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A warming-induced reduction in snow 
fraction amplifies rainfall extremes

Mohammed Ombadi1,2 ✉, Mark D. Risser1, Alan M. Rhoades1 & Charuleka Varadharajan1

The intensity of extreme precipitation events is projected to increase in a warmer 
climate1–5, posing a great challenge to water sustainability in natural and built 
environments. Of particular importance are rainfall (liquid precipitation) extremes 
owing to their instantaneous triggering of runoff and association with floods6, 
landslides7–9 and soil erosion10,11. However, so far, the body of literature on 
intensification of precipitation extremes has not examined the extremes of 
precipitation phase separately, namely liquid versus solid precipitation. Here we  
show that the increase in rainfall extremes in high-elevation regions of the Northern 
Hemisphere is amplified, averaging 15 per cent per degree Celsius of warming—double 
the rate expected from increases in atmospheric water vapour. We utilize both a 
climate reanalysis dataset and future model projections to show that the amplified 
increase is due to a warming-induced shift from snow to rain. Furthermore, we 
demonstrate that intermodel uncertainty in projections of rainfall extremes can  
be appreciably explained by changes in snow–rain partitioning (coefficient of 
determination 0.47). Our findings pinpoint high-altitude regions as ‘hotspots’ that  
are vulnerable to future risk of extreme-rainfall-related hazards, thereby requiring 
robust climate adaptation plans to alleviate potential risk. Moreover, our results offer 
a pathway towards reducing model uncertainty in projections of rainfall extremes.

Global warming is anticipated to increase the intensity of extreme 
precipitation events1–5, which could undermine infrastructure design 
and management assumptions in a future climate. The atmospheric 
holding capacity of water vapour increases at a rate of approximately 
7% per 1 K of warming (as specified by the Clausius–Clapeyron (C–C) 
relationship), which drives corresponding increases in extreme precipi-
tation events3,12–14. In addition, local and large-scale dynamical factors 
have been identified as complementary mechanisms for increases in 
precipitation extremes4,15,16. In addition to increases in the intensity of 
precipitation extremes, a warmer climate will assuredly alter the parti-
tioning of precipitation into liquid and solid forms. More specifically, 
the snow fraction (the proportion of precipitation falling as snow) is 
projected to decrease for most regions of the globe17–20. This decrease 
is evident for both mean and extreme precipitation, albeit with lower 
rates for extreme precipitation19. In the present study, we solely focus 
on the snow fraction of precipitation extremes.

In light of anticipated increases in precipitation extremes and lower 
snow fractions in a warmer climate, it is reasonable to consider the 
combined effect of both changes on rainfall (liquid precipitation) 
extremes. The importance of this stems from the devastating impacts 
of rainfall extremes. Unlike snowfall, rainfall triggers runoff more rap-
idly, leading to a higher risk of flooding6, landslide hazards7–9 and soil 
erosion10,11. For instance, rainfall-driven floods in western United States 
were found to be 2.5-times greater than those driven by snowmelt6 
and are expected to become more frequent in the coming century 
as snowfall transitions to rainfall21. In addition, rainfall is considered 

to be the main driver of landslides8, hence it is often incorporated in 
the assessment of landslide hazards22,23, particularly after major fire 
events24. It is because of these reasons that civil engineers have typi-
cally designed infrastructure to withstand extreme rainfall events as 
opposed to extreme total precipitation (liquid and solid) events25,26. 
As previous studies on precipitation extremes have not considered 
the partitioning of rain and snow, it remains largely unknown, both 
qualitatively and quantitatively, whether and how a reduction in the 
snow fraction might change the risk of rainfall extremes over specific 
parts of the globe.

Here we show that the increase in rainfall extremes is amplified 
in high-altitude regions and in regions that receive a considerable 
amount of their annual precipitation as snow (snow fraction). We 
demonstrate this using both the fifth generation European Centre 
for Medium-Range Weather Forecasts atmospheric reanalysis (ERA527) 
for the recent past (1950–2019) and future projections obtained from 
eight Earth-system models (Extended Data Table 1) participating in the 
Coupled Model Intercomparison Project Phase 6 (CMIP6). Moreover, 
we assess the sensitivity of our findings to different levels of global 
warming (+1.5 K, +2 K, +3 K and +4 K) resulting from different emissions 
scenarios (ssp126, ssp245, ssp370 and ssp585) using a total of 43 model 
simulations (Extended Data Table 3). Our results show that a reduction 
in the snow fraction amplifies rainfall extremes in snow-dominated 
regions and can explain 25% to 40% of the total spatial variability in the 
increase of rainfall extremes. We then demonstrate that intermodel 
uncertainty in the projection of increases in rainfall extremes is mainly 
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attributed to differences in the snow-fraction changes across models, 
and we conclude by estimating the increased risk of rainfall extremes in 
a warmer climate across different mountainous regions of the Northern 
Hemisphere using extreme-value analysis.

Elevation-dependent amplification
We first examine the increase in rainfall extremes over the spatial 
domain 20° N–90° N as a function of elevation (metres above sea level) 
for both ERA5 (Fig. 1a,b) and CMIP6 models (Fig. 1c,d). For ERA5 and 
CMIP6 models, the percentage change in rainfall extremes is computed 
using the two periods 1990–2019 and 2071–2100, respectively, relative 
to the baseline period of 1950–1979. In all panels of Fig. 1, the percentage 
change in rainfall extremes is normalized by the degrees of warming 
(% K−1) in global average surface air temperature (over both land and 
oceans). Figure 1a,b shows a generally positive relationship between 
elevation and the increase in rainfall extremes with slope of regression 
line of 0.82 (% per 1,000 m; 0.4–1.2, 95th confidence interval) for 3 h, 
and 0.92 (% per 1,000 m; 0.4–1.4, 95th confidence interval) for 24 h. 
Similarly, Fig. 1c,d shows an elevation dependence in the increase of 
rainfall extremes obtained from the eight CMIP6 models (coloured 
dashed lines) and their multimodel mean (black line and markers). It is 
noteworthy that these relationships are consistent irrespective of the 
duration of rainfall extremes (3 h and 24 h as shown in Fig. 1 and 12 h in 
Extended Data Fig. 1a,b).

Although the results from ERA5 show a generally increasing trend, 
there are deviations from the regression line, especially at the eleva-
tion band of 2,500–3,000 m. There are several possible explanations 
for these deviations. First, the signal-to-noise ratio for differences 
between the two periods of 1990–2019 and 1950–1979 is not large owing 
to a relatively limited global warming level of +0.81 K, as estimated 

from ERA5 (Extended Data Table 2). Second, these deviations might be 
attributed to the lack of spatiotemporal homogeneity (particularly at 
certain elevation bands) in the observational inputs to ERA5 over the 
time period 1950–2019, which may lead to spurious trends unrelated to 
climate change28. Lastly, there may be a physical explanation wherein 
the 2,500–3,000 m elevation band experiences the greatest change in 
snow-to-rainfall partitioning in a warmer climate, although this effect 
is not evident in the CMIP6 projections (Fig. 1c,d). Contrary to ERA5, 
the high warming levels at the end of the century (2071–2100), rang-
ing between +3.9 K and +6.6 K (Extended Data Table 2), induces a very 
strong signal. Overall, it is evident that both the reanalysis dataset and 
the CMIP6 models indicate an amplification of rainfall extremes at 
higher elevations. More specifically, the increase in rainfall extremes 
at high elevations (greater than 2,000 m) exceeds that of C–C scaling 
(7% K−1), with average values as high as 15% K−1.

