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Traffic Signal Control with Adaptive
Online-Learning Scheme Using Multiple-Model

Neural Networks
Wanshi Hong, Gang Tao, Fellow, IEEE, Hong Wang, Fellow, IET , Chieh Wang, Member, IEEE

Abstract—This paper proposes a new traffic signal control
algorithm to deal with unknown-traffic-system uncertainties and
reduce delays in vehicle travel time. Unknown-traffic-system dy-
namics are approximated using a recurrent neural network (NN).
To accurately identify the traffic system model, an online-learning
scheme is developed to switch among a set of candidate NNs (i.e.,
multiple-model NNs) based on their estimation errors. Then, a
bank of optimal signal-timing controllers is designed based on
the online identification of the traffic system. Simulation studies
have been carried out for the obtained control strategies using
multiple-model NNs, and desired results have been obtained.
Moreover, compared with the widely used actuated traffic signal
control schemes, it is shown that the proposed method can reduce
vehicle travel delays and improve traffic system robustness.

Index Terms—Traffic signal control, online learning, multiple-
model neural networks

I. INTRODUCTION

TRAFFIC signal control has been an important research
topic for decades because efficient control can be ex-

tremely beneficial to network traffic systems, bring a safer and
smoother traffic flow, and improve economic competitiveness
[1]. Increasing automobile traffic demands, especially in urban
areas, is creating an urgent need for better traffic signal control
strategies.

Traffic signal control uses the concept of phases, in which
directions of movement are grouped [2]. A traffic cycle con-
sists of a set of predefined sequences of traffic phases, which
combines green signals allocated to a set of lanes simultane-
ously for nonconflicting movements at an intersection, with
yellow and red signals to provide a safe transition between
different movements.
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Traditionally, there are two types of traffic signal control
methods, namely pretimed and actuated. Pretimed traffic sig-
nal control presets the green signal time using the Webster
formula based on the historic traffic data collected over
different time periods [3]. Actuated traffic signal control, on
the other hand, requires detection of traffic movements and
sets the green signal based on current traffic conditions rather
than historic ones [4]. Self-organizing traffic light control [5],
for example, is a fully actuated traffic signal control method
with additional demand-responsive rules. With increased traffic
demand, both methods have shown some drawbacks. For ex-
ample, pretimed control does not take current traffic conditions
into consideration, making it unresponsive to traffic changes
and less robust. Actuated control, on the other hand, does
not consider historic traffic information and is much better
suited for an isolated intersection control. Moreover, neither
method considers the effects of conditions at neighboring
intersections, which can be a crucial factor in the presence
of traffic congestion.

Many research approaches to improving traffic signal con-
trol effectiveness have been considered. For instance, the
GreenWave [6] method is a classic control method used in the
transportation field. It optimizes the offset to reduce the vehicle
stops along a certain direction. However, this method can
only optimize unidirectional traffic. To optimize two opposite
directions, a control method called Maxband [7, 8, 9] has
been developed to optimize the number of vehicle stops by
finding a maximum bandwidth based on the signal planning of
intersections along an arterial. These methods, although may
be suited for coordination of signalized intersections along a
corridor, do not take effects of all approaches of neighboring
intersections into consideration and thus are not suited for
complicated, grid-like urban traffic networks. Max-pressure
control [10] is another optimal traffic signal control approach
that aims at reducing the risk of traffic flow oversaturation
by minimizing the traffic “pressure,” which is computed at
an intersection between neighboring intersections. However,
this method requires a high sampling rate of the “pressure”
signal. There are also many artificial intelligence approaches
to addressing the traffic signal control problem, such as swarm
intelligence [11, 12], fuzzy logic algorithm [13, 14, 15], and
reinforcement learning approaches [16, 17, 18]. For exam-
ple, in [19, 20] the authors use several adaptive dynamic
programming approaches to develop an optimal traffic signal
control scheme and identify the unknown traffic dynamics. In
[21, 22, 23], some data-driven machine-learning approaches



2 are proposed for smart traffic signal control and optimal 
traffic management.

Indeed, using intelligent techniques for traffic signal control 
research has become a trend in recent years. Machine-learning-
based methods and reinforcement learning, in particular, have 
become the most popular approaches. However, most learning-
based methods require a large number of attempts to “learn” 
the traffic flow pattern and relevant dynamics. For dynamic 
programming approaches, historic traffic dynamic analysis is 
needed at every step of the optimization, which increases the 
computational complexity and makes them difficult for real-
time implementations. For time-series-based dynamic prob-
lems like traffic signal control, such complexity would lead 
to a heavy computation burden at each time step and require 
extensive data collection. To deal with such drawbacks, this 
work proposes an online-learning method that calculates the 
desired optimal control signal within one pass through an 
intersection. This is realized by taking the traffic signal system 
as a kind of unknown and uncertain nonlinear system, where 
modeling and control using the neural network-based on-line 
learning and control for various uncertain nonlinear systems 
has been studied in recent years with some remarkable results 
being documented in [24, 25, 26, 27, 28, 29, 30]. Moreover, the 
multiple-model approach is an effective approach for adapting 
the unknown and varying system dynamics by switching to 
more appropriate controllers followed by tuning or adaptation 
[31, 32], which is a suitable traffic system control design 
for quickly changing traffic patterns. Nonetheless, to our best 
knowledge, there has been no research that explores the use 
of multiple-model or NN-based online learning approaches for 
traffic signal control. As a result, to guarantee the responsive-
ness and reliability of the online-learning-based optimal traffic 
signal control, a multiple neural network (NN) structure is used 
here to model the traffic system with an appropriate selection 
algorithm applied. Fig. 1 illustrates the online-learning-based 
optimal traffic signal control method developed in this paper.

Traffic 
system

NN model 
selection

NN1

NN2

...

NNk

Optimal traffic 
signal control 
for multiple 

intersections

control signal u(k)

System 
output y(k)

ŷ(k)
NN estimate   

Fig. 1: Online-learning-based optimal traffic signal control.

In this paper, a traffic signal control scheme is developed
based on an NN approximation of the original traffic system
model that represents the dynamics between the traffic delay
and the signal timing (i.e., duration of the green light) at
intersections. Instead of testing different NN structures with
offline training, we propose the use of an online multiple-
model NN scheme in which the original traffic system model
is estimated by a set of NNs with different structures, whose
weight parameters are updated along with system operation
using online-collected signal-timing and traffic-delay data. The
best NN can then be determined by a switching mechanism

that finds the most accurate approximation of the original
traffic system at each time step. In this context, we first
extend our previous work [33, 34, 35] on traffic signal control
using a linear-model-based online optimal control scheme with
an online NN-based control scheme to accurately capture
the unknown nonlinear traffic dynamics. We then develop
a multiple-model NN-based adaptive control scheme to deal
with the case in which both the NN parameters and structures
are uncertain in order to cover a wider range of traffic system
operations.

