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Abstract

Sensing the local charge and strain environments surrounding Nitrogen-Vacancy centers in
diamond

by

Thomas A. Mittiga

Doctor of Philosophy in Physics

University of California, Berkeley

Assistant Professor Norman Yao, Chair

Nitrogen-Vacancy (NV) centers in diamond have been established as exceptionally versatile
probes for quantum technologies from sensing to simulation. Owing to the versatility of
diamond fabrication, NVs can be integrated into probes with nanoscale resolution and superb
sensitivity. However, because the diamond is host to many other types of defects, the
local environment of the NV is unique for each NV, which poses challenges for any devices
instrumenting NVs. This thesis contributes to the future of NV technologies along two
essential directions. First, we work towards a more complete understanding of the local
charge and strain environments of the NV. In addition to permitting the calibration of
these effects for NV probes, we suggest potential uses for the local charges and strain that
had previously been considered hindrances. Second, we develop new technologies for NV
sensing and simulation. Our work integrating NVs into diamond anvil cells opens the door
to detecting high pressure phenomena using the NVs as all-in-one sensors. Finally, our study
of the coherence regimes of the local defect environment of the NV is a step towards versatile
quantum simulation in dimensions lower than three.



i

To my family
and future Yao lab students



ii

Contents

Contents ii

List of Figures v

List of Tables vii

1 Introduction to NV Sensing and Simulation 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Local Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Sensing and Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.3 Organization of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 NV Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.1 Diamond Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.2 Generating NVs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.3 Physical Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.4 NV Charge States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.5 Electronic Structure and Levels . . . . . . . . . . . . . . . . . . . . . 6
1.2.6 Phonon Sidebands . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.7 Polarization/Read-Out Models . . . . . . . . . . . . . . . . . . . . . 9

1.3 Representation Theoretic Derivation of NV Properties . . . . . . . . . . . . . 11
1.3.1 Intuitive Representation Theory for NVs . . . . . . . . . . . . . . . . 12
1.3.2 Derivation of Energy Levels and Ground State . . . . . . . . . . . . . 15
1.3.3 Derivation of Ground State Spin Hamiltonian and Zero-Field Splitting 19
1.3.4 Perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.4 NV Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.4.1 Some Microscopy Methods . . . . . . . . . . . . . . . . . . . . . . . . 23
1.4.2 Single vs Ensemble NVs . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.4.3 Typical Experimental Apparatus . . . . . . . . . . . . . . . . . . . . 25
1.4.4 A Quick Word on Immersion Oil . . . . . . . . . . . . . . . . . . . . 28

1.5 Qubit Probe Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.5.1 General Measurement Notes . . . . . . . . . . . . . . . . . . . . . . . 29
1.5.2 Continuous and Pulsed ODMR . . . . . . . . . . . . . . . . . . . . . 32



iii

1.5.3 Spectroscopy with ODMR . . . . . . . . . . . . . . . . . . . . . . . . 34
1.5.4 T1 Depolarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
1.5.5 Rabi Oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
1.5.6 Lifetime Limits to Measurements: Dephasing T ˚2 and Decoherence T2 37
1.5.7 How All Coherence Decay Interference Measurements Work . . . . . 40
1.5.8 Ramsey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
1.5.9 Spin Echo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
1.5.10 DEER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
1.5.11 CPMG and XY8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
1.5.12 Correlation Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . 50
1.5.13 Other Dynamical Decoupling Sequences . . . . . . . . . . . . . . . . 53

2 Imaging the Local Charge Environment 57
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.2 Magnetic spectra of NV ensembles . . . . . . . . . . . . . . . . . . . . . . . 59
2.3 Microscopic charge model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.4 Nanoscale imaging of a single charge . . . . . . . . . . . . . . . . . . . . . . 63
2.5 Apparatus and Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.5.1 Sample details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.5.2 Experimental apparatus . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.5.3 Isolating single NVs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.6 Charge model and ensemble spectrum: details . . . . . . . . . . . . . . . . . 66
2.6.1 Electric field distribution . . . . . . . . . . . . . . . . . . . . . . . . . 66
2.6.2 Magnetic field distribution . . . . . . . . . . . . . . . . . . . . . . . . 67
2.6.3 Fitting procedure and error estimation . . . . . . . . . . . . . . . . . 68

2.7 Charge localization using single NVs: details . . . . . . . . . . . . . . . . . . 71
2.7.1 Derivation of the Imbalance . . . . . . . . . . . . . . . . . . . . . . . 71
2.7.2 Microwave Angle Projection . . . . . . . . . . . . . . . . . . . . . . . 73
2.7.3 Experimental Hindrances to Localization . . . . . . . . . . . . . . . . 74
2.7.4 Single Charge Localization . . . . . . . . . . . . . . . . . . . . . . . . 75

2.8 Summary and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3 NVs Under Pressure 79
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.2 Experimental Apparatus Particulars . . . . . . . . . . . . . . . . . . . . . . . 80