Sensitivity to global warming
The percentage change in rainfall extremes shown in Fig. 1 is normalized 
by degrees of warming and expressed in units of (% K−1) to account for 
differences in warming levels among CMIP6 models (Extended Data 
Table 2). Despite this normalization, it is conceivable that the results are 
biased by the inclusion of models that are oversensitive to greenhouse 
gas emissions, also known as ‘hot models’29. Therefore, we assessed the 
sensitivity of our findings to different global warming levels of +1.5 K, 
+2 K, +3 K and +4 K relative to the reference period (1950–1979). This 
was carried out using a total of 43 CMIP6 model simulations shown in 
Extended Data Table 3, spanning 7 models and 4 emissions scenarios 
(ssp126, ssp245, ssp370 and ssp585), each with a sufficiently long period 
for statistical inference of 30 years that fall within the 2018–2100 
period (see Methods for details). Figure 2a shows the distribution of 

a b

dc

C
ha

ng
e 

in
 A

M
S

 o
f r

ai
nf

al
l (

%
 K

–1
) 

C
ha

ng
e 

in
 A

M
S

 o
f r

ai
nf

al
l (

%
 K

–1
) 

C
ha

ng
e 

in
 A

M
S

 o
f r

ai
nf

al
l (

%
 K

–1
) 

0

5

10

15

20

25

30

0

5

10

15

20

25

30

0

5

10

15

20

25

30

0

5

10

15

20

25

30

25
0
75

0
1,

25
0
1,

75
0
2,

25
0
2,

75
0
3,

25
0
3,

75
0
4,

25
0
4,

75
0
5,

25
0
5,

75
0

6,
25

0

Elevation (m)

25
0
75

0
1,

25
0
1,

75
0
2,

25
0
2,

75
0
3,

25
0
3,

75
0
4,

25
0
4,

75
0
5,

25
0
5,

75
0

6,
25

0

Elevation (m)

C
ha

ng
e 

in
 A

M
S

 o
f r

ai
nf

al
l (

%
 K

–1
) 

25
0
75

0
1,

25
0
1,

75
0
2,

25
0
2,

75
0
3,

25
0
3,

75
0
4,

25
0
4,

75
0
5,

25
0
5,

75
0

6,
25

0

Elevation (m)

25
0
75

0
1,

25
0
1,

75
0
2,

25
0
2,

75
0
3,

25
0
3,

75
0
4,

25
0
4,

75
0
5,

25
0
5,

75
0

6,
25

0

Elevation (m)

AWI-CM-1-1-MR
MPI-ESM1-2-HR
EC-Earth3
GFDL-ESM4
BCC-CSM2-MR
CMCC-CM2-SR5
TaiESM1
MRI-AGCM-3-2-H
Ensemble mean

AWI-CM-1-1-MR
MPI-ESM1-2-HR
EC-Earth3
BCC-CSM2-MR
CMCC-CM2-SR5
TaiESM1
MRI-AGCM-3-2-H
Ensemble mean

Fig. 1 | Elevation-dependent amplification of rainfall extremes. Percentage 
change in rainfall extremes, normalized by degrees of warming and expressed 
as a function of elevation over the spatial domain 20° N–90° N land area with 
masking of hyperarid regions (Methods). a, Three-hour annual maximum 
series (AMS) of ERA5 rainfall (slope of regression 0.82 (% per 1,000 m)). b, Daily 
AMS of ERA5 (slope of regression 0.92 (% per 1,000 m)). c, Three-hour AMS of 
CMIP6 models. d, Daily AMS of CMIP6 models. For c and d, the coloured dashed 
and solid lines correspond to different CMIP6 models as shown in the legend, 
and the black solid line represents the multimodel mean. Percentage change is 

calculated using the period 2071–2100 for CMIP6 models and the period  
1950–1979 for ERA5. In all panels, regression is based on all grid cells within  
the spatial domain (not shown in the figure), and the shaded area surrounding 
the regression lines represents the 95% confidence interval of regression 
estimates. The black markers and error bars show the mean percentage change 
at different elevation categories and its 90% confidence interval for ERA5  
(a,b) and CMIP6 multimodel mean (c,d). The elevation categories are: 0–500 m, 
500–1,000 m, ..., 5,500–6,000 m and 6,000–8,000 m. The black markers and 
lines are drawn at the midpoint of each category; see Methods for details.
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percentage change in daily rainfall extremes obtained from a multi-
model mean corresponding to four different warming levels (+1.5 K, 
+2 K, +3 K and +4 K). Irrespective of warming level, the median increase 
across all grid cells is approximately 7% K−1, which is consistent with both 
the C–C relationship and the observation-based analysis30; however, 
the increase over grid cells with elevation >3,000 m and snow fraction 
>0.5 is amplified, ranging between 15% and 17.7%. The distributions of 
percentage change in these regions (elevation >3,000 m, snow fraction 
>0.5) are shown in more detail in Fig. 2b. Apart from small differences 
in the tails of distributions, it can be clearly seen that the patterns of 
amplification in rainfall extremes are qualitatively similar regardless 
of warming level, with median values of 17.7% K−1, 15.3% K−1, 15.1% K−1 and 
16.4% K−1 for warming levels of +1.5 K, +2 K, +3 K and +4 K, respectively. 
Given that these results are relatively insensitive to the level of warm-
ing, we focus on using only end-of-the century CMIP6 ssp585 model 
simulations (Extended Data Table 1) for the remainder of this article.

Spatial variability of rainfall extremes
To further attribute amplified rainfall extremes to changes in snow frac-
tion, we examine the relationship between changes in snow fraction and 
the increase in rainfall extremes at the grid-cell level within each model. 
The scatter plots for this relationship are shown for each model and 
duration of 3 h, 12 h and 24 h in Extended Data Figs. 3 and 4. The Pearson 
correlation coefficient (ρ) values for these relationships are summa-
rized in Fig. 3b. Across all models and rainfall durations, the values of ρ 
range from −0.28 to −0.64 with a median value of −0.46, −0.44 and −0.51 
for rainfall durations of 3 h, 12 h and 24 h, respectively. These correla-
tions provide explanatory power (−0.282 = 8% to −0.642 = 41%) regarding 
spatial variability patterns, which are remarkably strong given that 
they represent only a single factor among many that can shape spatial 
variability changes in precipitation (and rainfall) extremes.

A competing hypothesis that might explain the amplification pat-
terns shown in Figs. 1 and 2 is related to potential changes in timing 
of precipitation extremes (that is, the occurrence of precipitation 
extremes shifting towards the warm season). Such a hypothesis can 

be ruled out based on findings from previous studies31,32. More spe-
cifically, analysis of vertically integrated saturation specific humidity 
related to precipitation extremes31 and analysis of daily precipitation 
extremes from CMIP5 models32 indicate a shift in timing of precipita-
tion extremes towards the cold season. Furthermore, we carried out an 
analysis focusing on the daily timescale to quantify the magnitude of 
shift in timing of precipitation extremes. Figure 3c shows the cumula-
tive distribution functions (CDFs) of changes in the timing of extremes 
at grid cells within each model. Across all models, 80% of grid cells show 
a change in the timing of extremes that is less than 20 days (GFDL-ESM4 
model) to 40 days (CMCC-CM2-SR5 model). These results indicate that 
the magnitude of the shift in timing of precipitation extremes is not 
substantial and, together with previous findings31,32 and the results in 
Fig. 3b, they suggest that changes in snow fraction are indeed a primary 
factor leading to amplified rainfall extremes at higher elevations.