The basic idea of a multiple-model NN-based adaptive con-
trol scheme is similar to that developed in the multiple-model
adaptive control literature, such as the work by Narendra et
al. [32]. The specific design of our adaptive control scheme is
applied to the traffic signal control system. As shown in the
literature, the technical foundations of multiple-model adaptive
control are matured, including control switching, stability, and
robustness, and are applicable to our adaptive control scheme
for the traffic control system.

The focus of our work is on traffic signal control using
a single-model or multiple-model NN-based adaptive control
design to deal with uncertainties of the traffic control system.
The main contributions of this paper include:
• development of new multiple-model NN modeling with

an adaptive scheme to update the multiple NNs and a
switching identification scheme to find the most accurate
NN approximation of the unknown traffic system dynam-
ics,

• design of an optimal control scheme for traffic control
based on multiple-model NN system identification, and

• evaluation and verification of the effectiveness and ad-
vantage of the proposed signal timing control scheme for
minimizing traffic delays in comparison to conventional
traffic signal control schemes.

The remainder of this paper is organized as follows: Sec-
tion II introduces the system model and states the control
objective; Section III presents the nominal NN-based system
identification design and parameterization, where the accu-
rate approximation of the unknown traffic network system
is assumed; Section IV derives the multiple-model NN-based
design; Section V develops the adaptive-control-based traffic
signal control algorithm; Section VI presents the simulation
study to verify the control design; and Section VII draws
conclusions based on the simulation results and discusses
potential future work.

II. SYSTEM MODEL AND CONTROL OBJECTIVE

In this section, the traffic network model is introduced.
Then, the control objective is given in terms of total traffic
delay minimization when vehicles pass through the network-
wide intersections. Once the traffic delay is minimized, it is
expected that energy (fuel) consumption will also be mini-
mized for the affected traffic flows.

A. Traffic Network Model

To model a traffic network with m intersections, we make
the following assumptions that can represent the majority of
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situations: 1) we assume that each intersection connects two 
roads, one in the N–S direction and one in the E–W direction; 
2) we assume that the standard traffic signal control at each 
intersection shares the same fixed signal length Tcyc with two 
phases: the E–W approaches share one phase, and the N–S 
approaches share the other phase. These assumptions are made 
to simplify the formulation of the control algorithm. Fig. 2 
shows an example of the traffic network system, where Fig. 
2(a) is the traffic network example; Ni,j is the number of 
the intersection; l1, l2, l3, l4 are the distances from Ni,j to its 
neighboring intersections; and Fig. 2(b) is the traffic signal 
timing sequence in terms of green, yellow, and red traffic lights 
and their timing durations.

(a) Traffic network example (b) Traffic signal sequence example

Fig. 2: Traffic network system.

The traffic network system described above with m inter-
sections can be modeled with a discrete-time nonlinear system
as follows:

∆zo(t+ 1) = ψ(∆zo(t)) + h(∆zo(t))∆v(t), (1)

where zo(t) = [zoNS1(t), zoEW1(t), zoNS2(t), zoEW2(t) . . . ;
zoNSm(t), zoEWm(t)]T ∈ R2m is the system state vector,
which is the average traffic delay in the E–W direction
and N–S direction at each intersection in the network; and
v(t) = [v1(t), v2(t), . . . , vm(t)]T ∈ Rm is the control input,
where the components are the green signal percentage for the
E–W direction at each intersection. Given the cycle length
as Tcyc, the green signal percentage is defined as the green
signal time duration divided by Tcyc. Therefore, the green
signal percentage is a variable in (0, 1). In line with the
minimum and maximum green signal time duration in practice,
vmin and vmax are defined as the minimum and maximum
green signal percentages, respectively. As a result, we will
always have vi ∈ [vmin, vmax], (i = 1, . . . ,m), indicating
that the green signal percentage should not be less than vmin

or exceed vmax in each direction at every intersection, where
vmin, vmax ∈ (0, 1) and vmin < vmax are the prespecified
parameters. It can be seen that since the cycle length and
the yellow light duration are fixed as well, the green signal
percentage can uniquely control the traffic flow through the
intersection. For example, when the green signal percentage
in the E–W direction is higher, then the traffic flow in
the E–W direction will be faster, indicating that the traffic
delay along the E–W route will be less. In equation (1),
∆zo(t) = zo(t) − zo(t − 1), ∆v(t) = v(t) − v(t − 1) is the

increment of z and v at time step t. ψ ∈ R2m, h ∈ R2m×m are
the unknown nonlinear functions with respect to ∆zo, t + 1,
and t represents kT + T and kT with T = Tcyc being the
sampling interval, which is chosen to be the same as the signal
cycle length.

For this problem, the states are the average traffic delay
at each intersection, and the control signal v will not change
within one signal cycle. To simplify the notation, we denote
∆zo = xo and ∆v = u and rewrite the original nonlinear
model as

xo(t+ 1) = ψ(xo(t)) + h(xo(t))u(t). (2)

Because the direct mathematical relationship between traffic
delay and green signal period is unknown, ψ and h are
unknown nonlinear functions and are very likely to be time-
varying. Thus, we need to design a parameterizable model
that can be used to accurately approximate and estimate the
unknown nonlinear relationship ψ and h online using the
measured input (green signal percentage) and the average
traffic delay at intersections.

B. Control Objective

The control objective is to design an optimal control input
u(t) = u(kTcyc) within the range [umin, umax] for the
system (2) to achieve minimal travel delay at the t + 1 time
step. umin, umax are the maximum decrement and increment
amounts for u(t). This control objective can be summarized
by solving the following optimal control problem with cost
function and constraint as

min
uj(t)∈[umin,umax]

Jo(t), j = 1, 2, . . . ,m (3)

Jo(t) = PTxo(t+ 1), t = 1, 2, . . . , (4)

where P ∈ R2m with every element greater or equal to
zero, which indicates the weighted summation of traffic delay
decrements xo (one possible choice of P is P = 1 =
[1, 1, . . . , 1]T ∈ R2m), and umin, umax are the lower and
upper bounds for the control signal u(t), which indicates
the minimum and maximum change in green signal period
between signal cycles. These bounds are used to improve
system robustness. This cost function will change at each time
step t = kTcyc, meaning that the optimal controller u(t) is
calculated based on Jo(t) at each time step t. The cost function
represents the weighted summation of the average traffic delay
of all the intersections in the traffic network at the next time
step. At each time step t, we can minimize xo(t+1), indicating
a minimum traffic delay operation. Moreover, because the
plant to be controlled is a traffic system, the use of historical
information in the cost function is not necessary because the
traffic system contains high randomness. In this work, we
design a one-step optimization scheme.

