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Systems/Circuits

Elucidating the Role of AII Amacrine Cells in Glutamatergic
Retinal Waves

Alana Firl,1 X Jiang-Bin Ke,2 Lei Zhang,2 X Peter G. Fuerst,3 Joshua H. Singer,2* and Marla B. Feller4,5*
1Vision Sciences Graduate Program, Department of Optometry and 2Department of Biology, University of Maryland College Park, College Park, Maryland
20742, 3Department of Biological Sciences, University of Idaho, Moscow, Idaho 83844, and 4Department of Molecular and Cell Biology, and 5Helen Wills
Neuroscience Institute, University of California, Berkeley, Berkeley, California 94720

Spontaneous retinal activity mediated by glutamatergic neurotransmission—so-called “Stage 3” retinal waves— drives anti-correlated
spiking in ON and OFF RGCs during the second week of postnatal development of the mouse. In the mature retina, the activity of a retinal
interneuron called the AII amacrine cell is responsible for anti-correlated spiking in ON and OFF �-RGCs. In mature AIIs, membrane
hyperpolarization elicits bursting behavior. Here, we postulated that bursting in AIIs underlies the initiation of glutamatergic retinal
waves. We tested this hypothesis by using two-photon calcium imaging of spontaneous activity in populations of retinal neurons and by
making whole-cell recordings from individual AIIs and �-RGCs in in vitro preparations of mouse retina. We found that AIIs participated
in retinal waves, and that their activity was correlated with that of ON �-RGCs and anti-correlated with that of OFF �-RGCs. Though
immature AIIs lacked the complement of membrane conductances necessary to generate bursting, pharmacological activation of the
M-current, a conductance that modulates bursting in mature AIIs, blocked retinal wave generation. Interestingly, blockade of the
pacemaker conductance Ih , a conductance absent in AIIs but present in both ON and OFF cone bipolar cells, caused a dramatic loss of
spatial coherence of spontaneous activity. We conclude that during glutamatergic waves, AIIs act to coordinate and propagate activity
generated by BCs rather than to initiate spontaneous activity.

Key words: development; spontaneous activity; two-photon calcium imaging

Introduction
Spontaneous retinal activity, termed retinal waves, shapes visual
system development (Huberman et al., 2008; Kirkby et al., 2013;
Ackman and Crair, 2014). The circuitry underlying these waves
changes as the retina matures. Initially, waves are generated and
propagated by cholinergic interneurons called starburst ama-
crine cells; later, they depend upon glutamatergic transmission
(Bansal et al., 2000; Zhou and Zhao, 2000; Wong and Wong,
2001; Maccione et al., 2014).

Starburst cells, which make reciprocal excitatory connections,
depolarize spontaneously to initiate cholinergic waves (Zheng et
al., 2006). Their activity then is propagated to other neurons, at
least in part, by volume release of acetylcholine (Ford et al., 2012).
Analogously, spontaneous depolarizations of glutamatergic in-

terneurons, primarily cone bipolar (CB) cells, should initiate glu-
tamatergic waves that are propagated by volume release of
glutamate (Firl et al., 2013).

The generation of glutamatergic waves, however, is only par-
tially understood. Although CBs are depolarized by waves (Ak-
rouh and Kerschensteiner, 2013; Firl et al., 2013), it is unknown if
they initiate waves. Moreover, the mechanism(s) responsible for
propagating these waves is yet to be fully elucidated. The two
mechanisms that have been proposed are glutamate spillover
(Blankenship et al., 2009; Firl et al., 2013) and gap-junction cou-
pling (Akrouh and Kerschensteiner, 2013). Interestingly, a recent
study demonstrated that pharmacological blockade of either
ionotropic glutamate receptors or gap junctions was sufficient to
prevent glutamatergic waves (Akrouh and Kerschensteiner,
2013), implicating both mechanisms in wave generation.

Synaptic inhibition also has been shown to shape glutamater-
gic waves (Sernagor et al., 2003; Maccione et al., 2014) by limiting
the number of neurons activated (Firl et al., 2013) and by affect-
ing wave timing. ON RGCs depolarize �1 s before OFF RGCs,
and this offset is eliminated when synaptic inhibition is blocked
(Kerschensteiner and Wong, 2008). This anti-correlation of activity
in ON and OFF RGCs caused by synaptic—particularly glyciner-
gic—inhibition suggests that AII amacrine cells play a critical role in
the underlying circuitry (Kerschensteiner and Wong, 2008; Akrouh
and Kerschensteiner, 2013).

AIIs are glycinergic interneurons in the INL. They receive ex-
citatory input from rod bipolar cells, make inhibitory synapses
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onto some OFF ganglion cells (GCs) and OFF CBs, and are cou-
pled by gap junctions to ON CBs and to each other (Famiglietti
and Kolb, 1975; Demb and Singer, 2012). Initially thought to
participate only in rod-mediated vision (Kolb and Nelson, 1983;
Strettoi et al., 1992), they are now known to mediate “crossover”
inhibition between ON and OFF pathways during cone-
mediated vision: depolarization of ON CBs depolarizes AIIs and
elicits inhibition of OFF RGCs (Manookin et al., 2008; Münch et
al., 2009; van Wyk et al., 2009; Ke et al., 2014). This crossover
inhibition generates anti-correlated spiking in ON and OFF
�-GCs that receive significant input from AIIs during both rod-
and cone-mediated vision (Margolis and Detwiler, 2007; Murphy
and Rieke, 2008; van Wyk et al., 2009).