Intermodel uncertainty of projections
It is clear from Fig. 1c,d that all models but two (MPI-ESM1-2-HR and 
AWI-CM-1-1-MR) show an amplified increase in rainfall extremes with 
elevation. Among the remaining models, the projections differ quan-
titatively. It is, therefore, informative to examine whether intermodel 
uncertainty could be attributed to differences in the models’ projec-
tions of changes in the snow fraction. Figure 3a shows the relationship 
between the change in snow fraction in daily rainfall extremes for the 
period 2071–2100 relative to 1950–1979 averaged over the entire spatial 
domain for each model (horizontal axis), and the increase in rainfall 
extremes for each model (vertical axis). When averaged over the entire 
spatial domain (blue line and markers), changes in snow fraction can 
explain intermodel differences (slope 4.3% per 0.1 decrease in snow frac-
tion, coefficient of determination R2 = 0.47). The relationship is steeper 
over high-elevation regions (orange line and markers, slope 7.6% per 
0.1 decrease in snow fraction, R2 = 0.28). Interestingly, the peculiarity 
of the two models (MPI-ESM1-2-HR and AWI-CM-1-1-MR) may be partly 
explained by their low values of change in the snow fraction in extreme 
precipitation. In addition to this, both models underestimate the snow 
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Fig. 2 | Sensitivity to global warming levels. a, Percentage change in annual 
maximum series (AMS) of daily rainfall obtained from a multimodel mean 
corresponding to each warming level (+1.5 K, +2 K, +3 K and +4 K). Details of 
ensemble members are provided in Extended Data Table 3. White-coloured 
boxes show results aggregated across all grid cells within the spatial domain of 
analysis (20° N–90° N) with masking of hyperarid regions (Methods). Dark- 
coloured boxes show values aggregated over grid cells with elevation >3,000 m 
and snow fraction >0.5. The boxes show the interquartile range (IQR; 25th 

percentile to 75th percentile) and the whiskers show the extent of the distribution 
excluding outliers defined as values greater than (75th percentile + 1.5 × IQR) or 
lower than (25th percentile − 1.5 × IQR). The red dashed line indicates the C–C 
scaling of 7% K−1. b, The same as the dark-coloured boxes in a for regions with 
elevation >3,000 m and snow fraction >0.5, but visualized as Kernel distribution 
estimation plots to assess differences in more detail. The number of CMIP6 
models used in each ensemble, denoted by n, is shown next to each distribution.
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fraction in the baseline period (1950–1979) compared with ERA5 and 
other models (Extended Data Fig. 2a). These results provide prelimi-
nary clues that improving schemes of snow–rain partitioning could 

considerably reduce intermodel uncertainty in projections of rainfall 
extremes33; however, a comprehensive model diagnosis for uncertainty 
in projections of rainfall extremes is beyond the scope of this study.

Future risk of rainfall extremes
To assess the future risk of rainfall extremes in a warmer climate, we 
carried out an extreme-value analysis on the annual maximum series 
(AMS) obtained from the eight CMIP6 models (Methods). One way 
to quantify changes in the probability of exceeding a fixed threshold 
of extreme rainfall is via the risk ratio (see, for example, refs. 34,35), 
which summarizes the ratio of return probabilities for two periods of 
interest (here, the ratio of end of century versus the historical baseline). 
Figure 4a shows a map of the CMIP6 multimodel mean risk ratio (RR) 
for daily rainfall extremes where the threshold of interest is the 20-year 
return value as estimated from the reference period (Methods). An RR 
of 1 means that the future return probability is estimated to be 1/20 
(that is, the future return period is 20, with no change in frequency), 
whereas an RR of 4 means that the future return probability is projected 
to increase to 1/5 (RR = (1/5)/(1/20); that is, higher frequency). It can be 
clearly seen that the Himalayas, the North American Pacific mountain 
ranges (Cascades, Sierra Nevada and Coastal ranges) and high-latitude 
regions exhibit a higher future risk of more frequent rainfall extremes 
(RR ≥ 7; dark blue colours on the map).

The relationship between RR and elevation is explicitly distilled in 
Fig. 4b. The figure shows the RR value for daily rainfall averaged for 
each 500-m elevation band (for example, 0–500 m, 500–1,000 m, ..., 
5,500–6,000 m). In addition to showing the RR corresponding to the 
baseline 20-year return value, results for less extreme events (2-year, 
5-year and 10-year return values) are also shown. It is clear that there is 
an elevation-dependent progression towards higher risk for the most 
extreme rainfall events (10-year and 20-year return values). It is noted 
that the RR for less extreme events such as the 2-year return value also 
increases with elevation albeit with a lower rate. To visualize the increase 
of 2-year RR with elevation, Extended Data Fig. 5a–c shows log10(RR) 
for rainfall duration of 3 h, 12 h and 24 h, respectively. Furthermore, 
Extended Data Fig. 5d,e shows the values of RR across different eleva-
tion bands for rainfall duration of 3-h and 12-h, respectively, which are 
consistent with those of 24-h rainfall duration. To further highlight 
regional differences in RR, Fig. 4c contrasts the distribution of RR values 
over non-snowy plains (elevation ≤200 m with no snow) with that of 
snow-dominated regions (mean annual snow fraction ≥0.5). The mean 
values for the two groups are 3.1 and 6.9, respectively. The difference is 
statistically significant (Welch’s t-value = 47.1; P < 0.001). In addition, 
Fig. 4c shows the distribution of RR values for different mountain ranges 
in the Northern Hemisphere. The boundaries and spatial extents of 
these mountain ranges are shown in Extended Data Fig. 6. Clearly, the 
RR values are higher over mountain ranges (median 3.7–5.7) compared 
with that of non-snowy plains (median 3.1). The differences in RR among 
mountain ranges suggest regional variability in the amplification of 
rainfall extremes; for instance, the North American Pacific and Asian 
mountain ranges exhibit a higher RR than other mountain ranges, which 
could possibly be due to distinct mechanisms such as dynamically 
driven atmospheric changes on the Asian monsoon in the case of the 
Asian mountain ranges31 and thermodynamically dominated changes to 
atmospheric rivers in the case of the North American Pacific36. However, 
a thorough evaluation of the models used herein simulating monsoons 
and atmospheric rivers is needed to prove causality of such results.

Discussion
Our findings provide several lines of evidence demonstrating a 
warming-induced amplification of rainfall extremes at high altitudes, 
specifically in snow-dominated regions of the Northern Hemisphere. As 
a result, these regions are regarded as ‘hotspots’ that are vulnerable to 
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The models with the lowest and highest shift in time for 80% of grid cells are 
highlighted with black dotted lines and arrows pointing to the change in annual 
maximum series (AMS) timing on the horizontal axis.



Nature | Vol 619 | 13 July 2023 | 309

high risk of extreme rainfall events and their related hazards of flood-
ing, landslides and soil erosion. The implications of our results cen-
tre around the importance of developing sound climate adaptation 
plans to protect the natural and built environments and the 26% of the 
global population living in or directly downstream of mountainous 
regions15,37. It is also important to recognize that the amplification of 
rainfall extremes is likely to be associated with a decrease in snowfall 
extremes owing to the transition from snow to rain. Such a decrease in 
snowfall extremes is consistent with previous work19, and it presents 
an additional layer of complexity that needs to be taken into account 
in developing adaptation and mitigation strategies. In addition, in line 
with previous research on the invalidity of the stationarity assumption 
in water resources management38–40, our findings emphasize the need 
for incorporating non-stationarity in the development of intensity– 
duration–frequency curves for resilient design of infrastructure in 
a future climate. Although previous research recognized the non- 
stationarity of precipitation extremes owing to the C–C relationship 
and other factors such as the feedback effect of convective clouds41, 
we show in this study that non-stationarity effects are also affected 
by the transition of snow to rain, with a more pronounced change in 
high-altitude and snow-dominated regions, thereby requiring inno-
vative and resilient infrastructure design. The additional future risk 
of rainfall extremes attributed to factors other than the C–C rela-
tionship can be quantified by comparing the RR values in Fig. 4 with 
those obtained from C–C-only increase (Methods). Extended Data 
Fig. 5f shows that this additional risk exceeds 50% in high-elevation  
regions. We, therefore, specifically call for updating intensity–duration– 
frequency curves in these hotspot regions to cope with future risk of 
extreme-rainfall-related hazards to ensure that infrastructure can be 
managed in a more real-time manner42. Furthermore, our results offer 

a paradigm in understanding regional differences associated with the 
intensification of rainfall extremes, complementing earlier paradigms 
in studying precipitation extremes such as zonal analysis based on 
latitude bands4,43 and the dry-get-drier, wet-get-wetter framework5.