III. NOMINAL NN-BASED DESIGN AND
PARAMETERIZATION

In this section, the nominal NN-based design is presented.
First, the nominal NN approximation is given, and then the
nominal NN-based control law is derived.
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A. Nominal NN Approximation

Given the traffic system contains high randomness because
the number of vehicles on the road during any time interval
is random, it is difficult to capture all system dynamics in (2)
with a linear approximation. To develop an effective traffic sig-
nal control scheme, better identification of the traffic network
system is necessary. NN approximation has commonly been
used for nonlinear complex function approximations and many
areas of machine-learning studies. More importantly, use of
machine-learning methods to address time series problems has
recently become a key focus area [36, 26, 37], which inspired
this research to use NN structures in the approximation of the
traffic system dynamic model. Using recurrent NNs, a nominal
approximation model of (2) can be constructed as

xo(t) = x(t) + δ(t), (5)
x(t+ 1) = A∗x(t) +W ∗1 S1(x(t)) +W ∗g Φg(x(t), u(t)), (6)

where x(t) ∈ R2m is the NN approximation of system state
xo(t), δ(t) is the approximation error, u(t) is the NN control
input, and A∗ ∈ R2m×2m is the system matrix. W ∗1 , S1, W ∗g
and Φg are the parameterized NN components

W ∗g = [W ∗2 ,W
∗
3 , . . . ,W

∗
m+1] (7)

Φg(t) = [S2(x(t))u1(t), . . . , Sm+1(x(t))um(t)]T , (8)

where W ∗p ∈ Rn×lp , p = 1, 2, . . . ,m + 1, lp is the number
of layers for the pth NN, and Sp(x) ∈ R is the activation
function that shows how the pth NN operates on the state x.
The NN structure of the pth NN is given as

Sp(x(t)) = [Sp
1 , S

p
2 , . . . , S

p
lp

] ∈ Rlp (9)

Sp
j (x) =

∏
i∈Ip

(sp(xi))
dp
i (j), j = 1, . . . , lp (10)

sp(xi) =
k1

1 + e−xi + k2
, (11)

where with k1 > 0, k2 > 0 being the design parameters,
dpi (j) are nonnegative integers, and Ip is the subset of set
{1, 2, . . . , 2m}. It has been shown in [38, 39] that ideal ma-
trices W ∗1 , . . . ,W

∗
m+1 with appropriate S1(x), . . . , Sm+1(x)

exist such that (6) can approximate (1) to any degree of
accuracy on any compact set.

Parameterization of xo(t). With (5) – (8), we can further
parameterize the original system output xo(t) as follows:

xo(t) = θ∗Φ(t− 1) + δ(t), (12)

where

θ∗ = [A∗,W ∗1 ,W
∗
2 , . . . ,W

∗
m+1] (13)

Φ(t) = [x(t)T , S1(x(t))T , (S2(x(t))u1(t))T ,

. . . , (Sm+1(x(t))um(t))T ]T , (14)

are the system parameter vector and the regressor vector.
Since the ideal matrices W ∗1 , . . . ,W

∗
m+1 with appropriate

S1(x), . . . , Sm+1(x) exist such that (6) can approximate (1)
to any degree of accuracy on any compact set. As a result, we
can make the assumption that the approximation error δ(t) is

an exponential decay term, whose effect can be ignored. We
assume that δ(t) satisfies

|δ(t)| ≤ δ1(t)||Φ(t)||2 + δ2(t), (15)

where δ1(t) ∈ L∞ and δ2(t) ∈ L∞.

B. Nominal Control Design

To achieve the control objectives stated in the previous
section, we need to solve the optimization problem defined in
(3) – (4). With the assumption in the previous section that (6)
is a good approximation of (1), the optimization problem (3)
– (4) can be reformulated with the NN approximation model
as

min
u∗
j (t)∈[umin,umax]

J(t), j = 1, 2, . . . ,m (16)

J(t) = PTx(t+ 1), t = 1, 2, . . . , (17)

where x is the NN approximation of the original traffic delay
state xo. When the accurate approximation of the original
traffic network system is known, we can design the nominal
optimal controller by solving the optimization problem and
applying (6) – (17) to obtain

J(t) = PTx(t+ 1) = PTA∗x(t) + PTW ∗1 S1(x(t))

+ PTW ∗g Φg(x(t), u∗(t)). (18)

Because at each time step t the traffic delay term x(t) is
measurable, the above equation is linear with respect to the
nominal optimal controller u∗(t). This optimization problem
therefore becomes a linear programming problem, where u∗(t)
is selected to minimize J(t).

Optimal Control Design. To solve for the optimal control
signal u∗(t), by taking the derivative of the cost function with
respect to u∗(t), we have

∂J(t)

∂u∗(t)
=
∂PTW ∗g Φg(x(t), u∗(t))

∂u∗(t)

= [
∂PT (W ∗2 S2(x(t))u∗1(t))

∂u∗1(t)
, . . . ,

∂PT (W ∗m+1Sm+1(x(t))u∗m(t))

∂u∗m(t)
]

= d∗(t), (19)

with x(t) available at time step t and Sm+1(x(t)) as a constant
at each time step t. We then have

d∗(t) = [d∗1(t), d∗2(t) . . . , d∗m(t)]T ∈ Rm (20)

d∗j (t) =
∂PT (W ∗j+1Sj+1(x(t))u∗j (t))

∂u∗j (t)

= PW ∗j+1Sj+1(x(t)), j = 1, 2, . . . ,m. (21)

With x(t) known at time step t, d∗j (t) is a constant at every
time step, indicating that the control design for u∗(t) is a
linear programming problem. The control input for minimal
cost function J lies on the boundary of u∗(t) based on the



5sign of dj∗(t) at any time step t. As a result, we arrive at the 
following control design:

u∗j (t) =


umax, d∗j (t) < 0
0, d∗j (t) = 0
umin, d∗j (t) > 0,

(22)

where for d∗j (t) = 0, j = 1, . . . ,m, the solution for u∗j (t) is
trivial. Thus, we manually set u∗j (t) = 0 for this situation.

System Robustness. For the linear programming problem,
the solution for the control signal u∗(t) will always occur
on one of the boundaries. Because the traffic system operates
around z(t) and v(t) at time step t, to guarantee the system’s
robustness, the maximum increment for the control signal
u∗(t) should be relatively small (i.e., |u∗(t)| < ū, umax = ū,
umin = −ū, and ū < 0.1 is the maximum amount of
increment for u∗(t)). Moreover, the boundary condition for
vj(t) ∈ [vmin, vmax] should be satisfied at the same time,
with vmin = 0.2, vmax = 0.8 as the minimum and maximum
green cycle percentage selected to guarantee the shortest green
signal period on each direction. Therefore, the green signal
percentage vj(t), j = 1, . . . ,m can be determined based on
the following conditions:

vj(t) =

 vj(t− 1) + u∗
j (t) vj(t− 1) + u∗

j (t) ∈ [vmin, vmax]
vmin, vj(t− 1) + u∗

j (t) < vmin

vmax, vj(t− 1) + u∗
j (t) > vmax

(23)

Note that this nominal NN approximation of the original
traffic system may vary as the traffic operation condition
changes (e.g., traffic volume variation, vehicle speed varia-
tion). It is therefore difficult to know the nominal NN model
at all times, so in this paper we use a multiple-model NN
estimation scheme to estimate the original traffic network
system.

