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Mitochondrial quality control in insulin resistance and diabetes

Jonathan Wanagat* and Andrea L. Hevener†

*UCLA David Geffen School of Medicine, Department of Medicine, Division of Geriatrics, Los 
Angeles, CA 90095

†UCLA David Geffen School of Medicine, Department of Medicine, Division of Endocrinology, 
Diabetes and Hypertension, Los Angeles, CA 90095

Abstract

Diabetes is increasingly prevalent and a primary contributor to the major causes of disability and 

death. Despite the central role of mitochondria in metabolism, the relationship between 

mitochondrial quality and insulin action remains unclear. An increasing number of genetically-

engineered and aging rodent models are shedding additional light on the mitochondrion’s role in 

regulating glucose metabolism and insulin sensitivity by modulating mitochondrial morphology, 

function and quality control pathways. Clarification of the role of mitochondria in regulating key 

cellular processes including metabolic flux, autophagy, and apoptosis will drive the development 

of novel therapeutic strategies for maintaining mitochondrial quality and improving human health.

Diabetes currently affects nearly 10% of the US population with an additional 30% of the 

population categorized as pre-diabetic because of marked metabolic dysfunction. 

Interventions to address this epidemic will require understanding the full spectrum of diverse 

etiologies that contribute to the pathogenesis insulin resistance and type 2 diabetes. As a 

central player in metabolism and the “powerhouse” of the cell, the mitochondrion has long 

been implicated in the regulation of metabolic flux and insulin action although, to date, this 

remains an active and contentious area of research.[1,2] A number of recent reviews have 

examined the role of mitochondrial quality control and dysfunction in the regulation of 

insulin sensitivity and pathobiology of diabetes.[3,4] Here we present additional findings 

from rodent models that are contributing to our understanding of the mitochondrion’s 

complex role in regulating insulin sensitivity. The integration of this information has allowed 

us to postulate potential pathways of therapeutic intervention.
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The specific type of mitochondrial damage impacts insulin sensitivity

The mitochondrion is the primary site of cellular oxidative respiration, where ~90% of 

cellular oxygen contributes to metabolism. During oxidative respiration, ~1–5% of this is 

converted to reactive oxygen species as byproducts of the electron transport complexes 

(ETCs).[5] Therefore mitochondria are the primary cellular source and target of endogenous 

reactive oxygen species (ROS). Although the production of ROS is shown to be critical for 

the maintenance of insulin action, [6] chronic elevation of ROS is detrimental to the cell by 

promoting lipid peroxidation, DNA damage, and organelle bilayer damage. Oxidative stress 

of mitochondrial origin has long been implicated in aging and the pathobiology of select 

chronic diseases. Mouse models have been generated to modulate oxidative damage by 

modulating ROS production or scavenging to test the free radical hypothesis of aging and 

chronic disease. Models of increased oxidative damage include knockouts of superoxide 

dismutase (SOD)1 and SOD2, and glutathione peroxidase.[7–10] By comparison, over-

expression of these antioxidant enzymes reduced oxidative damage.[11–13] Variability in 

outcomes including lifespan and endpoints associated with age-related diseases have 

challenged a causal role of oxidative damage in aging; alternatively, these findings may 

indicate that the specific type and location of oxidative defense is critical. Several oxidative 

stress sensitive or resistant mouse models (e.g., knockout or transgenic models of superoxide 

dismutases, catalases, glutathione peroxidases, etc.) have been examined to understand the 

effects of oxidant status on metabolism and insulin sensitivity and the results of these studies 

are described in greater detail in a recent review.[14]

One model that does support the hypothesized role of mitochondrial oxidative stress in 

select settings of aging and insulin resistance is the mitochondrial catalase (mCAT) mouse in 

which the antioxidant enzyme catalase is targeted to the mitochondrial matrix.[13] In the 

mitochondrial matrix, catalase removes hydrogen peroxide, a by-product of mitochondrial 

metabolism (Figure 1A). Mitochondrially-targeted catalase expression was detected in brain, 

skeletal muscle and in the heart, and this mouse model was shown to have increased mean 

and median lifespan (i.e., by 5 and 5.5 months respectively), reduced cardiac pathology, 

delayed cataract formation, and reduced cancer incidence compared to wildtype littermates. 

