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The abundance and size distribution of marine organic particles are two major factors

controlling biological carbon sequestration in the ocean. These quantities are the result of

complex physical-biological interactions that are difficult to observe, and their spatial and

temporal patterns remain uncertain. This dissertation describes our analysis of particle size

distributions (PSD) and the resulting export, from a global compilation of in situ Underwater

Vision Profiler 5 (UVP5) optical measurements.

In Chapter 2, we demostrate the ability to extrapolate sparse UVP5 observations to the

global ocean from well-sampled oceanographic variables, using a machine learning algorithm.

We reconstruct global maps of the biogenic PSD parameters (biovolume and slope) for parti-

cles at the base of the euphotic zone. These reconstructions reveal consistent global patterns,

with high chlorophyll regions generally characterized by high particle biovolume and flatter

PSD slope, i.e., a high relative abundance of large vs. small particles. The resulting negative

correlations between particle biovolume and slope further suggest amplified effects on sinking

particle fluxes. Our approach and estimates provide a baseline for understanding the export

of organic matter from the surface ocean.

Chapter 3 describes how applying a simple empirical relationship to our reconstructions
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of the PSD, we can calculate the total export. In this Chapter, we explore the seasonal

and spatial patterns of carbon export. Taking advantage of the high vertical resolution

of the UVP5, we quantify the export from the surface using two previously established

depth horizons. We identify a larger export from the Southern Ocean than most other

models of export. Similarly, we find the lower part of the euphotic zone to be dominated by

heterotrophy, rather than autotrophy. Being able to reconstruct the PSD and particle flux

at multiple depths allows for further exploration of the full 3-dimensional particle field.

Chapter 4 describes a full 3-D model, where depth specific export is calculated, high-

lighting significant deviations from idealized flux profiles and quantify the efficiency of the

biological pump globally. Our results reveal the primary drivers of carbon storage and se-

questration and highlight the importance of transport by diel vertical migration of marine

animals. These estimates of the global particle field serve as a baseline for future model-

based estimates of particulate flux, and as an independent estimate of the efficiency of organic

matter storage in the ocean.
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CHAPTER 1

Introduction: The importance of the biological pump

The ocean absorbs inorganic carbon from the atmosphere, in the form of carbon dioxide

(CO2). This CO2 is then taken up and utilized by phytoplankton to build their biomass,

which accumulates in the water column as suspended particles. The fate of these particles, in

turn, controls major oceanic biogeochemical cycles, and the ability of the ocean to sequester

atmospheric CO2 (Broecker et al., 1982; Sarmiento & Gruber, 2006a; Kwon et al., 2009).

Particles can be remineralized by microbial degradation and grazing by zooplankton (Karl

et al., 1984; Steinberg et al., 2008; S. L. Giering et al., 2014), aggregate and disaggregate

following physical and biological interactions (Kiørboe et al., 1990; Jackson, 1990; Dilling

& Alldredge, 2000; Burd & Jackson, 2009; Briggs et al., 2020) and sink out of the surface

layers to transfer carbon and nutrients to the ocean interior (K. O. Buesseler et al., 2007;

J. S. Turner et al., 2017; Boyd et al., 2019). Marine particles are hotspots of microbial

activity and diversity (Karl et al., 1984; DeLong et al., 1993; Church et al., 2021) provide

the bulk of energy that sustain mesopelagic and abyssal ecosystems (S. L. C. Giering et

al., 2020), and eventually supply materials to the ocean sediment, where burial sequesters

them for geological timescales (Sarmiento & Gruber, 2006a; Dunne et al., 2007). The set of

processes responsible for generating, exporting, and remineralizing organic matter production

are collectively known as the biological pump.

The strength and pattern of the global biological pump is dependent on the ability of

organic matter to escape shallow remineralization and sink into the interior ocean, often

referred to as the particle transfer efficiency (K. O. Buesseler & Boyd, 2009; Weber et al.,

2016). Although organic matter is initially quite small (micrometer scale), aggregation, and

coagulation, as well as repackaging of organic matter, can generate large enough particles

1



that sink efficiently through the water column (Boyd et al., 2019; Burd & Jackson, 2009).

Disaggregation and consumption of particulate matter by animals results in a reduction

of size and thus sinking speed (Cram et al., 2022). Similarly, the amount of carbon in a

particular particle is approximated by the size of the organic matter (Kriest, 2002; Guidi et

al., 2008; Kiko et al., 2017). Ultimately, the rates of these particles transformations, sinking

speed, and carbon contents are thought to be size-dependent (Kiørboe et al., 1993; Devries et

al., 2014). Thus, the particle abundance in different sizes (i.e., the Particle Size Distribution;

PSD) is considered a primary determinant in controlling the ocean’s biological pump.

This Chapter reviews the current understanding of the biological pump and the different

methods used to assess its strength. The goal of this Chapter is to provide a brief and broad

overview of current literature relevant to this work. Each individual Chapter will provide an

introduction and background relevant to that specific self-contained project.

1.1 Previous estimates of export

Satellite observations have been previously shown to estimate the size distribution of

organic matter in the surface ocean (Kostadinov et al., 2009, 2010a,b). However, satellite

retrievals miss larger particles that more directly contribute to sinking particle export and

are limited to the upper few meters of the ocean. Thus satellites provide little information

on particle transformations, interactions, and fluxes from the surface ocean.

Despite their limitations, satellite retrievals of organic matter have historically been used

in conjunction with ocean models to estimate the total organic matter exported from the sur-

face ocean (Siegel et al., 2014; DeVries & Weber, 2017). Current estimates of organic matter

export yield a wide range of values, seasonality, and spatial patterns, with some discrepancies

depending on the methods used (Quay et al., 2020). Biogeochemical models yield a global

export of 4-6 PgC/y (Siegel et al., 2014), but can reach up to 10 PgC/y when tuned to

match in situ profiles of nutrients and other biogeochemical tracers (DeVries et al., 2017). A

similar range is suggested by recent global IPCC-class Earth System Models, which produce

global carbon exports from 2.4 to 12 PgC/y, with an average of 7.4 PgC/y (Séférian et al.,
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2020). Data-driven estimates combining satellite-based primary production with empirical

estimates of particle export ratios often result in larger fluxes (Dunne et al., 2007; Laws et

al., 2011; Guidi et al., 2016). Regional particulate matter export patterns predicted by these

methods also vary substantially; with some models predicting strong gradients between the

high export in productive waters and muted export in oligotrophic waters (Dunne et al.,

2007), while others suggest more muted variations (DeVries et al., 2017). Differences in

regional export fluxes have been attributed to methodological limitations, including scarcity

and variability of in situ data used to constrain models, variability in satellite-based pri-

mary production algorithms, and models not able to fully capture underlying physical and

biological processes.

While quantifying the surface export is of importance, it is does not wholly reflect the

ocean’s ability to respire and trap carbon. The strength of remineralization in the interior

ocean is often reflected through the particle transfer efficiency, or the ratio of organic matter

at 1 km to the base of the euphotic zone (K. O. Buesseler & Boyd, 2009; Cram et al.,

2018; Weber et al., 2016). Quantification of this efficiency is typically done with coarse

vertical resolution of sediment trap observations, or by prescribing a particle flux attenuation

based on historic measurements (Martin et al., 1987). Previous model based estimates, on

the global scale, found a spatial pattern of export efficiency to reflect that of the surface

productivity and highlights the need for more observationally constrained estimates (Weber

et al., 2016; Cram et al., 2018).

Recent advances in the field of ocean optics have dramatically increased the particulate

matter observations in the ocean and allow for direct quantification of the PSD. The Un-

derwater Vision Profiler 5 (UVP5) is an optical particle counter that provides the in situ

particle abundance for large sinking class particles (80µm−2.6cm) in a given sampled volume

(Picheral et al., 2010). The UVP5 consists of a camera attached to the CTD rosette which

can collect images at high frequency as it is lowered in the water column. Vertical profiles

of PSD from the UVP5 are commonly taken at up to 20 images per second, with downward

speeds of 1 m/s as deep at 6 km (Picheral et al., 2010). Since 2008, UVP5s have been rou-

tinely deployed on oceanographic cruises, in all ocean basins and seasons. These PSD’s can
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then be combined with empirical relationships relating particle size and abundance to sink-

ing fluxes (Kriest, 2002; Guidi et al., 2008; Kiko et al., 2017), which can be tuned against a

global data set of sediment trap and thorium-derived particle flux observations (K. M. Bisson

et al., 2018).

1.2 Science questions and objectives

This dissertation will investigate the ocean’s biological pump and is centrally motivated

on understanding the main processes affecting the climatological distribution of the resulting

export.

Specifically, Chapter 2 and 3 are focused on the export from the surface ocean, specifically

addressing the questions:

• How does the PSD vary globally and temporally?

• What is the resulting global carbon flux from the PSD?

• How is the export pattern determined by export horizon?

• What factors in the ocean control the size distribution of organic matter, and the

resulting export?

The remainder of the dissertation will take a deeper look into this export, specifically

examining what happens to organic matter below the surface of the ocean. I quantify the

depth dependence on this organic matter, and address the following motivating questions?

• What is the transfer efficiency of organic matter, and how does this vary regionally?

• What are the primary controls on the pattern of export removal from the sinking pool?

• How much carbon makes it into the deep ocean, and is sequestered over long timescale?
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1.3 Outline

In this first part of the dissertation, I have outlined the previous estimates of organic

carbon export from the surface ocean, and the various approaches and considerations that

need to be made. I have similarly highlighted the importance of a new estimate, and the

overarching principals driving the rest of this dissertation. In general, each Chapter is focused

on using new data and methods to understand a poorly understood, but central process in

ocean biogeochmistry.

The first two Chapters take a classic approach from the surface ocean providing an esti-

mate of what ”leaves the surface” ocean which has many implication ranging from ecological

to climatic importance. The last part of the dissertation changes focus to what happens

below the surface ocean, this final step increases the model complexity but allows for a truly

data-driven exploration into subsurface particle dynamics.

In Chapter 2, I investigate the particle size spectra from the surface ocean. There are

many size-dependent reactions that can occur at the interface of large organic particles,

and using a few simple assumptions I am able to fully quantify the abundance of organic

matter. This Chapter employs use of machine learning model to globally extrapolate sparsely

measured data into a global monthly climatology. In this I find a dynamic seasonal cycle of

the particulate matter, additionally I explore some important de-coupling of the two PSD

parameters.

In Chapter 3, I extend the particle size spectra into a discussion about the particle export

itself. I use a size-based relationship to build a model of export from two different depth

horizons; the euphotic zone and the maximum mixed layer. The resulting export from each

horizon should provide a quantification of carbon export for either an ecological approach or a

climatic approach. I present these resulting carbon fluxes, and identify significant deviations

from previous models, and highlight the importance is distinguishing these depths.

In Chapter 4, I copy the same general model from the previous two Chapters, and analyze

the changes in carbon export with depth. In this Chapter I present the resulting sub-surface

calculations of particle export and describe the pattern of attenuation seen. These results
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challenge the idea that a simple depth dependent relationship can be drawn to estimate the

flux at depth. These results are the first of its type, using a size fractionated export model

to understand the interior ocean particle dynamics, and serves as a framework for future

data-driven exploration and as a baseline for large scale ocean models.

Finally, in Chapter 5, I summarize the advances presented in this dissertation. I highlight

the importance and need for continued efforts, and highlight the ongoing, and future work

inspired by the work presented here.
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CHAPTER 2

Constraining the particle size distribution of large

marine particles in the global ocean with in situ

optical observations and supervised learning

2.1 Introduction

Throughout the ocean surface, autotrophic organisms fix CO2 and inorganic nutrients

to produce organic matter, which accumulates in the water column as suspended particles

(Falkowski et al., 1998). The fate of these particles in turn controls major oceanic biogeo-

chemical cycles, and the ability of the ocean to sequester atmospheric CO2 (Broecker et al.,

1982; Sarmiento & Gruber, 2006b; Kwon et al., 2009). Particles can be remineralized by

microbial degradation and grazing by zooplankton(Karl et al., 1988; Steinberg et al., 2008;

S. L. Giering et al., 2014), aggregate and disaggregate following physical and biological in-

teractions (Jackson, 1990; Kiørboe et al., 1990; Dilling & Alldredge, 2000; Burd & Jackson,

2009; Briggs et al., 2020), and sink out of the surface layers to transfer carbon and nutrients

to the ocean interior (K. O. Buesseler et al., 2007; J. T. Turner, 2015; Boyd et al., 2019).

Marine particles are hotspots of microbial activity and diversity (Karl et al., 1984; DeLong

et al., 1993; Church et al., 2021), provide the bulk of energy that sustain mesopelagic and

abyssal ecosystems (Burd et al., 2010; S. L. C. Giering et al., 2020), and eventually sup-

ply materials to the ocean sediment, where burial sequesters them for geological timescales

(Sarmiento & Gruber, 2006b; Dunne et al., 2007).

Most processes that drive particle cycles in the ocean depend on particle size (Stemmann

& Boss, 2012). To first order, size controls particle elemental composition (A. L. Alldredge
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& Gotschalk, 1988), aggregation and disaggregation rates (Burd & Jackson, 2009; Briggs et

al., 2020), and the ability of particles to sink (A. L. Alldredge & Gotschalk, 1988; McDonnell

& Buesseler, 2010; B. Cael et al., 2021), thus providing a first order influence on the ocean’s

biological pump (Boyd et al., 2019). Furthermore, size-dependent properties such as particle

volume and surface area affect interactions with microorganisms, including colonization,

metabolism, and particle degradation (Jackson, 1989; Kiørboe et al., 2002; Nguyen et al.,

2022; Bianchi et al., 2018), and coupling with seawater chemistry via regeneration of elements

(Broecker et al., 1982; Sarmiento & Gruber, 2006b), adsorption and scavenging processes

(Turekian, 1977; Ohnemus et al., 2019).

Therefore, the abundance of particles of different sizes, i.e., the particle size distribution

(PSD) is a primary determinant of biogeochemical and ecological interactions, and retains

important information on particle dynamics (Stemmann & Boss, 2012). The size distribution

of marine particles can thus reveal processes by which biogenic matter is generated and

removed. Aggregation and coagulation, as well as repackaging by marine organisms (e.g., by

filter feeding, formation of fecal pellets, and sinking carcasses) lead to increase in the size

of particles, and hence of their sinking velocity and ability to escape remineralization in the

upper ocean (J. T. Turner, 2015; Burd & Jackson, 2009). Conversely, disaggregation and

consumption by microorganisms tend to reduce the size of particles and their sinking speed,

facilitating shallow remineralization (Karl et al., 1988; Goldthwait et al., 2005; Briggs et al.,

2020).

Particle dynamics is also central to Earth System Models used to describe ocean bio-

geochemistry and the carbon cycle, and project their future change (Bopp et al., 2013;

Kwiatkowski et al., 2020). While current ocean biogeochemical models include at most few

size classes (Séférian et al., 2020), explicit representation of PSD has emerged as a power-

ful and promising approach to mechanistically represent size-dependent processes and their

influence on elemental cycles, carbon sequestration, and ecological interactions in the ocean

(Kriest & Evans, 1999; Stemmann et al., 2004b; Gehlen et al., 2006; Burd & Jackson, 2009;

Devries et al., 2014; Cram et al., 2018; Weber & Bianchi, 2020; Omand et al., 2020; Nguyen et

al., 2022). However, quantifying the large-scale abundance, distribution, and size structure
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of marine particles has been historically difficult.

Satellite-based observations allow an estimate of the PSD in the surface ocean, for par-

ticle size ranges that typically include phytoplankton and small, slowly sinking particles

(Kostadinov et al., 2009, 2010b,a). This work often hinges on the assumption that a power

law distribution can describe the entire size spectra (Bader, 1970; Sheldon et al., 1972);

however deviations from a power law have been documented (Jonasz & Fournier, 1996; Or-

ganelli et al., 2020; R. A. Reynolds et al., 2010, 2016), and likely retain information on

particle cycling processes ranging from primary production to grazing and sinking (Guidi et

al., 2009; Stemmann & Boss, 2012; Huete-Ortega et al., 2014; R. A. Reynolds & Stramski,

2021a). Furthermore, satellite retrievals miss larger particles that more directly contribute

to sinking particle export, and are limited to the upper few tens of meters of the ocean, thus

providing little direct information on particle transformations, interactions, and fluxes in

subsurface layers. Despite the limitations, satellite-based PSD estimates have proven helpful

to constrain models of the ocean’s biological pump (Siegel et al., 2014; DeVries & Weber,

2017).

Recent advances in ocean optical observations enable direct determination of in situ PSD

throughout the water column (Stemmann & Boss, 2012; Boss et al., 2015; Lombard et al.,

2019). The Underwater Vision Profiler 5 (UVP5) is an optical particle counter that provides

the in situ particle abundance for relatively large particles (80 µm - 2.6 cm) in a given

sampled volume (Picheral et al., 2010). The UVP5 consists of a camera attached to the

CTD rosette, and is able to collect images at high frequency as it is lowered in the water

column. Vertical profiles of PSD from the UVP5 are commonly taken at up to 20 images per

second, with downward speeds of 1 m s−1, as deep at 6 km (Picheral et al., 2010). Since 2008,

UVP5s have been routinely deployed on oceanographic cruises, in all ocean basins (Kiko et

al., 2021).

Because UVP5 instruments observe a range of sizes that includes marine aggregates

that can rapidly sink, they are especially helpful for characterizing patterns and fate of

particulate organic matter and sinking carbon. Although the UVP5 cannot determine the

organic fraction or carbon content of the particulate matter, we assume this can be reasonably
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well approximated by empirical relationships (A. L. Alldredge & Gotschalk, 1988; Kriest,

2002; Guidi et al., 2008; Kiko et al., 2017). Prior studies have utilized UVP5 observations,

together with this assumption, to shed light on the ocean’s biological pump. For example,

Guidi et al. (2008) showed that PSD observations from UVP5 can be combined with sediment

trap data to estimate sinking carbon fluxes. A similar approach was later used to estimate

regional carbon fluxes (Forest et al., 2012; Guidi et al., 2016; Kiko et al., 2017), as well as

regional patterns of particle transfer efficiency and deep carbon sequestration (Guidi et al.,

2015). Recently, the study by Cram et al. (2018) combined UVP5 observations taken along a

meridional section in the Pacific Ocean and satellite-based surface chlorophyll to reconstruct

global PSD and drive a model of marine particle dynamics. While these studies demonstrate

the potential of UVP5 observations for regional and global investigations, they are based on

relatively small data sets, which limits the robustness of extrapolations to the entire ocean.

In this study, we take advantage of the rapid growth of UVP5 observations and employ

a machine learning approach to reconstruct global patterns of PSD in the upper ocean,

and investigate their characteristics and drivers. Specifically, we train a supervised machine

learning algorithm to reconstruct PSD from relatively sparse UVP5 observations and well-

sampled oceanographic variables. By comparing patterns in PSD with environmental drivers,

we further gain insight into the potential mechanisms responsible for shaping the surface

ocean’s PSD and its variability.