3.2.1 Diamond Anvil Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.2.2 Cryostat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.2.3 Noise Spectroscopy Humidity Control . . . . . . . . . . . . . . . . . . 83

3.3 Stress Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.3.1 Stress and Strain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.3.2 Stress Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.3.3 Stress Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85



iv

3.3.4 Extracting splitting and shifting information . . . . . . . . . . . . . . 86
3.3.5 Effect of local charge environment . . . . . . . . . . . . . . . . . . . . 87

3.4 Magnetometry in a DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.4.1 Magnetic Imaging at Room Temperature . . . . . . . . . . . . . . . . 89
3.4.2 In Situ Magnetometry at Extreme Temperature and Pressure . . . . 95

3.5 Noise Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
3.5.1 Specifics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.6 Conclusions and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4 Quasi-2D Defect Dynamics 105
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.2 Experimental Apparatus and Sample . . . . . . . . . . . . . . . . . . . . . . 106

4.2.1 Microwave Pulse Error in Striplines . . . . . . . . . . . . . . . . . . . 106
4.2.2 Quasi-2D Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.2.3 3D Delta-Doped Sample . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.3 Proposals: Dimensionality via Density Scaling and Magnetic Tomography . . 110
4.3.1 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.3.2 Proposed Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.4 Coherence Decay Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.4.1 General Form of Coherence Decay for Ising Qubit-Bath Interactions . 118
4.4.2 Interaction Crossovers . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.5 Conclusion and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5 A Trial in TMDS 125
5.1 Introduction to TMDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.1.1 Van der Waals Glue . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.1.2 Resident Electron Spin Polarization . . . . . . . . . . . . . . . . . . . 128

5.2 Proposed Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.2.1 Absolute Spin Density . . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.2.2 FRET for TMD Transition Dipole Moment . . . . . . . . . . . . . . . 132

5.3 Experimental Efforts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.3.1 Experimental Apparatus . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.3.2 Shallow NV Depth Calibration . . . . . . . . . . . . . . . . . . . . . 134
5.3.3 Burning TMDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.4 Conclusions and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

Bibliography 139

A Bloch Sphere 152



v

List of Figures

1.1 NV and P1 Molecular Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 C3v Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 NV Spin Energy Level Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Phonon Sideband and Absorption/Emission Spectra . . . . . . . . . . . . . . . . 8
1.5 NV Polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.6 NV Electronic Energy Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.7 Symmetry Conserving and Breaking . . . . . . . . . . . . . . . . . . . . . . . . 21
1.8 Confocal Microscope Scan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.9 Generic Experimental Apparatus . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.10 MW Circuit Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.11 Stripline Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.12 Generic Pulse Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.13 Differential Measurement Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.14 ODMR Pulse Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.15 ODMR Resolution Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
1.16 ODMR Spectrum Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
1.17 T1 Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
1.18 Rabi Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
1.19 Dephasing and Decoherence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
1.20 Gyroscopic Precession . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
1.21 Ramsey Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
1.22 Spin Echo Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
1.23 DEER Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
1.24 CPMG and XY8 Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
1.25 Correlation Spectroscopy Sequence . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.1 Charged Ensemble ODMR Spectrum and Charge Localization . . . . . . . . . . 58
2.2 2 Density Regimes of Charged Spectra . . . . . . . . . . . . . . . . . . . . . . . 59
2.3 Strain vs. Electric field Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.4 Dark-State Tomography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.5 g2 Measurement of Charged NV . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.6 Distribution of TRansverse Electric Field . . . . . . . . . . . . . . . . . . . . . . 67
2.7 Error of Ensemble Charged Fitting: Treated Samples . . . . . . . . . . . . . . . 69



vi

2.8 Error of Ensemble Charged Fitting: Untreated Samples . . . . . . . . . . . . . . 70
2.9 Microwave Polarization Rotation Coordinate Frames . . . . . . . . . . . . . . . 74
2.10 Isolating Effect of 13C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
2.11 6-Point Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
2.12 NV2 Imbalance Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.1 Diamond Anvil Cell Sample Chamber; In Situ Sensitivity . . . . . . . . . . . . . 81
3.2 Diamond Anvil Cell; Microwave Delivery . . . . . . . . . . . . . . . . . . . . . . 82
3.3 Stress Map in Diamond Anvil Cell . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.4 Interplay between stress and random electric fields . . . . . . . . . . . . . . . . 88
3.5 Iron Dipole Tranistion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.6 Stress Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.7 Iron Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.8 Iron Dipole: Map of Splittings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.9 Gd P-T Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
3.10 Gd Paths Through P-T Space: hcp Pm Ø hcp FM . . . . . . . . . . . . . . . . 98
3.11 Gd Paths Through P-T Space: dhcp PM . . . . . . . . . . . . . . . . . . . . . . 100
3.12 Gd Path Through P-T Space: AFM . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.1 MW Pulse Imperfections on Oscilloscope . . . . . . . . . . . . . . . . . . . . . . 107
4.2 MW Pulse Resonant Reflections . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.3 Delta-Doped Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.4 The 5 P1 Resonances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.5 Interaction Dependence on Magnetic Field Rotation . . . . . . . . . . . . . . . . 112
4.6 2D Verification Proposal Results . . . . . . . . . . . . . . . . . . . . . . . . . . 113
4.7 Hyperfine Beating with Large Transverse Field . . . . . . . . . . . . . . . . . . . 114
4.8 Numerical Results: DEER T2 vs θB for Variable Thickness . . . . . . . . . . . . 116
4.9 T2 vs P1 Density Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.10 Crossovers in 2D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
4.11 Crossovers in 3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
4.12 TXY 8