In addition to the beneficial effects of increased oxidative defense on lifespan [15], the 

mitochondrial expression of catalase protected against insulin resistance induced with aging 

and high fat feeding.[16,17] These phenotypic outcomes in the mCAT mouse were 

associated with reduced hydrogen peroxide production and oxidative damage, and 

diminished mtDNA mutation in cardiac and skeletal muscle.

Of interest, mCAT reduced mitochondrial hydrogen peroxide production in mouse striated 

muscle by ~45% independent of mouse age. The reduction in hydrogen peroxide production 

by mCAT protected against age-related mitochondrial protein and DNA damage that 

translated into preserved rates of oxygen consumption and mitochondrial ATP synthesis.[17] 

The maintenance of muscle metabolism during aging mirrored the preservation of whole 

body energy expenditure. Moreover, the intrinsic protection of mitochondrial function in 

mCAT mice protected animals from age-associated decline in insulin sensitivity. Similar to 

the protection from mitochondrial dysfunction and insulin resistance observed in mCAT 

mice, animals treated with a pharmacological mCAT mimetic, SS-31, were protected from 
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age and high fat diet-induced metabolic dysfunction.[16] These findings showing reversal of 

the age-associated decline in energy expenditure and muscle insulin sensitivity by mCAT 

associated with the maintenance of mitochondrial quality and function suggests an important 

link between mitochondrial health, insulin action, and metabolic homeostasis. Collectively, 

studies in mitochondrially-targeted mouse models, including the mCAT model, indicate that 

the specific type of mitochondrial stress or damage may dictate the resulting metabolic 

phenotype.

The degree of mitochondrial damage impacts insulin sensitivity

To test the impact of mtDNA health on metabolic homeostasis and lifespan, several 

laboratories have studied the polymerase gamma mutator mouse, a knock-in line generated 

by mutating the proofreading domain of DNA polymerase gamma (i.e., the mitochondrial 

DNA polymerase, Figure 1B).[18,19] Mutation of the proof-reading domain of Polg1 results 

in mtDNA point and deletion mutations that accumulate to high levels in all tissues. The 

homozygous polymerase gamma mutant mice show a severely decreased lifespan 

(maximum survival of 460 days) and a variety of phenotypes suggestive of accelerated 

aging. If mitochondrial dysfunction leads to insulin resistance, then the high degree of 

mitochondrial dysfunction including reduced oxidative capacity in the polymerase gamma 

mutator mice might be predicted to promote hyperglycemia, however recent studies of the 

homozygous mutator mice found resting hypoglycemia, higher respiratory exchange ratios, 

and enhanced glucose tolerance.[20] Thus, because of the marked impairment in oxidative 

function and the inability of the cell to utilize fatty acids as a fuel source, the mutator mouse 

is forced to rely more heavily on glucose derived from hepatic gluconeogenesis and muscle 

glycolysis to drive ATP production.

In the case of the homozygous mutator mice, the extensive mitochondrial damage starting 

early in life and subsequent adaptation to the overwhelming metabolic defects may confound 

a clear view of the mitochondrion’s role. This perspective is supported by the finding that 

young, pre-progeroid polgamma mutator mice (prior to the development of extensive 

mitochondrial dysfunction), appear to exhibit starvation as indicated by reduced body fat, 

lower glucose levels, increased ghrelin, decreased leptin, and dramatically increased 

fibroblast growth factor 21 levels.[21] The heterozygous polymerase gamma mutator mice 

are an interesting counterpoint to the homozygous mutator mice, as heterozygosity fails to 