IV. MULTIPLE-MODEL NNS AND PARAMETERIZATION

Although ideal matrices W ∗1 , . . . ,W
∗
m+1 with appropriate

S1(x), . . . , Sm+1(x) exist such that (6) can accurately approx-
imate (1). In reality, the exact values of W ∗1 , . . . ,W

∗
m+1 are

unavailable, so we need to design an appropriate parameter
update law to estimate W ∗1 , . . . ,W

∗
m+1. Moreover, unlike

offline NN approximations in which we can test and compare
the approximation accuracy with different NN models, it is
difficult to find the ideal approximation model with only one
choice of NN structure in online approximations. Thus, in
this section, we propose use of multiple-model-based NNs to
approximate the traffic network system in (1).

A. Multiple-Model-Based NN Approximation

To accurately approximate (1) using NNs, we propose
use of N multiple NN structures. Using recurrent NNs, the
approximation models can be constructed as

x(i)(t+ 1) =A∗(i)x(i)(t) +W ∗(i)1S(i)1(x(i)(t))

+W ∗(i)gΦ(i)g(x(i)(t), u(i)(t)), (24)

where x(i)(t) ∈ R2m, u(i)(t) ∈ Rm are the system state
and control input, respectively; A∗(i) ∈ R

n×n are the system

matrix; i = 1, 2, . . . , N , represents the ith NN in the multiple-
model NN family; and W ∗(i)1, S(i)1, W ∗(i)g and Φ(i)g are the
parameterized NN components

W ∗(i)g =[W ∗(i)2,W
∗
(i)3, . . . ,W

∗
(i)m+1] (25)

Φ(i)g(t) =[S(i)2(x(i)(t))u(i)1(t), . . . ,

S(i)m+1(x(i)(t))u(i)m(t)]T , (26)

where W ∗(i)p ∈ Rn×l(i)p , p = 1, 2, . . . ,m + 1, l(i)p is
the number of layers for the pth NN, and S(i)p(x(t)) =
[Sp

1 , S
p
2 , . . . , S

p
l(i)p

] ∈ Rl(i)p are the basis functions. W(i)p

and S(i)p are the different NN structures used to approximate
the original traffic network system. With this multiple-model-
based online approximation design, it is more likely that we
can find an ideal NN structure to approximate a traffic network
system in (1).

It can be seen that the proposed multiple NN model in
equation (24) consists of a number of simple NN with each
being dependent on operating conditions. This would produce
a simplified whole model for the traffic system rather than
using a single NN which in general would be complicated in
structure with a large number of weights to be trained.

B. Parameterization of xo(t)

. With the multiple-model-based NN approximation, the
original traffic delay vector xo(t) is expressed as

xo(t) = x(i)(t) + δ(i)(t), (27)

where δ(i)(t) is the approximation error of the ith NN ap-
proximation. With (24) – (26), we can further parameterize
the system output xo(t) as follows:

xo(t) = θ∗(i)Φ(i)(t− 1) + δ(i)(t), (28)

where

θ∗(i) =[A∗(i),W
∗
(i)1,W

∗
(i)2, . . . ,W

∗
(i)m+1] (29)

Φ(i)(t) =[x(i)(t)
T , S(i)1(x(i)(t))

T , (S(i)2(x(i)(t))u(i)(t))
T ,

. . . , (S(i)m+1(x(i)(t))u(i)(t))
T ]T (30)

are the system parameter vectors and the regressor vectors,
respectively, i = 1, 2, . . . , N.

With the nominal multiple-model NN approximation de-
rived in this section, we can start the adaptive control design
to meet the objective (i.e., to reduce travel delays under the
unknown traffic network dynamics).

V. ADAPTIVE CONTROL DESIGN

In this section, the adaptive control scheme is designed for
the NN-approximation-based traffic network systems. First, the
design of adaptive control for a single NN-based traffic net-
work system approximation is presented. Next, the multiple-
model NN-based adaptive control design is presented.
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A. Single NN-Based Adaptive Control Design

Following the nominal control design structure, we first de-
sign the optimal controller based on the estimated parameters
of the unknown system, and then we derive the parameter
estimation law to guarantee the desired system performance.

Optimal Control Design. The NN approximation of the cost
function is defined in (16). Because the NN parameters are
unknown at time step t, assume that the system is observable,
we can only obtain the estimate of x(t+ 1) as x̂(t+ 1). The
estimate optimization problem is defined as

Ĵ(t) = PT x̂(t+ 1) (31)
uj(t) ∈ [umin, umax], j = 1, 2, . . . ,m, (32)

where Ĵ(t) is the estimate of the cost function J(t), t =
1, 2, . . . . In addition, we define

dj(t) = PWj+1(t)Sj+1(x̂(t)) (33)
Wg(t) = [W2(t),W3(t), . . . ,Wm+1(t)], (34)

where Wg(t) are the estimates of the nominal NN weight pa-
rameter W ∗g , j = 1, . . . ,m. Based on the certainty equivalence
principle of using parameter estimates, we propose the optimal
control design as

uj(t) =

 umax, dj(t) < 0
0, dj(t) = 0
umin, dj(t) > 0,

(35)

where Wj+1(t) are the estimates of the nominal NN weight
parameter W ∗j+1.

Parameter Estimation. To obtain the state estimation x̂(t),
we define the estimated model as

x̂(t+ 1) = θ(t)Φ(t), (36)

where θ(t) is the estimate of the system parameter θ∗. To
develop the adaptive update laws for θ(t), we introduce the
estimation error

ε(t) = θ(t− 1)Φ(t− 1)− xo(t). (37)

Based on a gradient algorithm, we choose the following
adaptive parameter update laws as

θ(t) = θ(t− 1)− ΓΦ(t− 1)ε(t)

m2(t)
+ f(t), (38)

with Γ = ΓT > 0 as a gain matrix, m(t) =√
1 + αΦT (t− 1)Φ(t− 1) with α > 0 being a design param-

eter, f(t) as a modification term for robustness with respect
to δ(t), and θ(0) = θ0 as the initial estimate of θ∗.

Parameter Projection. To guarantee robustness with respect
to δ(t), we choose a parameter projection design for f(t).
We assume the jth element of θ∗ ∈ Rn belongs to a known
interval θ∗j ∈ [θaj , θ

b
j ], j = 1, . . . , n, and choose the gain matrix

in (38) as

Γ = diag{γ1, . . . , γn}, γj ∈ (0, 2), j = 1, . . . , n. (39)

We then define the base adaptation vector as

g(t) = −Γε(t)Φ(t− 1)

m2(t)
. (40)

Denoting the jth component of θ(t), f(t), g(t) as
θj(t), fj(t), gj(t), respectively, we choose the initial parame-
ter estimate as θj(0) ∈ [θaj , θ

b
j ]. We set the projection function

components as

fj(t) =

 0 if θj(t− 1) + gj(t) ∈ [θaj , θ
b
j ],

θbj − θj(t− 1)− gj(t), if θj(t− 1) + gj(t) > θbj ,
θaj − θj(t− 1)− gj(t), if θj(t− 1) + gj(t) < θaj .