Since membrane hyperpolarization elicits bursting behavior
in mature AIIs (Cembrowski et al., 2012) and since bursting in
AIIs underlies rhythmic spiking anti-correlated in ON and OFF
�-GCs of the degenerating retina (Choi et al., 2014; Margolis et
al., 2014), we hypothesized that glutamatergic waves are initiated
by AIIs. To test this hypothesis, we used two-photon calcium
imaging and targeted whole-cell recordings to determine how
circuits in the inner retina—in particular, the network of coupled
AIIs and ON CBs— generate and propagate glutamatergic retinal
waves.

Materials and Methods
Mice. Retinas were isolated from C57BL/6 wild-type (Harlan Laborato-
ries), Fbxo32-eGFP, and Cdh1-eGFP mice of either sex and aged P9 –
P12. Fbxo32-eGFP and Cdh1-eGFP mice express eGFP in AIIs (Gong et
al., 2003; Siegert et al., 2009; Cembrowski et al., 2012; Kay et al., 2012).
They were obtained from the Mutant Mouse Regional Resource Center
[Stock (Tg:Fbxo32-EGFP)IM138Gsat/Mmucd, Stock #030719-UCD
and STOCK Tg(Cdh1-EGFP)AR201Gsat/Mmucd, Stock #011775-
UCD] and bred into the C57BL/6 background. All procedures involving
animals were approved by the Institutional Animal Care and Use Com-
mittees of the University of California (Berkeley, CA) and of the Univer-
sity of Maryland (College Park, MD) and conformed to the guidelines of
the National Institutes of Health Guide for the Care and Use of Labora-
tory Animals, the Public Health Service Policy, and the Society for Neu-
roscience Policy on the Use of Animals in Neuroscience Research.

Retinal preparation. P9 –P12 C57BL/6, Fbxo32-eGFP, and Cdh1-eGFP
mice of either sex were deeply anesthetized with isoflurane and decapi-
tated. Eyes were removed, and retinas were isolated in ACSF bubbled
with carbogen (95% O2/5% CO2) containing the following (in mM):
119.0 NaCl, 26.2 NaHCO3, 11 glucose, 2.5 KCl, 1.0 K2HPO4, 2.5 CaCl2,
and 1.3 MgCl2. Retinal whole-mount preparations were prepared for
electrophysiological and fluorescence-imaging recordings of retinal
waves by mounting retinas’ GC layer up on Anodisc filter paper (What-
man). Retinal slices (300 – 400 �m thick) were prepared by embedding
retinas in 3% agarose (Sigma type VIIA) in ACSF with HEPES substi-
tuted for NaHCO3 before cutting on a vibrating microtome (Leica).
Retinal whole mounts and slices were stored in carbogen-bubbled ACSF
at room temperature. During experiments, retinal preparations were su-
perfused continuously with carbogen-bubbled ACSF heated to near-
physiological temperature (30 –34°C) at a rate of 1–2 ml/min.

Immunohistochemistry. Retinas from Fbxo32-eGFP mice were fixed in
4% paraformaldehyde for 1 h, rinsed in PBS, sunk in 30% sucrose, and
then finally equilibrated in a 50:50 mix of 30% sucrose and OCT freezing
media. Retinas were then frozen in OCT in a liquid nitrogen bath. Sec-
tions (10 �m) were cut at on a cryostat. Sections were incubated in
blocking solution (7.5% normal donkey serum, 1� PBS, pH7.4, 0.1%
Triton X-100) for 30 min. Primary and secondary antibodies were di-
luted in this blocking solution. Primary antibodies were used at a con-
centration of 1:500 (DAB1; generous gift from Brian Howell) or 1:1000
(mouse anti-GFP; NeuroMab). Sections were incubated in primary
antibody overnight at 4°C. Sections were washed three times in PBS
for 10 min each wash and then incubated in secondary antibodies

(goat anti-mouse IgG2A, Invitrogen; donkey anti-rabbit cy3, Jackson
ImmunoResearch) at dilutions of 1:1000. The nuclear dye Draq5 (Cell
Signaling Technology) was incorporated with the secondary antibodies
at a dilution of 1:2000. Sections were incubated in secondary antibodies
for 2 h at room temperature. Sections were then washed three times in
PBS for 10 min each wash and mounted in 80% glycerol. Whole retinas
were stained in a similar fashion to sections except that the blocking
solution contained 0.4% Triton X-100, the primary incubation was per-
formed for 5 d, the secondary incubation was performed for 2 d at 4°C,
and the washes were extended to 2 h each. Three retinas were imaged at
either P8 or P11–P12 and consistent staining was observed between and
within retinas. Tissue was imaged using an Olympus DSU spinning disk
microscope. Any changes to the images, for example to brightness, were
done across the image in accordance with journal policies.