promote the high levels of mtDNA deletion mutations observed in muscles from 

homozygous animals.[22] The absence of increased mtDNA deletion mutations in the 

heterozygous mutator mice may underlie the improvement in lifespan compared to 

homozygous mice. Moreover, in contrast to the homozygous animals, emerging unpublished 

data from the Hevener laboratory shows that heterozygosity confers glucose intolerance and 

an obesity phenotype. Thus, the heterozygous mutator mice may provide, perhaps in 

combination with other genetic mouse models of altered mtDNA quality control, a model 

that better recapitulates the degree of mitochondrial damage and dysfunction observed in 

aging and with chronic disease.
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The tissue localization of mitochondrial damage impacts insulin sensitivity

The mouse models discussed above center on global alterations in mitochondrial quality and 

function. Another possible link between mitochondrial DNA quality and insulin sensitivity 

lies in the focal accumulation of mtDNA deletion mutations in aging muscle and subsequent 

muscle mass loss. Sarcopenia, the loss of skeletal muscle mass and function[23], has been 

implicated in the pathogenesis of insulin resistance and diabetes.[24–26] In humans, 

sarcopenia begins at ~25 years of age and contributes to a 10% loss of muscle mass by age 

50, and a 50% by age 80 [27–29]. The etiology of sarcopenia is multifactorial and currently 

the proposed mechanisms contributing to the decline in muscle mass with aging include 

increased contraction-induced injury[30], altered satellite cell regulation[31–33], motor unit 

decline[34], and endocrine dysfunction (e.g., insulin-like growth factor signaling)[35].

Declining muscle mass with aging in humans has been attributed to both fiber loss and fiber 

atrophy [36] that is mediated by apoptosis and necrosis [37,38]. Down-regulation of 

apoptosis signaling preserves muscle mass and enhances muscle function in aged animals. 

Conversely, stimulation of apoptotic signaling accelerates muscle aging and sarcopenia, for 

example, in mice lacking the antioxidant enzyme copper/zinc-dependent superoxide 

dismutase,[39] or animals with an interleukin 10-deficiency.[40] In aging human muscle 

biopsies, increased levels of apoptosis have been detected by terminal deoxynucleotidyl 

transferase dUTP nick-end labeling (TUNEL).[41–43] Concomitant to apoptosis, cellular 

necrosis is another mechanism of muscle fiber loss and is readily observed in aging rat 

muscle.[44] Despite the clear roles of apoptosis and necrosis in sarcopenia, the initiating 

factors triggering activation of these cell death pathways have remained elusive.

Recently, the focal accumulation of mtDNA deletion mutations and their associated ETC 

deficiencies were identified as the predominant cause of muscle fiber apoptosis and necrosis 

in aging skeletal muscle.[45] Cheema et al. used five diverse markers of apoptosis and 

necrosis to localize cell death events in individual quadriceps muscle fibers of 36-month old 

rats.[46] Fibers positive for markers of apoptosis or necrosis were identified and these fibers 

were characterized for a loss of ETC activity by sequential and serial staining for 

cytochrome c oxidase (COX) and succinate dehydrogenase (SDH). Seventy percent of 

myofibers positive for activated caspase-3 (an apoptosis marker) lacked COX activity (and 

are therefore ETC deficient), while 86% of myofibers positive for C5b-9 and 78% myofibers 

positive for CD68 (both necrosis markers) were ETC deficient. Importantly, apoptosis and 

necrosis were observed in the longest and most atrophic ETC-deficient fibers, which argues 

against cell death causing the ETC deficiency. These data indicate the significance of ETC 

deficient fiber segments as the primary driver of muscle cell apoptosis and necrosis 

associated with fiber loss in sarcopenia.