The rest of the chapter is organized as follows. Section 2 describes the machine-learning

approach used to globally extrapolate PSD. Section 3 presents the reconstructions of particle

distributions and compares These results to previous studies, discussing the uncertainties and

caveats inherent to this approach. Section 4 summarizes the main findings and discusses

future directions.

2.2 Methods

The size distribution of marine particles is the result of complex physical-biogeochemical

interactions (Sheldon et al., 1972). Although each individual process may leave a specific

10



signature on the PSD (Sheldon et al., 1977; Kiørboe et al., 1993; Huete-Ortega et al., 2014;

R. A. Reynolds & Stramski, 2021a), to first order, the PSD can be quantitatively described

by a power law (Bader, 1970; Sheldon et al., 1972) over a relatively broad size range (from

micrometers to centimeters) that encompasses observations of marine aggregates with optical

instruments, including UVP5 (Stemmann & Boss, 2012). Thus, following the power law

assumption, we model observed PSD as:

n(s) = n0 · s−β, (2.1)

where s is the particle equivalent spherical diameter, or size, and, after defining an

arbitrarily small size increment ds, n(s)ds the number of particles in the size range [s, s+ds].

This power law approximation depends on two parameters: the power law constant n0 (i.e.,

the size-independent coefficient often referred to as the power law “intercept”), and the slope

β (the exponent for size-dependence). The power law constant of the PSD represents the

number of particles at an arbitrary reference size, and the slope encapsulates the relative

proportion between small and large particles. For a given slope, increasing the power law

constant proportionally increases the total number of particles. Conversely, for a given

power law constant, increasing the slope (i.e., making the spectrum “steeper”) increases the

proportion of small particles, while decreasing the slope (i.e., making the spectrum “flatter”)

increases the proportion of large particles. Relatively small changes in the slope can thus

result in significant changes in the size partitioning of particles and in quantities that depend

on this partitioning, such as the total particle volume and surface area.

While generally accurate to first order over selected size ranges, the power law assump-

tion encapsulated in Equation 1 has been shown to miss important deviations that often

characterize in situ PSD (Jonasz & Fournier, 1996; R. A. Reynolds & Stramski, 2021a).

These include local maxima at specific sizes that reflect dominance of plankton species in

productive regions, in particular in the micrometer range of phytoplankton cells (Cavender-

Bares et al., 2001; Karp-Boss et al., 2007; Huete-Ortega et al., 2014; Organelli et al., 2020;

Runyan et al., 2020), or the influence of mineral phases from riverine inputs and exchange

11



with sediment in coastal waters (R. A. Reynolds et al., 2010, 2016). These deviations in turn

may hold important information on the processes and dynamics of particle cycling such as

production, removal, aggregation, and disaggregation (Sheldon et al., 1977; Kiørboe et al.,

1993; Huete-Ortega et al., 2014; R. A. Reynolds & Stramski, 2021a; Briggs et al., 2020), or

zooplankton grazing dynamics (Schartau et al., 2010; Moscoso et al., 2022). Accordingly,

alternative methods have been proposed to approximate PSD observations, including sums

of log-normal functions (Jonasz & Fournier, 1996) and non-parameteric approaches based

on cumulative PSD (R. A. Reynolds & Stramski, 2021a). Nevertheless, the power law as-

sumption has proven valuable and accurate as a first order description of marine particle size

spectra, in particular for the study of size-dependent processes such as particle sinking and

transfer to depth (Guidi et al., 2009; Stemmann & Boss, 2012; Roullier et al., 2014; Guidi

et al., 2016).

Here, we use UVP5 observations to reconstruct PSDs under the power law assumption

(i.e., n0 and β) at the base of the euphotic zone, by fitting Equation 2.1 to observed nor-

malized particle concentrations, i.e., the number of particles per unit volume, divided by the

width ∆s of each specific size bin considered, thus providing a discrete approximation to

n(s). we then extrapolate the sparse UVP5 observations to a global grid, by training a su-

pervised learning algorithm to predict spatially-varying PSD parameters from well-sampled

environmental predictors. we exploit the three-dimensional nature of UVP5 observations to

perform these calculations at a varying base of the euphotic zone, here defined by the 1%

light level according to Morel et al. (2007), rather than a single depth. The steps used to

reconstruct global PSD from UVP5 observations are illustrated in the workflow schematic

in Fig. 2.1, and are discussed in the following sections.

2.2.1 Reconstructions of particle size spectra from UVP5 data

we use observations from a new compilation of UVP5 measurements spanning the global

ocean (Kiko et al., 2021). The data set consists of over 6700 profiles from 119 cruises,

collected from 2008 to 2020 (Fig. 2.2). These observations provide robust particle counts for
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Figure 2.1: Schematic diagram illustrating the general workflow of processing UVP5 obser-

vations into a global PSD dataset. Observations are ensembled onto a normal 1 degree grid,

with observation representing an average of a 20 meter vertical bin about the export horizon.

PSD observations (power law slope and biovolume) are calculated for the 105 µm to 5 mm

size range. The PSD slope and biovolume are globally extrapolated using a bagged Random

Forest algorithm.

the 105 µm - 5 mm size range at each location and depth. Under the power law assumption

(Equation 2.1), the two parameters n0 and β are needed to capture the PSD (Bader, 1970;

Sheldon et al., 1972; Stemmann et al., 2004a; Stemmann & Boss, 2012; Devries et al., 2014).

we calculate the power law slope β by fitting a linear least-squares regression through the

log-transformed normalized particle abundance as a function of the log-transformed size. we

then calculate the observed particle volume, hereafter referred to as the biovolume(BV) since

most particles sampled by the UVP5 are biogenic or organic in nature, by multiplying the

volume of a particle of a given size s by the observed size distribution n(s), and integrating

over the full size range:

13



BV =

∫ smax

smin

n(s) · π
6
· s3 ds. (2.2)

In practice, the continuous integral is approximated by a summation over all size bins in

which the UVP5 observations are discretized.

Under the power law assumption, the biovolume can also be expressed analytically as a

function of the slope and power law constant, by substituting Equation 2.1 into Equation

2.2:

BV =

∫ smax

smin

n0 · s−β · π
6
· s3 ds =

∫ smax

smin

π

6
· n0 · s3−β ds =

π

6
· n0 ·

(
s4−β
max

4 − β
− s4−β

min

4 − β

)
. (2.3)

By fixing the size range, i.e., the minimum and maximum particle size that can be

robustly derived from UVP5 instruments (smin and smax respectively), we solve Equation

2.3 for the power law constant n0 as a function of the PSD slope and the observed biovolume:

n0 =
6 ·BV

π
·

(
s4−β
max

4 − β
− s4−β

min

4 − β

)−1

. (2.4)

we set the minimum and maximum size for this equation to the same values used to

estimate the slope and biovolume from UVP5 observations. we use a minimum size smin=105

µm to avoid a potential slight instrument bias in the lowest size classes. we set the maximum

size to smax=5 mm, which corresponds to the size where zooplankton start to dominate

the biovolume at a variety of locations sampled by UVP5 (Forest et al., 2012; Stemmann,

Youngbluth, et al., 2008; Stemmann & Boss, 2012).

we coarsen the temporal and spatial resolution of the UVP5 profiles by binning them

onto the standard monthly 1 degree-resolution grid of the World Ocean Atlas (H. Garcia et

al., 2018; H. E. Garcia et al., 2019). That is, we combine multiple profiles in a given grid cell

and month together, thus reducing variability due to the noisy and episodic nature of particle

observations. we opted for a spatial resolution of 1-degree to allow representation of spatial

variability associated to major oceanographic features relevant to carbon export, such as
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large-scale fronts, upwelling systems, coastal to open-ocean transitions, marginal seas, and

shelves. Furthermore, a 1-degree resolution enables us to utilize the native resolution of many

predictors with minimal post-processing, e.g., hydrographic properties and nutrients that

are defined on the World Ocean Atlas grid, a de facto standard in ocean biogeochemistry.

we also combine all observations within a 20 meter-thick depth bin around each chosen

depth horizon, to further smooth out small-scale vertical variability, and to increase the

significance of particle counts, especially for the largest sizes. To reconstruct global PSDs,

we calculate slope and biovolume at each location, at the given depth horizon, using the

gridded observations, and assume that these averages are representative of the climatological

monthly PSD in each grid cell.

Although the gridding procedure reduces noise and data patchiness in many well-sampled

regions, a significant proportion of grid cells only contains a single profile (∼ 45%). As

a further quality check, we test the assumption that a power law distribution is a good

approximation for the observed PSD, while recognizing that significant deviations from a

power law often exist, as discussed in Section 2. For each grid cell with observations, we

place an objective goodness of fit threshold to determine the robustness of the power law fit.

If a power law fit has a Pearson correlation coefficient R2 of less than 0.9, we remove the data

point, as it likely does not closely follow a power law distribution. This quality control step

removes less than 1% of data, with the majority of retained profiles showing correlations near

or greater than R2=0.98 (Supplementary Information Fig. A.1). Data points removed, and

points with lower correlations, appear to be found in few coastal regions such as the tropical

Atlantic under the influence of the Amazon River plume, the Arctic shelf, and productive

waters in the subpolar North Atlantic and near Antarctica (Fig. S1), and likely reflect

a combination of allochthonous mineral particle supply and highly productive or variable

conditions (R. A. Reynolds et al., 2010, 2016; R. A. Reynolds & Stramski, 2021b). The

results of this quality check indicate that, for the size range considered here (105 µm to 5

mm), the majority of open ocean UVP5 observations can be well approximated by power

laws, in line with previous work (Guidi et al., 2009; Stemmann & Boss, 2012; Roullier et

al., 2014; Cram et al., 2018). The final processed UVP5 observation data set contains 2,034
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gridded observations at the export horizon, which together cover slightly less than 10% of

the ocean surface. Figure 2.2 shows the spatial and temporal resolution of the final gridded

data set, and an example of the observed PSD from UVP5 with the corresponding power

law fit.
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Figure 2.2: Global distribution of the UVP5 observations used in this study. (a) Number

of profiles per one-degree resolution grid cell. (b) Number of months represented in each

grid cell. (c) A bar plot showing the monthly distribution of observations for the Northern

Hemisphere (blue) and the southern Hemisphere (red). (d) Typical particle size distribution

sampled by the UVP5, plotted on a logrithmic scale. The red dots indicate actual observa-

tions, and the black line the linear fit (R2 = 0.99).

2.2.1.1 Training and evaluating a Random Forest model

Monthly flux reconstructions require extrapolation of PSD parameters to the whole ocean

on monthly time scales. we use a bagged Random Forest (RF) algorithm (the “fitrensem-

ble” function in MATLAB) to reconstruct climatological PSD slope and biovolume globally,

following an approach similar to Yang et al. (2020). A RF deploys a decision tree learning

16



scheme to solve a regression equation iteratively, and reports the ensemble average. Using a

RF, each individual decision tree is trained on a subset of the available data, with a subset

of predictors, but the power of the method emerges when considering the ensemble average.

The RF is able to learn statistical relationships between target variables (here, UVP5-derived

slope and biovolume) and a series of predictors (here, environmental variables), to make re-

constructions that minimize the error between predicted and observed data. Because a RF is

highly non-linear, it runs the risk of overfitting the data, producing solutions with low error,

but also limited predictive power outside of the training data set. To mitigate the risk of

overfitting, the RF does not use all data points for training. Instead, a bootstrapped sample

(∼ 70%) of the data is selected for each tree in the forest. The skill of the final regression

is determined by finding the error between the model and the data that was not used for

training, i.e., the so-called “out-of-bag” data.

The rank of predictors is given by the out-of-bag error coupled with an internally derived

measure of importance, using a so-called “recursive feature elimination” approach. A recur-

sive feature elimination systematically removes the least important predictor and records the

out-of-bag error to describe the contribution of each predictor to the final solution. When

there is relatively no change in the out-of-bag error for every additional predictor, these

predictors are considered not important for the RF (Supplementary Fig. A.2). we deter-

mine statistical importance in order to establish a reduced set of predictors, reducing the

risk of over-fitting while not losing predictive power. When interpreting the RF results, we

apply qualitative understanding of the predictors combined with the recursive feature elim-

ination to determine if a predictor should be included in the final regression or if it should

be excluded.

2.2.1.2 Environmental Predictors

The RF algorithm relies on a set of predictors and target data at the resolution of

the desired reconstruction. In this case, we use climatological monthly predictors at 1-

degree spatial resolution. we include a variety of predictors that are globally sampled and
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could be mechanistically related to particle production in the surface ocean, ranging from

physical variables (e.g., temperature and salinity) to ecosystem-level quantities (e.g., primary

production, euphotic zone depth). we also include as a predictor the standard deviation of

the primary production, using it as a proxy for intermittency and sub-seasonal variability.

A list of all predictors is shown in Table 2.1.

Some of these predictors are obtained from satellite products at high spatial and temporal

resolution (e.g., surface chlorophyll and vertically integrated net primary production), and

include missing values caused by the presence of clouds or sea-ice. For these variables, we

first average observations into monthly climatologies, then replace missing data by using a

temporal interpolation followed by a spherical interpolation using the algorithm by D’Errico

(2016) as described in Yang et al. (2020). To avoid excessive extrapolation in high latitude

regions in wintertime, only points with at least 8 months of satellite observations are used

for the final reconstruction, following the approach of Siegel et al. (2014).

we apply an additional processing step to primary production to further minimize arti-

facts caused by the interpolation and gap-filling algorithms at high latitudes, and to provide

a smooth transition towards the areas were light limitation (caused by deep mixing and

polar night) is likely to significantly reduce production of new organic particles. To this

end, we adopt a criterion based on Sverdrup’s critical depth (Sverdrup, 1953) to determine

regions where light likely becomes too limiting to support photosynthesis, based on the

method of Siegel et al. (2002). we adopt this framework because of its simple applicabil-

ity as a proxy for light limitation, recognizing that more complex interpretations exist on

the interplay between light, vertical mixing, and grazing in limiting primary production at

high latitudes (Behrenfeld & Boss, 2014). Accordingly, we calculate the Sverdrup critical

depth based on climatological chlorophyll concentration and incident shortwave radiation

(Siegel et al., 2002). When the mixed layer depth exceeds this critical depth, we assume

that phytoplankton spend too much of their life cycle in light-limited layers, making net

productivity negligible. Net primary production is thus set to zero at all points where, in a

given month, the mixed layer depth exceeds the critical depth, before interpolating. Simi-

larly, we restrict these reconstructions of high latitude PSD based on seasonal sea ice cover
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from ERA5 reanalysis, recognizing that regions with over 30% sea ice coverage, by area,

cannot be captured robustly by this approach. Because we limit the final calculations to

regions with at least 8 continuous months of satellite data (Siegel et al., 2014), thus removing

significant portions of the polar regions in wintertime, these steps do not significantly affect

thefinal reconstructions.

we use two different depth-dependent averaging procedures to generate two-dimensional

predictor fields from three-dimensional variables, such as temperature. we generate a “sur-

face” predictor by taking the average of the variable over the mixed layer, and a “sub-surface”

predictor by taking the average from the base of the mixed layer to 100 m below it. For

surface-only variables (e.g., chlorophyll, net primary production) and nutrients we also in-

clude predictors that quantify the change of the variable over time, because time variability

(e.g., blooms in chlorophyll) could also be related to export flux. In practice, we calculate the

time derivative of each variable by taking the difference between the month of observation

and the prior month. we refer to these depth- and time-change variables as “variations” in

Table 2.1. we test the significance of each predictor, including vertical and time variations,

with the recursive feature elimination. Finally, we group predictors into different categories,

with variations for selected variables (Table 2.1). If a predictor is in the “universal” cate-

gory in Table 1, it is always included in all RF realizations. For all other categories, only

one predictor is randomly chosen for each realization, but if a predictor is chosen, all vari-

ations are included too. After processing, all predictors consist of monthly climatological

two-dimensional fields.

The global data sets used as predictors are characterized by variable degrees of uncertainty

and errors. Typically, for the climatological mapped fields used here (e.g., from the World

Ocean Atlas) much of the final uncertainty does not depend on specific instrumental errors,

but rather on the interpolation method and the temporal averaging steps adopted. we refer

readers to the specific references for details on the uncertainty of each product (Table 1);

further details on biases in satellite products can be found in K. Bisson et al. (2021). we do

not make any specific attempt to directly propagate errors in the predictors through these

reconstructions. Rather, we rely on the standard deviation of the large ensemble (100) of
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Table 2.1: Variables used to predict PSD parameters, variations (i.e., vertical or temporal

changes) and data sources. The categories are organized based on predictor type, where

universal predictors are used in every Random Forest realization.

Category Variable Variations Source

Universal Topography N.G.D.C (2006)

Temperature
below MLD Time Derivative Locarnini et al. (2019)

Chlorophyll Time Derivative NASA G.S.F.C (2014)

Oxygen
ML/ ML+100m
Time Derivative H. E. Garcia et al. (2019)

Shortwave
Radiation Time Derivative Copernicus C.C.S (2017)

Nitrate
ML/ ML+100m
Time Derivative H. Garcia et al. (2018)

Phosphate
ML/ ML+100m
Time Derivative H. Garcia et al. (2018)

Salinity ML/ ML+100m Zweng et al. (2019)

Mixed Layer Mixed Layer Time Derivative Johnson et al. (2012)

Mixed Layer Time Derivative de Boyer Montégut et al. (2004)

Primary
Production Eppley VGPM

Time Derivative
Standard Deviation Antoine & Morel (1996)

VGPM
Time Derivative

Standard Deviation Behrenfeld & Falkowski (1997)

CBPM
Time Derivative

Standard Deviation Westberry et al. (2008)

CAFE Time Derivative Silsbe et al. (2016)

Euphotic
Zone Depth VGPM Morel et al. (2007)

CBPM Morel et al. (2007)

Iron Soluble Iron Time Derivative Hamilton et al. (2019)

Labile Iron Time Derivative Myriokefalitakis et al. (2018)
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RF realizations as a measure of uncertainty. Furthermore, the use in each RF of random

permutation of the predictors, and, when possible, different data sets for the same variable,

likely reduces some of the biases inherent to any specific data product.

The predictors are used to reconstruct PSD slope and total particle biovolume at the

climatological euphotic zone depth. Each prediction is based on the ensemble average of 100

RF realizations with variable hyper-parameters (the number of trees and their complexity),

with the inter-model spread representing the error. Each RF realization uses a total of

29 predictors randomly chosen from the categories listed in Table 2.1. By generating an

ensemble of 100 RFs for each reconstruction, with varying hyper-parameters and predictors,

we reduce biases and overfitting, making the results robust with respect to parameter tuning

and the choice of different observational products. Thus, these reconstructions are not the

result of tuning the hyper-parameters, or choosing only the best predictors. we evaluate the

overall robustness of the predictions by reporting goodness-of-fit statistics that include the

correlation coefficient, the root mean square error (RMSE), and the average bias, calculated

by comparing predictions to in situ data.

