(a + tb) C [—r,7]. Therefore, if p € [1, o0], then Lemma 3.9.4 gives

H(Iaﬂb""’aﬁbf[k})[bv-"b]Hsp = Hf[k]"ZOO(J(a+tb)7Bg(a+tb))®i(k+1)Hb”‘]%kp < Hf[k]Hr,k—i-leH‘]%kp'

Thus,

1
IReoa®ls, < M, B0, [ 0= 0 = 79, 00,

by Equation (3.9.9) and the Schatten norm Minkowski’s integral inequality (Theorem 5.4.12

below). This completes the proof. O

Proof of Theorem 3.9.1. It is shown in [PSST17, App. A] that f, € C*(R). Now, let H be a
complex Hilbert space. If f € C(R), a,b € B(H)sa, and b € Si(H), then Ry ;.. o(b) € S1(H)
by Proposition 3.9.7. Consequently, f, & C¥/(R) by Theorem 3.9.3. O

Proof that fi @ NC¥(R) without Proposition 3.9.5. Let H be a complex Hilbert space.
If f € NC*(R), a,b € B(H)sa, and b € S,(H), then Ry, , o(b) € S1(H) by Inequality (3.9.9).
Consequently, fr € NC*(R) by Theorem 3.9.3. O

In view of Theorem 3.8.20, there is another possible approach to proving f;, ¢ NC*(R).

Conjecture 3.9.10. If fi is as in Theorem 8.9.1, then (fi) sy B(£2(N)),, — B(€*(N)) is

not k-times Fréchet differentiable.

If this conjecture is correct, then we would immediately conclude fr ¢ NC*(R) from
Theorem 3.8.20. Based partly on private correspondence with E. McDonald and F. A. Sukochev,
it seems possible that ideas from [PSST17] and [AP16] could be adapted to prove Conjecture
3.9.10, but to the author’s knowledge, this has never been carried out. Interestingly, for k > 2, it
even seems to be the case that the literature lacks explicit examples of functions f € C*(R) such
that fuew): B((*(N))_ — B(¢*(N)) has been confirmed not to be k-times Fréchet differentiable,
though it is widely accepted that such functions should exist. (By results of Peller [Pel85], any
f e CY(R)\ B]" (R)joc would do for the k = 1 case.)
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3.10 Proof of Theorem 3.1.2 by polynomial approximation

In this section, we prove Theorem 3.1.2 using the polynomial approximation approach of
Daletskii-Krein [DK56] (and Hiai [Hial0O]). At this time, the reader should review Notation 3.1.1

and recall that if a € M (C)sa and f: o(a) = Cis a function, then f(a) =3 ¢, q) [(A) Py

Lemma 3.10.1. Let A C M, (C) be a unital *-subalgebra, and let T < A be an ideal. If
a=(ay,...,ap11) € ASY @i 0(ay) x -+ x o(agy1) — C is a function, i € {1,...,k}, and

b= (by,...,by) € A7 x T x A*7, then @q(a)#,b € T.

Proof. Let a € M,,(C)ga, and write Ay C M, (C) for the unital (x-)subalgebra generated by a.
Since o(a) C R is finite, if f: o(a) — C is a function, there exists a polynomial p(\) € C[A] such
that p|yq) = f. Thus, f(a) = p(a) € Ao. In particular, P{ = 175,(a) € Ap for all A € o(a). Since
T <A, it follows that if a and b are as in the statement, then Pfll by--- P; : ka; ::11 € 7 whenever

Ai € o(a;) for all i € {1,...,k+ 1}. The result then follows from the definition of pg(a)#,b. O
Next, we present Lowner’s formula, one of the first perturbation formulas.

Lemma 3.10.2 (Lowner’s formula [Léw34]). Let a,b € M, (C)ga. If f: 0(a) Uo(b) — C is a

function, then

f@)— 1) = f@by#la—t = S S fUO ) Pia—b)P]

Xeo(a) peo(b)
where fU(X, 1) may be assigned any value when \ = pu.

Proof. We have

fla Zf Zf = > > p))PLP,

Xeo(a pneo(b A€o (a) peo(b)
=D Zf”mpm mWPi= > > MOw Pla-0)P;
A€o (a) peo(b Xeo(a) peo(b)

In the first line, we used that 3 e, o) PY = In = X_ co0) PY. In the second line, we used that

P{P =05, PY, PYP) = 05 Pp, a =3\ oy A PY, and b= 3", ) A PY- O
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Combining Lemmas 3.10.1 and 3.10.2, we see that if A C M,,(C) is a unital *-subalgebra,
Z<dAis anideal, a,b € Ag,, f: 0(a)Uo(b) — Cis a function, and a—b € Z, then f(a)— f(b) € Z,
i.e., the perturbed matrix function f, 7: Zss — Z in Theorem 3.1.2 is well defined. By another
appeal to Lemma 3.10.1, to prove Theorem 3.1.2, it suffices to show that if f € C*(R) and

frn@ : Mp(C)ga = M, (C) is defined by a — f(a), then fy, ) € C’k(Mn((C)Sa;Mn(C)), and

Boy, -+ O, oy (@) = > £ (1)) # [Dr 1) ey )]s @sb1, b € My (C)gan (3.10.3)

TESE

We encourage the reader to think about why.

We now set our sights on Equation (3.10.3).

Lemma 3.10.4 (Pure tensor functions). Let a = (a1,...,am) € Mp(C)2. If p;i: 0(a;) = Cis a
function for alli € {1,...,m} and ¢ = 1 @ -+ @ Y, then pg(a) = v1(a1) @ -+ @ pm(am). In

particular, if P(X) = Z|a|§d ca XY € CIA] =C[\1, ..., Am] is an m-variate polynomial, then

= E caa?1®...®a?nm'

loe|<d

Proof. We have

pe(a) = > P1(A1) - om(Am) Py} @ -+ @ Py
Aeo(ar)x-xo(am)

= < Z 901()\1)P)0\L11> - Q ( cPm()‘m)P)(\l;:>
A€o(ar) Am€Ea(am)

= p1(a1) ® -+ @ pm(am),

as desired. ]

Lemma 3.10.5. Ifa € M,(C)5F! and o € 0(a1) x -+ x o(ax1) — C is a function, then

[#500(@) 5, 1,y ey < 7 max{lpA)] = A € o(a1) x -+ x o(ags1)}, (3.10.6)

where My, (C) is given the operator norm || - || = || - |lcn—cn -
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Proof. If b = (b1,...,bx) € M, (C)*, then

[ps () #40] = > plar, Ao,y M) BLPY? - b Py
X2€a(az),..., Ap+1€0(ak41)

< 3 loar Ay M) ol | P2 - Dl [ P52
X2€0(a2),.. s Ap+1€0(ap41)

= 2 o, Akl ]
Xe€a(az), . Apt1€0(ags1) ! !

< o max{lp(N)] : X € o(a1) x -+ x o ag1)} [|or]] - - [|bg]

because a; has at most n distinct eigenvalues whenever i € {1,...,k + 1}. O

Remark 3.10.7. It turns out that

1# k20 (@) B, (Mo (©),l115)F: (Mo (©),ls)) = Max{ @A) A € o(ar) x -+ x o(ar41)},

where || - ||gs is the Hilbert—Schmidt norm; please see [ST19, Prop. 4.1.3]. Due to the inequality
-1l < |- llms < n'/2| - ||, we therefore may replace the n* in Inequality (3.10.6) with n®/2. Note
that even this sharper estimate depends on the dimension n in an unbounded way, which suggests

difficulties with the infinite-dimensional case.
Lemma 3.10.8. If k € N, then C[)\] is dense in C*(R) with the C* topology.

Proof. We first prove that if » > 0 and f € C*(R), then there exists a sequence (g, )nen of
polynomials such that for all ¢ € {0,...,k}, qg) — f@ uniformly on [—r,7] as n — oo. To
this end, use the classical Weierstrass approximation theorem to find a sequence (gon)nen of
polynomials such that go, — f%) uniformly on [—r,7] as n — oo. Now, for i € {1,... k}
and n € N, recursively define g; ,(\) = flk=1) (0) + fo/\ ¢i—1n(t)dt for all A € R. Note that
¢in(A) € C[A]. By an induction argument using the dominated convergence theorem and the
fundamental theorem of calculus, the sequence (¢, )nen = (qkn)nen accomplishes the stated goal.
Next, let f € C*(R). By what we just proved, if N € N, then there exists a gy (\) € C[\] such
that ||(f — qN)(i)HEOO([—N,N]) < 1/N for all i € {0,...,k}. The sequence (¢n)nen of polynomials

converges to f in the C* topology. O
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Proof of Equation (3.10.3). First, let m € Ny, and define p,,(A) = A™ € C[A] as usual.
Then the map (Pm ), c): Mn(C)sa — My, (C) is the restriction of the homogeneous polynomial
M, (C) 3 a — a" € M,(C). Therefore, Equation (3.10.3) holds when f = p, by Proposition
1.2.6, Example 1.3.8, and Lemma 3.10.4. Consequently, by linearity, Equation (3.10.3) holds
whenever f(\) € C[\|.

Next, recall that if V' and W are normed vector spaces and T € Bk(Vk; W), then

S(T)[Ul)"'vvk = k' Z Ur(1)y---» U (k)]7 v, €V.
TESK

In this notation, Equation (3.10.3) rewrites to

D fuyier(a) = 1S (S8 (ages)))

v O€ My (C)sa (3.10.9)

To prove this equation, let f € C¥(R). By Lemma 3.10.8, there exists a sequence (gn(A))pen in
C[)] converging to f in C*(R). Fix r >0 and i € {1,...,k}, and define

M (C)sar = {a € Mp(Csa : [laf| <7} and |- [l = || - [| 5, v, (€)M (€))-

Then supyem, ()., 1 (@) —an(a)|| = [If — anlleo((—ry) — 0 as N — co. Also, by the previous

paragraph, Lemma 3.10.5, and Corollary 1.3.7, if a € M;,(C)sa -, then

its (#:2 (arn) ) = Dilam)sncor ()] = ]| S (#:F = @) asn)) ||

7

< Z‘H#Z(f - qN)‘[Xi’] (a(iJFl)) Hz <! an(f - qN)[i] HKOO(O'(a)i+1) < nZH(f B QN)(Z')HEOO([—T,T})'

In particular,

i e o) N—o0
aEMS:?C))sa,r HZ'S(# P a (agit1 )) D (QN)I\/In(C)(a)Hi <n!||(f —an) Hﬂoo([fr,r]) — 0.

Since 7 > 0 and i € {1,...,k} were arbitrary, Theorem 1.2.12 gives fur, ) € C¥(M,(C)sa; M, (C))

and Equation (3.10.9). This completes the proof. O
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The reason this proof works is that, in the finite-dimensional case, the map b — fgﬂ (a)#b
satisfies a (dimension-dependent) operator norm estimate involving the uniform norm of f*.
In the infinite-dimensional case, the uniform norm is too weak for this operator norm estimate.

However, there are stronger norms, e.g., the (¢(*°-integral) projective tensor norm, that work.
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Chapter 4

Background 11

In this chapter, we briefly review some additional background necessary for Chapters
5 and 6. Specifically, we discuss several standard topologies on spaces of operators (§4.1);
projection-valued measures, the spectral theorem, and operators affiliated with von Neumann
algebras (§4.2); and Schatten-class operators and noncommutative LP-spaces of semifinite von

Neumann algebras (§4.3).

Standing assumptions. Throughout, H and K are complex Hilbert spaces, and (-, ) = (-, ) .

Also, recall that if S C B(H), then S = {a € B(H) : ab = ba for all b € S}.

4.1 Operator topologies

In this section, we record facts that we need about some standard locally convex topologies
on B(H; K). We assume the reader is quite familiar with these in the H = K case, which is
covered in [Tak79, Ch. II] and [Dix81, Pt. I, Ch. 3]. When H # K, all the basic properties still

hold with essentially the same proofs.

Definition 4.1.1 (Operator topologies). Recall that Ry = [0, 00).

(i) The weak operator topology (WOT) on B(H; K) is the one generated by the seminorms

B(H;K)> A~ [(Ah,k)k| € Ry, heH, keK.

(ii) The strong operator topology (SOT) is generated by the seminorms

B(H;K)> Aw ||[Ah|lk € Ry, heH.
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(iii) The strong* operator topology (S*OT) is generated by the seminorms
B(H;K)> A ||Ah||x + ||[A*k||g € Ry, heH, keK.

Next, define

2(N;H) = {(hn)neN e HY : i % < oo}

n=1

with the inner product

oo

<(hn)n€N7 (kn)n€N>£2(N;H) = Z<hn7 kn>H7 (hn)n€N7 (kn)neN € 62(N; H)

n=1

(iv) The o-weak operator topology (o-WOT) is generated by the seminorms
B(H; K) 3 A= [((Ahn)nen, (kn)nen) 2oy k)| € Ry,

where (hp,)nen € 2(N; H) and (kp)nen € 2(N; K).

(v) The o-strong operator topology (o-SOT) is generated by the seminorms
B(H; K) > A H(Ahn)nENHZ?(N;K) € Ry, (hn)nEN € 62(N; H)
(vi) The o-strong* operator topology (o-S*OT) is generated by the seminorms

B(H; K) 3 A [[(Ahp)nenlle iy + (A" kn)nenlleqv.my € Ry,

where (hp,)nen € £2(N; H) and (kp)nen € 2(N; K).

When referring to these topologies, we shall often omit the term “operator.” Also, if V C B(H; K),
then the subspace topologies inherited by V' from the above-defined topologies on B(H; K) are

given the same names as above. For example, the o-weak topology on V' is the subspace topology

V inherits from the o-WOT on B(H; K).

Here are all the facts we need about these topologies.
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Theorem 4.1.2 (Properties of operator topologies). Let V C B(H; K) be a linear subspace, let
0: V — C be a linear functional, and fir T € {WOT, SOT, S*OT}.

(i) The topology T agrees with the topology o-T on norm-bounded subsets of B(H; K). In
particular, since the net of finite-rank orthogonal projections on K converges in the WOT

to 1 =idg, the finite-rank linear operators H — K are o-weakly dense in B(H; K).

(ii) £ is T -continuous if and only if there exist hy,...,hy, € H and ky,. .., k, € K such that

n

0A) =) (Ahi k), A€V
i=1
(iii) ¢ is o-T -continuous if and only if there exist (hy)nen € £2(N; H) and (kn)nen € £2(N; K)

such that

o0

£(A) = ((Ahn)nen, (kn)nen)e2(v,x) = Z(Ahn, kn)k, A€V

n=1

Suppose now that V- C B(H; K) is also o-weakly closed.

(iv) If Vi = {o-weakly continuous linear functionals V. — C} = (V,0-WOT)*, then V, C V*
is a (norm-)closed linear subspace, and the map evy: V. — V.* defined by A — (£ — ((A))

is an isometric isomorphism. We therefore call V, the predual of V.

(v) The map evy from the previous part is a homeomorphism with respect to the o-weak
topology on V' and the weak* topology on V.*. The o-weak topology on V is therefore also

called the weak* topology.

Finally, suppose M C B(H) and N'C B(K) are von Neumann algebras.

(vi) Ifm: M — N is a unital x-isomorphism in the algebraic sense, then m is a homeomorphism

with respect to the o-weak topologies on M and N .

If H = K, then the first five items are proven in [Dix81, Pt. I, §3.1] and [Tak79, §11.2].
The proofs of these statements when H # K are slight notational modifications of the proofs in

the aforementioned references. The final item is part of [Dix81, Pt. I, Cor. 4.1].
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4.2 Unbounded operators and the spectral theorem

Here, we provide information about unbounded operators, projection-valued measures,
and the spectral theorem that is necessary for our purposes. Please see [BS80, Chs. 3-6] or

[Con90, Chs. IX & X] for more information and proofs of the facts that are stated without proof.

Definition 4.2.1 (Unbounded operator). An (unbounded linear) operator A from H to K
or H— K (“on H” it H = K) is a linear subspace dom(A) C H—the domain of A—and a

linear map A: dom(A) — K. The operator A is
(i) densely defined if dom(A) C H is dense;

(ii) closable if the closure in H x K of its graph I'(A) := {(h, Ah) : h € dom(A)} is the

graph of an operator A from H to K, called the closure of A; and
(iii) closed if I'(A) is closed in H x K, i.e., A= A.
C(H; K) is the set of closed, densely defined operators H — K, and C(H) := C(H; H).

Notation 4.2.2 (Sum, product, and containment). If A and B are operators H — K, then A+ B
is the operator H — K defined by dom(A + B) := dom(A) Ndom(B) and (A + B)h := Ah + Bh
for h € dom(A + B). Also, we write A C B if I'(4) C I'(B), i.e., dom(A) C dom(B) and
Ah = Bh for all h € dom(A), and A = Bif A C B and B C A. Finally, if £ is another
complex Hilbert space and C' is an operator K — L, then C'A is the operator H — L defined by
dom(CA) := A7 (dom(C)) and (CA)h = C(Ah) for h € dom(CA).

Definition 4.2.3 (Adjoint). If A is a densely defined operator H — K, then its adjoint A* is
the operator K — H defined by: dom(A*) is the set of k € K such that the linear functional
dom(A) 3 h — (Ah, k)i € C is bounded, and for k € dom(A*), A*k € H is the unique vector in
H such that (Ah,k)x = (h, A*k) g for all h € dom(A). An operator A € C(H) is

(i) normal (written A € C(H),) if A*A = AA*,
(ii) self-adjoint (written A € C(H)g,) if A* = A, and

(iii) positive (written A € C(H)4) if A is self-adjoint and (Ah, h) > 0 whenever h € dom(A).
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Proposition 4.2.4 (Properties of the adjoint [Con90, Prop. IX.1.6]). If A is a densely defined
operator from H to K, then A* is a closed operator from K to H. Moreover, A* is densely

defined if and only if A is closable, in which case A = A* = (A*)*.
We now extend the notion of spectrum to unbounded operators.

Definition 4.2.5 (Resolvent and spectrum). If A is on operator on H, then the resolvent
set p(A) C C of A is the set of A € C such that A — A = Aidg — A: dom(A) — H is a linear
isomorphism with bounded inverse; in this case, we view (A — A)~! as a member of B(H). The

spectrum of A is the set 0(A) :=C\ p(A).

Proposition 4.2.6 (Properties of the resolvent and spectrum [Con90, Props. X.1.15 & X.1.17]).
If A is an operator on H, then p(A) C C is open (empty if A is not closed); thus, o0(A) C C is

closed. Moreover, the resolvent p(A) > X\ +— (A — A)~! € B(H) is holomorphic.
Next, we move on to basic definitions and facts about projection-valued measure theory.

Notation 4.2.7 (Projections). If M C B(H) is a von Neumann algebra, then
Proj(M) = {pe M :p* =p=p"}

is the lattice of (orthogonal) projections in M.

Definition 4.2.8 (Projection-valued measure). Let (£2,.#) be a measurable space. A map
P: .7 — B(H) is a projection-valued measure if it is a vector measure (Definition A.2.1(v))
with respect to the WOT such that P(Q) =1 =idy and P(G) € Proj(B(H)) whenever G € .Z.
In this case, (2, %, H, P) is a projection-valued measure space. Also, a property holds

P-almost everywhere if there exists a G € .# with P(Q2\ G) = 0 on which the property holds.

It is common to include the requirement that
P(GlﬂGg):P(Gl)P(GQ), Gl,GQ Eﬁ,

in the definition of a projection-valued measure. However, by [BS80, Thm. 5.1.1], the definition

given above implies this property.
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Of course, a measure’s purpose in life is usually to integrate functions. This certainly is
true for projection-valued measures, so we now turn to the construction of integrals of scalar

functions with respect to projection-valued measures. (Please review Notation 1.3.12 at this time.)

Notation 4.2.9. If (,.%, H, P) is a projection-valued measure space, then ~p denotes the

P-almost everywhere equivalence relation on (€2, %), and LO(P) := (°(Q, .F)/~p. Also,
”fHLoo(P) = P- esssglzlp lfw)=inf{c>0: PweQ:|f(w)]>c}) =0}, f¢€ LO(P),
we

and L>®(P) == {f € L°(P): £l oo (py < 00}

By repeating the arguments from the scalar case, it is easy to see that L(P) is a *-algebra
and (L>®(P), |- Loo( P)) is a C*-algebra under pointwise P-almost everywhere operations.

The result below summarizes much of the development in [BS80, Ch. 5].
Proposition 4.2.10 (Integration with respect to a projection-valued measure). Let (2, %, H, P)
be a projection-valued measure space, and fix f,g € LY(P).
(i) Fiz h,k € H. If
Ph,k(G) = <P(G)hvk>7 G e ya

then Py is a complex measure such that || P || < ||h|| ||k]|. Also, Py < P in the sense
that if P(G) = 0, then P, ,(Go) = 0 whenever % > Gy C G, i.e., |P,;|(G) = 0. Finally,

Py, is a (finite) positive measure.
(i) If
dom(P(f)) == {h cH: / |fI2 Py < oo},
Q

then dom(P(f)) C H is a dense linear subspace. If h € dom(P(f)), then f € L'(|Ppk|)

for all k € H, and there exists a unique vector P(f)h € H satisfying

(P(f)h, k) = /Q fdPuy, ke H.

Furthermore, if we define P(f): dom(P(f)) — H by h — P(f)h, then P(f) € C(H),.
The operator [, fdP = [ f(w) P(dw) := P(f) is the integral of f with respect to P.
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(iii) P(f)* = P(f), dom(P(f)P(g)) = dom(P(g)) Ndom(P(fg)), P(f)P(g) = P(fg), and
P(f)+ P(9) = P(f +g). In particular, P(f)*P(f) = P(|f[*); and if g € L>®(P), then

P(f)P(g) = P(fg), and P(f + g) = P(f) + P(g).
(iv) The map L>*(P) > f+— P(f) € B(H) is an isometric, unital *-homomorphism.
v) Let (fn)nen be a sequence in L°°(P). If sup frllroorpy < 00 and f,, — f pointwise
neNllInllLeo(p)
P-almost everywhere, then P(f,) — P(f) in the strong* operator topology as n — oco.

The reason projection-valued measures are relevant for us is the spectral theorem.

Theorem 4.2.11 (Spectral theorem [Con90, Thm. X.4.11]). If A € C(H),, then there ezists
a unique projection-valued measure PA: Be — B(H) such that A = Ic A PA(dN). Furthermore,
PA(C\ 0(A)) = PA(p(A)) =0, and PA(U) # 0 whenever U C o(A) is a nonempty open set.

Proposition 4.2.12 (Agreement with continuous functional calculus). If A € B(H), and P4 is

as in Theorem 4.2.11, then fU(A) fAPA =D 4(f) for all f € C(a(A)).

Proof. The map C(d(A)) > f — [ fdP4 = fo‘(A) fdPA € B(H) is a unital *-homomorphism
sending ¢,(4, to A by Proposition 4.2.10(iv) and the definition of P#, so the result follows from

the uniqueness part of Theorem 3.2.8. O
Consequently, the following does not clash with Definition 3.2.11.

Definition 4.2.13 (Projection-valued spectral measure and functional calculus). Let A € C(H),.
The projection-valued measure P4 given by the spectral theorem is the projection-valued

spectral measure of A; we frequently consider P4 to be a map By(ay — B(H). Also, define

f(A) = PA(f) = " fdPte C(H),, fe(a(A),Byn)).

The map £°(0(A), By(a)) 3 f — f(A) € C(H), is the (Borel) functional calculus of A.

The spectral theorem enables the construction of the absolute value of an arbitrary closed,
densely defined operator on H. First, we comment that if A € C(H),, then A € C(H)g, if and
only if 0(A) C R, and A € C(H)4 if and only if o(A) C [0, 00).
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Theorem 4.2.14 (Von Neumann’s theorem [Con90, Prop. X.4.2(d)]). If A is a closed, densely
defined operator from H to K, then A*A is a positive operator on H, i.e., A*A € C(H)y. In

particular, o(A*A) C [0, 00).
Consequently, we can make the following definition via the functional calculus.

Definition 4.2.15 (Absolute value). If A € C(H) is arbitrary, then |A| :== (A*A)% € C(H)4 is

the absolute value of A.

Also, there exists a unique partial isometry U € B(H) with initial space im |A| = im(A*)
and final space im A such that A = U|A|. (In particular, dom(A) = dom(|A]).) This is called
the polar decomposition of A; please see [BS80, Thms. 8.1.2 & 8.1.3].

We end this section with the concept of an unbounded operator affiliated with M. (This

is the closet an unbounded operator can come to “being in” M.)

Definition 4.2.16 (Affiliated operators). An operator a € C(H) is affiliated with M if
u*au = a for all unitaries v belonging to the commutant M’. In this case, we write a n M. If, in

addition, a is normal (respectively, self-adjoint), then we write a n M,, (respectively, a n Mg,).
Here are some properties of affiliated operators.
Proposition 4.2.17. Let (2, %, H, P) be a projection-valued measure space.
(i) If a € B(H), then an M if and only if a € M.

(i) If P(G) € M for all G € .Z, then P(f) n M for all f € L°(P). In particular, by the
previous item, P(f) € M for all f € L>®(P).

(iii) If a € C(H)y, then a n M if and only if P*(G) € M for all G € B, in which case
f(a)n M for all f € L°(P%). In particular, f(a) € M for all f € L>®(P%).

(iv) If a € C(H) and a = ulal| is its polar decomposition, then a n M if and only if u € M
and PlU(G) € M for all G € By (la)) -
We sketch the proofs for the reader’s convenience. As we shall see, the first three

properties follow without much difficulty from the definitions, the bicommutant theorem, and the

spectral theorem. For the difficult part of the fourth item, please see also [MvN36, Lem. 4.4.1].
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Sketch of proof. We take each item in turn.

(i) Fix a € B(H) and a unitary u € M’. If a € M, then, of course, u*au = u*ua = a.
Now, if a 7 M, then au = uu*au = ua. Since all C*-algebras are spanned by their unitaries, we
conclude that ab = ba for all b € M’. Thus, a € M” = M by the bicommutant theorem.

(ii) Suppose P(G) € M forall G € %. If h,k € H and u € M’ is a unitary, then it is easy
to see that Py, uk = Ph k. Unraveling the definition of P(f) then gives u*P(f)u = P(f). Thus,
P(f) n M. It is worth mentioning that one can prove much more directly—without knowing
anything about unbounded operators or the bicommutant theorem—that if P(G) € M for all
G € Z, then P(f) € M for all f € (>°(Q,.%). Indeed, H := {f € {*°(Q,.7) : P(f) € M} isa
unital x-subalgebra of £*°(€2,.#) by Proposition 4.2.10(iv), H is closed under bounded convergence
by Proposition 4.2.10(v), and {1l¢g : G € .#} C H by assumption. By the multiplicative system
theorem (Theorem 5.2.5), H = (*°(2, 7).

(iii) If P*(G) € M for all G € By, then a = [+ A P*(d)\) n M by the previous item.

(a)
Now, suppose a n M,,, and let u € M’ be a unitary. Note that Q* := u*P*(-)u: B,y — B(H)
is a projection-valued measure, and it is easy to see from the spectral theorem and the definition
of Q% that u*au = fa(a) AQ%(dN). But u*au = a by assumption, so the uniqueness part of the
spectral theorem forces P* = Q% = u*P%(-)u. In other words, P*(G) n M and thus, by the first
item, P*(G) € M for all G € B, ().

(iv) Let a € C(H), let a = u|a| be the polar decomposition of a, and let v € M’ be a
unitary. If Plel(G) € M for all G € By (jap)» then |a| n M by the previous item. If, in addition,

u € M, then we have that
viav = v*ulalv = v uvv*|alv = ulal = a.

Thus, a n M. Conversely, if a 7 M, then |a| = |[v*av| = v*|a|v. Thus, |a|] n» M, and by the
previous item, P‘“'(G) € M for all G € B,(jq))- Next, notice that v*uv is a partial isometry, and
a = v*av = v*ulalv = v*uwv|a| by what just proved. Finally, |a| n M implies that v*uv has initial
space M, and a 7 M implies that v*uv has final space ima. We conclude that v*uv = u by

the uniqueness of the polar decomposition. Thus, u n M and so, by the first item, v € M. [
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4.3 Schatten classes and noncommutative LP-spaces

We now record some standard facts about Schatten p-class operators H — K that will
be of use to us. Please see [Rin71, Ch. 2] for the proofs of these basics (and more) in the H = K
case. For just the cases p € {1,2, 00}, please see [Con00, §§18-20] as well. As with the material
in §4.1, all the basic properties in the H # K case have essentially the same proofs; the main

tools this time are the singular value and polar decompositions.

Definition 4.3.1 (Schatten classes). If p € [1,00), &€ C H is an orthonormal basis, and

A € B(H; K), then we define

3=

[Alls, () = I|Alls, = (Z(W”@@H) € (0,09

ect
and S,(H; K) == {A € B(H;K) : [|[Alls, < oo}. Also, we define Soo(H; K) = B(H; K) with the
operator norm

[Allscrr:00) = 1 Allsoe = 1Al = 1Al 51— k-

For p € [1,00], Sp(H; K) is the set of Schatten (or Schatten—von Neumann) p-class
operators from H to K. Also, we write K(H; K) = {compact linear operators H — K},
K(H)=K(H;H),and S,(H) =S,(H; H).

Remark 4.3.2. We caution the reader that So(H; K) sometimes is taken to be the space of

compact operators H — K, and often the letter C is used instead of S.

Theorem 4.3.3 (Properties of Schatten classes). Let p € [1,00].

(i) (Sp(H;K),||ls,) is a Banach space, ||-|s, is independent of the chosen orthonormal basis,
and when p < 0o, the set of finite-rank linear operators H — K is dense in S,(H; K). Also,
(K(H; K),||-]|) is a Banach space with the set of finite-rank linear operators H — K as a
dense linear subspace. Finally, if 1 <p < g < oo, then Sp(H; K) C Sy(H; K) C K(H; K),

and the inclusions S, — S; — K each have operator norm at most one.
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(ii) If Ae B(H) and € C H is an orthonormal basis, then

> [(Aeehn] < || Alls,-

eef

If Ae S1(H), then
Tr(A) = > (Ae,e)y €C

ec&
is the trace of A and is independent of the choice of £. Furthermore, ||A*|s, = ||4]ls,
and Tr(A*) = Tr(A) for all A € Si1(H).

(iii) (Holder’s inequality) If Hy,..., Hxy11 are complex Hilbert spaces and p1,...,pr € [1, 0]

satisfy 1/p = 1/p1 + -+ + 1/pg, then

[A1 - Alls, iy < N Atlls,, (om) - 1 Akls,, (im0

for all Ay € B(Hy; Hy),...,Ax € B(Hyy1; Hy). (As usual, 0- 00 :=0.)
(iv) If g€ [1,00], 1/p+1/q=1, and A € S,(H; K), B € S4(K; H), then Tr(AB) = Tr(BA).

(v) If pe [1,00),q € (1,00], and 1/p+1/q = 1, then S;(H; K) = S,(K; H)* isometrically
via A (B — Tr(AB)). Also, S$1(H; K) = K(K; H)* isometrically via the same map.

(vi) The weak® topology on B(H; K) induced by the identification
B(H;K) = Sc(H; K) = S1(K; H)

is called the ultraweak topology, and it agrees with the o-WOT. In particular, finite-rank

linear operators H — K are ultraweakly dense in B(H; K).

Next, we review some basics of semifinite von Neumann algebras and noncommutative

LP-spaces. (The reader who is uninterested in semifinite von Neumann algebras may skip at this

time to Chapter 5.)

Notation 4.3.4. If a,b € B(H), then we write a < b or b > a to mean that b —a € B(H)4. If

M C B(H) is a von Neumann algebra, then M, :={a € M :a >0} = B(H)y N M.
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It is easy to see that M is closed in the WOT. We also have the following.

Proposition 4.3.5 (Vigier’s theorem [Con00, Prop. 43.1]). Let M C B(H) be a von Neumann
algebra. If (ai)icr is a net in Mg, that is bounded and increasing (i < j = a; < aj), then
a = sup;cyay exists in B(H)s, and lim;er a; = a in the WOT. In particular, a € Mg,, and

a € My whenever {a; :i €1} C M.
Definition 4.3.6 (Trace). Let M C B(H) be a von Neumann algebra. A map 7: My — [0, 00]
is a trace if
(i) 7(a+0b) = 7(a) + 7(b) for all a,b € M,

(ii) 7(Aa) = A7(a) for all @ € M4 and A € Ry, and

(iii) 7(c*c) = 7(cc*) for all ¢ € M.
A trace 7: M — [0,00] on M is

(iv) normal if

T ( sup ai> = sup 7(a;)
iel iel

whenever (a;);cs is a bounded and increasing net in M,
(v) faithful if « € M4 and 7(a) = 0 imply a = 0, and
(vi) semifinite if 7(a) = sup{7(b) : a > b € M4, 7(b) < oo} for all a € M.

If 7 is a normal, faithful, semifinite trace on M, then (M, ) is called a semifinite von

Neumann algebra.

Remark 4.3.7. In the presence of Conditions (i) and (ii), Condition (iii) is equivalent to

T(u*au) = 7(a) for all @ € M4 and u € U(M). This is [Dix81, Pt. I, Corollary 6.1].

For basic properties of traces on von Neumann algebras, please see [Dix81, Pt. I, Ch. 6]
or [Tak79, §V.2]. Motivating examples of semifinite von Neumann algebras are (B(H), Tr) and
(L>®(Q, 1), Jqo - dp), where (9,7, 1) is a localizable (e.g., o-finite) measure space, and L™ (£, j)
is represented as multiplication operators on L?(€2, ). We now record some basics of LP-spaces
associated to a normal, faithful, semifinite trace. We shall mostly draw results from [dS18, Dix53].

For more information and different perspectives, please see [FK86, Nel74, Ter81, YeaT75].
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Notation 4.3.8. Let (M, 1) be a semifinite von Neumann algebra. If a € M, then
1
lall Loy = 7(lal")» € [0,00] and LF(7) :={be M:[Ibl[}, ) =7(b]") <oo}, p€ [l o00).

For the p = oo case, we take L(7) := M with || - ||pec(7) = || - -

It turns out that £!(7) € M is an ideal of M spanned by L£}(7), = LY(7) N M.

Furthermore, there exists a unique linear extension of 7|, L1(1)y — C to £(7), which we

)t

notate the same way, and this extension satisfies
m(ab) = 7(ba) a€ M, be LYT).

Finally, if b € £1(7), then the map M > a + 7(ab) € C is o-weakly continuous. These facts are

proven as [Dix81, Pt. I, Prop. 6.1], together with the sentence before [Dix81, Pt. I, Prop. 1.9].

Theorem 4.3.9 (Properties). Fiz a semifinite von Neumann algebra (M, 1) and p € [1, c0].

(1) (LP(7), [l - llr(r)) s @ normed vector space. Its completion, denoted by (LP(7), | - ||rr(r)),

is the noncommutative LP-space associated to (M, ).

(ii) If a € LY (7), then |7(a)] < 7(la]) = lla|l L1y Thus, 7: LY(T) = C extends uniquely to a

bounded linear map, notated the same way, L*(t) — C.

(iii) (Nonommutative Holder’s inequality) If p1,...,pr € [1,00] satisfy 1/p = 1/p1+---+1/py,
lar - akllier) < llallpercry - lawll ey ar, ... ap € M.

(iv) If g € [1,00] is such that 1/p+1/q = 1, then
lall o) = sup{llabdl[L1(7) : b € LUT), Ibllpary < 1}, a € M.

If (M, 7) = (B(H), Tr), then LP(7) = LP(7) = Sp(H) and || - || zp(r) = || - ||s,- Therefore,

Theorem 4.3.9 generalizes parts of Theorem 4.3.3 in the case H = K.
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Chapter 5

Multiple operator integrals

A multiple operator integral (MOI) is an indispensable tool in several branches of
noncommutative analysis. However, there are substantial technical issues with the existing
literature on the “separation of variables” approach to defining MOIs, especially when the
underlying Hilbert spaces are not separable. In this chapter, we provide a detailed development
of this approach in a very general setting that resolves existing technical issues. Along the way,
we characterize several kinds of “weak” operator-valued integrals in terms of easily checkable
conditions and prove a useful Minkowski-type integral inequality for maps with values in a

semifinite von Neumann algebra.

Standing assumptions. Throughout, k € N; Hy, ..., Hy41, K, H are complex Hilbert spaces;
and (-,)y = (-,-). In §5.3, we retain the standing assumptions from §1.1; please see the
beginning of Chapter 1. In §§85.5-5.8, (Q;,.%;, H;, F;) is a projection-valued measure space for all
ie{l,...,k+1}, and

(QF H,P)= (1 x X Qy1, A Q @ Fpy1, H1 ®2 - @2 Hi1, L @ -+ @ Pry1)
is their tensor product (Theorem 5.1.4). In §5.9, Q is a set.

5.1 Introduction

Let (Q2,.%, H, P) be a projection-valued measure space. In Proposition 4.2.10, we described
the construction of P-integrals of scalar-valued functions. However, there are instances where

it seems necessary to define a notion of [, ®dP for operator-valued functions ®: Q — B(H).
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For example, when one studies the smoothness properties of scalar functions of operators
[DK56, dPS04, Pel06, ACDS09, AP16, Pell6, CLMSS19, LMS20, LMM21, Nik23a, Nik23c| or

spectral shift [AP11, DS14, PSUZ15, Skr18], one must consider integrals of the form

/ / gp(wl,...,wkH) Pl(dwl) b1 -'-Pk(dwk) bk Pk+1(dwk+1), (5.1.1)
Qpy1 951

where (§;, %#;, H;, P;) is a projection-valued measure space, ¢: = Q1 x---x Qi1 — Cis a scalar
function, and b; is a bounded operator on H. The innermost integral le o(ywa, .. wrr1)dPy
makes sense using the standard theory from Proposition 4.2.10, but it is already unclear how to
integrate the map wo — fﬂl o(ywa, ..., wigr1) APy by with respect to P5. Yu. L. Daletskii and S.
G. Krein made the first attempt at doing so in their seminal paper [DK56], wherein they used a
Riemann—Stieltjes-type construction to define fst ®(r) P(dr) for certain Borel projection-valued
measures on compact intervals [s,t] C R and maps ®: [s,t] — B(H). This approach, which
requires rather stringent regularity assumptions on ®, allows one to make sense of (5.1.1) as an
iterated operator-valued integral, i.e., a multiple operator integral, for certain (highly regular) .

In general, an object that gives a rigorous meaning to (5.1.1) is called a multiple
operator integral (MOI). Under the assumption that H is separable, these have been studied
and applied extensively to various branches of noncommutative analysis. Please see A. Skripka
and A. Tomskova’s book [ST19] for an excellent survey of the MOI literature and its applications.
In this chapter, we shall concern ourselves with the “separation of variables” approach to defining
MOIs that is useful for differentiating operator functions; please see, e.g., [ACDS09, Nik23a, Pel06]

and Chapter 6. Loosely speaking, this means that one assumes ¢ admits a decomposition

so(w)=/Zsm(wl,o)---sok+1(wk+1,o)p(da), w=(wi,...,wes1) € €, (5.1.2)

where (X,.77, p) is a measure space and ¢;: ; x ¥ — C is a (product) measurable function, and

then one defines (5.1.1) to be the “weak” operator-valued integral

/E Py(1(-0)) b1+ Pulr(-0)) b P (91 (- 0)) pldo). (5.1.3)
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When taking this approach, there are at least three questions to be addressed.

Q1)
(Q-2)
(Q-3)

Exactly which decompositions does one allow in Equation (5.1.2)7
Exactly what kind of operator-valued integral is (5.1.3)7

Assuming satisfactory answers to (Q.1) and (Q.2), does (5.1.3) depend on the decomposi-

tion chosen in Equation (5.1.2)7

There are various answers to these questions available in the literature, but the existing answers

are inadequate to cover the case when H is not separable, and some of them have issues even

when H is separable. (Please see, e.g., the comments in [DDSZ20, §4.6] and §6.7.) In this chapter,

we provide detailed, very general answers to all three questions above without assuming that H

is separable.

(A1)

(A.2)

We consider integral projective decompositions (Definition 5.5.3) of ¢. In other words,
we take ¢ in the integral projective tensor product L™ (P)®; - - - @; L (Py,1), the idea

for which is due to V. V. Peller [Pel06]. There are substantial “measurability issues,

discussed in Remark 5.5.4, with existing definitions of this object. We resolve these in §5.5.

Let V' C B(H; K) be a linear subspace. In Theorem 5.4.5, we characterize weak integrabil-
ity of maps ¥ — V in the weak, strong, strong*, o-weak, o-strong, and o-strong* operator
topologies on V. As an application of this independently interesting characterization, we
prove in §5.6 that if V = M C B(H) is a von Neumann algebra and P;(G) € M for all
i€{l,...,k+1} and G € %, then the integrand in (5.1.3) is weakly integrable in the

o-weak operator (aka weak™) topology on M whenever by, ..., by € M.

The independence of (5.1.3) of the chosen integral projective decomposition (5.1.2) of
@ is highly nontrivial and has not yet been proven for non-separable H. In §5.6, we
present a robust new argument that proves this fact for general H. The key ingredient
to the argument, which we discuss in §5.2, is a basic fact from measure theory: the

multiplicative system theorem (Theorem 5.2.5).

We also prove in §5.8 that the above-described approach to defining (5.1.1) agrees with another

commonly used approach, due to B. S. Pavlov [Pav69], when both apply. Finally, even with all

of (Q.1)—(Q.3) answered, applications often demand answers to an additional question.
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(Q.4) What kinds of quantitative norm estimates for (5.1.1) are available?
Our development gives us some answers to this question as well.

(A.4) In §5.4, we prove Minkowski-type integral inequalities for Schatten p-norms and noncom-
mutative LP-norms of operator-valued integrals that seem to be new in the non-separable
case and are of independent interest. These inequalities allow us to prove Schatten p-norm

and noncommutative LP-norm estimates for (5.1.1) in §5.7.

Actually, the aforementioned Minkowski-type integral inequalities can be combined with the
theory of symmetric operator spaces to give a much more general answer to (Q.4). We carry this
out in Chapter 6 and use it to prove new results about higher derivatives of operator functions
in ideals of von Neumann algebras.

With this high-level overview under our belts, we give a precise summary of our main
results on MOIs. For reasons explained at the beginning of §5.3 and in Remark 5.5.4, we shall
be forced to integrate non-measurable functions. For this purpose, we use upper (and lower)

integrals. If (X, 77, p) is a measure space and f: 3 — [0, 00] is any function, then

/f(a) p(do) = /f dp = inf { / fdp:f<f pae., f: 5 —][0,00] measurable}
) b b

is the upper integral of f. Proposition 5.3.2 lists the properties of this upper integral (and its
lower counterpart) that we need.

Next, we state the precise definition of L>(P;)®; - - - ®; L°(Pg41). To do so, we need the
notion of the tensor product of projection-valued measures. We write ®o for the Hilbert space

tensor product; please see the beginning of §5.9.

Theorem 5.1.4 (Birman-Solomyak [BS96]). Let (21, %1, H1,P1),. .., (Qk+1, Prt1, Hir1, Pet1)

be projection-valued measure spaces, and write (2, F) = (21 X -+ X Q11,71 @ -+ @ Fpy1)-

F
There exists a unique projection-valued measure P: F — B(H; ®g --- ®9 Hyy1) such that
PGy x X Gpy1) = P1(G1) @ @ Pry1(Gryr), Gr € Fu,...,Gryr € Frqr.

We call P the tensor product of P1,..., Pyy1 and write Pl ® - - @ Pyy1 = P.
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For completeness, we supply a proof in §5.9. Now, retain the setup of Theorem 5.1.4,
and let ¢: Q@ — C be a function. A L -integral projective decomposition of ¢ is a choice
(3, p, @1, - .., pr+1) of a o-finite measure space (X, 7, p) and measurable functions p;: ; x% — C

such that ¢;(-,0) € L>®(F;) for all o € 3,

/E lo1(o0) ey - [k 0) ooy p(do) < 00, (5.1.5)

and Equation (5.1.2) holds P-almost everywhere. (The integral on the right-hand side of Equation
(5.1.2) makes sense P-almost everywhere by Lemma 5.5.1.) Now, define |[@|l oo (p)&,...0, 100 (P 1 1)
to be the infimum of the set of numbers (5.1.5) as (X, p, 1, ..., Pr4+1) ranges over all L -integral
projective decompositions of . In §5.5, we prove that if L>(P;)®; - - - ©; L>°(Py1) is the space
of P-almost everywhere equivalence classes of functions ¢ admitting L¥-integral projective

decompositions, then L™ (Py)®; - --®;L>®(Ps41) is a unital Banach *-algebra under P-almost

everywhere operations and the norm || - || Lo (p) ;8,15 (Py 1 1)-

Theorem 5.1.6 (Well-definition of MOIs). Let M C B(H) be a von Neumann algebra. Suppose,
for each i € {1,...,k+ 1}, that (4, %, H, P;) is a projection-valued measure space such that
P;(G) € M whenever G € F;. If (¥, p,¢1,...,¢k+1) is an LY -integral projective decomposition
of a function ¢ € L®(Py)®; -+ ®;L®(Py1) and b= (by,...,by) € MF, then the map

Y30 Pi(p1(-,0)) b1+ Pe(or(-,0)) br Prg1(prr1(-0)) € M

is weakly integrable in the o-weak operator topology on M, and the weak integral

(1P Frrip) [b] = /EP1(¢1(-,U))b1 - Pe(r(50)) b Pey1(@ry1(-,0)) p(do) € M

is independent of the chosen decomposition (X, p,¢1,...,¢r+1) and the representation of M.

Proof. Combine Corollary 5.6.4, Theorem 5.6.11, and Theorem 5.6.20. [

We also prove in Proposition 5.7.1 that the assignment ¢ — 71 Pkt1 is linear and
multiplicative in a certain sense. Finally, when (M, 7) is a semifinite von Neumann algebra, we

also prove (Proposition 5.7.3) that if p,p1,...,pr € [1,00] are such that 1/py + -+ 1/pp = 1/p,
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then ||(IP1,,Pk+1@)[b1,7bk]HLp(T) S ”SOHLOO(PI)AZ®1L°O(Pk+1)||b1||lzp1(7’)kuHka(T) fOI‘ all

bi,..., by € M. This allows for an “extension” of the MOI P Pr+15: MF — M to a bounded

k-linear map LP'(7) X -+ x LP*(1) — LP(T).
5.2 Discussion of the well-definition argument

Retain the setup of Theorem 5.1.6 with M = B(H). In this section, we discuss the
essential elements of the proof that the integral (5.1.3) is independent of the chosen L$-integral
projective decomposition of ¢ and why this argument is delicate when H is not separable. To
maximize readability, we stick to the case of a double operator integral (DOI), i.e., the case k = 1.

Let b € B(H). The goal is to show that if (3, p, ¢1,¢2) is a LF o p,-integral projective
decomposition of p € L*(Py)®;L>(P,), then [ Pi(¢1(-,0)) b Pa(p2(-,0)) p(do) does not depend
on (X, p,¢1,¢2). This is actually not difficult to prove, as is done in [ACDS09, Pell6], when b
has finite rank, so the proof is complete if we can somehow reduce to this case. In [Pell6], it is
stated that this reduction is “easy to see.” This is certainly not the case when H is not separable.
When H is separable (as is assumed in [ACDS09]), every b € B(H) is a strong operator limit of
a sequence of finite-rank operators. One can then use a vector-valued dominated convergence
theorem to finish the proof. But this argument does not work when H is not separable because,
for instance, idg is not a strong operator limit of a sequence of finite-rank operators.