Age-induced ETC-deficient muscle fibers arise from the intracellular, clonal accumulation 

of mitochondrial DNA deletion mutations.[47–49] Mitochondria contain their own unique 

16 kb circular DNA genome that encodes 13 proteins of the ETC. The mitochondrial 

genome is abundant in most nucleated cells including 2 to 10 DNA copies per 

mitochondrion [50] and 10–100 mitochondria per cell [51]. During aging, deletion mutations 

occur in mtDNA where a portion of the genome is eliminated by unknown mechanisms. 
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When mtDNA deletion mutation containing genomes accumulate to >90% of the total 

mtDNA within a cell, the defective genomes interfere with the normal transcription and 

translation of the mitochondrially-encoded ETC components and promote segmental ETC 

deficiency. Mitochondrial DNA deletion mutations have been liked with segmental ETC 

deficiencies in muscle from aged rats [52], monkeys [53] and humans [54]. Although the 

specific deletion mutation varies from fiber to fiber, within a single fiber, ETC-deficient 

segments contain identical mtDNA deletion mutations. These findings suggest that once a 

mitochondrial deletion mutation occurs, it expands clonally from its point of origin 

throughout the fiber[52]. Because multiple copies of the mtDNA exist in the mitochondrial 

reticulum, both wild-type and mutant mtDNA coexist in a state of heteroplasmy. The cellular 

impact of heteroplasmy is largely dependent on the mutant to wild-type mtDNA ratio. The 

expression level at which specific mutations cause a segmental ETC deficit is termed the 

phenotypic threshold effect.[55,56] Herbst et al. quantified absolute levels of mutant and 

wild-type mtDNA along the length of skeletal muscle fibers. The mtDNA deletion mutations 

approached 100% of the mitochondrial genomes within the ETC deficient fiber segment and 

the threshold level of mutation for expression of the ETC deficient phenotype was 90% in 

both rats [49] and humans [54]. Mutation levels below 90% of total mtDNA do not express 

an ETC deficit or fiber apoptosis or necrosis.

In aggregate, these studies provide a molecular basis for the muscle fiber loss that 

contributes to sarcopenia, and this muscle mass loss, in combination with other muscle 

intrinsic and extrinsic factors, is likely to underlie metabolic dysfunction and insulin 

resistance as well as the drive the development of type 2 diabetes. (Figure 2).[45] In this 

theoretical model, focal mtDNA deletion mutation accumulation is the critical process that 

appears to exceed mitophagy in aging muscle fibers and culminates in fiber loss. This model 

highlights features of this hypothesis that cannot be replicated currently in cell culture or by 

studying other experimental mouse models including: requirements for aged cells, 

somatically derived mtDNA deletion mutations, mutation accumulation in adult, 

differentiated muscle fibers and fiber breakage and loss. If mechanisms of mtDNA deletion 

mutation initiation and accumulation could be identified, then therapeutic approaches to 

control mtDNA deletion mutation induced fiber loss and the ensuing metabolic dysfunction 

could be devised.

The response of mitochondrial quality control pathways impacts insulin 

sensitivity

The role of mitochondrial turnover, or mitophagy, in the maintenance of mitochondrial 

quality and insulin sensitivity is an emerging area of investigation. Cellular stress resistance 

against metabolic insult is critical for disease prevention and longevity [57–59]. The heat 

shock response is an evolutionarily conserved defense system engaged during stress (e.g., 

nutrient oversupply) so as to maintain cellular homeostasis. Heat shock proteins are a 

conserved family of chaperones responsible for protein folding and are identified by 

molecular mass. HSP72 is the isoform most highly induced during cellular stress and with 

chronic endurance exercise [60]. Interestingly, basal HSP72 levels and induction response to 

cellular stress are diminished in muscle from obese and type 2 diabetic patients [61,62]. 
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Conversely, HSP72 expression in skeletal muscle prevents obesity and insulin resistance in 

mice, but the underlying mechanisms of this observation are largely unresolved.[63]

To better understand the role of HSP72 in regulating insulin sensitivity genetic and 

pharmacological interventions were performed to study the impact of loss- and gain-of-

HSP72-function on muscle metabolism and insulin action. Gain of function approaches 

protected mice from genetic- and high fat diet-induced obesity and insulin resistance while 

enhancing oxidative metabolism via increased mitochondrial mass.[63] As would be 

expected, these animals, overexpressing HSP72 in skeletal muscle, showed an enhanced 

running capacity including a 3-fold increase in running time to exhaustion.