(41)
Then, with the above choice of f(t), the adaptive law (38) has
the desired properties:

Lemma 1: The adaptive parameter law (38) for the system
(1) ensures that θ(t) ∈ L∞, ε(t)

m(t) ∈ L
∞, and

t2∑
t=t1

ε2(t)

m2(t)
≤ a1 + b1

t2∑
t=t1

δ2(t)

m2(t)
(42)

for some constant a1 > 0, b1 > 0, and all t2 > t1 ≥ 0.

Proof: We define the positive definite function V (θ̃) =
θ̃T Γ−1θ̃. With adaptive law (38) and the estimation definition
(37) and (12), we have

ε(t) = θ̃(t− 1)Φ(t− 1)− δ(t), (43)

where θ̃(t) = θ(t) − θ∗ and calculate the increment of V (θ̃)
as

V (θ̃(t))− V (θ̃(t− 1))

=− (2− ΦT (t− 1)ΓΦ(t− 1)

m2(t)
)
ε2(t)

m2(t)
+ 2

ε(t)δ(t)

m2(t)

+2fT Γ−1(θ̃(t− 1)− Γε(t)Φ(t− 1)

m2(t)
+ f(t))− fT (t)Γ−1f(t).

(44)

From condition (15), we can see that the following condition
is satisfied for some constant c1 > 0 and c2 > 0.

|δ(t)|
m(t)

< c1 +
c2
m(t)

. (45)

With the parameter projection design of f(t) given in (41),
the following property holds

fj(t)(θj(t−1)−θ∗j +gj(t)+fj(t)) ≤ 0, j = 1, 2, . . . , n. (46)

Using the inequality below [40] and (44), (46)

− (2− ΦT (t− 1)ΓΦ(t− 1)

m2(t)
)
ε2(t)

m2(t)
+ 2

ε(t)δ(t)

m2(t)

≤ α1ε
2(t)

2m2(t)
− α1

2
(
|ε(t)|
m(t)

− 2|δ(t)|
α1m(t)

)2 +
2δ2(t)

α1m2(t)
, (47)

where α1 = 2 − λmax[Γ] > 0, with λmax[Γ] ∈ [0, 2] being
the maximum eigenvalue of Γ, we have

V (θ̃(t))− V (θ̃(t− 1))

≤ α1ε
2(t)

2m2(t)
− α1

2
(
|ε(t)|
m(t)

− 2|δ(t)|
α1m(t)

)2 +
2δ2(t)

α1m2(t)

− fT (t)Γ−1f(t). (48)

We then see (42) holds, and θ(t) ∈ L∞, ε(t)
m(t) ∈ L

∞. �

Remark 1: The above adaptive scheme can guarantee the
boundedness of the parameter estimation and estimation error.
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When modeling error δ(t) = 0, we have θ(t) ∈ L∞, ε(t)
m(t) ∈

L2 ∩ L∞, θ(t)− θ(t− 1) ∈ L2.

The parameter projection algorithm (41) not only guarantees
the desired robustness properties with respect to modeling
error but also ensures that the parameter estimation θ(t) stays
in the same intervals with their true values. This feature
can improve the control design performance and ensure the
stability of the traffic network system.

From (43), we can see that the performance of the designed
adaptive control scheme depends on the nominal approxima-
tion error δ(t) defined in (12) as does that of the nominal
control design (22) (which uses the nominal system parameter
θ∗ defined in (13)). The nominal approximation error δ(t)
depends on the choice of the NN approximator (6) and is
a fixed error signal with a fixed upper bound.

To reduce the effect of such an approximation error, in the
next subsection we propose a multiple-model-based adaptive
NN control scheme that employs a bank of approximators
and a bank of adaptive estimation schemes. A switching
mechanism is used to select the best approximator with the
minimal estimation error to match the approximator with the
smallest approximation error.

B. Multiple-Model NN-Based Adaptive Control Design

While using a single NN-based adaptive control design
given in the previous section can achieve the desired objective,
the performance can be further improved by using multiple-
model NN-based adaptive control design. Using multiple-
model NNs, we can select the NN that best represents the
current unknown system dynamic on line and achieve better
estimation results.

Bank of Control Designs. The multiple-model-based approx-
imation of the cost function (3) – (4) using NNs in (24) is
defined as

J(i)(t) = PTx(i)(t+ 1) (49)
u(i)j(t) ∈ [umin, umax], t = 1, 2, . . . , j = 1, 2, . . . ,m,

(50)

where J(i), x(i) are the ith NN approximation of the cost
function (3) – (4) and traffic delay vector xo, i = 1, 2, . . . , N .
The estimate of the above cost function is

Ĵ(i)(t) = PT x̂(i)(t+ 1) (51)
u(i)j(t) ∈ [umin, umax], t = 1, 2, . . . , j = 1, 2, . . . ,m,

(52)

where Ĵ(i), x̂(i) are the estimates of the ith NN approximation
to the cost function (51) – (52) and traffic delay vector x(i). We
define d(i)j(t) = PW(i)j+1(t)S(i)j+1(x̂(i)(t)), and based on
the derivation in Section V-A, we come up with the following
optimal control design:

u(i)j(t) =

 umax, d(i)j(t) < 0
0, d(i)j(t) = 0
umin, d(i)j(t) > 0,

(53)

where W(i)j+1(t) is the jth estimate of the nominal parameter
W ∗j+1.

Bank of Parameter Estimators. To obtain the state estimation
x̂(i)(t), we define the estimated model as

x̂(i)(t+ 1) = θ(i)(t)Φ(i)(t), (54)

where θ(i)(t) is the ith NN estimate of the system parameter
θ∗. To develop the adaptive update laws for θ(i)(t), we
introduce the estimation error

ε(i)(t) = θ(i)(t− 1)Φ(i)(t− 1)− xo(t). (55)

From (28), we have

ε(i) = θ̃(i)(t− 1)Φ(i)(t− 1)− δ(i)(t). (56)

Based on a gradient algorithm, we choose the adaptive param-
eter update laws for θ(i)(t) as

θ(i)(t) = θ(i)(t− 1)−
Γ(i)Φ(i)(t− 1)ε(i)(t)

m2(t)
+ f(i)(t), (57)

with Γ(i) = ΓT
(i) > 0 as a gain matrix,θ(i)(0) = θ(i)0,

m(t) =
√

1 + αΦT
(i)(t− 1)Φ(i)(t− 1) with α > 0 being

a design parameter, and θ(i)0 as the initial estimate of θ∗(i),
i = 1, 2, . . . , N .