2.3 Results and Discussion

2.3.1 Particle size distribution reconstructions

Figs. 2.3 and 2.4 show the global reconstructions of PSD biovolume and slope. This

reconstruction method is able to capture most of the variability of the UVP5 observations,

and robustly reproduce the gridded measurements, with global average values of 0.6 ppm

for biovolume (r2=0.91) and 3.9 for slope (r2=0.86) when considering the entire data set.

Observations that are not used in the training (out-of-bag) provide a more stringent test for

the method’s robustness. As shown in Figs. 2.3d and 2.4d, these out-of-bag observations

are also robustly predicted, with a RMSE of 2.1 ppm for biovolume (r2=0.74) and 0.33 for

slope (r2=0.68). Relative to both the full data set and the out-of-bag observations, these

reconstructions show negligible biases. That is, there is an overall compensation between data
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Figure 2.3: Observed and reconstructed particle biovolume (in parts per million, ppm) at

the base of the euphotic zone. (a) Observed average biovolume. (b) Annual mean biovolume

reconstructions. (c) Performance of the RF reconstruction shown as density scatter plots

of predicted vs. observed biovolume (colors indicate the normalized density of observations

at each point). (d) Same as (c), but using out-of-bag (OOB) predictions, i.e., predictions

vs. observations withheld from training. Annotations in (b) and (c) show the coefficient of

determination (r2), the rmse, and the global bias.

points where this method overestimates observations, and data points where this method

underestimates them.

While most observations are generally accurately reproduced, there remains a degree of

uncertainty in the reconstructions, as shown by the scatter around the one-to-one line in Figs.

2.3c,d and 2.4c,d. Some of this remaining uncertainty could be explained by the episodic

nature and patchiness of particle production transport, and export, and by factors not cap-
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Figure 2.4: Observed and reconstructed PSD slope at the base of the euphotic zone. (a)

Observed average PSD slope. (b) Annual mean PSD slope reconstructions (c) Performance

of the RF reconstruction shown as density scatter plots of predicted vs. observed particulate

slope (colors indicate the normalized density of observations at each point). (d) Same as

(c), but using out-of-bag (OOB) predictions, i.e., predictions vs. observations withheld from

training. Annotations in (b) and (c) show the coefficient of determination (r2), the rmse,

and the global bias.

tured by the chosen climatological predictors. This method operates under the assumption

that the input data (i.e., the UVP5 observations) consists of monthly climatological aver-

ages, rather than instantaneous snapshots. By ensembling in situ UVP5 measurements into

2,034 monthly data points, we reduce part of the episodic nature and patchiness of these

observations; however variability is likely to still persist in the gridded data. Finally, while

the mean bias is zero, the reconstructions show a slight underestimate of extreme values at
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both the high and low range of the observations, i.e., these reconstructions have a slightly

reduced range compared to observations (Figs. 2.3c,d and 2.4c,d). This slightly reduced

range in the reconstructions is typical for bagged ensemble ML methods such as the RF

used here, which results in a limited ability to extrapolate data and tends to smooth out

extreme values (Zhang & Lu, 2012). Spatially, this bias would result in an overestimate of

biovolume in the subtropics, and an underestimate in mid to high latitude regions, and vice

versa for the PSD slope. we discuss the consequences of this potential range reduction in

Section 2.3.5.

2.3.2 Global patterns in particle size distribution

These reconstructions of the PSD for the time frame 2008 to 2020, reveal high biovol-

ume in productive regions such as high latitudes, coastal waters, and upwelling systems, and

low biovolume in the oligotrophic subtropical gyres (Fig. 2.3b and Supplementary Fig A.3).

PSD slopes show a nearly opposite pattern, with smaller slopes (i.e., “flatter” PSD) in more

productive regions, and larger slopes (i.e., “steeper” PSD) in oligotrophic waters (Fig. 2.4b

and Supplementary Fig A.4), although with somewhat less pronounced variations compared

to biovolume. Consistent with this, we find that slope and biovolume are negatively corre-

lated (r2 = 0.4, p < 0.01 Fig. 2.5a,b). Spatial patterns in biovolume and slope roughly follow

the distribution of satellite-derived primary chlorophyll and primary production estimates,

suggesting that phytoplankton and photosynthesis exert a strong control on total abundance

of particles in any given region (Kostadinov et al., 2009, 2017; Cram et al., 2018). Accord-

ingly, we find a positive correlation between biovolume and surface chlorophyll (R=0.49 for

observations, and R=0.68 for reconstructions, both with p¡0.01, Fig. 2.5a,b) and a negative

correlation for slope (R=-0.18 for observations, and R=-0.37 for reconstructions, both with

p¡0.01, Fig. 2.5c,d)).

The negative correlation between particle biovolume and slope (R = −0.40,−0.64 Fig.

2.5e,f) indicates that particle-rich regions (higher biovolume) are also characterized by an

excess of large particles over small particles (i.e., flatter slope), relative to average oceanic
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Figure 2.5: Relationships between PSD parameters and surface chlorophyll. (a,b) Rela-

tionship between PSD slope and chlorophyll for (a) observed and (b) predicted data. (c,d)

Relationship between particle biovolume and chlorophyll for (c) observed and (d) predicted

data. (e,f) Relationships between PSD slope and particle biovolume, for (e) observed and

(f) predicted data. The black line in each panel shows a linear fit between the two variables,

and R is the Pearson’s correlation coefficient. All fits are significant to the 0.01 p-value.

conditions. Such co-variation between slope and biovolume is likely to be important for pro-

cesses that depend both on the abundance of particles and their size, such as sinking particle

fluxes (Guidi et al., 2008; Stemmann & Boss, 2012). While this pattern of correlations holds

true for most regions, we find few significant exceptions where the PSD slope and biovolume

do not co-vary as closely as expected. For example, in the North Pacific subpolar gyre,

flatter slopes are found in the open ocean (Fig. 2.4b), in particular close to the subpolar-

25



subtropical transition, while the highest biovolumes are found closer to the coast and in

marginal seas. Similarly, slopes in coastal upwelling systems, such as the California Current

and the Arabian Sea upwelling, are not as flat as the high biovolumes would suggest. we

also find relatively flatter slopes in the North Pacific subtropical gyre as compared to other

oligotrophic regions.

These patterns suggest that while the partitioning between large and small particles

typically reflects the strength of primary production, as previously noted (Stemmann et

al., 2002; Stemmann, Youngbluth, et al., 2008), there are regions where the dynamics are

more complex. Coastal upwelling regions are generally productive and exhibit high export

(Bishop et al., 2016). However, according to this reconstruction, the California Current

exhibits steeper slopes than expected, nearly matching the North Pacific subtropical gyre.

It is possible that, in the coastal region, slopes are higher because of an increased number

of large phytoplankton (Kostadinov et al., 2010a). Diatoms observed by the UVP5 could

artificially inflate the particle abundance in the smaller size ranges, resulting in a lower

slope. This could also be caused by reduced surface aggregation or effective disaggregation

of particles, or less efficient surface remineralization, which tends to reduce small particles

faster than large ones. Conversely, relative to other oligotrophic gyres, the North Pacific

subtropical gyre may be characterized by somewhat larger phytoplankton cells, increased

surface aggregation, and reduced disaggregation, or more efficient remineralization, especially

because of the deep euphotic zone present in the region.

2.3.3 Seasonal variability in particle size distribution

The seasonal dynamics of biovolume and slope confirms the general anti-correlation of

these two variables, and reveals significant seasonal cycles, with maximum biovolume and

minimum slope generally found in spring, and minimum biovolume and maximum slope in

late fall to winter (Fig. 2.6). Similar to the spatial distribution, we find significant deviations

from the general anti-correlation between biovolume and slope. For example, in the North

Atlantic, the peak in biovolume (May) precedes the minimum in slope (July). In some of the
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Figure 2.6: Annual seasonal cycle of particle biovolume (blue lines, in ppm) and slope (red

lines) from the Random Forest reconstructions. Each seasonal cycle is from the euphotic

zone for the regions specified on the map (top).

tropical regions (e.g., in the North Pacific and North Atlantic) the anti-correlation is also

less robust, with periods of several months where biovolume and slope increase or decrease

simultaneously. Several low biomass regions (e.g., the North Subtropical Atlantic, the South

Subtropical and Tropical Pacific, the South Indian) display seasonal cycles in slope (and to

a lesser extent biovolume) that are remarkably symmetrical across the months of June or

December, suggesting a possible influence of the annual cycle of insolation. Other regions,
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however (e.g., North Atlantic, South Subtropical Atlantic, Antarctic Zone), display more

marked asymmetries, possibly reflecting seasonal variations in mixing (Behrenfeld & Boss,

2014).

In general, regions that show higher total biovolume and lower slopes also display higher

seasonality. High latitude regions are characterized by large biovolume and flatter slopes,

following the pattern of productivity for these waters. Conversely subtropical regions char-

acterized by low biovolume also exhibit low seasonal variability. The interplay between

variations in slope and biovolume could have important consequences for quantities that

directly depend on PSD properties, such as sinking particle fluxes, which are enhanced by

high biovolume and a relative abundance of large vs. small particles (i.e., flatter slopes).

Accordingly, we expect higher seasonality in sinking particle fluxes in regions of strong anti-

correlation between biovolume and slope, relative to regions where these quantities tend to

co-vary. Likewise, we expect high seasonality in biovolume and slope to drive strong vari-

ations in sinking particle fluxes over the course of the year, for example in high latitude

regions.

While several of the patterns discussed in this section may deserve further attention,

validation with in situ data would require a greater number of observations than currently

available. Furthermore, consideration should be given to biases in predictors, such as satellite

products (K. Bisson et al., 2021), that could introduce spurious patterns in biovolume and

slope. Specific caveats related to the seasonality of these reconstructions are discussed further

in Section 3.5.

2.3.4 Empirical Drivers of PSD

A recursive feature elimination indicates that multiple variables are required for a ro-

bust reconstruction of PSD, as each one increases the ability of the reconstruction to explain

observations (Supplementary Fig. A.2). Among the important features, we highlight chloro-

phyll, mixed layer depth, and oxygen, although each has a somewhat different importance

for explaining biovolume and slope variability. Interpretation of these rankings should be
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done with care because of the statistical nature of the RF algorithm. However, while a mech-

anistic understanding of PSD patterns cannot be directly tied to these rankings, highlighted

predictors can provide insights into the role of different processes that may be affecting PSDs.

we find that biovolume at the base of the euphotic zone correlates positively and signifi-

cantly with chlorophyll (R=0.49 for observations, and R=0.68 for reconstructions, both with

p¡0.01, Fig 2.5a,b). This is not surprising, since chlorophyll is an indicator of phytoplankton,

the main source of organic matter and sinking particles in the ocean (Stemmann et al., 2002).

However, we find that chlorophyll is not as strong a predictor of slope, when the whole ocean

is considered (R=-0.18 for observations, and R=-0.37 for reconstructions, with p¡0.01, Fig

2.5c,d), and that additional predictors are needed for robust slope reconstructions. This

result reflects previous findings based on UVP5 observations along a meridional section in

the Pacific Ocean (Cram et al., 2018). Slope reconstructions also reveal a significant pre-

dictive power for subsurface oxygen. Previous work suggests a connection between oxygen

and total particle concentration (Roullier et al., 2014), whereby particle concentrations in-

crease as oxygen decreases. Oxygen is a proxy of respiration in the water column, which in

turn reflects the characteristics of both the surface community that drives export, and of

the subsurface community responsible for this respiration (Sarmiento & Gruber, 2006a). we

note that the PSD slope is an emergent property that reflects the interaction of physical and

biological processes that are still poorly understood.

Spatial patterns in slope and biovolume share several features with estimates of particu-

late backscattering, and phytoplankton size spectra and composition from observations and

models (Kostadinov et al., 2009; Roy et al., 2013; Barton et al., 2013; Ward et al., 2014).

Regions with higher biovolume and flatter slope are dominated by larger phytoplankton,

while the subtropics, with lower biovolume and steeper slope, are dominated by smaller phy-

toplankton (Kostadinov et al., 2009; Mouw et al., 2017). The composition and size structure

of phytoplankton can be linked mechanistically to the size of particles and aggregates in

the upper ocean (Jackson, 1990; Kiørboe et al., 1990; Burd & Jackson, 2009). Large cells,

for example chain-forming diatoms, can more easily aggregate to form large phytodetritus

particles. More indirectly, phytoplankton composition and size structure exert an important
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control on the size structure of zooplankton and the upper ocean food web, thus of affecting

the abundance and size structure of fecal pellets and other aggregates that are the byproduct

of zooplankton feeding (J. T. Turner, 2015).

Phytoplankton functional groups (e.g., Mouw et al. (2017)) and abundance should be

considered as important controlling factors on both biovolume and slope (Guidi et al., 2009;

Stemmann et al., 2002), and could be used as predictors alongside other physical and bio-

geochemical variables. However, methodological shortcomings and disagreement between

different approaches (such as satellite based retrievals) currently limit the applicability of

these datasets—something that may be mitigated by future advances. It is also likely that

information related to phytoplankton composition and size structure retrieved from satellite

implicitly enters the RF regression via relationships with environmental predictors such as

satellite retrieved surface chlorophyll and temperature (Kostadinov et al., 2017; Mouw et al.,

2017).

2.3.5 Caveats to this approach

While the global data set of UVP5 observation enables robust global reconstruction

of PSD properties, there remain sources of uncertainty and inherent limitations that could

affect these estimates and call for further work. First, expanding the coverage of observations

with UVP5 and similar instruments, in particular in under-sampled regions characterized by

large variability, such as coastal and high latitude regions, would improve the robustness

of these estimates, and shed additional light on regional particle size distribution patterns

not captured by previous work. Regional correlations between environmental properties and

PSD may not be well captured by extrapolation with a RF algorithm trained on data from

different regions, especially when non-linear relationships between variables are important.

These reconstructions also rely on a two-parameter power law approximation to de-

scribe the observed PSD. While this is a common and useful assumption for a first order

description of PSD in the ocean (Bader, 1970; Sheldon et al., 1972; Stemmann & Boss,

2012), significant deviations from a power law have been reported (Organelli et al., 2020;
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R. A. Reynolds & Stramski, 2021b), in particular in the micrometer range mostly repre-

sentative of phytoplankton (Cavender-Bares et al., 2001; Huete-Ortega et al., 2014) and for

productive coastal waters and regions affected by mineral inputs from rivers and sedimentary

exchanges ((R. A. Reynolds et al., 2010, 2016). While data tests suggest that a power law

assumption is globally robust for the range of sizes sampled by UVP5 instruments (Fig. S1),

other statistical models, e.g., based on different distributions (Jonasz & Fournier, 1996) or

non-parameteric descriptors (R. A. Reynolds & Stramski, 2021b) may be more appropriate,

and could result in somewhat different patterns of PSD and biovolume globally. we also

suggest that new work could exploit deviations from power laws to shed further light on

PSD patterns and particle cycling mechanisms (Weber & Bianchi, 2020).

Furthermore, we do not test how well reconstructed PSD slope translates to particles

smaller or larger than the range robustly sampled by the UVP5, which may be possible

by combining UVP5 observations with other optical instruments (Karp-Boss et al., 2007;

R. A. Reynolds et al., 2010; Stemmann & Boss, 2012; Boss et al., 2015; Lombard et al.,

2019). Lastly, these results assume that particles observed by UVP5 instruments are largely

biogenic. While this assumption generally holds for open ocean regions (Sheldon et al.,

1972), care should be taken when applying these reconstructions in coastal regions where

inputs of mineral particles from rivers and sediment may be important (R. A. Reynolds et

al., 2010, 2016).

Supervised learning methods are only as reliable as the data used for training, and it is

possible that some of the patterns in these reconstructions may be influenced by biases in the

predictors utilized. However, it should be noted that machine learning algorithms, provided

that sufficient data is available for training, will learn patterns from predictors only if they

allow to robustly reconstruct the observations. Therefore, even biased predictors could lead

to accurate predictions. However, this may also introduce spurious correlations between

predictors and predicted variables. This is especially the case for remotely sensed variables,

which have inherent seasonal biases that could limit the ability to reconstruct seasonal cycles

and interpret correlations, and have a greater inherent error compared to other features used

for the reconstruction (i.e., temperature) (K. M. Bisson et al., 2021). Therefore, continued

31



work on improving satellite reconstructions of surface chlorophyll, net primary production,

and other remotely-sensed variables, in particular at high latitudes, would help improve the

robustness of these methods. Reducing biases in satellite products is an urgent undertaking

(K. M. Bisson et al., 2021).

Similar to previous work (Siegel et al., 2014; DeVries & Weber, 2017), limiting this

reconstruction to regions with more complete satellite coverage leads us to underestimate

export in polar regions at times of the year characterized by significant sea ice coverage and

pervasive light limitation (Siegel et al., 2002). Although based on in situ measurements

some level of particle production and export is likely to occur in these regions and times of

the year (e.g., Lowry et al. (2018); K. Bisson & Cael (2021); Hague & Vichi (2021)), we lack

both remote sensing and UVP5 observations that would allow robust estimates of particle

abundance and size under such conditions. Future work should be devoted to closing these

gaps.

Some variables that are known to be mechanistically linked to particle production are

not considered important by the Random Forest method. For example silicate, which could

serve as a proxy for diatom biomass or production, did not significantly reduce the error

when included, and thus were excluded from the final reconstructions (Supplemental Figure.

A.2). It is possible that this Random Forest method is biased to select only few of highly

correlated variables, even if other features are mechanistically important (Nicodemus et al.,

2010).

Lastly, different machine learning approaches are likely characterized by different biases.

Here, we note a slight underestimate of extreme values in reconstructed PSD properties,

which may affect the reconstructed variability in particle size spectra (Zhang & Lu, 2012).

Different machine learning methods (i.e. Artificial Neural Networks, Boosted Forests, etc.)

have been used to reconstruct particulate matter in the surface ocean (Liu et al., 2021).

Adoption of additional machine learning algorithms in conjunction with increased data cov-

erage may eventually reduce errors. Additionally, increasing number of measurements, more

detailed analyses of particle size spectra distribution, including at time-series stations, and

spatial clustering techniques, may allow reconstruction of interannual variability (Gregor &
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Gruber, 2021).

2.4 Conclusions

In this chapter, we provide a new, data-constrained estimate of particle size spectra

based on global UVP5 observations obtained between 2008 and 2020. It captures regional

and seasonal variability in observed PSD properties, and demonstrates the ability of statis-

tical machine learning methods to extrapolate these quantities globally. These global PSD

reconstructions can in turn shed light on processes that depend on, or are reflected by, par-

ticle abundance and size distribution, including sinking particle fluxes (Guidi et al., 2008),

aggregation, disaggregation and degradation of organic particles (Burd & Jackson, 2009;

Briggs et al., 2020), interactions with microbial communities (DeLong et al., 1993; Church

et al., 2021) and migrating animals (Cram et al., 2022), and chemical exchange between

particles and seawater, including element scavenging (Ohnemus et al., 2019).