In contrast, loss of HSP72 function conferred an obesity/insulin resistance phenotype 

marked by muscle lipid accumulation and reduced oxidative capacity. Transmission electron 

microscopy showed that HSP72 deletion produced an enlarged, hyper-fused muscle 

mitochondrial network. The aberrant mitochondrial morphology in muscle of KO mice 

prompted the interrogation of mitochondrial fission-fusion-mitophagy dynamics. Using 

molecular approaches to perturb mitochondrial membrane potential and redox status, it was 

determined that HSP72 is a critical regulator of stress-induced mitochondrial triage 

signaling. In the context of HSP72 deletion, it was shown that Parkin, an E3 ubiquitin ligase 

known to regulate mitochondrial turnover, mitophagy, was unable to ubiquitinate and control 

its own protein expression or that of its central target the mitochondrial fusion proteins, 

mitofusins (Mfn). Degradation of the outer mitochondrial membrane fusion proteins allows 

for the separation and isolation of damaged mitochondrial contents for autophagosome 

incorporation and lysosomal degradation.[64] In wild-type cells, it was shown that HSP72 

rapidly translocates to depolarized mitochondria prior to Parkin recruitment and 

immunoprecipitates with both Parkin and Mfn2 only after specific mitochondrial insult, i.e., 

carbonyl cyanide m-chlorophenyl hydrazone, CCCP. At the same time as this work, the 

Youle laboratory, using high throughput proteomics, confirmed that HSP72 is a Parkin 

binding partner.[65] In addition to an impairment in Parkin action, feedback inhibition of 

macroautophagy (p62 and LC3B processing) and mitochondrial fission signaling of Drp1 

was observed.

To determine whether the impaired Parkin action could account for the reduction in oxygen 

consumption and insulin action of the HSP72 KO mouse line, primary myotubes from 

Parkin null animals were generated. Real-time respirometry showed a significant reduction 

in oxygen consumption as well as basal and maximally stimulated ATP synthesis. Insulin-

stimulated glucose disposal was reduced by 85% in myotubes lacking Parkin.[66] Although 

the Parkin null mouse is protected against HFD-induced obesity and insulin resistance due to 

malabsorption and compensatory adaptations in adipose tissue, we speculate that muscle-

specific deletion of Parkin using the Lox-Cre approach should phenocopy findings observed 

in the Parkin null myotubes. In support of this notion, studies by David Walker and 

colleagues have shown that Parkin overexpression in Drosophila promoted smaller 

mitochondria, a reduction in aged-induced protein aggregates in flight muscle, and improved 

longevity in both males and females.[67] Similar studies in mammalian models have yet to 

be explored however these gain-of-function studies in flies are internally consistent with the 

loss-of-function studies in murine cells. These data suggest that Parkin may be a critical 
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mediator of mitochondrial function and insulin sensitivity at least in skeletal muscle, and 

that pharmaceutical strategies to bolster Parkin action with aging may improve metabolic 

health (Figure 3). Although HSP72 chaperones a host of regulatory proteins and 

transcription factors, its role in controlling mitochondrial function and health appears central 

for its beneficial effects on insulin sensitivity. Collectively findings suggest that strategies to 

maintain HSP72 may provide therapeutic benefit to enhance mitochondrial quality and 

insulin sensitivity to combat complications associated with metabolic diseases including 

type 2 diabetes. Since BGP-15, an HSP72 co-inducer, is currently in human clinical trials for 

the treatment of type 2 diabetes, data will be emerging in short order confirming or refuting 

the notion that HSP72 improves insulin sensitivity by modulating mitochondrial function. 

Regardless of the clinical outcome, additional molecular studies focused on interrogating the 

mechanistic link between mitochondrial quality and insulin action are warranted.