Parameter Projection. To guarantee the robustness with
respect to δ(i)(t), which is the modeling error of the ith NN
estimate, we choose a parameter projection design for f(i)(t),
i = 1, 2, . . . , N . Assume that the jth element of θ∗(i) ∈ Rn

belongs to a known interval θ∗(i)j ∈ [θa(i)j , θ
b
(i)j ], j = 1, . . . , n,

and choose the gain matrix in (38)

Γ(i) = diag{γ(i)1, . . . , γ(i)n}, γ(i)j ∈ (0, 2), j = 1, . . . , n.
(58)

We then define the base adaptation vector as

g(i)(t) = −
Γ(i)ε(i)(t)Φ(i)(t− 1)

m2(t)
. (59)

Denoting the jth component of θ(i)(t), f(i)(t), g(i)(t) as
θ(i)j(t), f(i)j(t), g(i)j(t), we choose the initial parameter
estimate as θ(i)j(0) ∈ [θa(i)j , θ

b
(i)j ]. We set the projection

function components as

f(i)j(t) =



0 if θ(i)j(t− 1) + g(i)j(t)
∈ [θa(i)j , θ

b
(i)j ],

θb(i)j − θ(i)j(t− 1) if θ(i)j(t− 1) + g(i)j(t)

−g(i)j(t), > θb(i)j ,

θa(i)j − θ(i)j(t− 1) if θ(i)j(t− 1) + g(i)j(t)

−g(i)j(t), < θa(i)j .
(60)

Then, with the above choice of f(i)(t), using a derivation
similar to Lemma 1, the adaptive law (57) has the desired
properties:

Lemma 2: The adaptive parameter law (57) for system (1)
ensures that θ(i)(t) ∈ L∞, ε(i)(t)

m(t) ∈ L
∞ and

t2∑
t=t1

ε2(i)(t)

m2(t)
≤ a2 + b2

t2∑
t=t1

δ2(i)(t)

m2(t)
, i = 1, 2, . . . , N, (61)

for some constant a2 > 0, b2 > 0, and all t2 > t1 ≥ 0.



8 Control Switching Scheme. According to the above design, 
N adaptive controllers are obtained, and a control switching 
scheme is needed to choose the current controller. The switch-
ing scheme in this study is designed based on the estimation 
cost with different NN models. We define the estimation cost 
as

J(i)2(t) =
t∑

j=1

εT(i)(j)Qε(i)(j) (62)

for i = 1, 2, . . . , N , where Q = QT > 0 is the constant design
parameter matrix, which is chosen as the identity matrix in
our control design. Different choices of Q can be used to set
estimation priorities for each states. The control signal u(t) is
obtained by

u(t) = u(j)(t), j = arg min
j=1,2,...,N

J(j)2(t). (63)

To prevent arbitrarily fast switching, we introduce a nonzero
waiting time Tmin > 0 between two switches. This mechanism
guarantees the switching time between two switches is always
greater than Tmin.

The control switching algorithm (63) selects the adaptive
estimation scheme with the minimal J(i)2 corresponding to a
minimal estimation error ε(i)(t), which satisfies (61), to match
the best of the approximators in (28), with the minimal ap-
proximation error δ(i)(t). This explains the potential advantage
of the multiple-model-based adaptive NN control scheme over
its single-model counterpart developed in the last subsection.

Computation Complexity. Note that although the proposed
algorithm uses NNs, the computation time is relatively effi-
cient. For each time step, the time complexity is O(mnn),
with the modeling complexity mnn = M1 + · · · + MN , M1

being the number of total nodes in the ith candidate NN. Note
that with the NN models preselected, the time complexity
for each time step can be further reduced to O(1). The time
complexity is equivalent to performing one NN prediction. In
comparison, with dynamic programming approaches [41, 42],
the time complexity at each time step is O(n ∗ m), with n
being the historic time step needing to be calculated per time
step and m being the modeling complexity at each iteration.
Moreover, the conventional offline learning methods [43] have
a time complexity within the range (O(n2) ∼ O(n3)). As a
result, the proposed multiple-model NN-based control scheme
is computationally effective compared with other smart traffic
control approaches.

C. Summary

In this section, the adaptive control scheme is designed
for the NN-approximation-based traffic network systems. The
single NN-based adaptive control design is first derived. The
single NN-based adaptive control design algorithm is summa-
rized in Algorithm 1,
where Tend is the end of simulation time.

Then, to achieve a better control performance in the pres-
ence of an online-learning mechanism, a multiple-model NN-
based adaptive control with a control switching module is de-
signed. The multiple-model NN-based adaptive control design
algorithm is summarized in Algorithm 2.

Algorithm 1 Single NN-based adaptive control

1: initialization: θ(0) = θ0, u(0) = 0, x̂(0) = 0
2: for t = 0,1,2,...,Tend do
3: obtain state estimation from (36)
4: update parameter estimation using (37) – (41)
5: apply optimal control design (31) – (35) to traffic

system,
6: end for

Algorithm 2 Multiple-model NN-based adaptive control

1: initialization: θ(i)(0) = θ(i)0, u(i)(0) = 0, x̂(i)(0) = 0
2: for t = 0,1,2,...,Tend do
3: obtain state estimations of different NNs from (54)
4: update parameter estimation using (55) - (60)
5: calculate the bank of optimal control design using (51)

- (53)
6: use (62) and (63) to find the best controller
7: apply optimal control to original traffic system
8: end for

In summary, the proposed multiple-model NN-based control
scheme can well identify the unknown traffic network system
and reduce traffic delays.

VI. SIMULATION STUDY

In this section, a simulation study for the proposed multiple-
model NN-based optimal control is presented. First, the sim-
ulation system is introduced, and then the simulation results
are presented. Finally, further discussion is provided based on
the simulation results.

A. The Simulation System

In this section, the simulation system is introduced. In this
simulation study, we consider a simple, two-intersection traffic
system case. First, the traffic system model is introduced, and
then the NN models used to approximate the original traffic
system model are provided.

1) Traffic System Model: For this study, we consider a
two-intersection traffic system. The traffic system structure is
shown in Fig. 3. The roads in this traffic system are “Road
1”, “Road 2”, and “Road 12”, where ”Road 12” is considered
the main road, and ”Road 1” and ”Road 2” are side roads.
v1 = 30 mph, v2 = 30 mph, and v12 = 45 mph are the
vehicle speed limits on the roads. N1 and N2 are the two
intersections, u1 and u2 are the traffic control signals at the
intersections, and l12 is the distance between N1 and N2. We
assume vehicles randomly enter Road 1, Road 2, and Road
12 every second with the probability s1, s2, s12, respectively.
The traffic signal cycle length is chosen as Tcyc = 80s. Note
that for this traffic system, we assume that the average vehicle
speed and the traffic volume on the two directions of each
road are the same and that the turning signals are fixed in
each phase for simplicity. For this traffic system, we consider
three traffic flow scenarios for our simulation study:



9 Case 1: sparse traffic flow. The average traffic in flow 
on each road is s1 = 100 vehicles per hour, s2 = 180 
vehicles per hour, and s12 = 360 vehicles per hour.
Case 2: normal traffic flow. The average traffic in flow 
on each road is s1 = 180 vehicles per hour, s2 = 360 
vehicles per hour, and s12 = 540 vehicles per hour.
Case 3: dense traffic flow. The average traffic in flow 
on each road is s1 = 360 vehicles per hour, s2 = 540 
vehicles per hour, and s12 = 900 vehicles per hour.