The statistical nature of the machine learning approach does not directly reveal mecha-

nisms behind particle abundance and size structure. However, we are able to highlight spa-

tially coherent patterns, and the seasonal variability of particle abundance and size structure.

Specifically, we show that the total particle biovolume and the PSD slope are characterized

by similar but inverse patterns, with regions of high particle biovolume generally character-

ized by flatter slopes, i.e., relatively more abundant large particles. Similarly, the seasonal

cycle of the particle slope and biovolume are inversely correlated over time through most

of the ocean. Importantly, because of this anti-correlation, biovolume and slope variations

would act synergistically on sinking particle fluxes, by enhancing them in region of higher

biovolume and flatter slope, and reducing them in regions of low biovolume and steeper

slope. we also show that biovolume and slope tend to correlate with observed sea surface

chlorophyll and other biogeochemical variables. Specifically, regions of high chlorophyll tend

to be characterized by higher particle biovolume and flatter slope, highlighting the important

role for primary production and phytoplankton size structure for particle abundance and size

distribution at the lower limit of the euphotic zone. These findings in turn support obser-
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vational programs with the goal of linking remotely sensed surface variables to subsurface

properties and biological processes (Siegel et al., 2021).

UVP5 and other optical observations are not limited to the surface ocean, but are gen-

erally highly resolved in the vertical direction, thus enabling fully three-dimensional recon-

structions of PSD. This could allow a closer investigation of particle dynamics in the water

column, a better diagnosis of the processes that cause deviations of PSD from a simple power

law, and enable three-dimensional reconstructions of size-dependent processes such as par-

ticle sinking fluxes. Enhanced deployments of UVPs—also on Argo floats (Picheral et al.,

2022)—combined with the approaches developed in this paper could also enable decadal or

even annual estimates of global PSD and particle flux through the water column. Ultimately,

a three-dimensional view of particle abundance and size distribution in the ocean would shed

light on an essential component of ocean biogeochemistry and ecosystem, and inform new

models of the ocean’s biological pump.
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CHAPTER 3

New estimate of organic carbon export from optical

measurements reveals the role of particle size

distribution and export depth

3.1 Introduction

At the ocean surface, primary production and other biogeochemical processes interact to

form organic particles that drive the ocean’s biological pump (Volk & Hoffert, 1985; Honjo

et al., 2008; J. T. Turner, 2015; Siegel et al., 2022). Aggregation and sinking of particulate

organic matter stores inorganic carbon and nutrients in the deep ocean for timescales ranging

from decades to centuries (DeVries et al., 2012; Boyd et al., 2019), reducing surface carbon

concentrations and leading to a decrease in atmospheric CO2 (Kwon et al., 2009). Sinking

particles provide organic matter sustaining the deep ocean biosphere (Robinson et al., 2010)

and shape the ocean’s microbiome (Karl et al., 1984; Fontanez et al., 2015; Bianchi et al.,

2018).

Export of particulate organic matter results from the interaction of complex physical

and biological processes (J. T. Turner, 2015; Boyd et al., 2019; Siegel et al., 2022). Gravita-

tional settling of particles denser than seawater, including fecal pellets, phytodetritus, and

heterogeneous aggregates, is thought to be the primary export mechanism, contributing to

about 60% of the total carbon export, and more than half of the carbon storage in the deep

ocean (Boyd et al., 2019). Other export processes, such as organic matter transport and

repackaging by vertically migrating organisms (Longhurst et al., 1990; Steinberg et al., 2000;

Bianchi et al., 2013) and physical injection (Carlson et al., 1994; Omand, D’Asaro, et al.,
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2015; Stukel et al., 2017; Dall’Olmo et al., 2016), make up the remainder (Boyd et al., 2019).

The importance of large sinking particles in driving the export flux has been well described

(Honjo et al., 2008; A. L. Alldredge & Gotschalk, 1988; J. T. Turner, 2015), although several

studies have also highlighted the importance of smaller aggregates (Alonso-González et al.,

2010; Durkin et al., 2015; Kiko et al., 2017; Richardson, 2019).

Export fluxes can be quantified at different depth horizons, with the euphotic zone and

mixed layer depths as common choices, underlying competing interpretations: export from

the euphotic zone provides an ecosystem-level viewpoint, while export from the mixed layer

provides an estimate of long-term carbon storage. Observational and model-based estimates

generally evaluate export at the base of the euphotic zone, as defined by the 1% or 0.1%

light levels (K. O. Buesseler & Boyd, 2009; Siegel et al., 2014; K. O. Buesseler et al., 2020).

On annual timescales or longer, organic carbon export balances net community production

(Emerson, 2013), and, since synthesis of new particles is greatly reduced below the euphotic

zone, it also provides an upper limit to the energy that can fuel subsurface ecosystems.

Meanwhile, carbon exported below the maximum mixed layer depth is removed from contact

with the atmosphere for timescales longer than a year, and thus is relevant for ocean carbon

sequestration. Recent work with a global biogeochemical model indicates that the magnitude

and patterns of carbon export are sensitive to the choice of depth horizon (Palevsky & Doney,

2018). However, tests of this sensitivity based on global observations are missing.

Because of its central role in ocean biogeochemistry, the global particle export has received

significant attention, resulting in a wide range of estimates – from less than 3 to more than

10 PgC y−1 (Henson et al., 2011; Siegel et al., 2014; DeVries & Weber, 2017; Dunne et al.,

2007), with some of the discrepancies depending on the methods used (Quay et al., 2020).

Biogeochemical models yield a global export of 4-6 PgC y−1 when tuned to match particle

flux observations (Siegel et al., 2014), but can reach up to 10 PgC y−1 when tuned to match

in situ profiles of nutrients and other biogeochemical tracers (DeVries & Weber, 2017). A

similar range is suggested by recent global IPCC-class Earth System Models, which produce

global carbon exports from 2.4 to 12 PgC y−1, with an average of 7.4 PgC y−1 (Séférian

et al., 2020). Data-driven estimates that combine satellite-based primary production with
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empirical measures of particle export ratios often result in fluxes near the upper range (Dunne

et al., 2007; Laws et al., 2011; Guidi et al., 2015), with some exceptions (Henson et al., 2011).

A global export of around 10 PgC y−1 is comparable to biogeochemical estimates of

annual net community production in the mixed layer (Emerson, 2013; Quay et al., 2020).

However, on long timescales, community production must be balanced by multiple export

processes (Boyd et al., 2019; Siegel et al., 2022) that also include subduction of non-sinking

organic carbon (Carlson et al., 1994; Dall’Olmo et al., 2016) and export via vertical migra-

tions of zooplankton and fish (Longhurst et al., 1990; Steinberg et al., 2000; Bianchi et al.,

2013). Using an euphotic viewpoint, and considering only gravitational settling, particle

flux estimates have begun to converge on a value of 6 PgC y−1, although with significant

uncertainty (Boyd et al., 2019).

In the field, sediment traps and thorium-234 measurements have been used to quantify

sinking particle fluxes. However, both types of observations lack detailed particle size infor-

mation, vertical resolution, and have known biases, making extrapolations to global scales

difficult (K. Buesseler et al., 2007; Le Gland et al., 2019). Recently, optical methods have

gained traction to estimate particle export. These methods are based on in situ observations

of particle size distribution (PSD), i.e., the number of particles, or abundance, as a function

of size (Guidi et al., 2008; Bourne et al., 2019). Among optical instruments, the Underwater

Vision Profiler 5 (UVP5) measures the abundance of particles in the 80 µm - 2.6 cm range

(Picheral et al., 2010) and is routinely deployed on oceanographic expeditions (Kiko et al.,

2022). The high vertical resolution of UVP5 observations, combined with empirical, size-

dependent relationships for carbon content and sinking speed (Kriest, 2002; Stemmann et

al., 2004a; Guidi et al., 2008), enables a uniquely detailed view into the three-dimensional

ocean particle flux (Guidi et al., 2016). Observations from UVP5 have been used to quantify

particulate fluxes from the surface ocean on a regional basis (Kiko et al., 2017; Cram et al.,

2018; Forest et al., 2012), and to reconstruct carbon export across large-scale biomes based

on limited sets of measurements (Guidi et al., 2015).

The growing number of UVP5 observations, their global distribution, high vertical reso-

lution, and ability to resolve multiple particle size classes offer an unprecedented opportunity
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to re-evaluate global carbon fluxes from the ocean’s surface, testing the importance of the

choice of depth horizon, the role of small vs. large particles, and the degree of autotrophy

(i.e., net particle production) vs. heterotrophy (i.e., net particle consumption) across the

euphotic zone. In this study, we use a global reconstruction of PSDs from UVP5 observa-

tions (Clements et al., 2022) to provide a new estimate of the magnitude and patterns of

particulate carbon export from the ocean’s surface. The approach relies on empirical rela-

tionships that relate particle size and abundance to sinking fluxes (Kriest, 2002; Guidi et

al., 2008; Kiko et al., 2017), which we tune against a global data set of in situ sediment

trap and thorium-derived particle flux observations (K. M. Bisson et al., 2018). we exploit

the high vertical resolution of UVP5 measurements to estimate particle export at both the

climatological euphotic zone depth and the maximum mixed layer depth, elucidating the

importance of the export horizon for net carbon export and sequestration.

The rest of the paper is organized as follows. Section 2 describes the methods used to

estimate particle fluxes from global PSD reconstructions and in situ observations. Section

3 presents the results of the new export estimates, comparing them to prior work, and

discussing the implications, uncertainties, and caveats inherent to our approach. Section 4

summarizes the main findings and future directions.

3.2 Methods

The flux of particulate carbon (ϕ, mgC
m2day

) at any given depth can be expressed as a function

of three size-dependent quantities: the number (#) of particles of a given size, i.e., the PSD

(n(s), #
m3cm

), the sinking speed (w(s), m
s

), and the carbon content of each particle (c(s), mg
#

),

according to the following equation (Guidi et al., 2008; Stemmann & Boss, 2012):

ϕ =

∫ smax

smin

n(s) · w(s) · c(s) ds, (3.1)

Here, s (cm) indicates the particle ESD, or size, and smin and smax the minimum and

maximum size of particles considered for export. Following previous work, we assume that
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the quantities in Equation 3.1 can be approximated by power laws that depend on particle

size, each characterized by an intercept (the size-independent coefficient) and a slope (the

exponent for size-dependence) (Stemmann & Boss, 2012):

n(s) = n0 · s−β (3.2)

w(s) = w0 · sη (3.3)

c(s) = c0 · sζ , (3.4)

Thus, by using Equations 3.2-3.4, the total particle flux can be expressed as:

ϕ =

∫ smax

smin

n0 · w0 · c0 · s−β+η+ζ ds =

∫ smax

smin

n0 ·m0 · s−β+µ ds (3.5)

where we combined the intercepts and exponents of the sinking speed and carbon content

relationships by setting m0 = w0 · c0 and µ = η + ζ, following the approach by Guidi et al.

(2008). we further approximate m0 and µ with globally constant values, which we constrain

with in situ observations. In practice, we calculate the continuous integral in Equation 3.5

as a discrete summation over the finite size bins that approximate the PSD observed by

UVP5 instruments.

we use PSD properties (biovolume and slope) from a global UVP5-based reconstruction,

shown in Figure 3.1 (Clements et al., 2022). Briefly, this reconstruction is based on a

machine learning algorithm (a bagged Random Forest ensemble) applied to a global dataset

of UVP5 observations (Kiko et al., 2022), and provides monthly varying climatological maps

of PSD slope and biovolume in the upper ocean. we combine these PSD reconstructions with

empirical relationships for sinking velocity and carbon content to estimate particle fluxes

by solving Equation 3.5. Since the parameters that define the combined sinking speed and

carbon content relationships, i.e., m0 and µ, are poorly constrained (Kriest, 2002; Stemmann

& Boss, 2012; Kiko et al., 2017), we optimized them by minimizing the mismatch between
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predicted particle fluxes and in situ observations from sediment traps and thorium-uranium

disequilibrium at the base of the euphotic zone (K. M. Bisson et al. (2018), see Section 3.2.1).

we exploit the three-dimensional nature of UVP5 observations to calculate particle fluxes

at two different export horizons: the base of the euphotic zone (here defined by the 1% light

level following Morel et al. (2007)) and the annual maximum mixed layer depth (Johnson et

al., 2012). For the former, we take the PSD estimates from Clements et al. (2022). For the

latter, we estimate the PSD at the base of the wintertime mixed layer, following the same

procedure as Clements et al. (2022).

a)

b) Reconstructed PSD Slope

Reconstructed PSD Biovolume

&&'

Figure 3.1: Global reconstructions of (a) PSD biovolume (ppm), and (b) PSD slope

(non-dimensional), based on a machine-learning extrapolation of in situ UVP5 observa-

tions (Clements et al., 2022). Color contours show reconstructed variables as annual means.

Dots show in situ quantities from UVP5 observations. Note that observations reflect specific

months of the year, explaining some of the mismatches with annual mean quantities shown

by the background colors.

40



3.2.1 Sinking Speed and Carbon Content

Particle sinking speed and carbon content have been empirically evaluated using power

law relationships analogous to Equations 3.3 and 3.4, e.g., as compiled in Kriest (2002)

and Stemmann et al. (2004a). Individually, most observational studies measure a range of

particles that does not wholly encompass the sizes detected by the UVP5. Furthermore,

these relationships are defined for specific particle types, which are not distinguished in the

PSD reconstruction used here (Clements et al., 2022).

Since estimates of total flux are sensitive to the sinking speed and carbon content rela-

tionships encapsulated by the parameters m0 and µ, we apply an optimization procedure

to keep our results consistent with in situ particle flux measurements. Specifically, we find

the values of m0 and µ that minimize the sum of the square errors between the log of the

particle flux reconstructions (Equation 3.1) and co-located in situ carbon flux measurements

(K. M. Bisson et al., 2018). we use both trap and thorium flux data, corrected to be at

the euphotic depth. we average together all in situ data onto the same grid of the PSD

reconstructions (Clements et al., 2022), i.e., into 1 degree grids, by month, so that the opti-

mizations are done on a climatological basis. Because in situ carbon flux measurements are

uncertain (K. M. Bisson et al., 2018), we adopt a Monte Carlo approach for this optimiza-

tion, repeating it 1000 times after perturbing each flux observation by applying a random

observational error, assuming a log-normal distribution and an uncertainty of 1 standard

deviation on the measurements. This Monte Carlo ensemble also allows us to estimate the

error associated with the optimization of the sinking speed and carbon content parameters.

Because the size distribution of particles that contribute to the flux is poorly constrained,

we perform this optimization for a range of plausible minimum and maximum sizes for

Equation 3.5, selecting a physically reasonable combination for the final estimate. Ultimately,

when optimizing the sinking carbon parameters, the total global export flux is not sensitive

to the size range; however the resulting empirical relationships are. The insensitivity of the

carbon flux to the size range indicates a compensatory effect between the sinking carbon

parameters and the size range selected for the optimizations. Thus, choosing different size

41



combinations would result in a similar total flux, although it may slightly alter spatial or

temporal patterns in a compensatory way (Supplementary Fig. B.1).

our final choice of size range is informed by average sinking speeds and carbon content

previously reported (Kriest, 2002). Based on this optimization analysis, we set the minimum

size class to be 35 µm, where the average sinking speed is near 1 m d−1 (Smayda, 1970; Kriest,

2002). Although this value is lower than the detection limit of the UVP5, the power law slope

can likely be extended to this size range, as demonstrated for example by observations in the

the Pacific Ocean (Stemmann, Eloire, et al., 2008). Most organic particles smaller than this

size are likely rapidly remineralized, making their contribution to the sinking flux negligible

(Riley et al., 2012). Even if some smaller particles could sink more rapidly (e.g., because

of higher concentrations of mineral “ballast” and higher density) and could contribute more

substantially to the total flux, neglecting them would not significantly affect our final export,

because the optimized flux is nearly insensitive to the size range selected (Supplementary

Fig. B.1). we choose 5 mm as the maximum size, i.e., the same maximum size used for

the PSD reconstructions (Clements et al., 2022), roughly corresponding to the size where

zooplankton become important contributors to the particle biovolume detected by UVP5 in

a variety of regions (Forest et al., 2012; Stemmann, Youngbluth, et al., 2008; Stemmann &

Boss, 2012).

Overall, this optimization approach results in a median value of 2.63 ± 0.06 for the expo-

nent µ, and 18.0 ± 2.8 mgC m s−1 cm−2.63 for the intercept m0, both in the range suggested

by in situ observations (Kriest, 2002), and comparable to values adopted by previous studies

(Kriest, 2002; Stemmann et al., 2004a; Guidi et al., 2008; Kiko et al., 2017; Bianchi et al.,

2018).

3.2.2 Flux reconstruction, error and evaluation

we first present results for fluxes estimated at the climatological euphotic zone depth, and

then repeat the calculation at the maximum mixed layer depth. This requires an estimate

of the PSD at the maximum mixed layer depth, which we obtain from UVP5 observations
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following the same machine learning approach of Clements et al. (2022). we keep the same

sinking speed and carbon content parameters (m0 and µ), assuming that they do not change

substantially between the two depths, which are often not too far apart from each other.

Thus, the only methodological difference between the two estimates is the depth of the PSD

reconstruction used to calculate the flux.

we take the ensemble mean of the Monte Carlo optimizations (Section 3.2.1) as the final

carbon flux estimate. Error in this estimate could arise not only from the uncertainty in

the particle sinking speed and carbon content parameters, but also from the uncertainty in

the PSD reconstructions (Clements et al., 2022). we combine these two sources of error by

summing the variances of two ensembles of carbon flux reconstructions. The first consists

of the Monte Carlo optimization ensemble, based on the mean PSD from Clements et al.

(2022). The second uses 100 different realizations of PSD from Clements et al. (2022), but

sets m0 and µ to the median values from the optimization. The final uncertainty is taken as

the square root of the combined variances.

we evaluate reconstructed particle export fluxes by comparing them to in situ flux ob-

servations and previous global reconstructions. Specifically, we compare total fluxes, zonal

averages, and seasonal cycles. For these comparisons, we divide the ocean into 14 biogeo-

chemically consistent regions based on the boundaries identified by Weber et al. (2016), with

an additional boundary along the equator to separate Northern and Southern Hemispheres.