We opt instead to work with a different topology on B(H) with respect to which finite-rank

operators are dense: the ultraweak (aka o-weak) topology. If we can show that the map

B(H) 2 b I™2(2, p, 01, 02) (0] = /Epl(w(',a))bP2(902(',0)),0(d0) € B(H)

is ultraweakly continuous, then the proof will be complete. This ultraweak continuity is asserted
in [PS10] without proof or reference. When H is not separable, it is not at all obvious and, to
the author’s knowledge, has remained unproven until now. To prove it, we must show that for

all a € S;(H), there exists a Ta € S;(H) such that

Tr (I™72(S, p, o1, ¢2)[bl a) = Tr(bTa), b€ B(H). (5.2.1)
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To motivate what T'a should be, fix a,b € S;(H). Then the maps ¢ — Tr(ca) and ¢ — Tr(bc) are

ultraweakly continuous. Therefore, by definition of the weak integral and basic properties of Tr,

Tr (I 72(2, p, o1, 2)[0] a) =/ETY(Pl(sm(na))bPz(wz(',U))a)p(dU)

_ /E Te(b Pa(ipa(-, 0)) a Pi(1(-, ) p(do)

=Tr (b/;)PQ(SOQ(,O’)) aPl(gpl(-,U))p(dU)>. (522)

We therefore should take Ta = [y Pa(¢2(-,0)) a Pi(¢1(-,0)) p(do) in Equation (5.2.1). (Those
familiar with the subject will recognize this as related to the Birman—Solomyak [BS66] definition
of a DOI. We elaborate on this in §5.8.) For this to have any chance of making sense, we need to

know at the very least that

0 €Sy (H) — /ZPg(gpg(-,cr))aPl(gol(-,a))p(dU) € S\(H). (5.2.3)

Even this is not obvious when H is not separable! It follows, however, from one of our Minkowski-
type integral inequalities (Theorem 5.4.12) or Theorem 5.2.7 at the end of this section.
Assuming we know Relation (5.2.3), we still must verify Equation (5.2.2) for all b € B(H),
not just for b € S1(H). If b € B(H) is arbitrary, then the map S1(H) > ¢ — Tr(be) € C is
bounded with respect to |- ||s, (7). Therefore, we could reverse the calculation that led to Equation
(5.2.2) if we knew that 3 3 0 — Pa(pa(-,0))a Pi(p1(-,0)) € S1(H) were weakly integrable as
amap X — (S1(H), | - s, (), not just as a map ¥ — (B(H),o-WOT), whenever a € Si(H).
This is not automatic. Furthermore, if H is not separable, then S1(H) is not separable, so strong
(aka Bochner) integral techniques do not automatically apply either. We tiptoe around these
difficulties using our key ingredient: the multiplicative system theorem, a “functional form” of

the Dynkin system theorem. To state it, we recall the notion of bounded convergence.

Definition 5.2.4 (Bounded convergence). Let S be a set. A sequence (¢, )nen of functions S — C
converges boundedly to ¢ € C° if ¢, — ¢ pointwise as n — 0o and sup,,cy llonlleee(5) < 0.
A set .# C C¥ is closed under bounded convergence if whenever (©,),cn is a sequence in

< converging boundedly to ¢, we have that ¢ € 7.
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Theorem 5.2.5 (Multiplicative system theorem [DM75, Thm. 1.21]). Let S be a set. Suppose
H C C% is a (complex) linear subspace containing the constant function 1 that is closed under
complex conjugation and bounded convergence. If Ml C H is closed under multiplication and

complex conjugation, then £>°(S,o(M)) C H.
The corollary most relevant to the argument presently under discussion is as follows.

Corollary 5.2.6. Let (Q,.F) and (X, .7) be measurable spaces, and suppose H is a (complex)

linear subspace of £°°(2 x X) that is closed under complex conjugation and bounded convergence.

If{lGXS:GGﬂ,SE%}QH, thenéoo(QxE,ﬂ@)Jf)gH.

Proof. If M := {lgxs : G € #, S € s}, then M is closed under complex conjugation and
pointwise multiplication (because {G x S : G € #, S € S} is a m-system). Since 1 € M C H

and o(M) = .% ® #, the conclusion follows from the multiplicative system theorem. O]

By carefully using this consequence of the multiplicative system theorem and a truncation

argument, we are able to prove (in §5.6) the following key result.

Theorem 5.2.7 (Strong measurability in S1). Let (2, %, H, P) and (2,9, K, Q) be projection-
valued measure spaces, and let (X,.7°) be a measurable space. Suppose p: Q2 x ¥ — C and
P: 2 x X — C are measurable functions such that ¢(-,0) € L>®(P) and (-,0) € L>(Q) for all

oceX. If A: ¥ — 81(H; K) is strongly measurable, then the map

%30 = Q(0)) Alo) P(e(-,0)) € Si1(H; K)

1s strongly measurable as well.

This result yields the desired S;(H)-valued weak (in fact, strong) integrability of the
map X 3o+ Py(pa(-,0))aPi(p1(-,0)) € S1(H) whenever a € S;(H). The relevant results are
p P2 P1l

Theorem 5.6.9 and Corollary 5.6.10. Please see Remark 5.6.23 as well.
5.3 More on vector-valued integrals

In this section, we wrap up the general discussion of vector-valued integrals started in

§1.1. Specifically, we establish more general versions of the triangle inequality and the dominated
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convergence theorem and study a useful situation in which weak integrals always exist (while
strong integrals may not). For the former, we must overcome the technical difficulty that if « is
a continuous seminorm on V', then the weak measurability of a map F': @ — V generally is not
sufficient to guarantee the measurability of a(F): 2 — Ry even if «v is a norm. Therefore, we

are forced to integrate non-measurable scalar functions using upper and lower integrals.

Definition 5.3.1 (Upper and lower integrals). If f: Q — [0, 00] is an arbitrary function, then

/f /fdu = mf{/ fdu:f<f pae, f: Q—[0,0c] measurable} and
Q

/f(w) p(dw) = /fdu = sup{/ fdu:f<f pae, f: Q=0 ] measurable}

29 JQ Q

are, respectively, the upper (u-)integral and lower (u-)integral of f.

Of course, if f is (?“,B[Om])—measurable, where .Z" is the p-completion of %, then

fQ fdu= TQ f du. Here are the properties of upper and lower integrals relevant to this dissertation.

Proposition 5.3.2 (Properties of upper and lower integrals). Let f, fi1, fa: Q@ — [0,00] be

arbitrary functions, and let ¢ > 0.
D) Jof du < Jof dus Joe £ dp = cfof dp, and [o(fi + f2) du < Jofrdu+ [of2dp.
(ii) If f1 < fo p-almost everywhere, then fﬁfl du < &fg du, and TQfl dp < Tﬂfg dp.
(iii) If S € Z, then f5f|5du fglgfdu, and fo|5du lesfdu

(iv) (Dominated convergence theorem) If (fn)nen @S a sequence of functions Q@ — [0, 00] such

that f, — 0 pointwise u-almost everywhere as n — oo, then

/supfndu<oo = lim [ f,dp=0.
Q neN n=o Jo

(V) If (2, Fn, in)nen is a sequence of measure spaces and (2,7, ) is their disjoint union,

ice., (9,7, 1) = (Hpeny s ey Fns Doy bn), then

fdp= /fszndun, and /fdu= /andun.
Jran=x =3 [0
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Proof. The first three items are easy consequences of the definitions, so we leave them to the
reader. We take the remaining items in turn.

(iv) By definition of the upper integral, there exists a measurable function f: Q — [0, 0o]
such that fQ fdu < oo and sup,,cy frn < f p-almost everywhere. By definition of the lower

integral, if n € N, then there exists a measurable function fn: Q — [0, 00] such that 0 < fn < fa

/andﬂ—i</gfndﬂ.

Since f, — 0 p-almost everywhere as n — oo and 0 < f,, < f, p-almost everywhere, we have

p-almost everywhere and

that f,, — 0 p-almost everywhere as n — co. Also, fn < fo < f p-almost everywhere. Therefore,

by the dominated convergence theorem,

1 -
limsup/fndu:hmsup (/fndu— ) Slimsup/ fndp =0,
n—oo JQ n—o00 Jo n n—oo JO

as desired.

(v) We prove the claimed identity for upper integrals and leave the proof of the identity
for lower integrals to the reader. First, the definition of the disjoint union measure space and
a standard application of the monotone convergence theorem give the desired identity when
f:Q —[0,00] is measurable.

Next, for general f, suppose f: Q — [0, 0] is measurable and f < f p-almost everywhere.
Then, for all n € N, flqg,: Q, — [0,00] is measurable and f|o, < f|q, un-almost everywhere.

Therefore, by definition of the upper integral and our initial observation,

;/Qn!szu ;inau T du

Taking the infimum over f then yields 3.°° Eﬂgn du, < TQf dpu.
Finally, let ¢ > 0. By definition of the upper integral, if n € N, then there exists a

measurable function f,,: Q, — [0, 00] such that f|q, < fn fn-almost everywhere and

~ 9
/ fndung/ f|QndMn+27-
Qn Q

n
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Letting f: Q — [0, 00] be the unique measurable function such that f l, = fn for all n € N, we

have that f < f p-almost everywhere and

/Qfdﬂg/Qfd“:i/gnf"d“"Si/ﬂnf\ﬂnduwrs.

Since € > 0 was arbitrary, we get that Ef dp <307, Eﬂﬂn dpy, as well. O

Knowing now what upper and lower integrals are, we can state the triangle inequality

and dominated convergence theorem properly.

Proposition 5.3.3 (Triangle inequality). If F': Q — V is weakly integrable and « is a continuous

a<4F@)§AMmmL

In particular, if V is normed, then

H/qu < [17lv an
Q v JQ

Proof. Let v := [, Fdu. By the Hahn-Banach theorem, there is some linear £: V' — F such

seminorm on V', then

that £(v) = a(v) and [{(w)| < a(w) for all w € V. Since « is continuous, £ € V*. We then get

4AMQ:4AMQ{AWHM

from the definition of the weak integral and the lower integral. O

§/|€oF|du§/a(F)d,u
Q EAY)

Proposition 5.3.4 (Dominated convergence theorem). Suppose V' is sequentially complete, and

let (Fy)nen be a sequence of weakly integrable maps Q — V' converging pointwise to F: Q — V. If

/ sup a(Fy,) dp < oo (5.3.5)
Q neN

whenever a is a continuous seminorm on V', then F' is weakly integrable, and

n—oo

lim F,du = / Fdu.
Q Q
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Proof. Let o be a continuous seminorm on V. Observe that

/ sup a(F, — Fy,)dp < 2/ sup a(Fy,) dp < oo.
Q n,meN Q neN

Therefore, by the triangle inequality and Proposition 5.3.2(iv),

a(/ﬂFndu—/ﬂFmdu> :a</Q(Fn—Fm)du> g/ﬂa(Fn—Fm)dumo.

Consequently, the sequence ( fﬂ E, d,u)n N 18 Cauchy in V. Since V is sequentially complete,
(fQ F, du)nEN converges in V; write v € V for its limit. Now, let £ € V*. Since |¢| is a continuous
seminorm, |[¢ o F'| < sup,cy [l o Fy,|, and £ o F,, — £ o F pointwise as n — 0o, Inequality (5.3.5)

and the scalar-valued dominated convergence theorem yield that [, [¢ o F|du < co and

/(E oF)duy= lim [ (o F,)du= lim ¢ / F,du | = £(v).
Thus, F is weakly integrable, and v = [, F'dp. O

Remark 5.3.6. Let . C ]RK be a collection of continuous seminorms on V' that generate the
topology of V. For every continuous seminorm « on V, there exist a C' > 0 and a1, ...,qm, € 7
such that @ < C) ", a;. Consequently, Inequality (5.3.5) holds for all continuous seminorms «

on V if and only if it holds for all « € ..
Next, show that weak™ and Dunford integrals exist.

Proposition 5.3.7 (Weak* integrals). Suppose V is a Fréchet space. A map F: Q — V* is
weakly measurable in the weak® topology on V* if and only if it is weak* measurable, i.e.,
F(-)(v): Q — C is measurable whenever v € V. A weak* measurable map F: Q — V* is weakly

w-integrable in the weak® topology if and only if
/ F(w)(0)| pldw) < 00, v €V, (5.3.8)
Q

In this case, I is weak* (u-)integrable, and [, F'dp € V* is the weak* (- )integral of F.
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Proof. By [Rud91, §3.14], the map V 3 v — (£ — £(v)) € (V*, weak™)* is a linear isomorphism,
from which the first statement and the “only if” part of the second statement of the proposition
follow. It remains to prove that if F' is weak™ measurable and Inequality (5.3.8) holds, then F’
is weakly integrable in the weak* topology. To this end, define T: V — L'(u) by v — F(-)(v).

Certainly, T is linear. Also, if (vy,)nen is a sequence in V' converging to v € V, then
lim (Tv,)(w) = lim F(w)(v,) = F(w)(v) = (Tv)(w), w €N

Consequently, if (T, )nen converges in L' (u), then its limit must be Tv. In other words, T
is closed. By the closed graph theorem, T is continuous. Finally, if Ir: V — F is defined by
v [ F(w)(v) p(dw) = [o(Tv)(w) p(dw), then Ip € V* because T and [, -dp: L' (1) — C are
continuous. Unraveling the definitions and appealing again to the first sentence of the proof, we

conclude that F' is weakly integrable in the weak* topology with Irp = fQ Fdu. O

Corollary 5.3.9 (Dunford integrals). Suppose V is a Banach space, and write ev: V — V**
for the natural inclusion. If F: Q — V' is weakly measurable and fQ |0 o F|dpu < oo whenever
(e V*, thenevoF: Q— V* = (V*)* is weak™ integrable, and [,(ev o F')du € V** is called the

Dunford (u-)integral of F. If, in addition, V is reflexive, then F is weakly integrable, and

ev/QFd,u:/Q(evoF) du. (5.3.10)

Proof. Since (evo F)(w)({) = (£ o F)(w) for all £ € V* and w € , the assumptions on F'
translate to the weak* integrability of evo F': Q — V** = (V*)*. If V is reflexive, then there
exists a unique v € V such that ev(v) = [,(ev o F') du, where the latter is the Dunford integral

of F. Unraveling the definitions yields that v = [, F du, i.e., Equation (5.3.10) holds. O

Example 5.3.11 (Hilbert space). Let H be a Hilbert space. By the Riesz representation theorem,
¢ € H* if and only if there exists a k € H such that ¢(h) = (h,k) for all h € H. Therefore,
F: Q — H is weakly measurable if and only if (F(-), k): Q@ — C is measurable whenever k € H.
Also, since H is reflexive, Corollary 5.3.9 yields that F': 2 — H is weakly integrable if and only

if (F(-),k) € L'(n) whenever k € H, e.g., if F is weakly measurable and [,||F| du < oc.

153



We have now collected all the general properties of vector-valued integrals needed in this
dissertation. In the next section, we specialize to the case when V' is a (o-weakly closed) linear

subspace of B(H; K) with various topologies.

Remark 5.3.12 (Integrability of continuous maps). Though we shall not use it, we would be
remiss if we did not mention the fact that continuous maps are frequently weakly integrable. For
S CV, write conv(S) C V for the closure of the convex hull of S. It can be shown that if X is
a compact Hausdorff space, v is a finite Borel measure on X, F': X — V is a continuous map,
and conv(F (X)) is compact, then F' is weakly v-integrable, and [, F dv € v(X)conv(F(X)).
Furthermore, the hypothesis that conv(F'(X)) is compact is superfluous when V is a Fréchet
space. Please see [Rud91, Thms. 3.20(c) & 3.27] for details.

5.4 Operator-valued integrals

To define MOIs, we need to integrate maps ¥ — V', where V C B(H; K) is a (o-weakly
closed) linear subspace. Given the number of interesting topologies on B(H; K), there are
potentially many notions of weak integrability of a map ¥ — V C B(H;K). It turns out
the choice of topology (from §4.1) does not matter in most reasonable circumstances. We
now introduce a notion of integrability—pointwise Pettis integrability—in this setting that is,
in practice, quite easy to check. Then we describe the relationship between pointwise Pettis

integrability and weak integrability in various operator topologies.

Lemma 5.4.1. If F: Q — B(H;K) is such that (F(-)h,k)kx: Q@ — C is measurable and
Jo {F(w)h, k) k| p(dw) < oo for allh € H and k € K, then F(-)h: Q — K is weakly integrable
for all h € H, and the map p(F): H — K defined by h — [ F(w)h p(dw) belongs to B(H; K).

Proof. If B: H x K — C is defined by (h, k) — [(F(w)h, k)i p(dw), then B is sesquilinear.
We claim that B is bounded. Indeed, fix h € H and k € K. By the characterization in
Example 5.3.11, both F(-)h: Q@ — K and F(-)*k: Q — H are weakly integrable. In particular,
(o PO () ) = ol F )b R i) = ol P ) k) = (h oy F)"h (),

Thus, B is bounded in each argument separately. By [Rud91, Thm. 2.17], B is bounded. Since
(W(F)h, k) = B(h,k) for all h € H and k € K, we conclude that u(F') € B(H; K). O
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Definition 5.4.2 (Pointwise Pettis measurability and integrability). A map F: Q — B(H; K)
is pointwise weakly measurable if (F(-)h,k)x: Q@ — C is measurable whenever h € H
and k € K. If, in addition, [, |(F(w)h,k)k|pu(dw) < oo for all h € H and k € K, then F is
pointwise Pettis (u-)integrable. In this case, the operator u(F') € B(H; K) from Lemma
5.4.1 is called the pointwise Pettis (u-)integral of F. Finally, if also V' C B(H; K) is a linear

subspace, F(2) CV, and u(F) € V, then is F' pointwise Pettis (u-)integrable in V.

Remark 5.4.3 (Nonstandard terminology). The use of the term “pointwise” is not standard
at all; we have chosen it to avoid overusing or abusing the terms “weak” and “strong.” The
pointwise Pettis integral above is often called a “weak integral” in contrast to the “stronger”
Bochner integral. However, we shall see in Theorem 5.4.5 that the pointwise Pettis integrability
of F': Q — B(H;K) is equivalent to the weak integrability of F' as a map with values in
(B(H; K),WOT) or (B(H; K),SOT). It therefore is arguably just as appropriate to apply the

term “strong” to the pointwise Pettis integral.

Remark 5.4.4 (Von Neumann algebras). If H = K and V = M C B(H) is a von Neumann
algebra, then any pointwise Pettis integrable map F: ¥ — M C B(H) is actually pointwise

Pettis integrable in M. Indeed, if a € M’, then it is easy to see from the definition that

ap(F) = palF) = p(Fa) = p(F)a,

ie., u(F) e M”" = M by the bicommutant theorem.

We now compare the notion of pointwise Pettis integrability to various notions of weak
integrability. To this end, we recall (Theorem 4.1.2(iv)—(v)) that if V' C B(H; K) is a o-weakly
closed linear subspace, e.g., a von Neumann algebra, then V, = (V,0-WOT)* is the predual of

V. More precisely, V., is a Banach space with the operator norm, and the map

VoA ({—(lA) eV

is an isometric isomorphism that is also a homeomorphism with respect to the c-WOT on V

and weak™ topology on V_*.
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Theorem 5.4.5 (Integrals in V C B(H; K)). Let V C B(H; K) be a linear subspace, and fix a

map F: Q —V and a choice T € {WOT, SOT, S*OT}. (Here, we view T as a topology on V.)

(i)

(i)

(iii)

(iv)

If

c({V3Ar Tr(AB) e C: Be S(K;H)}) €2V and

2
G =c({V3A— (Ahk)k €C:he H, ke K})C2",

then =94 =o((V,0-T)*) = o ((V,T)*). In particular, F is pointwise weakly measurable

if and only if it is weakly measurable in T, if and only if it is weakly measurable in o-T.

F is pointwise Pettis integrable in V if and only if it is weakly integrable in T, in which
case the pointwise Pettis and weak integrals of F' agree. In particular, we may write
p(F) = [ Fdp with no chance of confusion. Also, writing ||-|| == ||| y_ k., the following

triangle inequality holds in this case:

H/qu S/I!Flldu-
Q Jo

Suppose V- C B(H; K) is o-weakly closed. Then F' is weak integrable in o-T if and only if

it is weak® integrable under the usual identification V =2 V.* if and only if F' is pointwise

weakly measurable and

/Q {(F(@)hnments (kn)mentdez iz | () < o0 (5.4.6)

for all (hn)nen € £2(N; H) and (kp)nen € £2(N; K), in which case the weak, weak*, and

pointwise Pettis integrals of F all agree.

IfH=K and V. = M C B(H) is a von Neumann algebra, then the notions of pointwise
weak measurability and weak integrability in o-T are independent of the representation
of M. More precisely, if N is another von Neumann algebra and 7: M — N is a
x-isomorphism in the algebraic sense, then F' is pointwise weakly measurable (respectively,

weakly integrable in o-T ) if and only if wo F' is pointwise weakly measurable (respectively,

weakly integrable in o-T, in which case w( [, F dp) = [o(7 o F)dp).
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Proof. We take each item in turn.

(i) By Theorem 4.1.2(ii),
(V, T)" =span{V 3> A+ (Ah,k)xk € C:h€ H, k€ K}. (5.4.7)

Thus, ¥ = o ((V,T)*). By Theorem 4.1.2(iii), (V,0-T)* = (V,0-WOT)*. By the Hahn-Banach

theorem and Theorem 4.3.3(vi),
(V,o-WOT)* ={V 3 A Tr(AB) € C: B € S;(K; H)}. (5.4.8)
Thus, .Z = o((V,0-T)*). Since (V,T)* C (V,0-T)*,
F =o((V,o-T)") Ca((V,T)") =%,

so it suffices to prove that any element of (V,0-7)* is ¢-measurable. To this end, ¢ € (V,0-T)*.

By Theorem 4.1.2(iii), there are (h,)nen € 2(N; H) and (ky,)nen € £2(N; K) such that

o0

E(A) = <(Ahn)n€N7 (kn)n6N>Z2(N;K) = Z(Ahna kn>K, AecV.

n=1

This exhibits ¢ a pointwise limit of elements of span{V > A +— (Ah,k)kx € C: h € H,k € K}.
Thus, ¢ is ¥-measurable.

(ii) The equivalence of weak integrability in 7 and pointwise Pettis integrability in V'
(with the agreement of weak and pointwise Pettis integrals) follows directly from the definitions
and Equation (5.4.7). For the triangle inequality, note that if F': Q@ — B(H; K) is pointwise

Pettis integrable and h € H, then the K-valued triangle inequality gives

Taking the supremum over h € H with ||h|[gz < 1 gives the desired result.

/ F(w)h p(dw)
Q

E L IF bl ) < Il | 1P

(iii) Since (V,o-T)* = (V,0-WOT)* = V., we may and do assume 7 = WOT. Under

the usual identification V,* = V| the weak* topology on V_* corresponds to the c-WOT on V.
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This implies the first equivalence. By the first item, the pointwise weak measurability of F
is equivalent to the weak measurability of F' in the o-WOT on V and therefore to the weak
measurability of F' in the weak® topology on V,*. By Theorem 4.1.2(iii), Inequality (5.4.6) holds
for all (hp)nen € (2(N; H) and (ky)nen € 2(N; K) if and only if

/|EOF|du<oo, teV,=(V,o-WOT)*
Q

Proposition 5.3.7 and the form of the identification V 22 V. * then give the second equivalence.
(iv) Again, we may and do assume 7 = WOT. This item follows from the fact that

«-isomorphisms are automatically o-WOT-homeomorphisms (Theorem 4.1.2(vi)), pointwise weak

measurability is equivalent to weak measurability in the o-WOT (the first item), and Proposition

1.1.7(ii) applied to m and 7~ 1. O

Let V C B(H; K) be a o-weakly closed linear subspace, and let F': Q@ — V be a map. In
view of Theorem 5.4.5(iii) and its proof, we have the following. First, the weak measurability
of F' in the o-WOT is equivalent to the weak measurability of F' in the weak® topology when
we identify V' = V.* in the usual way, which, in turn, is equivalent to the pointwise weak
measurability of F'. We therefore are justified in using the term weak* measurable in place of
pointwise weakly measurable. Second, the weak integrability of F' in the o-WQO'T is equivalent
to the weak™ integrability of F' when we identify V = V_* in the usual way, which, in turn, is
equivalent to the weak® measurability of F' and the requirement that Inequality (5.4.6) holds
for all (hp)nen € £2(N; H) and (ky)nen € £2(N; K). We therefore are justified in using the term
weak* integrable in place of (any of) the terms in the previous sentence. We end this discussion

by isolating an important takeaway from this possibly confusing development.

Corollary 5.4.9 (Criterion for weak* integrability). Let V' C B(H;K) be a o-weakly closed
linear subspace. If F: Q — V = V,* is pointwise weakly measurable and [,||F|| dp < oo, then F

1s weak™ integrable, and the weak™ integral fQ Fdp €V is uniquely determined by
<</Fd,u>h,k> :/(F(w)h,k:>Ku(dw), he H, keK.
Q Q
K
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Proof. If (hy)nen € (2(N; H) and (ky)nen € 2(N; K), then

| REP@haner, (rmerdeol w(d) < | NEP@hnesllmqsso | (nnerlgie 1(de)
< H(hn)RENHZ?(N;H)H(kn)nel\T’ZQ(N;K)/QHFH du
by the Cauchy—Schwarz inequality. Consequently, if the right-hand side is finite, then Theorem
5.4.5(iii) yields that F' is weak® integrable, and u(F') is the weak® integral of F. O

Our last order of business concerning operator-valued integrals is to prove a Schatten
p-norm Minkowski’s integral inequality for pointwise Pettis integrals. After doing so, we use a
similar technique to prove a noncommutative LP-norm Minkowski’s integral inequality for weak*
integrals in a semifinite von Neumann algebra. We begin by proving a well-known and useful
recharacterization of || - [ls, = || - [|s,(z#;x)- When H = K, this recharacterization is the p = 1

case of [Rin71, Lem. 2.3.4].

Definition 5.4.10 (Orthonormal frames). If n € Ny, then
On(H) ={e=(e1,...,en) € H" : e1,..., e, is orthonormal}

is the set of orthonormal frames of length n. Note that Oy(H) = 0.

Lemma 5.4.11. If A€ B(H; K), then
lA|ls, = sup { Z |(Ae;i, fi)k| :m €Ny, e € O, (H), f € On(K)}
i=1
where, as usual, empty sums are zero. In particular, A € S§1(H; K) if and only if the supremum

on the right-hand side above is finite.

Proof. Let A = U|A| be the polar decomposition of A, and let £; be an orthonormal basis of
ker |[A| = ker A. Recall that the polar decomposition of A is the (unique) product decomposition
A = U|A|, where U € B(H; K) is a partial isometry with initial space (ker A)* = (ker |A|)* and

final space im A. Note that |A| = U*A.
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First, by definition, if e € &1, then |A|e = 0 and therefore (|Ale, e)y = 0. Next, complete

&1 to an orthonormal basis £ D & of H. Then

1Als, =) (Ale.eyr = Y (Aleeyu = Y (Ude,e)y = Y (Ae,Ue)k.

ec& ecE\&r ec&\&1 ec&\&1

Of course, & \ & is an orthonormal basis of (ker |A|)*, the initial space of U, on which U is an
isometry by definition. Consequently, if we define f. := Ue for all e € £ \ &1, then we have that
(fe, fe)xk = (Ue,Ué)k = (e,€) g = dec whenever e,é € £\ &1, i.e., (fe)ece\g, is orthonormal. Tt

follows (by taking finite subsets E C £ \ &) that
[Alls, < sup { > [Aei, fi)i| :m € No, e € On(H), f € On(K)}-
i=1

For the other inequality, suppose ||Alls, < 0o, and fix n € N, e € O,,(H), and f € O, (K). Let
V: H — K be the unique partial isometry such that Ve; = f; for alli € {1,...,n} and V =0

on (span{ey,...,e,})*. If we complete {e1,...,e,} to an orthonormal basis € of H, then

n

D WAei, fidiel =Y [(Aei, Ve | = Y [(V* Aes, ei) |
=1 =1

i=1

<Y [(V*Ae,e)ul < [[VFAls, < [|A]ls,
eel

because [|V*||k—u = ||V||g—x = 1. Thus,

sup{2|<Aei,fi>K| 1 €Ny, e € On(H), fe on<K>} < JAls,.
=1

as desired. ]

Theorem 5.4.12 (Schatten norm Minkowski’s integral inequality). If F': Q — B(H; K) is

pointwise Pettis integrable, then

/qu
Q

In particular, if the right-hand side is finite for some p € [1,00], then [, Fdp € Sy(H; K).

< [1Fls,dn. pe Lo,
s, Jo
P
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Proof. The case p = oo is contained in Theorem 5.4.5(ii). We first prove the p = 1 case, from

which the remaining cases will follow. Define
A= / Fdu € B(H;K),
Q

and fix n € Ny, e € O,,(H), and f € O, (K). By definition of the pointwise Pettis integral and

Lemma 5.4.11, we have

n

< [ S P@e il nde) < [ 1Pls d

n
1 Qi1

> HAes, fidxl =
i=1

1=

/ (F(@)er, fi) i ()
Q

<[IF)lls,

Taking the supremum over n € Ny, e € O,(H), and f € O,,(K) and applying Lemma 5.4.11 a

/qu
Q

Next, let p,q € (1,00) be such that 1/p+1/¢ =1. If B € B(K; H), then, by what we just proved

second times gives

=l < [ IFlsd
Q
S1 —

and Holder’s inequality for the Schatten norms,

|AB|s, = H /Q F(w)B pu(dw)

< / |F(w)Blls, u(dw) < |1Blls, / 1P, d.
S JOQ JQ

Consequently, if [,[|F|s, du < oo, then A € S,(H; K), and

/qu
Q

by duality for the Schatten classes (Theorem 4.3.3(v)). O

= [[Alls, = sup{| Te(AB)| : B € B(K; H), ||Blls, <1} < / 1Fls, dp
—_——— Ja

S <||AB]s,

As we just saw, the case p = 1 is the key to Theorem 5.4.12. We therefore offer a few
more words about it. The proof presented above is “from first principles” in the sense that it did
not use any technology from the theory of vector-valued integrals; we only used Lemma 5.4.11
and the definition of the pointwise Pettis integral. There is, however, an interesting alternative

proof that uses Proposition 5.3.7 instead of Lemma 5.4.11.
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Second proof of Theorem 5.4.12 when p=1. If &HFHS1 dp = oo, then the conclusion is
clear, so we assume fﬁ | Flls, dp < oo. In this case, ||F||s, < oo p-almost everywhere (exercise).
Since neither [, F'dp nor [o||F'||s, dpu changes if we modify F' on a set of measure zero, we may
and do assume || F'(w)|s, < oo for all w € , i.e., F(Q) C S1(H; K). We claim in this case that
F:Q — S§(H; K) is weak™ integrable when we identify S;(H; K) = K(K; H)* as in Theorem
4.3.3(v). Indeed, if B: K — H is a finite-rank operator, then Tr(F(-)B): 2 — C is measurable
by Theorem 5.4.5(i). Now, if B € K(K; H) is arbitrary, then there is a sequence (B, )nen of

finite-rank operators K — H such that |B — B,|| — 0 as n — oco. This gives
| Tr(F(w)B) = Te(F(w)By)| = | Tr(F(w)(B = By))| < |[F(@)]s, 1B = Byl “==30,  weQ.
Thus, Tr(F(-)B):  — C is measurable. Also,
LI P B ude) < [ 1) Bls, nlde) < 151 [ [Fls, dn < o0
Therefore, by Proposition 5.3.7, F: Q — IC(K; H)* is weak® integrable, and

/qu /qu
Q Q

Modulo the detail, which we leave to the reader, that the weak™® integral of F' agrees with its

<ﬂmmmww=/wmw.
JQ JQ

Si ‘ K(K;H)*

pointwise Pettis integral, this completes the proof. O

Remark 5.4.13 (Separable case). It is worth mentioning that when H and K are separable,
it is possible to prove Theorem 5.4.12 using the basic theory of the Bochner integral because
Sp(H; K) is separable (when p < co) in this case. Since we dealt with the general case, additional

care—in the form of either Lemma 5.4.11 or Proposition 5.3.7—was required.

Finally, we generalize Theorem 5.4.12 (with H = K) to noncommutative LP-norms of a
semifinite von Neumann algebra. (The uninterested reader may skip at this time to the next
section.) For this purpose, we first prove a version of Lemma 5.4.11 appropriate for this setting;

this is rather standard, but we supply a transparent proof for the reader’s convenience.
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Lemma 5.4.14. If (M, 1) is a semifinite von Neumann algebra, then
lall iy = 7(lal) = sup{|r(ab)| : b € L}(7), o] <1}, aeM.
Proof. Let a € M. If b € £1(7), then, by Theorem 4.3.9(ii)—(iii),

7 (ab)| < llabl[ 17y < llall i [bll Loery = T(lal) [[b]].

Thus,
sup{|7(ab)| : b € L(7), [[b] <1} < 7(|al).

Now, let a = ula| be the polar decomposition of a. Suppose p € M is a 7-finite projection, i.e.,

p € Proj(M) and 7(p) < oo. If b :== pu*, then b € L1(7), ||b]| < 1, and
. 101 11
r(ab) = r(apu”) = 7(u*ap) = 7(lalp) = 7 (|al*|al*p) = 7 (Jal*plal?). (5.4.15)

If we could show that the net of 7-finite projections (directed by <) increases to the identity,

then the normality of 7 would give
v(lal) = sup {(Jal?plal? ) : p € L} () N Proj(M)}.
Using Equation (5.4.15), we would then conclude that
7(lal) < sup{|r(ab)| : b€ L1(r), [Ibl| <1},

as desired.

To complete the proof, we must show that Proj (L'(r)) := L'(7) N Proj(M) increases to
the identity, i.e., sup Proj (LI(T)) = 1. (A priori, this supremum exists and belongs to Proj(M)
by [Tak79, Prop. V.1.1].) To this end, suppose 0 # ¢ € Proj(M) is arbitrary. We claim
that there exists a nonzero p € Proj (L1 (T)) such that p < ¢. Indeed, by the faithfulness and

semifiniteness of 7, there is some = € M such that 0 # = < p and 7(z) < co. Since x is positive,
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it is self-adjoint, and o(x) C [0,00). Recalling P*: B, (,) — M is its projection-valued spectral

measure, we have that if e > 0 and G. = o(x) N [e, 00), then

gpx«a)zi/ ehdewgu/ APT(dN) = 2.
o(@)

o(z)

Since z # 0 and z is normal, o(x) # {0}. Therefore, there is some ¢ > 0 such that P*(G.) # 0.
For this choice of ¢, let p == P*(G¢). Then 0 # ep < m, so that 7(p) < e !7(z) < oo, i.e.,
p € Proj (L1 (7‘)) But also, e p < x < ¢. Since p and ¢ are both projections, this implies p < gq.
This proves the claim. But now, by definition of sup Proj (LI(T)), there can be no nonzero 7-finite

projection < 1 — sup Proj (Ll(T)), so 1 — sup Proj (Ll(T)) = 0 by what we just proved. O

Theorem 5.4.16 (Noncommutative Minkowski’s integral inequality). IF (M, T) is a semifinite

von Neumann algebra and F': Q0 — M is weak™ integrable, then

/qu
Q

In particular, if the right-hand side is finite for some p € [1,00], then [, Fdu € LP(T).

< / 1Pl ds p € [1,00).
r(r) 22

Proof. Define a = [, Fdu. The case p = oo is contained in Theorem 5.4.5(ii). We first
prove the p = 1 case, from which the remaining cases will follow. Since F' is weak® integrable
(i.e., weakly integrable in the o-weak topology) and the map M > ¢ — 7(cb) € C is o-weakly

continuous whenever b € £1(7), we have that

7(ab) = /QT(F(UJ) b) p(dw), be LY (7).

Lemma 5.4.14 (twice) then gives

lall () = sup {T(ab)l = ‘/{)T(F(w) b) p(dw)

;bec%ﬂ,mug1}
sSup{ | E@ bl b e £10), b s1} < [ 1Py

as desired.
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Now, let p,q € (1,00) be such that 1/p+1/q = 1. If b € L£9(7), then, by what we just

proved and noncommutative Holder’s inequality,

bl sy = H [ P)butas)

Consequently, if [o,[|Flzr(ry dp < 0o, then [, Fdu =a € LP(7), and

/qu
Q

by the dual characterization of the noncommutative LP-norm (Theorem 4.3.9(iv)). O

< /Q | F(@) bll 1y () < 6]l z0co) /Q 1 Fllors

L(7)

~lallogr) = suplabllzscey b € M, [¥lsr < 1) < [ 1F s o
Lr(T) s

The motivation for the name is the classical Minkowski integral inequality [Fol99, 6.19].
In view of Proposition 5.3.3, it would be just as reasonable to call Theorems 5.4.12 and 5.4.16

the Schatten p-norm and noncommutative LP-norm (integral) triangle inequalities, respectively.
5.5 Integral projective tensor products of L*>-spaces

We now discuss integral projective tensor products of L°°-spaces. Formally, the idea is to
replace the countable sum in the decomposition (1.5.11) of elements of the classical projective
tensor product with an integral over a o-finite measure space. To make this rigorous, we first

observe that Minkowski’s integral inequality with p = oo holds for projection-valued measures.

Lemma 5.5.1. Let (2,9, K,Q) be a projection-valued measure space, and let (X, 5, p) be a

o-finite measure space. If &: Z x ¥ — [0, 00] is measurable, then

‘ [ @) ptao

i.e., [, ®(&,0)p(do) < [G[1D(-,0)lLe(q) p(do) for Q-almost every & € E.

/ 12(-,0)]| 1 () (o), (5.5.2)

Proof. If [i[|®(-,0)| () p(do) = oo, then the conclusion is obvious. We therefore suppose

i= [ 106 Dlmiade) <
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Next, by (the proof of) Tonelli’s theorem, the function

E3&— /Efl)(f,a) p(do) € [0, o0

is measurable. Thus,

G = {geEz/Eq)(f,a)p(dU) >c} €Y.

Now, let h € K. Since Qp 1, = (Q(-)h, h) i is a finite measure, the classical Minkowski integral

inequality gives

H [ @) plde)

(Part of what we are using from Minkowski’s integral inequality is the measurability of the

/ 1800l (1. £(d0) / 19(, o) =0 pldo) = c.

function X 35 o = || (-, 0)[|po(q, ) € [0,00].) In other words, (Q(G)h,h)k = Qnn(G) = 0.

Since h € K was arbitrary, we conclude that Q(G) = 0. O

Definition 5.5.3 (Integral projective tensor products). An L§¥-integral projective decom-
position (L¥-IPD) of a function ¢: Q@ — C is a choice (X, p, 1, ..., pr+1) of a o-finite measure

space (X, 7, p) and measurable functions ¢1: Q1 x X — C, ..., pgt1: Qg1 X X — C such that
(i) ¢i(-,0) € L>®(P;) foralli e {1,...,k+ 1} and 0 € 3,
(i) T o1z - 10k (), p(dor) < o0, and
(iii) p(w) = [x@1(w1,0) - rtp1(Wrs1,0) p(do) for P-almost every w = (wi,...,wpt1) € Q.

(The integral in the third requirement is defined for P-almost every w = (w1, ... ,wk11) € Q by

Lemma 5.5.1 and the second requirement.) Now, define

k+1
(B 0,01, 0r41)
L e mf{/ [T i 0)lcp pldo) : }

where inf () := co. Noting that || - | oo (P)@y-i o0 (Py ) 1S Well defined on L>°(P), the integral

projective tensor product L®(P;)®; - - - ®;L>(Pj41) is defined to be the set of ¢ € L>(P)

such that [|©| oo (py)g;@s 000 (Pyr) < O°-
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Remark 5.5.4 (Measurability issues). The literature is rather cavalier with the definition
of the IPTP above. Indeed, if (£,¥, K, Q) is a projection-valued measure space, (3,7, p)
is a o-finite measure space, and ®: Z x ¥ — C is a measurable function, then the function
Y30 [|®(,0)|lL=(q) € [0,00] is not necessarily measurable. In particular, it is important to
specify which integral (upper or lower) is being used in Inequality (5.5.2) and the second item in
Definition 5.5.3. This detail, which is important in arguments to come, has been sidestepped in
the existing literature.

It is worth discussing “how non-measurable” o +— ®q(0) = [|®(-,0)| 1~(@) can be in
various situations. We proceed from least to most pathological. First, if @) is equivalent to a
o-finite scalar measure—as is always the case when K is separable—then ®¢ is measurable.
Now, for the remainder of the remark, assume Q(G) = 0 if and only if G = ). (Please see
Example 5.5.7.) For the second example, suppose X is a complete, separable metric space
and (2,%) = (X,Bx). Then ®g is “almost measurable,” i.e., ¢ is measurable with respect
to the p-completion of ¢, by [Cra02, Cor. 2.13], which relies on the (highly nontrivial)
measurable projection theorem [CV77, Thm. II1.23]. Because ®¢ is “almost measurable” in
this case, the upper and lower integrals of ®g agree. This is used implicitly—and perhaps
unknowingly—in the literature (e.g., [ACDS09, dPS04, DDSZ20]) but is never proven or cited
as it should be. Finally, let Y C [0, 1] be a non-Lebesgue-measurable set, (2,%) = (Y, By ), and
(5,22, p) = ([0,1], By 1), Lebesgue). If ® = 1aqyx[o,1)), Where A := {(z,z) : x € [0,1]} is the
diagonal, then ®g(0) = [|®(-, )| (y) = 1y (o) for all o € [0,1]. Thus, ®¢ is not even Lebesgue

measurable in this case.

The proposition below gives the basic properties of L>(P;)®; - -+ ®;L>(Pj41). Special
cases have been stated in the literature, e.g., [dPS04, Lem. 4.6], but no proofs are written down.
For the sake of completeness, especially in view of the measurability issues discussed in Remark
5.5.4, we provide a full proof here. In the statement below, a recall that a Banach x-algebra is a

Banach algebra endowed with an isometric s-operation.

Proposition 5.5.5 (Basic properties of IPTPs). If ¢: Q — C is a function, then

ol oo(p) < 1l (P mosoe (Pran)- (5.5.6)

167



Also, L®(P)®; - - - ;L (Pjy1) € L¥(P) is a *-subalgebra, and

(Loo(Pl)®i ce ®iLOO(Pk+1)a [ - |’LOO(P1)®i"’®iLOO(Pk+1))

1s a unital Banach x-algebra.

Proof. Write  := L®(P)®; - - - ®;L>®(Pyy1) and || - ||z = || - ||L°° (P)GysoGi L (Poyr) 1 9 € B,

0,01, ..., 0ry1) is an LP-IPD of ¢, and
(E,p,0 Ph+ 3 @

O(w,0) = ¢1(w1,0) - prr1(wgs1,0), (w,0)€ENXX,

then

k+1

/ 12(, o) =) p(do) < / IT oMoy o)

H‘PHLOO

/@ o) p(do)

by definition of ®, the third item in Definition 5.5.3, and Lemma 5.5.1. Using the fact that

& - dp < Tz - dp and taking the infimum over the decompositions (X, p, ¢1,...,Yk+1) gives
Inequality (5.5.6). In particular, ||¢|# = 0 if and only if ¢ = 0 P-almost everywhere.

Now, we begin the proof that & C L*°(P) is a x-subalgebra and that (4, ] - || %) is a
Banach x-algebra. First, it is clear from the definition that & C L*°(P) is closed under scalar
multiplication and complex conjugation and that ||ap|z = |al ||¢|lz = |a| ||¢]|z for all a € C
and ¢ € A. Also, 1 € A.

Second, let (¢n)nen be a sequence in Z such that 7, [l¢n]l# < co. Then

o0 0o
> llenllier < 3 lenlls < oo,
n=1 n=1

so that ¢ =Y >° | ¢, converges in L>°(P). We claim that ||p||z < > o7 |l¢nll#, from which it
follows that # C L°°(P) is a linear subspace and (4, || - || %) is a Banach space. To see this, fix
e > 0 and n € N. By definition of || - ||, there exists an LE-IPD (X, pn, @10, - - Phkt1,n) Of ©n

such that
k+1

/ T in(s0m) ey pn(dom) < llgnll + .

on
”zl
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This gives

oo —— k+1 00
S [ TL ity enldon) < 3 lionlla + = < o
n=17%n j—1 n=1

Redefine (X, 57, p) to be the disjoint union of the measure spaces {(3,, 7, pn) : n € N} and
Xi(wi,U) = goi,n(wi,a), w; € Qi, ocey, C H Ym=2,1€ {1,... Jk+ 1}.
meN

Then (3, p, X1, -, Xk+1) is an LE-IPD of ¢. Indeed, the first item in Definition 5.5.3 is clear.

Next, by Proposition 5.3.2(v),

— k1 00 ——k+1
[Tt olzmm pdo) =3 [ TTI¢inloallim ey puldan) < oc.
¥ =1 n=17%n j—1
Finally, for P-almost every w € (),
k+1 o0 k41 g
[ T xitena)ptdo) =3 [ TT inten ) puldon) = - en(w) = olw).
X =1 n=1"%n j=1 n=1
From this, we conclude that ¢ € & and
oo ——k+1 )
el < Z/Z [T l2inCon)lloepy pn(don) <D llenlls +e.
n=1"%n j=1 n—1

Taking € N\, 0 completes the proof of the claim.

Third, we show that if p,¢ € A, then ||p¥|z < |||z, which will complete the
proof of the proposition. To this end, suppose (X1, p1,¢1,. .., ¢r+1) and (X2, p2, U1, ..., Vpi1)
are LE-IPDs of ¢ and 1, respectively. Redefine (X, 5, p) == (X1 X X9, 74 @ J, p1 @ p2) and

Xi(wi,a) = (pi(wi,al)@bi(wi,@), (wi,a) = (U)i,O’l,O'Q) € Q; x Z, 1€ {1, .. .,k + 1}.

We claim (X, p, x1, - -, Xk+1) is an L¥-IPD of ¢1). Once again, the first item of Definition 5.5.3
is clear. Now, by Tonelli’s theorem and the definition of the upper integral,
—k+1 ——k+1 ——k+1

/ T - olamir o) < / Lt onliy r(a [ Lol patcin),

2 4=1
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which is finite. Finally, for P-almost every w € (),

k+1 k+1 k+1

/ HSOZ Wzaal pl dUl / sz wzyo-Q P2 do_2 / HXz Wi, O )
21 =1

Y2 =1
by Fubini’s theorem. This proves ¢y € £ and, after taking infima, ||p¥| % < ||¢||2|¢|s. O

Example 5.5.7 ((*-IPTPs). Let (Z,%) be a measurable space, and write (*(Z) := L?(Z, 2%, k),

where & is the counting measure on . For G € ¢, let Q(G) € B((*(Z)) be multiplication by 1.

Then we call Q: 4 — B((*(Z)) the projection-valued counting measure on (E,%). Note

that L>(Q) = £>°(E,9) with || - |[zec(@) = || - [le=o(z) because Q(G) = 0 if and only if G = 0.
We define

€°°(Ql, 91)@1 cee ®i€oo(Qk+1, y]prl) = Loo(Ql)®z e ®1‘LOO(Q]§+1> and

I- Héo"(Ql7§1)®i“'®if°"(9k+1»91«+1) = |’L°O(Q1)Ai"'®iLoo(Qk+l)’

where @; is the projection-valued counting measure on (;,.%;) for all i € {1,...,k+ 1}. It is
easy to see that Q == Q1 ® -+ - ® Q1 is the projection-valued counting measure on (2,.%#) when
we identify

() @g -+ @9 (1) ZL2(Q X - X Qpy1) = £2(Q).

Thus,
0°(Q1, F1)®; - - @il (Qpy1, Frs1) € L2(Q) = 2°(Q, F).

This space is the integral projective tensor product of />°(Q,.%1),...,0°(Q11, Fk+1), and

L%"—integral projective decompositions are called £°°-integral projective decompositions.

Variants of the £*°-integral projective tensor product are often used in the literature
(e.g., [ACDS09, dPS04, DDSZ20]). As the above example shows, ¢>°-integral projective tensor
products are special cases of L°-integral projective tensor products if one allows non-separable

Hilbert spaces.
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5.6 Well-definition of MOlIs

The primary goal of this section is to show that if ¢ € L%®(P)®; - - ©;L°(Pgy1) and

(X, 0,015, ¢ry1) is an LE-IPD of ¢, then the object

/EPl(@l(-,a))bl - Pe(or(50)) bk Pey1(prs1(v,0)) p(do) € B(Hygy1; Hy)

makes sense as a weak™ integral and is independent of the chosen LE-IPD (X, p, ¢1, ..., @r+1) of

¢ whenever b; € B(H;1; H;) for alli € {1,...,k}.

Definition 5.6.1 (Complex Markov kernel). Let (2,%) and (X, %) be measurable spaces. A
complex Markov kernel (with source ¥ and target =) is a map v: ¥ — M(E,%) such that

the function ¥ 3 0 — 1,(G) = v(0)(G) € C is measurable whenever G € ¥.

Lemma 5.6.2. Let (£,9) and (X,5¢) be measurable spaces, and let v: ¥ — M(Z,9) be a
complex Markov kernel. If p: Z x ¥ — C is measurable and ¢(-,0) € L' (vy) = L*(|vy]) for all

o € X, then the function

Y>>0~ / o€, 0)v,(d€) e C
is measurable.
Sketch of proof. By a truncation argument, it suffices to prove the claim when ¢ is bounded.

To this end, let

H::{@GKOO(EXZ,%QQ%”):J»—)/

w(&,0) v, (dE) is measurable} )

1]

Clearly, H is a vector space that is closed under complex conjugation. It is closed under bounded

convergence by the dominated convergence theorem. Now, if G € 4 and S € 7, then

[ 1625015009 = 15()5(@), o ex

By definition of a complex Markov kernel, 15xs € H. By the multiplicative system theorem (in

the form of Corollary 5.2.6), we conclude that {*°(Z x 3,% ® ) C H, as desired. O
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Proposition 5.6.3. Let (2,9, K,Q) be a projection-valued measure space, let L be another
complex Hilbert space, and let (X, 7, p) be a measure space. Suppose p: Zx3 — C is a measurable
function such that o(-,0) € L*°(Q) for allo € ¥. If A: ¥ — B(K; L) and B: ¥ — B(L; K) are

weak® measurable, then the maps
Y30 A(0)Q(p(-,0)) € B(K;L) and ¥ > 0+ Q(p(-,0)) B(o) € B(L; K)
are weak™ measurable as well. If, in addition,

/ZHA<U)”B(K;L)H‘P('7U)’L°°(Q) p(da)+/EHSO('aU)HL‘”(Q)HB<U)HB(L;K) p(do) < oo,

then the aforementioned maps are weak™ integrable.