Fig. 3: Two-intersection traffic system example.

2) NN Approximation Model: The NN models used to
approximate the above traffic system are shown below.

Nominal NN Approximation Model. The two-intersection
traffic system described above can be modeled as

xo(t+ 1) = ψ(xo(t)) + h(xo(t))u(t), (64)

where xo = [xoNS1, xoEW1, xoNS2, xoEW2]T ∈ R4 are the
traffic delays of both directions at each intersection, and
u = [u1, u2]T is the control signal, which is the green signal
period of the E–W direction. This original traffic system can
be approximated by a nominal single NN model in some traffic
conditions as

x(t+ 1) = A∗x(t) +W ∗1 S1(x(t)) +W ∗g Φg(x(t), u(t))
(65)

= θ∗Φ(t), (66)

where x is the approximation of xo, A∗, and W ∗1 , W ∗g are the
nominal system parameters, whose values are listed as follows:

θ∗ = [A∗,W ∗1 ,W
∗
2 ,W

∗
3 ] (67)

Φ(t) = [x(t)T , S1(x(t))T , (S2(x(t))u1(t))T ,

(S3(x(t))u2(t))T ]T , (68)

A∗ =


0.9884 −0.0467 0.0058 0.0017
−0.0071 0.9643 0.0104 −0.0017
−0.0044 −0.0341 1.0047 −0.0073
−0.0071 −0.02937 0.0122 1.0060

 ,
(69)

W ∗1 =


0.9286 0.5130 0.2319 0.3595
0.7592 0.4136 0.7967 0.5036
0.6176 0.4858 0.8501 0.2002
0.5503 0.2894 0.3402 0.9055

 , (70)

W ∗g = [W ∗2 ,W
∗
3 ] (71)

W ∗2 =


0.1949 0.3273 0.3026 0.0873
0.6075 0.2799 0.9113 0.5158
0.8831 0.3655 0.2541 0.9572
0.4195 0.7796 0.5760 0.1937

 , (72)

W ∗3 =


0.8512 0.8501 0.1778 0.6718
0.5600 0.0988 0.3279 0.4857
0.4690 0.7370 0.2108 0.4138
0.5000 0.1745 0.0159 0.3580

 . (73)

Note that A∗ and W ∗ matrices are determined based on the
simulation of a static traffic flow scenario, where we give an
initial estimate of the system parameters and use the online
learning scheme to find the value for this static traffic flow
scenario. These A* and W* are later served as the initial guess
for dynamic traffic system estimation and control.

Based on (14), we have Φg(t) =
[S2(x(t))u1(t), S3(x(t))u2(t)]T . S1(x(t)), where S2(x(t)),
S3(x(t)) are the activation functions, which have the
following structures:

sig(x) =
1

1 + e−x
+ 0.5 (74)

S1(x(t)) =


sig(xNS1)sig(xNS2)

sig(xEW1)
sig(xEW2)sig(xNS2)
sig(xEW1)sig(xEW2)

 , (75)

S2(x(t)) =


sig(xNS1)

sig(xNS1)sig(xEW1)
sig(xNS2)

sig(xEW2)sig(xNS2)

 , (76)

S3(x(t)) =


sig(xNS1)sig(xEW1)

sig(xEW1)
sig(xEW2)sig(xNS2)

sig(xEW2)

 . (77)

Remark 2: Note that this NN approximation system (65) is
only suitable for normal operating conditions of the benchmark
traffic system described in Section VI-A1, Case 1. Even the
best NN approximation may change over different operating
conditions for the benchmark traffic system. As a result,
to accurately capture the traffic system in Section VI-A1,
multiple NN estimation structures are used to identify the
dynamics of the benchmark system. The above nominal NN
system provides initial guesses for the online-learning NN
system parameters and NN structures. The online-learning and
control simulation study directly estimates and controls the
original traffic system in (64).

Single NN-Based Optimal Control Simulation. The single
NN estimate of the model (65) is given as

x̂(t+ 1) = A(t)x̂(t) +W1(t)S1(x̂(t)) +Wg(t)Φg(x̂(t), u(t))

= θ(t)Φ(t), (78)

where θ(t) is the estimate of the nominal parameter θ∗.

Multiple-Model NN-Based Optimal Control Simulation.
The multiple-model NN estimate of the model (65) is

x̂(i)(t+ 1) = A(i)(t)x̂(i)(t) +W(i)1(t)S(i)1(x̂(i)(t))

+W(i)g(t)Φ(i)g(x̂(i)(t), u(i)(t)) (79)
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= θ(i)(t)Φ(t),

where θ(i)(t) is the ith NN estimate of the nominal parameter
θ∗, and the initial parameter estimation θ(i)(0) is chosen
to be close to the nominal parameter θ(i)(0) = 0.8θ∗ for
i = 1, . . . , N . We set N = 3, and the activation functions
S(i)1(x(t)), S(i)2(x(t)), and S(i)3(x(t)) are chosen as follows:

sig(x) =
1

1 + e−x
+ 0.5 (80)

S(1)1(x(t)) =


sig(xNS1)sig(xNS2)

sig(xEW1)
sig(xEW2)sig(xNS2)
sig(xEW1)sig(xEW2)

 , (81)

S(1)2(x(t)) =


sig(xNS1)

sig(xNS1)sig(xEW1)
sig(xNS2)

sig(xEW2)sig(xNS2)

 , (82)

S(1)3(x(t)) =


sig(xNS1)sig(xEW1)

sig(xEW1)
sig(xEW2)sig(xNS2)

sig(xEW2)

 , (83)

S(2)1(x(t)) =


sig(xNS1)
sig(xEW1)
sig(xNS2)
sig(xEW2)

 , (84)

S(2)2(x(t)) =


sig(xNS1)
sig(xEW1)
sig(xNS2)
sig(xEW2)

 , (85)

S(2)3(x(t)) =


sig(xNS1)
sig(xEW1)
sig(xNS2)
sig(xEW2)

 (86)

S(3)1(x(t)) =


sig(xNS1)sig(xNS2)
sig(xEW1)sig(xEW2)
sig(xNS1)sig(xNS2)
sig(xNS2)sig(xEW2)

 , (87)

S(3)2(x(t)) =


sig(xEW1)sig(xEW2)
sig(xNS1)sig(xNS2)
sig(xNS2)sig(xEW2)
sig(xNS1)sig(xEW2)

 , (88)

S(3)3(x(t)) =


sig(xNS1)sig(xNS2)
sig(xNS1)sig(xNS2)
sig(xEW1)sig(xNS2)
sig(xNS1)sig(xEW2)

 , (89)

where the first NN estimate, denoted as NN(1), shares the
same NN structure as the nominal NN structure, which is also
used in single NN simulation in Section VI-A2. NN(2) and
NN(3) use different activation functions that formulate differ-
ent neuron connections and build up new NN structures. These
multiple models are selected with different NN structures,
which are tested to have better performance under different
traffic conditions. Moreover, switching between different mod-
els will affect the dynamic parameter estimation performance
(e.g., convergence speed, overshoot). With the multiple-model

design, the best estimation model is chosen based on the
current traffic condition and the estimation performance.