3.3 Results and Discussion

3.3.1 Euphotic zone export fluxes

our resulting global carbon flux reconstruction at the base of the euphotic zone compares

well with in situ sediment trap and thorium-based observations (Fig. 3.2), performing in

a similar way as previous estimates (Henson et al., 2011; Dunne et al., 2007; Siegel et al.,

2014). Compared to previous work, we reduce the uncertainty relative to observations,

as expressed by the lower root mean square error and bias. However, our method also
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a) This Study vs in situ data

c) Henson et al. (2011) vs in situ data d) Dunne et al. (2007) vs in situ data

b) Siegel et al. (2014) vs in situ data
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Figure 2: Compare to data

Figure 3.2: Density scatter plots showing the relationships between in situ flux observations

and global flux reconstructions (mg C m−2 d−1) at the base of the euphotic zone from (a)

this study, (b) Siegel et al. (2014), (c) Henson et al. (2011), (d) (Dunne et al., 2007). Colored

dots represent the relative density of grid points surrounding the data point, and the dashed

line indicates a 1:1 ratio. Annotations show the coefficient of determination (r2), root mean

square error (RMSE), and average bias.

reduces the full range of reconstructed fluxes, i.e., it overestimates the flux at low values and

underestimates it a high values compared to observations. This bias could be related to a

similar underestimate of the range of PSD biovolume and slope that likely depends on the

specific machine learning method used to extrapolate UVP5 observations (Clements et al.,

2022). It is also possible that the optimization approach against an averaged global dataset

of in situ fluxes fails to capture extremes in particle export at both the high and low range

of observations.

Comparing sediment trap and thorium-based observations to the various estimates of
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Fig. 3.2 highlights the relative strengths and weaknesses of each approach. The results

from Dunne et al. (2007), based on combining satellite primary production with empirical

estimates of particle export ratios, match the observed values well, but tend to overestimate

the largest fluxes (not shown on these figure axes). The estimate by Henson et al. (2011),

based on a similar approach as Dunne et al. (2007), follows a similar pattern as observations,

as indicated by the high r2, but systematically underestimates the flux magnitude, as shown

by the negative bias. The satellite-driven, model-based estimate from Siegel et al. (2014)

captures the overall magnitude of export, but misses some of the variability of observations,

as indicated by the relatively low r2. Overall, all estimates in Fig. 3.2 show combinations of

strengths and weaknesses, and it would be difficult to highlight a specific model as uncon-

ditionally superior. This suggests that a combination of estimates should be used to asses

export of carbon from the surface ocean, and that future efforts should strive to reduce the

biases discussed above, potentially combining strengths from different approaches.

Extrapolated to the whole ocean, our method reveals spatial patterns of export fluxes in

broad agreement with previous studies, with some notable differences (Fig. 3.3). Similar to

other estimates, particle fluxes tend to decrease from high to low latitudes, and from coastal

regions to the open ocean. A local maximum of export is reproduced along the equator, and is

particularly evident in the Pacific Ocean. Compared to previous work, our method produces

somewhat weaker gradients between coastal and offshore waters, with slightly higher fluxes

near the centers of subtropical gyres, and suggests an asymmetry between the subpolar

Atlantic and Pacific Oceans, with more intense particle export along the gulf of Alaska than

in the North Atlantic (see also Section 3.3.1.1). we also reconstruct substantially stronger

export than previously found in the Southern Ocean, in particular south of 50S (see discussion

in Section 3.3.2).

Globally integrated, we estimate a particle export flux of 5.8 ± 0.1 PgC y−1, in good

agreement with the range of observational and model-based estimates of the biological grav-

itational pump (4-9 PgC y−1, Boyd et al. (2019)). Compared to other spatially resolved

reconstructions, our global flux sits between the low-value of Henson et al. (2011) (3.0 ± 0.3

PgC y−1) and the high-value of Dunne et al. (2007) (8.5 ± 0.81 PgC y−1). Seasonal maps
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of the export and standard deviation are shown in Supplementary Figures B.2 and B.3.

a)        This Study

5.8 ± 0.1

c)             Devries and Weber (2017)

b) Bisson et al. (2018)

9.1 ± 0.2

5.7 ± 0.0

9.8 ± 0.4

f)                  Henson et al. (2011)

3.0 ± 0.2

d)                  Dunne et al. (2007)

e)                      Siegel et al. (2014)
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Figure 3.3: Annual average particle export flux (mg C m−2 d−1) from the euphotic zone

for (a) the global PSD-derived flux from this study, compared to (b) the in situ data of

K. M. Bisson et al. (2018), (c) the steady state satellite-driven model SIMPLE-TRIM of

DeVries et al. (2017), (d) the empirical model of Dunne et al. (2007), (e) the satellite-driven

euphotic zone food web model Siegel et al. (2014), and (e) the empirical model of Henson et

al. (2011). Annotations in each figure show the globally integrated export in Pg C y−1, and

the uncertainty reported by each study.

3.3.1.1 Spatial variability

Variations in export patterns derived with our approach (Equations 3.1 and 3.5) reflect a

combination of spatially varying PSD biovolume and slope (Clements et al., 2022). we can
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quantitatively describe the effect of the PSD as the relative contribution of small (35 µm -

418 µm) vs. large particles (418 µm - 5 mm) to the total flux (Figure 3.4), where 418 µm is

the geometric mean of the size range considered here. Biovolume and PSD slope generally

correlate in such a way that both factors contribute to increasing export fluxes in particle-

rich productive waters, where large, rapidly sinking particles tend to be relatively more

abundant than small particles, and to decreasing export fluxes in particle-poor oligotrophic

waters where small particles dominate (Clements et al., 2022) (Figure 3.4).

High export in the eastern equatorial and tropical Pacific can be attributed to high bio-

volume, with a minor contribution from PSD slope, which appears to be more uniform across

the region (Figure 3.1). The picture is somewhat different in the equatorial Atlantic Ocean,

where a more substantial “flattening” of the PSD supports a higher contribution from large

particles. A similar interaction of particle abundance and size-structure dramatically inten-

sify fluxes at high latitudes, such as in the subpolar North Pacific and Southern Ocean, and

to a lesser extent the subpolar Atlantic, where an increase in particle abundance is accom-

panied by a shift of the PSD toward large particles. In contrast, along many coastal regions,

including eastern boundary upwelling systems and the Arabian Sea upwelling, increase in

particle biovolume, rather than substantial changes in size structure, appears to drive en-

hanced export fluxes. we speculate that changes in community structure associated with

more productive regions explain such a shift.

we illustrate the main spatial differences between our and other reconstructions by con-

sidering zonally averaged export fluxes (Fig. 3.5). The largest export rates are observed

around the equator, in the subpolar Pacific Ocean, and in the mid- to high-latitudes of the

South Atlantic Ocean, while more uniform export is observed in the Indian Ocean. In all

basins, the minimum export rates are generally located at the latitude of the subtropical

gyres. While export is nearly symmetrical around the equator in the Pacific Ocean (Fig.

3.5a), in the Atlantic Ocean it dramatically increases moving from the Northern to the

Southern Hemisphere (Fig. 3.5b). These patterns reflect a combination of open-ocean and

shelf enhanced particle fluxes. Specifically, high export in the Northern Pacific and Southern

Atlantic Oceans are partly driven by large fluxes in the Bering Sea, the Sea of Okhotsk, and
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Euphotic Size fractions

a)        Small Particle Fraction

b)        Large Particle Fraction

Figure 3.4: Role of small vs. large particles. The two panels show the fraction of carbon flux

at the euphotic zone from (a) small particles (35µm to 418µm ESD) and (b) large particles

(418µm to 5mm ESD).

the Patagonian shelf. At lower latitudes, coastal upwelling systems sustain particularly high

export in the northern Indian Ocean and the tropical to subtropical Atlantic.

our reconstruction shows broad meridional patterns similar to previous estimates (Fig.

3.5); however, significant regional-level discrepancies remain. For example, in the low lati-

tudes, we predict somewhat less intense equatorial export peaks and subtropical lows, com-
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Figure 3.5: Zonally integrated annual mean export (Tg C y−1 degree−1) from the base of

the euphotic zone, for (a) the Global Ocean, (b) the Pacific Ocean, (c) the Atlantic Ocean,

and (d) the Indian Ocean. Each color represents a different study, as shown in the legend

(bottom).

pared to the estimates of Dunne et al. (2007) and Siegel et al. (2014). In this respect,

our reconstruction is more in line with that of DeVries & Weber (2017). In the northern

Pacific, we do broadly underestimate the transition zone as a persistent feature; however,

seasonally, it is present (Supplementary figure B.2). Overall, in the subpolar North Pacific,

our estimate shows a northward shift of maximum export towards the continental margins

that is comparable to the results of Dunne et al. (2007). This is likely caused by inten-

sification of particle fluxes in coastal waters and marginal seas, which may be related to

regional processes such as more efficient nutrient recycling in shallow regions, or iron leakage

from continental shelves (Nishioka et al., 2020) supporting large phytoplankton sizes. In the

Atlantic Ocean, the gradual increase of export from northern to southern latitudes (mostly
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driven by high export near the coast), and the rapid increase in the Southern Ocean (caused

by high export near the Patagonian shelf), are similar to the reconstruction of Henson et al.

(2011), although the magnitude is larger. In the Indian Ocean, our reconstruction matches

other studies at low latitudes; however, it shows a more dramatic increase in export towards

the Southern Ocean sector (discussed in more detail in Section 3.3.2).

3.3.1.2 Seasonal cycle

The seasonal cycle of particle export is comparable to previous studies, when averaged over

large-scale coherent biomes (Fig. 3.6). However, significant discrepancies are also revealed.

In general, our seasonal cycle is more muted than previous work, suggesting weaker month-to-

month variability in some regions, while other regions match previous reconstructions more

closely. The most significant discrepancy is observed in the Southern Ocean, in particular in

the Antarctic zone, where our reconstruction is substantially higher than previous estimates,

with sustained export throughout winter months. we discuss this deviation in Section 3.3.2.

The lower seasonality in our estimate is consistent with the reduced spatial gradients,

and suggests overall weaker variations in net community production and export than pre-

viously assumed. The machine learning approach used to reconstruct the PSD relies on

non-linear relationships with multiple ocean variables to reconstruct particle size distribu-

tions, which may accentuate compensatory relationships between different predictors. Sur-

face chlorophyll, temperature, and net primary production have all been used in previous

global reconstructions (Dunne et al., 2007; Henson et al., 2011; Siegel et al., 2014), but rarely

together with additional variables that may be important in modulating spatial and seasonal

patterns of export. It is also possible that our method somewhat underestimates variability

compared to previous work. As previously noted, our PSD reconstructions reduces extremes

in both biovolume and PSD slope (Clements et al., 2022), which may lead to underestimating

variability in particle export fluxes derived from these quantities.
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Figure 5: Seasonality at Zeu

Figure 3.6: Annual seasonal cycle of particle flux from the euphotic zone (Tg C y−1) for the

regions specified in the map (top). Each line corresponds to a different estimate, as listed in

the legend below the map. The same seasonal spatial mask was applied to each study. Note

that the study by DeVries & Weber (2017) provides annual mean export fluxes, which are

shown here as horizontal lines.

3.3.2 Southern Ocean Export

Export flux in the Antarctic zone of the Southern Ocean are larger in our estimate than other

global reconstructions, especially during austral summer (Fig. 3.6). we also find a southward

shift in export, with a peak around 50S, rather than around 40S as in other estimates. A
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Figure 3.7: Southern Ocean particle export (mg C m−2 d−1) for (a) this study, and (b-e)

different data-based estimates from Arteaga et al. (2018), and (f) the mean from that study.

Each data-based estimate from Arteaga et al. (2018) uses a different net primary production

algorithm to derive export. (g) Seasonal cycle of export for each estimate in the Antarctic

zone (shown in figure 3.6).

regional study based on 10 years of biogeochemical Argo measurements from 2006-2014, com-

bined with satellite-based net primary production and export algorithms, similarly suggests

higher than previously reported particle fluxes throughout the region (Arteaga et al., 2018),

in better agreement with our results (Fig. 3.7). This similarity is mostly evident in the open

ocean, and varies depending on the primary production algorithm chosen for the comparison.

However, our estimate also suggests substantially higher export near landmasses, for exam-

ple South Georgia and the South Sandwich Islands and the Kerguelen Plateau. Although

estimates from Arteaga et al. (2018) do not show the same high flux in austal winter through

the end of the year as our reconstruction, they do demonstrate that export fluxes from the
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Antarctic zone of the Southern Ocean likely never decrease to the nearly negligible levels

shown by other global estimates (Fig. 3.6).

The discrepancy in export from the Antarctic zone relative to prior global estimates could

arise from a combination of factors. Observations in the Southern Ocean, particularly in aus-

tral winter, are scarce. This is true for both the UVP5 measurements and the climatological

predictors used to reconstruct PSD (Clements et al., 2022). The UVP5 data compilation

(Kiko et al., 2022) includes two major cruises in the Southern Ocean, which only cover the

months of March to May. Satellite-based reconstructions of chlorophyll and primary pro-

duction from ocean color are on the other hand poorly resolved in austral wintertime. Other

climatological variables, such as nutrients and oxygen, are also the results of interpolation

of fewer in situ observations relative to the rest of the ocean. The scarcity of observations

to train the machine learning model used for the PSD reconstructions results in significant

uncertainty in predicted PSD and export fluxes in this region (Clements et al., 2022).

our reconstruction reveals significant export primarily next to island masses. Proximity to

Southern Ocean islands have been shown to increase productivity and carbon flux (Jouandet

et al., 2014; Stemmann, Eloire, et al., 2008), presumably via enhanced vertical mixing and

iron fertilization from sedimentary sources in otherwise high-nutrient low-chlorophyll waters

(Gaiero et al., 2003). It is possible that other methods of flux reconstructions (Henson et

al., 2011; Siegel et al., 2014; DeVries & Weber, 2017) underestimate this increased export,

in particular during winter, when observations are scarce. Expanding the number of in situ

particle flux and UVP5 observations from the Antarctic zone, downstream of major land

masses and over the entire seasonal cycle, could help shed light on the patterns of export

and their variability in this undersampled region.

3.3.3 Mixed layer versus euphotic zone export

Globally integrated, export from the maximum wintertime mixed layer depth is 6.1 ±0.1

PgC y−1, i.e., about 0.5 PgC y−1 larger than the global export from the euphotic zone.

This estimate is lower than observational estimates of organic carbon export and annual net
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community production from the same depth horizon (Emerson, 2013), which would include

additional export mechanisms.

Annual average POC flux from the 
wintertime Mixed Layer

6.1 ± 0.1

a)

-.
/-

'&
0'

(

Figure 7: export flux and size 
distribution

Ratio of Annual average POC flux from maximum 
Mixed Layer depth to Euphotic depth

Ratio of Annual average Euphotic depth to 
maximum Mixed Layer depth

b)

c)

Figure 3.8: (a) Annual mean particle export (mg C m−2 d−1) from the maximum mixed

layer depth. Total export is 6.1 PgC y−1. (b) Ratio of the export from the MLD to the

export from the Euphotic zone. Red indicates a higher export from the MLD (c) Ratio of

the annual mean Euphotic zone depth to the Maximum annual mixed layer depth. Red

indicates where the euphotic zone is deeper.

Overall, export from the wintertime mixed layer follows broad spatial patterns similar

to the export from the euphotic zone (Fig. 3.8a). The tropics and subtropics show larger
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mixed layer export fluxes (locally, up to a few times), while high latitudes show overall weaker

values (Fig. 3.8b). The low-latitude intensification of mixed layer fluxes is similar in all ocean

basins, and more than compensates for the reduction at high latitudes (Supplementary Fig.

B.6), thus producing an overall larger export from this horizon. Because of this low-latitude

intensification, export from the mixed layer shows stronger gradients between the tropics and

high latitudes. Gradients between the equatorial export peak and the subtropical export

low are also intensified. Finally, export from the mixed layer in the Southern Ocean is

substantially depressed compared to export from the euphotic zone. Similar to export from

the euphotic zone, export from the mixed layer tends to be dominated by smaller particles

(Supplementary Fig. B.7)

Differences between euphotic zone and mixed layer export can be best interpreted by

considering the different depth of these horizons (Palevsky & Doney, 2018) (Fig. 3.8 C).

The maximum mixed layer is shallower than the euphotic zone in the tropics and sub-tropics,

and is deeper in high latitudes (Fig. 3.8c). This suggests that shallower export horizons are

generally characterized by higher fluxes than deeper export horizons, which we attribute to

remineralization of particles in surface layers. Specifically, we identify three main latitudinal

bands with different horizon depths and export patterns, roughly corresponding to tropics

and subtropics, mid-latitudes, and subpolar regions.

Over most of the tropics and the subtropics, the maximum wintertime mixed layer is

shallower on average than the climatological euphotic zone (blue colors in Fig. 3.8 c). Here,

particle remineralization between the wintertime mixed layer and the euphotic zone depth

likely reduces export from the latter horizon, suggesting net heterotrophy in the deeper

layers of the euphotic zone, consistent with observations of shallow particle regeneration in

the tropics (Pavia et al., 2019).

Over subpolar regions, the wintertime mixed layer is deeper on average than the climato-

logical euphotic zone. Thus, export fluxes reach maximum values within the euphotic zone,

and decrease below it following typical flux attenuation profiles (Martin et al., 1987; Guidi

et al., 2009). Finally, over most of mid-latitudes, the wintertime mixed layer is deeper on

average than the climatological euphotic zone. However, export fluxes from the mixed layer
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and euphotic zone are very similar in magnitude, suggesting a close seasonal compensation

between enhanced euphotic zone fluxes when this horizon is found above the wintertime

mixed layer, and reduced euphotic zone fluxes when it is found below it.

Ultimately, differences in export between the euphotic zone and the wintertime mixed

layer are important when considering the role of the biological pump for carbon sequestration

(Palevsky & Doney, 2018). Export below the wintertime mixed layer removes carbon from

contact with the atmosphere for timescales longer than one year. our results suggest that

more carbon is sequestered below the wintertime mixed layer than leaves the euphotic zone.

we further suggest a role for particle consumption by heterotrophes (microbes and zooplank-

ton) in reducing the abundance of organic particles in the lower euphotic zone, making it

net heterotrophic rather than primarily autotrophic.

3.3.4 Caveats to our approach

our method relies on global PSD reconstructions from UVP5 observations, as well as in

situ particle flux measurements, both of which are spatially and temporally limited. This

in turns reduces the ability of our approach to obtain an accurate climatological picture of

PSD and fluxes, and extrapolate local observations to larger regions and other times of the

year. In particular, about forty-three percent of monthly particle flux observations contain

only one data point, and entire ocean basins are represented by a handful of measurements

(Fig. 3.2b). While more widely distributed than flux measurements, UVP5 observations are

also characterized by large gaps in space and time (Kiko et al., 2022).

As previously discussed (Clements et al., 2022), regional correlations between environ-

mental properties and PSD observations from UVP5 may not be well captured by extrapola-

tion with a machine learning algorithm trained on data from different regions, especially when

non-linear relationships between variables become important. Similarly, our reconstructions

rely on the assumption that PSD can be well approximated by power law distributions.

Analysis of UVP5 data suggest that this assumption is generally valid over the open ocean

(Clements et al., 2022), although locally it may be flawed, and other distributions may be
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more accurate (R. A. Reynolds & Stramski, 2021a). Expanding the coverage of in situ PSD

and fluxes, in particular in under-sampled regions characterized by large variability, such as

the Southern and northwest Pacific Oceans, would improve the robustness of our estimates,

and shed additional light on regional export patterns not captured by previous work.