To quantify the colocalization of GFP and DAB1, four fields interme-
diate between the optic disk and retina periphery were imaged in P8 and
P12 retinas (N � 6, three retinas for each age). The total number of
DAB1� GFP� and DAB� GFP� AIIs in each field was counted to
generate measurements of cell density (cells/mm 2 � deviation). From
these counts, we generated an estimate of the percentage of AIIs that did
not express GFP (DAB� GFP�/DAB� total).

Two-photon calcium imaging. Retinas were loaded with Oregon green
488 BAPTA-1 AM (OGB) using the multicell bolus loading technique
(Stosiek et al., 2003; Blankenship et al., 2009). For identifying AIIs in
Fbxo32-eGFP mice, retinas were imaged with the laser tuned to 920 nm
to preferentially excite GFP before bolus loading. Two-photon calcium
imaging of neurons in the INL and GCL was performed using a custom-
modified two-photon microscope (FluoView 300; Olympus Amer-
ica). XYZ scans were used to localize neurons in the GCL and INL.
Time series images were acquired at 1 Hz using a 60� objective
(Olympus LUMPlanFl/IR �60/0.90W) with the excitation laser tuned to
790 nm. Images were corrected for motion artifacts using the TurboReg
ImageJ plugin. The 10 � 10 pixel (12 � 12 �m) regions of interest were
selected manually within all cells in the field of view. Fluorescent signals
were averaged within these regions over time. Cell events were identified
when change in fluorescence exceeded 15% of the cell’s baseline fluores-
cence within 1 s. Cells were categorized as participating in a retinal wave
if a cell’s events were correlated with those of neighboring cells.

Electrophysiology. Both retinal slices and whole mounts were placed in
a recording chamber mounted below an upright video microscope so
that cells of interest could be visualized and targeted for whole-cell
recordings with pipettes containing the following (in mM): 110
K-gluconate, 5 NaCl, 10 HEPES, 1 BAPTA, 8 Tris-phosphocreatine, 4
MgATP, 0.4 NaGTP, and 0.05 Alexa 488, 594, or 647 hydrazide to permit
visualization of the cells by epifluorescence or laser-scanning (confocal
or two-photon; Thorlabs) imaging after recording (pH adjusted to 7.4 by
KOH and osmolarity to �280 mOsm with sucrose). Drugs (from Tocris
Bioscience) were added to the bath solution as follows: during recordings
from retinal slices, synaptic transmission was blocked with DNQX (25
�M), CPP (5 �M), strychnine (1 �M), picrotoxin (50 �M), and TPMPA
(50 �M), which block AMPA/KARs, NMDARs, GlyRs, GABAARs, and
GABACRs, respectively; M-type K conductances were blocked with lin-
opirdine (LP; 50 �M) and activated with flupirtine (30 �M); and Ih was
blocked with ZD7288 (30 �M).

For recordings from RGCs, �-cells were targeted based on soma size
(diameter 18 –25 �m). AIIs in retinal whole-mount preparations pre-
pared from Cdh1-eGFP mice were targeted for recording by visualizing
eGFP fluorescence. In retinal slice preparations, AIIs were identified by
soma size and shape and position at the border of the INL and inner
plexiform layer (IPL). Access resistances were �25 M	 and were not
compensated. Recordings were made using a single Multiclamp 700B
amplifier. Recorded voltages were low-pass filtered at 1–2 kHz and digi-
tized at 1–10 kHz by an ITC-18 A/D board (InstruTech) controlled by
software written in Igor Pro (WaveMetrics). Analyses were performed in
Igor Pro.

Waves were detected as follows: first, data were low-pass filtered digi-
tally (Bessel filter; 10 Hz cutoff) and smoothed (50 point sliding average)
to remove spikes and other fast membrane voltage fluctuations; second,
waves were detected as voltage excursions above a threshold (usually �2
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mV from baseline) lasting 
100 ms. All data processed by this algorithm
were inspected by eye to ensure their reliability. Differences between
samples were assessed for significance using a two-tailed Wilcoxon
signed-rank test (called Wilcoxon test, below) for paired samples. Signif-
icance was taken as p � 0.05.

Results
AIIs participate in glutamatergic waves
In mature Fbxo32-eGFP mice, AIIs, which are uniformly distrib-
uted in the inner part of the inner nuclear layer, as well as other
neuronal types deeper in the inner nuclear layer express GFP
(Siegert et al., 2009; Cembrowski et al., 2012). To confirm that
developing AIIs of Fbxo32-eGFP mice expressed GFP, we as-
sessed colocalization of anti-GFP and anti-Dab1 immunofluo-
rescence (Fig. 1A); Dab1 (disabled 1) is a protein that, in the
retina, is expressed specifically by AIIs (Rice and Curran, 2000;
Lee et al., 2003, 2004; Fuerst et al., 2009). We found that nearly all
AIIs were GFP� (P8: 88 � 4%, n � 3 retinas; Fig. 1B; P12: 90 �
1%, n � 3 retinas; data not shown).