In this study, we limited our analysis to the spatial domain of 
20° N–90° N, excluding the tropics owing to uncertainties in model 
projections of tropical precipitation4. Also, the Southern Hemisphere 
was not considered here, mainly owing to the paucity of in situ observa-
tions in the pre-satellite era (before 1979), which could lead to biases 
in estimates of the baseline period (1950–1979). Such a lack of in situ 
observations is specifically more common in mountainous regions44. 
Although our results are consistent for both daily and subdaily rain-
fall extremes, there might be uncertainties in the latter owing to the 
inadequacy of convection-parameterized models in simulating sub-
daily extremes44. The robustness of our results is dependent on the 
spatiotemporal accuracy of the ERA5 reanalysis dataset and the eight 
Earth-system models used in this study to estimate extreme precipita-
tion events and their snow–rain partitioning. It is worthwhile to note 
that systematic biases of underestimation and overestimation in rainfall 
extremes over the historical record are less of a concern in the present 
study. This is because each dataset is compared relative to its histori-
cal values over a comparable reference period to evaluate changes in 
extreme precipitation and snow fraction. On the contrary, errors in 
snow–rain partitioning and their changes with warming are potential 
sources of uncertainty33. In the present study, we evaluated daily rain-
fall extremes of ERA5 against ground observations from the Global 
Historical Climatology Network daily (GHCNd) dataset45 (Methods 
and Extended Data Figs. 7a,b and 8). The evaluation results show that 
ERA5 adequately estimates rainfall extremes, which is consistent with 
recent studies showing that ERA5 generally performs well in snow–rain 
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Fig. 4 | Projected risk of rainfall extremes. a, The multimodel mean value of 
RR for the 20-year return value of daily rainfall extremes (as estimated from the 
reference period) over the spatial domain 20° N–90° N. b, A heatmap of RR for 
daily rainfall extremes. Values are averaged for grid cells at each elevation 
category (for example, 0–500 m, 500–1,000 m and so on). The panel shows an 
RR corresponding to T-year return values for T = 2 years, T = 5 years, T = 10 years 
and T = 20 years. c, The values of RR for the 20-year return value of daily rainfall 

extremes (as estimated from the reference period) grouped for different 
mountain ranges (Rockies, Alps, Appalachian, Kjølen, Asian and Pacific). The 
spatial extent of mountain ranges is shown in Extended Data Fig. 6. In addition, 
the values of RR are grouped for non-snowy plains (elevation less than 200 m 
with no snow) and snow dominated (mean annual snow fraction greater than 0.5). 
The map in a was generated using Cartopy47.
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partitioning over most continents and specifically in high latitudes46. 
Furthermore, we have investigated the existence of amplification pat-
terns in rainfall extremes in the GHCNd dataset. Extended Data Fig. 7c,d 
shows clues of an amplified increase in rainfall extremes with elevation 
in the GHCNd dataset despite potential uncertainties arising from 
non-uniform sampling of GHCNd stations.
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Methods

General selection of datasets
The selection of datasets for the analysis in the present study was car-
ried out to satisfy five criteria: (1) the availability of estimates for both 
total and solid precipitation (precipitation and snowfall), from which 
rainfall estimates can be calculated; (2) a spatial resolution of at least 
100 km to reasonably simulate orographic effects on precipitation, 
although a much higher resolution would ideally be needed to fully 
resolve orographic effects; (3) a fine temporal resolution to exam-
ine subdaily changes in rainfall extremes; (4) complete spatial cover-
age over the spatial domain of analysis (20° N–90° N); and (5) data 
covering the period 1950–2019. To our knowledge, ERA527, the fifth- 
generation atmospheric reanalysis of the global climate produced by 
the European Center for Medium-Range Weather Forecasts, is the only 
dataset that satisfied all of these criteria. It was, therefore, selected to 
analyse historical changes in rainfall extremes for the period 1990–2019 
relative to the reference period 1950–1979. The ERA5 version used here, 
namely ERA5 hourly land data, combines model data with observations 
at a spatial resolution of 1° × 1° and hourly temporal resolution for the 
period 1950–2019. ERA5 has been shown to perform reasonably well 
for estimation of extreme precipitation48 and snow–rain partitioning46. 
In this study, we provide an additional evaluation of ERA5 estimates 
of daily rainfall extremes against ground observations obtained from 
the GHCNd dataset. The evaluation results are shown in Extended 
Data Figs. 7 and 8 and discussed in ‘Evaluation of ERA5 against ground  
observations’.

Similarly, the selection of CMIP6 model simulations was carried out 
to satisfy the aforementioned criteria. The main analysis presented in 
this study is carried out using future projections that assume the highest 
Shared Socioeconomic Pathways scenario associated with an increase 
of 8.5 W m−2 by the end of the year 2100, known as the SSP585 scenario. 
The selection of this high-emissions scenario is made because it is the 
worst-case scenario (known previously as the business-as-usual sce-
nario); hence, it presents the most sharp and abrupt warming-induced 
perturbation in the climate system. We selected only Earth-system 
models with a nominal spatial resolution of 100 km or finer in our analy-
sis (Extended Data Table 1). For each model, one ensemble member 
(r1i1p1f1) is selected. The eight selected models represent different 
institutions and reflect distinct modelling development backgrounds. 
All models apart from GFDL-ESM4 provide estimates of total precipi-
tation and snow at a temporal resolution of 3 h, whereas only daily 
estimates are available for GFDL-ESM4. It is noteworthy that MRI-AGCM-
3-2-H (nominal resolution of 60 km) is the model with the finest spatial 
resolution in the present study, and it belongs to the High-Resolution 
Model Intercomparison Project (HighResMIP)49. Unlike the fully cou-
pled models (ocean + atmosphere) used in this study, MRI-AGCM-3-2-H 
is an Atmospheric Model Intercomparison Project (AMIP)-style experi-
ment with prescribed sea surface temperature and ice conditions. Other 
HighResMIP models were not considered here owing to unavailability 
of snowfall estimates at subdaily to daily timescales. For each of the 
eight models, data were downloaded for precipitation (pr), snowfall 
(prsn), surface temperature (ts) and elevation (orog).

Selection of datasets to assess sensitivity to global warming levels
To account for differences in the models’ warming sensitivity to 
emissions, we carried out an analysis of changes in rainfall extremes 
across four ensembles of model simulations corresponding to warm-
ing levels of +1.5 K, +2 K, +3 K and +4 K relative to the reference period 
(1950–1979). The model simulations used for each ensemble are listed 
in Extended Data Table 3. Overall, these simulations span 7 models 
and 4 emissions scenarios (ssp126, ssp245, ssp370 and ssp585), with 
each simulation representing a period of 30 years. It is noted that the 
HighResMIP model MRI-AGCM-3-2-H was not included in this analysis 
as it does not provide different simulations corresponding to different 

emissions like the other seven CMIP6 models. The 43 datasets were 
selected as follows: (1) a 30-year moving average of mean global surface 
temperature starting from the year 2018 was calculated for each simu-
lation; (2) the difference between this moving average’s mean surface 
temperature and that of the period 1950–1979 obtained from the same 
model was calculated; and (3) if a 30-year window has a temperature 
difference that lies within 0.1 K of the warming levels 1.5 K, 2 K, 3 K and 
4 K, it was selected as an ensemble member for that specific warming 
level. This resulted in the datasets shown in Extended Data Table 3, 
which were then combined for each ensemble with equal weights.