Proof. To prove the first part, it suffices, by Theorem 5.4.5(i), to show that o — A(c) Q(¢(+,0))

and o — Q(p(-,0)) B(o) are pointwise weakly measurable. If k € K and [ € L, then

(A(0) Q(o(,0)) b, 1) = (QUp(+ 0)) k, A(0)"1) ) = /:90(5,0) Qr,a@0)1(dE), o€ X

By the pointwise weak measurability of A,

Vg (G) = Qrae)1(G) = (Q(G)k, Al0) )k = (A(0)Q(G)k, )L, o0 €%, GeY,

o

defines a complex Markov kernel ¥ — M (Z,%). Therefore, it follows from Lemma 5.6.2 that
the map o — A(0) Q(¢(+,0)) is pointwise weakly measurable. A similar argument establishes
the pointwise weak measurability of the map o — Q(¢(-,0)) B(o). The second part then follows

from Corollary 5.4.9 because

||A(U)Q(<P('7U))HB(K;L) = HA(U)||B(K;L)HQ(90("U))HB(K) = ||A(U)||B(K;L)H‘P(HU)”LW(Q) and

1Q(w () B(o)llprixy < QU o) sy 1B p(rxcy = 15 ) oo () 1B | 31k

whenever o € 3. O
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Corollary 5.6.4. Let ¢ € L%®(P)&®; -+ @;L>(Pgy1), let (X, p,¢1,---,¢r+1) be an LE-IPD of
@, and let by € B(Ha; Hy),...,by € B(Hpy1; Hy). If F: ¥ — B(Hyy1; Hy) is defined by

F(o) = Pi(p1(-,0)) b1~ Pe(or(-,0)) by Pog1(0r41(,0)) € B(Hyq1; Hy), o €X,

then F' is weak® integrable, and

/de
by

Proof. By Proposition 5.6.3 and induction, F' is weak™ integrable. Inequality (5.6.5) then follows

k+1

(H\Ib 1B, ;1 )/H\% y0) [ Lo (py) p(d0). (5.6.5)

B(Hg41;H1)

from the triangle inequality in Theorem 5.4.5(ii) and the fact that

k+1

1E ()| B(rys15mm) < (H!b 1 B(H, 4151 >HH% ;o) Lee(py)

whenever o € 3. O

Notation 5.6.6 (MOI, take I). Let ¢ € L®(P)®; -+ @;L>®(Py11), let (X, 0,01, -, Pkr1) be
an LF-IPD of ¢, and write P := (Py,..., Pyy1). Define

IP (2, 0,01,y rt1)[b] ::/Epl(Spl("U))bl"‘Pk(@k(‘aa))kak+1(SOk+1(‘=U))p(dU)

whenever b = (by,...,b;) € B(Ha; H1) X -+ X B(Hp41; Hy).

Of course, the definition of IP(E, Py 1, - -+ Pre1)[b] makes sense as a weak* integral in

B(Hy41; Hy) by Corollary 5.6.4. By the linearity of the integral and Inequality (5.6.5), the map
IP(S,p, 1, - 041): B(Hy; Hy) X -+ X B(Hyy1; Hy) = B(Hyy1; Hy)

is k-linear and bounded. Our next and most important task is to prove that this map is
ultraweakly continuous in each argument. As described in §5.2, this is rather delicate when

Hy, ..., Hiqq are not separable.
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Lemma 5.6.7. Let H, K, and L be Hilbert spaces, and fir Q € B(K;L), C € Si(L;H),
D € S1(H; K), and (Qn)neny € B(K; L)Y, If Q,, — Q in the SOT, then Q,D — QD in Sy(H; L)
asn — oco. If QF — Q* in the SOT, then CQ, — CQ in S1(K; H) as n — oo. In particular, if
Qn — Q in the S*OT, then QD — QD in S;(H; L), and CQ, — CQ in S1(K;H) as n — oo.

Proof. Without loss of generality, we can take () = 0. Assume @),, — 0 in the SOT as n — oo,
let £ € S3(H; K), and fix an orthonormal basis £ C H. Then \|QnE|]?§2 = ce llQnEe|? =0
as n — oo by the dominated convergence theorem. Explicitly, lim, o ||@nFel/ = 0 whenever
e € &, and ||QnEe|? < ||Eell% sup,en HQmH2B(K;L) € L'(&, counting) because E € Sy(H; K).
Next, assume @QF — 0 in the SOT as n — oo, and let E € Sy(L; H). By what we just proved,
I1EQulls, = [[QLE"[ls, — 0 as n — oc.

Finally, let C' = U|C| and D = V|D| be the polar decompositions of C' € S;(L; H) and
D € S1(H; K), respectively. Then |D|'/2 € Sy(H), V|D|V? € So(H; K), |C|Y? € So(L), and
U|C|Y/? € Sy(L; H). Consequently, if Q,, — 0 or Q¥ — 0 in the SOT as n — oo, then

1QuDls, = ||@uVIDIHDE]| < [@uvipiE| I 2= 0 or
Sl 82 82
cate -otital, <o, e, ==o
Sl 32 32
respectively, by Holder’s inequality for the Schatten norms and the previous paragraph. ]

Now, we are prepared to prove Theorem 5.2.7.

Proof of Theorem 5.2.7. By Pettis’s measurability theorem, if V' is a metrizable, locally
convex topological vector space, then the pointwise limit of a sequence of strongly measurable
maps X — V is strongly measurable. We shall use this fact several times without further comment.

To begin, it suffices to treat the ¢ = 1 and ¢y = 1 cases. Indeed, suppose we know
that ¥ 3 0 = Q¥(-,0))A(o) € S1(H;K) and X 3 0 — A(o) P(p(-,0)) € S1(H; K) are
strongly measurable whenever A: ¥ — §1(H; K) is strongly measurable. If A: ¥ — S§;(H; K)
is strongly measurable and B: ¥ — S;(H; K) is defined by 0 — Q(¢(-,0)) A(o), then B is
strongly measurable, so that ¥ 5 o +— B(o) P(¢(-,0)) = Q¥ (-,0)) A(o) P(p(-,0)) € Si1(H; K)

is strongly measurable as well. This is the desired result.
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We treat the ¢ = 1 case; the ¢ = 1 case is nearly identical. Let A: ¥ — S1(H; K) be

strongly measurable, and define H to be the set of ¢ € £>°(Q2 X ¥, F ® ) such that the maps
Y30 A(o) P(p(-,0)) € S1(H;K) and X3 0 — P(p(-,0)) A(0)* € S1(K; H)

are strongly measurable. We show that H = (*°(Q x ¥, . # ® ) using the multiplicative system
theorem (in the form of Corollary 5.2.6). It is clear that H is a linear subspace of £*°({2 x ), and
H is closed under complex conjugation because L>®(P) > f — P(f) € B(H) respects complex
conjugation (Proposition 4.2.10(iv)) and S1(H;K) 2 A — A* € S1(K; H) is an isometric,

conjugate-linear isomorphism (Theorem 4.3.3(ii)). Also, if G € %, S € #, and 0 € X, then

A(0) P(laxs () = 1s(0) A() P(G), and

P(laxs(:,0)) A(0)” = 15(0) P(G) A(o)".

Since A and A* are strongly measurable, it follows that 1gxg € H.
It remains to show H is closed under bounded convergence. In fact, we claim something
more general: If (¢, )nen is a sequence of measurable functions Q2 x ¥ — C converging pointwise

to p: Q@ x ¥ — C and

supllgn( 0)llpm(py < 005 0 €T,
neN

then the sequences of maps
(X3 0= Alo) P(en(-,0)) € S1(H; K))pen and (X3 0 = P(en(,0)) A(0)” € S1(K; H))nen
converge pointwise to the maps

Y30 A(o) P(p(-,0)) € S1i(H; K) and X3 0 — P(¢(-,0)) A(o)* € S1(K; H),

respectively. Indeed, in this case, if 0 € X, then P(¢,(-,0)) = P(p(-,0)) in the S*OT as n — oo
by Proposition 4.2.10(iv). Consequently, A(c) P(pn(-,0)) = A(o) P(¢(-,0)) in S1(H; K), and
P(on(-,0)) A(o)* — P(o(+,0)) A(o)* in S1(K; H) as n — oo by Lemma 5.6.7, as claimed.
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Finally, let ¢ be as in the statement of the theorem, and define

On = ¢ liwoeaxs|pwo)<nys N1 EN

For all n € N, |py| < max{n, ||}, so ¢, is bounded, and

sup lom (+ |y < 00 ) pmpy < 00, 0 € 5.
meN

Also, (¢n)nen converges pointwise to ¢. By the previous paragraph, the sequence of maps
(X 30+ A(o) P(on(-,0)) € S1(H; K))pen converges pointwise to o — A(o) P(p(-,0)). Since
we know from the last two paragraphs that the map ¥ 5 0 — A(0) P(¢n(-,0)) € S1(H; K) is
strongly measurable for all n € N, we conclude that ¥ 3 o — A(o) P(¢(-,0)) € Si(H;K) is

strongly measurable, as desired. O

Remark 5.6.8 (Separable case). If H and K are separable, then there is an easy argument for the
following more general result: If F': ¥ — B(H; K) is weak® (i.e., pointwise weakly) measurable
and F(X) C 81(H; K), then F is strongly measurable as a map ¥ — (S1(H; K), ||||s,). Indeed,
S1(H; K) is separable in this case, so Pettis’s measurability theorem says we only need to verify
that F: ¥ — (S1(H; K),|||s,) is weakly measurable. By Theorem 4.3.3(v), if £ € 81(H; K)*,
then there exists a B € B(K; H) such that ¢(A) = Tr(AB) for all A € §;(H; K). Since K is
separable, any orthonormal basis is countable, from which it is easy to see that £ is the pointwise
limit of a sequence of elements of span{S;(H; K) > A~ (Ah,k), : h€ H, k € K}. The result
follows. Therefore, in the separable case, we obtain Theorem 5.2.7 immediately from the first

part of Proposition 5.6.3.

Theorem 5.6.9. Suppose p € L°(P1)®; - @;L®(Pry1), (X,p, 01, -, Prr1) is an L¥-integral
projective decomposition of ¢, and b = (by,...,by) € B(Ha; H1) X -+ X B(Hyy1; Hy). If

b; € S1(Hit1; H;) for some i € {1,...,k}, then the map

Y30 = F(o) = Pi(p1(+,0)) b1 -+ Pi(pk(-,0)) b Per1(rs1(-50)) € (S1(Hgr1; Hi), |||l s,)
is strongly p-integrable, and its Bochner p-integral is I¥ (X, p, 01, ..., 0p+1)[D].
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Proof. Since the constant map ¥ 3 o +— b; € S1(H;41; H;) is strongly measurable, the map
F: Y — S1(Hgyq; H) from the statement of the theorem is strongly measurable by Theorem

5.2.7 and induction. Since
k+1
/ZIIF(U)H& p(do) < [1bills, s [ [ prHB(Herqu)/Z [T lle; (- )llzeop,) p(do) < oo
pi 2255

as well, (the second part of) Pettis’s measurability theorem yields the strong integrability of
F: % — S1(Hiy1; Hi). The final statement follows from Proposition 1.1.7(ii), the definition
of I® (2, p,01,...,pre1)[b] as a weak® integral (i.e., a weak integral in the o-WOT), and the
continuity of the inclusion (S1(Hyy1; Hy), ||| s,) = (B(Hgy1; Hy), 0-WOT). O

Corollary 5.6.10 (Ultraweak continuity of MOI). Suppose ¢ € L®(Py)®; - @;L>®(Pyi1),
(3, 0,015, ¢r+1) is an LE-IPD of ¢, and b= (b1,...,b,) € B(Ho; Hy) X -+ x B(Hp11; Hy).

If bgy1 € S1(H1; Hgy1) and m € Sky1 is a cyclic permutation of {1,...,k+ 1}, then

Tr (IP(E7 Py PLy- - 790k+1)[b] bk+1) =Tr (IPTr (Ev Py Pr(1)s -+ - 7907'(‘(](:-’-1))[[)71'} b7r(k:+1))a

where Pr = (Pr1y, -+, Pr(et1)) and bx = (bz(1), .-, bry)- In particular, the bounded k-linear
map I¥ (2, p, 01, ..., 0ps1): B(Ho; Hy) X -+ X B(Hpyq; Hy) — B(Hypyq; Hy) is argumentwise

ultraweakly continuous, t.e., ultraweakly continuous in each argument separately.

Proof. If we define F(o) := Pi(¢1(-,0)) b1 -+ Pe(¢x(+,0)) b, Pxy1(0r+1(+,0)) and
Fr(0) = Pr1) (r(1) (1 0)) baa) -+ Pty (@0 (5 0)) by Pty (@) (- 0))
for all o € %, then

Tr (172, prpte o) b bir) = [ To(P() b)) = [ T (Ful0) gy plder)

=Tr ((/EFW dﬂ) bﬂ-(k+1)> =Tr (1P (S, 0, @n(1)s - - - Pr(hor 1)) O] bt 1))

by the o-weak continuity of ¢ — Tr(cbg+1), Theorem 4.3.3(iv), and Theorem 5.6.9 (plus the fact

that the map &1 2 ¢ — Tr (cbﬂ(kﬂ)) € C is bounded linear). O
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We now reap the benefits of this technical work: The ultraweak continuity we just proved
allows us to show that I¥ (%, p, 1, ..., prs+1) does not depend on the chosen LE-1PD of ¢ and

is therefore a reasonable definition of the multiple operator integral (5.1.1).

Theorem 5.6.11 (Well-definition of MOI). If ¢ € L®(P)®; - - - ©; L°(Pj41), then

IP(E7p7(p17"'7SOk+1) = IP(i7ﬁ7¢17 "7¢k+1)

whenever (X, p, ¢1,...,pr+1) and (f],ﬁ, Pty Prt1) are LE-IPDs of .

Proof. By the argumentwise ultraweak continuity of the k-linear maps I¥ (3, p, 01, ..., Ors1)
and IP(f], Py D1y Prs1) (Corollary 5.6.10) and the ultraweak density of finite-rank operators

(Theorem 4.3.3(i)), it suffices to prove that

IP(E7P7 1y 790k+1)[b] = Ip(iaﬁv @17 . '7¢k+1)[b]

whenever b = (by,...,b;) € B(Ho; H1) X - -+ X B(Hg41; Hy) is such that b; has rank at most one
for all i € {1,...,k}.

To this end, write m := k + 1, and for all s € {1,...,m — 1}, let b; = (-, hi) 1, , ki, where

i+1

k; € H; and h; € H;11. Then
Pi(¢i(-,0)) bi = (-, hi)m, . Pi(pi(-,0)) ki, o€ X,
If, in addition, k,, € H,, and
F(o) = Pi(e1(,0)) b1+ P1(pm—-1(-,0)) bmn—1 Pn(om (-, 0)), 0 €,
then

F(0)km = [ [ (Pi(i(- 0))ks, hi—1) . Pi(p1(- o))k

(2

2
H/Q_soi(-,a) d(Pi)k;i,hi_1>Pl(SOl(',O'))k‘l, o€ (5.6.12)

1=2
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Next, if hg € H; and
V= (P)khe © (P2)kain @+ © (Prn)k b1 = Py @b ho@--@him 1 € M (2, F),
then v < P in the sense that P(G) = 0 implies |v|(G) = 0. Now, note that

m
/HI% wi, 0)| [v|(dw) H l@i( o)l Lo oy Fill i [ hiall ; < 00, o€ X (5.6.13)

Consequently, by Equation (5.6.12) and Fubini’s theorem,

(F(0)km,ho)n (H/ ©i(+,0) A(P;) ks hi 1><P1(801(',0))/€17h0>H1

H/ @i(+,0) A(Pi) ki ni_s Z/Qsﬁl(w1,0)-~90m(wm,a) v(dw)  (5.6.14)

whenever o € . Now, by Inequality (5.6.13),

\\

//Hm 1,0)] [V](dw) p(dr) _(Hukuﬂum 1\H> L1t s pido) <

Thus, by definition of pointwise Pettis integrals, Equation (5.6.14), and Fubini’s theorem,

(TP (2, 0,01, -+ o) DKy ho) . z//<p1(w1,0)~'sﬁm(wm,0) v(dw) p(do)

/ / 1(w1,0) -+ Py ) p(do) v(dw).  (5.6.15)

Since v < P, the definition of LF-IPD implies
p(w) = / v1(w1,0) - pm(wm, o) p(do),  |v|-ae. w e Q.
b
Therefore, Equation (5.6.15) becomes

<IP(Z7 Py P1y--s ¢k+1)[b]km7 h0>H1 = /Q(de = <P(90)(k1® : ®km)7 ho®: - '®hm—1>H1®2~--®2Hm-
Since the right-hand side is independent of the chosen L¥-IPD, we are done. ]
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Remark 5.6.16. By carefully inspecting the proofs above, we see that if Definition 5.5.3(ii) were
changed to the requirement that &HS@l(',O‘)HLoo(Pl) k150l Loo(pyyy) p(do) < 00, then
Theorem 5.6.11 (and the results in this section leading up to it) would still hold. We use the

upper integral in Definition 5.5.3 so that ||| Lo (p,)3,.&,1%(p,,,) IS @ nOrm.

7

We are finally allowed to make the following long-awaited definition.

Definition 5.6.17 (MOI, take II). If ¢ € L®(P;)®; - - - ®;L°(P41), then we define
(IP(,O) {b] = / . / go(wl,. . .,wk+1)P1(dw1)b1 Pk(dwk) bk Pk+1(dwk+1)
Qg1 931
= [ Prlerta o) Pulout o) b P (,0)) (o) € (s )

for all b= (b1,...,b;) € B(Ha; H1) X -+ X B(Hp41; Hy) and any LE-IPD (X, p, ¢1,. .., ¢k+1) of
@. The map I¥p: B(Hy; Hy) X -+ x B(Hyy1; Hy,) — B(Hygyq; Hy) is the multiple operator

integral (MOI) of ¢ with respect to P = (P, ..., Pry1). We also write

(PL® - ® Pey1)(@)#[b1, ..., bi] = P(o)#b = (I p)[b).

Remark 5.6.18 (# operation). For vector spaces V and W, write Hom(V; W) for the set of

linear maps V' — W. The # in the definition above formally stands for the algebraic operation
# =#i: B(H1) ® - ® B(Hp11) — Hom(B(Hy; Hy) ® -+ ® B(Hpq1; Hi); B(Hg41; H1))
determined (linearly) by
(a1 @ ®aps1)#[b1 ® - @ bg] = aiby ---ar1brags1, a; € B(H;), bj € B(Hj41; Hj).

Now, the von Neumann algebra tensor product B(H1)®---®B(Hg4+1) is naturally isomor-
phic to B(H) = B(H; ®3 -+ ®2 Hgy1). Morally speaking, “the multiple operator integral
(TP Py by, ..., by] s P(@) = [ed(Pt® - ® Pyy1) € B(H) = B(H1)®- - @B(Hgy1)
acting on b; ® - -+ ® by, via #,” even though this may not make sense (i.e., # may not extend to

the von Neumann algebra tensor product). We continue this discussion in Remark 5.8.2.
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We end this section by restricting the MOI we just defined to a von Neumann algebra.

Notice first that Theorem 5.6.11 and Corollary 5.6.4 give

k
i=1
for all b = (bl, .. .,bk) S B(HQ;Hl) X oo+ X B(Hk+1;Hk).
Theorem 5.6.20 (MOIs in M). Suppose Hy = -+ = Hi11 = K, M C B(K) is a von Neumann

algebra, and P; takes values in M for all i € {1,...,k+1}. If o € L®(P1)®; - @;L°°(Pyy1),
(3, 0,01, -+ Pr41) is an LS -IPD of ¢, and b= (b1,...,b;) € MF, then

(IF¢)[b] = /Zpl(SOI("U))bl"'Pk(SOk('aU))bk Pri1(pk+1(+,0)) p(do) (5.6.21)

is a weak® integral in M. Furthermore, I¥ p: B(K)* — B(K) restricts to an argumentwise

o-weakly continuous k-linear map M¥* — M satisfying

Finally, I ¢ is independent of the representation of M in the sense that if N is another von

Neumann algebra, and 7: M — N is an algebraic *-isomorphism, then
(TP )by, . bgl) = (IP P o) 2By, m (b)) by by € M.

Proof. By Proposition 4.2.17(ii), the definition of ¥, and Corollary 5.4.9, the right-hand side
of Equation (5.6.21) is a weak* integral in M whenever b € M¥. We know from Inequality
(5.6.19) that the restriction IF¢: M* — M satisfies Inequality (5.6.22). Corollary 5.6.10 implies
the restriction IF p: M* — M is argumentwise o-weakly continuous because the o-weak operator
topology on M is the subspace topology induced by the o-weak topology on B(K') and the latter
is the same as the ultraweak topology. The final claim follows from Theorem 5.4.5(iv) and the
fact that 7(P;(f)) = (mo P;)(f) for all f € L*(F;) by another multiplicative system theorem

argument, which we leave to the reader. O
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Remark 5.6.23 (General semifinite case). Let (M C B(K),7) be a semifinite von Neumann
algebra. The arguments in this section are robust in the sense that they can be used to prove

the following generalizations (in the Hy = --- = Hyp,1 = K case) of Theorems 5.2.7 and 5.6.9.

(i) Let (,%#,K,P) and (Z,¥, K, Q) be projection-valued measure spaces such that P and
@ take values in M, and let (3, #°) be a measurable space. Suppose ¢:  x ¥ — C and
1: 2 x 3 — C are measurable functions such that ¢(-,0) € L*°(P) and 9(-,0) € L*(Q)

for all o € . If A: ¥ — L'(7) is strongly measurable, then the map

Y30 Q@(,0))Alo) P(¢(-,0)) € L(r)

is strongly measurable as well.

(ii) Suppose we are in the setup of Theorem 5.6.20. If i € {1,...,k} and b; € £!(7), then

the map X 3 0 — Pi(p1(-,0)) b1 -+ - Pi(eor(+,0)) b Pey1(@r41(-,0)) € (L(7), H'HLI(T)) is

strongly p-integrable, and its Bochner p-integral is the multiple operator integral (5.6.21).

To prove these, one uses the same arguments with [ACDS09, Lem. 2.5] instead of Lemma 5.6.7
and basic properties of L' instead of S;. Facts such as the two above can be useful when proving

trace formulas; please see [ST19, §5.5] for a survey of some existing results on trace formulas.
5.7 Algebraic properties and noncommutative L? estimates

In this section, we prove linearity and multiplicativity properties of the MOI defined
in the previous section. Then we prove Schatten p-norm and, in the case of a semifinite von

Neumann algebra, noncommutative LP-norm estimates for MOls.

Proposition 5.7.1 (Algebraic properties of MOIs). Let m € {1,...,k}.
(1) If g, € L®(Py)®; - @;L®(Pyy1) and o € C, then I¥ (¢ + avp) = I[P+ a IP.

(ii) If 1 € L®(P1)®; - @, L®(Py,), 2 € L®(Ppg1)®; - - @; L (Py1), and

(V1 @ Po)(w) = 1 (wi, ..., wm) Y2(Wimt1s - - Wht1), W €L,

182



then 1 @ Y9 € L®(P1)®; - - - Q; L (Pyy1), and
(IP (41 @ 1b2) ) [b] = (TP Pmapy) [br, .oy Bp1] by (TPt Pt Y (b, By

for all b= (bl,...,bk) € B(H2;H1) X oo X B(Hk+1;Hk)~

(iif) If ¢ € L®(P1)®; - @i L®(Pps1), ¥ € L®(Pr)®iL>®(Pr41), and

1/}("0) = ¢(wmawm+1) weN
then
(IP ((p?[))) [b] = (IPQO) [blv teey bm—ly (IPm,Pm+1w) [bm], bm+1, e 7bk];
fOT’ all b= (bl,...,bk) S B(H27H1) X oo X B(Hk+1>Hk;)

Proof. We take each item in turn.
(i) It is easy to see that
IP(ap) = aIP .

To prove that I is additive, let (31, p1,@1,...,0r1) and (g, p2,¥1, ..., Yre1) be LY-IPDs of
¢ and 1), respectively. Take (2, 5, p) to be the disjoint union of the measure spaces (31, 74, p1)
and (X9, 74, p2), and for i € {1,...,k + 1}, define

(pi(wi,O') if (wi,U)EQilegQiXE,
Xi(wiaa) =
VYi(wi, o) if (wi,0) € O x ¥y CQ; x X.

As is argued in the proof of Proposition 5.5.5, (£, p, x1,-- ., Xk+1) is a LF-IPD of ¢ + 9. Thus,

by definition of the disjoint union measure space and pointwise Pettis integrals,

IP(SO—i_l/}) = [P(E)p7X17' "7Xk+1)

= IP(ElaphSOla .. 7§0k+1) +IP(E2aP27¢1; .. 7¢k+1> = IP¢+ IPw

Thus, ¢ — IP ¢ is linear.
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(ii) If (31, p1, 01, -, om) and (X2, p2, Om+1, - - -, Pk+1) are, respectively, LE . .op,- and

Lol'sm+1®-~~®Pk+1'IPDS of 11 and 12, then

(2171)17@17'-'7907%717"' 71) and (227p2717-~-717§0m+17~--790k+1)
——— ———
k+1—m m

are, respectively, L¥-IPDs of ¢1 ® 1 and 1 ® 2. But then ¢ ® ¢» = (11 ® 1)(1 ® 12) belongs to
L®(P)®; -+ - @; L®(Pyy1) because L®(P))®; - - - ©;L°(Pyy1) is an algebra. Furthermore, by the

arguments from the proof of Proposition 5.5.5, if (3, .7, p) = (X1 x X9, 54 ® 5, p1 ® p2) and

pi(wi,o1) if1<i<m,
Xi(wi, o) =
oi(wi,o0) ifm+1<i<k+1,

for all (wi,a) = (Wi,Ul,O'Q) € x X1 x X9 =8, x X, then (X,p, X1,---,Xk+1) IS a Ly-1PD of

11 ® Y. This observation implies the result. Indeed, fix hy € Hi1 and hy € Hy, and define

hy == (ITm+tPeriopo)[b vy, .. bp]hy and

T = (TP Pmapy) by .oy by by (T5m 0Pt (b, - by
Then

(Thy,ha)g, = (TP Pmapy) [b, ..., by—1]bmhs, h2) .

:/z <<HP¢(¢¢(-,01))bi>h3,h2> p1(doy)

=1 H,
m k
-/ <(HB(¢i(-7al))bi>< 11 ij',@))bj)
X1 /X i=1 j=m+1

><Pk+1(</?k+1(',02))h17h2> p2(doz) p1(doy)
Hy

= /z (Pr(xa(-0)) b1+ Pe(xa(- 0)) b Piy1(Xa41(-, 0))has ha . p(do)

= <(IP(¢1 X 1#2))[51, Cey bk]hl, h2>H1
by definition and Fubini’s theorem. This completes the proof of the first multiplicativity claim.
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(iii) Let (X1,p1,¢1,--.,9k+1) be an LF-IPD of ¢, and let (X2, p2, ¥m, pm+1) be a
Loﬁm@PmH—IPD of ¢. Then

(227:02717"'717wm7wm+1717"' 71)
—— ——

m—1 k—m

is an LE-IPD of ¢. Once again, by the arguments from the proof of Proposition 5.5.5, if
(3,2, p) = (X1 x X9, 74 @ H5, p1 @ p2) and for all (w;,0) = (w4, 01,02) € ; X X,

wi(wi,o1) if1<i<m-—1,
Xi(wi, 0) = § piwi, 01) Yi(wi, 02) i m <i<m+1,
pi(wi,o1) ifm+2<i<k+1,

then (2, p, X1s - - - Xkt1) is an LF-TPD of o). Now, if by € Hyy1, ho € Hy, by i= (IPmFrt14p) by,
and T = (1P P+10) [by, ... b1, b, b1, - - -, by ], then

(Thi,ho)p, = (TP P10) [br, oo b1, B9, b - - -, bi ] B, ha) g,
m—1
=/E << 1T Pi(%(wal))bz‘) P(m(:,01)) b,
1 =1

S
><< I1 Pi(@i(‘aal))bi>Pk+1(80k+1('701))h17h2> p1(dor)

i=m+1 H,

m—1
- /21 /22 << H Pi(SDi(',(ﬁ))b,') P (om(-,01))

=1

X Pry(¥m (-, 02)) by Pt (Wms1(-,02)) Prag1(@mr1 (- 01)) b

k
><< I1 Pi(‘Pi('aal))bi>Pk+l(80k+l('7UI))h17h2> p2(doa) pr(doy)

i=m+2 Hy

= /E (Pr(x1(0)) b1+ Pe(xa(- 0)) b Piy1 (Xe41(5 0))has ha) . p(dor)

— <([P(¢1 ®@12)) (b1, - .. ,bk]hl,h2>H1

by the multiplicativity of integration with respect to a projection-valued measure and Fubini’s

theorem. This completes the proof of the second multiplicativity claim. ]
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Proposition 5.7.2 (Schatten estimates on MOIs). If ¢ € L®(P)®;- - ©;L>®(Pyy1) and

P, P1,- .-,k € [1,00] satisfy 1/p=1/p1 +---+ 1/py, then

H(Ipw)[b]HSp < Nl oo (pygsdinoe (P 1028y, - [1bkls,,

for all b= (b1, ...,by) € B(Ha; Hy) X -+ x B(Hyy1; Hy). (As usual, 0-00:=0.)

Proof. Let (X, p,¢1,...,¢k+1) be a LF-IPD of . By definition, Theorem 5.4.12, and Holder’s

inequality for the Schatten norms,

1(IP¢) [b]Hsp = H /2P1(<P1(‘=0))b1 o Pe(or(+,0)) b Pey1(org1(-50)) p(do)
Sp

< /E 1Py (¢1(-0)) b - Pulion(-:0)) by P (r41(50)) || 5 p(do)

k+1

< loalls,, - Iells,, /E T IE:i, o). p(do)
= g9=1

k+1

= llballs,, "'IIka‘sp,g[2 [T lleiCo)llzoe(py p(do).
22 =1

Using that [y« dp < E - dp and then taking the infimum over all L¥-IPDs (X, p, @1, ..., 9k+1)

of ¢ gives the desired result. O

By the same proof, using Theorem 5.4.16 in place of Theorem 5.4.12 and noncommutative

Holder’s inequality in place of Holder’s inequality for the Schatten norms, we get the following.

Proposition 5.7.3 (Noncommutative LP estimates on MOIs). Suppose Hy = --- = Hpy1 = K,
(M C B(K),T) is a semifinite von Neumann algebra, and Py, ..., Pyyq take values in M. If

@ € L™(P1)®; - ®;L>(Ppy1) and p,py,...,px € [1,00] satisfy 1/p =1/p1 + -+ 1/py, then

| (1% ) Blll Loy < 0l oo ()i Loe ey 01 mr (o) - Wbkl o)y b= (Ba, - k) € ME,

for all b= (by,...,by) € MF. (As usual, 0- 00 :=0.) In particular, I¥ ¢ extends to a bounded

k-linear map LP'(7) x -+ - X LP*(7) — LP() with operator norm at most ||¢|[ Loo ()@, o0 (P 1)-
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5.8 Relation to other definitions

For completeness, we now review a common alternative definition, due to Pavlov [Pav69]
and Birman-Solomyak [BS96], of (5.1.1) and prove that it agrees with the definition from the
previous section when both definitions apply. This alternative definition requires the construction

of a certain vector measure; please see §A.2 for the relevant background and notation.

Theorem 5.8.1. Ifb= (by,...,by) € So(Ha; H1) X -+ X So(Hp41; Hy), then there exists a unique

vector measure P#b: F — So(Hp41; H1) such that
(P#b)(Gl X oo X Gk—i—l) = Pl(Gl) by--- Pk(Gk) bi Pk+1(Gk+1), G; € %;.

The semivariation || P#b||svar of P#b is at most ||bi]|s, - - ||bk|ls,, and P#b < P in the sense
that {G € . : P(G) =0} C {G € .Z : (P#b)(G) = 0 whenever # 5 G C G}.

Remark 5.8.2. The notation for the vector measure in Theorem 5.8.1 is not standard. It is
inspired by the # operation discussed in Remark 5.6.18. As the notation suggests, morally
speaking, “P+#b is the projection-valued measure P = P} ® --- ® Py41 actingon by ® --- ® by,
via #.” Indeed, the condition uniquely characterizing P+#b can be rewritten genuinely as
(P#b)(G) = P(G)#b for all G = Gy x -+ x Giyq with Gy € F1,...,Ggy1 € Fryq because in
this case P(G) € B(H1) ® -+ ® B(Hy11) C B(H). Therefore, morally speaking, integrating a
function ¢ with respect to P#b may also be viewed as “fQ pdP acting on by ® - - - ® by, via #,”

which matches the interpretation discussed in Remark 5.6.18.

Pavlov’s original proof of Theorem 5.8.1 (from [Pav69]) has an error. Birman-Solomyak
pointed it out and sketched a correction in [BS96]. For the reader’s benefit, we provide a
complete proof in §5.10. In any case, following Pavlov, Theorem 5.8.1 allows us to define (5.1.1)
as [ @ d(P#b) € Sy(Hyq1; Hy) for all ¢ € L™(P) but only b € So(Hy; Hi) X - -+ X So(Hpy1; Hy).

(Please see [DUT77, pp. 5-6] for the definition of this integral.) In this case,

H /Q pd(P#b)

We now show this definition agrees with the one we developed in §5.6 when they both apply.

< |lollLoc (pan) [ P#D|lsvar < [lollLoc(pyll01llss - - [|bx| - (5.8.3)
So
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Theorem 5.8.4 (Agreement with Pavlov MOI). If ¢ € L®(P)®; - - ®;L>°(Py11), then
(IPp)[b) = /de(P#b), be Sy(Hy; Hi) X - X So(Hyy1; Hy).
Proof. By Inequality (5.8.3) and the k-linearity of the condition uniquely characterizing P#b,
So(Ha; Hy) X -+ x So(Hpy1; Hi) 2 b — /ngd(P#b) € So(Hpq1; Hy)
is a bounded k-linear map with operator norm at most |||/ (py. By Proposition 5.7.2,

Sy(Hoi Hy) X -+ X So(Hpq1; Hy) 3 b (IP ) [b] € So(Hyp1; Hy)

7

is a bounded k-linear map with operator norm at most ||| Lo (p,)@,..;°0(p, )~ Since finite-rank
operators are dense in Sy, it therefore suffices to prove that (I¥¢)[b] = [, pd(P#b) for all
b= (b1,...,bg) € So(Ho; Hy) X - - - X So(Hpy1; Hy) such that by, ..., by all have rank at most one.

Now, recall So(Hy; Hyy1) = So(Hyy1; H1)* via the map B — (A — Tr(AB)). Therefore,

fQ @ d(P+#Db) is determined by the requirement

Tr (/ god(P#b) bk+1) = / <p(w) Tr((P#b)(dw) bk+1), bk+1 S SQ(Hl;Hk+1).
Q Q

Once again, since finite-rank operators are dense in Sy and the above equation is bounded linear
in bgy1, it suffices to take bgy1: Hy — Hyyq1 with rank at most one. It therefore suffices to prove

Tr (@) Blbins) = [ 0() To(P#)(de) )

for all b = (by,...,b;) € Sa(Ha; H1) X -+ X So(Hyy1; Hy) and bgy1 € S2(Hi; Hiq1) such that
bi,...,br;1 all have rank at most one. Now, write m =k + 1, T := (I¥)[0], b; == (-, hi) i, ki
fori e {1,...,m— 1}, and by, := (-, ho) g, km. By the calculation done in the proof of Theorem
5.6.11, if v = P, @@k ho@-@hm_1 = (P1)k1ho @ (P2)kashy @ -+ @ (P )k a1 » then

Tr (IP) 6] bm) = Te(T 0 ((+ ho) 1, k) = (T, hio) 11, :/Qtpdu.
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But now, by definition of the vector measure P#b: # — So(Hy11;Hy), if G =G1 X -+ X Gqq

with Gy € #1,...,Gry1 € P41, then

Tr((P#b)(G) bey1) = Tr(Pr(G1) b - - - Prga (Gr1) br1)

m

= [1{P(Gki i)y, = [T (P (Gi) = v(G).
i=1

i=1

(This is a special case of the calculation resulting in Equations (5.6.12) and (5.6.14) from the
proof of Theorem 5.6.11.) It follows that Tr((P#b)(-) by,) = v as complex measures on (£2,.%#).

This completes the proof. O

We end this section by discussing Birman—Solomyak’s original definition of DOlIs, i.e.,
the kK = 1 case of MOIs. Before doing so, we make an observation. Redefine H := H; and
K = Hj. It is well known that H ®9 K* = Sy(K; H) isometrically via the bounded linear
map determined by h ® ¢ — (k +— £(k)h). This identification gives us a natural isometric
isomorphism #: B(H ®9 K*) — B(S2(K; H)) that is a homeomorphism with respect to all the
usual topologies—in particular, the WOT. Viewing B(H)® B(K*) as a subset of B(H ®9 K*), one
can show this map is the unique WOT-continuous linear extension of the linear map determined
by B(H) ® B(K*) 2 a®b' + (c+ acb) € B(S2(K; H)), where, for b € B(K), the transpose
b' € B(K*) is defined by £+ £ o b, i.e., the adjoint of b without identifying K* with K via the
Riesz representation theorem.!

Now, note that both P§: P — B(K*) and P = # (P, ® P§): F1 ® F» — B(S2(K; H))

are projection-valued measures. We therefore may define, following Birman—Solomyak [BS66],

Tfl’PQ(b) ::#</Q . gpd(P1®P2t)>b:]5(<p)b€SQ(K;H)

for all p € L®(Py @ Py) = L™(Py ® P§) = L™°(P) and b € So(K; H). One can show (e.g., by
starting with finite-rank b and then approximating in Sy) that Tf,jl’PQ (b) = le w0, PA(P1OP2)#b),
i.e., this agrees with Pavlov’s definition. Now, Birman—Solomyak define T; P2(p) € B(K; H) for

b € B(K; H) as follows. Recall that B(H; K) = S;(K; H)* isometrically via B — (A — Tr(AB)).

"What is being said here is that the operation # = #; from Remark 5.6.18 does extend to the von Neumann
algebra tensor product B(H)®B(K™) = B(H ®2 K*) when the codomain is taken to be B(S2(K; H)).
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Therefore, B(K; H) is isometrically conjugate-isomorphic to S;(K; H)* via C' +— (A — Tr(ACY)).
Consequently, if T: §1(K; H) — S1(K; H) is a bounded linear map, then we may speak of its
adjoint T*: B(K; H) — B(K; H), which is characterized by

Te(T(A)C*) =Te(AT*(C)"), Aec&(K;H), Ce B(K;H).
Now, if ¢ € L®(P; ® P») satisfies
TIPS (K H)) C S1(K; H) C So(K; H),
e.g., if ¢ € L%®°(P;)®;L>(P,) by Theorem 5.8.4 and Proposition 5.7.2, then it is easy to show

TS (K H)) € S1(K; H) and HT;I’P2

w2 )= [

< Q.

HB(S1(K;H) HB(S1(K;H))

In this situation, Birman—Solomyak define

TP (b) = (T;’P? )*(b) € B(K;H), be B(K;H).

|Sl(K;H)

Now, let ¢ € L>®(P;)®;L>®(P;). By Corollary 5.6.10, if by € B(K; H) and by € S1(K; H), then

Tr (/92 /91 o(wr, ws) Pr(dwy) by Pz(dwz)l);) =Tr </91 /Qz (w1, ws) Po(dws) b3 P1(duJ1)b1>

~ Ty <b1</§22 /91 (@) Pi(dwr) by PQ(de)> >

This says precisely that

(IPl’PQW&(K;H)) = 1"y,

Since we already know our definition of the MOI agrees with that of Pavlov when they both

apply and thus (I"02¢)[b] = Tfl’& (b) whenever b € So(K; H), we obtain the following theorem.

Theorem 5.8.5 (Agreement with Birman-Solomyak DOI). If ¢ € L°°(P;) ®; L>°(P), then
PP = PP on all of B(K; H).
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5.9 Proof of Theorem 5.1.4

In this section, we present the proof of Theorem 5.1.4. To begin, we recall the definition
and basic properties of the Hilbert space tensor product; please see [BOO08, §3.2] or [KR97a, §2.6]
for information. Let H,..., H,, be complex Hilbert spaces. There exists a unique inner product

(s YH,@®H,, on H ® -+ ® H,, such that

(M@ @hm k1 @ @ k) m@-0H, = (M. k) - (P ) s has ki € Hi.

The Hilbert space tensor product (H; ®3 -+ ®2 Hu, (-, ) Hy @904 H,,) is defined to be the
completion of H; ® - - - ® H,, with respect to (-, )i, g.-oH,,- If Ai € B(H;) forallie {1,...,m},

then there exists a unique bounded linear map A; ®9 -+ ®2 Ay, € B(H1 ®9 -+ - ®2 Hy,) such that

(A1 @2 @2 A4n) (M ® - @hp) =A1h @@ Aphym,  hi € H;.

Furthermore, |[A1 ®2 -+ ®2 Am | B(H 0000 Hm) = 1A1llB(H) -+ 1Amll B(#,,)> and the linear map
B(H))®---®@ B(Hp) — B(Hy ®2 - ®9 Hy,) determined by A1 ® -+ ®@ Ay, — A1 ®2 -+ - @9 Ay, 18
an injective *-homomorphism when B(H;) ® - -- ® B(H,,) is given the tensor product -algebra
structure. This allows us to view B(H1) ® - -- ® B(H,,) as a x-subalgebra of B(H ®2 -+ Q2 Hy,)
and justifies writing, as we shall, 4] ® - -- ® A, instead of A; ®9 -+ Q2 Asp.

The proof of Theorem 5.1.4 goes through an extension theorem for projection-valued
measures: Theorem 5.9.4 below. Notably, we shall not need to use the sledgehammer that is the

Carathéodory—Hahn-Kluvének extension theorem.
Definition 5.9.1. Suppose & C 2% contains () and Q. A function P°: & — B(H) is
(i) projection-valued if P'(Q) = idy = 1 and P°(G)? = P%(G) = P°(G)* for all G € &,

(ii) a projection-valued protomeasure if & is an elementary family (as in [Fol99, §1.2])

and PY is projection-valued and WOT-countably additive, and

(iii) a projection-valued premeasure if & is an algebra and PP is projection-valued and

WOT-countably additive.
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Remark 5.9.2. By the proof of [BS80, Thm. 5.1.1], if & C 2% is a ring of sets and P°: & — P(H)
is projection-valued and finitely additive, then P°(G1 N G3) = P°(G1) P°(Gy) for all G1,Gs € &.

As in classical measure theory, a protomeasure extends to a measure.

Lemma 5.9.3 (Extending to an algebra). Suppose & C 2% is an elementary family containing Q.
If P%: & — B(H) is a projection-valued protomeasure such that P?°(G1) P*°(Gs) = 0 whenever
G1,Gy € & and G1 N Gy = 0, then PY extends uniquely to a projection-valued premeasure

PY: alg(&) — B(H).

Proof. By Lemma A.2.3, P": & — B(H) extends uniquely to a WOT-countably additive
function PY: alg(&) — B(H), so we only need to show that P is projection-valued. To this
end, let G € alg(&). Then there exist disjoint sets G1,...,G, € & such that G = J! | G;, in
which case P°(G) = Y, P(G;). By assumption, this exhibits PY(G) as the sum of pairwise
orthogonal projections. Thus, P%(G) is an orthogonal projection. Since P°(Q2) = P%(Q) =1 as

well, we are done. O

Theorem 5.9.4 (Projection-valued Carathéodory’s theorem [BS80, Thms. 5.2.3 & 5.2.4(2)]).
Suppose o/ C 2% is an algebra. If P': o/ — B(H) is a projection-valued premeasure, then P°

extends uniquely to a projection-valued measure P: o(</) — B(H).

The proof of Theorem 5.9.4 proceeds as in classical measure theory, using a projection-
valued analog of Carathéodory’s theorem, which concerns itself with the projection-valued

outer measure
P*G)=inf{P*G1):G1 2G, G e}, GCQ.

In fact, the whole proof amounts to transferring the result of Carathéodory’s theorem for the

outer measures i}, ,(G) = inf {{(P°(G1)h,h) : G1 2 G, Gi € &} to a result about P*.

Proof of Theorem 5.1.4. Write m :=k+ 1 and 2 :=Qy X -+ X Q,;,, and define

@@::{Gl><---XGmgQ:G1€§1,...,GmE§m}
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to be the set of measurable rectangles. Now, define
PYG)=Pi(G1)® @ Pp(Gp) € B(H @3-+ ®3 Hpy), G=GiX--xGp€&E.

Recall that & is an elementary family. We claim that P% is a projection-valued protomeasure
such that P(G'NG) = PY(G) PY(G) for all G, G € &. If so, then an appeal to Lemma 5.9.3
and Theorem 5.9.4 completes the proof because o(alg(&)) =0(&) =71 @ -+ @ F.-

To prove the claim, let G := G1 x - -+ X Gm,@:: @1 X oo X ém € &. Then

PYGENG)=PY(G1NG1) x -+ x (G N Gi))

:Pl(Glﬂél)®®Pm(GmﬂGm>

= (P1(G1) P1(G1)) @ -+ ® (Pru(Gm) Pra(Gim))

= (Pi(G1) @ -+ @ Pp(G))(P1(G1) @ -+ ® P (Grm)) = P*(G) PY(G).
Also,

PY(GY = (Pi(G1) @ ® Pp(Gm))* = Pi(G1)* @ ® Pp(Gr)*

=Pi(G) ® - ® Ppu(Gp) = PY(G).

Since it is clear that P%(()) = 0 and P%(Q) = 1, we only have the WOT-countable additivity
of P% left to prove. To this end, write (-,-) = (-,-)H,@y--0,H,, for the tensor inner product.
By definition, we need to show that the assignment & 3 G — P,?,%(G) = (PY(G)h, k) € Cis
countably additive for all h, k € Hy ®3 - - ®9 H,,,. Taking first pure tensors h = h1 ® - -+ ® hy,
k=ki®- - ®ky, we have that if G = Gy x --- x G, € &, then

PYG) = ((Pi(G1) @+ @ Pr(Grm)) (1 ® -+ ® ) 1 @ -+ @ Fiy)
= (PG, k) iy (P (G hany k) 1,
= (P1)h1 k1 (G1) (P e (Gim)

= ((P)ni ks @ @ (Prn) o) (G)-
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It follows that P,?gC is countably additive whenever h and k are pure tensors and therefore also
whenever h,k € H; ® --- ® H,,. Now, let (Gp)neny € &Y be a disjoint sequence such that the
union G = J,,cy Gn belongs to &, and let h,k € Hy ®2 --- ®2 H,, be arbitrary. First, we
show that > °° (P%(Gy)h, k) is absolutely convergent. Indeed, (P%(Gy,))nen is a sequence of
pairwise orthogonal projections, so Bessel’s inequality implies

1
2

(g)lPOO(Gn)hW) < |7

Therefore, by the Cauchy—Schwarz inequality (twice),

S PG = 3 [LPR(G, PG < 3 PGl | PG
n=1 n=1 n=1

S(ZWWWWW><ZWm@MW>SMMW<m
n=1 n=1

Next, choose sequences (hj);en, (kj)jen in Hy ® --- ® H,, such that h; — h and k; — k in

Hi®o - ®9 Hy, as j — 0o. Then

M8

(P(G)hj, k;) — i (PY(Gy)h, k)

n=1

(P(Gp)hj, k;) — i (P*(Gy)h, k)
n=1

i
L

WE

(PG By — ) ) + (PG by — )

3
Il
—

j—o0
<|[hj = Rl &5l + N[ [k — &Il =—— 0.
Since it is also the case that

lim (P (G)h;, kj) = (P*(G)h, k),

J]—00

we conclude that

(PY(G)h, k) = i (PY(Gp)h, k),

n=1

as desired. O



5.10 Proof of Theorem 5.8.1

In this section, we prove Theorem 5.8.1 using the approach of Pavlov [Pav69] and
Birman—Solomyak [BS96]. The construction is similar in spirit to that of the tensor product of
projection-valued measures, but the technical details are complicated substantially by the fact
that we need the Carathéodory-Hahn-Kluvanek extension theorem (§A.2) instead of the (much
easier) Carathéodory’s theorem for projection-valued measures. Before beginning in earnest, we

take care of a combinatorial detail that arises in the proof.