Given the AIIs’ abilities to synchronize activity in electrically
coupled ON CBs and to generate crossover inhibition that anti-
correlates activity in ON and OFF RGCs (Demb and Singer,
2012), it would seem that these cells are well positioned to play a
significant role in the generation and/or propagation of glutama-
tergic waves (Akrouh and Kerschensteiner, 2013). As a starting
point for our study, we schematized a hypothetical circuit that
generates and propagates glutamatergic retinal waves (Fig. 1B).
Since previous calcium-imaging experiments indicate that rod
bipolar cell somas do not depolarize during waves (Firl et al.,
2013), we assume that depolarization of AIIs is either intrinsic or
mediated by glutamate spillover and/or electrical synapses with
ON CBs.

We verified that AII cells were depolarized by retinal waves by
two-photon calcium imaging of retinas from Fbxo32-eGFP mice
in which AIIs express eGFP. Our two-photon calcium imaging
offered a limited field of view relative to that observed in previous
epifluorescence imaging-based studies (Blankenship et al., 2009;
Ford et al., 2012). The technique, however, allowed us to image
the INL and GCL independently (Briggman and Euler, 2011; Firl
et al., 2013) and to record calcium transients in different neuro-
nal populations by varying the depth of the imaging plane with-
out contamination from out-of-focus fluorescence.

We found the same pattern of expression of GFP� cells in the
live retina as determined with two-photon imaging (Fig. 1C). The
GFP� cells closest to the IPL displayed wave-related calcium
transients in conjunction with other INL neurons (Fig. 1C–E).
We found that �50% of these AIIs participated in retinal waves
(Fig. 1F) and exhibited calcium transients at the same frequency
as other neurons in the INL and GCL (Fig. 1G). Thus AIIs ap-
peared to be depolarized by retinal waves. It is important to note
that the ability of two-photon calcium imaging to detect de-
polarization of a cell is limited by the signal-to-noise ratio of
the transients, which in turn vary with the magnitude of the
depolarization. Immature AIIs depolarize by only a few millivolts
during waves (see below) and do not fire action potentials, lim-
iting the activation of voltage-gated Ca channels subsequent to
Ca 2� influx. Hence, calcium imaging is likely to underestimate
the participation of AIIs in waves.

To better ascertain the participation of AIIs in retinal waves,
we made simultaneous, whole-cell current-clamp recordings
from AIIs and RGCs (Fig. 2). In all dual recordings (n � 8
AII-ON RGC pairs, n � 11 AII-OFF RGCs) depolarizations in
AIIs were largely correlated with depolarizations in RGCs (Fig.

2A), and waves in both cell types were blocked by iGluR antago-
nists (n � 3; Fig. 2A). On average, RGCs depolarized every 27.6 �
4.2 s and AIIs every 26.6 � 2.9 s (mean � SEM; difference is not
significant; p � 0.74; Fig. 2B). Waves recorded in AIIs varied
widely in amplitude (average � 6.3 � 3.4 mV, mean � SD;
range � 2.1–15.0 mV; n � 22). The smaller depolarizations (av-
erage amplitude in 12/22 AIIs �6 mV) observed likely account
for the 50% participation rate established with calcium imaging;
i.e., a subset of AIIs does not depolarize sufficiently to generate
[Ca 2�] sufficient to visualize.

To examine the temporal relationship between waves in AIIs
in RGCs, we measured the times between each depolarization in
the AII and the closest (temporally) depolarization in the RGC
for every paired AII-RGC recording and found that depolariza-
tions of the two cells in a pair were well coordinated: 61% of
depolarizations in an AII was accompanied by depolarizations in
an ON RGC, and 48% of depolarizations in an AII was accompa-
nied by depolarizations in an OFF RGC (148/238 waves for n � 8
AII-ON RGC pairs and 132/275 waves for n � 12 AII-OFF RGC
pairs). The absence of completely coordinated activity in the two
cells likely reflects the fact that waves have a finite propagation
distance and propagate in multiple directions across the retina;
the cells we recorded from were displaced laterally up to �100
�m from each other.

Measurements of AII-RGC timing differences pooled from
AII-ON RGC pairs (n � 8) and from AII-OFF RGC pairs (n �
12) revealed that depolarizations in AIIs were followed closely by
depolarizations in ON RGCs (median delay � 295 ms), while
depolarizations in OFF RGCs occurred with a more substantial
delay (median delay � 855 ms; Fig. 2C). These data support the
conclusion that activity in AIIs is correlated with activity in the
ON pathway (Akrouh and Kerschensteiner, 2013).

AIIs in the developing retina do not burst but rather alter the
timing of crossover inhibition
Our observation that spontaneous depolarizations of AIIs are
absent in the presence of iGluR antagonists suggests that the cells
are not intrinsically oscillatory, as they are in the degenerated
retina (Choi et al., 2014; Margolis et al., 2014). Rather, AIIs ap-
peared to be driven by chemical and/or electrical synaptic inputs.

Given this observation, we wished to determine whether de-
veloping AIIs are capable of generating intrinsic bursts. There-
fore, we made whole-cell current-clamp recordings from AIIs in
a retinal slice preparation and examined their responses to in-
jected current when chemical synaptic transmission was blocked
(see Materials and Methods). Current steps (generally �30 pA;
Fig. 3A) or ramps (�50 pA over 2 s; Fig. 3B) were injected into
AIIs and voltage changes recorded.