The conversion of PSD to export flux encapsulated by Equations 3.1 and 3.5 also suffers

from limitations. Converting standing stocks of particles from UVP5 observations to sinking

carbon flux using size-dependent relationships assumes that (1) all particles of a given size

have the same carbon content, and (2) they all sink at a similar speed proportional to their

size. Known biases exist with both assumptions. For example, densely packed fecal pellets

often contain more carbon and sink faster than heterogeneous aggregates and marine snow

of the same size (A. Alldredge, 1998). Biogenic and lithogenic minerals could alter these

relationships on a regional basis, e.g., near continental margins, where lithogenic particles

are generally more abundant (R. Reynolds et al., 2010; Trudnowska et al., 2020). Further-

more, we assume globally uniform relationships between particle size, sinking speed, and

carbon content. However, these relationships remain highly uncertain (A. Alldredge, 1998;

Stemmann, Eloire, et al., 2008; Stemmann & Boss, 2012; B. Cael et al., 2021), and are likely

to depend on region and time of the year, reflecting variable particle characteristics and

underlying oceanographic and ecological processes.

our approach, which optimizes carbon content and sinking velocity parameters against

in situ particle fluxes, reduces to some extent the effect of these uncertainties. More work

combining in situ and optical measurements should focus on constraining these quantities

and their regional and temporal variability. Future studies could also improve our approach

by distinguishing living and non-living particles, as well as particle type and composition,

e.g., by analysis of UVP5 images or other optical methods in conjunction with in situ particle

samples (Trudnowska et al., 2021).
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3.4 Conclusions and future work

we provide a new, data-constrained estimate of particle export fluxes by combining global

reconstructions of PSD from UVP5 observations and in situ export flux measurements. our

estimate of particle export captures regional and seasonal variability in fluxes, and allows

reconstruction of export fluxes from spatially variable euphotic zone and mixed layer depths,

highlighting the importance of the choice of export horizon (Palevsky & Doney, 2018).

we obtain a global particle export flux of 5.8 ± 0.1 PgC y−1 from the euphotic zone,

in line with previous work, although with regional and temporal differences. our results

suggest weaker spatial and seasonal variability compared to previous studies, in particular

in the open ocean, and highlight the importance of coastal waters and marginal seas for

export at high latitudes. Results from the Southern Ocean suggest that processes that

sustain elevated fluxes, in particular in wintertime and early austral summer, may not be

completely captured by other global reconstructions, and that waters downstream of coasts

and islands may harbor a significant source of carbon export to the deep ocean, which is

only partially captured in one other reconstruction (Dunne et al., 2007).

we illustrate the ability of our method to obtain particulate organic carbon fluxes at

multiple depth by reconstructing and comparing carbon export from the euphotic zone and

the wintertime mixed layer depth. Export from the mixed layer is overall stronger than

export from the euphotic zone in low and mid latitudes, and weaker in high latitudes, driving

a marginally larger flux of 6.1 ± 0.1 PgC y−1. Differences between euphotic zone and mixed

layer export are only partially consistent with results from large scale models (Palevsky &

Doney, 2018), and suggest important organic matter remineralization in the deeper parts of

the euphotic zone. Three-dimensional reconstructions of particle fluxes would allow a closer

investigation of the processes controlling export changes with depth and their implications

for particle transfer efficiency and carbon sequestration.

our results highlight the relative importance of particle abundance and size structure in

driving export. Total particle biovolume and the PSD slope are correlated in such a way to

act synergistically on particle fluxes (Clements et al., 2022). Consistently, higher fluxes are
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reconstructed in regions with larger particle biovolume and “flatter” slopes. we also suggest

distinct deviations from these patterns, for example in the tropical and northern subtropical

Pacific Ocean, where high abundance of all particles, rather than dominance of large relative

to small particles, appears to drive elevated export. we further highlight the importance of

the PSD by comparing export for small and large particles (here separated at a cutoff size

of 418 µm), showing that, while small particles (35 µm - 418 µm range) overall dominate

export, large particles (418 µm - 5 mm range) become proportionally more important in

high latitudes and tropical regions, where they can account to up to 60 % of export fluxes.

we identify sources of uncertainty and limitations that should be addressed in future work.

There remain areas of the ocean and times of the year with limited UVP5 observations

and, critically, in situ flux measurements, driving uncertainty in both the PSD and flux

reconstructions. As UVP5 observations increase in number, our analysis can be refined, for

example by expanding comparison with in situ sediment trap and thorium-based particle flux

observations (Mouw et al., 2016). New machine learning approaches should aim at better

capturing fluxes at the high and low end of their range, reducing current biases (Clements

et al., 2022). Furthermore, better constraints should be placed on particle carbon content

and sinking speed parameters, reflecting regional variability and particle types.

The three-dimensional nature of UVP5 observations paves the way for fully three-dimensional

reconstructions of particle export fluxes in the ocean interior. This will greatly benefit from

particle flux compilations that span the full depth of the ocean (Mouw et al., 2016), and

that harmonize discrepancies between different flux measurement methods (K. M. Bisson et

al., 2018). Ongoing deployments of UVP instruments, including on Argo floats, will rapidly

increase the number of PSD observations with high vertical resolution (Picheral et al., 2022).

In turn, three-dimensional reconstructions of export will enable a better characterization of

the ocean’s ability to sequester carbon (Boyd et al., 2019), and, in combination with models

(DeVries & Weber, 2017; Siegel et al., 2014), a better understanding of the processes behind

the ocean’s biological pump (Siegel et al., 2022).
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CHAPTER 4

The distribution and fate of sinking organic matter in

the global ocean interior

4.1 Introduction

Sinking organic particles shuttle organic matter from the productive euphotic ocean to

the deep dark interior ocean. This shuttle provides nutrients to the deep ocean ecosystem,

while removing and storing carbon from the atmosphere. The effective timescale of this

storage is directly related to the depth at which the organic matter is remineralized to

carbon dioxide. In the open ocean, the particle transfer efficiency (Teff ), i.e., the ratio

between the sinking matter flux at a given depth in the ocean interior and the export leaving

the surface ocean (generally the euphotic zone, or a shallow reference depth), encapsulates

the proportion of organic matter that has escaped most remineralization, and can be stored

in the deep ocean over timescales of centuries Boyd et al. (2019). Despite the importance for

carbon sequestration, the controls and distribution of the transfer efficiency of sinking organic

matter remain poorly constrained and extremely difficult to observe over global scales.

Sinking organic matter in the ocean is difficult to measure, especially below the surface.

Historically, estimates of sinking organic matter fluxes were made through the direct capture

of organic particles with sediment traps. Early compilations of sediment trap observations

revealed a pattern of particle attenuation that is more intense in the upper ocean, and

decreases progressively with depth, the so-called Martin curve (Martin et al., 1987). Martin

et al. (1987) defined a simple power-law relationship to represent the sinking matter flux at
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any depth, as defined by equation 4.1.

ϕz = ϕ0(
zz
z0

)−b. (4.1)

This pattern of decay has been supported by a variety of particle collection studies across

different ocean basins (Martin et al., 1987; Berelson, 2001a). While the Martin curve is a

useful, convenient approximation of sinking flux observations, it may not wholly capture the

pattern of export at depth.

The exact shape and pattern of this attenuation has been called into question (B. B. Cael

& Bisson, 2018). In fact, several studies (Henson et al., 2012; Marsay et al., 2015; Guidi et

al., 2015; Weber et al., 2016; Cram et al., 2018) have attempted to resolve the strength of the

flux attenuation, finding conflicting patterns, with spatially variable Martin curve coefficients

(b in Equation 4.1) that remain poorly constrained. Advances in empirical, mechanistic, and

geochemical inverse models of particle fluxes (Henson et al., 2012; Marsay et al., 2015; Weber

et al., 2016; Cram et al., 2018) have allowed for a more robust characterization of the particle

flux attenuation and the factors that control it. The particle transfer efficiency (Teff ) is a

non-parametric diagnostic quantity that is often used to describe the POC attenuation. Here,

we specifically select as reference depths the base of the mesopelagic ocean at 1000 m, and

the the 100m depth horizon, defining the transfer efficiency as:

Teff =
ϕ1000

ϕ100

. (4.2)

However, similar to the Martin curve coefficient, the magnitude and variability of Teff in

space and time remain poorly constrained (Cram et al., 2018).

Another source of uncertainty is the role of small relative to large sinking particles for

organic matter fluxes in the ocean interior. Previous work suggest that a large proportion

of export can be attributed to relatively large, fast-sinking particles such as fecal pellets and

phytoplankton aggregates, as opposed to smaller, slow-sinking particles. The importance of

large sinking particles in driving the export flux has been well described by observational

work (Honjo et al., 2008; A. L. Alldredge & Gotschalk, 1988; J. T. Turner, 2015), although

several studies have also highlighted the importance of smaller aggregates, in particular
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in the surface ocean (Alonso-González et al., 2010; Durkin et al., 2015; Kiko et al., 2017;

Richardson, 2019; Clements et al., 2023).

As particles sink, small aggregates would be preferentially removed via remineralization,

suggesting that large particles are primarily responsible for carbon sequestration in the ocean

interior (Stemmann et al., 2004a; Burd & Jackson, 2009; Close et al., 2013; Richardson &

Jackson, 2007; Devries et al., 2014; Kiko et al., 2017). Estimates of size-fractionated POC

flux at depth have indicated an important role for small particle fluxes, at least in specific

regions (Durkin et al., 2015), perhaps because of pervasive fragmentation processes (Briggs

et al., 2020). However, these observations have not been yet extrapolated to the global scale.

Advances in in situ optical observations have allowed the quantification of particle size

distribution (PSD), i.e., the number of particles of any given size, in the water column (Stem-

mann & Boss, 2012; Boss et al., 2015; Lombard et al., 2019). Among optical instruments, the

Underwater Vision Profiler 5 (UVP5) is a particle counter that provides the in situ particle

abundance and size for large particles (80 µm - 2.6 cm) in a given sampled volume (Picheral

et al., 2010). The UVP5 consists of a camera that can be attached to a CTD rosette and

lowered in the water column to capture images of particles at high frequency. UVP5 can

capture PSD observations at a rate of up to 20 images per second, with downcast velocities

of around 1 m s−1, as deep as 6 km (Picheral et al., 2010). Since 2008, UVP5s have been

routinely deployed on major oceanographic cruises, in all ocean basins (Kiko et al., 2022).

With knowledge of the sinking speed and carbon content of particles as a function of

size, PSD observations can be translated into estimates of sinking POC fluxes in the water

column (Guidi et al., 2008; Stemmann & Boss, 2012). Machine learning methods have

recently been used to extrapolate sparse UVP5 observation of PSD (Kiko et al., 2021) to

the global ocean, leading to in global surface POC export estimates (Clements et al., 2022,

2023). The approach relies on empirical relationships that relate particle size and abundance

to sinking carbon fluxes (Kriest, 2002; Guidi et al., 2008; Kiko et al., 2017) tuned against

a global data set of in situ sediment trap and thorium-derived particle flux observations

(Mouw et al., 2016).
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In this Chapter, we exploit the high vertical resolution of UVP5 measurements to extend

the work of (Clements et al., 2022) and estimate global particle export fluxes in the ocean

interior. This vertically resolved reconstruction of sinking particle fluxes in turn reveals new

patterns of flux attenuation with depth, and thus sheds light on processes controlling the

transfer efficiency and the deep ocean carbon sequestration.

The rest of this chapter is organized as follows. Section 2 describes the methods used

to estimate vertical profiles of PSD from global UVP5 observations, and their translation to

sinking particle fluxes. Section 3 presents the patterns of interior ocean PSD, export fluxes,

and transfer efficiency, comparing them to prior estimates, and discussing the implications.

Section 4 evaluates the uncertainties inherent to our approach, and remaining research needs.

Section 5 summarizes the main findings and future directions for this work.

4.2 Methods

The flux of particulate carbon (ϕ, mgC
m2day

) at any given depth can be expressed as a

function of three size-dependent quantities: the number (#) of particles of a given size, i.e.,

the PSD (n(s), #
m3cm

), the sinking speed (w(s), m
s

), and the carbon content of paricles in each

size class (c(s), mg
#

), according to the following equation (Guidi et al., 2008; Stemmann &

Boss, 2012):

ϕ =

∫ smax

smin

n(s) · w(s) · c(s) ds, (4.3)

In the ocean, observed PSD can be well approximated by a power law (Bader, 1970;

Sheldon et al., 1972) over a relatively broad size range (from micrometers to centimeters)

which encompasses observations of organic particles from the UVP5 (Stemmann & Boss,

2012). Thus, following this power law assumption, we model observed PSD as:

n(s) = n0 · s−β (4.4)

Here, s (cm) indicates the particle size, and n(s) is the abundance of particles in each
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observed size class, between the maximum (smax) and minimum (smin) sizes observed. Fol-

lowing previous work, we assume that the sinking speed and carbon content can also be

approximated by size-dependent powerlaws (eq. 4.5 and 4.6).

w(s) = w0 · sη (4.5)

c(s) = c0 · sζ , (4.6)

Similar to Guidi et al. (2008) and Clements et al. (2022), we further simplify equation 4.3

to be a function of just the PSD, and sinking carbon parameters m0 and µ by substituting

in equations 4.4 - 4.6 (E.q. 4.7).

ϕ =

∫ smax

smin

n0 · w0 · c0 · s−β+η+ζ ds =

∫ smax

smin

n0 ·m0 · s−β+µ ds (4.7)

Using equation 4.7, we have a size dependent estimate for particle fluxes, dependent on four

parameter; two for the PSD (n0 and β) and two for the sinking carbon component(m0 and

µ), thus we can split our methods into two main parts, quantification of the interior ocean

PSD, and translation into POC flux.

4.2.1 Calculating PSD parameters

Assuming a power law distribution of particles in the ocean, we estimate the slope β by

fitting a linear least-squares regression through the log-transformed particle abundance and

the log-transformed equivalent spherical diameter (ESD) of the particles. we then estimate

the total volume of particles, here referred to as biovolume, assuming that particle are

spherical, by multiplying the individual volume of particle of a given ESD by their abundance

n(s), and integrating over the size range sampled by the UVP5:

BV =

∫ smax

smin

n(s) · π
6
· s3 ds. (4.8)
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Following the procedure outlined in Clements et al. (2022), we can invert equation 4.8

for the power law intercept n0 as a function of the PSD slope and the observed biovolume:

n0 =
6 ·BV

π
·

(
s4−β
max

4 − β
− s4−β

min

4 − β

)−1

. (4.9)

4.2.2 Extrapolation of PSD observations to the global ocean interior

Global climatological reconstructions of PSD require extrapolation of the power law

slope and biovolume quantities to the whole ocean on monthly time scales. To do this,

we use a bagged Random Forest (RF) algorithm (using the sklearn package in Python) to

simultaneously reconstruct climatological PSD slope and biovolume globally, following an

approach similar to Clements et al. (2022). A RF deploys an ensemble of decision trees to

simultaneously solve a regression equation, and outputs the ensemble average reconstruction.

Using a bagged RF, each individual decision tree is independently trained on a randomly

selected subset of target data, with a random subset of predictors. The RF is able to learn

statistical relationships between target variables (here, UVP5-derived slope and biovolume)

and a series of predictors (here, environmental variables), to make reconstructions that

minimize the error between predicted and observed data. Since machine learning algorithms

are particularly sensitive to overfitting the data, we evaluate the method by quantifying the

error between our RF model and the data that was not used for training, i.e., the so-called

“out-of-bag” data.

our RF model relies on a set of predictors and target data gridded to match our de-

sired output resolution. In our case, we use climatological monthly predictors at 1-degree

spatial resolution, with 102 depth levels matching the grids used in the World Ocean At-

las (Locarnini et al., 2019). To construct our predictor set, we include variables that have

been globally quantified and mechanistically linked to processes of particle production and

remineralization. These range from physical variables (e.g., temperature and salinity) to

ecosystem-level quantities (e.g., primary production, oxygen concentration and utilization).

A list of all predictors is shown in Table 4.1.
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Table 4.1: Variables used to predict PSD parameters, variations (i.e., vertical or temporal

changes) and data sources.

Variable Variations Source

Temperature
Time Derivative
Depth Derivative Locarnini et al. (2019)

Salinity
Time Derivative
Depth Derivative Zweng et al. (2019)

Oxygen
Time Derivative
Depth Derivative H. E. Garcia et al. (2019)

AOU
Time Derivative
Depth Derivative H. E. Garcia et al. (2019)

Nitrate
Time Derivative
Depth Derivative H. Garcia et al. (2018)

Phosphate
Time Derivative
Depth Derivative H. Garcia et al. (2018)

Silicate
Time Derivative
Depth Derivative H. Garcia et al. (2018)

Chlorophyll Time Derivative NASA G.S.F.C (2014)

Mixed Layer Time Derivative
Johnson et al. (2012)

de Boyer Montégut et al. (2004)

Eppley VGPM
VGPM
CBPM
CAFE

Time Derivative

Antoine & Morel (1996)
Behrenfeld & Falkowski (1997)

Westberry et al. (2008)
Silsbe et al. (2016)

Iron Time Derivative
Hamilton et al. (2019)

Myriokefalitakis et al. (2018)

Shortwave
Radiation Time Derivative Copernicus C.C.S (2017)
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The predictor set is used to reconstruct PSD slope and biovolume on the three-dimensional

ocean interior grid of the World Ocean Atlas (Locarnini et al., 2019). The reconstruction is

based on the ensemble average of 250 RF realizations with variable hyper-parameters (the

number of decision trees and their complexity), with the inter-model spread serving as an

error estimate on the reconstructed PSD. Clements et al. (2022) demonstrated that using an

ensemble of randomized RFs reduces biases associated with specific predictors and potential

overfitting, making the results robust with respect to parameter tuning and the choice of dif-

ferent observational products (i.e., NPP algorithms). Thus, the PSD reconstructions are not

the result of fine-tuning the model hyper-parameters, or choosing only the best predictors,

but likely encapsulate real — albeit complex and highly non linear — relationships between

water column conditions and PSD. To evaluate the robustness of our reconstructions, we

report goodness-of-fit statistics including the coefficient of determination(r2), the root mean

square error (RMSE), and the average bias, calculated by comparing reconstructions to

co-located in situ observations.

4.2.3 Calculating the sinking particle flux

Previous work shows that particle sinking speed and carbon content depend strongly

on size, and can be approximated by power laws (Kriest, 2002), either separately or in

combination. Combining estimates of PSD with observations of POC flux allows to estimate

the parameters that control the size-dependent sinking carbon content of particles, i.e., m0

and µ in Equation 4.7 (Guidi et al., 2008; Clements et al., 2023).

While previous work shows a general robustness of the approach to reconstructing these

quantities near the surface, their changes with depth have not been previously explored.