Lemma 5.10.1. Let m € N, and write [m] == {1,...,m}. Suppose < is an algebra of subsets
of the set Q; for all i € [m], and write & == {G1 X -+ X Gy, : G1 € A, ...,Gy, € S, } for the
elementary family of rectangles in Q == Q1 X -+ X Q. If v: & — C is finitely additive and

Ri,...,R, € & is a partition of 0 by rectangles, then there exists a partition
{G‘f =Gl X X Gl = (. ) € [ra] X e X 1] = [n}}

of Q, where G}, . .., G?j € o is a partition of Q; for all i € [m], such that

n
DR < D [v(6H)]
i=1 £c[n]
Proof. The key observation is that if G, ... ,é” € 4 is a cover (not necessarily a partition) of
Q1, then there exists a partition G',...,GN € @ of Q such that for all i € [n], G’ is a disjoint
union of some of the G’s. We prove this by induction on n > 1. The n = 1 case is trivial. Now,
assume the result for all sets, all algebras, and all covers of length less than n € N. Then, given a
cover GY,...,G™ € a; of O, we get a partition Gi, ..., Gévo e o of U, G' with the property
that G’ is a disjoint union of Gy’s for all i € {2,...,n}. Let & = {G(l), .. .,Gévo}. Then the

desired partition of €2 is

{Pe@:élﬂP—@}U{élﬂP:Pe,@andélﬂPsdé@}U{él\< U P)}.

pPe»

Enumerating the above family as G', ..., G € o completes the proof of this initial observation.
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Now, writing R; = ézl X - X éﬁn, apply the observation from the previous paragraph to

éjl, cel CNJ’; € 4/; to obtain a partition G}, cel, G?j € a/; of Q; such that for all i € [n], G; is a

disjoint union of some G;’s. By the finite additivity assumption, we then get

v(R)= > Y w(Gfx---x G,

06:GIICGE G CGE,

Because Ry, ..., R, are disjoint, if (¢1,...,4y,) € [n1] X -+ X [ny] is such that
Ghrcé,... GnCc

then it cannot be that Glf C é]l, ceey Gf;’{l C G, for some j # i unless G?l X - X Gf,g” is empty,
in which case V(Gﬁl X «++x GEm) = 0. This “no double-counting” observation and the above

identity together imply that

)R D 1 (C e S e D D A (Cl

=1 =lyaGiicéi bGP CG, £€[n]
as desired. O

Proof of Theorem 5.8.1. Let b= (by,...,b;) € So(Ho; Hy) X -+ X Sa(Hy11; Hy), and write
& = {Gl X - X Gk+1 1 Gy Eﬁl,...,Gk+1 Gy]prl}
for the set of rectangles. For G1 x -+ X G111 € &, define

(G X -+ X Ggy1) = Pi(G1) by - Py(G1) by, Prs1(Gry1) € So(Hyyr; Hy)

= (P1(G1) @+ @ Pry1(Gra1))#[b1 @ - - @ by

in the notation of Remark 5.6.18. We break up the proof into five steps.

Step 1. Prove that ,ugo is finitely additive and therefore, by Lemma A.2.3, extends to a

finitely additive vector measure u: alg(&) — So(Hp1; H).
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Step 2. Prove that for any partition G},...,G € .%; of Q; (for each i € {1,...,k+ 1})

and any bgy1 € So(Hi; Hiy1), we have that

> [T (G - G ) b)) | < Hlbals, -+ bkl

(@1,...,€k+1)€[n1]><--->< [’I’Lk+1]

Step 3. Conclude H,ugHsvar < |Ib1]lsy - - - 10k || s, -

Step 4. Prove that Mgo is weakly countably additive, which, again by Lemma A.2.3,
means that ,ug is also weakly countably additive. Then apply Theorem A.2.7 and

Proposition A.2.8 to get P#b from ,ug.
Step 5. Prove P#b < P.

Recall that we write
(Q,F HP)=x - XQp1, 71 @ @ Fpp1H1 @2 @2 Hyp1, PL @ - @ Piy).

Let us begin.

Step 1. There are a number of direct ways to see that ,ugo is finitely additive. We provide
a cute proof using Theorem 5.1.4 and the # operation from Remark 5.6.18. By definition of P, if
G € &, then P(G) € B(H,)®---®@B(Hg41) € B(H). By definition, p{°(G) = P(G)#[h1®- - -®by]
for all G € &. Since we know that P: 0(&) = .% — B(H) is finitely additive, we conclude from
the linearity of # that u{ is finitely additive on &. Furthermore, the finitely additive extension

pd: alg(&) — Sa(Hyy1; Hi) is also given by the formula
P(G) = P(Q)#b1 @ -~ @b, G € alg(&).

This formula makes sense because alg(&’) is the set of finite disjoint unions of elements of &, so
P(G) is a finite sum of pure tensors and thus lies in B(H;)®- -+ ® B(Hy41) whenever G € alg(&).

Step 2. Let

A = {Ge = G{l X X Gi’j:ll f = (51,...,€]€+1) € [nl] X oo X [nk_H] =: [n]}
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be the partition of 2 =€)y X --- X Qg1 obtained from the fixed partitions of 1,...,Q,41. For
ease of notation, write T¢ := Tr (g’ (Ge) bi1) and |A| = Zee[n] }T‘f‘. The goal of this step is
the estimate |A| < [|b1]ls, <« - [|bk+1]ls, -

To begin, note that if £ € [n], then

T8 = Tx (P(GE) br -+ PL(GEE) by P (G b
= Tr (P (G) b1+ Pu(G)*0u P (G) b

= Tr ([P(GT) b Pa(GS)] -+ [P(GR) b Pt (G| [P (GRS b PA(GE) ).
For i € [k+1], ¢; < n;, and 4;11 < n;11 (adding mod k + 1), define HZ“&Jr1 € B(S2(Hi+1; Hy)) by

I () = PG e P (Gi) = (B(GF) ® P (Gi) e, e € Sa(Higs Hy).

(]

Then T¢ = Tr (T2 (by) - - TL % (by) LA (b)), s0

k+1

|T€‘ < HH{LEQ (bl) . Hik,‘ekJrl (bk) H’ili:il’él (bk-&-l)Hsl < H HHfi,éiH (bi)HSQ

(remembering to reduce mod k + 1) for all £ € [n].

Next, since {GK X Glfll 0; € [ng], liv1 € [nig1]} is a partition of €; x ;41 by rectangles,

gz ,E1+1

it is easy to see that {H 2l € [ngl, biy1 € [ni+1]} is a collection of mutually orthogonal

projections in B(Se(H;41; H;)) such that

e i1 ng Ti4+1
53 m- (3% n m@m)#c

—1 f,_»'_l 1 £i=1 47,-5»1 1

: ((zp,.@?)) [ et

= (P(%) ® Pip1(Qiy1))#c = c,

so that whenever ¢ € Sa(H;41; H;), we have
ng MNi+1

> 3 s, = lellz,

£i=1 f¢+1=1
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Consequently, if £ 4 1 is even, then, by the Cauchy—Schwarz inequality,

k+1 b
A< Y T o],
Len] =1
(k+1)/2 - (k+1)/2 .
= > I Iy opn)lls, TT (Mg (020) |,
Le[n] p=1 q=1
(k+1)/2 P ) (k+1)/2 ot ) 1
s(z I (et b2p_1>>|32) (Z I g q>\>32)
e[n] p=1 Le[n] q=1
(k+1)/2 t /(k+1)/2 1
:=< 11 M%—ﬂé) ( 11 \bﬂé> = [[b1llsy - - brs1llsys
p=1 q=1

as desired.

If kK + 1 is odd, then we estimate in a slightly different way. Just as we write

L= (fl,. . -;£k+1) S [nl] X - X [nk+1] = [’I’l],

we shall use the shorthand

= (ly,... . 0) € [n] X -+ X [ng] = [A].

By the Cauchy—Schwarz inequality and above,

k+1

A< 37T @l
Le[n] =1
CLRAR /l y4 i liL;
:Z Z Hﬂkli:lhl(bk-*'l)HSg ZHHHz M(bi)HSQ
b1=14p1=1 ge[ﬁ]ifl
ni  Nk+1 ' ' ) ny  Mk+1 bt 2 %
(23 }IHk’if”(le)H&) (S ¥ (ZHHH ol ) )
[1:16k+1:1 01 1Ek+1 1 ZE[’ILZ 1
ni NEk+1 ot 2 %
=||bk+1usg<2 >, (ZHHH B ‘>HSQ>> :
l1=14p11=1 Ze[n] 1
—. 5% k41
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Since k is even, we may now estimate as in the even case. If 1 € [n1] and £;11 € [ng11], then

k/2 k/2
s = 32 T Gl LT 00
Zeli
k/2 3 k/2 3
Loy 1,0 2 oo b 2
( Z H [T =77 ( b2p1)H32) ( Z H [Tz ZQH(bzq)HSQ) :
fe[n)p=1 fe[n) =1
Also,
k/2 no k/2
lop_1,0 2 2
T bop-0)|ls, = D 12 00)||g, ] o213, and
ZE[n]p 1 lo=1 p=2
k/2 fzq,f2q+1 - (k—1)/2 g - )
Yo I eolls, =TT Mozells: D [ 0], -
Zefn) 9=1 =1 =1
Therefore,

[N

na % "k
St < lbgls, - brills,y ( > HH?’Zz(bl)H;) < > HHZk’Zkﬂ(bk)H?%) :

lo=1 lp=1
whence it follows that

1
ng  MNk4+1 2
|A|<||bk+1ungHb ||SQ<ZZ||H“2 ol > > HHi’“’““(wa;)

Zl 1é2 1 ekil £k+1:1

k—1
= [1br+1lls, (H Hbi||52> [1b1lls, 1Bkl s, = llb1lls, - - - k1 lls,

1=2

as desired. This completes Step 2.

Step 3. By the Riesz representation theorem and the definition of the inner product
on So(Hyy1; Hy), if £ € So(Hyy1; Hp)*, then there exists a unique B € Sy(Hjy1; H1) such that
U(A) = (A, B)s, = Tr(B*A) = Tr(AB*) for all A € So(H41; H1). Writing

brt1 = B* e SZ(HU Hk-!—l) and Vb,bry1 (G) = Vby,....br11 (G) ="Tr (N(b) (G) bk-i-l)’ G e alg((’@)v
this tells us the goal of this step is to prove ||tpp, | = (Vb5 [(2) < [[b1llsy -+ 1brs1ls,-
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To begin, we make the simple observation that if &7 C 2 is an algebra, v: & — C is
a finitely additive complex measure, and &y C &7 is an elementary family generating 7 as an

algebra, then
lv|(G —sup{Z]y :Ry,..., R, € & is a partition ofG}, Ged.
Applying this observation to our case, we have
‘Vb17---7bk+1 = sup { Z ‘ Tr ub bk+1)‘ :Rq,..., R, € & is a partition of G}

for all G € alg(&). Therefore, by Lemma 5.10.1,

HVblw--,kaH = sup{ Z ‘Tr G‘Z bk+1)‘ A= {Ge A [n]} as in Step 2}.

Le[n]

It then follows from Step 2 that [vy,,. b, || < [|b1lls, - - [|bry1lls,- This completes Step 3.
Step 4. According to the comments at the beginning of and notation in Step 3, the goal

of this step is to prove that v, . is countably additive for all b; € So(H;y1; H;), i € [k], and

Okt1

br+1 € So(Hy; Hi41). As mentioned in the outline of the proof, Lemma A.2.3 tells us we only

need to check the countable additivity of vy, . on &. Henceforth, write m := k + 1.

7bk+1

First, suppose b; = (-, h;) g, ki, where k; € H; and h; € H;11, for all i € [m — 1], and

7,+1

bm = (-, ho) i, km, where hg € Hy and k,,, € Hy,,. If G =Gy X --- x Gy, € &, then
12 (G) by, = (H(B‘(Gi)ki, hi—l)Hi> (-, ho) o, P1(G1 )k,
i=2
so that

Voo (G) = Tr (11 (G) bin) = (PL(G1)k1, ho) i, H(B(Gi)ki, hi—1)m;

=2
= ((P1)kyho @ (P2)kghy @+ @ (Prn) kg 1 ) (G)

= Pry @ @km,ho®@hm 1 (G)- (5.10.2)
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Since this formula is the restriction to & C .# of a complex measure, we get that v, 5, is
countably additive. Since vy, . is clearly m-linear in (b1, ..., by, ), we then conclude that vy, 4,
is countably additive for all finite-rank operators by € So(Ha; H1),...,bm—1 € So(Hp; Hi—1)
and b, € So(Hy; Hpy,). To finish this step, we approximate arbitrary b’s by finite-rank ones.
Let by € So(Ho; Hy), ... by—1 € So(Hpy; Hyp—1), and by, € So(Hy; Hyy,) be arbitrary. If

(Gp)pen € &N is a pairwise disjoint sequence with G == |J .y Gp € &, then we must show

peEN

N—oo

N = 0.

Vbl N 7 : : l/bl N 7

To this end, let (b} )nens, - - -, (b, )nen be sequences of finite-rank operators such that b} — b; in

S as n — oo for all i € [m]. Then, by the previous paragraph,

N
ON = |y, b (G) = Vit ( +Zyb1, 1 (Gp) =D (G
p=1
< Wby pn (G) = Vi, (G + Z Vb (G) = Visr o (G + D [ (G|

p>N

for all n, N € N, where the last term—for fixed n € N—goes to zero as N — oo. But now, notice

that the m-linearity gives us that

Vbt ™ Vb b —Z%l, B bt (5.10.3)

This observation and Step 3 then imply

hmsup5N <Z (’pr bR bi—b b1 ,.b ‘+Z‘Vb", b b —bT bz+17---7bm(Gp)|>

=1

<22‘Vb1, R [(6) <22||Vb1, BT bi—b b1 emsbpn |lvar

n—o0

SQZHb?Hsz 1071 llss 16 = b lls, 1bialls, - - - 1bmlls, —— 0

We conclude that limy_.oo 6y = 0. Thus, ,ug is weakly countably additive. Since So(Hjy1; Hi)

is a Hilbert space and therefore reflexive, Step 3, what we just proved, Theorem A.2.7, and
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Proposition A.2.8 yield that u) extends uniquely to a So(Hyi1; Hi)-valued vector measure
py = P#b on (&) = .F with || P#b|lsvar = |9 |lsvar < [|b1]ls, - - [|bk|ls,- This completes Step 4
and the construction of P#b.

Step 5. We use the approximation argument from Step 4. Suppose G € .% is such that
P(G) = 0 (which implies P(G) = 0 when .% > G C G because P is a projection-valued measure).
If Z5GCGand by € So(Ha; Hy),... by € So(Hyyr; Hy), and by € So(Hy; Hyy1) have rank

at most one, then Equation (5.10.2) implies that Tr((P#b)(G) bk+1) = 0. By multilinearity, this
implies Tr((P#b)(G) b11) = 0 for all finite-rank by, ..., by 1. Now, approximating in Sy arbitrary
bi,...,bky1 by finite-rank operators gives, using Equation (5.10.3) and the semivariation bound,

that Tr((P#b)(G) br+1) = 0. We conclude (P#b)(G) = 0. This completes the proof. O
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Chapter 6

Differentiating at unbounded operators

Let M be a von Neumann algebra, and let a be a self-adjoint operator affiliated with
M. We define the notion of an “integral symmetrically normed ideal” of M and introduce
a space OCH(R) € C*(R) of functions R — C such that the following result holds: For any
integral symmetrically normed ideal Z of M and any f € OCK(R), the operator function
Zsa 2 b— f(a+0b) — f(a) € T is k-times continuously Fréchet differentiable, and the formula for
its derivatives may be written in terms of multiple operator integrals. Furthermore, we prove that
if fe B%’OO(R) N Bf’oo(R) and f’ is bounded, then f € OC*(R). Finally, we prove that all the
following ideals are integral symmetrically normed: M itself, separable symmetrically normed
ideals, Schatten p-ideals, the ideal of compact operators, and—when M is semifinite—ideals

induced by fully symmetric spaces of measurable operators.

Standing assumptions. Throughout, H is a complex Hilbert space, M C B(H) is a von
Neumann algebra, and ||-||;_ 5 = ||||. In §6.3 and §6.4, M is (semifinite and) equipped with a
trace 7: M4 — [0,00]. In §6.5, k € N. In §6.6, k € N, (Z, ||-||;) <M, and Zs, =T N Mg,.

6.1 Introduction

Given an appropriately regular scalar function f: R — C, one of the goals of perturbation
theory is to Taylor expand, i.e., differentiate many times, the “operator function” that takes a(n
unbounded) self-adjoint operator A on H and maps it to the operator f(A) constructed via the
functional calculus for A. This delicate problem has its beginnings in [DK56], which initiated

the subject of multiple operator integration (Chapter 5).
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Let us quote the best-known general results on higher derivatives of operator functions.

If BP(R™) is the homogeneous Besov space (Definition 3.6.1), then we write
PBFR) == By™(R)N {f € C*R) : f*) is bounded } (6.1.1)

for the k*h Peller—Besov space. It turns out that PB'(R) N PB*(R) = PB'(R) N BfOO(R)

(Please see the paragraph containing Equation (B.2.10) at the end of §B.2.)

Theorem 6.1.2 (Peller [Pel06, Thm. 5.6]). Suppose H is separable. If A is a self-adjoint operator
on H, B € B(H)s,, and f € PBY(R)NPB*(R), then the map R >t — f(A+tB)— f(A) € B(H)

1s k-times differentiable in the operator norm, and

dk
|, JA+tB) =k / o [ B M) PAAA) B PA(AN) B PA(dNeqa),
t=0 a(4) a(4)

k+1 times

where the MOI above is interpreted in accordance with Chapter 5.

We also quote a result from [ACDS09]. To do so, we define property (F). A symmetrically
normed ideal (Z, ||-||) of M (Definition 2.2.1) has property (F) if whenever (a;)icr is a net in Z
such that sup,cy ||ail|z < oo and a; — a € M in the strong® operator topology, we get a € Z and

lallz < sup;e; llaillz. Also, recall Wi, (R) C CK(R) is the k* Wiener space (Definition 1.3.13).

Theorem 6.1.3 (Azamov—Carey—Dodds—Sukochev [ACDS09, Thm. 5.7]). Suppose H is separa-
ble, and let a n M, (Definition 4.2.16). If (Z,|-||7) <sM has property (F), Ls, == {b € T : b* = b},
and f € Wi+1(R), then the map

Zsa 2 b= for(b) = fla+b)— f(a) €T

is well defined and k-times Fréchet differentiable with respect to || - ||z, and

TESK

abk . ..8b1fa(0) = Z /( ) . /( )f[k]()\h R ,)\k+1)Pa(dA1) bw(l) .. 'Pa(d/\k) b7r(k:) Pa(d)\k+1)
a(a a(a

k+1 times

for all by, ..., by € Lss.
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As is noted in [ACDS09], the motivating example of a symmetrically normed ideal with
property (F) comes from the theory of symmetric operator spaces. (Please see §6.3 for the
meanings of the terms to follow.) Indeed, if (E,| - ||g) is a symmetric Banach function space
with the Fatou property, (M, 7) is a semifinite von Neumann algebra, and (E(7), || - || g(r)) is the

symmetric space of T-measurable operators induced by F, then

(Z [ lz) = (E(m) N M, |- [ 5rnm) = (E(T) N M max{]| - g, || - m}) (6.1.4)

is a symmetrically normed ideal of M with property (F). Though Theorem 6.1.3 applies to
this interesting general setting, much more regularity is demanded of f than in Theorem 6.1.2.
(Indeed, Wi(R) € PBY(R) N PB*(R).) It is an open problem [ST19, Prob. 5.3.22] to find
less restrictive conditions for the higher Fréchet differentiability of maps induced by functional
calculus (“operator functions”) in the symmetric operator space ideals described above. This
chapter makes substantial progress on this problem: A corollary of our main results is that if F
is fully symmetric (a weaker condition than the Fatou property), then the result of Theorem
6.1.3 holds for (Z, || - |z) as in Equation (6.1.4) with f € PB'(R) N PB*(R). In other words, we
are able to close the regularity gap between Theorems 6.1.2 and 6.1.3 in the (fully) symmetric
operator space context. Moreover, we are able, for the first time in the literature on higher
derivatives of operator functions, to remove the separability assumption on H by using the MOI

development from Chapter 5.

Remark 6.1.5 (Related work). The Schatten p-ideals have property (F), so Theorem 6.1.3
applies to them when the underlying Hilbert space is separable. There are, however, much
sharper results known about the differentiability of operator functions in the Schatten p-ideals
(again, when the underlying Hilbert space is separable); please see [LMS20, LMM21].

Also, there is a seminal paper of de Pagter and Sukochev [dPS04] that studies the (once)
Gateaux differentiability of operator functions in certain symmetric operator spaces at measurable

operators; we discuss its relation to the results in this paper in Remark 6.6.17.

We now summarize our main results. The ideals we introduce are the integral symmetri-

cally normed ideals (ISNIs). The definition of integral symmetrically normed is an “integrated”
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version of the symmetrically normed condition |larb||z < |la||||7||z]|b||. Loosely speaking, a

Banach ideal (Z, || - ||z)< is integral symmetrically normed if

The precise definition (Definition 6.2.2(ii)) is slightly technical, so we omit it for now. Our first

[ A@rB@ )| <lrlz [ 14118l rez.
Q Q

T

main result comes in the form of a list of interesting examples of ISNIs.

Theorem 6.1.6 (Examples of ISNIs). Suppose H is arbitrary, i.e., not necessarily separable.
(i) The trivial ideal (M, || -||) is integral symmetrically normed.

(i) If Z is a symmetrically normed ideal of M such that (Z,||-||;) is separable, then T is

integral symmetrically normed.
(iii) The ideal IK(H) < B(H) of compact operators is integral symmetrically normed.

(iv) If 1 < p < oo, then the ideal of Sp(H) < B(H) of Schatten p-class operators is integral

symmetrically normed.

(v) Suppose (M, 1) is a semifinite von Neumann algebra. If (E,| - ||g) is a fully symmetric
space of T-measurable operators (Definition 6.3.1(iii)) and (Z,||-||z) == (ENM,| - |Enm),

then Z is an integral symmetrically normed ideal of M.

Proof. The first item is Example 6.2.6, the second is part of Proposition 6.2.8, the third follows
from Proposition 6.2.10 (or Remark 6.2.11), the fourth is a special case of Example 6.2.7, and
the fifth is Theorem 6.4.1. ]

With these in mind, we state our second main result.

Theorem 6.1.7 (Derivatives of operator functions in ISNIs). Let H be arbitrary, i.e., not
necessarily separable, and let a n Mg,. If (Z,| - ||z) is an integral symmetrically normed ideal of

M and f € PBY(R) N PB*(R), then the map

Isaab'_)fa,z(b) ::f(a+b)—f(a)€I
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is well defined and k-times continuously Fréchet differentiable with respect to || - ||z, and

oy, Oy Fa0) = > / o [ O, M) PHAA) by - - PH(AAR) By P (dAkg)
nes,, Jola)  Jola)
k+1 times

for all by, ... by € Ls,.
Proof. Combine Theorem 6.6.16 and Corollary 6.6.10. O

Theorems 6.1.7 and 6.1.6(iv) generalize the best known results, from [LMS20], on the
differentiability of operator functions in the ideal (Z, || - ||z) = (Sp(H), || -||s,) to the non-separable
case when p = 1. We do not, however, recover the optimal regularity on f, established in
[LMM21], when p € (1,00). Also, to the author’s knowledge, the present paper’s result on the
ideal of compact operators (i.e., Theorems 6.1.7 and 6.1.6(iii)) is new even when H is separable.
Finally, as promised at the end of the previous section, Theorems 6.1.7 and 6.1.6(v) (together with
Fact 6.3.2) make substantial progress on the open problem [ST19, Prob. 5.3.22] of finding general
conditions for the higher Fréchet differentiability of operator functions in ideals of semifinite von

Neumann algebras induced by (fully) symmetric Banach function spaces.

6.2 Integral symmetrically normed ideals

In this section, we introduce some abstract properties of ideals of M that are useful in
the study of MOIs and their applications to the differentiation of operator functions. We also
give several classes of examples of ideal satisfying these properties. In §6.4, we give a large class
of additional examples using the theory of symmetric operator spaces.

To begin, we prove some basic properties of ideals of von Neumann algebra.

Proposition 6.2.1 (Ideals of von Neumann algebras). Let Z C M be an ideal of M (i.e., a

linear subspace such that atb € T whenever a,b € M andt € Z), and fix r,s € M.
(i) r€Z < r* €I <= |r|€Z. In particular, T is a *-ideal of M.

(ii)) If s€ T and |r| < |s|, thenr € T.
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Suppose, in addition, that ||-||; is a norm on I such that ||latb||z < |la|| ||t||z||b|| whenevert € T
and a,b € M.

(iii) If r € Z, then ||r||z = |lr*|lz = [l|7|llz-
(iv) If s € Z and |r| < |s|, then ||r||z < |s]z-

Proof. For the first and third items, let 7 = u|r| be the polar decomposition of r, and recall
that |r| = u*r as well. Since r € M, we have that u, |r| € M. Consequently, if » € Z, then
r* = |rlu* = u*ru* € Z because Z is an ideal. Now, if r* € Z, then |r| = |r|* = (u*r)* =r*u ez
because Z is an ideal. Finally, if |r| € Z, then r = u|r| € Z because Z is an ideal. This takes care

of the first item. For the third, note that if » € Z, then

Iz = " ru*llz < [l [Hrlzllw*ll = lIrllz = lulr(llz

<l Mlrllz = lllrlllz = [l ullz < lr*lizllull = 7"z,

which yields the desired result.
For second and fourth items, note that it suffices (by the other items) to assume r,s > 0,
so that r = |r| and s = |s|. By (the proof of) [Dix81, Pt. I, Lem. 1.2], if 0 < r < s, then there

exists a ¢ € M such that ||c|| <1 and \/r = ¢y/s. In particular, if s € Z, then
r=r(Vr) =c/s(ey/s) =csc* €T

because 7 is an ideal. This takes care of the second item. Continuing for the fourth item, we get
[7llz = llesc™llz < llell [Isllzlle™ll < l[sllz,

as desired. ]

Consequently, the definitions of an invariant operator ideal of M in [ACDS09] and a
symmetrically normed ideal of M in [ST19] are equivalent, up to a constant multiple of the

ideal’s norm, to our definition of a symmetrically normed ideal of M (Definition 2.2.1).
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Next, we make an observation. (At this time, the reader should review §5.4.) Let (Q,.%, u)

be a measure space, let (Z, ] - ||z) < M be a Banach ideal, and let F': Q —Z C M be a weak*

measurable map. By definition,

/ |Flldu < Cr / | Fllz d.
JQ JQ

In particular, if [||F||zdu < oo, then Corollary 5.4.9 says that F': Q@ — M is weak* integrable.

We now define three additional properties one can demand of Banach or symmetrically normed

ideals of a von Neumann algebra.

Definition 6.2.2 (Properties of Banach ideals of M). Fix (Z, | - |z) < M.

(i)

(iii)

7 has the Minkowski integral inequality property—or property (M) for short—if
whenever (Q,.%, 1) is a measure space and F': Q — Z C M is weak® measurable with

fQ”FHI dup < oo, we have

/queI and
Q

/qu
Q

7 is integral symmetrically normed if whenever (Q2,.%, 1) is a measure space,

< / |Fllz dp.
; 92

A, B: Q — M are weak* measurable, A(-) ¢ B(-): @ — M is weak® measurable whenever
ce M, and [,||A|l || Bl dp < oo, it follows that, for all r € Z,
/ A(w)r B(w) p(dw) € Z and
Q

/ Aw)r Blw) u(dw)|| < Irllz / 1A 1Bl dpe.
Q JQ

T

7 is MOI-friendly if whenever we are in the setup of Theorem 5.6.20, i € {1,...,k},
and ¢ € £°(Q,71)®Q; - Q> (Uey1, Frs1), the MOI IPp: MF — M restricts to
a bounded k-linear map (M, || - [~ x (Z, ]| - ) x (M, || - [}~ = (Z,]| - lz) with
operator norm at most [[(yee (0, 2,)8;G000 (11, 7.0)- OF course, in this case, I¥ ¢ also

restricts to a bounded k-linear map (Z, || - [|7)* — (Z, ] - ||z) with operator norm at most

k—1
Cr ||SOHZOO(Ql,ﬂl)®i---®i€°°(9k+1,a@kﬂ)'
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Remark 6.2.3. First, the name for property (M) is inspired by Theorem 5.4.16. However,
inequalities like the one required in Definition 6.2.2(i) are called “triangle inequalities” in the theory
of vector-valued integrals. Therefore, it would also be appropriate to name Definition 6.2.2(i)
the “integral triangle inequality property.” However, this leads naturally to the abbreviation

2

“property (T),” which is decidedly taken. Second, if H is separable, then one can show that

the pointwise product of weak™ measurable maps 2 — M is weak® measurable. In particular,
the requirement in Definition 6.2.2(ii) that “A(-) ¢ B(:): @ — M is weak® measurable whenever

c € M” is redundant when H is separable.

By testing the definition on the one-point probability space, we see that an integral

symmetrically normed ideal is symmetrically normed. We also have the following.

Proposition 6.2.4. If a symmetrically normed ideal (Z,| - ||z) <s M has property (M), then T

18 integral symmetrically normed.

Proof. Suppose Z I3 M has property (M). Let A, B: Q@ — M be as in Definition 6.2.2(ii), and

fix r € Z. Since Z is symmetrically normed,
[A)r Bw)lz < [Irllzl[A@)[[ I B@)I,  w e Q.
Applying Definition 6.2.2(i) to F := A(:) r B(-), we conclude that [, A(w)r B(w) pu(dw) € T and

Thus, Z is integral symmetrically normed. O

| A@)r B@) p(aw)
Q

I</Q|!A(W)7“B(w)|!zu(d@ < \TIII/QHAII 1Bl dp.

Proposition 6.2.5. If (Z, | - ||z) <M is integral symmetrically normed, then I is MOI-friendly.

Proof. Suppose 7 is integral symmetrically normed and we are in the setup of Theorem 5.6.20.

Fixi e {1,...,k}, b= (by,...,by) € M1 x T x M¥? and an (*-IPD (%, p, ¢1, ..., Prs1) of

© € L7(Q1, F1)®; -+ - Dl (Vg 1, Frs1)-
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Now, apply the definition of integral symmetrically normed with the maps

i—1
= (H Pi(p;(-,0)) bj) Fi(#i(,0)) and
j=1

k+1
B(o) = Pia(pit1(0)) [] bi-1Pi(ei(-,0)),
=142
where empty products are, as usual, 1. This yields (I P ) =[5 A( (o) p(do) € T and
k+1
(") Pl]|, < 1o HI/ IAIIB] dp < [lballz TT 16 ||/ H [pi(+; )l (02;) p(do).
PF#P

Using that [, - dp < E - dp and taking the infimum over all £>°-IPDs (X, p, 1, .., ¢k+1) of ¢

gives the desired result. O
Finally, here are the promised examples.

Example 6.2.6 (Trivial ideals). The trivial symmetrically normed ideals Z = {0} and Z = M

both have property (M). The latter follows, of course, from Theorem 5.4.5(ii).

Example 6.2.7 (Noncommutative L ideals). Suppose M is semifinite with normal, faithful,
semifinite trace 7. If 1 < p < co and LP(7) is given the norm || - || zp(r) = max{|| - [|Lo(r), || - |},
then (LP(7), || - || ze(r)) <s M by noncommutative Holder’s inequality (Theorem 4.3.9(iii)) and the
completeness of (LP(7), ||| »(r)) and (M, ||-||). If we combine Example 6.2.6 with Theorem 5.4.16,
then we conclude that £P(7) has property (M) and is therefore integral symmetrically normed
(Proposition 6.2.4). Note that if (M, 1) = (B(H),Tr), then (LP(Tr), |- || ze(tv)) = (Sp(H), |- |ls,)

is the ideal of Schatten p-class operators on H.

The ideal of compact operators is left out of Example 6.2.7. To include it in the mix, we

first prove that separable ideals have property (M).

Proposition 6.2.8 (Separable ideals). If (Z,|| - ||z) <M is a Banach ideal such that (Z,| - ||z)
is separable, then T has property (M). In particular, if (Z,| - ||z) <s M is separable, then T is

integral symmetrically normed.
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Proof. Let (Q2,.7, 1) be a measure space, let F': Q — Z C M be a weak* measurable map, and let
h,k € H. Now, define £}, ,: T — C by r — (rh, k). Since the inclusion ¢z: (Z, || - ||z) <= (M, |- )
is bounded, ¢}, 1, is a continuous function Z — C. Also, ¢, o F' = (F(-)h,k): Q@ — C is measurable
by assumption. Since the collection {{} 1 : h,k € H} clearly separates points, we conclude from
the completeness and separability of Z and [VTC87, Prop. 1.1.10] that F: Q — (Z,|| - ||z) is
Borel measurable. Using again the separability of Z, this implies F': Q — (Z, || - ||z) is strongly
measurable. Consequently, if, in addition, [o[|F|lzdu = [ [Fllzdp < oo, then F: Q — (Z, | -[Iz)
is also Bochner integrable, and—by applying /5, ;, to the Bochner integral-—the Bochner and
weak® integrals of F agree. Thus, [ Fdu € Z and || [ Fdull; < [o[|F|lzdu by the triangle

inequality for Bochner integrals. This completes the proof. O

In particular, if H is separable, then the ideal K(H) <5 B(H) of compact operators
H — H has property (M). Actually, this also implies the non-separable case by an argument

suggested by J. Jeon.

Lemma 6.2.9. For a closed linear subspace K C H, write t: K — H and wx: H — K for the
inclusion of and orthogonal projection onto K, respectively. Let A € B(H). Then A € K(H) if

and only if A = Aix € K(K) for all closed, separable linear subspaces K C H.
Proof. The “only if” direction is clear. For the “if” direction, suppose Ax = mx At € K(K) for
all closed, separable linear subspaces K C H. If (hy)nen is a bounded sequence in H, then set

K = span{A*h, : k € No, n € N}.

Of course, K is a closed, separable linear subspace of H that contains {h, : n € N} and is

invariant under A. Since A is compact, there is a subsequence (hy, )ken such that (A Khnk) keN

converges. But

Aghy, = mgAhy, = Ahy,, k€N,
because K is A-invariant. We conclude that A € K(H). O

Proposition 6.2.10 (Compact operators). (K(H),| - ||) <s B(H) has property (M).
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Proof. Let (2,.%#, 1) be a measure space. Suppose F': Q — K(H) C B(H) is weak® measurable
and [||F|dp < co. Since we already know the triangle inequality for the operator norm, it
suffices to prove fQ Fdu € K(H). To this end, let K C H be a closed, separable linear subspace.

In the notation of Lemma 6.2.9, Fx = mx F( )ik : @ — K(K) C B(K) is weak™ measurable, and

/||FK||dH§/]F||du<oo.
LAY) JQ

Since K(K) is separable, Proposition 6.2.8 gives [, Fx du € K(K). Since

</QFd'u>K:7rK</QFd“>LK:/QWKF(W)LKN(CIW)Z/QFKd,uEIC(K),

we conclude from Lemma 6.2.9 that [, F'du € K(H). O

Remark 6.2.11. In case one only wants to know that /IC(H) is integral symmetrically normed,
there is a different proof available that does not go through the separable case first. Indeed, let
(Q, Z#, ) be a measure space, and suppose A, B: 2 — B(H) are as in Definition 6.2.2(ii). It
suffices to show that if ¢ € K(H), then [, A(w) ¢ B(w) u(dw) € K(H). To this end, suppose first
that ¢ has finite rank. Then ¢ € S;(H). Since (S1(H),| - ||ls,) < B(H) is integral symmetrically
normed, [ A(w) ¢ B(w) u(dw) € S1(H) € K(H). Now, if ¢ € K(H) is arbitrary, then—using, e.g.,
the singular value decomposition—there exists a sequence (cy)nen of finite-rank linear operators
H — H such that ||c, — ¢|| = 0 as n — oo. But then, by the operator norm triangle inequality,
Jo Alw) ep B(w) p(dw) = [, A(w) ¢ B(w) p(dw) in the operator norm topology as n — oo. Since
this exhibits [, A(w) ¢ B(w) p(dw) as the limit in the operator norm topology of a sequence of

compact operators, [, A(w)cB(w) p(dw) is compact, as desired.

6.3 Interlude: Symmetric operator spaces

In the next section, we make use of the theory of symmetric operator spaces. In the present
section, we review the notation, terminology, and results from this theory that are necessary for
our purposes. We refer the reader to [DdP14] for extra exposition, examples, and references.

(The reader who is uninterested in the next section may safely skip the present section.)
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Recall that (M, 7) is a semifinite von Neumann algebra and Proj(M) is the lattice of
(orthogonal) projections in M. An operator a n M is called T-measurable if there exists some

s > 0 such that 7(P1l((s,00))) < co. Write
S(t) :=={an M : ais T-measurable},

and let a,b € S(7). Then a + b is closable, and a + b € S(7); ab is closable, and ab € S(7); and
a*,|a| € S(7). Furthermore, S(7) is a *-algebra under the adjoint, strong sum (closure of sum),
and strong product (closure of product) operations; we shall therefore omit the closures from
strong sums and products in the future. Please see [Nel74, Ter81] for proofs of the preceding

facts (and more) about 7-measurable operators.

Let a € S(7), and define
ds(a) == T(P'“‘((s, 00))) € [0,00], s>0.

By definition of 7-measurability, ds(a) < oo for sufficiently large s. The function d(a) = d.(a) is

the (noncommutative) distribution function of a. Now, define
pi(a) == inf{s > 0:ds(a) <t} € [0,00), t>0.

The function p(a) = p.(a) is the (generalized) singular value function or (noncommutative)
decreasing rearrangement of a, and p(a) is decreasing and right-continuous. For properties

of d(a) and u(a), please see [FK86]. Now, let
S(T)+ = S(T) N C(H)+
If a € My = S(7)4 N M, then we have the identity

(a) = /O " (a) dt.

We therefore extend 7 to all of S(7)4 via the formula above; this extension is still denoted by
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7: S(7)4+ — [0,00]. Finally, if a,b € S(7), then we write

t ¢
a—<<b if / ps(a)ds < / ps(b)ds, for all £ > 0.
0 0

In this case, we say that a is submajorized by b or that b submarjorizes a (in the “noncom-

mutative” sense of Hardy-Littlewood—Pélya). We now define symmetric operator spaces.

Definition 6.3.1 (Symmetric operator spaces). Let E C S(7) be a linear subspace, and let

|| - ||z be a norm on E such that (E,| - ||g) is a Banach space.
(i) (E,]-|lg) is a symmetric (or rearrangement-invariant) space of 7-measurable
operators—a symmetric space® for short—if a € S(7), b € E, and pu(a) < u(b) imply

that a € E and |Ja|g < [|b]| 5.

(ii) (E,| - ||g) is a strongly symmetric space of T-measurable operators—a strongly
symmetric space for short—if it is a symmetric space, and a,b € E and a << b imply

that [[a]z < [[bl| 2.

(iii) (E,||-||g) is a fully symmetric space of T-measurable operators—a fully symmet-

ric space for short—if a € S(7), b € E, and a << b imply that a € E and ||a||g < ||b]|E.

If (E,| - ||g) is a symmetric space, then we define
Proj(E) := ENProj(M) and cg = sup Proj(E) € Proj(M).

The projection cg is the carrier projection of F.

Next, we describe a large class of examples of symmetric spaces. Let m be the Lebesgue
measure on (0,00), and let (N, n) == (L>(m), [;* - dm), where L*°(m) is represented as multi-
plication operators on L?(m). Then the set of densely defined, closed operators affiliated with
N is precisely L°(m), i.e., the space of m-almost everywhere equivalence classes of measurable

functions (0, 00) — C, viewed as unbounded multiplication operators on L?(m); and

S(n) ={f € L°(m) : ds(f) = m({z € (0,00) : | f(x)| > s}) < oo for some s > 0}.

'Beware: This has nothing to do with the notion of a (Riemannian) symmetric space from geometry.
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Please see [CK17, §2.3] for proofs of these facts. A (strongly, fully) symmetric Banach
function space is a (strongly, fully) symmetric space of n-measurable operators is; please see

[KPS82, Ch. II] for the classical theory of such spaces.

Fact 6.3.2. Let (E C L°(m), | - ||g) be a (strongly, fully) symmetric Banach function space. If
BE(r) ={a € S(7): ula) € E} and |al p(r) = lu(a)lle, a € E(r),

then (E(7), || - lg(r)) is a (strongly, fully) symmetric space of T-measurable operators.

For the strongly/fully symmetric cases, please see [DdP14, §9.1]. For the (highly nontrivial)
case of an arbitrary symmetric space, please see [KS08]. When 1 < p < oo and F = LP := LP(m),
LP(T) as defined using the construction in Fact 6.3.2 is a concrete description of the abstract
(completion-based) definition from §4.3. When p = oo, this follows from [FK86, Lem. 2.5(i)];

when p < oo, it follows from [FK86, Lem. 2.5(iv)] and [DDdP93, Prop. 2.8]. Furthermore,

(L), - o) = ({a € S() 2 7(lal) < oo} (|- 1)), 1<p <o

As a result, (LP N L*>®) (1) = LP(1) N L>®(1) = LP(17) N M = LP(7) with equality of norms (if
we give £P(7) the norm max{|| - || Lo(r), || - [|})- It is also true that (L' 4+ L>)(r) = L'(1) + M
with equality of norms. (This follows from [DDdP93, Prop. 2.5].) To be clear, if Z is a vector
space and X,Y C Z are normed linear subspaces with respective norms || - ||x and || - ||y, then
the subspace X NY C Z is given the norm | - || xny = max{|| - ||x, | - ||y}, and the subspace
X 4+Y C Z is given the norm ||z x4y = inf{||z]|x + ||ylly :z € X,y €Y, z=x + y}.

In general, if (E, || - ||g) is a strongly symmetric space of 7-measurable operators, then
E C L'(r) + M with continuous inclusion, and cg = 1 if and only if L'(r) " M C E with
continuous inclusion. This is [DdP14, Lem. 25] (combined with the last paragraph of the proof of
Lemma 5.4.14). By [KPS82, Thm. I1.4.1], if (E, || - || z) is a nonzero symmetric Banach function
space, then

I'nL®CcECL'+L™®
with continuous inclusions, i.e., ¢z = 1.
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Finally, we discuss Kothe duals. For a symmetric space (E, || - ||g), define

E* :={a € S(r):abec L'(r), for all b€ F} and

lla|| gx = sup{7(|ab]) : b€ E, ||b||p <1}, a€ S(7).

Of course, ||a||gx could be infinite.

Fact 6.3.3 (Kothe dual). If (E,| - ||g) be a strongly symmetric space of T-measurable operators

with cp = 1, then
|la|| zx = sup {T(\ab\) ‘be El(T) =L'(1)NM, |b||g < 1}, a€ S(T).

Furthermore, a € E* if and only if ||a||px < oo. Finally, || - ||gx is a norm on E* such that

(B - lgx) is a fully symmetric space with cpx = 1. We call E* the Kéthe dual of E.

Remark 6.3.4. In the classical case of symmetric Banach function spaces, the Kéthe dual of

is called the associate space of E or the space associated with E.

Please see [DDAP93, §5] or [DdP14, §5.2 & §6] for a proof of this fact. Now, let (E, || -||g)
be a strongly symmetric space of 7-measurable operators with cg = 1. Since E* is fully symmetric
and cgx = 1, we can consider the Kéthe bidual (£, || - ||[gxx) = ((E*)*, [ - [[(gx)x) of E as
a (fully) symmetric space. It is always the case that E C E** and || - ||[gxx < || - ||[g on E. If
E=FE**and || ||[g =] - |lgxx on E, then is E Ko6the reflexive. (This term is not standard;
a more common term is maximal.) Note that, by Fact 6.3.3, if E is Kothe reflexive, then E is
automatically fully symmetric.

The following is a celebrated equivalent characterization of Kéthe reflexivity. It is stated

and proven as [DDdP93, Prop. 5.14] and [DdP14, Thm. 32].

Theorem 6.3.5 (Noncommutative Lorentz—Luxemburg theorem). Let (E,| - ||g) be a strongly
symmetric space of T-measurable operators with cg = 1. Then E is Kothe reflexive if and
only if E has the Fatou property: Whenever (a;)icr is an increasing net in E N S(7)4 (i.e.,
i <j=a; —a; € 8(1)y) with sup,cy ||a;i||p < 0o, we have that sup;c;a; exists in E N S(7)4,

and || sup;e; ail| g = supser [|ail| g-
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The definition of the Fatou property involves rather arbitrary nets. It is therefore
reasonable to be concerned that verifying the Fatou property in classical situations might be
quite difficult. However, as we explain shortly, the sequence formulation of the Fatou property is
equivalent in classical situations. Let (E C L%(m),||-||g) be a symmetric Banach function space.
We say that E has the classical Fatou property if whenever (f,,),en is an increasing sequence
of nonnegative functions in E such that sup,,cy || fn]|E < 00, we have that sup,cy frn € E and
| sup,en frllE = suppen || fnl|E. It turns out that if E has the classical Fatou property, then
E is fully symmetric [BS88, Theorem 2.4.6], so we may speak of its Kothe dual as a (fully)
symmetric Banach function space when FE is nonzero. The classical Lorentz—Luxemburg theorem
[Zaa67, Thm. 71.1] says that a nonzero symmetric Banach function space has the classical Fatou
property if and only if it is (strongly symmetric and) Kothe reflexive. In particular, by the
noncommutative Lorentz—Luxemburg theorem, a symmetric Banach function space has the Fatou

property if and only if it has the classical Fatou property.

Example 6.3.6. Let (E,| - ||g) be a nonzero strongly symmetric Banach function space (which

implies cg = 1 as noted above). By [DDdP93, Thm. 5.6],

(EE - 5ey<) = EX@s 1 [5xm)-

In particular, if E is Kothe reflexive (i.e., has the classical Fatou property), then E(7) is Kéthe

reflexive (i.e., has the Fatou property) as well.

Remark 6.3.7. Let E be a symmetric Banach function space. By [Zaa67, Thm. 65.3], E has the
classical Fatou property if and only if whenever (f,)nen is a sequence of nonnegative functions

in E with liminf, , || fn||g < 00, we have that liminf,,_, f, € E and

liminf f,
n—oo

< liminf || fn| £,
B n—00

i.e, Fatou’s lemma holds for || - ||z. Hence the property’s name.
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6.4 Examples of ideals II

In this section, we provide examples of integral symmetrically normed ideals of M using
the theory of symmetric operator spaces. To begin, we note that if (E,| - ||g) is a symmetric

space of T-measurable operators, then
&l -lle) = (ENM, |- leam) = (ENM, max{| - ||z, - [I}) <s M.

This follows from [DdP14, Prop. 17]. We call £ the ideal induced by E. We prove that ideals
induced by fully symmetric spaces are integral symmetrically normed and ideals induced by

symmetric spaces with the Fatou property have property (M).

Theorem 6.4.1 (Fully symmetric = integral symmetrically normed). If (E, || - [|g) is a fully

symmetric space, then (€, - |le) = (ENM,| - |[|enm) <s M is integral symmetrically normed.

Proof. Let (2,.#, ) be a measure space, and suppose A, B: @ — M are as in Definition

6.2.2(ii). Define Too: M — M by M 3 ¢~ [, A(w)cB(w) p(dw) € M. Then
Tollatosaa < [ 1A 1B
by the operator norm triangle inequality. Also, if ¢ € L!(7) N M, then
Tl < [ 1AG) e Bl ) < lelloacr | AN 1B d

by Theorem 5.4.16. Since L'(7) N M is dense in L'(7) [DDAP93, Prop. 2.8], we get that

Too|r1(r)nm extends uniquely to a bounded linear map 77 : LY(1) — LY(7) with

1Tl 2oyt < /Q 1A 1 Bll dp.

Since T, and T} agree on L'(7) N M,

T(x+y)=Tr+Tyy, x¢clL'(r),yecM,
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is a well-defined linear map 7': L*(7) + M — L'(7) + M. Furthermore,
1T 2t (1) st (r)4m < max{||Th| 1y 21 () [ ToollmMom} < /Q!AH | Bl d.
By [DDdP93, Prop. 4.1], this implies
Te << (/Q\AH ]BHd,u)c, ce LY 1) + M.
In particular, if ¢ € E C L'(7) + M, then
Tee B and |Tels < el | 4] 18] an
because F is fully symmetric, i.e., T restricts to a bounded linear map Tg: F — E with
el < [ 141 1Bl d
We conclude that if ¢ € £ = F N M, then

/QA(w) ¢B(w) pu(dw) = Toe = Tpe € € and

/ A(w) e B(w) p(dw)
Q

< Jlelle / 1A]| B dp.
£ JQ

Thus, £ is integral symmetrically normed. O
Remark 6.4.2. The argument above is inspired in part by [DDSZ20, §4.4].