Computation of percentage change in rainfall extremes
We first used total precipitation (p) and snowfall (s) estimates to gen-
erate rainfall (r) time series for each grid cell within each dataset as 
follows:

r p s= − (1)i j t i j t i j t, , , , , ,

where the subscripts i, j and t correspond to the latitude, longitude 
and time step, respectively, for each variable. The output temporal 
frequency for the reanalysis dataset and CMIP6 model variables are 
1 h and 3 h, respectively. Following this step, rainfall (r) is accumulated 
to duration (d) of 3 h, 12 h and 24 h. Next, the AMS were constructed 
by extracting the highest value of r in each year for all durations d as 
follows:

rAMS = max { } (2)i j y t y i j t, , ∈(year= ) , ,

where AMSi, j,y is the AMS value for grid cell (i, j) and year y. The percent-
age change in rainfall extremes at each grid cell is then computed as 
the difference between the mean value of AMS for the future (or recent 
past) period minus that of the reference period (1950–1979) normalized 
by the mean AMS value of the reference period. For an arbitrary grid 
cell (i, j), let AMSref denote the mean AMS for the reference period and 
AMSt denote the mean AMS for future (or recent past) period. Then, 
the percentage change at each grid cell is calculated as follows:

%change = [(AMS − AMS )/AMS ] × 100% (3)t ref ref

For the analysis of ERA5 historical changes, AMSt is computed from 
the period of 1990–2019, whereas the period 2071–2100 is used for 
CMIP6 models. The percentage changes are then divided by warming 
levels in global surface air temperature (Extended Data Table 2) to 
produce the results shown in Figs. 1–3. It is noted that the results for 
ERA5 in Fig. 1 show the mean percentage change at different elevation 
categories; however, similar results are obtained using the median 
instead of the mean. Extended Data Fig. 9 compares the use of mean 
and median to assess elevation-dependent amplification of rainfall 
extremes. Furthermore, to ensure that the results are not biased by 
issues related to the selection of reference period50,51, we carried out 
a statistical simulation study similar to that of previous studies50. For 
each of 10,000 Monte Carlo replicates, we first generated 30 values 
from a ‘baseline’ period and 30 values from a ‘future’ period. Each set 
of values came from a known generalized extreme value (GEV) distribu-
tion (to mimic the appropriate distributions for AMS data). The specific 
scenarios considered for the distribution parameters are outlined in 
Extended Data Fig. 10b with one scenario where the distributions used 
to generate baseline and future data are identical such that the true 
percent change is zero. We then calculate the percent change from 
simulated data according to equation (3). For all simulations, the values 
of the GEV shape parameter were taken to be representative of those 
estimated from ERA5 data (for example, first quartile, median and so 
on). Extended Data Fig. 10a clearly shows that using 30 years as a ref-
erence period does not bias the results for values of shape parameter 
typical to ERA5 data and across change of 0% to 100%.
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Masking out hyperarid regions
The %change calculations shown in equation (3) could be very sensitive 
in hyperarid regions where there is extremely low amount of rainfall 
(if any). These regions, such as parts of the Sahara Desert, can lead 
to extremely large and unrealistic values of %change that could be 
in the order of 1,000% to 10,000%. These values of change are highly 
susceptible to observational noise and they potentially bias the overall 
results. Therefore, in the spatial domain of our analysis (20° N–90° N), 
we masked out all regions that have mean annual rainfall of less than 
20 mm in the reference period. Similarly, we have excluded regions that 
have mean AMS of daily rainfall less than 1 mm in the reference period. 
Regions with daily rainfall AMS of less than 1 mm are also susceptible to 
observational and estimation noise, which could lead to considerable 
biases. This procedure was performed separately for both ERA5 and 
each of the CMIP6 models. The regions masked out from the analysis are 
mostly located at subtropical parts of the Sahara Desert and Greenland 
(Extended Data Fig. 6). Both regions are primarily uninhabited and are 
therefore of limited interest to the analysis presented in this paper.

Re-gridding to a common spatial resolution
To assess changes in rainfall extremes in the multimodel mean (for 
example, Figs. 1 and 4 and Extended Data Fig. 1) and explore potential 
elevation-dependent increases in rainfall extremes (Fig. 1), all model 
data was resampled to a common spatial resolution of (1° × 1°). The 
re-sampling was carried out using bilinear interpolation. The eleva-
tion data used for this analysis are the Rand’s global elevation dataset, 
which provides elevation data at 1° spatial resolution across the globe52. 
It should be noted that multimodel mean data were calculated using 
simple averaging with equal weights applied to all models. We examined 
the impact of re-sampling on the accuracy of the results by investigat-
ing the relationship between elevation and increases in rainfall at the 
native resolution of each model (shown in Extended Data Fig. 1c–e). 
Elevation files for each model were obtained from the CMIP6 repository 
for the variable ‘orog’. The results are qualitatively and quantitatively 
indistinguishable from the ones with resampled data. Therefore, we 
conclude that the re-sampling approach used in this study had little 
to no impact on the results.

Regression of changes in rainfall extremes on elevation
To evaluate the relationship between elevation and the increase in 
rainfall extremes as shown in Fig. 1, we established a regression rela-
tionship over all grid cells within each model. For ERA5, we adopted a 
linear regression of the form y = mx + b, whereas third-order polyno-
mial regression was adopted for CMIP6 models. Polynomial regres-
sion was used in the latter case because it improved the model fit 
unlike the case for ERA5 where the improvement was negligible. It 
should be noted that amplification patterns in CMIP6 models are 
evident even in the case of linear regression as shown in Extended 
Data Fig. 9a–c. It is also worthwhile to mention that all figures related 
to elevation-dependent amplification show the mean value of change 
in rainfall extremes at different elevation categories (black markers) 
and the 95% confidence interval (vertical lines). Those estimates are 
meant to show the general trend, which is not affected by the choice 
of the regression model.

Snow fraction of precipitation extremes
To quantify the change in snow fraction of precipitation extremes 
within each model and examine its impact on amplification of rainfall 
extremes, we started by extracting AMSi,j,y for all grid cells (i, j) within 
each dataset. The snow fraction of each event in the AMS is then calcu-
lated as the snowfall depth divided by total precipitation depth. This 
resulted in two time series for each grid cell corresponding to reference 
and future periods, each with 30 values of snow fraction. The mean of 
each time series is then computed and distributions of the values of 

snow fraction over all grid cells are then plotted as shown in Extended 
Data Fig. 2a. Moreover, the change in snow fraction for each grid cell is 
calculated as the difference between mean values of snow fraction for 
the reference and future period (future minus reference); these values 
are shown for each model in the horizontal axis of Extended Data Figs. 3 
and 4. Finally, by averaging all values across grid cells, a single value 
of change in snow fraction for each model is estimated. These are the 
values shown in the horizontal axis of Fig. 3a.

Timing of precipitation extremes
For each grid cell (i, j) in a given dataset, the Julian day (1 to 366 cor-
responding to 1 January to 31 December) of AMSi,j,y was extracted for 
all years y in the reference and future period. This resulted in two time 
series, each of which has 30 values of Julian days, for the historical 
period (1950–1979) and the future period (2071–2100). Next, the cir-
cular mean of both time series was calculated to represent a single 
Julian day for the occurrence of precipitation extremes in each period. 
Finally, the absolute difference (future minus historical) was calculated 
to examine whether a seasonal shift in timing of extremes has occurred 
or not. The CDFs for all grid cells within each dataset were then plotted 
(Fig. 3c). Furthermore, an alternative approach in assessing the changes 
of timing in precipitation extremes using the modal month53,54 was car-
ried out. The results are shown in Extended Data Fig. 2b–i, and they are 
generally consistent with those in Fig. 3c, showing that most grid cells in 
all models have a change of timing that is less than 2 months. It is noted 
that all calculations related to the timing of precipitation extremes are 
carried out using total precipitation (liquid + solid). This is because 
our aim is to assess whether the timing of precipitation extremes has 
changed regardless of their composition (liquid versus solid).