We found that immature AIIs differed substantially from the
mature ones described previously. Unlike AIIs in the mature ret-
ina (Boos et al., 1993; Tian et al., 2010; Cembrowski et al., 2012),
immature AIIs did not exhibit Na channel-dependent spikes
when depolarized above resting VM, which averaged �55.9 � 3.0
mV (n � 12 cells); resting VM in these AIIs was �10 mV hyper-
polarized relative to that of mature AIIs (Fig. 3B,C; Cembrowski
et al., 2012). Additionally, immature AIIs had high input resis-
tances [RN � 1.15 � 0.1 G	 as measured between �80 and �70
mV (n � 12 cells)]; this is approximately twice the RN measured
from mature AIIs (Cembrowski et al., 2012).

Immature AIIs, however, appeared to exhibit M-type
K-currents, just as mature AIIs do (Cembrowski et al., 2012).
Depolarizing AIIs above �40 mV resulted in a significant reduc-
tion in RN, to 0.80 � 0.1 G	 (p � 0.006; n � 12 cells), indicative
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Figure 1. AIIs are depolarized during waves. A, Fluorescence confocal images from sections (left) and whole-mount retina (right) from P8 (top) and P12 (bottom) Fbxo32-GFP mice stained with
antibodies to GFP and disabled (Dab1), a marker for AII amacrine cells. Dotted line depicts z-plane. Scale bar, 15 �m. B, Schematic of inner nuclear circuit for retinal waves. Wave starts when ON-CBs
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plotted with whiskers extending to the most extreme values that are still considered not to be outliers. G, Histogram of interwave intervals for calcium imaging from the both the GCL and
the INL. In a subset of experiments, recordings were performed in Fbxo32-eGFP mice in which AIIs express eGFP and therefore interwave intervals for AIIs were determined.
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of the opening of a voltage-gated conduc-
tance at these potentials. Addition of the
M-current antagonist LP (50 �M) blocked
this reduction in RN (in LP, RN measured
at �80 to �70 mV � 1.23 � 0.1 G	, and
RN measured at �40 to �30 mV � 1.08 �
0.1 G	; this difference is not significant;
Fig. 3B; p � 0.08; n � 12 cells) and depo-
larized the cells by �5 mV, to VM � 50.0�
3.1 mV (Fig. 3B,C; p � 0.0005; n � 12).

Blockade of the M-current also af-
fected the structure and frequency of
spontaneous depolarizations recorded in
AIIs and RGCs (Fig. 3D). In the presence
of LP, the distribution of interevent inter-
vals was shifted toward smaller intervals
for AIIs and for both ON and OFF RGCs
(Fig. 3E; AII wave interval: control
15.86 � 26.40 s, n � 271 waves; LP 8.14 �
20.75 s, n � 144 waves; p � 0.60 Wilcoxon
signed-rank test; ZD7288 5.17 � 5.73, n �
436 waves; p � 0.001 Wilcoxon signed-
rank test; RGC wave intervals: control
12.80 � 20.75 s, n � 218 waves; LP 3.62 �
3.33, n � 143 waves; p � 0.001 Wilcoxon
signed-rank test; ZD7288 4.40 � 6.15 s,
n � 389 waves; p � 0.001 Wilcoxon
signed-rank test).

To monitor the effects of LP and an
M-current activator, flupirtine (FL; 10
�M) across a larger population of neurons
in both the GCL and INL, we used two-
photon calcium imaging. Application of
LP produced more frequent transients in
INL and GCL neurons (Fig. 4B,D; Wil-
coxon signed-rank test p � 0.01; wave in-
terval: control 202.4 � 90.6 s, N � 21
waves, 5 retinas; LP 92.7 � 32.8 s, N � 43
waves). LP also induced longer calcium
transients in the AIIs (Fig. 4B), consis-
tent with previous reports of prolonged
depolarization induced by LP in AIIs of
normal and rd1 retinas (Cembrowski et
al., 2012; Choi et al., 2014). LP, how-
ever, did not affect the proportion of
AIIs or GCL cells that participated in
waves (Fig. 4C; control 0.84 � 0.010, LP
0.92 � 0.071; n � 4 retinas; Student’s t
test p � 0.19).

In contrast, FL blocked waves, abolish-
ing calcium transients in AIIs and in other
neurons in the INL and GCL (Fig. 4A). We
also saw a blockade of spontaneous depolar-
ization in whole-cell current-clamp record-
ings from AIIs and RGCs (n � 3 paired
recordings; data not shown). These data in-
dicate that strong hyperpolarization of AIIs
was sufficient to stop the generation of reti-
nal waves.

We conclude that intrinsic membrane
conductances of AIIs do not support intrinsic
bursting; therefore it is unlikely that glutama-
tergicwavesoriginatewithspontaneousdepo-
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larizations of AIIs. Therefore, we wished to determine whether
immature CBs exhibited intrinsic properties consistent with spontane-
ous depolarization and/or bursting.