The second main result of this section upgrades Theorem 6.4.1 when the symmetric space

in question is a Kéthe dual. (It also generalizes Theorem 5.4.16.)

Theorem 6.4.3 (Kothe duals and property (M)). Let (E, || - ||g) be a strongly symmetric space

with cg = 1. If (Q, . F, p) is a measure space and F: Q — M is weak* integrable, then

H [ Fau| < [ 1P du
Q EX JQ

In particular, (€%, - |lgx) = (E* A M, | - [lg<rus) <s M has property ().
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Proof. Let a = [, F du € M. By Fact 6.3.3 (twice) and Theorem 5.4.16,

=

= llaflgx = sup {7(jabl) : b € L}(7), [|bllp < 1}
EX

= sup { ‘
L (7)

< sup {/QHF(W)MB(T) pldw) :b € LY(7), ||b]lp < 1} < /QHF!EX dp,

| P
Q

:be LYT), ||blp < 1}

as desired. O

Corollary 6.4.4. Let (E,| - ||g) be a strongly symmetric space with cg = 1. If (Q, F, pn) is a

measure space, F': Q@ — M is weak™ integrable, and F(2) C EN M, then

H/Fw < [17le d
Q EXxXX JQ

In particular, by Fact 6.3.3, if the right-hand side is finite, then [ F du € E**.

Proof. Applying Theorem 6.4.3 to the space E** = (E*)* and using that || - [|[gxx < || - ||z on

E, we get that || [o Fdp|| gex < [ollFllpxx dp < [olIF|le dp, as desired. O

Remark 6.4.5. Please see [KPS82, Ineq. (I1.0.5)] for a classical analog of this Minkowski-type

integral inequality.

Combining the noncommutative Lorentz—Luxemburg theorem (Theorem 6.3.5) with

Corollary 6.4.4, we obtain the following result.

Theorem 6.4.6 (Fatou property = property (M)). Let (E, || -||g) be a strongly symmetric space
with cp = 1. Suppose (Q,.7, 1) is a measure space, F': Q@ — M is a weak* integrable map, and

F(Q) C ENM. If E has the Fatou property and [||F| g dp < oo, then

‘/Fw < [17le d
Q » o

In particular, (£, - ll¢) = (B 0 M| - | srws) <5 M has property (M).

/queE, and
Q

222



Proof. By the noncommutative Lorentz-Luxemburg theorem, (E, | - ||g) = (E**,| - ||gxx).

Therefore, by Corollary 6.4.4, we have that fQ Fdye EX* =F and

|/Fdﬂ =H/qu < [ 17l
Q E Q ExXx I

as desired. O

6.5 Perturbation formulas

In this and the following section, we differentiate maps induced by functional calculus that
have been perturbed by an unbounded self-adjoint operator. As before, we shall use the method of
perturbation formulas. Due to the complicated nature of MOIs, it will take substantial technical
effort to implement the method in this case. This section’s goal is to establish perturbation

formulas using a generalization of the argument from the proof of [Pell6, Thm. 1.2.3].

Lemma 6.5.1 (Operator-valued dominated convergence theorem). Let (2, .%, 1) be a measure
space, let (Fp)nen be a sequence of weak™ integrable maps Q@ — M, and suppose F': Q — M is

such that F,, — F pointwise in the weak, strong, or strong* operator topology as n — oco. If

/ sup || Fy || dp < oo, (6.5.2)
QneN

then F': Q — M is weak® integrable, and

lim F,du = / Fdpy,
Q Q

n—o0

in the weak, strong, or strong* operator topology, respectively.

Proof. Let h,k € H. In all cases, F,, — F pointwise in the WOT as n — oo, so F' is weak*
measurable. Also, [|F|| < sup,cy ||Fnll, so F is weak® integrable by Inequality (6.5.2) and

Corollary 5.4.9. Now, Inequality (6.5.2) also gives

/ sup | (£ (w)h, k)| p(dw) < 7] Hk!/ sup || Fy || dpe < oo
Q neN JQ neN
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Therefore, by the dominated convergence theorem,

<</ F, du> h,k> :/<Fn(w)h, k) p(dw) 2225 [ (F(w)h, k) p(dw) = <</ qu> h,k>.
Q Q Q Q

Thus, [, Fdp — [, Fdp in the WOT as n — oo. Now, assume F,, — F pointwise in the SOT

as n — oo, and write Ty, == [, [, dp and T := [, F'dp. Then

/ I, (@) () %5 0

|Tuh — Th| = H( F qu)

by the triangle inequality for weak integrals and Proposition 5.3.2(iv), which applies because of
Inequality (6.5.2) and the fact that sup, oy ||(Fr, — F)h|| < 2||h| sup,en || Fr||. Finally, the S*OT
case follows from the SOT case because (F)'),en and F* satisfy the same hypotheses as (F),)nen

and F', and the adjoint commutes with the weak* integral. O

Notation 6.5.3. Let aj,...,ap+1 7 M,. If we are in the setting of Theorem 5.6.20 with

P = (P*,..., P%+1) then we shall write
o(at,...,apr1)#b = (IPgo) b, be Mt

in analogy with the development from Chapter 3.

Lemma 6.5.4. Let ay,...,ax11 € C(H)sa. Define xn(t) =t 1_, n(t) for allt € R andn € N

Also, if i € {1,...,k + 1}, then define
@i = a;PY([—n,n]) = xn(a;) € B(H)sa, n€N.

If o € (R, BR) i+ gnd (b.n)nen = (bin, -, bpn)nen S a sequence in B(H)* converging in
the (product) SOT to b = (b1,...,bx) € B(H), then

lm p(ain, ..., Gkt1.0)#b0.0 = @(a1, ..., apy1)#0

n—oo

in the SOT.
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Proof. First, fix i € {1,...,k+ 1} and n € N. If f: R — C is Borel measurable, then
flain) = f(xn(ai)) = (f o xn)(a;) by [KR97a, Cor. 5.6.29]. Now, if f is also bounded, then
sup,en |1f 0 Xallee @) < [1flleeor) < 00 and fox, — foidg = f pointwise as n — co. Therefore,
by Proposition 4.2.10(v), f(ain) — f(a;) in the S*OT as n — oo.

Next, let (3, p, ©1,-..,¢r+1) be a £°-IPD of ¢. By definition,

O(a1m, .. Qpp1n)#b = / ©1(a1.0,0) b1+~ Pr(Ahms 0) b Prr1 (A1, 0) p(do), b€ B(H)F.
2

By the previous paragraph’s observations, for all o € ¥,

©1(a1.0,0) b1+ Ok (A @) DknPrr1 (Aps1m, 0) ~—os @1 (ar,0) by - - pr(an, 0) brprr (ags1, o)

in the SOT. Since

/ sup l1(a1,my0) b1n - - Qk(hns 0) b Prt1(Akt1,0,0) || p(do)
¥ ne

< sup([[brall - ku,n||)/EH901(‘uU)HEOO(]R) e llrta (5 0)llee (r) p(do) < 00,

the desired result follows Lemma 6.5.1 and the definition of MOIs. OJ

Before stating and proving our perturbation formulas, we make a useful observation. If

f: R — C is Lipschitz, then there exist constants C7,Cy > 0 such that |f(\)] < C1|A| + Cq for
all A € R. In particular,

dom(a) C dom(f(a)), a€ C(H)sa, (6.5.5)

by definition of the Borel functional calculus and the spectral theorem.

Notation 6.5.6. Fix a set S, m € N, and s = (s1,...,5,) € S™. Ifi € {1,...,m + 1}, then
sie = (s1,...,8i-1) € S” ! and siy = (si,...,8,) € ST

where s1— and $(;,41)4 are both the empty list.
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Theorem 6.5.7 (Perturbation formulas). Let a € C(H)sy. If f: R — C is a C* function such
that fl1 € (°(R, Br)®:>(R, Br), then

fla+c)— fla) = fMa+c,a)#e, c¢€ B(H)s. (6.5.8)

More precisely, f(a+ c) — f(a) is densely defined and bounded, and fM(a + ¢, a)#c is its unique
bounded linear extension.

Now, suppose k > 2 and @ = (ay,...,a—1) € C(H) L. If f € C*(R) is such that

sa

FI=1 € 2o(R, By)®* and fIH € £%°(R, By)® ), then
f[kil} (di_, a+c, 6Z+)#b — f[kil] (ai_7 a, C_iz+)#b = f[k} ((_ii—u a+ca, a:i-‘r)#[bi—v ¢, bl'i‘] (659)

for allb= (by,...,by_1) € B(H)ET  and i € {1,...,k}.

sa

Proof. We first make an important observation. Fix a € C(H )sa, ¢ € B(H)sa, and n € N. Now,
define p,, == P%([-n,n]), ¢, == P* ¢([-n,n]), an == ap, = xn(a), and d,, = (a+c) g, = xn(a+c)
in the notation of Lemma 6.5.4. If 11,19 € £>°(R, Bg), then

@n Y1(dn)(dn — an)2(an) pp = 1[—n,n](a +¢) (Y10 xn)(a+c) (dn — an) (Y2 0 Xn)(a) 1[fn,n](a)
= (1 0 Xn)1—nm) (@ + ¢) (dn — an) (12 © Xn)1[—n,n))(a)
= (¢1 1[—n,n])(a + C) (dn - an) (¢2 1[—n,n])(a)

= wl(a + C) dn (dn - an)pn 7!’2(@) = ¢1(a + C) dn CPn ’(702((1),

where

Gn (dn - an)pn - Qndnpn — gnlnPn = Qn(a + C)pn — qnaPn = GnCpPn

because im p,, C dom(a) = dom(a + ¢).

We now begin in earnest. If f € C*(R) is such that fl1l € /°(R, Br)®:>(R, Bg), then

FO) = f) = IO m A=), (A p) eRxR. (6.5.10)
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Now, let a,c € B(H)s,. Since o(a) and o(a + ¢) are compact and f € C(R), the functions

ola+c)xo(a)d (A p) =M\ p) =X—peC and

ola+c)xa(a) > (A p) = e p) =fA)—f(p)eC
belong to £°°(c(a+¢), By(a1e)) @il (0(a), By(q))- By Proposition 5.7.1(iii) and Equation (6.5.10),
jateay, — (Ia+c,af[1]) o (Ia—&-c,aw).
Applying this to the identity 1 = idy € B(H), we conclude that
fla+e) = fla) = (I°F%p) (1] = (1oFoe ) [(roteep) 1] = (100 i) [e] = f(a+ ¢ a)#e,

as desired.

For general a € C(H )sa, we begin by showing that f(a + ¢) — f(a) is densely defined;
specifically, we show dom(a) C dom(f(a + ¢) — f(a)). Indeed, since flll € (°(R? Bg2), f is
Lipschitz on R. By Relation (6.5.5), we have that dom(ag) € dom(f(ag)) for all ag € C(H )sa.

In particular, since dom(a) = dom(a + ¢), we get
dom(a) = dom(a) Ndom(a + ¢) C dom(f(a + ¢)) Ndom(f(a)) = dom(f(a+ c) — f(a)),

as desired. Next, let p,, qn, an, and d,, be as in the first paragraph. If (X, p, @1, p2) is a £>°-IPD

of flU, then the results of the previous two paragraphs and Lemma 6.5.1 give

an(f(dn) = f(an))pn = qn f[l](dn, an)#(dn — an) pp = /Z% ¢(dn, 0)(dn — an)p2(an, o) pn p(do)

N / pla+¢,0) g epnpa(a o) p(do) = fN(a+ ¢ ) #lgnepa] “== fM(a+c,a)pe
by

in the SOT, since ¢, — 1 and p, — 1 in the SOT as n — co. But now, notice

f(an)pn - (f o Xn)(a) 1[—n,n}(a> = ((f © Xn) 1[—n,n})<a) = (f 1[_n,n])(a) - f(a) Pn,
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and similarly, ¢, f(dn)pn = ¢nf(a + ¢)pn. (For the latter, use imp,, € dom(a) C dom(f(a + ¢)).)

It follows that if m € N, h € im p,,,, and n > m, then

4n(f(dn)=f(an))pnh = qu(f(a + ¢) = f(a))pnh = gn(f(a + ¢) = f(a))pnpmh

= au(f(a+¢) = f(@)pmh == (fla+ ) = f(a))pmh = (f(a+ ) = f(a))h

in H. We have now proven that (f(a+ ¢) — f(a))h = (f(a + ¢, ¢)#c)h for all h € im p,,. Since
Umen impm € H is a dense linear subspace, we are done with the first part.

Next, let k& > 2, and suppose f € C¥(R) is such that flF—1 e EOO(R,l‘?IR)@“’c and
fIk e ¢ (R, BR)®i(k“). By definition and symmetry of divided differences, if i € {1,...,k},

AMpeR, and X= (A1, ..., \e_1) € RFL then

—

FEI N X)) = FE (s, Xiy) = P (X, A X ) (A = ). (6.5.11)

Now, fix @ = (a1,...,ap_1) € C(H) Y b= (by,...,bp_1) € B(H)* !, and a,c € B(H)s,. Since

sa

o(a) and o(a + ¢) are compact and fF=1 € /(R Bg)®*, both of the functions

R x o(a+¢) x o(a) x RE7E 5 (u, \, p, v) A/\—ME(C and

R % o(a+¢) x o(a) x RE 73 (u, A, p,0) & fFU(w, \ 0) — Y, p,0) e C

belong to £°(R, Ba) D&, (0(a + ¢), By )i (7(@), By(ay )1 (R, By) k=0, This
allows us to apply Equation I%—e+t¢a@i+ to (6.5.11), which may be rewritten ¢ = f*l4). If we

do so and plug (b;—, 1,b;1) into the result, then we get

f[kil} (C_ii—v a+c, 6Z+)#b - f[kil] (a:i—7 a, al-#)#b = @(ai—a a+ca, 6i+)#[bi—7 17 bl-i—]
= (f[k}w) (&:’L‘—v a+ca, a’i-‘y-)#[bi—v 17 bz-i—]

= f[k} (C_ii—v a+ca, 6@’+)#[bi—7 Cy bi+]7

where Proposition 5.7.1(iii) and the definition of 1) were used in the last line.

Finally, for general a € C(H )sa, let py, qn, ayn, and d, be as in the first paragraph. If
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1 <i <k, then we also let b. ,, := (bi—1)—, bi—1n, Pnbi, bi41)4 ). Since p, — 1 and g, — 1 in the

SOT as n — oo, Lemma 6.5.4 gives

S dpy @y ) #0222 (PG 0+ ¢, @y )#b and

f[k 1} (al ,an,a1+)#b n n_>—oo> f[k 1] (az ) @, az+)#b

in the SOT. Now, let (2, p, 01, ..., 0pr1) be a £°-IPD of fl¥l. Then

Tin = f[’“] (@i dny Ay @it ) #[(bo)ies dyy — @y (b )it ]

1 1
90 a], >Qn QOZ(dn,O')(d - an)‘PH—l am (H bj 80 aj42,0 ) (dO’)

>—‘

i—1
( 90 aj, 0 )%((l+C 0') Gn CPn SOerl a,o (Hbj ‘10 aj42,0 > p(dU)
(@

—a + c,a, ai+)#[b’i—7 Adn CPn, bl'i‘]

TH—OO> f[k] (ﬁi_, a+ca, 6i+)#[bi_, c, bi—f—]

in the SOT by the observation from the first paragraph and Lemma 6.5.4. Since we already know

from the previous paragraph that

f[k 1](0,1 7d”’a7'+)# f[k l](a% 7anaaz+)#b

= MG dpy any @iy ) #1(0on)ie s dn — an, (bon)is), neEN,
this completes the proof when 1 < i < k. For the cases i € {1, k}, we redefine
b = (Pub1,ba1) and b.y = (by_1)—, br—10n)-
Then we use an argument similar to the one above to see that

an (¥ (dp, @) — W (an, @)#b. ) = o ¥ (dn, an, @)#[dn — an, b. )]

= f[k] (a +ca, 6)#[(]71 CPn, b]
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and

(F*=1(@, dp)#b.p — F*I(@, a)#b.0 ) pn = (FRU@, diy an)#[b. 0y dn — an) )P

o f[k](aa a + C) a)#[b’ qn Cpn]

Then we use Lemma 6.5.1 to take n — oco. This completes the proof. O

Corollary 6.5.12. Let a n Ms,, and suppose (Z,|| - ||z) <M is MOI-friendly. If f € C*(R) is
such that flI € (°(R, Bg)®il® (R, Br) and ¢ € Ty = TN Mg, then f(a+c) — f(a) € T, and

1) = F@lz < 15 o o008y )6 001 8,0 NI

Proof. Since a n Mg, and ¢ € Ty, C Mg, a+ cn Mg, as well. In particular, P* and P%"¢ take

values in M. It then follows from Equation (6.5.8) and the definition of an MOI-friendly ideal

that f(a+c) = f(a) € T and || f(a+c) = f(@)llz < 1Ml (o(ar0).Bo o) @i (o) By Iellz- O

Remark 6.5.13 (Quasicommutators). Let f € C'(R) be such that fl! € /°(R, Br)&>(R, Bg).
One can show using essentially the same proofs that if a,b € C(H)s, and g € B(H) are such that
aq — qb € B(H) (i.e., aq — gb is densely defined and bounded), then f(a)q — qf(b) € B(H), and

fla)g — af (b) = fM(a, b)#[aq — qb].

As a result, we get a quasicommutator estimate in MOI-friendly ideals. Suppose also that
(Z,] - [lz) < M is MOI-friendly. If a,b n Mg, and ¢ € B(H) are such that aq — ¢b € Z, then

f(a)g—qf(b) € T and

1£(a)g — qf(®)|z < || 1] 6 (0:(a) B (a)) B4 (o () B, ) 104 — @Ol

Such quasicommutator estimates are of interest in the study of operator Lipschitz functions.

Please see [AP16, Pell6] for more information.
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6.6 Derivative formulas

In this section, we compute the derivative formulas of interest. To begin, we introduce the
functions whose (perturbed) functional calculi we shall be differentiating. Then we use Peller’s
work from [Pel06], which we review in detail in Appendix B, to give a large class of examples of

such functions.
Definition 6.6.1 (Operator continuous). A Borel measurable function f: R — C is operator
continuous if

(i) for every complex Hilbert space H, a € C(H)sa, and ¢ € B(H )sa, f(a+¢) — f(a) is

densely defined and bounded; and

(ii) for every complex Hilbert space H and a € C(H)sa, f(a+¢) — f(a) — 0 in B(H) as
¢ — 0in B(H )sa. (More precisely, for every a € C(H )s, and € > 0, there is some 6 > 0

such that || f(a + ¢) — f(a)|| < € whenever ¢ € B(H)g, and ||c|| < 6.)

In this case, we write f € OC(R). If, in addition, f is bounded, then we write f € BOC(R).

Taking H = C in the definition, it is clear that operator continuous functions are

continuous. Also, we observe that if f,g € BOC(R), a € C(H )sa, and ¢ € B(H )sa, then

(fg)a+c) = (fg)(a) = (f(a+c) = fla))gla +c) + f(a)(g(a+c) — g(a)).

But then

llcll—0
—

1(fg)(a+c) = (fo) @)l <lglleemllf(a+c) = f@)l + [ flleemllgla + ) — gla)] 0.

Thus, fg € BOC(R). It is even easier to see that f + g € BOC(R) and f € BOC(R).
Next, if (X,.7) is a measurable space, 1): R x ¥ — C is measurable, and ¢(-,0) € C(R)

for all o € %, then

[9(, 0)lle(m) = sup (L, 0)], o €X.
teQ

In particular, the function X > o + [[9(-,0)|p®) € R is measurable. Thus, the following

definition makes sense (without needing to use upper or lower integrals).
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Definition 6.6.2 (Integral projective tensor products II). Let ¢: Rl — C be a function. A
BOC-integral projective decomposition (BOCIPD) of ¢ is a choice (2, p, v1,...,pr+1) of a

o-finite measure space (3, 7, p) and measurable functions @1, ..., vr+1: R x ¥ — C such that
(i) wi(-,0) € BOC(R) for alli € {1,...,k+ 1} and 0 € 3,
(i) Jgller(s o)) - l9rt1(s o) [l r) p(do) < 00, and
(i) ©(A) = [ 1(A1,0) - pry1(Meg1,0) p(do) for all A € R

Now, define

k+1
HQOHBOC(R)@(’“H) = inf {/ H l9i(+s o)l g () p(da) = (3, p, 01, - -+, Pry1) is @ BOCIPD of gp},

where inf () ;== co. Finally, we define

BOC®® ) = {4+ ] goemyororn < o0}

to be the (k + 1)St integral projective tensor power of BOC(R).

Proposition 6.6.3. BOC(R)®i(x+1) C BC(RF*1) is a unital *-subalgebra, and

(BOC( ) (kD) H.HBOC(R)@WH))

1s a unital Banach *x-algebra under pointwise operations.

Sketch of proof. The containment BOC(R)®i(k+1) C BC(RFH1) follows from the definitions
and an application of the dominated convergence theorem. The rest of the statement follows
from the observation above that BOC(R) is a *-algebra and arguments similar to (but easier

than) those in the proof of Proposition 5.5.5. O

Next come the functions of interest.

Notation 6.6.4. If f € C¥(R), then

[flocm Z [F& HBOC ry@i+n € [0,00] and OCM(R) := {g € C*(R): [9loctiw) < oo}
=1
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Notice that if f € C*(R) and [floct®) = /M ocmye, poom) = 0, then fH1 =0, so f

must be constant. In particular, [-]oom (r) 18 a seminorm but not quite a norm. If we define

I fllocm = I flle((=rr) + [floctig)y: >0,

then it can be shown, using standard arguments and Proposition 6.6.3, that OC' (K] (R) is a Fréchet
*-algebra with the topology induced by the collection {|| - oo, : 7 > 0} of seminorms and
pointwise operations. Since we shall not need these facts, we shall not dwell on them. Instead,

we turn to examples.
Lemma 6.6.5. If £ € R and f()\) = e for all X € R, then f € BOC(R).

Proof. Of course, f is bounded and continuous. Now, if A\, 4 € R, then

1 1
FU( ) = / PN+ (1 — D) dt = i€ / (N (116 gy
0 0

by Proposition 1.3.3(iii). This is clearly a ¢>°-integral projective decomposition of f (1) that yields

Hf i Heoo (R,Br)®;:£>° (R,BR) |§‘

In particular, if a € C(H)sa and ¢ € B(H )sa, then ||f(a+c¢) — f(a)|| < |€] ||c|| by Corollary 6.5.12.

Thus, f is operator continuous. O

Proposition 6.6.6. Wj(R) C OCH(R). Specifically, if f(\) = [g €€ u(d€) € Wi(R), then

k
H(i)
<25
i=1
Proof. If f is as in the statement and j € {1,...,k}, then
Il = / eMME Lt nE (i) (ps @ p)(db, dE), A e RIFY,
A xR

by Example 1.3.14. By Lemma 6.6.5, this is, after writing du = £-d|u| to match the definition,

d\u\
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a BOCIPD of fU! that yields

) 1%
179 oo < /A € (o3 ® |ul)(dt, dg) = p;(A / €f ll(dg) = 2.

j><
Summing over j € {1,...,k} gives the desired bound. O

Remark 6.6.7. For similar reasons, if f € C¥(R) and for all i € {1,...,k}, f® and the Fourier

transform of £ belong to L'(R), then f € OCH(R).

Now, we use more serious harmonic analysis done by Peller [Pel06] to exhibit a large

class—containing Wy (R) strictly—of functions belonging to OC [k] (R).

Definition 6.6.8 (Peller—Besov spaces). If k € N, then we define
PBFR) == By (R) N {f € C*R) : f*) is bounded }

to be the k*h Peller—Besov space.
The following result is a slight upgrade of [Pel06, Thm. 5.5] or [Pell6, Thm. 2.2.1].

Theorem 6.6.9 (Peller). There ezists a constant ¢, < oo such that

1
79 pocimyein < g E /@] +ulllggee. S € PEE®),

and if k > 2, then

Hf[k} HBoc(R)®i(k+1) < ck“f”Bfﬂ"O
for all f € PBY(R) N BP™(R) = PBY(R) N PB*(R) = N_, PB(R).

The proof given in [Pel06] is not very detailed and is only explicit in the cases k € {1, 2},

so we present a full proof of Theorem 6.6.9 in Appendix B. As a result, we obtain the following.

Corollary 6.6.10. PB!(R) N PB*(R) = PBL(R) N B¥*(R) C OCH(R). Specifically,
k
[flocww) < inf ()] + Zcz-llfllgi,w f € PB'(R) N PB*(R).
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Since Wy (R) € PBY(R) N Blf’oo(R), Corollary 6.6.10 generalizes Proposition 6.6.6.

We now launch into the proof of this section’s main results. Seeing as we already have
perturbation formulas, we need the second ingredient in the method of perturbation formulas:
a continuous perturbation property. This will be Lemma 6.6.11; it is the main reason integral

symmetrically normed ideals are considered in this chapter.
Lemma 6.6.11 (Continuous perturbation property). If Z is integral symmetrically normed,
Aty ..., 011 M Msga, and ¢ € BOC(R)@U"’H), then the map

TE S (e1,.supn) b T ermtisrtennng € By (75,7)

is continuous. (To be clear, T and Iy, are always endowed with the norm || - ||z.)

Remark 6.6.12. Recall from Proposition 6.2.4 that integral symmetrically normed ideals are
MOI-friendly. In particular, the map under consideration in Lemma 6.6.11 does actually make
sense by definition of MOI-friendly and the fact that a + ¢ n Mg, whenever a n Mg, and ¢ € Z,.

(As in the proof of Corollary 6.5.12; the latter imply that P® and P**¢ take values in M.)

Proof. Write o, : ZF — By (Ik;I) for the map in question. Now, let ¢ = (cy,...,cpq1) € ZEFL

and let (c.n)nen = (Cim,-- -, Cht1n)neN be a sequence in TE+1! converging to c. Then
k+1
Soa(c-,n) - QOa(c) = Z(‘Pa(cl,na <y Ciny Cigly e e - 7ck+1) - Soa(cl,na <y Ci—1ny Ciy el ey Ck—l—l))-
i=1 N~
::Ti,n

Now, fix a BOCIPD (%, p,¢1,...,0k+1) of ¢ and by,...,bx € Z, and write by == 1. By

definition of the multiple operator integral, T; (b1, ..., bx) is precisely

i—1 k+1
/Z (H pj(a; + ¢jn,0) bj) (pi(ai + cin, 0) — pi(a; + ci,0)) b,-( 11 wilaj+¢j0) bj) p(do),
Jj=1 J=it+1

where empty products are the identity. Now, if 1 <7 < k + 1,

i—1
Ap(o) = ( [T ei(aj +cjns o) bj) (pi(ai + cin, o) — @ilai + ¢i, 0)),
j=1
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and B(o) = H§+Zl+1 @j(a; +c¢j,0))bj, then
Tin(br,...,b /A )b B(o) p(do).

But

/ 1Al 11 dp < T libo] / o1 + i) — 0i(as + ci,0) | [T 1030 0) ey p(dor) < 0
p#Fi - JFi

Therefore, the definition of integral symmetrically normed gives T; (b1, ..., b;) € Z and

|5 (b1, - be)llz < 0illz [ ] prH/ [i(ai + cim, o) = @ilai + ci,0) || T ] lls (- 0) ey p(do)
pFi - JF#i
< CEMbyllz - ku”I/ |pi(ai + cim, o) — i(a; + ci, 0)|| H 15 (5 o) |l oo () p(d0).
=2 Iz
Thus,

I Tinll By (zv:2) < Cél/ [pilai + cins0) = pilai + i, )| [ I0s(- 0) ey p(do).  (6.6.13)
22 J#i
Next, let 0 € X. Since ||¢;n — ¢i|| < COzllcin — cillz = 0 as n — oo, the operator continuity of

@i(-,0) gives that ||p;(a; + cin,0) — @i(a; + ¢, 0)|| = 0 as n — oco. Since

/ESUP <H‘Pz ai + Cin,0) — pilai "’Ci?U)H H ||‘Pm('7o')||€00(]12{)> p(do)

neN mi
k+1

/ L sl pla) < o

we conclude from Inequality (6.6.13) and Proposition 5.3.2(iv) that |15, g, (zx,7) — 0 as n — oo.

If ¢ = k4 1, then we run the same argument with

k-1
Ap(o) = ( 11 @ita; + cin,0) bj) wr(ak + crp,0) and

=1

By(0) = @pt1(apt1 + Chyins 0) — Qi1 (arg1 + Chg1,0)
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to prove that || k41,0 g, (zr7) — 0 as n — co. We conclude that

k+1
4>
H%(C,n) - ‘Pa(C)HBk(Ik;Z) < Z HTimHBk(I’“;I) =5, 0,
i=1
as claimed. O

Definition 6.6.14 (Z-differentiability). Let a n Mg,. A Borel measurable function f: R — C is

k-times (Fréchet) Z-differentiable at a if there is an open set U C Zg, with 0 € U such that

(i) fla+b)— f(a) eZ forall be U (ie., if b€ U, then f(a+b) — f(a) is densely defined

and bounded, and its unique bounded linear extension belongs to Z), and

(ii) the map U 3 b~ fo2(b) == f(a+b) — f(a) € T is k-times Fréchet differentiable (with

respect to || - ||z) at 0 € U C Zg,.

In this case, we write

sa’

DY f(a) = D*f, -(0) € By(ZL;T)

for the k*™® Fréchet derivative of faz: U —=Tat0€U. If fis k-times Z-differentiable at a for all

a n Msg,, then f is k-times Z-differentiable.

Suppose f: R — C is Lipschitz and f(a + ¢) — f(a) € Z for all a n My, and ¢ € Zg, (i.e.,
faz: Zsa — T is defined everywhere). We claim that if f is k-times Z-differentiable and a n Mg,,
then f, 7 is k-times Fréchet differentiable everywhere, not just at 0 € Zg,. Indeed, let b, c € Z,,

and note that

faz(b+¢) = faz(b) = fla+b+c)— fla+b) = fatpz(c). (6.6.15)

This is the case because Equation (6.6.15) is immediate from the definition on
dom(a) = dom(a)Ndom(a+b+c)Ndom(a+0b) C dom(f(a))Ndom(f(a+b+c))Ndom(f(a+b)),

whic is dense in H. (Note that we used Relation (6.5.5).) In other words,

fa,I(b + C) = fa—l—b,I(C) + fa,I(b)7 ¢ € Lsa.
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Since ¢ +— faypz(c) is k-times differentiable at 0 € Zg,, we conclude that f,; is k-times
differentiable at b with

D* foz(b) = D* fuss(0) = Dy f(a +b).
With this in mind, here is the main result of this section.

Theorem 6.6.16 (Derivatives of operator functions in ISNIs). Suppose (Z,| - ||[z) I M is
integral symmetrically normed, and fix a n Mg,. If f € OCH (R), then for: Isa — T is defined

everywhere, and fq r € Cfb(Isa;I). In particular, f is k-times Z-differentiable. Furthermore,

Dlsz(a)[bl, ce ,bk] = Z f[k] (a(k+1))#[bﬂ(1), ceey bw(k)], b1,...,b, € Ig,.

TeS
(Please review Notations 1.2.5(i) and 6.5.3.)

Proof. Let a n Mg,. Note that if f € OCK(R) C C¥(R), then ! € (R, B)&i¢>®(R, Bg).
Consequently, by Corollary 6.5.12, f,z(c) = f(a+¢) — f(a) € T for all ¢ € Zs,. In addition,
observe that if f € OCI¥J(R), then the map

Ta 3 ¢ [0Tematefll ¢ By (TF 7)

is continuous by Lemma 6.6.11. Therefore, the claimed &*" derivative map is, in fact, continuous.
(We encourage the reader to notice that it is also uniformly bounded.) Thus, to prove the
theorem, it suffices to prove the claimed formula for D% f(a). We do so by induction on &k > 1.

Let ¢ € Zs,. By Theorem 6.5.7,

faz(€) = far(0) = fM(a, a)tte = fla+c) = f(a) — fM(a,a)#c
= f[l](a +c, CL)#C - f[l] (a7 a)#c
— (Ia+c,af[1] o Ia,af[l}) [C]

Therefore, by Lemma 6.6.11,

L

o (€)= o) = sl < 4o g — 7o 0 ) Lo
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This completes the proof when k£ = 1. Next, suppose k£ > 2 and that we have proven the claimed
derivative formula when f € OC*~1(R). To prove the formula for f € OC*(R), we make some
preliminary observations. Fix b = (b1,...,by_1) € ZF"' and f € OCH(R) € OCF-1(R). By
Theorem 6.5.7,

3(b,c) = f”“‘” ((a+c)w)#b — ¥ (o)) #b

= Z (a+¢) i) Qi) #b — F ((a+ €)(i=1), A(h—i+1)) #b)
k
= Z fH ((a+ ) @i)s agra—iy) #lbi, ¢, biy],
i=1

using Notation 6.5.6. Next, by the induction hypothesis,

D" fuz(co)b) = D ' fla+co)ltl = D U ((a+co) ) #7, o € L,
TESk_1
where

b = (bT(1)7 SO b’r(k’—l))’ T € Sk-1-

Combining this induction hypothesis with the expression for §(b, ¢) above gives

e(b,c) = D" foz(c)b] — DF ! fo 1 (0)B] — Zf“ ager)) #T, ¢, b7,
TESK_1 1=1

(fk 1] CL+C ))#bT f[ } A (k) #bT) Z Zf k—i—l) 7C’bi7+]
TESK_1 TESK_1 =1

(5 ! F (@) # 07, ¢, biT+]>
TESK_1

k
> Z(f“ﬂ((a+c>(i),a(k+1,i>)#[b;,c,bm 11 (g 1)) #7_ €, b, ).
TESk,1 =1

It follows from Lemma 6.6.11 that

||5(" C)HBk_l(If;l;I)
ellz

=< Z |[Iere@a+i-o flE] ooy ¢ ]| lelz,

— By (Z*;1)
=1
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Writing b = (bo, b1, ...,bg—1), this proves

D} f(a)[b] = D* faz(0 ZZf Aoy #07 bo, by ] = D (agen)

TESK_1 =1 TESE
as claimed. This completes the proof. O

Remark 6.6.17. Let H be a separable complex Hilbert space, let (M C B(H), T) be a semifinite
von Neumann algebra, and let (E,| - ||g) be a separable symmetric Banach function space.
n [dPS04, Thm. 5.16], it is proven that if f: R — R is a continuous function such that
M admits a decomposition as in Definition 6.6.2 with only ¢1(-,0),¢2(-,0) € BC(R) (i.e.,
these functions are not assumed to be operator continuous) and if a € S(7)sa, then the map
E(T)sa 2 b f(a+0b) — f(a) € E(T)sa is well defined and Gateaux differentiable at 0 with
Gateaux derivatives expressible as double operator integrals involving fI!!. In particular, this
result applies when E = LP with 1 < p < co. It is noted, however, in [dPS04, §1] that Fréchet
differentiability does not generally hold in this setting. This is why we must work in the space
(EE). - lletm) = (BE) MM, - [praa): e £2(7), instead of the space (B(), | - |r): 8-
LP(7), to prove positive results about Fréchet differentiability in this setting. (Also, our method,
particularly the extra assumption of operator continuity in our decompositions, allows us to
assume only that a n Ms,, i.e., we need not assume a is 7-measurable.) In short, the results in

[dPS04] are, for good reason, of a different flavor than the results in the present paper.
6.7 Comments about property (F)

A Banach ideal (Z, || - ||z) < M has (the sequential) property (F) if whenever a € M
and (a;)ier is a net (sequence) in Z such that sup,c; ||ai|lz < oo and a; — a in the S*OT, we have
that @ € 7 and |jal|z < sup;e; ||laillz. In [ACDS09], certain MOIs in invariant operator ideals
with property (F) are considered. We now take some time to discuss the relationship between
properties (M) and (F). First, there are certainly ideals with property (M) that do not have
property (F), e.g., the ideal of compact operators (Proposition 6.2.10). Second, as mentioned
in [ACDS09], the motivating example of an invariant operator ideal with property (F) is an

ideal induced via Fact 6.3.2 by a (nonzero) symmetric Banach function space with the Fatou
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property. By Theorem 6.4.6 and Example 6.3.6, such ideals have property (M). Third, the author
is unaware of an example of a symmetrically normed ideal with property (F) that does not have
property (M). It would be interesting to know if such an ideal exists.

In this context, it is worth discussing a technical issue in [ACDS09] with its treatment of
operator-valued integrals. For the rest of this section, assume H is separable. It is implicitly
assumed in the proof of (the second sentence of) [ACDS09, Lem. 4.6] that at least some form of
the integral triangle inequality holds for || - ||z when Z has property (F). Specifically, it seems to
be assumed that if (2,.%, u) is a finite measure space and F': Q@ - Z C M is || - ||z-bounded and

weak™ measurable, then

/queI and H/ Fdu g/ [ Flz dp
Q Q T Q

(ignoring that || F'||z may not be measurable). Let us call this the finite property (M). Then
we may rephrase the implicit claim as “property (F) implies the finite property (M).” As far as

the author can tell, the arguments in [ACDS09] are only sufficient to prove

/qu
Q

Indeed, the authors of [ACDS09] prove that Z has property (F) if and only if {r € Z : ||r|z < 1}

/ Fdp el and < u(Q) sup || F(w)||z.
Q we

T

is a Polish space in the S*OT and then apply [VTC87, Props. 1.1.9 & 1.1.10] to approximate
F by simple maps in the S*OT. Crucially, [VTC87, Props. 1.1.9 & 1.1.10] only guarantee the

existence of a sequence (F),),en of simple maps 2 — Z such that
sup || Fp(w)lz < sup |[F(w)llz, neN,
weN we

and F,, — F pointwise in the S*OT as n — co. Now, by the dominated convergence theorem
(Lemma 6.5.1), [, Fdp — [, Fdp in the S*OT as n — oo. Also, by the (obvious) triangle

inequality for integrals of simple maps,

/Fndu
Q

sup
n>k

<sup [ |Flzdn < [ sup Bz du < () sup |[F@)lz, ke
T n>k JQ Qn>k we
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Thus, (the sequential) property (F) and the dominated convergence theorem give

/Fd,u
Q

The definition of property (F) does not guarantee that

/Fd,uGZ and
Q

< / limsup | Fullzdp < p(Q) sup [F@)llz. (6.7.1)
T Q n—oo weR

Jim [|F (w)]lz = [[F(w)llz,

so we cannot evaluate the limit superior above much further without an upgraded version of
property (F). (Interestingly, this does not damage the applications in [ACDS09], since it seems
only Inequality (6.7.1) is used seriously.) It therefore seems that property (F) almost implies

some weaker form of property (M)—but perhaps not quite.

Remark 6.7.2. Though we centered the discussion above on the “finite property (M),” it is
worth pointing out that, in order to prove [ACDS09, Lem. 4.6], it would actually suffice to know
the following “finite integral symmetrically normed” condition: For every finite measure space

(Q, %, ) and || - ||-bounded, weak* measurable A, B: Q@ — M, we have

/QA(w)rB(w)u(dw) €7 and ‘

/ A<w>rB<w>u<dw>HI <lrlz [ A1 1B] du €T,

As mentioned, in the presence of property (F), we would already know [, A(w)r B(w) pu(dw) € Z,

so, as was the case above, it is only the integral triangle inequality that is potentially missing.
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Chapter 7

Application: Functional free It6 formula

In §3.8, we introduced a rich class NC*(R) of “noncommutative C*” functions R — C
whose operator functional calculus is k-times differentiable and has derivatives expressible in
terms of multiple operator integrals (MOIs). In this chapter, we explore a connection between
free stochastic calculus and the theory of MOIs by proving an Ité formula for noncommutative C?
functions of self-adjoint free It6 processes. To do this, we first extend P. Biane and R. Speicher’s
theory of free stochastic calculus, including their free It6 formula for polynomials, to allow free 1t6
processes driven by multidimensional semicircular Brownian motions. Then, in the self-adjoint
case, we reinterpret the objects appearing in the free It6 formula for polynomials in terms of
MOIs. This allows us to enlarge the class of functions for which one can formulate and prove a
free Itd formula from the space originally considered by Biane and Speicher (the Wiener space
W(R)) to the strictly larger space NC?(R). Along the way, we also obtain a useful “traced” Ito
formula for arbitrary C? scalar functions of self-adjoint free Ité processes. Finally, as motivation,

we study an Ité formula for C? scalar functions of N x N Hermitian matrix It6 processes.
Standing assumptions. Throughout, H is a complex Hilbert space, and (M C B(H), (My)t>0,7)
is a filtered W*-probability space (§7.2). Unless otherwise specified, all vector spaces are complex.

7.1 Introduction

In [BS98], P. Biane and R. Speicher developed a theory of free stochastic calculus with
respect to semicircular Brownian motion that has yielded many fruitful applications, e.g., to

free SDEs [CDMO05, Dem08, Gao06, Karll], free entropy and transport [Voi99, BS01, Shl09,
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Dab14, DGS21, JLS22], analysis on Wigner space [BS98, KNPS12|, and the calculation of Brown
measures [DHK22, DH22, HH22, Ho22, HZ23, HH23|. In this chapter, we present an extension
and reinterpretation of this free stochastic calculus that naturally connects the It6-type formulas
thereof to the theory of multiple operator integrals (MOIs, Chapter 5) via the class NC*(R) of
noncommutative C* functions (Definition 3.8.11) introduced in §3.8.

The chapter’s main results (Theorems 7.6.6 and 7.7.9) are “free It6 formulas” for scalar
functions of self-adjoint “free Itd processes” driven by an n-dimensional semicircular Brownian
motion (x1,...,2,). As a consequence of the work of D. Voiculescu [Voi9l], (z1,...,x,) is in a
precise sense the large-N limit of an n-tuple (XfN), e ,XéN)) of independent Brownian motions
on the space of N x N Hermitian matrices. Therefore, interesting formulas involving (z1, ..., xy)
are often best motivated by studying formulas involving (X fN), . ,X,(LN)) and then (formally
or rigorously) taking N — oo. This certainly is true for our formulas. In §7.8, we study some
independently interesting matrix stochastic calculus formulas that motivate the chapter’s main
results. To explain the appearance of MOIs, we discuss a special case of one of these formulas.

In this preliminary discussion and §7.8, we assume familiarity with the theory of
continuous-time stochastic processes and stochastic integration, though these subjects are not
used elsewhere in the chapter. Please see [CW90, KS91] for some relevant background. Fix a
filtered probability space (£2,.%, (%)t>0, P), with filtration satisfying the usual conditions, to
which all processes we discuss will be adapted.

We begin by recalling the statement of It6’s formula from classical stochastic analysis.
Let V and W be finite-dimensional inner product spaces, and let M = (M (t)):>0 be a continuous

V-valued semimartingale. It6’s formula says that if F € C2(V;W), then
1
dF(M(t)) = DF(M(t))[dM(t)] + §D2F(M(t))[dM(t),dM(t)], (7.1.1)

where D*F is the k' Fréchet derivative of F. The DF(M)[dM] term in Equation (7.1.1) is the
differential notation for the stochastic integral against M of the process DF (M), which takes
values in Hom(V; W) = {linear maps V' — W}. The notation for the second term (the “Ito

correction term”) in Equation (7.1.1) is to be understood as follows. Let e1,...,e, € V be a
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basis for V, and write M = > | M;e;. Then

t n t
/0 D2F(M(s))[dM(s), dM(s)] = 3 /0 D2F(M(s))er, ¢;] dM;(s) dM; (s),

1,5=1 8ejaeiF(M(5))

where dM;(s) dM;(s) = d{{M;, M;))(s) denotes Stieltjes integration against the quadratic covari-
ation ((M;, M;)) of M; and M;. Our present motivation is an application of Equation (7.1.1) to

matrix-valued processes M and maps F' arising from scalar functional calculus.

Notation 7.1.2. Define (A, B)y := N Tr(B*A) = N2 tr(B*A) for all A,B € My(C), where
tr = N1 Tr is the normalized trace. Also, if A € My(C) and A € o(A), then P{! € My(C) is

the orthogonal projection onto the A-eigenspace of A.

Note that (-, ) restricts to a real inner product on the real vector space My (C)sa. Now,
let (Xl(N), e XT(LN)) = (Xi,...,X,) be an n-tuple of independent standard (My(C)sa, (-, -)N)-

valued Brownian motions, and let M be a My (C)-valued stochastic process satisfying

n J4
AM(t) = ) " Aij(t) dX;(t) Bij(t) + K(t) dt (7.1.3)

i=1 j=1
for some continuous adapted My (C)-valued processes A;;, B;j, K. The term A;;(t) dX;(t) Bi;(t)
above is the differential notation for the stochastic integral against X; of the process

[0,00) x Q5 (t,w) = (E — Ayj(t,w) E By (t,w)) € End(Mp(C)) = Hom(My(C); My (C)).

Such processes M are special kinds of N x N “matrix It6 processes” (Definition 7.8.3).

Theorem 7.1.4. If M is as in Equation (7.1.3), M* = M, and f € C*(R), then

drMm) = Y Ao Y am () PO 1+ Cit) at,
Mpeo(M(t)) i=1

where the process C; above is given by

1
CZ‘ = Z Z fm()\,u,y) (P;\WAU tr(BZ‘jP/iwAik) szp,f\/[—i-P/{V[Alk tI‘(BikP/iVIAij) BZ]PS/[)
Jsk=1 )\“LL,I/GG'(M)
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Remark 7.1.5. This is the special case of Theorem 7.8.13 with U; = Z§:1 Aij ® Byj.

This result is proven from It6’s formula using the quadratic covariation rules

A(t) dX;(t) B(t) dX;(t) C(t) = 6;; A(t) tr(B(t)) C(t) dt and (7.1.6)

A(t)dX;(t) B(t)dt C(t) = A(t)dt B(t) dX;(t) C(t) = A(t)dt B(t) dt C(t) = 0 (7.1.7)
and the identity (of Daletskii-Krein [DK56])

0B, 0B, fuyo M) =Y Y N PY By PY By P (7.1.8)
TESK A€o (M)k+1
at least for k£ € {1,2}. One of the main results of this chapter is the formal large-N limit of
(a generalization of) Theorem 7.1.4 that arises—at least heuristically—by taking N — oo in
Equations (7.1.6)—(7.1.8).
Biane noticed in [Bia97] that Voiculescu’s results from [Voi91] imply that there exists

)

a von Neumann algebra M with a (finite) trace 7: M — C and “freely independent processes’

Z1y...,Tpn: [0,00) = Ry — Mg, called semicircular Brownian motions such that
o (P(x{M (1), XV (0)) 225w (Pl (), o (1))

almost surely (and in expectation) for all indices i1,...,4, € {1,...,n}, times ¢1,...,t, > 0, and
polynomials P in r noncommuting indeterminates. Now, using Biane and Speicher’s work from

[BS98], one can make sense of stochastic differentials
a(t) dx;(t) b(t)
when a,b: Ry — M are “continuous adapted processes.” Imagining then a situation in which
(A, B,C) = (AN), B ¢y « T2y p ),

we might expect to be able to take N — oo in Equations (7.1.6) and (7.1.7) and thereby to get
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quadratic covariation rules

a(t)dz;(t) b(t) dz;(t) c(t) = dij a(t) 7(b(t)) c(t) dt and (7.1.9)

alt) da;(t) b(t) dt c(t) = a(t) dtb(t) da;(t) c(t) = a(t) dtb(t) dt c(t) = 0. (7.1.10)

Interpreted appropriately, these rules do hold (Theorem 7.4.9). How about Equation (7.1.8), as
least with k& € {1,2}? In this operator algebraic setting, we would be working with the operator

function f,,: Mg — M defined via the functional calculus by

o(m)

where P™ is the projection-valued spectral measure of m (§7.2). Therefore, it would be appropriate
to guess that we should replace the sums ) ;. (M) - PM in Equation (7.1.8) with integrals
fa(m) -dP™. Explicitly, we might expect that if f € C*(R), then fy, € C*(Mga; M), and

Dkf/\/( Z / / fk] A) P™(dA1) brer 1) - -+ P™(dAg) bﬁ(k) P (dMgy1), (7.1.11)
WESk
k:+1t1meb
where b = (by,...,b;) above. (These integrals actually do not make sense with standard

projection-valued measure theory. We shall ignore this subtlety for now.) Finally, consider a

process m: Ry — M satisfying

ZZ@U ) daz; (1) bij () + k(t) dt (7.1.12)

=1 j=1

for some continuous adapted processes a;j;, b;j, k: Ry — M. Such processes m are special kinds
of “free It6 processes” (Definition 7.4.1). Formally combining Equations (7.1.9)—(7.1.11) and

applying the hypothetical It6 formula

dfp(m(t)) = D fai(m(t))[dm(t)] + %DQfM(m(t))[dm(t), dm(t)]

then gives the following guess.
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Pseudotheorem 7.1.13. If m is as in Equation (7.1.12), m* = m, and f € C*(R), then

m(t)) — 1y m® (4N dm(t) PO -
af(m(t)) / o / oy PO PO den () PO ) 43t

=1

where

Y/
6= / . / . / 7O ) (PN ar (B P i) b P

k=1

+ Pm(dA) aikT(bik Pm(du) aij) bz‘j Pm(dy)) .