However, because of complex particle transformation processes in the ocean interior, we

expect significant vertical variations in both the sinking speed and carbon content of particles

of a given size (Berelson, 2001b). For example, the mineral fraction of particles is likely to

increase with depth, because of slow dissolution rates relative to carbon remineralization.

Thus, we employ a depth dependent optimization scheme to estimate the combined carbon

67



content and sinking speed parameters that allow translation of PSD into POC flux.

As a first approximation, we generate a step-wise linear profile of m0 and µ that can

be optimized against in situ observations of POC flux (Mouw et al., 2016). These profiles

are constructed by defining a set of reference depths for which both m0 and µ need to be

specified, and letting them vary linearly in between. Given these profiles of sinking carbon

parameters, particle flux at any depth can be calculated with knowledge of the PSD, by

applying Equation 4.7.

we optimize for the values of m0 and µ at the reference depths by minimizing the sum

of the square errors between the log of in situ carbon flux measurements (Mouw et al.,

2016) and the estimates from Equation 4.3, co-located at the same depth and month of

observations, following the same approach of Clements et al. (2022). Here, for simplicity, we

use three reference depths, respectively at 100 m, 458 m, and 2000 m, using a log-spacing

between the top and bottom levels.

To first demonstrate the robustness of this method, we test it on a synthetic, three-

dimensional flux data set generated by combining the global interior PSD reconstructions

with prescribed step-wise carbon content and sinking parameter profiles with known pa-

rameters. To further validate our methodology we apply log-normal random errors to the

synthetic data and re-optimize against a random, variable , more realistic, flux. Details of

this validation are further described in Section 4.3.2.

4.3 Results and Discussion

4.3.1 Machine Learning reconstructions of interior ocean PSD

Fig 4.1 show the global reconstructions of PSD biovolume and slope. our reconstruction

approach is able to capture most of the variability of the UVP5 observations, and robustly

reproduces the gridded measurements of biovolume (r2=0.99), and PSD slope (r2=0.97) (Fig.

C.1). Comparison with observations that are not used for training (out-of-bag) provide a

more stringent test for the method’s robustness. As shown in Fig. 4.1B and D, these out-
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PSD Slope at 1000m
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Bias: -0.002
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Figure 4.1: Reconstructed PSD biovolume (in parts per million, ppm) and slope at 1000m.

(a) Annual mean PSD slope reconstructions at 1000m. (C) Annual mean PSD biovolume

reconstructions at 1000m. (B,D) Performance of the RF reconstruction for PSD slope and

biovolume, respectively, shown as density scatter plots of out-of bag prediction vs. observed

quantities for all depths (colors indicate the normalized density of observations at each point).

E) shows the global averaged depth profile of both PSD slope (black) and total biovolume

(red). Annotations in (B,D) show the coefficient of determination (r2), the rmse, and the

global bias.

of-bag observations are also robustly predicted, with a RMSE of 1.3 ppm for biovolume

(r2=0.94) and 0.33 for slope (r2=0.83). Relative to both the full data set and the out-of-bag

observations, our reconstructions show negligible biases.

In comparison to results of surface export (Clements et al., 2022), our depth resolved

reconstruction of PSD produce statistically stronger results. This can be attributed to

the greatly increased data availability when considering observations in the water column

rather than at a single surface depth horizon. With more data available, the ability of

machine learning models to capture a larger proportion of the variability in observations

increases. Additionally, the predictor data set is now more tightly coupled to the UVP5
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observations in the vertical, because predictors are used at exactly the same depth of UVP5

observations, rather than by averaging them over a broader depth range as in (Clements

et al., 2022). Operationally, we also use one single model to reconstruct both the PSD

slope and biovolume simultaneously, as opposed to two independent models as in Clements

et al. (2022). These factors likely work to reduce the uncertainty relative to previous work.

However some discrepancies with the data, and caveats to this approach remain, as discussed

in Section 4.4.

Antarctic Zone Sub - Antarctic Zone

North Indian Ocean

South Indian Ocean

North Pacific

N. Tropical Pacific

S. Tropical Pacific S. Sub-Tropical Pacific

N. Sub-Tropical Pacific

Biovolume
Slope

North Atlantic

N. Tropical Atlantic

N. Sub-Tropical AtlanticS. Sub-Tropical Atlantic

S. Tropical Atlantic

!!" !!" !!"

!!"

!!"

!!"

!!"

!!"!!" !!" !!"

!!" !!"

!!"

Figure 4.2: Depth varying PSD biovolume and slope for bio-regions as defined by Weber et

al. (2016) and adapted by Clements et al. (2022). Red lines show the biovolume in PPM,

black lines the slope.
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The three-dimensional reconstructions of PSD reveal remarkable patterns with depth and

region, with implications for export fluxes. we highlight a reduction in the global average

biovolume from the surface (0.6 ppm (Clements et al., 2023)) to the base of the mesopelagic

zone (0.27 ppm). Similarly, the PSD slope decreases from an average surface value of 3.9

(Clements et al., 2023) to 3.7 at 1000 m. The average PSD profile (Figure 4.1 E) shows

an initial rapid attenuation of biovolume, followed by a slight increase at depths great than

1500 m. Similarly, the slope often initially increases with depth near the surface, before

decreasing.

Across regions, the patterns and magnitudes of these changes also varies. Areas of high

productivity, such as near the coast, in high latitudes, and along the equator, show higher

biovolumes and lower slopes in the upper ocean. Meanwhile, low productivity regions, such

as the subtropics, show opposite patterns, with low upper ocean biovolume and high slopes.

In previous work (Clements et al., 2022), we described the coupling of these PSD properties

near the euphotic zone depth, where slope and biovolume tend to be anti-correlated, and

suggested that high productivity regions and periods tend to result in large numbers of

particles (and hence high biovolume) and dominance of larger aggregates (and hence lower

slopes). The progressive decrease of PSD slopes with depth suggests an increased importance

of large particles, supporting the idea that, despite the presence of fragmentation processes

(Briggs et al., 2020), small particles may be preferentially remineralized, leaving a surplus

of large particles.

In several regions, in particular in the tropics and subtropics, a second-order pattern

of variation with depth emerges, with a local minimum in slope between 400 m and 800

m approximately, often accompanied by a slightly shallower local maximum in biovolume.

Previous work has suggested that the changes in particle PSD with depth, especially an

increase in biovolume and in the importance of large particles with depth, could be caused

by in situ particle production by vertically migrating animals (Bianchi et al., 2013), or by

particle (dis-)aggregation and remineralization (Bianchi et al., 2018; Briggs et al., 2020). we

suggest that this pattern is likely caused by the injection of relatively large new particles by

diel vertical migrations of zooplankton and micronekton (Bianchi et al., 2013; Cram et al.,
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2022).

4.3.2 Optimization of sinking carbon parameter: method validation

Given the poor knowledge of the sinking speed and carbon content parameters m0 and

µ, and uncertainties associated with optimization methods, we first demonstrate the ability

of our method by testing it on a synthetic particle flux data set obtained by applying known

profiles of these quantities. Figure 4.3 demonstrates the ability of our depth-dependent

optimization scheme to recover the vertical variability of the synthetic flux profile (Figure

4.3 a-c,g). Although some uncertainty remains in the reconstruction of the known slope

and intercept profiles (figure 4.3 a,b), the method robustly captures the resulting flux profile

(r2 = 0.99). The method also remains accurate after application of a random error to the

synthetic flux data set (Figure 4.3 d-f,h), although with a higher degree of uncertainty (the

coefficient of determination of the reconstruction dropping from 0.99 to 0.6).

While the method shows that the synthetic flux can be robustly recovered, capturing the

exact sinking carbon parameters (intercept and slope) is more difficult. This is reflected in

the fact that, as identified in Clements et al. (2023), there is a tight coupling of the two

parameters, so that they often compensate to produce a nearly identical pattern of flux.

Thus, interpretation of the optimized parameters should be done with caution, and the

results should be interpreted as one of the many possible solutions that can produce profiles

of flux consistent with observations.

4.3.3 Optimization of sinking carbon parameter: Results

To calculate the global particle export, we apply the step-wise linear profile for carbon

content and sinking speed parameters, and optimize it against the global compilation of

sediment trap and thorium-based sinking fluxes described by Mouw et al. (2016). we assume

that the flux measurements in the compilation have been quality controlled, and do not

apply any further checks. Given the observed compensation between optimized sinking

carbon slope and intercept in the synthetic data, we perform this optimization 10 times,
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Slope/Intercept (N = 3)
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Synthetic Slope Synthetic Intercept Synthetic Flux

Perturbed Slope Perturbed Intercept Perturbed Flux

Synthetic Scatter Perturbed Scatter

r2 : 0.59
RMSE: 165
Bias: -17

r2 : 0.99
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Figure 4.3: Synthetic data reconstructions of particle carbon content and sinking speed

parameters and resulting fluxes. (A) Prescribed and optimized sinking carbon slope and (B)

intercept, and (C) the resulting flux using a depth-dependent optimization. D-F) Show the

same quantities, but with a log-normal random error added to the data. G-H) scatter plots

over the whole ocean for (G) the unperturbed and (H) perturbed data. Colors show the

depth of the observations, and annotations the summary statistics. A-F show the results for

one specific profile, G-H) show the scatter of all data points.

with each optimization starting with randomly assigned initial values. The spread of the

resulting fluxes provides a measure of the error associated to the optimization procedure.
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The average optimized particle export fluxes are shown in Figure 4.5; the average slope and

intercept profiles are shown in Figure 4.4.

Sinking carbon intercept Sinking carbon SlopeA) B)

Slope (%)Intercept &)* &
!∗ ,&!"

Figure 4.4: (A) Sensitivity of the sinking carbon intercept parameter, red line indicates the

mean value used by this study. (B) Sensitivity of the sinking carbon slope parameter, red

line indicates the mean value. Green shading on both, indicates one standard deviation error

estimates.

Similar to the randomly perturbed synthetic data, we find a coefficient of determination of

r2 0.5 for the average flux reconstructions, optimized against the observations from the Mouw

et al. (2016) database, indicating that our approach can capture a significant fraction of the

variability of observed sinking fluxes. The resulting particle flux profiles match relatively well

the observational compilation, showing a rapid attenuation near the surface, a stabilization

at around 500 m, and a slight increase with depth below 1000 m (Figure 4.5D). While

our annual average export lacks small scale variability seen in observation records, this is

likely due to infrequent sampling by traps, especially in the deep ocean. Globally, we find a

dramatic decrease of export from 6.0 PgC/yr leaving the surface (100 m) to 0.6 PgC/yr at

a depth of 1000 m.

Seasonal and regional differences in the POC flux are also apparent. Figure 4.6 shows

the regional average and seasonality of each ocean region, In general, the highest exports are
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Export at 1000m

r2 = 0.45
rmse = 0.71

Export at 100 m

6.01±0.9

0.6±0.04

A) B) 

C) D) 
Global average export

Figure 4.5: A,C) show the patterns and total annual particulate carbon export from the

surface (100 m) and the deep mesopelagic zone (1000 m) respectively. B) Performance of

our optimization results (y-axis) vs. observed particle export fluxes (x-axis) (Mouw et al.,

2016). Annotations on the figure show the statistical summary of the fit. D) Shows the

global average flux profile and seasonal flux range (Black line and shading) for this study,

compared to the gridded observations from Mouw et al. (2016) (red dots) and the global

average profile (red line).

observed in the high latitudes, and the lowest in the subtropics. we find the regions with the

highest POC fluxes also have the highest seasonality, while the tropics and subtropics have

the lowest. Seasonality generally peaks at the surface and decreases with depth. Similar

to the pattern of particle biovolume, we find at many locations a slight increase in POC

flux in the mid-mesopelagic ocean, which is likely caused by particle injection by vertically

migrating animals.Remarkably, we also reconstruct slight increases of particle fluxes with
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depth below 1000 m in most regions – a feature reminiscent of observations.

4.3.4 Global patterns of export and flux attenuation

our reconstructions produce a pattern of flux attenuation with depth comparable to

observations (Fig. 4.5) (Martin et al., 1987; B. B. Cael & Bisson, 2018). In general, we find

that the Teff reflects patterns similar to the surface PSD and export (Clements et al., 2022,

2023). Similar to previous studies (Weber et al., 2016; Cram et al., 2018), the highest transfer

efficiencies are observed in the high latitudes and upwelling regions – including the equator,

while the lowest are observed in the subtropics. It is also apparent that the anoxic cores

of the oceanic oxygen minimum zones, in particular in the eastern tropical North Pacific

are characterized by a higher transfer efficiency than the surrounding oxygenated water,

suggesting a reduction in flux attenuation within anoxic layers(Roullier et al., 2014; Weber

& Bianchi, 2020; Cram et al., 2022).

our Teff shows a finer degree of spatial variability than other studies. Specifically, our

study highlights the importance of large-scale frontal structures, where we find both enhanced

export at the surface, and enhanced Teff . For example, we find high transfer efficiency in the

mid-latitudes at the boundaries between subtropical and subpolar gyres, as well as along the

equator. we suggest that along major frontal regions vigorous eddy mixing not only enhances

the production of large particles at the surface, but also their subduction and vertical flux,

and thus the transfer efficiency (Omand, D’Asaro, et al., 2015; Dall’Olmo et al., 2016; Stukel

et al., 2018; Bach et al., 2020). With more dense sampling at fine spatial scales, it should

be possible to quantify the role of sub-mesoscale fronts on enhancing export (Estapa et al.,

2015).

4.3.5 Role of particle size for the sinking flux

While the transfer efficiency clearly show a decrease in the total POC flux with depth,

our approach also allows us to quantify the importance of particle size for these fluxes.

we follow the same definitions of small particle fraction (SPF, 35µm − 414µm) and large
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Figure 4.6: Particulate carbon flux profiles for each global region as defined by Weber et

al. (2016). Black line indicates the annual mean export profile, while shading reflects the

seasonal variability for reach region and depth.
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Figure 4.7: Particle flux transfer efficiency for A) This Study, B) Marsay et al. (2015), C)

Weber et al. (2016), D) Henson et al. (2012), E) Cram et al. (2018), and F) Guidi et al.

(2015). For this study, Teff is defined as the ratio of export at 1000m to export at 100m, for

all others it is the ratio between the export at 1000m to export at the base of the Euphotic

zone. See Appendix C for a discussion on the calculation of Teff

particle fraction (LPF, 414µm − 5mm) as (Clements et al., 2023), and we quantify their

relative contribution to the the sinking particle flux as a function of depth.

Figure 4.8 shows the relative contribution of the two size fractions near the base of the

euphotic zone (100 m), near the base of the mesopelagic zone (1000 m) and entering the
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abyssal ocean (2000 m). Near the surface, we confirm previous results (Clements et al.,

2023), showing similar contributions of small and large particles, with small particles overall

more important, especially in low-productivity waters. However, deeper in the water column,

we find an increasingly stronger contribution from large particles.

1000 m 

Surface

2000 m 

SPF LPF
A) 

C) 

E) 

B) 

D) 

F) 

Figure 4.8: The percentage of the total carbon export for the small particle fraction (A,C,E)

and the large particle fraction (B,D,F), at the surface (A,B), 1000 m (C,D), and 2000 m

(E,F).

This pattern is the result of the combined effect of the decrease of the PSD slope with

depth – i.e., the increase in the abundance of large vs. small particles, and the increase in the

carbon content and sinking speed of a given particle (Cw), as encapsulated by the increase

with depth of the slope of the sinking carbon power law relationship (4.7).

While we cannot directly quantify the mechanisms behind the shift in PSD, carbon
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content and/or sinking speed of particles with depth, they likely reflect a combination of

factors. For example, the decrease of the PSD slope with depth may reflect preferential

remineralization of slowly sinking small particles Devries et al. (2014), aggregation of small

particles by repackaging or differential settling, or production of large particles in situ by

vertically migrating organisms Pinti et al. (2022). The increase with depth of the sinking

speed and carbon content of individual particle may reflect a progressive enrichment by

mineral ballast, or changes in particle properties and type as they reach the deep ocean.

4.4 Caveats to our approach

Previous work has described the limitations associated with translating UVP5 obser-

vations to global estimates of PSD and POC flux (Clements et al., 2022, 2023). Similar

caveats remain for the present analysis, and relate mainly to three distinct error sources:

the parametric description of PSD as power laws, continued limitations associated with the

machine learning extrapolation approach, and difficulties in translating PSD to POC flux by

using simple, globally uniform profiles of particle carbon content and sinking speed.

our method is based on global PSD reconstructions from UVP5 observations, which suffer

from two main sources of error: first, the power law assumption used to approximate PSD

globally, and second, the machine learning reconstruction. While power laws are a common

and widely adopted first-order description of PSD in the ocean (Bader, 1970; Sheldon et al.,

1972; Stemmann & Boss, 2012; Clements et al., 2022), significant deviations from it have

been reported (Organelli et al., 2020; R. A. Reynolds & Stramski, 2021b). However, our tests

suggest that a power law assumption is globally robust for the range of sizes sampled by

UVP5 instruments (Clements et al., 2022). we also assume that all particles are organic and

homogeneous in nature, while lithogenic particles may be present, especially in coastal regions

or near the sediment-water column interface. Additionally, the random forest approach is

able to robustly reconstruct observations, but provides limited mechanistic understanding

on the relationship between environmental variables and PSD properties.

The conversion of PSD to export flux (Equation 4.3) also suffers from inherent limitations
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(Clements et al., 2023). The approach assumes that particle carbon content and sinking speed

are proportional to size, and that all particles of the same size have the same properties, while

in reality a high degree of heterogeneity is observed (A. Alldredge, 1998; Stemmann, Eloire,

et al., 2008; Stemmann & Boss, 2012; B. Cael et al., 2021). Although we account for simple

changes in these particle properties depth, we assume that they are spatially uniform. Since

particle composition is expected to reflect the community composition and oceanographic

processes, regional and seasonal variability in particle properties should be expected. While

we are able to capture the major patterns of particle fluxes globally, the shape of the profile

chosen here should be more closely examined. Errors in observed particle fluxes, which are

notoriously difficult to measure, are also likely to affect our estimates.

Further work should be considered to improve our results. First, expanding the coverage

of observations with UVP5 and similar instruments, in particular in under-sampled and

deep ocean regions such as coastal, high latitudes (in particular in the Southern Ocean)

and to depths deeper than 1000 m, would improve the robustness of our estimates, and

shed additional light on regional PSD patterns not captured here. Future studies could also

improve our approach by distinguishing living and non-living particles, as well as particle type

and composition. Analysis of UVP5 images or other optical methods in conjunction with in

situ particle samples (Trudnowska et al., 2021), would allow a better characterization of the

carbon content and sinking speed of particles. Finally, while we resolve first-order variation

of these quantities with depth, more work should be done to quantify their regional and

temporal variability.

4.5 Conclusions

In this Chapter, we provide a new, data-constrained estimate of particle size spectra and

export fluxes in the ocean interior, based on global UVP5 observations from more than a

decade of observations. our results show a rapid decrease of particle biovolume with depth

just below the 100 m depth horizon, accompanied by a rapid increase in PSD slope. Further

down in the water column, between a depth of few 100 m to 2000 m, both biovolume and
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slope tend to decrease with depth, although changes are much less sharp than near the

surface.