CB cells possess Ih , the blockade of which significantly alters
wave properties
We recorded from ON and OFF CBs (identified by visualization
of fluorescent tracer following recording; see Materials and
Methods) in retinal slice preparations in the current-clamp con-
figuration and examined cells’ responses to injected currents
(generally �30 pA; Fig. 5A,B). In 4/5 ON cells and in 7/8 OFF
cells, we observed a significant depolarizing “sag” in response to
hyperpolarizing current injection as well as a depolarizing poten-
tial following the termination of hyperpolarizing current injec-
tion; this sag and afterdepolarization are indicative of the
activation of Ih, a hyperpolarization-activated depolarizing con-
ductance (Lüthi and McCormick, 1998). In all cases, this sag and
the following afterdepolarization were blocked by the Ih antago-
nist ZD7288 (Fig. 5A,B). Ih also has been observed in recordings
from mature CBs (Ma and Pan, 2003); therefore it would seem
that the intrinsic membrane properties of CBs, unlike those of
AIIs, are established early in development.

Next, we examined the effects of ZD7288 on retinal waves.
ZD7288 increased the frequencies of spontaneous depolarization

in AIIs and RGCs, as assessed by whole-cell recordings (Fig.
5C,D). Two-photon calcium imaging revealed a dramatic effect
of ZD7288 on the spatial correlations of glutamatergic waves
(Fig. 6A,B): GCL and INL neurons exhibited more frequent
bursts (reported as median, lower quartile/upper quartile; con-
trol: 36, 20/82 s, N � 150 wave intervals; ZD7288: 6, 3/12 s, N �
62 wave intervals; Fig. 6E). The proportion of cells active during
waves increased for cell types in both the INL and GCL, including
AIIs (GCL: control 0.16 � 0.12, ZD7288 0.68 � 0.12; INL: con-
trol 0.38 � 0.11, ZD7288 0.57 � 0.065; AIIs: control 0.50 � 0.27,
ZD7288 0.87 � 0.12; Fig. 6C). The proportion of cells that never
displayed significant calcium transients decreased, most notably
for AIIs, for which it dropped to zero (GCL: control 0.69 � 0.24,
ZD7288 0.089 � 0.072; INL: control 0.37 � 0.21, ZD7288
0.059 � 0.049; AIIs: control 0.36 � 0.27, ZD7288 0 � 0; Fig. 6D).
Hence, blockade of Ih significantly increased the participation of
INL neurons in retinal waves.

Absence of gap junctions does not limit AIIs’ participation
in waves
AIIs are coupled electrically to other AIIs and to ON CBs by gap
junctions comprising connexin (Cx) proteins, of which there are
many subtypes (Demb and Singer, 2012; Völgyi et al., 2013).
AII¡AII gap junctions are Cx36 homotypic (Deans et al., 2002),
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and AII¡ON CB gap junctions are Cx36/45 heterotypic (Gülde-
nagel et al., 2000; Feigenspan et al., 2001, 2004; Lin et al., 2005;
Maxeiner et al., 2005). To determine how electrical coupling
within the AII network shapes glutamatergic waves, we used two-
photon calcium imaging to examine the spatiotemporal pattern
of activity in retinas from Cx36 ko and Cx36/45 dko mice.

Previously we used a multi-electrode array (MEA) to charac-
terize the spontaneous firing patterns of retinas from Cx36 ko
and Cx36/45 dko mice (Hansen et al., 2005; Torborg et al., 2005;
Blankenship et al., 2011). In these studies, we recorded retinal
waves from both Cx36 ko and Cx36/45 dko retinas; RGCs from
these retinas also exhibited many uncorrelated action potentials
in between waves. Here we assessed the spontaneous calcium
transients of the neurons in the INL in these retinas. Similar to
observations of firing patterns of RGCs, waves were detected in
the INL, and the interwave intervals did not vary significantly
across genotypes (data not shown; Kruskal–Wallis test; INL: WT,
n � 18 waves; Cx36 ko, n � 97 waves; Cx36/45 dko, n � 19 waves;
GCL: WT, n � 16 waves; Cx36 ko, n � 49 waves; Cx36/45 dko,
n � 17 waves). Cx36 ko and Cx36/45 dko retinas, however, ex-
hibited higher frequencies of uncorrelated interwave calcium
transients in the INL and GCL layers (Fig. 7A), consistent with
previous MEA recordings (Blankenship et al., 2011). In the case
of Cx36 ko, AIIs still participated in waves (Fig. 7B). Compared
with WT, the Cx36 ko and Cx36/Cx45 dko mice showed a higher
proportion of cells in the GCL displaying calcium transients dur-
ing waves(Figure 7C,D; Kruskal–Wallis test, p � 0.035; INL: WT,
n � 9 retinas; Cx36 ko, n � 21 retinas; Cx36/45 dko, n � 5 retinas;
GCL: WT, n � 4 retinas; Cx36 ko, n � 6 retinas; Cx36/45 dko, n �
4 retinas; differences found between Cx36 ko and WT in GCL;

Tukey–Kramer post hoc tests). Thus, gap junctions play a role in
controlling cell participation during waves.