As we hinted above, the integrals in Equation (7.1.11) and the pseudotheorem above are
purely formal: A priori, it doesn’t make sense to integrate operator-valued functions against
projection-valued measures. In fact, this is precisely the (nontrivial) problem multiple operator
integrals (MOIs) were invented to solve. However, even with the realization that an MOI is
the right object to consider when interpreting Pseudotheorem 7.1.13, the relevant MOIs do not
necessarily make sense for arbitrary f € C?(R). This is where noncommutative C? functions
come in. The space NC?(R) C C?(R) is essentially tailor-made to ensure that MOI expressions
such as the ones above make sense and are well behaved. (For example, the derivative formula
(7.1.11) is proven rigorously in §3.8 for f € NC¥(R).) The result is that we are able to turn
Pseudotheorem 7.1.13 into a (special case of a) rigorous statement—Theorem 7.7.9—if we take
f € NC?(R). Moreover, we demonstrate in Example 7.7.17 that Theorem 7.7.9 generalizes
and conceptually clarifies [BS98, Prop. 4.3.4], Biane and Speicher’s free It6 formula for scalar
functions in the Wiener space W (R) (Definition 1.3.13).

We end this section by describing the structure of the chapter and summarizing our
results. All the results are proven both for n-dimensional semicircular Brownian motions and
n-dimensional circular Brownian motions. To ease the present exposition, we summarize only
the statements in the semicircular case.

In §7.2, we review some terminology and relevant results from free probability theory,
e.g., the concepts of filtered W*-probability spaces and (semi)circular Brownian motions. In

§7.3, we review some material on tensor products—most importantly, the von Neumann algebra
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tensor product ®—and the construction from [BS98] of the free stochastic integral of certain
“biprocesses” against semicircular Brownian motion. More specifically, if (M, (My)i>0,7) is
a filtered W*-probability space and x: Ry — Mg, is a semicircular Brownian motion, then
fo s)#dz(s) € My is defined for certain maps u: Ry — MM, where M°P is the opposite
of M. The # stands for the operation determined by (a ® b)#c = acb, and the free stochastic

integral fo s)#dx(s) is determined in an appropriate sense by
¢
/ (1 )@ @ b)(s)#dw(s) = (a @ b)#[x(r1 At) — x(r2 At)] = a(x(ry At) —z(ra At))b
0

whenever r; < ry and a,b € M,,. Now, fix an n-dimensional semicircular Brownian motion
(T1,...,xn): Ry — MZ . In §7.4, we define a free It6 process (Definition 7.4.1) as a process

m: Ry — M that satisfies (the integral form of) an equation
Zul Vaeda; (t) + k(t) dt (7.1.14)

for biprocesses u1, ..., u,: Ry — MQMPOP and a process k: Ry — M. Then we prove a product
rule for free It6 processes (Theorem 7.4.9) that makes the quadratic covariation rules (7.1.9) and
(7.1.10) rigorous. This product rule is a “well-known” generalization of Biane and Speicher’s
product formula (the n =1 case, [BS98, Thm. 4.1.2]). It is “well known” in the sense that it is
used regularly in the literature, and it was proven in the “concrete” setting (the Cuntz algebra)
s [KS92, Thm. 5]. However, it seems that, until now, the literature lacks a full proof of this
formula in the present “abstract Wigner space” setting.
In §7.5, we define noncommutative derivatives *p of polynomials; 9'p corresponds to
Voiculescu’s free difference quotient from [Voi00]. Then we use the free It6 product rule to prove
a “functional” It6 formula for polynomials of free I1t6 processes (Theorem 7.5.7), which says that

if m is a free It6 process satisfying Equation (7.1.14), then
1 n
dp(m(t)) = Ip(m(t))#dm(t) + 5 > A wp(m(t))dt,

=1

where A,p(m) is defined (Notation 7.5.3 and Definition 7.5.5) in terms of 9%p. This formula
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generalizes [BS98, Prop. 4.3.2] (the n =1 case). Our first main result then comes in §7.6, where
we use the free It6 formula for polynomials, some beautiful symmetry properties of the objects
in the formula, and an approximation argument to prove a “traced” Ito6 formula (Theorem 7.6.6)
for all C? functions of self-adjoint free Itd processes. (The aforementioned symmetry properties
allow one to avoid the MOI-related complications mentioned earlier.) The formula says that if 1)
m is a free It6 process satisfying Equation (7.1.14), 2) m* = m, and 3) f: R — C is a function
that is C2 on a neighborhood of the closure of Uisoo(m(t)), then

d ‘A = f'(w)

o) = (ko) + 33 [ I g ioard),

where pyy, ,, is the finite Borel measure on R? determined by
0 (A0, Q) = (7 ), 2oy = (787 (@), € o
R2

The result is not stated in exactly this way, but this interpretation is derived in Remark 7.6.9.
As an application, we demonstrate in Example 7.6.10 how to use Theorem 7.6.6 to give simple,
computationally transparent (re-)proofs of some key identities from [DHK22, HZ23, DH22, HH22|
that are used in the computation of Brown measures of solutions to various free SDEs. The
original proofs of these identities proceeded via rather unintuitive power series arguments, and
understanding what was really happening in these arguments was the original motivation for the
present study of functional free It6 formulas. We note that Theorem 7.6.6 is also motivated in
the §7.8; the corresponding matrix stochastic calculus formula is given in Corollary 7.8.15.

Finally, we arrive to §7.7, which contains our second main result: the functional free
It6 formula for noncommutative C2 functions (Theorem 7.7.9), a generalization of the rigorous
version of Pseudotheorem 7.1.13 and an extension—in the self-adjoint case—of the free Ito
formula for polynomials to functions in NC?(R). It says that if 1) m is a free Itd process
satisfying Equation (7.1.14), 2) m* = m, and 3) f € NC?(R), then

n

df(m(t)) = 0f (m(t))#dm(t) + % Y A f(m(b) dt, (7.1.15)

i=1
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where

O (m(t))#dm(t) / / FUA, 1) PRO(AN) dim(t) PO (dps)

and A, f(m) (defined officially in Definition 7.7.6) is determined, in a certain sense (Corollary

7.7.16 and Remark 7.7.18), as a quadratic form by

1

3 Agepf(m / / / f2] (A1, A2, A3) P"(dA1) a7 (b P™(dA2) a) b P™(d)N3), a,be M.

for a,b € M. Now, Biane and Speicher also established a formula [BS98, Prop. 4.3.4] for f(m)
when f € W5(R) and m is a self-adjoint free It6 process driven by a single semicircular Brownian
motion. In Example 7.7.17, we show that when n =1 and f € W5(R), Equation (7.1.15) recovers
Biane and Speicher’s formula. Owing to the strict containment W (R)1oe € NC¥(R) (Theorem
3.7.1), this means that not only have we extended Biane and Speicher’s formula to the case

n > 1, but we have also, through the use of MOIs, meaningfully enlarged the class of functions

for which it can be formulated.

7.2 Free probability

In this section, we discuss some basic definitions and facts about free probability, non-
commutative LP-spaces, noncommutative martingales, and free Brownian motions. We assume
the reader is familiar with these, and we recall only what is necessary for the present application.
For a proper treatment of the basics of free probability, please see [NS06, MS17].

A x-probability space is a pair (A, ¢), where A is a unital x-algebra and ¢: A — C
is a state, i.e., ¢ is complex linear, unital (¢(1) = 1), and positive (¢(a*a) > 0 whenever
a € A). A collection (A;);cr of (not necessarily *-)subalgebras of A is freely independent
if o(ai---an) = 0 whenever ¢(a1) = -+ = p(ap) = 0 and a1 € A;,,...,a, € A;, with
i1 £ d9,92 F# 13y - yin_2 F in_1,in_1 #* in. When applied to elements or subsets of A, the
term “(x-)freely independent” refers to the (x-)subalgebras these elements or subsets generate,
e.g.,a € Aand S C A are (x)freely independent if the (*-)subalgebra generated by a is freely

independent from the (x-)subalgebra generated by S.
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A pair (M, 7) is a W*-probability space if M is a von Neumann algebra and 7: M — C
a trace, i.e., 7 is a state that is tracial (7(ab) = 7(ba) for a,b € M), faithful (7(a*a) = 0 implies
a = 0), and normal (0-WOT continuous). All x-probability spaces considered in this chapter are
W*-probability spaces. Please see [Dix81] for more information about von Neumann algebras.

Fix now a W*-probability space (M, 7). If a € M is normal, i.e., a*a = aa*, then the
x-distribution of a is the Borel probability measure p,(d)\) = 7(P*(d))) on the spectrum
o(a) € C of a, where P*: B,y — M is the projection-valued spectral measure of a. Recall
fla) = fg(a) fO) P*(d)N) = fg(a) fdP® e Mfor all f € £>(a(a), By(a))-

Write p® = dp and

1
pie(ds) == 57V (4t — s2)yds, t>0,

for the semicircle distribution of variance t. Notice that if ¢ > 0, then supp uf¢ is equal to
[-2V/t,2V/t] C R, so that if a € M is normal and has *-distribution u$¢, then a € Mg,. Such
an element a is called a semicircular element of variance t. We call b € M a circular
element of variance t if b = 27/2(a; + ias) for two freely independent semicircular elements
ai,as € Mg, of variance t. Since —asy is still semicircular, we have that if b € M is a circular
element of variance ¢, then b* is as well.

It is worth mentioning that there is a more general algebraic/combinatorial definition of
«-distribution, and one may define (semi)circular elements in a *-probability space in a more
“Intrinsic” way using the notion of free cumulants. Please see [NS06] for this approach. Since we
do not need this combinatorial machinery, we content ourselves with the analytic definition.

Next, we turn to noncommutative LP-spaces. Please see [dS18] for a detailed development

of the basic properties of noncommutative LP-spaces.

Notation 7.2.1 (Noncommutative LP-spaces). Let (M, 7) be a W*-probability space. Define

LM, 1) =M and || - [|[poo(ry = || - lm = || - | T p € [1,00), then we define

hSA

pyl
lallLe(ry = 7(lal’)» = 7((@*a)2)*, aeM,

and LP(M,7) to be the completion of M with respect to the norm || - || s (7).
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Similar to the classical case, we have noncommutative Holder’s inequality:

llar -~ anllioizy < llarllzerir) - - llanll o ()

whenever ay,...,a, € M and p1,...,pp,p € [1,00] and 1/p; + -+ + 1/p, = 1/p. This allows us
to extend multiplication to a bounded n-linear map LP*(M,7) X --- x LPr(M, 1) — LP(M,T).

In addition, there is a dual characterization of the noncommutative LP-norm:

lalle(ry = sup{7(ab) : b € M, [|bl|po(ry <1}, a €M,

whenever 1/p+ 1/qg = 1. This leads to the duality relationship LY(M, 1) = LP(M, 1)*, via the
map a +— (b 7(ab)), when 1/p+1/q =1 and p # oo, as in the classical case. Moreover, the
o-WOT on M coincides with the weak* topology on L'(M,1)* = L®(M, 1) = M.

Finally, we briefly discuss noncommutative martingales and free Brownian motions. For
this, we recall that if AV C M is a W*-subalgebra, i.e., a WOT-closed x-subalgebra, then there
exists a unique positive linear map 7[- | N]: M — N such that 7[bjabs | N] = bi7]a | N]ba
for all a € M and by,by € N. We call 7[- | N] the conditional expectation onto N. It
was introduced in [Tak72|. It extends to a (weak) contraction LP(M,7) — LP(N,7) for all
p € [1,00]. When p = 2, we get the orthogonal projection of L?(M, 1) onto L?(N,7) C L*(M, 1).
In particular, as it is often useful to remember, if a € M and b € N, then b = 7[a | N] if and
only if 7(bpa) = 7(bb) for all by € N. This implies, for instance, that if a is freely independent
from N, then 7[a | N] = 7(a)1l = 7(a).

Now, an increasing collection (M;);>o of W*-subalgebras of M is called a filtration
of M, and the triple (M, (My¢)i>0,7) is called a filtered W*-probability space. Fix a
filtration (My)¢>0 of M and p € [1,00]. A LP-process a = (a(t))i>0: Ry — LP(M, 1) is
adapted (to (My)>o) if a(t) € LP(My,7) € LP(M,7), for every t > 0. An adapted LP-
process m: Ry — LP(M, 1) is called a noncommutative LP-martingale (with respect to
((Me)e>o0, 7)) if T[m(t) | My] = m(s) whenever 0 < s <t < oo. If p = oo, then we shall omit

the “LP” from these terms.
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Let n € N. An n-tuple m = (mq,...,my): Ry — M"™ of adapted processes is called
an n-dimensional (semi)circular Brownian motion (in (M, (M})¢>0, 7)) if m(0) =0
and {m;(t) —m;(s) : 1 <i <n} is a *freely independent collection of (semi)circular elements
of variance t — s that is *-freely independent from M, when 0 < s < ¢t < oco. More concisely,
m(0) = 0 and m has “jointly *-free (semi)circular increments.” It follows from the comments
about conditional expectation and the free increments property that (semi)circular Brownian
motion is a noncommutative martingale. Also, if m is an n-dimensional circular Brownian motion,
then the process v2(Rem,Imm) = 2-1/2(m 4+ m*, —i(m —m*)) is a 2n-dimensional semicircular

Brownian motion.

7.3 Free stochastic integrals

In this section, we review Biane and Speicher’s construction from [BS98| of the free
stochastic integral against (semi)circular Brownian motion. We begin by reviewing some infor-
mation about the minimal C*-tensor product ®min and von Neumann algebra tensor product &®.
Recall that ®2 is the Hilbert space tensor product (§5.9).

Though we assume the reader has some familiarity with ®puin and ®, we recall their
definitions—at least for two tensorands—for convenience. Let H and K be complex Hilbert spaces.
Recall that the natural map B(H)® B(K) — B(H ®3 K) is an injective, unital *-homomorphism
when B(H) ® B(K) is given the tensor product x-algebra structure, so we view B(H) ® B(K)
as a x-subalgebra of B(H ®9 K). In particular, if A C B(H) and B C B(K) are C*-algebras,
then we may view A ® B as a x-subalgebra of B(H ®2 K). The minimal C*-tensor product
A ®@min B of A and B is the operator norm closure of A® B in B(H ® K). If, in addition, A and
B are von Neumann algebras, then the von Neumann algebra tensor product A®B of A and
B is the WOT closure—equivalently, by Kaplansky’s density theorem, the o-WOT closure—of
A®@Bin B(H®, K). If 1: A— C and 79: B — C are traces, then we write 1®7: ARB — C

for the tensor product trace, which is uniquely determined by
(mi®12)(a ®b) = 11(a) 2(b), a€A beB.
For more information on ®m,in and ®, please see [BO08, Ch. 3| or [KR97b, Ch. 11].
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Proposition 7.3.1. Let A and B be C*-algebras. If tmin: ADxB — A@umin B is the map induced

via the universal property of @ by the inclusion A ® B — A Qmin B, then tmin is injective.

This follows from [Haa85, Prop. 2.2] and the remark following it. From Proposition
7.3.1 and Theorem 1.5.10, we see that if A C B(H) and B C B(K) are C*-algebras, then A®,B
can be represented as the subalgebra of B(H ®2 K) of elements u € B(H ®2 K) admitting a
decomposition u = > ">° | a, @b, € B(H ®9 K) such that (a)nen is a sequence in A, (bp)nen is a
sequence in B, and Y| (x|l p()llbnll Bx) < 00. In particular, we have the chain of inclusions
A®BC A®,B C A®uin BC B(H @2 K).

Next, we set notation for a few useful algebraic operations.

Notation 7.3.2 (Algebraic operations). Recall that H is a complex Hilbert space and M C B(H)

is a von Neumann algebra.

(i) M°P is the opposite von Neumann algebra of M, i.e., the von Neumann algebra with the
same addition, x-operation, and topological structure as M but the opposite multiplication
operation a - b = ba. If 7: M — C is a trace, then 7°?: M° — C is the induced trace

on M°P induced by 7.

(i) ()" : MRMOP — MRM®P is the unique o-WOT continuous (and isometric) linear map
determined by (a ® b)" = b® a. Also, u* = (u*)" for all u € MRMP, where (-)*

denotes the standard tensor product *-operation on MRM®P (e.g., (a ® b)* = a* ® b*).

(iii) #: M&;MP — B(M) is the bounded linear map—actually, algebra homomorphism—
determined by #(a ® b)c = ach. Write u#c = #(u)c for all u € M®,M° and
c € M. Note that if u € M&,M®P C MRMOP, then u*, u"™ u* € MM and

(u#c)* = (u*)#c* for all c € M.

(iv) (Not used until §7.5) #5 (MAMOP)E3 5 By ((MERMOP)2; MRMOP) for the bounded

linear map determined by
® _ _
#5 (u1 ® ug ® ug)[vy, v2] = urviuguaug,  ui,uz,us,vi,v2 € MMOP.

If Ae (MEMP)E3 and u,v € MAMOP, then A#5[u,v] = #5(A)[u,v)].
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Remark 7.3.3. If H is finite-dimensional and M = B(H), then one can use elementary linear
algebra to show that #: M&; M = M ® M° — B(M) is a linear isomorphism. Furthermore,
# is a *-homomorphism when M ® M°P is given the tensor product x-operation and B(M) is
given the adjoint operation associated to the Hilbert—Schmidt inner product on M = B(H).
This is why we have chosen to write (-)* for the tensor product x-operation on M&M°P; in

[BS98], the symbol (-)* is used for the operation (-)* from (ii).

Some justification is in order for what is written in the first two items above. First, we
observe that M°P is, indeed, a von Neumann algebra. Abstractly, M°P is clearly a C*-algebra
with a predual (the same predual as M). Concretely, M°P can be represented on the dual H*
of H via the transpose map B(H) 2 a+— (H* 2 ¢+ foa € H*) € B(H*). This map is a
x-anti-homomorphism that is a homeomorphism with respect to the WOT and the o-WQOT,
so the image of M under the transpose map is a von Neumann algebra isomorphic to M°P.
Next, using this representation of M°P, we confirm that (-)* is well defined. Certainly, the
condition in the definition determines a linear map (-)"*: M@ M — M ® M°P. What remains
to be confirmed is that the latter linear map is 0-WO'T continuous and isometric. To see this,
write (\): H ®y H* — H ®9 H* for the conjugate-linear surjective isometry determined by

h® (-, k) — k® (-,h). Then it is easy to show that
(U™ E N e Hr = <unf,§f>H®2H*, UEMOMPCBH®H), {,ne H®y H.

This implies both desired conclusions.
Next, we define simple biprocesses and their integrals against arbitrary functions. Recall

that (M, (My)i>0,7) is a fixed filtered W*-probability space.

Definition 7.3.4 (Biprocesses). A biprocess is a map u: Ry — M@ M. If u(t) € M; @ M{P
for all £ > 0, then u is adapted. If there exists a finite partition 0 =ty < t; < --- < t, < ©
of Ry such that for all i € {1,...,n}, u is constant on [t;_1,t;), and u(t) = 0 whenever ¢t > t,,
then u is simple. We write S for the space of simple biprocesses and S, C S for the subspace of

simple adapted biprocesses.
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Notation 7.3.5 (Integrals of simple biprocesses). If u € S, then

n
u = Z 1[ti_1,ti)u(ti*1)
=1

for some partition 0 =g < --- < t, < oo. If m: Ry — M is any function, then we define
/ w(t)dm(t) = / updm = 3wt ) #lm(ts) — m(ti 1)] € M.
0 0

i=1

By standard arguments (from scratch or using the basic theory of finitely additive vector
measures), fooo u#dm € M does not depend on the chosen decomposition of u, and the map

Sou— fooo u#dm € M is linear.

Note that if u € S and 0 <r < s, then 1, ju € S and u* € S. Thus, the statement of

the lemma below makes sense. Its proof is left to the reader,

Lemma 7.3.6 (Properties of integrals of simple biprocesses). Let m: Ry — M be any function,

let uw € S, and suppose 0 < r < s. Define

/u(t)#dm(t)—/ u#dm :—/ (1,5 u)#dm € M.
r T 0

Then
(i) the map S 5> u — [’ u(t)#dm(t) € M is linear;
(i) ([Tugdm)” = [Tu*#dm*;

(iil) if u € Sa and m is adapted, then [; ugtdm = (fg u#dm) is adapted;

t>0

(iv) if u(t) =0 for all t > s, then [*' u(t)#dm(t) = [7 u(t)#dm(t) for all s1,s2 > s; and
() [ u(tyrdm(t) = [ u(eypdm(t) — [ u(t)pdm().

Next, we introduce a larger space of integrands for the case when m is a (semi)circular
Brownian motion. Notice that a simple biprocess u: Ry — MM C LP(MRM°P, 7®@7°P) is a
compactly supported simple—in particular, strongly integrable—map R} — LP(M@MOP 7@7°P)

for all p € [1, 00].
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Notation 7.3.7. Fix p,q € [1,00], and let (N, 7n) be a W*-probability space.

(i) Ifue L (Ry;LP(N,n)) = L{ (R4, Lebesgue; LP(N,n)) and t > 0, then

loc loc
1 1
t q [e8) q
il oy = ( Rl ds) and [[ull ooy ( [ 1, ds)
with the obvious modification for ¢ = co. Of course, || - [|p212(;) comes from the “inner

product” (u, U>L§L2(n) = f(f(u(S),v(S»m(n) ds.

(ii) Define

L7 =8, C L*(Ry; LF(MOMP, 7®7°P)) and

A*P = Sa C Lipe(Ry; LP(MEMP, 7@7°P)),

where the first closure above takes place in the Banach space L?(R; LP(M&M°CP 7@7°P))

and the second takes place in the Fréchet space L2 (R ; LP(MRMOP 7@7°P)). We write

loc

L% = £>* C L*(Ry; M@MOP) and

A% = AP C LR (Ry; MOMP)

for the p = oo case.

To be clear, the L?- and Lfoc—spaces above are the Bochner L?- and Lfoc—spaces.

Remark 7.3.8. The use of £ and A above is inspired by the notation used in [CW90] for the
classical case. Biane and Speicher use the notation %, in [BS98] for the space L%P_ though their
definition is stated as an abstract completion of S,. Also, we note that simple biprocesses take
values in M @ M°P C M ®uin M°P, and M @uin M°P C MRM°P is a norm-closed subspace.
In particular, all the elements of A2 actually take values (almost everywhere) in M ®pin MOP.

In other words, A? C L2 (Ry; M ®mpin MOP).

loc

Only the case p = oo will matter to us in later sections. However, in the case p = 2,

there is an It6 isometry, just as in the classical case. It says that if x: R, — M is a semicircular
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Brownian motion (or, in fact, a circular Brownian motion), then

t t
</ u#dx,/ v#dm> = (U, V) 202(r@rop), UV € Sa, £ 20.
‘ ° 12(7)

Please see [BS98, Prop. 3.1.1]. We now focus on the p = oo case.

Theorem 7.3.9 (Biane-Speicher [BS98]). Let x: Ry — Mg, be a semicircular Brownian motion,

and let z: Ry — M be a circular Brownian motion. Fiz uw € S, and m € {x, z,z*}.

(i) [, u#dm is a noncommutative martingale.

(ii) (L*°-Burkholder-Davis—Gundy (BDG) inequality) We have

It follows that the map {(r1,72) : 0 <711 <ro} > (s,t) — fst u#dm € M is continuous.

< 2v2||ul| 20 (rror) -

/Oo u(t)#dz(t)
0

Proof. If m = z, then the first item is [BS98, Prop. 2.2.2]. The inequality in the second item is
[BS98, Thm. 3.2.1]. The remainder of the claims in the theorem (i.e., those for m € {z, z*}) follow
from the corresponding claims for m = z because z = 2= V2(x1 +izy) and z* = 2712 (x — ixy),

where 2; = vV2Re z and z9 = v/2Im z are semicircular Brownian motions. ]

Corollary 7.3.10. Retain the setup of Theorem 7.3.9, and fix s > 0. The linear map
[+ #dm: Sy — C([s,00); M) extends uniquely to a continuous linear map A* — C([s, 00); M),
which we notate the same way. If u € A2, then fo u#dm is a continuous noncommutative

martingale that satisfies the identities

t t s t * t
/ u#dm:/ u#dm—/ u#dm and (/ u#dm) :/ u*#dm*,
s 0 0 s s

and the bounds

1
t t t 2
‘/u#dx /u#dz‘E §4</ Hu(r)H%oo(T@Top) dr)

fort>s and e € {1,x}. Similar comments apply to fooo ugdm for u € L2

1
2

t
SQ\@(/ HU(T)”%w(T@Top)dT) ;
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Definition 7.3.11 (Free stochastic integral). For every u € A? and m € {x, z, 2*} as above, the

process fo u#tdm from Corollary 7.3.10 is called the free stochastic integral of u against m.

We end this section by giving a large class of examples of members of A?P. Note that

u € AP if and only if Lphu € L%P for all t > 0. We shall use this freely below.

Proposition 7.3.12. Suppose u: Ry — M®uin M°P is (norm) right-continuous, locally bounded,
and adapted, i.e., u(t) € My @min MY for allt > 0. If p € [1,00] and v € A*P, then uv € A*P.

The latter juztaposition is the (pointwise) usual action of MM on LP(MRMOP 7RTP).

Proof. First, note that if 0 < s <t < oo and w € M @MSP, then L pwo € L?P. (Approximate
v by simple adapted biprocesses to see this.) We claim this holds for w € Mg @min MS¥ as well.
Indeed, let (wy,)nen be a sequence in Mg @ MSP converging in the norm topology to w. By

noncommutative Holder’s inequality,

%
1fs5ywn © = Ls yw ol L2 Lo(rgrory < llwn = w]| poo(rgror) [0l L2 Lo (rgprory —— O,

Le., g pwnv = 1gpwo in L2(Ry; LP(M&MOP, 7®@7°P)) as n — oo. Thus, 1j; ywv € L2

Now, let ¢ > 0, and define v == > | 1[%t1%t)u(’;1t) for all n € N. By the previous
paragraph, u” v € £2 for all n € N. Since u is right-continuous, u™ — Lo,¢yu pointwise in M ®min
MP C MM as n — oo. In particular, u" v — 1 »uv pointwise in LP(MRMOP, 7@7P) as
n — 00. Also,

sup ||unU”LP(T®T°P) < 1[0,t)”v||LP(T®TOp) sup ||u(r)||L°°(T®T°p) € L2(R+)
neN 0<r<t

Therefore, by the dominated convergence theorem,

n—o0

[u" v — Loyu UHLQLP(T@TOP) = [Ju" v — UUHL%LP(T@TOP) —0

Thus, u" v — 1 yuv in L*(Ry; LP(M&MCOP, 7®@7°P)) as n — co. We conclude 1 pyuv € L>P,

and therefore, since t > 0 was arbitrary, uv € A>P, as desired. ]

The most useful consequence is as follows.
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Corollary 7.3.13. Suppose u: Ry — M ®pin M is RCLL, i.e., u is (norm) right-continuous
and the left limit u(t—) = lim, ~ u(s) € M Quin MP ewists for each t > 0. If u is adapted,

€ [1,00], and v € A*P, then uv € A?P.

Proof. RCLL implies right-continuous and locally bounded, so Proposition 7.3.12 applies. [

Example 7.3.14. Suppose u: Ry — M&;M°P is continuous with respect to || - || yge pop and
u(t) € M2, M for all t > 0. Since M@, MOP — M @pin M°P, u satisfies the hypotheses of

Corollary 7.3.13. A common example of this form is

u:zn:ai®bi: (Xn:ai(t)@)bi(t)) ;
=1 =1

t>0

where a;,b;: Ry — M are continuous adapted processes for all i € {1,...,n}.

7.4 Free Ito product rule

In this section, we set up and prove an It6 product rule for free It6 processes (Theorem
7.4.9). We begin by defining free Itd processes. Recall that (M, (M;)i>0,7) is our fixed W*-

probability space.

Definition 7.4.1 (Free It6 process). Fix n € N and an n-dimensional semicircular Brownian

motion (x1,...,z,): Ry — MZ . A free Ité process is a process m: Ry — M satisfying
Zuz ()#dz;(t) + k(t) dt, ie., (7.4.2)
0) + Z/ i (8)#da; (¢) +/ k(t) dt,
=170 0

where m(0) € Mg, u; € A% for all i € {1,...,n}, and k: Ry — M is adapted and locally
strongly integrable. If w: Ry — M®&;M°P is continuous and adapted as in Example 7.3.14 and

mi: Ry — M is a process, then we shall write dmq(t) = w(t)#dm(t) to mean

my = mq(0) + / w(t)#dm(t) )+ Z / £))#das (t) + / w(t)#k(t) dt,
0 0
where the multiplication w u; occurs in M®M°P.
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Note that if k is as above, then [jk(t)dt: Ry — M is adapted because M; C M is
norm-closed for all t > 0. In particular, free It6 processes are continuous and adapted. Also, if m
and w are as above, then wu; € A? by Corollary 7.3.13, and w#k: R, — M is locally strongly
integrable because k is locally strongly integrable and Ry > ¢t — #w(t) € B(M) is continuous.
In particular, both the free stochastic integrals and the Bochner integrals in the second part of
the definition above make sense.

Now, suppose (z1,...,2,): Ry — M™ is an n-dimensional circular Brownian motion. If
k: R, — M is locally strongly integrable and adapted, u;,v; € A? for all i € {1,...,n}, and
m: Ry — M is an adapted process satisfying

n
dm(t) = (ui(t)#dz(t) + vi(t)#dzf (£)) + k(t) dt, (7.4.3)

i=1
then m is a free [td process driven by a 2n-dimensional semicircular Brownian motion. Indeed,
if z; == vV2Rez and y; == v/2Im z;, then (z1,y1...,%5,yn): Ry — M2 is a 2n-dimensional

semicircular Brownian motions, and m satisfies

1 < :
dm(t) = NG D (i (8) + vj(0)) (1) + i (uy () — v () sy (1)) + k(D) dt.
j=1
Next, we introduce the operations that show up in the free It6 product rule.

Notation 7.4.4. Let mpa: M ® M — M be the linear map induced by multiplication, and let
M, ::mMo(idM®T®idM): MOIMR>IM — M,

Also, let
Qr(u,v) =M ((1®v) (u®1l)), uveMeMP, (7.4.5)

where - is multiplication in M ® M° ® M. In other words, M, and @), are determined,

respectively, as linear and bilinear maps by

Mr(a®@b®c)=at(b)c=71(b)ac and Qr(a®b,c®d) =a7(bc)d, a,b,c,de M.
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In [BS98], M is written as 7, and Q); is written as ((-,-)). Note that, using the universal
property of the projective tensor product, M. extends to a bounded linear map M®=3 M, and
Q- extends to a bounded bilinear map (M®,M°P)? — M. Unfortunately, the multiplication
map my: M ® M — M is not bounded with respect to || - || (rgr) [DS13, Prop. 3.6], so
there is no hope of extending M., to a bounded linear map M ®uin M Qmin M — M, let
alone MMM — M. Nevertheless, using the following elementary but crucial algebraic
observation, we learn that the “tracing out the middle” in the definition implies that ) can be

extended sensibly to a bounded bilinear map (M®&M°P)? — M.

Lemma 7.4.6. If u,v € M ® M and a,b,c,d € M, then

T(aM-(1@v) - b@ced) - (u®l))=(e7P)(a®1)(be Hu"™ (1 c)(d® 1)),

where the juxtapositions on the right-hand side are multiplications in M & M°P,

Proof. It suffices to assume u© = a1 ® b; and v = ¢; ® dy are pure tensors. In this case,

THaMA((1®v) - (b®c®d)-(u®1))) = r(abarr(bicey)did)
= (1 ® 7°P)((abaydyd) ® (c1 - ¢ - by))
= (r@7)((a®1)(b® 1)(a1 @ 1)(d; @ e1)(d @ c) (1 @ by))
= (r@7P)(1&b)(a®1)(b® 1)(a; ® 1)(d @ c1)(1® ¢)(d ® 1))

= (@) (e@ )@ 1)(a1 ®bi)(d © c1)(1© ¢)(d @ 1)).

In the second-to-last equality, we used the traciality of 7 ® 7°P. O

In particular, if u,v € M ® M°P_ then

7(aQr(u,v)) = (T@7°P)((a ® Duv™), a€ M.

Now, note that the right-hand side of the identity above makes sense for arbitrary u,v € MQM°P
and a € L'(M, 7). Consequently, we may use the relationship L'(M,7)* =2 L®°(M,7) = M to

extend the definition of Q.
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Specifically, if u,v € MRM°P and

lup(a) = (r@7P)((a ® Duwv™), a€ L(M,T),

then

[uw(a)] < [[(a@1D)uv™|| 11 (rgropy < [|a@1| L1 (r@ror) [[ut™ || oo (r@rory = [lall L1 () [[uv™ || oo (r@ror)

so that

1,0

LY(M,7)* < ||uvﬁipHLoo(T®Top) < 0.

In particular, since M is dense in L'(M, ), the following definition makes sense and extends

the algebraic definition of Q.

Definition 7.4.7 (Extended definition of Q). If u,v € MRMO°P, then Q,(u,v) is defined to be

the unique element of M such that
7(a Qr(u,v)) = (T&7°P)((a ® Vuv™), a€ M (or a € L*(M,1)).

It is clear from the definition that the map Q- (u,v) is bilinear in (u,v). Also, by the

paragraph before Definition 7.4.7, if u,v € M®&M°P, then

HQT(U,U)H = ngﬂ)”Ll(M,T)* < HuvﬂipHL‘”(‘r@‘rOP) < HUHLOO(T®TOD)HUHLOO(T®TOP)'

Consequently, if u,v € L} _(Ry; MRMPCP), then Q,(u,v) € Li (Ry; M), and

loc
Q- (u, U)HL%L‘X’(T) < ”uHL%L‘X’(T®T°P)||UHL?L°°(T®TOP)a t >0, (7.4.8)

by the Cauchy—Schwarz inequality. It is then easy to see—by starting with simple adapted
biprocesses and then taking limits—that if u,v € A%, then Q,(u,v) € Llloc(R+; M) is adapted.

This is all the information we need about @), so we are now in a position to state the free It6

product rule. (However, please see Remark 7.7.18 for additional comments about @ .)
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Theorem 7.4.9 (Free It6 product rule). The following formulas hold.

(1) Suppose (x1,...,x,): Ry — MZ is an n-dimensional semicircular Brownian motion. If,

for each € € {1,2}, my: Ry — M is a free Ito process satisfying

dmy(t) ZWZ (t)#da; (t) + ke(t) de,

then
d(mime)(t) = dmq(t) ma(t) + my(t) dma(t) + ZQT (u1i(t), uo;(t)) dt.

Put another way,

n
dm (t) dma(t) = > Qr(uri(t), ugi(t)) dt
i=1
in the classical notation.
(ii) Suppose (z1,...,2n): Ry — M™ is an n-dimensional circular Brownian motion. If, for

each £ € {1,2}, my: Ry — M is a free It6 process (driven by (z1, ..., z,)) satisfying
dmg(t) = (ug(t)#dzi(t) + ve (£)#dz] (t)) + ke(t) dt,

=1

then

d(mims)(t) = dma (t) ma(t)+m () dma(t)+ ) (Qr (urs(t), v2i(1)) +Qr (v1s(t), u2i(t))) dt.
=1

Put another way,
n
dmy () dma(t) = > (Qr(uri(t), vai(t)) + Q- (v1i(t), ugi(t))) dt
i=1
in the classical notation.
By the comments following Definition 7.4.1, the second item follows from the first item
with twice the dimension. Before launching into the proof of the first item, we perform a useful

example calculation.
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Example 7.4.10. Let z: Ry — M be a circular Brownian motion. Written in the classical

notation for quadratic covariation, Theorem 7.4.9(ii) says

a(t)dz(t) b(t) dz*(t) c(t) = a(t) dz*(¢) b(t) dz(t) c(t)
=a(t) 7(b(t)) c(t)dt and (7.4.11)
a(t)dz®(t) b(t) dz°(t) c(t) = a(t) dz°(¢) b(t) dt c(t)
= a(t) dtb(t) d=°(t) c(t)

=a(t)dtb(t)dtc(t) =0 (7.4.12)

whenever € € {1,%} and a,b,c: Ry — M are continuous adapted processes. Now, let n1,ng € N,
and fix continuous adapted processes a1,b1 ..., an,bny,C1,d1 .., Cpy, dny, kb Ry — M. Suppose

m: Ry — M is a free [t6 process satisfying

n2

dm(t) = i ai(t) dz(t) bi(t) + Y ¢j(t) d=*(t) d; (t) + k(t) dt. (7.4.13)
i=1 j=1

Such m show up frequently “in the wild.” It is often necessary, especially when m is not

self-adjoint, to work with |m|? = m*m. Then
d|m|?(t) = dm*(t) m(t) + m*(t) dm(t) + dm*(t) dm(t).
Let us derive an expression for dm*(t) dm(t). First, we have
no ni
dm*(t) = > d5(t) dz(t) ¢ () + D b (t) dz*(£) af (t) + k*(¢) dt.
j=1 i=1
Therefore,

dm*(t) dm(t) = Z a5, (8) 7 (5, (8) ¢jy () djy (£) At + Z bi, () 7 (a7, (t) ai,(t)) by (t) dt

Ji,J2=1 i1,42=1

by the free It6 product rule (in the form of Equations (7.4.11) and (7.4.12)).
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Now, let h € Mg be arbitrary, and suppose g: Ry — M satisfies

dg(t) = g(t) dz(t)

we have

dga(t) = g(t) d=(t) and dg}(t) = d="(£) g" (¢).

Therefore, by the formula from the previous paragraph, we have

dlgal?(t) = dgi(t) ga(t) + gi(t) dga(t) + dgi (t) dga(t)
= dga(t) ga(t) + gx(t) dga(t) + 17(g" (t)g(t))1 dt

= dz"(t) g" () ga(t) + gA (1) g(t) d=(t) + 7 (lg(t)[?) dt.

We shall use this equation in Example 7.6.10.

We now turn to the proof of Theorem 7.4.9(i). Our approach is similar to that of Biane
and Speicher, though we use less free probabilistic machinery by mimicking a classical approach
to calculating the quadratic covariation of It processes: computing an L2-limit of second-order

Riemann—Stieltjes-type sums. At this time, the reader should review Notation 1.1.14.

Lemma 7.4.14. If my and mqy are as in Theorem 7.4.9(i) and T > 0, then

T T
> (A1) (Agms) = my(T)ma(T) — my (0)ms(0) — /0 dm (£) ma(t) — /O () dma(8),

where the limit is in M = L (M, 1) over partitions II of [0,T].
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Proof. If IT is a partition of [0, 7], then

or == mq (T)mQ(T) — ml(O)mg(O) = Z (ml(t)mZ(t) —m (t*)mZ(t*))

tell
= ((ma(t-) + Ayma)(ma(t-) + Aymg) — ma(t_)ma(t))
tell
= Z ((Atml)mg(t_) +m(t-) Aymo + (Atml) (Atmg))
tel}
= /0 dm1 (t) / m1 dmg + Z Atml (Ath)

tell

Now, since my is uniformly continuous on [0,T], my — m, uniformly on [0,7] as [II| — 0.

Therefore, by the L>*°-BDG inequality (and the dominated convergence theorem),

T mj-o_ [T ) o,
/ dm (¢ )m2 (t) —— / dmq (t) ma(t) and / ml t) dma(t / mi(t) dma(t
0 0

in M. It then follows from the calculation above that

T
I1]—0
Z (Atml) (Atmg) Ll—i—) mq (T)mQ(T) — ma (O)mg(()) - / dm1 / m1 de
tell 0
in M, as desired. O
Lemma 7.4.15. Let (x1,...,2,): Ry — ML, be an n-dimensional semicircular Brownian

motion, and suppose 0 < s < t. Also, define ty n = (N — k)s/N + kt/N for all N € N and
ke{0,...,N}. If a € Mg, then

N

L2_J\;Lnloo Z (l'i(tk,N) - fEi(tk—l,N))a(xj(tk,N) — xj(tk_LN)) = (t - S) T(a) 6ij
k=1

foralli,j €{1,...,n}.
Proof. By writing a = (a—7(a)1)+7(a)l, it suffices to prove the formula when a is centered and
when a = 1. To this end, write Ay nyz; == 2;(ti,N) — zi(tk—1,n5), and fix 4,5 € {1,...,n}. First,

note that if £ # ¢, then My, Ay nxi, Ay yx; are freely independent; and if, in addition, ¢ # j, then

M, A nxi, Do Nai, A nxj, A nxj are freely independent. (This is because s = tg y < tp N
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when k > 1.) Second, recall that ||z;(r1) — x;i(r2)|| = 24/|r1 — r2| whenever 71,72 > 0. Therefore,
by definition of free independence, if either 1) ¢ = j and a € {b € My : 7(b) = 0} or 2) i # j and
a€ {be M;:7(b)=0}U{1}, then

N 2 N
*
Z Ak,in a Ak’NJ}j = E T(Ak,ija AhN:ZJiAg,NCCi a Az,ij)
k=1 L2(1) k=1
N

*
= T(Ak,ija Ak,inAk,inaAk,ij)

>
Il
—_

+ Z T(Ak7ija*Ak7NiL‘iAg7in a Ag7N1‘j)
k#£L

N
*
= E T(Ak,ija Ak,inAk,inaAk,ij)

1 _ a2

The only case that remains is when ¢ = j and a = 1. To take care of this case, note that if
k # ¢, then the elements (Ag yz;)? — (te vy — te—1.n) and (Agnw;)? — (ton — t—1,n) are freely

independent and centered. Thus,

T(((Ak,NiL'i)Q — (ten — tomin)) (Agnai)® — (ton — te-uv))) =0,

from which it follows, as above, that

N 2 N 2
Z (Apnzi)? — (t—s) = 1> ((Apvzi)® = (tey — th-1,v))
=1 L2(7) k=1 L2()
S 2
- ZT(((Ak,N%)2 — (tkN — te-1,n)) )
k=1
N 2
t— o]
= Z(tk,N —tpo1N)? = ( NS) N=eey ),
k=1

The third equality holds because = := Ay, yx; is semicircular with variance r := t; y — tr—1, N, SO

7(2%P) = CprP whenever p € Ny, where C), = (25)/(]3 + 1) is the p'" Catalan number. O

We are now prepared for the proof.
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Proof of Theorem 7.4.9(i). By the L*°-BDG inequality, Inequality (7.4.8), and the dominated
convergence theorem, it suffices to prove the formula when uy € S, for all £ € {1,2} and

i€ {l,...,n}. By Lemma 7.4.14, it therefore suffices to prove that if ' > 0 and uy; € S,, then

L% lim Z(Atml) Atmg = / Q- (u1i(t), ug(t)) dt,

I
=03

where the limit is over partitions IT of [0,7]. To this end, write

a ;:/ k() dt, €€ {1,2}.
0
Then

Z (Aymy) (Aymg) = Z (Arar + Ar(my — ar)) (Asaz + A¢(me — a2))
tell tell

= Z Ai(my — ay) A¢(mg —az) + Z (Ata1) (Atmg) + Z Ai(my — ay) Avas.

tell tell tell

Since Ajap = ft k¢(s) ds whenever t € II,

3 (Avar) (Armo)

< max ||Agmal| Z |Azar ||
sell

tell

T |TT|—0
< max||Asm2||/ @)l dt 2% 0 and
SEH 0

Z A¢(my — ar) Avaz
tell

< A — A
_rgleai_)[(H S(ml al)HteZHH taQH

T [TI]—0
< mae A mr —an)]| [ a1t 22 0
§ 0

because my and m; — a; are uniformly continuous on [0,7]. In particular, if
Lifu] = / ugdzr;, weA? ie{l,...,n},
0

then

L?- lim (Atml) (Atmg - lim Z Z A¢(Ii[urs)) Ae(Luzg]).

i i
=04 | =0 e =1
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Consequently, the proof is complete if we can show that

T
L% lim ZAt(Ii[u])At(Ij[v])zdij/o Q- (u(t),v(t))dt, u,v € Sa, 3,5 € {1,...,n}. (7.4.16)

II|—0
il tell

Since Equation (7.4.16) is bilinear in the arguments (u,v), it suffices to prove it assuming that
u =1, ;ya®band v =1, 4,yc @ d, where [s1,11), [s2,t2) C [0,T), a,b € My,, ¢,d € Ms,, and
either [s1,t1) N [s2,t2) =0 or [s1,t1) = [s2,t2). We take both cases in turn, but we first observe
that if w € S,, 7 € {1,...,n}, and t € II, then Ay ([;] fO (1 pw)#dz; = ftt_ w#dz;. In
particular, if w =0 on [t_,t), then A(L;[w]) = 0.

Case 1: [s1,t1) N [s2,t2) = (. In this case, the observation at the end of the previous
paragraph gives immediately that ), A¢(L;[u]) A¢(I;[v]) = 0 when [II] is sufficiently small.
But also Q-(u,v) =0, so Equation (7.4.16) holds.

Case 2: [s1,t1) = [s2,t2) =: [s,t). Fix N € N, let {t; n : 0 < k < N} be as in Lemma
7.4.15, and suppose Il is a partition on [0, 7] such that {t; y : 0 <k < N} ClIly. If [IIn| =0

as N — oo, then

L2 Jim 3 A (Lfu]) A(Z[o]) = L% lim > Ay(Lfu]) Ay(L[o)])
= tell OoteHN
N
=1% ]\}gnookzla(xi(tk’]v) - wi(tk_l,N))bc(xj(thN) — xj(tk—l,N))d

T
=(t—s)at(bc)dd;; = 5ij/0 Qr(u(t),v(t))dt

by the observation made just before the previous paragraph, the definition of I;, Lemma 7.4.15,

and the definition of Q). This completes the proof. O

Corollary 7.4.17. If my and ma are as in Theorem 7.4.9(i) and T > 0, then

L*>- lim (Atml) Atm2 / Qr(u1(t), u2(t)) dt,
|TI|—0 .

where the limit is over partitions of [0,T].

Proof. Combine Lemma 7.4.14 and Theorem 7.4.9. O
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7.5 Functional free Ito6 formula for polynomials

In this section, we prove the “functional” It6 formula for polynomials of free It6 processes
(Theorem 7.5.7). We begin by defining noncommutative derivatives of polynomials. Let A be
a unital C-algebra, let &k € N, and suppose ay,...,ar+1 € A are commuting elements. There

exists a unique unital algebra homomorphism ev g, C[M1, ..+, Akt+1] — A sending \; to

"“»korl) :

a; whenever i € {1,...,k+ 1}. (This is the most basic “functional calculus.”)

Definition 7.5.1 (Noncommutative derivatives of polynomials). Let A be a unital C-algebra,

let k € N, and fix a = (ay,...,ap41) € A¥L. Write
a; = 1%07D @ q; @ 190H1=0) ¢ gSG+D e (1 k+1}).
If p(A) = 3 A" € C[A], then
O p(a) = klev, a1 MM Aeg1)) = Kpan, - k)

n
=k e Y al'®@al e ARG (7.5.2)
=0 |6|=i—k

is the k*® noncommutative derivative of p evaluated at a. We often write 9 := 9' and

consider dp(a1,az) as an element of A ® A°P. Finally, write
*p(a) = akp(a(k+1)), a€A,

using Notation 1.2.5(i).
Next, we define the object appearing in the It6 correction term.

Notation 7.5.3. For p € C[A\], m € M, and u,v € M ® M°P, write
1
Ay pp(m) = 5/\/17-((1 @) - 0*p(m) - (u@ 1)+ (1Qu)-*p(m)- (ve1l)), (7.5.4)

where - is multiplication in M ® M° @ M.
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As was the case when we defined ()., we can still make sense of the formula defining
Ay wp(m) when u,v € M®;M°P. And again, though the formula does not make sense as
written when u, v € M ®uin M°P (let alone u,v € MRM°OP), we can use Lemma 7.4.6 to extend
A..p(m): (M ® M°)? — M to a bounded bilinear map (M&M°P)? — M. At this time, we
advise the reader to review Notation 7.3.2(iv), as we begin now to make heavy use of the #
operation defined therein.

Fix p € C[A] and m € M. For u,v € MRMOP, define
lpuw(a) = %(T@TOP) ((a @1)P*p(me1,10m,m®e D#5 [uv™ + vu™ 1 ® 1}), a€ LY(M,7).
If u,v € M ® M°P, then Lemma 7.4.6 and Equation (7.5.2) imply
T(a Auﬂ,p(m)) =lpup(a), aecM.
We use this identity to extend the definition of A..p(m). Indeed, if u,v € MRM®P, then

1 . .
||€p7u7v||L1(M7T)* < §Ha2p(m ®1,1®mm® 1)#? [uvﬁlp + quhp7 1® 1] HLOO(TQ_QTOP)'

Thus, by the duality relationship L'(M,7)* = M, the following definition makes sense and

extends the algebraic definition of A, ,p(m).