Extreme-value analysis
Extreme-value analysis, or the study of rare events, is a branch of math-
ematical statistics that seeks to provide a formal framework for char-
acterizing extremes and their uncertainty. The goal of extreme-value 
analysis is to quantify the magnitude or severity of a worst-case sce-
nario, which often requires extrapolation to events that have not actu-
ally occurred. Extreme-value analysis does this by deriving theoretical 
results and formulas for how to properly carry out the extrapolation 
needed for a particular study. The AMS framework utilized in this paper 
lends itself to statistically modelling these data as arising from the GEV 
family of distributions. Extreme-value analysis theory (Theorem 3.1.1 on 
page 48 in ref. 55) shows that the CDF of the AMS can be approximated 
by a member of the GEV family

G z P Z z ξ z µ σ( ) ≡ ( ≤ ) = exp{−[1 + (( − )/ )] } (4)ξ−1/

as the maxima arise from a large number of high-frequency measure-
ments (daily, 12 h and so on) within a pre-specified time interval or 
‘block’ (here, each year). In equation (4), Z denotes the AMS values 
for an arbitrary grid cell and each duration of interest from either 
the reference or future time period, and the CDF is defined for {z : 1 +  
ξ(z − μ)/σ > 0}. The GEV family of distributions is characterized by three 
statistical parameters: μ, which describes the centre of the distribu-
tion; σ, which describes the spread or width of the distribution; and ξ, 
which is a unitless quantity that describes the upper-tail behaviour of 
the GEV distribution.

Although the statistical parameters of the GEV distribution are some-
times of direct interest, we are often more interested in summaries of 
the distribution, often referred to as return values, return probabilities 
and return periods. Return values (sometimes referred to as return 
levels) quantify an upper percentile of the GEV distribution, that is, a 
rainfall accumulation z such that the probability of exceeding z is small 
(for example, P = 0.1, P = 0.05 or P = 0.01). Return probabilities sum-
marize the likelihood of exceeding a specified threshold, that is, the 
probability of exceeding a large rainfall accumulation. Return periods 



are simply the inverse of the return probability and are used to quantify 
how often (on average) a particular threshold will be exceeded. The 
form of the GEV distribution allows us to write down formulas for each 
of these quantities based on {μ, σ, ξ } (see chapter 3 of ref. 55). For 
instance, the T-year return value, denoted T∅( ) , is
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such that the probability of exceeding T∅( )  is 1/T (hence the ‘T-year’ 
terminology). The return probability for a pre-specified threshold z, 
denoted θ(z), is
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and the return period is simply 1/θ(z). Our analysis of the AMS data 
proceeds by first obtaining maximum likelihood estimates of the GEV 
parameters for each model grid cell and duration separately for the 
reference and future periods, denoted {µ̂ref, σ̂ref, ξ̂ref} and {µ̂future, σ̂future, 
ξ̂future} (here, the ‘.̂’ denotes a statistical estimate of the true unknown 
parameter). These estimates can be plugged into equations (5) and (6) 
to obtain estimated return values and return probabilities (and, for 
that matter, return periods as well).

Finally, the risk ratio (RR) uses these formulae to quantify changes 
in the frequency of a pre-specified extreme event as follows: setting 
the threshold of interest to be the estimated T-year return value from 
the reference period (that is, z T= ∅̂ ( )ref ), the RR in each grid cell and 
for each duration is

T
θ T

θ T
RR( ) =

ˆ (∅̂ ( ))
ˆ (∅̂ ( ))

(7)future ref

ref ref

where the estimated return value T∅̂ ( )ref  is calculated as in equation (5) 
based on {µ̂ref, σ̂ref, ξ̂ref} and the estimated return probabilities θ̂ ( ⋅ )(⋅)  
are calculated as in equation (6). Two things should be noted in equa-
tion (7): first, the threshold of interest T∅̂ ( )ref  is defined relative to the 
climatology of the grid cell of interest, so that the RR summarizes 
changes in the frequency of events that are considered ‘extreme’ for 
each geospatial location of interest. Second, the denominator of equa-
tion (7) is 1/T, as the reference probability of exceeding the reference 
T-year return value is 1/T by definition.

Risk ratios for C–C only
To specifically quantify the effect of amplified rainfall extremes on 
the RR beyond what would be expected from C–C scaling (where we 
expect rainfall extremes to increase by approximately 7% K−1), we can 
calculate a so-called C–C-only version of the RR as follows. It is noted 
that if a random variable X is distributed as GEV(μ, σ, ξ), the rescaled 
kX is distributed as GEV(kμ, kσ, ξ). Following from equation (7), we can 
define a C–C-only RR as

TT
θ T

θ T
RR ( ) =

ˆ (∅̂ ( ))
ˆ (∅̂ ( ))

(8)CC−only
CC−only ref

ref ref

where {µ̂CC−only
, σ̂CC−only, ξ̂CC−only} = {kµ̂ref, kσ̂ref, kξ̂ref}. The value of k is 

model-specific and set equal to 1 + 0.07W, where W is the degrees of 
warming from the reference period to future period in each model. We 
can then summarize both the ‘actual’ risk ratios RR(T ) as well as the 
ratio of risk ratios RR(T )/RRCC-only(T ), which quantifies the multiplicative 

change to the risk of rainfall extremes beyond what would be expected 
from C–C-scaling only.

Welch’s t-test
We used Welch’s t-test56 in this study to assess whether the difference 
between the mean of two groups is statistically significant or whether it 
could be simply due to chance. The test is applied in cases where the two 
groups differ in their sample size (n1 and n2) and their variance (var1 and 
var2). The test is based on the assumption that the samples in the two 
groups are normally distributed. The t-statistic is calculated as follows:

t
X X

=
−

+
(9)

n n

1 2
var var1

1

2

2

where X1 and X2 are the means of the samples in the two groups.

Evaluation of ERA5 against ground observations
We carried out an evaluation of ERA5 AMS of daily rainfall against 
observational in situ datasets. The evaluation was conducted in two 
approaches using the GHCNd dataset45. The first approach, hereafter 
referred to as analysis 1, is based on stations that have observations of 
both total-phase precipitation (p) and snowfall (s). We then calculate 
rainfall estimates as the difference (p − s) following equation (1). Overall, 
there is a total of 13,194 stations in the spatial domain 20° N–90° N with 
at least 20 years of observations after excluding years with more than 
10% of missing daily observations. These stations, shown in Extended 
Data Fig. 7a, are mostly located in North America and they are used for 
analysis 1. The second approach, hereafter referred to as analysis 2, is 
based on stations that have observations of both precipitation and 
temperature. In this approach, daily mean temperature is used to parti-
tion p estimates into solid and liquid forms using a temperature-based 
scheme for rain–snow partitioning. The scheme we used here is adopted 
from refs. 19,57, and it simply approximates the snow fraction by the 
relationship exp(0.0000858(T + 7.5)4.12) where T is daily mean sur-
face air temperature in units of °C for values in the range of −4 °C and 
7 °C. In addition, for temperature values below −4 °C, all p is assumed 
to be snowfall, whereas for values above 7 °C, all p is assumed to be 
rainfall. For analysis 2, there is a total of 20,349 stations in the spatial 
domain 20° N–90° N with many stations located outside North America 
(Extended Data Fig. 7b).