Discussion
We have clarified the role that AIIs play in the generation and
propagation of glutamateric retinal waves. Using both two-
photon calcium imaging (Fig. 1) and targeted whole-cell record-
ings (Fig. 2), we demonstrated that AIIs participate in retinal
waves and that they are depolarized concurrent with neighboring
RGCs. AIIs’ intrinsic membrane properties, however, do not sup-
port a role in wave initiation for these cells, and we conclude that
AIIs do not serve as the pacemakers for glutamatergic retinal
waves. Rather AIIs appear to provide inhibition necessary to anti-
correlate activity in ON and OFF ganglion cells (Akrouh and
Kerschensteiner, 2013), and M-type K� conductances in AIIs
modulate signal propagation through the electrically coupled
network of AIIs and ON CBs (Figs. 3, 4). We hypothesize that
wave initiation depends upon oscillations in the membrane
potentials of CBs, and that the hyperpolarization-activated,
depolarizing Ih permits these oscillations to be synchronized
by synaptic inhibition (Figs. 5, 6). This conclusion is sup-
ported by previous observations in the adult retina that CBs
possess both Ih and calcium channel-dependent oscillatory
activity (Protti et al., 2000; Ma and Pan, 2003; Ma et al., 2005;
Toychiev et al., 2013). Of course, the channels underlying Ih

and M-type IK are likely to be found in interneurons other
than CBs and AIIs, respectively (Cangiano et al., 2007); our
data do not preclude contributions from such neurons to wave
generation and/or propagation. Indeed, we observe many
other neurons within the inner nuclear layer that are depolar-
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ized during retinal waves (Figs. 1, 4, 6, 7) indicating that there
are potentially several other elements in the network generat-
ing Stage 3 waves.

AII-CB interactions govern glutamatergic wave generation
and propagation
Our observations support the following model: bipolar cells os-
cillate intrinsically (Protti et al., 2000; Ma et al., 2005; Toychiev et
al., 2013), periodically depolarizing AIIs. Since AII depolariza-
tion persists in the Cx36 ko (Fig. 7), this depolarization is likely to
be mediated by glutamate spillover originating from ON CB ter-
minals. By virtue of their glycinergic output (which, in the ma-
ture retina, is to some types of OFF CBs and to some types of OFF
RGC, primarily �-type cells; Demb and Singer, 2012), AIIs in-
hibit OFF cells and anti-correlate activity in the developing ON
and OFF pathways (Akrouh and Kerschensteiner, 2013). Thus,
oscillations in ON and OFF CBs are normally anti-correlated

by synaptic inhibition: on depolarization it produces OFF in-
hibition, which acts to hyperpolarize OFF CBs and activate Ih;
when ON CBs hyperpolarize, OFF inhibition is relieved and Ih

serves to depolarize OFF CBs. This model is consistent with
the findings that OFF CBs hyperpolarize as a result of glycin-
ergic inhibition when ON RGCs receive excitatory input during a
glutamatergic wave and that synaptic inhibition generates the tem-
poral structure of RGC firing patterns during waves (Kerschen-
steiner and Wong, 2008; Akrouh and Kerschensteiner, 2013).

What remains to be determined is the source of the large-scale
coupling that inhibits activity in between waves. Our first hy-
pothesis was that by virtue of their electrical coupling to each
other and to ON CBs, AIIs would function to coordinate activity
among neighboring ON CBs and propagate activity within the
inner retina. The observation that AIIs continued to depolarize in
a correlated fashion during waves in the Cx36 ko mouse (Fig. 7),

-56 mV

-49 mV

O
FF

 R
G

C
A

II

10 s

-53 mV

Control ZD7288 (10 μM)C 

20 mV, 20 mV

D 

0.1

0 200seconds

0.7

0.1

0 200seconds

0.7

-53 mV
-66 mV

A ON CB

-55 mV -56 mV

200 ms

20 mV

B OFF CB

Control

“sag”

+15 pA

-30
0

+20 pA

-40
0

“sag”

Control ZD7288 (10μM Z) D7288 (10μM)

Inter-event Intervals - AII Inter-event Intervals - RGCs

Control
ZD7288

%

Figure 5. Ih blockade of HCN channels in CBs modulates frequency of spontaneous depolarizations. A, Current-clamp recording from ON CB in response to injected current in the absence and
presence of Ih antagonist ZD7288. Arrows, hyperpolarizing sag and rebound depolarization indicative of Ih. B, Current-clamp recordings from an OFF CB in response to injected current in the absence
and presence of ZD7288. C, Concurrent current-clamp recordings of spontaneous depolarizations in an AII and OFF RGC in whole-mount retina in the absence and presence of ZD7288. Note that the
AII and the OFF GC remain anti-correlated but that the hyperpolarization of the AII in the interwave interval is abolished by ZD7288. Control recording same as Figure 2. D, Summary data of effects
on interwave interval distributions. Dotted lines are control distributions from Figure 2.

1682 • J. Neurosci., January 28, 2015 • 35(4):1675–1686 Firl et al. • Role of AII Amacrine Cells in Glutamatergic Retinal Waves



however, indicated that gap junction cou-
pling was not the primary source of depolar-
ization during glutamatergic waves; rather,
depolarization appeared to be propagated
primarily by glutamate spillover (Blanken-
ship et al., 2009; Firl et al., 2013). Gap junc-
tions, then, may serve to correlate activity of
AIIs and ON CBs on a shorter timescale that
can be assessed by calcium imaging.