Definition 7.5.5 (Extended definition of A, ,p(m)). If p(A) € C[)] is a polynomial, m € M,

and u,v € MM°P, then A, ,p(m) is defined to be the unique element of M such that
T(aAump(m)) =lpuv(a), a€Morac LI(M,T)).

Also, we write
Ayp(m) = Ay up(m)
for the ©u = v case.

It is clear from the definition that A, ,p(m) is trilinear in (u, v, p) and symmetric in (u, v).
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Now, if n € Ny and p,(A) = A", then, by Equation (7.5.2) and the paragraph before

Definition 7.5.5, we have

1A wwpn (M)l = [€pn,uoll Lt (M.r)+

< m® uv™ + vy ™ ®@m)?2(m®
2 ) (m®1)™(w™ +ou"™)(1@m)*(me 1)

|6|=n—2

| =

Loo(r®ToP)

4 1 13
< 2||UHL°0(T®T°P)||”HL°°(T®TOP) Z [m @ 1||Lloc(T®Top)H1 ® mH[,Qoo(T@Top)”m ® 1”;;300(T®Top)
[6|=n—2

= n(n — 1) |m|" 2wl oo (rrom) ]| oo (o).

Thus, if u,v € L2 (R4; MRMOP) and m € C(R4; M), then A, ,p(m) € L (Ri; M), and

loc loc

1A uopn () g ooy < 1= Dllmll52 s lll 2 poerprom 0] 21w (rpory: £ 0.

It is then easy to see that if u,v € A? and m: Ry — M is continuous and adapted, then
Aywp(m) € Li (Ry; M) is adapted as well. The last fact we shall need about A, ,p(m) to prove
the functional free Itd formula for polynomials is the following product rule. (However, please

see Remark 7.7.18 for additional comments about A, ,p(m).)

Lemma 7.5.6 (Product rule for A, ,p(m)). If p,q € C[A], then

Ayu(pg)(m) = Ayup(m) g(m) +p(m) Ay,uq(m) + Q7 (Op(m) u, dg(m) v) + Q- (Ip(m) v, dg(m) u)

for allm € M and u,v € MRM°®P.
Proof. By Proposition 1.3.3(ii) and the definition of 92, if A is a unital C-algebra and p(\), ¢(\)

are polynomials, then

9*(pq) (a1, az, a3) = 0*p(ai, as, as)(1 ® 1 @ q(az))
+ (p(a1) ® 1 ® 1)0%q(ay, az, as)

+2(0p(a1,a2) ® 1)(1 ® 9q(az, a3)),  ai,a2,a3 € A.
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Applying this to the algebra A = M@M°P and writing 1 = 1 ® 1 for the identity in MQM°OP to

avoid confusion, we have

Ppg)(me1,1emme1)=p(me1,1emme1)(1®1cqme 1))
+(pme@1)®121)d%(me1,1®m,me1)

+2(0p(m®1,1@m)®1)(1® (1 ®@m,m® 1))
for all m € M. Now, notice that if uy,us € MAMO°P and A € (MRMOP)®3, then
(w1 ®1@1)A1 @1 ® u2))#5 e, d] = ui (A#5[c, d])us.
Since

pm®1)=p(m)®1 and ¢(m®1) =q(m)®1,

it follows from the above that if a € M, then

7(a Ay (pg)(m))
= %(T@Top) ((a®1)(0°p(m @ 1,1 ®@ m,m ® L)#§ [uv™ + vu™, 1]) (¢(m) ® 1))
+ B (0 ® D)p(m) © DOPgm © 1,1 @ m,m © D™ + vu'™, 1)
+ (7®7°P) ((a® 1)((Op(m ® 1,1 @ m) @ 1)(1 @ 9g(1 @ m, m @ 1)))#5 [uv™ + vu"?, 1])
= L&) ((g(m) @) © )p(m © 1,10 m,m ® D5 lun™ + vu™, 1))
+ %(T@TOP) (((ap(m)) ®1)0*q(m ® 1,1 ®@ m, m @ 1)#5 [uv™ + vu™, 1]) + R,
= 7(q(m) a Aywp(m)) +7(ap(m) Aywg(m)) + Rq

= 7(a Aywp(m) g(m)) 4+ 7(ap(m) Ayvq(m)) + Ra,
where

Ry = (7®7°P)((a @ 1)((Op(m ® 1,1 ®m) @ 1)(1 ® dg(1 @ m,m ® 1)))#5 [uv™ + vu™, 1]).
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Now, note that if Pi(A, o) = A"AP, Pa(A, Aa) = A2 A2 up =m @ 1, and ug = 1 ® m, then

(T@TOP)((CL RD)((Pi(u1 ®1,1®@u2) ®1)(1® Pa(ug ® 1,1 @ uy)))#5 [uv™™®, 1])
= (r@7°%) ((a @ Duf'uo™uduy u?) = (r&7°) (@ @ Dui udu(uy' uy*v) ™)

= (1@7P)((a®@ 1) Pr(m @ 1,1 @ m)u(Py(m @ 1,1 @ m)v)*®)

by the traciality of 7®7°P, the fact that uo = 1 ® m commutes with both a ® 1 and u1 = m® 1,
and the identity u]" = us. By linearity, the above formula holds for all polynomials P, P in

two variables. Applying the formula to P, = pl!l and P, = ¢V gives

R, = (1®7°) ((a ® 1)dp(m)u(dg(m)v)™) + (1@7°P)((a @ 1)dp(m)v(dg(m)u)™)

=7(a Q-(Ip(m) u,dq(m)v)) + 7(a Qr(Op(m) v,dg(m) u)).

This completes the proof. ]
We are now ready for the functional free It6 formula for polynomials.

Theorem 7.5.7 (Functional free It6 formula for polynomials). Let p(\) € C[A] be a polynomial.

(i) Suppose (x1,...,xy): Ry — MZ is an n-dimensional semicircular Brownian motion. If

m is a free Ito process satisfying Equation (7.4.2), then

n

Ap(m(1)) = Ap(m (1)) dm (1) + 5 > A yp(m(n)) .

=1

(ii) Suppose (z1,...,2n): Ry = M™ is an n-dimensional circular Brownian motion. If m is

a free Ité process satisfying Equation (7.4.3), then

dp(m(t)) = Ip(m())#dm(t) + Y Ay,(p)mop(m(t)) dt.
i=1

Remark 7.5.8. In either case, the map R, >t — Ip(m(t)) € M&,M°P is continuous and
adapted. In particular, if £ € L{ (Ri; M) and u € A%, then dp(m)#¢ € Li . (Ry; M), and, by

Corollary 7.3.13, dp(m)u € A%. Thus, the integrals in Theorem 7.5.7 make sense.
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Proof. Using the comments after Definition 7.4.1, it is easy to see that the second item follows
from the first with twice the dimension. It therefore suffices to prove the first item. To this
end, let p(\), g(A\(€ C[A] be polynomials, and suppose the formula in Theorem 7.5.7(i) holds for
both p(\) and ¢(A). Then the free It6 product rule (Theorem 7.4.9), Proposition 1.3.3(ii), the

definition of 9, and Lemma 7.5.6 give

d(pg)(m(t)) = dp(m(t)) ¢(m(t)) + p(m(t)) dg(m(t)) + dp(m(t)) dg(m(t))
= (1 ® q(m()))op(m(t)) + (p(m(t)) ® 1)0q(m(t)))#dm(t)

£ 37 (5 (Buplm(t) a(m(®) + pm(0) Ay, a(m(1)))
=1

Q@0 1) (0., 00 (0) 1))

= (pa) (m(H)#dm(t) + 5 3" A, (pa)(m(1)) d.
=1

Thus, the formula of interest holds for the polynomial pq as well.

Next, note that the formula holds trivially for p(A) = pp(A) = 1 and p(A\) = p1(\) = A.
Now, let n > 1, and assume the formula holds for p(\) = p,(\) = A". By what we just proved,
this implies the formula holds for p(A) = p,(M\)p1(\) = A" = p,.1(\). By induction, the
formula holds for p(\) = p,(X) whenever n € Ny is arbitrary. Since {p,(\) : n € Ny} is a basis
for C[\], we are done. O

7.6 Traced formula

From Theorem 7.5.7 and a symmetrization argument, we obtain a highly useful “traced”
functional free It6 formula. To state it, must extend the definition of noncommutative derivatives
(with self-adjoint inputs). Let A be a unital C*-algebra. If k € N and aq, ..., ax+1 € Aga, then

a, = (1®(i71) ® a; O 1®(k+17i))f;r11 c (A®(k+1))k+1 C (A®mm(k+1))k+1
is a (k + 1)-tuple of commuting, self-adjoint elements in A®min(*+1) with joint spectrum equal to

all of o(ay) x --- x o(agpy,) € RFFL: please see [CVT78]. The following definition therefore makes

sense using the multivariate continuous functional calculus [DL90, App., §5].
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Definition 7.6.1 (Noncommutative derivatives of C* functions). Let A be a unital C*-algebra.

Ifa=(a,...,an1) € A5 and f € CX(R), then

is the k*® noncommutative derivative of f evaluated at a. As in the polynomial case, we

often write 9 := ' and consider df (a1, as) as an element of A @iy A°P. Also, write

ok f(a) = 6kf(a(k+1)), a € Ag,,

using Notation 1.2.5(1).

Of course, if we view A®*+1) as a subalgebra of A®min(5+1) then Definition 7.6.1 agrees

with Definition 7.5.1 when f(\) = p(\) € C[A].

Example 7.6.2 (Wiener space functions). Let k € N, and suppose f = [ e¢ u(dé) € Wi(R).

Ifa=(a1,...,a541) € A5FL it follows from Equation (1.3.16) that
8kf(a) — kl/ /(ig)keisﬁm R ® eiskgak ® ei(1_2§:1 Sj)ga’““u(dﬁ) d81 o dSk
s JR

where the above is an iterated Bochner integral in A®min(*+1) When k = 1, we note for later
use that actually d0f (a1, a2) = z'fol ngeiml @ e(1=1a2 1, (d€) dt is an iterated Bochner integral in

A&7 AP C A @muin A (with respect to || - || 45 _400) because the map
[0,1] x R 3 (£,£) = e @ 17192 € Ad, AP

is continuous.

Remark 7.6.3. More generally, one may calculate the k" noncommutative derivative of a
Varopoulos C* function by passing the result of Proposition 3.5.3(i) (with m = k+1 and ¢ = fI¥)

through the natural map A®=*+1) 5 A®min(k+1)

Before stating, giving examples of, and proving our traced formula, we present a rigorous

proof of a “folklore” characterization of when a free It6 process is self-adjoint.
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Proposition 7.6.4. Suppose (x1,...,zy): Ry — MZ, is an n-dimensional semicircular Brown-

ian motion. For each ¢ € {1,2}, let my be a free Ité process satisfying
dmy(t) Zu& )#d;(t) + ke(t) dt.

Then m1 = ma if and only if m1(0) = ma(0), k1 = ky almost everywhere, and ui; = ug; almost

everywhere for all i € {1,...,n}.

Proof. Let m be a free Itd process satisfying Equation (7.4.2). It suffices to show that m = 0 if
and only if m(0) =0, k = 0 almost everywhere, and u; = - -+ = u,, = 0 almost everywhere. The

“if” direction is obvious. For the converse, suppose m = 0. Then

0 = dm*( Zu t)#da () + k*(t) dt,
so that
0 = d(mm*)(t) = dm(t) m*(t) + m(t) dm* () + > Q- (ui(t),u ZQT ui(t), uX(t)) dt
=1

by the free Itd6 product rule. In other words,

/E:QTUZ ,uX(s))ds=0, ¢>0.

Therefore, Y1 | Q- (ui(t),uX(t)) = 0 for almost every ¢ > 0 by, for instance, the (vector-valued)
Lebesgue differentiation theorem. We claim this implies u; = - - - = u, = 0 almost everywhere.

Indeed, if u € M@M°®P is arbitrary, then, by definition of Q,
Qe ) = (rET)(ulu)"™) = (rEr ) ) = (rE7P) ') = ol omy

Our claim is then proven by an appeal to the faithfulness of T®7°P. We are now left with the

fact that fo s)ds = 0 for all ¢ > 0. Once again, it follows that £ = 0 almost everywhere. [
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Corollary 7.6.5. A free Ito process m as in Equation (7.4.2) satisfies m* = m if and only if
m(0)* = m(0), k* = k almost everywhere, and u} = u; almost everywhere for all i € {1,...,n}.
Also, a free Ité process m as in Equation (7.4.3) satisfies m* = m if and only if m(0)* = m(0),

k* = k almost everywhere, and u:' = v; almost everywhere for all i € {1,...,n}.
We now state the traced formula.

Theorem 7.6.6 (Traced Functional Free It6 Formula). The following formulas hold.

(i) Suppose (x1,...,xy): Ry — MZ is an n-dimensional semicircular Brownian motion. If

m is a free It process satisfying Equation (7.4.2) and f € C[A], then

+ % Z(T®T0p) (uf™(t) Of (m(t)) ul(t))> dt. (7.6.7)

=1

If m* =m (i.e., m(0)* = m(0), k* = k a.e., and u¥ = u; a.e. for all i), then Equation

(7.6.7) holds for any f: R — C that is C? in a neighborhood of the closure of Uisoa(m(t)).

(ii) Suppose (z1,...,2n): Ry = M™ is an n-dimensional circular Brownian motion. If m is

a free Ito process satisfying Equation (7.4.3) and f € C[\], then

+ 3 (@7 (v (1) f (m(t)) ui(t))) dt. (7.6.8)

=1

If m* =m (i.e., m(0)* = m(0), k* =k a.e., and u} = v; a.e. for all i), then Equation

(7.6.8) holds for any f: R — C that is C? in a neighborhood of the closure of UtZO o(m(t)).

Remark 7.6.9. Let m be as in Equation (7.4.2). Note that if m* =m and f: R — C is C? on

a neighborhood of the closure of ;5o o(m(t)), then
(r@TP)(u;™ Of'(m) us) = (Of (M) i, us) L2 (rror)
because u?ip = u}. By the functional-calculus-based definition of 0f’(m), we therefore may read
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Equation (7.6.7) (almost everywhere) more pleasantly as

d ‘A = f'(w)

! 1 -
T m ) = (7 m) k) + 53 [ PO @ i,

where ppu, (A, dp) == (P™OUE™ (AN dp) ug, ug) [2(rgr00). Here, PMOLIEM s the projection-

valued joint spectral measure of (m ® 1,1 ® m). Similar comments apply to Equation (7.6.8).
Before proving this theorem, we demonstrate its utility.

Example 7.6.10. Let z: R, — M be a circular Brownian motion, and let a;, b;,k: Ry — M

(1 <4 < n) be continuous adapted processes. Suppose m: Ry — M satisfies

n

dm(t) = 3 (ai(t) dz(t) bi(t) + cilt) d=*(2) di(t)) + k(t) dt.
=1

Now, suppose in addition that m > 0 (i.e., m* = m and o(m(t)) C R4 whenever ¢ > 0). For
example, if m is as in Equation (7.4.13) and m = |m|* = m*m, then, as is shown in Example
7.4.10, m is a free Ito process of the form we have just described.

Now, let € > 0, and define f.(\) := log(A + &) whenever A > —¢ and f. =0 on (—o0, —¢].
Then f. € C*°((—¢,00)) and ;5 0(m(t)) € R4 C (—¢,00). Also,
A+e) ' —(ute)! 1

and (fé)m()\,,u) = =1 = —m, A > —€.

S =

Thus,

flim) = (m+¢e)™" and 9fi(m)=(fHM(me L, 1@m)=—(m+e) ' @ (m+e)~".

3

In particular, if u = Y"1 ;a; ® b; and v = Y ;| ¢; ® d;, then

oD f(m)u=— 3" (d; @ ¢g) ((m+ ) @ (m+ ) ) (a; @ b)

ij=1

3 o)) @ (il +2) ).

,j=1

281



It follows from Theorem 7.6.6 and the fundamental theorem of calculus that

%T(fs(m(t))) = 7(fA(m(1)) k(1)) + (@TP) (v (£) OfZ(m(t)) u(t))

= 7((m(®) + ) k®) = D T{d(Om(®) + &) ai(t)) (B} (m(t) +2) e (1) (7.6.10)

i,7=1

for all ¢ > 0. Special cases of Equation (7.6.11) have shown up in the calculation of Brown
measures of solutions to various free SDEs. Please see [DHK22, HZ23, DH22, HH22|. Thus far,
such equations have been proven in the literature using power series arguments. Theorem 7.6.6
provides a more intuitive, natural way to do such calculations.

For concreteness, we demonstrate how Equation (7.6.11) leads to a nice re-proof of a key
identity [DHK22, Lem. 5.2] that is used in the calculation of the Brown measure of the free
multiplicative Brownian motion (starting at the identity). Similar calculations can be used to
re-prove formulas in [HZ23, DH22, HH22].

We return to the setup of the end of Example 7.4.10, i.e.,

dg(t) = g(t) dz(t)

We then take gy == g — A (A € C) and m = |gx|?. As we showed in Example 7.4.10,
dm(t) = gx(t) g(t) dz(t) + d2"(t) g7 (t) ga(t) + (g7 (t) g(2)) dt.
By Equation (7.6.11),
%T(log(m(t) +e) =7((m+e)"")7(g"9) = 7(g"gr (m+ &) 'gig)7((m+e)7"),  (7.6.12)

where the t’s are suppressed on the right-hand side above for the sake of space. But now,

T(g*gr(m+¢)71gtg) = 7((m+¢2)"1gi99%9x), T(g%g) = T((m +¢) "1 (m +€)g*g), and

(m+¢€)g"g—9299"9\ =€g" 9+ 9rIrg" 9 — 999" 9r = €979
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because [gx, A] = [g — A, A] = 0. From Equation (7.6.12), we then get

%T(log(lg(t) = AP +e) =er((g(t) = A + ) o) 7 ((lg() = AP +2)71),  t>0.

This is equivalent to (a generalization to arbitrary starting point of) [DHK22, Lem. 5.2].
We now begin the proof of Theorem 7.6.6, the keys to which are the following identities.

Lemma 7.6.13. If p(\) € C[\], m,k € M, and u,v € MRMO°P, then
T(Op(m)#k) = 7(p'(m) k) and 7(Ayp(m)) = (r@7P) (0" 0p' (m) u).
Proof. Let n € Ny, and define p,(\) := A\". For the first identity, note that

T(Opn(m)#k) = Z T(m51km52) = Z T(m52m51k) = 7(nm" k) = 7(p),(m) k).
01+d02=n—1 01+d2=n—1
By linearity, the first desired identity holds for all p(A) € C[A]. Proving the second identity
is slightly more involved. We begin by making two key observations. First, fix a polynomial
P(A1, A2, A3) € C[A1, A2, A3] and two elements uj, uy € MRMPOP that commute. If we define

q(A1,A2) = P(A1, A2, A1) and 1 :=1® 1, then
(T®T°P) (P(u1 R101,10u®1,1011 u)#s5u, 1]) = (77P) (q(u1, u2) u),

as the reader may easily verify. (The computation is similar to that of R, in the proof of Lemma
7.5.6.) Second, (T®7°P)(u") = (T®7°P)(u) because (T®7°P)(a®b) = 7(a) 7(b) = (TRTP)(b® a)

whenever a,b € M and M ® M°P is o-weakly dense in M®M°P. Now, note that

(q(u1, ug) w)™ = u™q(ur, ug)™ = u™q(u)”, uy®),  u € MM (7.6.14)

Combining these observations and appealing again to traciality of T7®7°P, we get that if, in

addition, u}™ = ug, and if w € MRMOP satisfies w"® = w, then

(T&TP)(P(u1 @12 1,1Qus ® 1,18 1 @ up)#5 [w,1]) = (1&7°)(r(u1,u2) w),  (7.6.15)
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where
q(A1, A2) +q(A2, A1) P(A1, A2, A1) + P(A2, A1, A2)

7"()\1,)\2) = 9 = 9 .

Now, if P = 2pl2l, then

P(A1, A2, A1) + P(A2, A1, A\2)
2

r(A1, Ae) = = (A1, A2, A1) + 2P (A2, Ar, Ae) = ()M (A1, Ma),

as can be seen by taking A3 — A; in the definition of pm(}\l, A2, A3) and using the symmetry
of plll. Therefore, if we apply Equation (7.6.15) with P = 2pl?, u; =m ® 1, up = 1 ® m, and

w = (uwv™ 4 vu™*) /2, then we obtain
1, _ : .
7(Aywp(m)) = §<T®T0p) (0p'(m) (uv™ + vu™?)) (7.6.16)

by definition of A, ,p(m) and noncommutative derivatives. To complete the proof, notice that if
q(A1,A2) € C[A1, Ao is symmetric, uy and ug satisfy u]® = uz, and w € MRMCP is arbitrary,

then, by Equation (7.6.14),

(T&7°P)(q(u1, u2) w) = (T&7°P) ((q(u1, uz) w)**) = (T&7°P) (W q(ug, u1))

= (7®@7) (w"™q(u1, uz)) = (T@7)(q(u1, ug) wW"™).
Therefore, Equation (7.6.16) reduces to
T(Aupp(m)) = (r@7P)(0p'(m) uv™) = (r&7°P) (v"*0p (m) u),

as desired. 0

Proof of Theorem 7.6.6. We prove Theorem 7.6.6(i) using Theorem 7.5.7(i). Theorem 7.6.6(ii)
follows in the exact same way from Theorem 7.5.7(ii).
Fix an n-dimensional semicircular Brownian motion (z1,...,2,): Ry — MZ, and

suppose m is a free It6 process satisfying Equation (7.4.2). Since free stochastic integrals against

x; are noncommutative martingales that start at zero, they have trace zero. Thus, applying 7 to

284



the result of Theorem 7.5.7(i), bringing 7 (which is bounded-linear) into the Bochner integrals,

and appealing to Lemma 7.6.13, we have

7(Bu@p(m(®)) ) dt
=1
' / ]' . O fli /
= r(plm(0) + [ (r(m@) K0) + 5 (&) (ul (1) 0 (m(®) i) )

0 i=1

r(o(m) = r(pm©) + [ (OpmE)#kO) + 3

whenever p(\) € C[A].
Suppose now that m* =m and U C R is an open set containing (J;», o(m(t)) such that
f € C?(U). Since m is continuous in the operator norm, m is locally bounded in the operator

norm. In particular,

K; = U o(m(s)) CU

0<s<t
is compact. Next, fix ¢ > 0, and let V; C R and g; € C%(R) be such that V; is open, K; C V; C U,
and g = f on V;. By the classical Weierstrass approximation theorem, there exists a sequence
(¢gn) Nen of polynomials such that for all ¢ € {0, 1,2}, q](\i,) — gt(i) uniformly on compact subsets

of R as N — oo. In particular, (¢h)) — (g/)! uniformly on compact subsets of R? as N — oco.

But now, we know from the previous paragraph that 7(qn(m(t))) equals
t 1 n B )
rlav(mO) + [ (rlay(m()k) + 5 S8 (W (s) Iy (m() () ) ds
i=1
for all N € N. By basic operator norm estimates on the functional calculus and the dominated

convergence theorem, we can take N — oo in this identity to conclude

o (m(0) = rlan(m() + [ (rlailm() K(s) + 5 3o (rOr) (w7 () dgi(m(s)) () ) s

i=1
But g; = f on V; D K; and thus (¢))!" = (/)" on K; x K;. We therefore have
ge(m(s)) = f(m(s)) and dg'(m(s)) = df'(m(s)), 0<s<t

Since t > 0 was arbitrary, this completes the proof. O
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7.7 Functional free Itd formula for NC? functions

In this section, we reinterpret (and then redefine) the quantities 0f(m)#k and A, f(m)
in terms of multiple operator integrals (MOIs). We shall use only the (“baby”) version of the
“separation of variables” approach detailed in §3.8.

We begin with a helpful observation. Fix k € N, and let a = (ay,...,axy1) € MEFL If

P(A) =Y j5<acs A” € C[AL, .+, Agya], then

(12P)[ Zc(ga -ai’“bkai’:’f, b= (by,...,b) € MF,
51<d

by definition of MOIs. In particular, by Example 1.3.8 and Equation (7.5.2), if p(A) € C[)], then

(Ial’azp[l])[b] = Op(ay,az)#b and (7.7.1)

1
(£ mop) o, vo] = S0%p(ur, g, ws)# [v1, va) (7.7.2)

for all a1,as € Mg, b € M, uy,u2,us € (MRMPOP)g,, and v1,vy € MRMPOP. Recall that the
operations # and #§ are defined in Notation 7.3.2.

Now, for the term A, ,f(m) in the functional free It6 formula(s) to come, we shall also
need to understand MOIs of the form [ (a2) fA f (a1) P (A1, A2, A3) P (dA1) by u(dA2) ba P*2(dA3),

where A is a Polish space and p is a Borel complex measure on A.

Lemma 7.7.3 (MOI with one complex measure). Let A be a Polish space and p be a Borel
complex measure on A. If o € £°2°(0(ay1), By(a,)) @il (A, Ba)@il> (0(a2), By(ay)) and

@ (A1, Az) = / ©(A1, A2, A3) u(dA2), (A1, A3) € o(a1) x o(az),
A
then @t € £2°(0(a1), By(a,))Qil>®(0(a2), By(ay))- We shall write
/ / / )50(/\1»>\2,>\3) P (dA1) by p(dA2) by P*2(dAg) = (I90%2¢H)[brba] € M
as a1l

for all by,bs € M.
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Proof. If (X, p, p1, 2, ¢3) is an £>°-IPD of ¢ and

(A1, 0) = @10\1»0)/ ©2(A2,0) u(dX2) and @5 (A3,0) = @3(X3,0)
A

for all \y € o(a1), A3 € o(az), and o € X, then (X, p, Y, ¢4) is an £°-IPD of ¢H. O

It follows from the proof above and the definition of MOIs that

/ / / SO(/\h )\2, )\3) pP© (d)\l) b1 [L(d)\g) bz P (d)\g)
o(a2) JA Jo(ar)
= / p(p2(-,0)) p1(ar, o) biba p3(az, o) p(do) (7.7.4)
b
whenever (3, p, 1, @2, ¢3) is an £°-IPD of ¢, where u(pa(-,0)) == [ @2(X, o)u(dN).
We now identify 0f(m)#k as an MOL

Lemma 7.7.5. If f € W1(R)joc and a1,a2 € Ms,, then
df (a1, a2) € M&zM and df(ar,as)#b = (I*v2fM)[p],  be M.

Moreover, the map M2, > (a1,a2) + 0f (a1, az) € M&,M°P is continuous.

Proof. Since W (R)joc € VOLY(R) and df(ay,az) = fg](al, az), this is immediate from Example
3.8.18 and Proposition 3.5.12, but we provide a self-contained proof anyway.

Fix aj,as € Ms,, and let 7 > 0 be such that o(a1) Uo(az) C [—r,r]. By definition of
W1i(R)oc, there exists a g = [p e¢ pu(d€) € Wi(R) such that 9li=ry) = fl=ry)- In particular,
gm|[_w]g = fm\[_m}z, so df (a1, az2) = dg(a1,az) € M&,M° by Example 7.6.2. Furthermore,

since M®; M 3 u — u#b € M is a bounded linear map, the same example gives

1
Dlar, az)#h = /0 [ eteneti=m uag a

— / (i€) et i 0-Da I e e
Rx[0,1] d|p

= (19vezgll[p] = (192 f01) 0]
for all b € M, where the third identity holds by Equation (1.3.16) and the definition of MOIs.
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For the continuity claim, note that the map
1 . . ~
M2, 3 (a1, a2) — / / (i€) e © /17D 1y(dg) dt € M & MOP
0o JR

is continuous by the dominated convergence theorem. In particular, the map (ai,as) — 9g(aq, az)
is continuous. Since df(a1,a2) = dg(ay,az) whenever o(ay) U o(az) C [—r,r], i.e., whenever
lla1]] < r and |lag| < r, we conclude that the map (ai,a2) — 9f(a1,az2) is continuous on

{(a1,a2) € M2, : ||a1|| <7, |laz|| < r}. Since r > 0 was arbitrary, we are done. O

Since C%(R) € W1(R)j,. (Proposition 3.4.6(iii)), the conclusion of Lemma 7.7.5 holds for
all f € C?(R). Thus, Equation (7.7.1) is a special case of Lemma 7.7.5.

Next, we make sense of A, ,f(m) in terms of MOIs. If f € CPI(R), m € M, and
u, v € MRMPOP, then we define

(@) = (&) ((a @ 1) (I@WEmmEL () e oy 1@ 1)), a € LM, 7).
By Theorem 3.8.15(iii) (and Lemma 2.3.1),

O P [ L e 1 S,

<P o o 3, 20 100" + 0™ 0 700 |1 © L e (700

< 2”f[2]||£00(g(m),3(,(m))®i3||u”LOO(T®T0p)||UHLOO(T®TOP) < 0.

In particular, the following definition makes sense.

Definition 7.7.6. If f € CPI(R), m € My, and u,v € MMOP, then we define A, ,f(m) to

be the unique element of M such that
T(a Ay f(m)) = (1&T°P) ((a @ 1) (ImE1IEmMmSL (21 e 4 e ie 1 @ 1])
for all a € M (or a € LY(M,7)). Also, write

Ay f(m) = Ay f(m).
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By Equation (7.7.2), Definition 7.7.6 agrees with Definition 7.5.5 when both definitions
apply. Also, if f € CP(R), m € Mg,, and u,v € MRM°OP, then

18wu F Ol = 1runllzrstry < 202 i my 5, 20 1l (rrom 0] oo rrory (77.7)

o(m)

by the paragraph before Definition 7.7.6.

Lemma 7.7.8. If f € NC*(R), m € C(Ry; Mg,), and u,v € L% _(Ry; MRMPOP), then

Au,vf(m) € Llloc(R-i-; M) and ||Au,vf(m)||L%L°°(’r) < 2Hf[2] Hrt73||u||L%L°°(T®TOp)HUHL%LOC(T@TOP)

for all t >0, where 1 == ||m|| o oo (r) = Supg< <y [IMm(3)]]-

Proof. When f(\) € C[)], we know from §7.5 that A, , f(m) € L{. (R; M). The claimed bound
follows from applying Inequality (7.7.7) pointwise and then using the Cauchy—Schwarz inequality.
If f € NC?(R) is arbitrary, then there exists a sequence (qy)yen of polynomials converging in
NC?(R) (i.e., in CPI(R)) to f. What we just proved implies that the sequence (A, ,qn(m))Nen
is Cauchy in L{ (Ry; M), and Inequality (7.7.7) implies that A, ,qn(m) — Ay, f(m) almost
everywhere as N — oo. It follows that A, ,f(m) € L{ (Ri; M) and that the claimed bound

holds for A, f(m) as well. O

We are finally ready for the functional free It6 formula for noncommutative C? functions.

Theorem 7.7.9 (Functional free Itd formula). Let f € NC?(R).

(i) Suppose (x1,...,xy): Ry — MZ is an n-dimensional semicircular Brownian motion. If

m is a free Ité process satisfying Equation (7.4.2) and m* = m, then
df(m(t)) = af (m(t))#dm(t) Z Ay, f(m(t)) dt. (7.7.10)

(ii) Suppose (z1,...,2n): Ry — M™ is an n-dimensional circular Brownian motion. If m is

a free Ité process satisfying Equation (7.4.3) and m* = m, then
df(m(t)) = 0f (m(t))#dm(t) +ZAM )ut (o f (m(t)) dt.
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Remark 7.7.11. In either case, Ry > t — 9f(m(t)) € M&,M°P is continuous (Lemma
7.7.5) and adapted as in Example 7.3.14. In particular, if ¢ € LIOC(R+;M) and u € A%, then
of (m)#L € Ll (Ry; M), and, by Corollary 7.3.13, 8f(m)u € A% Thus, the integrals in the

statement of Theorem 7.7.9 make sense.

Proof. As usual, the second item follows from the first with twice the dimension, so it suffices
to prove the first item. To this end, let m = m* be a free It6 process satisfying Equation (7.4.2).
By Theorem 7.5.7(i), Equation (7.7.10) holds when f(\) € C[)\]. For general f € NC?(R), let
(gn)nen be a sequence of polynomials converging in NC?(R) to f, and fix ¢ > 0. Since gy — f
uniformly on compact sets, gy (m(t)) = f(m(t)) in M as N — co. Next, let i € {1,...,n}. By
Lemma 7.7.8, Ay, qn(m) — Ay, f(m) in L}

loc

(Ry; M) as N — oco. In particular,

t
L*>- lim A (S)qN dS—/ Au,(s )d

N—oo

Now, if 74 := supg<s<; [[m(s)|| < oo, then

10an (m) i — Df (M) will 12 oo (rrery = || (v — Hme1,1@m) UiHLng(T@Top)

< (v — HIM oo (g 2y 1l 2 Lo (00 220

by basic properties of functional calculus and the fact that || - | geo (= <+ llrs,2. Therefore,

r,mt)%)

t

L%~ lim (OqN(m(s))ui(s))#dxi(s):/0 (0 (m(s)) ui(s))#dwi(s)

N—oo 0

by the L*°-BDG inequality. Finally, by Lemma 7.7.5 and Theorem 3.8.15(iii),

|0an (m)stk — Of ()|l poery = || (7™ (an = AU I 3 poe o

< [tan = AW, Mkl ooy =2 0.

In particular,

L™~ lim / Agn (m(s))#k(s ds—/ Of(m(s))#k(s)ds,

N—oo

so we may deduce Equation (7.7.10) by taking N — oo in the corresponding identity for qn. [
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We end this section by deriving an explicit formula for A, f(m) (with u,v € M ® M°P)
in terms of MOIs. Using this formula, we shall see directly that Theorem 7.7.9(i) generalizes
[BS98, Prop. 4.3.4]. For this development, we shall view M as a W*-subalgebra of B(L*(M, 1))

via the standard representation, i.e., as acting on L?(M, 1) by left multiplication.

Proposition 7.7.12 (Explicit formula for A, f(m)). Let f € CB(R), let m € Mg, and let
(3, p, 1,92, 93) be an £>°-IPD of 12 on o(m)3. If u,v € M @ M°P, then

Ao (m) = /E Mo ((1®0) + (1 (m, 0) ® p2(m, 0) © s(m, 0)) - (u® 1)

+ (1®u) - (p1(m,0) ® pa(m,o) @ ps(m,o0)) -+ (v 1)) p(do),

where the right-hand side is a pointwise Pettis integral in M C B(L?*(M,)).

Proof. Write 1 :=1® 1 and 1 := 7®7°. If a,b € L?*(M,7) (so that ab* € L*(M, 7)), then

(Aupf(m)a,b) oy = 7(0" Ay f(m)a) = 7(ab* Ay f(m))
= n((ab* @ 1) (ImLASmmSL (20 1) 0y gy e 1]) (7.7.13)

(b 1)* (Im®1’1®m’m®1f[2]) (™ + vu™, 1](a ® 1))

I
=

I
—~

(Im®1’1®m’m®1f[2]) [uv™ + vu™ 1](a ®1),b ® 1>L2(77)

(p1(m @ 1,0)(uwv™ 4+ vu"™)pa(1 @ m,0) p3(m ® 1,0)(a ®1),b® 1) 12(,) p(do) (7.7.14)
((p1(m, o) @ 1)(uv™ + vu"™) (1 ® a(m, o)) (p3(m, o) @ 1)(a @ 1),b @ 1) 12(;) p(do)

n((ab* © 1)(e1(m, 0) @ 1) (uwv™ + vu"™)(1 @ pa(m,0))(p3(m, o) ® 1)) p(do)

I
—

— /Er(ab* MT((l ®Rv) -+ (p1(m,0) ® pa(m, o) @ p3(m,o)) « (u® 1)

L (1@ u)- (p1(m,0) ® pa(m, 0) ® p3(m,0)) - (1© 1)) pldo)  (7.7.15)
- /E (MA((180) - (1(m, 0) ® ga(m, 0) ® p3(m, o)) - (u® 1)

+ (1 ®@u) - (¢1(m,0) @ pa(m,0) @ p3(m,0)) - (v®1))a, b>L2(T) p(do).

Equation (7.7.13) holds by definition of A, ,, f(m), Equation (7.7.14) holds by definition of MOls,

and Equation (7.7.15) holds by Lemma 7.4.6 (and an elementary limiting argument). O
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Corollary 7.7.16. Retain the setting of Proposition 7.7.12. If a,b,c,d € M, then

Augb,ewdf(m /( /( / FP O, A2, A3) P (A1) a (b P™(dX2) ) d P™(d)3)

+ / / / £, A2, As) P (d) em(d P™(d)g) a) b P™(d)s).
o(m) Jo(m) Jo(m)

Note p(dX\) = 7(b P™(d)\) ¢) and v(dX\) = 7(d P"™(d\) a) are Borel complex measures on o(m).
Proof. This follows from Proposition 7.7.12, the definition of M, and Equation (7.7.4). [

Example 7.7.17 (Connection to Biane—Speicher formula). Retain the setting of Proposition
7.7.12, but suppose f € Wa(R)joc € NC?(R). Let r := |m||, and let g = [ € u(d¢) € Wa(R)

be such that g|_,,) = f||—,. Since f[2]|[_r,r]3 = gl |[=r,r3, Equation (1.3.16) gives

1 1—t
PO ) = [ [ [ (igpeeetiateiimeme uag) asas

) A , d
= / (i6)2eiMEeithat (1=t Sl ey )1 dg) dsdt, (A1, Mo, Ag) € [—r, 7],
Rx 32 d|p]

Consequently, by Proposition 7.7.12, if u,v € M ® M°P, then

Bualm) = [ Me((1e0)- (97 0" @ (ei<1“>€mj;‘|<5>)) (w®1)
+(1®u)- ((ig)%isﬁm ® eltém g ( i(1=s=t)¢m dd‘“" (5))) e 1)) |1/ (d€) ds dt

1—-t
/ / / 52 1 ® 1) ( isém ® eit&m ® ei(l—s—t)&m) . (’LL ® 1)

+ (1 @) - (€™ @ MM @ 175708 L (4 @ 1)) p(d€) ds dt.

When u = v, this is exactly Biane and Speicher’s definition of A, f(m) from [BS98].! Moreover,

since we saw in the proof of Lemma 7.7.5 that

/ / geltm @ e M (de) dt

this demonstrates directly that Theorem 7.7.9(i) does, in fact, generalize [BS98, Prop. 4.3.4].

'Beware: As is noted in [BS01], the definition of A, f(m) actually written in [BS98] is missing a factor of 2.
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Remark 7.7.18. If XY, Z are topological spaces and F': X XY — Z is a function, then F' is
argumentwise continuous if the maps F(z,:): Y — Z and F(-,y): X — Z are continuous
whenever z € X and y € Y are fixed. Now, fix m € M, p(A) € C[\], and f € CH(R).
Write B: (M®&MP)? — M for any one of the bilinear maps Q,, A..p(m), or A..f(m). Of
course, when B = A..f(m), we implicitly assume m € Msg,. When B € {Q,, A. .p(m)},
it is easy to see from the definition that B is argumentwise continuous with respect to the
weak” topologies (i.e., c-WOTs) on M®@M°P and M. This is also true when B = A..f(m),
but it is substantially harder to prove. The key is that MOIs are argumentwise o-weakly
continuous in their multilinear arguments; this is a special case of Corollary 5.6.10. In any
case, no matter the choice of B, B is argumentwise o-weakly continuous. Since M ® M°P
is o-weakly dense in M&M°P, B |( MeMer)2 extends uniquely to an argumentwise o-weakly
continuous bilinear map (M®@MPO°P)?2 — M. To this extent, B is determined by its respective
algebraic formula (Equations (7.4.5) or (7.5.4) or the formula in Corollary 7.7.16). However,
M ® M°P is not necessarily norm-dense in M®&M°P. For example, if M = L*°([0,1]), then
MEMP = L>([0,1))®L>([0,1]) = L>=([0,1]?), and it is a standard exercise to show that if
Ap ={(z,y) : 0 <z <y <1}, then 1a, € L>([0,1]2) \ L>([0, 1]) @min L>°([0,1]). In particular,
the boundedness of B|( MeMer)2 as a bilinear map does not necessarily imply that there exists a
unique bounded bilinear extension of By gaer)2 to (M&@MP°P)2. Such uniqueness is claimed
implicitly in the paragraphs after [BS98, Def. 4.3.1 & Lem. 4.3.3]. However, this luckily does not
harm Biane and Speicher’s development because we can guarantee a unique bounded bilinear

extension to (M ®min M°P)?, and as we noted in Remark 7.3.8, A2 C L2 (Ry; M ®uin MOP).

loc

7.8 Matrix stochastic calculus formulas

The purpose of this section is to motivate our main results (Theorems 7.7.9 and 7.6.6)
by studying an Itd formula for C? scalar functions of Hermitian matrix-valued It processes
(Theorem 7.8.13). To the author’s knowledge, this formula is not written elsewhere in the
literature, though related formulas are mentioned, at least for polynomials, in [Ans02]. Fix a
filtered probability space (£2,.%, (%)t>0, P), with filtration satisfying the usual conditions, to

which all processes to come are adapted.
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Fix n, N € N, and, as in §7.1, let (XfN),...,XﬁLN)) = (X1,...,X,) be an n-tuple of

independent standard (My(C)sa, (-, ) ;)-valued Brownian motions. Concretely, if € C My (C)ga

is any orthonormal basis (ONB) for the real inner product space (My(C)sa, (-,-)n), then

X;=Y birE, (7.8.1)
Ee&

where {bj g = (bjg(t))i>0: 7 € {1,...,n}, E € £} is a collection of nN? independent standard
real Brownian motions. This representation of X; will allow us to use the following “magic
formula” to identify “trace terms” in our stochastic calculus formulas. Please see [DHK13, §3.1],

the paper from which the name “magic formula” originates, for a proof.

Lemma 7.8.2 (Magic formula). If £ C My (C)ga is a (-, ) n-ONB for My (C)sa, then
Y EBE=tx(B)Iy, BeMy(C),
Eecg

where I is the N x N identity matriz.

We now make use of the # operation (Notation 1.5.9) on the algebra M (C). Importantly,
we shall view the domain of #; = # as My (C) @ My (C)°P as opposed to My (C) @ My (C). Using
basic linear algebra, one can show that #;: My (C)2*+D) — L, (My(C)) = Br(My(C)¥; My(C))
is a linear isomorphism. Also, #: My (C)@Mp(C)°? — Li(My(C)) = End(My(C)) is an algebra
homomorphism. In particular, we may identify End(Mpy(C))-valued processes U = (U(t))¢>0

with My (C) ® My (C)°P-valued processes and write, for instance,

[ v@wares) = [ veaye)
0 0

for the stochastic integral of U against the My (C)-valued semimartingale ¥ (when this makes

sense). In view of this identification and notation, we introduce N x N matrix Itd processes.

Definition 7.8.3 (Matrix It6 process). An IN X N matrix Itd process is an adapted process

M taking values in My (C) that satisfies

AM(t) = zn: Ui (t)#dX;(t) + K (t) dt (7.8.4)
i=1
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for some predictable My (C) ® My (C)°P-valued processes Uy, ...,U, and some progressively

measurable My (C)-valued process K satisfying, almost surely,

noopt t
>[I, ds+ [ g Ivds <o, tz0 (785)
=170 0
where || - ||, is the norm associated to the tensor inner product (-,-)g, on My (C) ® My (C)°P
induced by the usual Hilbert—Schmidt (Frobenius) inner product on My (C) (and My (C)°P).

Remark 7.8.6. The conditions in and preceding Inequality (7.8.5) guarantee that all the integrals

in Equation (7.8.4) make sense and that M is a continuous My (C)-valued semimartingale.
Now, we compute the quadratic covariation of two matrix Ito processes.

Definition 7.8.7 (Magic operator). Write My, : My (C)®3 — My (C) for the linear map deter-
mined by
Mu(A® B C)=Atr(B)C =tr(B)AC, A,B,C € My(C).

We call My, the magic operator. Another way to write it is
My = MMy (C) © (idMN((C) & tr ®idMN((C))7

where my, (c): My (C) @ My (C) — My (C) is the linear map induced by multiplication in the
algebra My (C).

Lemma 7.8.8. Suppose & C My(C)sa is a (-,-) n-orthonormal basis. If W € My(C)®3 and

U,V € Mny(C) @ My(C)P, then
ST Wi[U#E, V#E] = Mu((In® V) - W - (U ® Iy)),
Ee€
where - is multiplication in My (C) ® My (C)°? @ My (C); for example,
(A BC)- (D®E®F)=(AD)® (EB) ® (CF).

whenever A, B,C,D,E, F € My(C).
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Proof. It suffices to prove the formula when U = A® B,V =C® D, and W = A; ® As ® A3

are pure tensors. In this case,

> W |[U#E,V#E| =Y Wis[AEB,CED| =Y  A)AEBA;CEDA;
Ee& Ee& Ee&
=A,A tI‘(BAQC) DA3 = ./\/ltr(AlA ® BAC' ® DAg)
=Mu(IN®C®D)- (A ® A3 ® A3) - (A® B® Iy))

= Mu((In@V)-W - (U®Iy))

by Lemma 7.8.2 and the definitions of My, and the - operation. O

Theorem 7.8.9 (Quadratic covariation of matrix It6 processes). If, for each £ € {1,2}, My is an
N x N matriz It process satisfying dMy(t) = 1, Upi(t)#dX;(t) + Ko(t) dt and W = (W (t))e>0

is a continuous My (C)®3-valued process, then, almost surely,

/W (5) 4o [A M1 (5), AMo (s Z/ Ma((In © Usi(s)) - W(s) - (Unils) @ In)) ds, > 0.

Proof. Recall that bounded variation terms do not contribute to quadratic covariation, so we

may assume K7 = Ko = 0. Now, using the expression (7.8.1) for X; and the fact that

db; () dbj p(t) = 04j0E F dt,

we get
/ W (s) a0 (5), dM(s)] = 5 30 / W (5)2[Usi (5, Usy (s)#F] b s (5) dby o (s)
1,j=1 E,Fe&
—ZZ/ W (s)#2[Uri(s)#E, Uni(s)#E] ds
i=1 Fc&
-y / (Z W (s)#to[Uni(5) £, Ugi(s)#E]> ds
i=170 \ peg
=30 [ Ml © V) - W(s) - (Us) © T)) s
=1
by Lemma 7.8.8. O
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From the cases W = A® B® C, My € {X;, Iy}, and My € {X;,In}, we get Equations
(7.1.6) and (7.1.7). Let us now see how Theorem 7.8.9 gives rise to a “functional” It6 formula for

C? scalar functions of Hermitian matrix Itd processes.

Notation 7.8.10 (Noncommutative derivatives). If f € C*(R) and M € My(C)sa, then

OFF(M) = k! Z AP e P,{‘fﬂ € My (C)Bk+D),
A€a(M)k+1

We shall view 9f (M) = 9' f(M) as an element of My (C) ® My (C)°P.

The key identity (7.1.8) for the derivatives of matrix functions then rewrites to

1
OB, - OB, fary (M) = o Z OF f(M)#4[Br(1)s---» Briy], M, Bi € My(C)sa.  (7.8.11)

’ TES

We are now ready to state and prove the (matrix) functional It6 formula that motivates our

functional free It6 formula (Theorem 7.7.9).

Notation 7.8.12. If f € C*(R) and U € My (C) ® My(C)°P, then we define
Ay f(M) = Mu((Iy@U) -0 f(M) - (U@ Iy)) € My(C),

where - is multiplication in My (C) ® My (C)°? ® My (C) as usual.

Theorem 7.8.13 (Functional 1t6 formula). Let M be an N x N matriz Ité process satisfying
Equation (7.8.4), and suppose M* = M. If f € C*(R), then

AF (M () = OF(MO)#AM (D) + 5 D Ay S(M (1)) (78.14)
=1

Proof. If f € C*(R), then fy,(c) € C*(Mn(C)sa; Mn(C)), so we may apply Ito’s formula

(Equation (7.1.1)) with F' = fy, (c)- Doing so gives

df(M(t)) = dfniyc)(M(t) = D fary ) (M (2))[dM (£)] + %DQJCMN(C) (M (2))[dM (t), dM (t)]

= OF (M) #AM(1) + 50° F(M (1) 2 dM (1), AM (1)
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by Equation (7.8.11). Theorem 7.8.9 and the definition of Ay f(M) then yield

df(M(t)) = Of (M(t))#dM (t) + % D Mu((In @ Ui(t)) - 9 F(M (1)) - (Ui(t) ® In)) dt

= OF (M) #AM(E) + 5 D Ay FM(1))d,
=1

as desired. ]

Applying tr = % Tr to Equation (7.8.14) and using symmetrization arguments similar
to those from the proof of Lemma 7.6.13 yields the following “traced” formula that motivates
Theorem 7.6.6. We leave the details to the interested reader. In the statement below, if
U=3"A4;®B; € My(C) ® My (C)°, then UM := 5% B, ® 4; € My (C) @ My (C)°P. Also,

we write tr°P for tr considered as a function My (C)°P — C.