The evaluation was carried out as follows. First, AMS of daily rainfall 
for GHCNd was constructed for both reference and recent past periods. 
Second, AMS of daily rainfall obtained from ERA5 was interpolated to 
the location of the GHCNd stations using bilinear interpolation. Third, 
the relative error (RE) in estimates of ERA5 daily rainfall extremes was 
calculated as follows:

RE = ((AMS − AMS )/AMS ) × 100% (10)GHCNd ERA5 GHCNd

where AMSGHCNd and AMSERA5 are the mean AMS of daily rainfall obtained 
from GHCNd and ERA5, respectively. The above equation is applied 
to all stations for both the reference period 1950–1979 and the recent 
past period 1990–2019. Extended Data Fig. 8a–d shows the distribu-
tion of RE for all stations in analysis 1. In Extended Data Fig. 8a,c, it is 
clear that 60% to 69% of all stations have an RE in the range of −20% to 
30%, which is quite reasonable given the uncertainties associated with 
measurements of snowfall such as under-catch issues58–60. Further-
more, Extended Data Fig. 8b,d shows the REs at stations grouped by 
mean winter temperature and clearly demonstrates that ERA5 is more 
adequate in estimating extreme rainfall over cold regions, which is of 
importance to the analysis presented in this study.

The results for analysis 2, shown in Extended Data Fig. 8e–h, are quali-
tatively similar to those of analysis 1 albeit with a lower percentage sta-
tions (50%) having REs within the range −20% to 30%. However, one must 
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recognize that the data used in analysis 2 have additional uncertainty 
owing to the fact that liquid and solid phases of precipitation were 
estimated using the temperature-based scheme described above (as 
opposed to directly observed such as in analysis 1). It should be noted 
that the histograms (grey colour) for both analysis 1 and analysis 2 
across all periods are centred at about 10% to 15% of RE, which means 
that ERA5 is systematically underestimating the values of extreme rain-
fall compared with observations. This means that a major component of 
the errors is a systematic error (as opposed to random error). This sys-
tematic error is commonly found when assessing gridded data against 
point data25, which is attributed to the spatial averaging of precipitation 
fields over grid cells. The fact that the distributions for both reference 
and recent past periods are qualitatively similar (location, scale and 
general shape of the distribution) suggests that the systematic error 
component is consistent for both reference and recent past periods, 
which can be clearly seen from the plots in Extended Data Fig. 8i,j. For 
both analysis 1 and 2, 51% to 57% of the stations have REs in reference 
and recent past periods that lie within ±10% of each other. This type of 
systematic error cancels out when comparing recent past to reference 
periods and therefore is less likely to bias the results.

Amplification patterns in observational dataset
We carried out an investigation of amplification patterns in rainfall 
extremes as a function of elevation, which is shown in Extended Data 
Fig. 7c,d for analysis 1 and analysis 2, respectively. The results show 
that there is a clear amplification pattern in the percentage change 
of rainfall extremes for analysis 2 (Extended Data Fig. 7d) with both 
mean values of change at different elevation categories (black markers 
and vertical lines) and regression line fitted to all data points (black 
line and shading) showing an increase with elevation. The results are 
less clear with regard to analysis 1 (Extended Data Fig. 7c) where the 
mean values of change at different elevation categories do not show an 
amplification; however, the regression line fitted to all data points show 
an amplification pattern. Although these results provide an additional 
line of evidence to the amplification patterns observed in ERA5 and 
the CMIP6 models, one must acknowledge the uncertainties of these 
results, especially owing to the non-uniform sampling of stations within 
different elevation ranges (as shown in the maps of Extended Data 
Fig. 7a,b). In addition, it is clear that the stations used in analysis 1 and 
analysis 2 do not cover the same range of elevation bands covered by 
ERA5 and the CMIP6 models. For instance, the stations in analysis 1 cover 
an elevation range of 0 to 4,750 m. The lack of amplification patterns 
for the means at elevation categories in Extended Data Fig. 7c can be 
attributed to the non-uniformity of spatial distribution of stations in 
analysis 1 and their limited spatial domain covering only North America.

Data availability
CMIP6 data of the eight models used in this study are available from the 
Program for Climate Model Diagnosis and Intercomparison (PCMDI) at 
https://esgf-node.llnl.gov/projects/cmip6/. ERA5 hourly land data are 
available from the Copernicus Climate Change Service (C3S) Climate 
Date Store at https://cds.climate.copernicus.eu/cdsapp#!/dataset/

reanalysis-era5-land?tab=overview. Rand’s Global Elevation dataset is 
available from the Research Data Archive (RDA) at the National Center 
for Atmospheric Research (NCAR) at https://rda.ucar.edu/datasets/
ds750.1/.

Code availability
The code and supporting data used in this analysis are available at 
https://doi.org/10.5281/zenodo.7740037 with GitHub access through 
https://doi.org/10.5281/zenodo.7796633.
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Extended Data Fig. 1 | Elevation-dependent amplification of rainfall 
extremes. All panels in the figure show percentage change in rainfall extremes, 
normalized by degrees of warming and expressed as a function of elevation 
over the spatial domain (20° N–90° N) land area with masking of hyper-arid 
regions (Methods). a, ERA5 12-hours annual maximum series (AMS) of rainfall. 
b, CMIP6 models (colored dashed and dash-dotted lines) and their multi-model 
mean (solid black line) for 12-hours AMS of rainfall. c,d,e, Percentage change in 
rainfall extremes at the native spatial resolution of the models (as opposed to 

resampled data). Note that the model BCC-CSM2-MR is not included because of 
missing elevation files in the CMIP6 repository. In all panels, regression is based 
on all grid cells within the spatial domain (not shown in the figure). For panels a 
and b, black markers and error bars indicate the mean percentage change at 
different elevation categories and its 90% confidence interval for ERA5 and 
CMIP6 multi-model mean. The shaded area surrounding regression lines in 
panels a and b represents the 95% confidence interval of regression estimates. 
Note that vertical axes in panels have different range of values.
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Extended Data Fig. 2 | Changes in snow fraction and timing of precipitation 
extremes. a, Snow fraction in annual maximum series (AMS) of daily 
precipitation for all grid cells in the spatial domain of (20° N–90° N) within ERA5 
and CMIP6 models. Dark and light green boxplots correspond to the reference 
period (1950–1979) and the future period (2071–2100), respectively. The two 
models of AWI-CM-1-1-MR and MPI-ESM1-2-HR are highlighted with an asterisk 
due to their peculiar patterns of lacking amplification in rainfall extremes at 
high elevations. The boxes show the interquartile range (IQR; 75th percentile − 

25th percentile) while the whiskers show the extent of the distribution, excluding 
outliers defined as values greater than (75th percentile + 1.5*IQR) or lower than 
(25th percentile − 1.5*IQR). b–i, Histograms summarize the shift in timing of 
precipitation extremes across the eight CMIP6 models used in the present 
study. Each histogram shows the shift in the modal month of precipitation 
extremes in the future period (2071–2100) compared to the baseline period 
(1950–1979) across grid cells within the spatial domain of (20° N–90° N). Red 
vertical lines represent the 80th percentile of timing shift in the modal month.