It is important to note that previous
studies have shown that glutamatergic
waves are blocked completely by meclofe-
namic acid (MFA), a gap junction antago-
nist (Akrouh and Kerschensteiner, 2013). In
contrast, RGCs from retinas of Cx36 ko,
Cx45 ko, and Cx36/45 dko mice exhibit
increased uncorrelated firing between
waves as well as increase temporally cor-
related firing between spatially distant
neurons during waves (Hansen et al.,
2005; Torborg et al., 2005; Blankenship et
al., 2011). The discrepancy between these
two findings—waves with altered sponta-
neous spiking in Cx36/45 dko mice versus
a complete blockade of activity by a gap
junction antagonist— could have multi-
ple causes: nonspecific effects of MFA,
developmental compensation in the
Cx36/45 dko, or involvement of connex-
ins other than Cx36 and Cx45 in glutama-
tergic waves. The relative strength of these
arguments has been discussed previously
(Blankenship et al., 2011).

We propose that decreased neural ac-
tivity during the interwave interval arises
from synaptic inhibition. Based on the
dramatic effect that blocking Ih has on the
spatial correlations of neural activity dur-
ing waves, we hypothesize that blocking Ih

decouples the intrinsic activity of CBs
from synaptic inhibition. In normal reti-
nas, glutamate released during a wave ex-
cites inhibitory interneurons, which in
turn synchronously hyperpolarizes CB
terminals. As this inhibition is relieved,
Ih causes CBs to depolarize, initiating
the next wave. We propose that gap
junctions containing Cx36 and Cx45 co-
ordinate this inhibition and, therefore,
coordinated inhibition underlies the
silences between waves. This idea is con-
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sistent with our observation that uncorrelated activity in the
interwave interval is increased in the absence of gap junction
coupling.

How do glutamatergic waves compare with “wave-like”
phenomena in the developed retina?
It is instructive to compare glutamatergic waves with examples of
wave-like activities observed in the mature retina. In the normal,
developed retina, blockade of synaptic inputs to bipolar cells in-
duces calcium channel-dependent oscillations in bipolar cell-
membrane potential; a potential role for Ih in this process has not
been investigated (Toychiev et al., 2013). These changes to mem-
brane potential appear to induce wave-like activity that propa-
gates across the inner retina via a combination of electrical
transmission and glutamate spillover that drives spiking in gan-
glion cells via glutamatergic CB¡RGC synapses (Toychiev et al.,
2013). These mechanisms of propagation are similar to those that
appear to underlie glutamatergic waves (Blankenship et al., 2009,
2011; Firl et al., 2013). Thus, it would seem that the neural sub-
strate of the retina is designed to propagate activity induced by a
variety of cellular processes; indeed, it was found that in the ab-
sence of synaptic transmission, pharmacological activation of
calcium channels could induce propagating waves of neural ac-
tivity in the developing retina (Singer et al., 2001; Torborg et al.,
2004).

In the degenerating retina of the rd1 mouse, a model for hu-
man retinitis pigmentosa, oscillatory spontaneous activity is ob-
served in RGCs (Margolis et al., 2008, 2014; Stasheff, 2008;

Menzler and Zeck, 2011; Yee et al., 2012;Menzler et al., 2014).
Though the spatiotemporal patterns of activity in the rd mouse
differs from that of retinal waves (Menzler and Zeck, 2011; Mac-
cione et al., 2014), the activity does share many circuit features.
This activity originates in the inner retina and is propagated to
RGCs via CB¡GC synapses (Borowska et al., 2011; Trenholm et
al., 2012; Choi et al., 2014; Margolis et al., 2014). Activity in
neurons in the INL does not appear to result solely from calcium
channel-mediated bursting (Borowska et al., 2011). As it is
blocked by antagonists of gap junctions, it has been suggested
that this activity is an emergent property of a degenerated
network (Trenholm et al., 2012; Yee et al., 2012) and can be
induced in healthy retinas in response to photoreceptor
bleaching (Menzler et al., 2014). More recently, however, an
alternate hypothesis has emerged: oscillations in the rd1 retina
emerge from intrinsic bursting in AIIs; gap junctions are rel-
evant only insofar as they permit ON CBs, hyperpolarized
because of the lack of depolarizing photoreceptor input, to
hyperpolarize the AII membrane potential to a level that per-
mits bursting (Cembrowski et al., 2012; Choi et al., 2014; Mar-
golis et al., 2014). The idea that electrical coupling allows ON
CBs and AIIs to influence each other’s behaviors is reinforced
by a recent study of light-evoked signaling through the AII
network (Grimes et al., 2014).

Together, observations from developed normal and rd1 reti-
nas indicate that activity arising in the inner retina as a result of a
variety of cellular processes can become oscillatory. This oscilla-
tory activity can be propagated through the retina by a number of
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mechanisms, and the AII, by virtue of its position in both gap
junction-coupled and inhibitory circuits, can play a significant
role in this propagation.
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