Corollary 7.8.15 (Traced functional It6 formula). Let M be an N x N matriz Ité process
satisfying Equation (7.8.4), and suppose M* = M. If f € C*(R), then

dtr(f(M (1)) = tr (f/(M(¢t)dM(t)) + % Z(tr@trOp)(Uiﬂip(t) Af' (M (1)) Ui(t)) dt,

=1

where UOf' (M) U; is a product in the algebra My (C) @ My(C)°P. Under sufficient additional

boundedness conditions (e.g., U;, K, and M are all uniformly bounded), we also have

24
=1

dry (F(M(2))) = <TN (f'(M(2) K(1)) + 1Z(TN ® ) (U (t) Of (M(t)) Ui@))) di

where Ty = Ep o tr and T](\),p = [Ep o trP.
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Appendix A

Auxiliary measure theory

In this appendix, we prove Pettis’s measurability theorem and provide some background

on vector measures and the Carathéodory—Hahn—Kluvének extension theorem.

Standing assumptions. Fix a choice of base field F € {R,C}. Unless otherwise specified, all
vector spaces are [F-vector spaces, and all linear maps are F-linear. Throughout, V' is a Hausdorff

topological vector space. In §A.2, € is a set.

A.1 Proof of Pettis’s measurability theorem

The goal of this section is to prove Theorem 1.1.17.

Lemma A.1.1. If a is a continuous seminorm on V and S is a separable subset of V', then

there exists a countable family C C V* such that a(v) = sup{|¢(v)| : £ € C} whenever v € S.

Proof. Let Sy be a countable, dense subset of S. By the Hahn—Banach theorem, if s € Sy, then
there exists a linear functional ¢5: V' — F such that ¢5(s) = a(s) and |[¢s(v)| < a(v) whenever
v € V. Of course, {5 € V* because « is continuous. We claim that C := {{s : s € Sy} does the
trick. Indeed, define S(v) = sup{|¢(v)|: £ € C} = sup{|¢s(v)| : s € Sp} for all v € V. By our
choice of C, S(v) < a(v) whenever v € V. For the reverse inequality, observe that if s € Sp
and v € V, then £5(v) = £s(s) + ls(v — s) = a(s) + €s(v — ), and |[€s(v — s)| < a(v — s). Thus,
a) <a(s)+alv—:s) < [ls(v)]+2a(v—3) < Sw)+2a(v—s). Since Sy is dense in S and
« is continuous, if v € S and € > 0, then there exists an s € Sy such that 2« (v — s) < e. This

yields a(v) < S(v) + . Taking € \, 0 completes the proof. O
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Lemma A.1.2. If V is locally conver and metrizable and S C V' is separable, then

Bg=o(lls: e V™).

Proof. If S C V and ¢ € V*, then {|g: S — F is continuous and therefore Borel measurable.
Thus, o(¢|g : £ € V*) C Bg. For the reverse containment, recall that, since V' is locally convex

and metrizable, there exists a sequence (ay)ken of continuous seminorms on V' such that

[e.9]

d(v,w) = ; 2k(1aj(;jksz_) )’ (v,w) € V2 (A.1.3)

is a metric that induces the topology of V. Now, let a: V' — R, be any continuous seminorm.
If § C V is separable, then span .S is separable as well, so Lemma A.1.1 provides a countable

family C C V* such that
a(v) =sup{|l(v)|: £ €C}, v €Espans.
Consequently, if w € S and € > 0, then
{veS:av—w)<el={veS:sup{{f(v-—w)|:LeC}t<e}eoll|s:Le V")
because C is countable. By definition of d, it follows that
B (w)={veS:dv,w)<e}eco(lls:Le V™).

Since (5, d|sxs) is a separable metric space, the open balls {B:(w) : w € S, € > 0} generate Bs

as a o-algebra, so we get Bg C o({|g : £ € V*), as desired. O

Lemma A.1.4. If (X,dx) is a separable pseudometric space, then there exists a sequence (Sp)neN

of Borel measurable simple maps X — X converging pointwise to idx.

Proof. Let (z,,)nen be a dense sequence in X. If n € N, then we define
kn(z) =min{k € {1,...,n} : dx(z,zx) = min {dx(z,2;) ;i € {1,...,n}}}, =z€X.
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Note that k,: X — {1,...,n} is Borel measurable. Also, define L,: {1,...,n} — X by i — x;.

(Of course, L,, is measurable with respect to any o-algebra on X.) We claim that
sn(7) = Lyp(kn(7)) = Tp,(2), 7 € X,

does the job. Indeed, s,, = L, ok, is Borel measurable, and s, (X) C {z1,...,2,}. Thus, s, is a
Borel simple map. Also, since {x,, : n € N} is dense in X, if ¢ > 0 and x € X, then there exists

a k € N such that dx(x,zy) < €. By definition of k,(x), if n > k, then
dx (z, sp(x)) = dx (2, Ty, () = min {dx (z,2;) i € {1,...,n}} <dx(z,2) <e.

Thus, (sp)nen converges pointwise to idx. O
This allows us to prove the first part of Theorem 1.1.17.

Proof of Theorem 1.1.17(i). Suppose F':  — V is strongly measurable. We observed after
Definition 1.1.8 that F' is Baire measurable. Since V' is metrizable, B{, = By. Thus, F' is Borel
measurable. Now, if (F,),cn is a sequence of simple maps 2 — V converging pointwise to F,
then F(Q) C U, ey Fn() =: S. Since F,(R) is finite for all n € N, S is separable. Since S is
separable and metrizable, any subset of S is separable. Thus, F'(Q2) is separable.

Next, choose a metric d on V that induces the topology of V. If F': Q — V is weakly
measurable and S := F(2) C V is separable, then, by Lemma A.1.2, the map F: Q — S is
(%, Bg)-measurable. Now, apply Lemma A.1.4 to the separable metric space (X, dx) = (S, d|sxs)
to get a sequence (s,)nen of Borel simple maps S — S converging pointwise to idg. Then
(Fi)nen == (ts 0 $p o F)pen is a sequence of simple maps € — V converging pointwise to F.

(Here, tg: S < V is the inclusion.) Thus, F' is strongly measurable. O
For the second part, we need to refine Lemma A.1.4 when X is a vector space and dy is
given by a seminorm on X.

Lemma A.1.5. If S CV is a separable linear subspace and « is a continuous seminorm on V,
then there exists a sequence (Sy)nen of Borel simple maps S — S such that sup, ey a(sn(v)) < o(v)

and limy, o (s (v) —v) = 0 whenever v € S.
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Proof. Let Spp be a countable, dense subset of S, and write Sy for the F N (Q + iQ)-span of
So. Then Sy is also a countable, dense subset of S. Let (v,)nen be an enumeration of Sy with

v1 =0. If n € Nand v € S, then we define

K,(v)={ke{l,....,n}: a(v) < alv)} and

kn(v) == min{k € K, (v) : a(v —vx) = min{a(v —v;) : i € K, (v)}}.

(Note that 1 € K,,(v) always.) Since « is continuous, k,: S — {1,...,n} is Borel measurable.

Also, define L,: {1,...,n} — S by i — v;. We claim that
sn(v) = Ln(kn(v)) = v, 0y, v ES,

does the job. Indeed, s, = L,, o ky, is Borel measurable, and s,(S) C {v1,...,v,}. Thus, s, is a
Borel simple map. Also, if v € S, then, by definition of K, (v), a(sn(v)) = a (v, @) < a(v).

It remains to show that (s,)nen converges pointwise to idg. To this end, fix v € S and
e > 0. If a(v) = 0, then k,(v) = 1, and a(s,(v) —v) = 0 for all n € N. Now, assume that

a(v) > 0, and define

_aly e
5‘_(1(1))—1—2 142

a(v)

> 0.

Since Sy is dense in S, there exists a w € Sp such that a(v—w) < §. Now, let r € Q be such that

) 20
1+w§r<1+m. (A.1.6)

By definition of Sy, 71w € Sy, so there exists an m € N such that 7w = v,,. Note that

a(vy) = a(:)) < a(vzﬂ—f— d < a(v) and (A.1.7)
a(v —vy) < alv—w)+ r-1 afw) <5+ 20 (A.1.8)

SO0t s = F

by Inequality (A.1.6) and our choices of r and 4. Crucially, Inequality (A.1.7) says that if n > m,
then m € K,(v). Consequently, if n > m, then a(s,(v) —v) = a(vg, @) —v) < a(vm —v) < & by

definition of k, and Inequality (A.1.8). This completes the proof. O
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Proof of Theorem 1.1.17(ii). We observed after Definition 1.1.8 that if F':  — V is strongly
integrable and « is a continuous seminorm on V, then [, a(F)du < co.

Let F':  — V be a strongly measurable map such that fQ a(F)du < oo whenever « is a
continuous seminorm on V. To show F' is strongly integrable, we first reduce to the o-finite case.
To this end, let (a)ren be as in the proof of Lemma A.1.2; without loss of generality, we assume
also that oy < o1 whenever k € N. Since [, o (F) dp < 00, the set {w € Q: oy (F(w)) > 0}
is o-finite for p. Therefore, the set 0y := {w € Q : F(w) # 0} = Upenlw € @ ap(F(w)) > 0} is

also o-finite for p. Now, suppose (F 0 is a sequence of u|q,-integrable simple maps Qp — V

") nen
such that F? — F|q, pointwise as n — co and fQO a(FT? — F) dp — 0 as n — oo whenever «
is a continuous seminorm on V. For n € N, define F,: Q — V by Fy|q\q, = 0 = Flg\q, and
F.la, = Fg. Then F,: Q — V is a p-integrable simple map, F,, — F' pointwise as n — oo, and
Joa(F, — F)du = fQO a(F,? — F) dp — 0 as m — oo whenever « is a continuous seminorm on
V. Therefore, we may and do assume p is o-finite, though we shall not use this assumption until
the last paragraph of the proof.

Next, since S = span F'(Q2) is separable, Lemma A.1.5 says that if £ € N, then there

exists a sequence (s’“) N of Borel simple maps S — S such that

n/n

sup oy, (sfl(v)) < oag(v) and lim ag (sﬁ(v) —v) =0, wveS. (A.1.9)

neN n—oQ
By Lemma A.1.2 and the weak measurability of F', G¥ := s¥ o F': Q0 — S is (.#, Bg)-measurable

and simple. By Relation (A.1.9) and the dominated convergence theorem,

lim | ax(Gh—F)du=0.

n—o0 Q

Consequently, if n € N, then there exists an IN,, € N such that

S |-

/ o (G, — F)dp <
Q
Since (a)ken is increasing, this gives

lim [ ap(GY, —F)dp=0, keN.

n—oo Q
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Since L'-convergence implies convergence in measure, we get that if & € N, then oy, (G’]{,n —-F ) —0
in measure as n — oo. Consequently, if d is as in Equation (A.1.3), then d(GR,n,F) — 0 in

measure as n — o0o. Therefore, there is a subsequence

(Gk)ren = <G7Vk”k ) keN

such that d(Gg, F') — 0 almost everywhere, i.e., G — F almost everywhere, as k — oco. Let
N € Z be such that pu(N) =0 and Gi(w) = F(w) as k — oo whenever w € Qg := Q\ N.

Since the map F|y: N — V is still strongly measurable, there exists a sequence (F,?O)n N
of simple maps N — V converging pointwise to F|y. If, for n € N, we define F0: Q — V by
Flla, == Gnla, and F|n = F° then F0: Q — V is a simple map, and F? — F pointwise
(everywhere) as n — oo. Since u(N) = 0, we still have [, ax(Fp —F) dp = [ o(Gn—F) dp — 0
as n — oo whenever k € N.

Finally, let (€2,)nen be a sequence in .% such that |,y 2, = ©Q and p(€2,) < oo whenever
n € N. Then (F,) = (IQan)neN is a sequence of p-integrable simple maps 2 — V such that
F,, — F pointwise as n — oo and, by the dominated convergence theorem,

lim | ap(F,—F)dp=0, keN.

n—o0 Q

Since {ay : k € N} generates the topology of V, this completes the proof. ]
A slight variation of the proof of Lemma A.1.5 yields another interesting characterization
of strong (measurability and) integrability.

Lemma A.1.10. If S CV is a separable linear subspace and « is a continuous seminorm on V,

then there exists a sequence (sp)nen of Borel o-simple maps S — S such that

sup a(sy) < alg and lim sup a(s,(v) —v) = 0.
neN n—=o0 S

Sketch of proof. Let Spg be a countable, dense subset of S, and write Sy for the F N (Q + iQ)-
span of Sp. Then Sy is also a countable, dense subset of S. Let (vy,)nen be an enumeration of Sy

with v; = 0. Also, for e > 0 and n € N, define B == {v € S: a(v—wv,) <&, a(v,) < a(v)} € Bs.
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If A% = B3 \UjZ, B € Bs, then ASN A, = ) whenever n # m, and |, .y A5 = S. Consequently,
if &, := 1/n and

o0
sn(v) = Z Lyn(v)vp, v ES,
k=1

then the sequence (s;)nen has the desired properties. ]

Theorem A.1.11. Let (Q,.%,u) be a measure space, and suppose V is locally convex and
metrizable. A map F: Q — V is strongly integrable if and only if there exists a sequence (Fy,)nen
of o-simple maps 0 — V such that for all continuous seminorms o« on V, fQoz(Fn) dp < o0
whenever n is large enough, and

lim sup a(F)(w) — F(w)) = lim [ a(F, —F)du=0.

n—oo OJEQ n—oo 9]

Sketch of proof. The “if” direction follows from Theorem 1.1.17. For the “only if” direction,
let (ax)ken be as in the proof of Lemma A.1.2 with (o )ren increasing. If F': Q — V is strongly
integrable, then S := span F'(Q) is separable. By Lemma A.1.10, if £ € N, then there exists a

sequence (sﬁ)n N of Borel o-simple maps S — S such that

sup ak(sﬁ) < agls and nh_}rgo sup ay (sﬁ(v) —v) =0. (A.1.12)
neN veES

The map G = 1505F o F: Q — V is o-simple. By Relation (A.1.12) and the dominated

convergence theorem, fQ ag (Gﬁ) dp < oo, and

lim sup oy (Gﬁ(w) —Fw))=0= lim [ oy (Gﬁ — F)du.

Consequently, if n € N, then there exists an N,, € N such that

1
n

max { sup o, (G, (w) — F(w)), /Qan (G}, (w) — F(w)) u(dw)} <

we
The sequence (F),)pen = (G;{,n)n N has the desired properties. O

Note that when p = 0, strong p-integrability is precisely strong measurability.
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A.2 Vector measures and their extension

In this section, we review some terminology and notation from vector measure theory

and state some results on the extension of vector measures that are useful in §5.10.

Definition A.2.1 (Vector-valued set functions). Suppose & C 29 satisfies (), € &, and let

(Gpn)nen be a disjoint sequence in &. A function p: & — V' is
(i) finitely additive if u( ], Gi) = Y1 | w(G;) whenever |JI, G; € &,

(ii) (weakly) countably additive if 1(U,cy Gn) = > oy #(Gy) in the (weak) topology of

V whenever |J, .y Gn € &,
(iii) strongly additive if ) 7, 1(G,) always exists in the topology of V/,
(iv) a finitely additive vector measure if & is an algebra and p is finitely additive, and

(v) a vector measure if & is a o-algebra and p is countably additive.

Of course, if u: & — V is a (finitely additive) vector measure, then ¢ o y is a (finitely

additive) complex measure for all ¢ € V*.

Definition A.2.2 (Semivariation). If &/ C 29 is an algebra, V is a normed vector space, and

w: o/ — V is a finitely additive vector measure, then
1l(G) = sup{|€o u[(G) : L€ V", [[{]ly+ <1} €[0,00], G €,

and ||p]|svar = ||g||(2). The function ||u|| is the semivariation of p. If ||it]|svar < 00, then p has
bounded semivariation. If .7 is a o-algebra, then M (£, .%;V) is the set of V-valued vector

measures on (£2,.%) of bounded semivariation.
Here now are some results about extending vector measures.

Lemma A.2.3 (Extending to an algebra). Let & C 29 be an elementary family (in the sense
of [Fol99, §1.2]). If upo: & — V is finitely (respectively, (weakly) countably) additive, then poo
extends uniquely to a finitely (respectively, (weakly) countably) additive function pg: alg(&) — V,

where alg(&) C 2 is the algebra generated by &.
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Sketch of proof. Since & is an elementary family, alg(&’) is the set of finite disjoint unions of
elements of &. Consequently, if G1,...,Gy € & are disjoint and G = |J_; G; € alg(&), then
we must take £10(G) = Y ;" | poo(Gi). It then follows from standard arguments that pg is well
defined and finitely (respectively, (weakly) countably) additive on alg(&’) because pqg is finitely

(respectively, (weakly) countably) additive on &. O

Theorem A.2.4 (Carathéodory—Hahn-Kluvanek extension theorem [DU77, Thm. 1.5.2]). Let
' C 29 be an algebra, let V be a Banach space, and let uy: o/ — V be a weakly countably
additive function of bounded semivariation. If ug is strongly additive, then pg extends uniquely

to a vector measure p: o(f) =V, and ||p]|svar = ||120]|svar -

It can be difficult to verify that a given finitely additive vector measure of bounded
semivariation is strongly additive. Luckily, there is a full characterization of the situation in

which one never has to do so.

Theorem A.2.5 (Diestel-Faires theorem [DU77, Thm. 1.4.2]). Define

n—oo

co = {(an)neN € (*°(N;F) : lim a, = O},

and let V' be a Banach space. The following are equivalent:

(i) V' contains a copy of co (i.e., there is a linear map T: co — V and constants €,C > 0

such that e||alle, < [|[Tallv < Cllalle, for all a € ¢p); and

(ii) there exists a set S, an algebra o/ C 2°, and a finitely additive vector measure py: o — V.

of bounded semivariation that is not strongly additive.

Corollary A.2.6. If V is a weakly sequentially complete Banach space, then every finitely

additive V -valued vector measure of bounded semivariation is strongly additive.

Sketch of proof. By the Diestel-Faires theorem, it suffices to show that V' cannot contain a
copy of ¢g. By the Hahn—Banach theorem and Mazur’s theorem, any closed linear subspace of V
is weakly sequentially complete, so it suffices to show that ¢y is not weakly sequentially complete.
To this end, let e, € ¢y be the n' standard basis vector, and define s,, := Z?Zl e; € cg. It is an

easy exercise to show that (s,)nen is weakly Cauchy but not weakly convergent. O
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By combining Theorem A.2.4 and Corollary A.2.6, we obtain the following result, which

is the form of the Carathéodory—Hahn—Kluvanek theorem used in §5.10.

Theorem A.2.7. Let o7 C 29 be an algebra, let V be a Banach space, and let jg: o/ — V be a
weakly countably additive function of bounded semivariation. If V is weakly sequentially complete,

then po extends uniquely to a vector measure p: o(</) =V, and ||p]|svar = ||40||svar-
In particular, this result holds for reflexive Banach spaces.
Proposition A.2.8. Reflerive Banach spaces are weakly sequentially complete.

Proof. Let (v,)nen be a weakly Cauchy sequence in V', and write ev: V' — V** for the natural
embedding. Since F is complete, if £ € V*, then there exists n(¢) € I such that ¢(v,) — n(¢{) as
n — oo. Clearly, n: V* — F is linear. By the principle of uniform boundedness, 7 is bounded.

Since V is reflexive, n = ev(v) for some v € V, and by definition, v,, — v weakly as n — co. [
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Appendix B

Proof of Peller’s theorem

In this appendix, we provide a full proof of Theorem 6.6.9. We shall use basic facts about
tempered distributions and their Fourier transforms freely; please see [H6r83, Rud91] for the
relevant material. In particular, we recall that, as a consequence of the Paley—Wiener theorem, if

f e (R™) is such that supp fiS compact, then f is a smooth function.
B.1 The key decomposition

First, we set some notation that we shall use to write an expression (Theorem B.1.3

below) that is key to the endeavor of proving Theorem 6.6.9.

Notation B.1.1. We define two families (7y)uer, and (fu)uecr, of tempered distributions on R

by requiring that ro == dg, po =0, and, for © > 0 and £ € R,

Pul€) = Tio.u(1€]) + E“,l(u,oo)(m),

ey €
fu(§) ]

In other words, u, = j. T4 = 0g — Ty Tor all u > 0.
Here are important properties of the families (74)uer, and (pu)uer, -

Proposition B.1.2. Let f: R — C be a Borel measurable function. Write f * p: Ry xR — C

for the map (u,x) — (f * py)(x) = f(x) — (f *ry)(x) when it makes sense.

(i) If u > 0, then 7, € L*(R) N L3(R). Specifically, r, = uri(u-), ||r1|z2 = V271, and

Ir1llpr < 2 < 00, so that ||ryllr2 = V2(mu)~t and ||y < 2.
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(ii) If f is bounded, then f x p is bounded and Borel measurable with

1 * pllece ey xr) < N flleo (X + llrallzr) < 3l[flle (-

(And we can replace the £’s with L’s.) If, in addition, f € C(R), then fxu € C((0,00)xR).
(iii) If f € LY(R), then ||f * pullpr < | flz2 (X4 171l p2) < 3| £l for all w > 0 as well.

(iv) Let o > 0. If f is bounded and Suppfg [0,0], then f * u, = 0 whenever u > o. In

particular, (f * p.)(z) € C.(Ry) for all x € R.

Proof. We take each item in turn but postpone the proof of (iv) until just after Lemma B.1.7.

(i) First, note that ||71]|z2 = 2 by an easy calculation. Therefore, by Plancherel’s theorem,
1]z = 27) Y271 2 = V2r— L. Next, fix u > 0 and £ € R. Notice that 7, (&) = 71(&/u), from
which it follows, by Fourier inversion on L?, that r, = F~1(71(-/u)) = uri(u-). In particular,
Irullzs = w212, and [lrallzs = iz, as claimed.
It now suffices to prove ||r1]|z1 < 2. To this end, note f_ll Iri(z)|dz < V2[|ry| g2 = 27~ 1/2

by the previous paragraph. Now, for almost every =z € R,

') ) [e'e) 2 )
() 1/ FL(E) e dg = — / P(6) L e ge

T o) 222 | de2

= [ @ eae= oty [ 2o

R S 1
oma? | ., d? 2m2? Jigon 1€

using integration by parts, where all of the above are improper Riemann integrals. (Since
r1 = L2-limp_ 0o % f‘§|<R?1 (£)e’€ d¢, we should really take a particular sequence Ry — oo as

k — oo for the first couple of integrals.) Now, notice

9 .
ix€
—=edE
‘/|§>1 €13

2 [*1 2
/ ]r1($)|dx§/ —dr=—.
|z|>1 T2 X ™

We finally conclude that ||r1 ;1 < 2712 + 2771 < 2, as desired.

o ]
<4/1 Gde=2

It follows that
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(ii) Fix u > 0 and = € R. Then, recalling r, = uri(u-),

fra(e) = /R f(@— ) raly) dy = /R o —u ') m(t) dt.

The measurability of f * u follows from this identity and the fact that f* p(0,-) = 0. The bounds
are also immediate from this identity (because f % pu = f — f *r.) and the first part. Finally, the
joint continuity of (0,00) x R 3 (u,x) — f *ry(z) € R follows from the continuity of f and the
dominated convergence theorem (which applies because f is bounded and r; € L*(R)).

(iii) This is immediate from Young’s convolution inequality (when u > 0), the fact that

f*po =0 (when u = 0), and the first part. O

In order to bound integral projective tensor norms, one must exhibit expressions for the
functions in question as integrals that “separate variables” in a particular way. Here is one such

expression, which we take the rest of the section to prove.

Theorem B.1.3. Fix o0 > 0. If f € (*°(R, Br) satisfies suppfg [0,0], then

k+1 -1 ok
FE) = sz/k ( H e”\m“m> (f * ) (Ng) e_“\j“|< H e“\m“m—1> dua (B.1.4)
j=17RL \m=1 m=j+1

for all k € N and X € R¥1, where |i| := an:l U and empty products are defined to be 1.

Remark B.1.5. Equation (B.1.4) was written in [Pel85] and [Pel06] in the k = 1 and k = 2
cases, respectively, in a slightly different form. The use of p, was inspired by [Pell6], in which

Equation (B.1.4) is written exactly as stated in the cases k € {1,2}.

For example,

FUAL ) = 73/R ((f * ) (Aq) e P12t P (f e ) (Ag) e 2%) du and (B.1.6)

FAO, A2, A3) = — /

g ((f ” /Lu+v)()\1) e—i)q(u-i—’u)ei)\guei)\gv + eiz\lu(f " ,Udu+v)()\2) e—’i)xg(u+v)ei>\3’u

+

NI (F x 1) () ) dudy
for all A1, Ao, A3 € R.
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Notice that Proposition B.1.2 allows us to make sense of Equation (B.1.4) in the first
place. By Proposition B.1.2(iv), the integrand in Equation (B.1.4) is bounded, continuous, and
vanishes whenever || > o. Therefore, the integral above is really over {@ € R% : |i| < o}, which
has finite measure. This, together with the continuity part of Proposition B.1.2(ii) and the
dominated convergence theorem, also implies the right-hand side of (B.1.4) is continuous in A.

Equation (B.1.4) is proven, inspired by the sketch in [Pel06], in the following steps.
Step 1. Use an approximation procedure (Lemma B.1.7) to reduce to when f, ]?E L'(R).
Step 2. Use an inductive argument to reduce to the k = 1 case, i.e., Equation (B.1.6).
Step 3. Prove Equation (B.1.6) assuming f, fe L'(R).

The approximation procedure in Step 1 will also help us to prove Proposition B.1.2(iv).

Lemma B.1.7. For the remainder of this section, fix o > 0 and a function f € {*°(R, Br) with

supp f C [0,0]. Let 0 < w € C=(R) be such that suppw C [0,1] and Jgw(§)d€ = 2. Define
wp =nw(n) and fn =w,f, mneN.

Then
@) N falless®y < [1fllewew) and fr — f pointwise as n — oo,
(i) fn € LYR) N L2(R),
(i) f, € S(R) C L*(R) and supp fn C [0,0 + 1/n] C [0,0 + 1], and

(iv) fn*p — f*p boundedly on Ry x R as n — oo.

Proof. We take each item in turn.

(i) Notice that if z € R, then

() = nw(n) (@) = B(n~z) 222 5(0) = % /Rw(g) de = 1.

Gn(2)] = | [pw(@) e™ " de| < & [pw(€)dé =1, e, [|Gnllgom) < 1. This

takes care of the first part.

Also, since w > 0,
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(ii) OF course, T, € -#(R) € LL(R), so that || fallpr < ||z &nllpr < .

(iii) By the basic properties of the Fourier transform on tempered distributions, we have

~

fn=F(@nf) = wp * f Since fhas compact support, wy, * fe Z(R), and

SUpp f,, = supp (wn * ﬂ C suppwn + supp f C [O,nfl] +0,0] = [0,0 + nil},

as claimed.
(iv) By Proposition B.1.2 and the first part, || fn * il oo (m x®) < 3| fallece®) < 3/ e m)
for all n € N. Now, fix u > 0 and € R. (The case u = 0 is obvious.) By the proof of Proposition

B.1.2(ii) and the dominated convergence theorem,
(fn # ) () = /an(:c —uty) ri(y) dy S /Rf(x —uly)ri(y) dy = (f * ra)(@).

Therefore, (fy, * ) () = frn(x) — (fr *x70) () = f(2) = (f*10)(2) = (f * o) (x) as n — oo, O
Proof of Proposition B.1.2(iv). Suppose first that f, fe L'(R). Recall from Proposition
B.1.2(iii) that ||f * gz < 3| fl|L2, so that f* u, € LY(R). Also,

F(f *pa) = J 7w € L'(R).

But supp ji, = (—00, —u] U [u, 00) whenever u > 0, and suppfg [0,0]. Therefore, if u > o, then

F(f * 1) = 0. Therefore, by the Fourier inversion theorem,
oo =F N F(f*pa)) =0

as well. (Recall f * u,, € C(R), so this equality is everywhere.)

Now, for general f as in Proposition B.1.2(iv), let (f,)nen be as in Lemma B.1.7. Since
I, fn € LY(R) and supp ﬁl C [0,0 +1/n], we know from the previous paragraph that f;, * u, =0
whenever © > o + 1/n. Now, suppose u > o. Then, choosing n; € N such that u > o 4+ 1/n
for all n > ny, we know that f, * u, = 0 whenever n > nj. Since f, x u — f % u pointwise as

n — 0o, we conclude that f x u, = 0 as well. O

We now begin the proof of Theorem B.1.3 in earnest.
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Notation B.1.8. If j € {1,...,k+ 1}, then

Jj—1 k+1
5£7j()\,ﬁ) = < H ei,\mum> (f *M|ﬁ|)()\j) 6—i>xj|ﬁ|< H emmum1>’ = Rk—o—l’ ic Ri-

Step 1. Suppose Equation (B.1.4) holds when we also assume f, fe L'(R). For arbitrary f,
let (fn)nen be as in Lemma B.1.7. Since f,, fn € LY(R), we know that Equation (B.1.4) holds
for f, in place of f. We must take n — oo to obtain Equation (B.1.4) for f. To this end,
first let A1,..., A\py1 € R be distinct, and write X == (A1,..., \py1) € R¥! as usual. Then,
by the recursive definition of the k" divided difference, f%k]()\) — fH(X\) as n — oo because
fn — f pointwise as n — oo. Second, 6£”] — 6£7j boundedly on RF*1 x ]Ri as n — oo by
Lemma B.1.7(iv). Third, by Proposition B.1.2(iv), the integral fRi 6{::}()\, @) di is really only
over {ii € R¥ : |if| <o+ 1} for all n € N and j € {1,...,k + 1}. Therefore, by the assumption

and the dominated convergence theorem,

k+1 k+1
B = z”“Z/Rk el (A, @) dit 2% ikZ/Rk el (Ai)did, AeRML
J=1""+ j=1""%

We conclude that
k+1

oy =+S /R el i aa
j=1'R3

whenever \i,..., \p41 € R are distinct. Since {A € R¥1 : \;, ..., \p41 € R are distinct} is

dense in R¥*! and both sides of the above are continuous in A, we are done. O

Next comes Step 2, which is a bit painful and may be skipped on a first read. We warm

up with two easy lemmas.
Lemma B.1.9. If u >0 and h(\) = e, then hl (A1, Xo) =i [}' eM1ver2 (=) du.

Proof. The result is obvious if u = 0, so we assume u > 0. By Proposition 1.3.3(iii),

1 1 u
A (A, Ag) = / W (th + (1 —t)ho)dt =i / ue!M+=r)u qp — / MYtz (u=v) gy,
0 0 0

where we substituted v = tu. UJ
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Lemma B.1.10. For the remainder of this section, assume that f, fE LY(R) as well. If u >0

and g(A) = (f * pu)(X) e, then

(g% 1) (N) = (f * puto) (V) e_“‘“, v>0, AeR.

~

Proof. Note that g(§) = F(f * pu)(§ +u) = f(§ 4+ u) fu(§ + u), so that

~

F (g% 1) (§) = G(&) Bo(§) = f(&§ +w) ru(§ + u) 1 (§)

But
— — E4u— & —
Pl + ) (€)= o) (€ 1) S Lo (€)
= g;zl(u+v,oo)(§ +u) = m(§ + u),
so that
F(g % ) (€) = F&+u) ruro(§ + 1) = F((f * pruso) e7) ()
The result follows from the Fourier inversion theorem. ]

We are now ready for Step 2.

Step 2. Assume for some ¢ € N that Equation (B.1.4) holds whenever k € {1,...,¢} (and all

relevant f). Suppose k € {1,...,/¢}, and fix distinct A1,..., A\xr2 € R. Then

f[k-‘rl]()\l )\k+2> _ f[k]()\17...7)\k+1)_f[k]()\la...,)\k,)\k+2)

Akl — Akg2
-k %/ Eg’j()\17 ctty Ak+17ﬂ‘) - €£’j<)\17 sty Aka Ak+27 ﬁ) d_,
=1 U
Uil Ak41 = Akg2
We now examine each term in the above sum. Define
e Nett, @) — 1 (A Ny Moo, @
5 (_,) 5]€7j( 1y k+17u) 5k7j( 1+ Ak k-}—Qau)
(1) =
! Ak+1 — Akg2

for ease of notation.
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First, suppose 1 < j < k + 1. Then, by definition of the ¢ ;’s and Lemma B.1.9,

J—1 k iIAgr1U i u
+1UE __ k+2UE
() At N —iA @ iIAmtm_1 © €
6;(u) = H e (f * ) (Aj) e shl H € Aer1 — Apra
me1 m=j+1 + +
s TAmUm N =AU IAmUm—1 I\ v _IA Up—v
—z/ H e (f * ma)(Aj) e a1l H e LMtV et (Uh—v)
0 m=1 m=j+1

Now, this allows us to write

J

We now manipulate this integral expression. Changing the order of integration yields

Uk
Z/ / cdvdil = Z/ / 1{uk2v}(ﬁ) - du dv.
Rk Jo Ry JRE

Changing variables by (uy,...,uk,v) — (u1,...,up_1,0,up —v) =: (V1,...,Vps1) = Vv yields

0;(0) du = z/ / ' H eiAmtm (f*ma)(A) e~ Al H eiAmUm—1 iXe 410 iA 42 (U =) 4y 7.
Ri 0 m=1

k
+ m=j+1

z/ / L, >0y (1) g(@, v) didv = z/ g(v1, ..., Vp—1, Uk + Vgt1, V) AV
Ry JRE

k+1
RY
k+1

whenever g: RT™ — C is a nice enough function. (In particular, this change of variables converts

|| to |v|.) This yields

i-1 K
5](,&») dit = Z/ H ez)\mvm(f % M\v|>()‘]) eszj|v| H el)\mvm_l el)\k+1vkel)\k+2vk+1 dv
K k41
RY R m=1 m=j+1
j—1 k+2
- Z/ oo I e (=) e T ememray
Ry m=1 m=j+1
=1 ef (A Ait2,V)dv
- k1 41,5\ ey Ak+2) )
+

which is one of the terms we wanted to see.

Second, for the j = k + 1 term, notice that

k
Sk (@) = JT e (f g e N, Aa)-

m=1
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But the function

g = (f = )N e A5 N eR,

satisfies g,g € L'(R) N L>®(R) and suppg C [0,0]. Consequently, by assumption and Lemma
B.1.10, if |@] > 0, then

M Ar 1, Me2) Z/ (g % pio) (Npp1) € Mer1VeM2Y (g5 1) (Ajga) e*i)‘kuveikkﬂv) dv

R
- Z/ (f * o) A1) € —iX et ([l+0) gidet2v
R4
+ (f * “|ﬁ|+v)(>\k+2) e—ikm—z(\il-&-v)ei)\kﬂy) dv.
Therefore, renaming (us, ..., u,v) to (vi,...,vs1) =V,

m=1

k
/ Sy (@) dii = Z/ / ( H eiAmum (f N|ﬁ|+v)(>\k+1) e~ M1 ([U]+v) gidkgav
RE JR,

k
+ H eiAmim (f * o) Aes2) e¢>\k+2(|ﬁ|+v)ei/\k+1v> dv di

m=1
k
B Z/ ( LT e (f % i) ) e PeriMeisatin
Rk+l
+ m=1
k+1
+ H MmO (f s i) (Aer2) 61/\’“”"’) dv
m=1

_ i/ﬂwl (egﬂkﬂ(h, e N2 V) el e (s ,Ak+2,v)) dv,

+

which are the remaining terms we needed.

Finally, putting it all together, we have

k41 k42
[k+1] _ ik dif = k1
JETHA L o Apg2) = 4 Z di =1 Z/Hl €1 (ALs oo, A2, v) dv
whenever A1,..., A\g1o € R are distinct. Since both sides of the equation above are continuous in
(A, ..., Aga2), this completes the proof. ]

We are left with Step 3 (the easiest step), i.e., the base case of the induction in Step 2.
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Step 3. First, we claim that

FUAL ) = — f(u +v) MUV dydu, A, A €R.

2 Ri
(The integral above makes sense because fA'is compactly supported and belongs to L'(R)NL>®(R).)

Indeed, by the Fourier inversion theorem, the continuity of f, and the fact that supp fg Ry,

1

2 R eixe
o R+f(§)e d¢, MeR.

) =

Consequently, if A1, Ao € R are distinct, then
1 . eME Z)\Qf
(1] A do) = — . = / / RN Z>\2 d d
FROLA2) = o f(f) N = Ja, fle vd§

/ f z)qv 2/\2 £—v) d§ dv = — f(u + U) IV Mgu du d’U
]R+ v 2 RQ

by Lemma B.1.9 and the change of variable u = £ — v. Swapping the roles of v and v in the
above integral gives the desired expression. As usual, the continuity of both sides in (A1, A2)
allows us to pass from distinct Ay, Ao to arbitrary Aq, Ao.

Therefore, our goal is to show that

’L/ ((f % Mu)()\l) e—z‘)quei)\gu + (f * Nu)()\Q) e—ikzuei)qu) du = L ]?(u + U) ei)quei)\gv du dv
R

27T R2

for all A1, Ay € R. To this end, notice that for all u > 0, the function g(\) = (f * uy)(A) e

satisfies g,g € L'(R) N L*°(R) and g € C(R). Also, if u > 0, then

~ ~

9(&) = f(€+u) pu(§ +u) = f(§+u)

§+u1(0,oo)(€)7 £ ER.

Consequently, by the Fourier inversion theorem and the continuity of g,

L e, 1 7 1
g(\) = /Rg(f)e d¢ = f(§+u)7£+ue

AEq AeR
2 2 Ry 5’ ’
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whenever v > 0. Therefore,

Z/ (f * Mu)()\l) e—i)\1uei)\2u du = Z/ / f(f + u)iei)\lﬁeikgu df du
R+ R, JR4 E4+u

/ A(ff +u) & eM28etMu qe duy
+ JRy u

= / Flu+ v)ij_ M2 dy du,
R Uu-+7v

Adding these together yields

2L Flu+v) eMte2? du do,
T R?‘r
as desired. This completes the proof. ]

B.2 The estimate

We now use Theorem B.1.3 to prove Theorem 6.6.9.

Proposition B.2.1. Ifv,0 >0 and f: R — C is as in Lemma B.1.7, then f * p, € BOC(R).
Please see Definition 6.6.1 for the definition of BOC(R).

Proof. First, suppose f, ]? € L'(R) as well, and let g := f * y,. Then g = J?ﬁv is compactly

supported in R;. By Theorem B.1.3 (really, only Step 3 of its proof), we have

g0 2) =1 [ (g m)On) MU 4 (g ) ()N du
R4

For arbitrary f as in the statement and f, as in Lemma B.1.7, we have that

(o ) O, Ng) = i /R (o pr0) % ) O00) €N 4 (f 1) % 1) () € P24 du,

As in Step 1 of the proof of Theorem B.1.3, we may take n — oo when A1 # A2 to conclude

(f * o) (Mg, Ag) = d /1R ((CF o o) ) (M) €722 4 ((f 5 p1y) 5 o) (Ng) €221 dlu.
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Since the right-hand side is continuous in (A1, A2), we conclude that this identity holds when
A1 = A2 as well. This is a £*°-integral projective decomposition of (f x ,uv)m. By Corollary 6.5.12,

if H is a complex Hilbert space, a € C(H )sa, and ¢ € B(H )s,, then

[(f * po)(a+c) = (f * po)(a)]| < H(f *Nv)mHgoo(R,BR)@goo(R,BR)HCH7

so that f* u, € OC(R). Since f * u, is bounded by Proposition B.1.2(ii), we are done. O

Proposition B.2.2. If k € N, then there is a constant ap < oo such that whenever o > 0 and

f € L®(R,Br) satisfies supp f C [—0,—%]U[%, 0], we have that

1M soc@yeisn < ano™|£llz=.

Proof. Let f be as in the statement of the proposition, and fix a bump function ¢; € C2°(R)
such that ¢; = 1 on [1/4, 1] and supp¢n C [1/8,2]. Write ¥ () = ¥1(0§), ¥5(§) = ¥7(=E),
X7 = F 1 y]) and x§ = F1(¢)g). Then f = x{ * f + x§ * f because f = ¢ f + ¢ f. But
f1 = x{ * f satisfies the hypotheses of Theorem B.1.3. By Lemma 6.6.5, Proposition B.2.1,
the fact that BOC(R) is an algebra, and the comments about when the integrand in Equation
(B.1.4) vanishes, Theorem B.1.3 yields a BOCIPD of fl[k] that implies

k+1
[k
Hf ]HBOC(R ®;(k+1) < Z/ ”fl * :U’|u|||€°° du < S(k + 1)7”.}01”[/00

u€Rﬁ_:|ﬁ|< }

< 3||X1||L1(k‘+1) HfHLoo = 3|xa i ( k‘+1) IIfHLoo

by the bounds from Proposition B.1.2 and Young’s convolution inequality. Next, z — fo(—2x)

also satisfies the hypotheses of Theorem B.1.3. This allows us to conclude

15 pocmysin < 3Pk + D7 ||f|rm

as well. Combining these two estimates completes the proof and shows that we may take

=3(k+ 1)(H)&HL1 + HX%H[,l)/k! in the statement of proposition. O
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We now transfer this result into the desired statement about Besov spaces. Recall from
Definition 3.6.1 that we fixed n € C2°(R™) such that 0 < n <1, suppn C {£ € R™: |{|2 < 2},
and n = 1 on {{ € R™ : [¢] < 1}. We also defined n;(¢) = n(27%¢) — n(2771¢) for all
i € Zand £ € R™. It is easy to see that 0 < n; < 1, suppr; C {{ € R™: 2071 < [¢]p < 27F1)
N4y iy mi = n(27") for all n € N (so that n+3"72, 7; = 1 everywhere), and 3372 7 = 1gm\ 0} -
From these bump functions, we get the Littlewood—Paley sequences or decompositions of a

tempered distribution. Indeed, if f € .#/(R™) and n € Z, then

F=n@ ) f S i f (B.2.3)

i=n

in the weak* topology of ./(R™). Therefore, the series > .= 7, * f converges in the weak*

1=—00
~

topology if and only if (m * f)nen converges in the weak™ topology, if and only if (9(2":) f)nen

converges in the weak™ topology. In particular, the identity

f=> Wixf (B.2.4)

1=—00

~

holds if and only if w* - lim,_,e n(27) * f = 0, if and only if w* - lim,,_,oo 7(2"+) f = 0. Equation
(B.2.3) with n =1 is the inhomogeneous Littlewood—Paley decomposition of f. Equation
(B.2.4) (or at the least the formal series therein) is the homogeneous Littlewood—Paley
decomposition of f. Sometimes they are also called the Calderén reproducing formulas.
The proofs boil down to the weak* continuity of the Fourier transform and the fact that if
Y € S (R™), then n(R™' - )¢(-) = ¢ in .#(R™) as R — oo, which is a nice exercise to prove.
Note that if >>° %, * f converges in the weak® topology, then it is easy to see that
P=f->>2 _n*feS(R™) satisfies supp P C {0}. As a result, P € C[Ay,..., A is a

polynomial, and

f=Y Wixf+P

1=—00
This observation will come in handy later. The most important fact about Besov spaces for us is
that the inhomogeneous Littlewood-Paley series of the k' derivative of a function belonging to

Bf "*°(R) converges uniformly. To prove this, we use Bernstein’s inequality.
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Lemma B.2.5 (Bernstein’s inequality). Suppose o € Ni* and 1 < r < p < oco. There is a

constant be,rp < 00 such that for all R > 0 and u € '(R™) with suppu C {{ € R™ : |{|]2 < R},
10%ul|, < barpREH u

Proof. Defining ug = R_mu(R_1 . ), we see that suppur C {€ € R™ : |¢|2 < 1}. Supposing we

know the desired inequality when R = 1, we have ||0%ugr||rr < ||ug||z-. Since
0*up = RT1R™(@u) (R ) and |lugle = B™G VllullLe, g€ [1,00],
we conclude that
R G o0l = ([0l S sl = B GV ljullsr,

whence the desired inequality follows. Therefore, we may and do assume R = 1.

Next, we notice there are really two inequalities in the one we would like to prove:
Jullr < llullLr and ||0%u||,, < [lullze. To prove these, it is key to notice that, by taking Fourier
transforms of both sides and recalling that n =1 on {£ € R™ : ||z < 1}, we have u =7 * u and

0% = 1 % 0% = (0°7) x u. Consequently, by Young’s convolution inequality,
[ulle = 117 ullLe < [[7][zallullzr,
where 1/¢g =1+ 1/p—1/r € [0,1] (using that 1 <r < p < 00). By the same inequality,
0%l = 10%7) * ul < [|0°]] s el -

This completes the proof. O

We actually learned from the proof that we can take

bapp < |09 and by, < [[ifll o, (B.2.6)
where 1/¢g =1— (1/r — 1/p). In particular, we can take by ,p < |00 1|7 La-
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Proposition B.2.7. Fiz s € R, p € [1,00], and f € BYP(R™). If o € NJ* and |a| = s — o, then

Yo k0 f =32 0% * f) is absolutely uniformly convergent.

Proof. Since the Fourier transform of 7, * 9% f is supported in {5 ER™ :|£]2 < 2”1},

oo o o0 )
Z Hﬁz * BO‘fHLDO < ba,p,oo Z (QZ—H ‘QH H”Z * fHLP = 2°ba @,p,00 Z 2wHﬁi * fHLP
i=—o00 i=—00 ==
by Bernstein’s inequality. Since Y72 2% ||i; * fHLp = ”f”gfm < 00, we are done. O

Let us record a special bound we learned in the proof about our case of interest. If m =1

and (s,p,q) = (k,00,1) for some k € Ny, then Relation (B.2.6) gives

Yo NG DO = D0 I S e < 2K 1l g, f € BI™(R). (B.2.8)
e e

1=—00 1=—00

=by,

In particular, if f € Bf "*°(R), then there exists a polynomial P, € C[)\] such that

F* = fj (% * /) + Py € BC(R) + C[)] (B.2.9)

1=—00
as tempered distributions. Consequently, f € C*(R). In other words, Blf’oo(]R) C C*(R).

Proof of Theorem 6.6.9. For the first part, let f € Blfoo(]R) By Relations (B.2.8) and
(B.2.9), > iz H n; * f HLoo < o0, and f®) differs from the bounded continuous function
Y icz (M * £)®) by a polynomial Py. If f € PB*(R), then f*) is itself bounded, so P, must also
be bounded and therefore constant. Write C' € C for this constant.

Now, let A := (A1,..., A1) € RFFL. By Proposition 1.3.3(iii) (twice), the uniform

convergence of the series, and the fact that pg(Ay) = 1/k!,

I = [ (e x) pr(a) = /A (0+Z G+ ) >) pi(ct)

A i€Z

+Z/ D62 i *+Z771*f

€L i€Z

Next, for all i € Z, %, * f satisfies the hypotheses of Proposition B.2.2 with ¢ = 2/*!. The
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completeness of BOC(R)®:(5+1) | Proposition B.2.2, and the definition of || - ||Bk ~ then give

c o
Hf[k] HBOC(R)@(HU < ‘k" * Z H(m * f)[k} HBOC(R)@(HD
€7
c c
<1 S @ ¢ £l = 1]

€L

+ 2%ag | Il groe -
Finally, recalling the definition of C' and using Inequality (B.2.8) again, we get

. k o k : k
€] < inf [0 (1) +§ 167 % DO oo < i [FO D] + el £l e
It follows that we may take ¢, = by /k! + 2kay, in the first part of the theorem.

For the second part, let f € PB'(R). By the above, there is some C' € C such that

F'=CH+Y s f'=C+ Y (hixf). (B.2.10)

i€Z i€Z
Since it is easy to see that BI"*°(R) N BP(R) = N, B"*(R), if f € PB(R) N B"*(R), then
> ez 10 * O~ < oo for all £ € {1,...,k}. This ensures that we can differentiate the
series in Equation (B.2.10) to conclude that f¥) = 3=, (7; f) for all £ € {2,...,k}, so that
f € PBY(R). This proves PB'(R) N B*>(R) = PB*(R) N --- N PB*(R). In addition, if k > 2,
then the previous paragraph’s analysis gives Hf[k} HBOC(R)@%‘(’”D < Qkak||f||Bf,OO. This completes

the proof. n

Remark B.2.11. If we require f € B{"°(R) and f' = > icz i * [ instead of only f € PB'(R),
then the proof above yields Hf[l]HBOC’(R)@)-BOC(R) < 2a1| f|| gr.oe, ie., we can get rid of the
g 1

inf er |f/(z)| term.
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