Extended Data Fig. 3 | Reduction in snow fraction amplifies rainfall extremes. 
a—c, Scatter plots for the relationship between change in snow fraction 
(horizontal axis) and percentage change in rainfall extremes (vertical axis)  
for CMIP6 model AWI-CM-1-1-MR, and rainfall duration of 3, 12- and 24-hours, 
respectively. Red markers represent individual grid cells whereas black line and 
shaded area represent least-squares linear regression fit and its 95% confidence 

interval, respectively. d—f, Same as a-c but for BCC-CSM2-MR. g—i, Same as  
a-c but for CMCC-CM2-SR5. j—l, Same as a-c but for EC-Earth3. In all panels,  
the changes in snow fraction and rainfall extremes are computed for the period 
(2071–2100) relative to the baseline period (1950–1979) for grid cells within the 
spatial domain of (20° N–90° N) land area with masking of hyper-arid regions 
(Methods).
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Extended Data Fig. 4 | Reduction in snow fraction amplifies rainfall extremes. 
a—c, Scatter plots for the relationship between change in snow fraction 
(horizontal axis) and percentage change in rainfall extremes (vertical axis) for 
CMIP6 model MRI-AGCM-3-2-H, and rainfall duration of 3-, 12- and 24-hours, 
respectively. Red markers represent individual grid cells whereas black line and 
shaded area represent least-squares linear regression fit and its 95% confidence 
interval, respectively. d—f, Same as a-c but for TaiESM1. g—i, Same as a- c but for 

MPI-ESM1-2-HR. j, Same as a but for GFDL-ESM4. Note that 3- and 12-hours 
results for the model GFDL-ESM4 are not shown because only daily temporal 
resolution was available for this model. In all panels, the changes in snow 
fraction and rainfall extremes are computed for the period (2071–2100) 
relative to the baseline period (1950–1979) for grid cells within the spatial 
domain of (20° N–90° N) land area with masking of hyper-arid regions 
(Methods).



Extended Data Fig. 5 | Projected risk of rainfall extremes. a,b,c, A heatmap 
of Log10 (Risk Ratio) estimated from a multi-model mean of CMIP6 projections 
for the period (2071–2100) compared to baseline period (1950–1979). Estimates 
are averaged for grid cells within each elevation category (e.g., 0–500 m,  
500–1,000 m ... 5,500–6,000 m) for rainfall duration of 3-, 12- and 24-hours, 
respectively. The vertical axis in a,b,c corresponds to T-year return values for 

T = 2, 5, 10, 20 years. d,e, Same as a,b,c but for the actual values of Risk Ratio (RR) 
for 3- and 12-hours rainfall, respectively. f, The ratio of risk ratios RR/RRCC−only 
quantifies the multiplicative change in risk estimated from the multi-model 
mean projections compared to the risk expected from Clausius-Clapeyron 
scaling. Results in panel f are shown for 24 hours rainfall.
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Extended Data Fig. 6 | Mountainous and hyper-arid regions. The spatial 
extent of the six mountain ranges used to investigate changes in Risk Ratio (RR) 
is shown in blue color. The six mountain ranges are: North American Pacific 
(Pacific), Rockies, Appalachian, Kjølen, Alps and Asian mountain ranges. The 
Asian ranges consist of the Himalayas, Tian Shan and Hindu Kush mountains. 

Regions in black shading are hyper-arid regions excluded from analysis 
(see Methods for details). Continental Map with boundaries of countries is 
obtained from Esri ArcGIS World Countries (Generalized) shapefiles, whereas 
the spatial extent of mountainous regions is obtained from the World Land-Based 
Polygon Features61.



Extended Data Fig. 7 | Elevation-dependent amplification of rainfall 
extremes in observations. a, Stations from the Global Historical Climatology 
Network daily (GHCNd) data set used in analysis 1 are shown in blue markers. 
Total number of stations (n = 13,194) which have measurements of both 
precipitation and snowfall. b, Stations from GHCNd used in analysis 2 are shown 
in blue markers. Total number of stations (n = 20,349) which have measurements 
of both precipitation and daily mean temperature. c, The percentage change in 
daily rainfall extremes as a function of elevation for the period (1990–2019) 

compared to that of (1950–1979) for GHCNd stations in analysis 1. d, Same as c 
but for GHCNd stations in analysis 2. For panels c and d, regression is based on 
all stations within each analysis (not shown in the figure), and the shaded area 
surrounding regression line represents the 95% confidence interval. Additionally, 
black markers and error bars indicate the mean percentage change at different 
elevation categories and its 90% confidence interval, respectively. Maps in 
panels a,b were generated using Cartopy47.
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Extended Data Fig. 8 | Evaluation of ERA5 against ground observations.  
a, Histogram in gray color summarizes the relative error in the estimates of ERA5 
daily rainfall extremes relative to observations in GHCNd stations of analysis 1 
for the baseline period (1950–1979). Cumulative distribution function (cdf) is 
also shown in blue color. c, Same as a but for the recent past period (1990–2019). 
b, cdf of average relative error for analysis 1 stations categorized into distinct 
classes of mean Winter temperature in units of °C for the baseline period  
(1950–2019). d, Same as b but for the recent past period (1990–2019). e—h, Same 

as panels a-d but for analysis 2. For panels a,c,e,g, the red arrow and text show 
the percentage of stations that have relative error values in the range of −20% to 
30%. i,j, Scatter plots for the relationship between the relative error of the 
reference period (horizontal axis) and recent past period (vertical axis) for 
GHCNd stations in analysis 1 and analysis 2, respectively. For panels i,j, the 
dotted lines indicate the range of (−10% to +10%) with the percentage of 
stations falling within the range shown in black text. Additionally, the scatter 
plots are visualized as density plots to clearly indicate the density of points.



Extended Data Fig. 9 | Elevation-dependent amplification of rainfall 
extremes. a—c, Percentage change in rainfall extremes, normalized by degrees 
of warming, and expressed as a function of elevation over the spatial domain 
(20° N–90° N) land area with masking of hyper-arid regions (Methods) for 
rainfall duration of 3-, 12- and 24-hours, respectively. Colored dashed and dash- 
dotted lines and solid black line show least squares linear regression fit for eight 
CMIP6 models and their multi-model mean, respectively. Black markers and 
error bars show the mean percentage change at distinct elevation categories 

and its 90% confidence interval. d—f, Percentage change in rainfall extremes as 
a function of elevation for ERA5 data set with black markers and error bars 
showing mean percentage change at different elevation categories and its 90% 
confidence interval. g—i, Same as d-f but using median instead of mean. For 
panels d-f, black line shows the least-squares linear regression fit for all grid cells 
(not shown in the figure). For all panels, shading indicates the 95% confidence 
interval of regression fit.
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Extended Data Fig. 10 | Robustness of results to selection of reference 
period. a, Results of a statistical simulation study with 10,000 Monte Carlo 
replicates drawn from two generalized extreme value (GEV) distributions for 
reference and future period. The horizontal axis shows the true percent change, 
whereas the vertical axis shows the percent change estimated from simulations. 
The markers and vertical bars show the mean change and its 90% confidence 

interval across the Monte Carlo replicates. Markers correspond to different 
values of shape parameter typical to those estimated from ERA5 data (e.g.,  
1st quartile, median). b, The table shows the values of location parameter for 
both baseline and future GEV and the corresponding percent change for the 
different simulations in this study.



Extended Data Table 1 | List of the eight CMIP6 models used in this study with their name, institution and spatial resolution

∗MRI-AGCM-3-2-H is the only model used in this study that belongs to the HighResMIP experiment, whereas the others belong to the SSP585 experiment.
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Extended Data Table 2 | Warming levels, averaged over global land and oceans, as estimated by ERA5 for the recent past 
(1990–2019) and CMIP6 models for the future period (2071–2100); both relative to the baseline period (1950–1979)

∗ERA5 is the reanalysis data set for the assessment of the recent past whereas the remaining data sets are the CMIP6 model projections.



Extended Data Table 3 | Data sets used for assessing the sensitivity of results to warming levels of 1.5, 2, 3 and 4 K. A total 
of 43 data sets are used, spanning 7 CMIP6 models and 4 scenarios (ssp126, ssp245, ssp370 and ssp585). Each data set 
consists of a consecutive 30 years period for which mean global temperature is increased by increments of 1.5, 2, 3 and 4 
degrees relative to the baseline period (1950–1979)

∗Temporal resolution refers to the highest temporal resolution for which the data set was used in the analysis.
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