We also highlight fine scale variations in PSD with both depth and by region. Among

the most remarkable patterns in our reconstruction, we reveal the consistent presence of

a local maximum in biovolume accompanied by a slightly deeper local minimum in slope,

found between depths of 400 and 800 m. We attribute this pattern to the injection of large

particles by diel vertical migration of zooplankton and micronekton. Deeper in the water

column, we observe a consistent increase in biovolume between depths of 1500 and 2000

m, which could reflect a combination of production of new particles at depth, increase in

particle porosity (i.e., the water content), anf re-suspension from the sediment and horizontal

transport in deep nepheloid layers. Future work should be focused on regional analysis of

this deep increase to better parse its causes and implications for deep particle sinking fluxes.

Globally, we obtain a particle export flux of 6.0 PgC y−1 from the the surface ocean (100

m), which attenuates to 0.6 PgC y−1 by 1000 m depth, corresponding to a global transfer

efficiency of 10%. We find that, as depth increases, large particle become relatively more

important for sinking carbon fluxes than smaller particles, so that by 1000 m, most export

can be attributed to the large particle fraction.

Regionally, we find significant variations in the transfer efficiency, with areas of high

export characterized by high transfer efficiency. Our results agree with recent studies (Weber

et al., 2016; Cram et al., 2018), although we find generally smaller values of transfer efficiency

than previously proposed, with finer regional variations. Taken at face value, our results

suggest an overall weaker carbon sequestration by sinking particles than previously assumed,

with preferential, localized deep-sequestration pathways found at the boundaries between

subtropical and subpolar regions, at the equator, and in oxygen deficient zones.

Fine scale patterns identified in the PSD reconstructions can also be recognized in the

resulting particle fluxes. For example, we find a decreased flux attenuation, or even a flux

increase, in the upper mesopelagic ocean (400-800 m), coincident with a local maximum

in biovolume and a minimum in slope. This suggest that particle injection by diel vertical
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migrations leaves a detectable imprint in particle fluxes at depth, likely contributing in a

significant way to deep carbon storage (Pinti et al., 2022). Surprisingly, we also find a small

increase of particle fluxes with depth below the base of the mesopelagic ocean, down to

a depth of 2000 m. While this pattern is globally consistent with the sediment trap and

Thorium-based flux compilation (Mouw et al., 2016), it implies a net production of organic

material in abyssal layers, for which we can not provide a convincing mechanistic explanation.

Potential causes, including deep chemosynthesis, animal migrations, or re-suspension from

sediment and lateral transport appear unlikely. It is possible that, despite the introduction

of depth-dependent variations, our optimization approach overestimates the sinking speed or

carbon content of deep sinking particles, contributing to the abyssal flux increase with depth.

Future efforts should focus on providing better observational constraints on the relationship

between particle size, carbon content, and sinking speed in the deep ocean.

The large scale patterns identified in our study open the venue for new lines of research,

but also highlight remaining limitations. Data coverage is still scarce, which is compounded

by the high variability in observed PSD. Ongoing deployments of smaller, energy efficient

UVP6 instruments, including on Argo floats, are likely to rapidly increase the number of

PSD observations with high vertical resolution (Picheral et al., 2022), allowing to better

constrain global patterns observed here. With a growing network of optical observations,

remaining spatial and temporal gaps in PSD observations will likely be closed.

Mechanistic exploration of the processes controlling observed depth-dependent patterns is

an important undertaking. Our analysis provides valuable constraints for this type of work.

But perhaps, the most pressing need is the ability to characterize variations in particle

carbon content and sinking speed with depth and region. Future work that combines optical

observations with in situ sampling techniques, such as particle pumps, is likely to provide

increasingly accurate in situ description of sinking organic matter for flux calculations, a

critical undertaking in the context of continuing ocean variability and change.
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CHAPTER 5

Summary and Conclusions

In this Chapter, I conclude the thesis with a summary of the results from Chapters 2–4.

I also review the progress on the primary science questions presented in Section 1.3. Finally,

I conclude with a discussion on future work that is inspired by the results presented in this

thesis.

5.1 Summary

In this dissertation, I have demonstrated the ability of statistical machine learning models

to improve estimates of sinking organic matter in the ocean. The three studies presented here

have addressed specific, critically important facets of the ocean’s biological carbon pump,

and can be summarized as follows:

• Chapter 2 explored the particle size distribution of sinking organic particles at the

base of the euphotic zone over the global Ocean. These new results capture the re-

gional and seasonal variability of marine particle abundance and size distribution, and

highlight the coupling (and decoupling) between particle biovolume and surface ocean

chlorophyll, which we identify as a key driver of total organic matter. In contrast,

I show that chlorophyll alone is not as strongly linked to particle size distribution,

for which other variables of community structure, e.g. subsurface oxygen utilization,

are also important. These results shed light on multiple ocean processes behind the

ocean’s biological pump, and lay the foundation for a better quantification of sinking

particle fluxes (Guidi et al., 2008), and the rates of aggregation, disaggregation, and

degradation of organic particles (Burd & Jackson, 2009; Briggs et al., 2020). My char-
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acterization of particle size distributions is also critical to quantitative descriptions

of the interaction between particles and marine microorganisms (DeLong et al., 1993;

Church et al., 2021), migrating animals (Bianchi et al., 2013; Cram et al., 2022), and

dissolved solutes, including trace elements that can be scavenged on particles (Ohne-

mus et al., 2019).

• Chapter 3 provided a new estimate of the global particle export flux from the base of the

euphotic zone and the maximum mixed layer, building on the particle size distribution

reconstructions discussed in Chapter 2. In this Chapter I provide a detailed character-

ization of the climatological export from these two depth horizons, highlighting spatial

patterns, seasonal cycle, and relative contribution of large vs. small particles. In par-

ticular, I highlight the likely occurrence of net heterotrophy in the lower part of the

euphotic zone, which slightly reduces the magnitude of the net export relative to the

mixed layer. Ultimately, the results of this Chapter generated a novel, data-constrained

estimate of particle export fluxes from two critical depth horizons, providing new con-

text to interpret previous assessments of these quantities, and laying the foundation

for a depth-resolved characterization of particle fluxes in the ocean interior.

• Chapter 4 took the two previous Chapters as ground-work, and provided a depth-

resolved, data-based estimate of both PSD and particle export fluxes between 100m

and 2000m. I quantified the amount of organic matter leaving the surface, and tracked

where it was ultimately removed from the sinking pool. I find a particle export flux of

6.0 PgC y−1 from the surface ocean (100 m), which attenuates to 0.6 PgC y−1 by 1000

m depth, corresponding to a global transfer efficiency of 10%. My attenuation patterns

follows the same broad features suggested by recent work (Cram et al., 2018; Weber et

al., 2016), while they contrast with earlier estimates. Because of the finer resolution

of my approach, I highlight the importance of small-scale, localized oceanographic fea-

tures for particle export, including major oceanic frontal regions, boundary between

water masses, the equatorial band, and oceanic island and coastal waters. My analysis

suggests that these small-scale features are critically important in enhancing sinking
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fluxes and, potentially, deep-ocean carbon sequestration. Lastly, I find a clear prefer-

ence for the removal of small organic particles with depth, with particles larger than

418µm contributing disproportionately more to interior-ocean sinking carbon fluxes

and sequestration than smaller particles.

5.2 Ongoing and future work

The work presented in this dissertation represents new advancements towards reducing

the uncertainty in global carbon export from the ocean surface, and remineralization in the

interior. It also outlines the path for future work, paving the way to a clearer understanding

of the role of the ocean in sequestering carbon. In this section, I discuss new directions for

future work, and highlight the importance of continued observational and modeling efforts

to constrain the biological pump – an essential undertaking in a changing ocean.

Mechanistic understanding of particle flux attenuation is central for ocean biogeochem-

istry and carbon sequestration, and has received growing attention in recent years, with the

development of increasingly complex modeling approaches (Weber et al., 2016; Bianchi et al.,

2018; Cram et al., 2018, 2022; Amaral et al., 2022; Nowicki et al., 2022). My work highlights

the magnitude and patterns of small particle removal, and the overall rapid attenuation

of particle fluxes with depth. However, the causes of these changes, and their variabil-

ity with depth and region remain uncertain, reflecting a poorly-constrained combination of

remineralization, aggregation and disaggregation, and injection by vertically migrating ani-

mals. Currently, the best approaches to quantify the relative contribution of these processes

are ocean circulation and biogeochemistry inverse models (Amaral et al., 2022), which re-

main limited in their ability to represent complex processes involving multiple particle sizes,

and explicit mechanistic modelsDevries et al. (2014); Cram et al. (2022), which can provide

a more detailed representation of particle transformations but remain harder to constrain

observationally. To this end, I suggest a combination of the two modelling approaches to

quantify magnitude and patterns in particle transformation rates. Critically, my reconstruc-

tions of PSD and sinking fluxes, which are resolved by particle size, depth, region, and time
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of the year, can provide missing targets to constrain these models and apply them to the

global ocean.

Secondly, multiple different observational databases of marine particles (both sinking

and non-sinking) exist. However, these different types of observations are rarely used jointly.

Recent studies have begun to use observations from particle pumps to estimate the sinking

speed and carbon content of organic particles (Xiang et al., 2022). Other methods have sim-

ilarly measured sinking carbon fluxes, although without detailed size information. However,

most of these methods have never been combined to paint a consistent picture of sinking

export fluxes. To address this gap, I suggest a two-part research direction. First, conduct

a thorough inter-comparison of the different methodologies to observing sinking organic

particle fluxes, encompassing multiple sites and oceanographic regimes whenever possible.

Second, use the lessons learned from the meta-analysis to combine multiple observations of

the biological pump, and provide tighter observational constraints for quantities discussed

in this dissertation, in particular particle type, carbon content, sinking speeds. These addi-

tional observational constraint could then be used to provide an update to the particle size

distribution and sinking flux estimates shown in this dissertation.

Together with efforts aimed at improving mechanistic models and reducing uncertainties

in the biological pump, continued monitoring of in situ particles is critically important in

a changing ocean. As the ocean warms up in response to carbon dioxide emissions to the

atmosphere, its continuing ability to mitigate this change by sequestering carbon remains

uncertain. For example, model projections indicate that the magnitude of primary produc-

tivity and particle export is expected to decrease over most of the low-latidude ocean Bopp

et al. (2013), as the supply of nutrients to the surface is curtailed by increasing stratification.

In parallel, a projected reduction in the concentration of oxygen in the water column Bopp

et al. (2013), may work to reduce remineralization rates and increase the transfer efficiency

Cavan et al. (2017), in turn favoring carbon sequestration. Additionally, in a more stratified

ocean, water mass ventilation rates are likely to decrease Gnanadesikan et al. (2007); Bopp

et al. (2013), allowing more remineralized carbon to accumulate in the interior Weber et

al. (2016); Boyd et al. (2019). The combined effect of these and other competing changes
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on ocean carbon sequestration remain uncertain. Ultimately, as optical particle observa-

tions increase in number, the work presented in this dissertation provides an unique ability

to diagnose not only the current patterns of particle export and carbon sequestration, but

also their changes over time, and the possible causes behind these changes, thus reducing

uncertainties in future climate projections.

In this dissertation, I present a new statistical approach applied to a growing dataset of

particle observations that revealed novel patterns of particle export and remineralization. As

optical observations becomes more common, and the approach described here is refined, rapid

quantification of patterns and trends in particle export becomes possible, allowing monitoring

of sinking carbon fluxes, providing a baseline to evaluate changes in the biological pump,

and serving as a constraint for Earth system models. These are all essential undertakings to

better understand and mitigate ongoing changes in ocean biogeochemistry and ecosystem as

a result of the climate emergency.
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APPENDIX A

Supporting Information for Chapter 2

This sections provides additional figures not provided in chapter 2. Each figure is referenced

within the text of the chapter and is meant to support the understanding of the analysis in

the chapter.

Correlation Coefficient (r^2) of the powelaw fits through the observed particle size distribution. 
Each dot represents an individual profile used. Fits with R2 <90 are removed. 

Figure A.1: The correlation coefficient (R2) of the linear least squares fits between the log

of the particle counts and the log of their size. The slope and intercept of these fits are

the powerlaw parameters to describe the PSD. r-squared less than 0.9 are removed from the

dataset, before extrapolating globally.
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a)

b)

Figure A.2: The relative importance of each predictor for each predicted variable from the

Euphotic zone. The y-axis shows the r-squared of a random forest, using all predictors at

and to the point along the x-axis. It shows the strength of adding additional predictors. A)

shows the ranking for the Biovolume, and B) for the Slope.
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January Biovolume February Biovolume March Biovolume

April Biovolume May Biovolume June Biovolume

July Biovolume August Biovolume September Biovolume

October Biovolume November Biovolume December Biovolume

Figure A.3: Particulate carbon biovolume at the base of the euphotic zone reconstructed

from the random forest calculations, showing monthly climatologies.
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January Slope February Slope

April Slope May Slope

March Slope

June Slope

July Slope August Slope September Slope

October Slope November Slope December Slope

Figure A.4: Particulate carbon PSD slope at the base of the euphotic zone reconstructed

from the random forest calculations, showing monthly climatologies.
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APPENDIX B

Supporting Information for Chapter 3

B.1 Supplemental figures

Sinking carbon parameters –
Optimization validation. 

Monte Carlo Slope

Sinking carbon slope

Co
un

t

Sinking carbon intercept

Monte Carlo Intercept

SSE Minimized

Figure B.1: (A-B) Sensitivty of the intercept(A) and slope (B) parameters, red line indicates

the values used by this study. (C-D) Contour map showing the changes in the sum of the

squared error (C) and export(D) which set the parameters chosen. E-F shows the range of

slope and intercept values possible for this size range and histogram of result from the Monte

Carlo optimization.
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Figure B.2: Particulate carbon flux from the euphotic zone reconstructed from the random

forest calculations, showing monthly climatologies.
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Figure B.3: Particulate carbon flux standard deviation from the euphotic zone reconstructed

from the random forest calculations, showing monthly climatologies of error. Color bar

denotes percentage of error (error/flux).
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Correlation matrix (BV drives flux)

Figure B.4: A correlation matrix showing the correlation coefficients (R2) between each

predictor and our three reconstructed variable, the slope biovolume, and flux.
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Figure B.5: Scatter plots showing the correlation between flux, and the PSD parameters. A)

shows the log-log relationship between biovolume and flux, the colorbar shows the associated

slope. B) shows the relationship between the log of flux and slope. The colorbar shows the

log of biovolume.
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a)

c)

b)

Figure B.6: Meridionally averaged export of carbon for each of the three main ocean basins.

Black indicated the export from the maximum mixed layer. The red line indicates the flux

from the euphotic zone.
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MLD Size fractions

a)        Small Particle Fraction

b)        Large Particle Fraction

Figure B.7: Fraction of the particle flux contribution from particles 35µm to 1mm in ESD

(A) and of particles 1mm to 5mm in ESD(B).
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APPENDIX C

Supporting Information for Chapter 4

C.1 Quantification of sinking carbon parameters

As described in section 4.3.3 we are able to optimize our PSD results against in situ observa-

tions of particle flux. Here we show table C.1 which shows the mean and standard deviation

of our optimization scheme at each defined hinge point. Values shows here can be used to

estimate the particle flux, and sinking carbon profiles.

Table C.1: The mean sinking parameters (±SD) from the sinking carbon optimization.

Intercept refers to the size independent coefficient, and slope the size-dependent component.

Variable 100 m 458 m 1000 m

Intercept 47.6 ±16.5 37.5±17.3 33.5±9.8

Slope 3.16 ±0.14 3.92±0.35 3.56±0.19

C.2 Calculation of Transfer efficiency

As discussed in Chapter 4, it possible to relate the Martin coefficient (b) to the particle

transfer efficiency. For this study, we use this relationship to determine the particle transfer

efficiency for each study listed in Fig. C.4. To do this, we use equation 4.1 and 4.2, and

solve for the relationship as below:

ϕz

ϕ0

= (
zz
z0

)−b. (C.1)
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For this studies effective martin curve, we invert the relationship here, and solve for b.

Here we define our effective depths of the surface (z0) to be 100m, and the deep estimate

(zz) to be 1000m. Thus our effective martin curve is calculated using the form:

b =
log10(Teff )

log10(
1000
100

)
(C.2)

However, since all other studies described in fig. C.4 use their initial depth (z0) to be at

the base of the variable euphotic zone, it is necessary to ”correct” all data onto the same

depths used in this study (i.e. correct ϕ0 and z0 to 100 m).

We use the Martin equation (e.q. 4.1), and globally variable ”b” values, to calculate the

”transfer efficiency” of particle between the variable euphotic zone and both 100m (Teff100)

and 1000m (Teff1000) using equation C.1. We then use equation C.3 to determine the teff

as shown in figure 4.7.

ϕ1000

ϕ100

=
ϕ1000

ϕzeu

· ϕzeu

ϕ100

. (C.3)
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C.3 Supplemental figures

In Bag biovolumeIn Bag Slope

r2 : 0.99
RMSE: 0.55
Bias: 1E-5

r2 : 0.97
RMSE: 0.097
Bias: 7E-4

A) B)

Figure C.1: In bag scatter plot for (A) the particle slope and (B) Biovolume. Annotations

shoow the relevant statistics indicating robustness of the model. In Bag performance denotes

the performance of our model on data used to train the model, thus may be susceptible to

overfitting.
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Figure C.2: Particulate carbon flux from the euphotic zone reconstructed from the random

forest calculations, showing monthly climatologies. The grey shading describes the seasonal

range of the mean flux for each region.
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Standard deviation as a percentage of total export. !"#$%
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Z = 100m Z = 1000m
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Figure C.3: Particulate carbon flux standard deviation from the euphotic zone reconstructed

from the random forest calculations, showing monthly climatologies of error. Color bar

denotes percentage of error (error/flux).
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Guidi et al. 2015

This Study

Henson et al. 2012

Guidi et al. 2015

Cram et al. 2018

Weber et al. 2016

Marsay et al. 2015A) 

F) 

B) 

D) C) 

E) 

Figure C.4: The Effective Martin curve coefficient (b) for A) This Study, B) Marsay et al.

(2015), C) Henson et al. (2012), D) Cram et al. (2018), E) Guidi et al. (2015), and F) Weber

et al. (2016). For this study, b is defined as the Martin curve coefficient in equation 4.1.
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Effective MartinB error Transfer efficiency error

Standard deviation as a percentage of Mean value. !"#$%
&$'( ∗ 100

A) B) 

Figure C.5: (A)Error estimate for our effective martin curve depicted as the standard de-

viation from the our ensemble of sinking carbon estimates. (B) is the same as in (A) bute

denotes the error of the calculated transfer efficiencies. Color bar denotes percentage of error

(error/flux)
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