Conclusion

The ongoing societal impact of diabetes necessitates improved preventive measures and 

therapeutic interventions. Considerable evidence points to mitochondria as both an etiology 

and likely therapeutic target in the fight against diseases associated with metabolic 

dysfunction including type 2 diabetes. However as we have attempted to illustrate in this 

review, if we want to succeed at developing novel strategies to combat metabolic 

dysfunction by targeting the mitochondrion we must first answer the remaining questions 

regarding the type, degree and localization of mitochondrial damage and dysfunction 

contribute to impaired metabolism, as well as elucidate the cellular pathways responsible for 

maintaining mitochondrial quality (Figure 4). The mitochondrion’s centrality in cellular 

processes predicates its role in complex diseases associated with metabolic dysfunction.
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Figure 1. Genetically engineered mouse models of altered mtDNA quality
Panel A, the mCAT mouse has mitochondrially-targeted catalase that neutralizes 

endogenous hydrogen peroxide. Panel B, the polgamma mutator mouse expresses a mutant 

polymerase gamma (MP), which lacks proofreading function, resulting in both point and 

deletion mutations in the mtDNA.
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Figure 2. MtDNA Deletion Mutation Hypothesis of Muscle Fiber Loss
The top panel illustrates an aged healthy muscle fiber. Green mitochondrion represent 

somatically derived mtDNA deletion mutation event that occurs within a single 

mitochondrion in an individual muscle fiber. Over time, deletion mutations accumulate until 

they surpass the phenotypic threshold for disrupting the transcription and translation of 

mitochondrial ETC subunits. Accumulation of deletion mutations promotes the loss of 

cellular respiration, oxidative phosphorylation and the production of ATP. This metabolic 

insult contributes to muscle atrophy including fiber breakage and loss by apoptosis and 
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necrosis. This process is repeated in other muscle fibers and accelerates with advancing age 

cumulatively in sarcopenia.
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Figure 3. Proposed role of HSP72 in stress-induced mitophagy and insulin action
Mitochondrial stress induces rapid movement of HSP72 to the mitochondrion where it 

interacts with Mfn2 on the outer mitochondrial membrane. At a later time point, Parkin 

translocates to the mitochondrion and complexes with HSP72 and Mfn2. The interaction is 

specific to the mitochondrial stress, as CCCP (induced reduction in mitochondrial membrane 

potential), but not rotenone or antimycin, induces HSP72 mitochondrial translocation. In the 

context of HSP72 deficiency, mitochondrial stress fails to induce Parkin translocation and 

interaction with mitochondrial membrane proteins. Parkin, in the absence of HSP72, is 

unable to ubiquitinate itself or its targets, and in consequence, cytosolic Parkin and 

mitochondrial Mfn2 protein levels become elevated thus promoting the fusion and retention 

of unhealthy mitochondria to the network. We propose that this mechanism underlies the 

impairments in oxidative metabolism and the marked insulin resistance phenotype observed 

in HSP72-KO animals.[66]
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Figure 4. Interplay of mitochondrial quality control and mitochondrial dysfunction
Mitochondrial dysfunction encompasses reductions in mitochondrial content, ETC content 

and function and biogenesis. Subsequent decreases in substrate utilization trigger lipid 

accumulation and increased ROS production from the ETC and a vicious cycle of further 

mitochondrial dysfunction. Cellular mitochondrial quality control mechanisms including 

ROS scavenging, mitophagy, fission and fusion and biomolecular repair act to intervene. The 

quality control mechanisms offer therapeutic targets for maintaining mitochondrial function. 

Adapted from [3] and [4]. MnSOD, manganese superoxide dismutase. PINK1, PTEN-

induced putative kinase 1. MFN1, mitofusin-1. MFN2, mitofusin-2. DNM1, dynamin 1. 

FIS1, mitochondrial fission 1 protein. MsrA, methionine sulfoxide reductase. MsrB, 

methionine sulfoxide reductase B.
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