B. Simulation Results

In this section, the simulation results are presented. First,
the traffic delay optimization results are shown, and the
traffic delay comparison between conventional traffic control
algorithms is listed. The estimation results are then presented.

1) Optimal Control Result: To test the optimal control
result, we compare our control algorithm with conventional
traffic signal control schemes, including pre-timed control
and actuated control. We choose the weight vector P =
[s1, s12, s2, s12]T , which is determined based on the traffic
flow on each road. The cycle length for pre-timed signal
control is 80s. The minimum green signal length for actuated
control is 20s. The testing scenario is shown in the bottom
graph in Fig. 4, where we assume the traffic flow is initially
normal flow (case 2) but increases to busy flow (case 3) after
100 signal cycles, and finally decrease to sparse flow (case 1)
after 200 signal cycles. Fig. 4’s top graph shows the average
traffic delay using different traffic signal control methods. It
indicates that with single NN control and multiple NN control,
the traffic delay is relatively less compared to conventional
control methods. Moreover, with the use of multiple NNs, the
control scheme can quickly adapt to changing traffic scenarios,
whereas single NN control will not perform as well under
heavy traffic conditions. This result shows the effectiveness of
the proposed adaptive control scheme and further reveals the
advantage of the multiple NN design structure. We then run
this test case for 20 runs to reduce the effect of random traffic
flow and collect the average traffic delay data. Table I shows
the average traffic delay using different methods. From these
data we can see that by using our optimal control method,
the average traffic delay is significantly reduced under all the
initial green-time options. Compared with a single NN-based
optimal control scheme, the scheme with multiple NNs results
in a better reduction on average traffic delay.

TABLE I: Travel delays with different initial green times and
control methods

Control Method Avg. Veh. Delay (s) Std. Dev.

Pre-timed control (init. green 24s) 25.23 11.12
Pre-timed control (init. green 40s) 16.44 5.23
Pre-timed control (init. green 56s) 19.87 5.48
Actuated control 17.58 4.62
Multiple NN control 9.85 1.72
Single NN control 14.35 7.56

2) Estimation Result: We test the state estimation of the
proposed schemes, in which we choose the initial estimate
θ(0) and θ(i)(0), i = 1, 2, 3 are 0.8θ∗. Fig. 5 shows the
estimation error of the average traffic delay increment, and
the bottom figure shows the switching signal for the multiple
NN design. Fig. 6 shows the designed control signal NN
control and multiple NN control. Table II shows the maximum
absolute error and the standard error comparison of using
single NN and multiple NN estimations. Based on the results
above, we can see that multiple NNs generally give a better
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Fig. 4: Optimization results with multiple NNs.

estimation of the original traffic system, especially in changing
traffic flow scenarios. As we can see at around 200 steps,
where the traffic flow is changing from case 3 to case 1, the
estimation using the single NN has some large errors. The
proposed multiple NN control can give a better estimation of
the unknown and changing dynamics and lead to better control
performance.
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Fig. 5: State estimation error for xo.

3) Discussion: From this simulation study, the effectiveness
of the proposed adaptive online-learning-based optimal control
design is verified. Based on the estimation results for the
system state xo, we can see that with both single NN and
multiple NN models, a good estimation result can be obtained.
However, with the multiple NN models estimation results
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TABLE II: Estimation error comparison

State Estimation Single NN (s) Multiple NNs (s)
Max Err. Std. Err. Max Err. Std. Err.

xoNS1 29.51 5.90 20.16 5.58
xoEW1 20.39 5.90 18.15 2.77
xoNS2 91.39 9.16 19.89 5.42
xoEW2 48.79 9.74 38.67 6.97

shown in Fig. 5, an accurate estimation of the original traffic
model with smaller estimation error and a greater ability to
adapt to traffic flow model changes can be achieved. For the
optimization results shown in Fig. 4, we can see that with
the proposed optimal control scheme, the average traffic delay
is significantly reduced compared with pre-timed or actuated
signal control. The proposed algorithm is, therefore, suitable
for all traffic flow scenarios and is capable of adapting to traffic
flow variations.

Comparison Between Single NN and Multiple NNs. Based
on the simulation studies, the proposed multiple NN design
can achieve better estimation performance and better optimal
control performance than can the single NN design. The ad-
vantage of using multiple NNs is that multiple NNs have more
candidate NN selections and evaluate and switch between them
during the real-time learning and control process, whereas the
single NN will have only one candidate NN model. Unlike
offline learning schemes in which the estimation performance
of different models is judged before system operation, online
learning will require all the decisions to be made along with
system operation. For this purpose, during system operation,
the system dynamic may change, and the preselected NN for
a single NN may not be the best estimation of the current
system operating condition. Multiple NNs, on the other hand,
will provide more candidate estimations and serve as a model
evaluation process in the online-learning process.

While the stability and the effectiveness of the control are
guaranteed with the design, for best control performance, the
number and structure of the NNs in multiple-model NN design
are selected based on our experiment experience. This process



12 is similar to the model selection process for offline 
learning (NN-based control). However, for the design of a 
multiple-model adaptive controller of the multiple models, 
each model is chosen to correspond to a system operation 
that may lead to an essentially different dynamic function 
described by a unique NN with a determined structure and a 
set of unknown parameters. Thus, a multiple-model-based 
adaptive control design has expanded capacities in dealing 
with the structural and parametric uncertainties of traffic 
system dynamics.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, a traffic signal control scheme was designed 
with the use of an adaptive online-learning scheme using 
multiple-model NNs. First, NN-based traffic system modeling 
was presented for both single NN and multiple NNs. Then, 
the adaptive optimal control scheme was designed with an 
online-learning scheme used to identify the traffic system 
model. Finally, a simulation study was presented to show the 
effectiveness of the proposed scheme. Based on the simulation 
results, we can conclude that the proposed multiple-model-
NN-based online estimation scheme can well identify the 
original traffic system. Moreover, the optimal control scheme 
designed based on the estimated traffic model can achieve 
improved traffic-delay minimization compared to pre-timed 
traffic signal control. The control design proposed in the 
paper is, therefore, suitable for network traffic signal control. 
For simulation simplicity and clarity, we conducted the two-
intersection simulation study. In future work, we can move the 
simulation study to larger traffic networks. Another potential 
future work related to this paper is to test this algorithm in 
a real-world traffic network. In this case, more traffic phases 
such as left and right turn at the concerned intersections need 
to be considered in traffic modeling. The proposed scheme 
is capable of handling such tests with proper NN structures 
selected.
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