2 vs τp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.1 TMD Lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.2 TMD Energy Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.3 TMD Polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.4 Field from Resident Electron Disk . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.5 TMD Spins per micron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
5.6 NV Depth Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
5.7 TMD Saturation Curves and Photobleaching . . . . . . . . . . . . . . . . . . . . 136

A.1 Bloch Sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152



vii

List of Tables

1.1 Matrix elements of the C3v group operators for each irreducible representation.
The operators are P1 for identity, PC3 for rotation by 2π{3, PC13 for rotation by
´2π{3, Pσ1,2,3

v
for reflection through the plane formed by the z-axis and either the

first, second, or third carbon. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2 Direct Product Table. The product between elements of two representations

produces a new vector or linear combination of vectors belonging to the repre-
sentations listed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3 Summary of spectroscopic measurement protocols for NV resonances . . . . . . 54
1.4 Summary of spectroscopic measurement protocols using NVs . . . . . . . . . . . 55
1.5 Summary of spectroscopic measurement protocols on Non-NV targets . . . . . . 56

2.1 Charged Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.2 Charged Samples Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.1 All Gd Paths Through P-T Space . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.1 General Phase of Ramsey, Spin Echo, and XY8 for Gaussian Autocorrelator . . 119
4.2 Stretched Exponents of Ramsey, Spin Echo, and XY8 for Gaussian Autocorrelator121



viii

Acknowledgments

I sincerely hope that I am the worst student to graduate under the tutelage of Prof. Nor-
man Yao. From the start of my PhD., I knew I did not want to continue with research
afterwards. This knowledge left me dejected and, coupled to an unhealthy relationship to
failure, eventually blossomed into a crippling physics anxiety. Norm guided me through my
worst years with the right blend of inspiration, perspiration, and compassion. It is hard to
imagine another advisor who would not only provide private “grill sessions,” but approach
them with extreme patience and honesty as I floundered at the whiteboard for hours. He was
stern when he needed to be, yet always friendly and approachable. He supported me when I
felt I did not deserve it. He raised me to a scientific standard I did not know I could achieve.
There is too much I could say and too much I cannot express. The first acknowledgement
must be to you. Thank you, Norm.

My undergraduate career would not have propelled me into a PhD. without the help of
some key people. My friends Kevin Sackel, Joe Wysk, and Will London taught me much.
Kevin showed me how to accelerate my education, Will was the paragon of a physics student
(and a solid commiseration buddy throughout graduate school), and Joe provided much
appreciated moral support. Prof. Harold Metcalf’s infectious awe encouraged me to ask if I
could research with him. His lab storerooms were the fertile playground in which I learned
basically all the optics skills I used and taught throughout my PhD. Building a lab from
scratch with Prof. Eden Figueroa is what made me worthy of a school like Berkeley. I am
forever grateful to have worked one-on-one with him.

My first year and a half at Berkeley was spent with Prof. Dan Stamper-Kurn’s lab. His
ultracold research got me excited for ambitious projects, and his AMO class was the first
class I enjoyed at Berkeley. Most importantly, his students were a welcoming crew that
oriented me for the long haul ahead. Thanks especially go to Fang Fang, Justin Gerber,
Emma Deist, Zephy Leung, Ryan Olf, Claire Thomas, Sydney Schreppler, and Ed Marti.

When I joined Norm’s lab, we had only an optical table and a dream. Fortunately, Norm
also had many friends who helped us immensely right from the start and provided wisdom
throughout our experiments. For initial diamond sample fabrication: Birgit Haussmann
and Kristiaan DeGreve; for the experimental apparatus and measurement protocols: Joon-
hee Choi, Soonwon Choi, Hengyun Zhou, and Elana Urbach; for help with TMD samples:
Chenhai Jin, Jonghwan Kim, and Prof. Feng Wang.

Once the Yao lab was up and running, it burgeoned into a group of friends and colleagues
who provided countless physics lessons and endless camaraderie. While I was studying for
the qualification exams, I met one-on-one with almost every student in the lab to practice
answering questions and toughen me up. Outside of the lab, I enjoyed grabbing dinner,
playing games, watching movies, wrestling, enjoying concerts, dancing, or shooting hoops
with everyone. Among the theorists, I could always find someone to pester with questions
or run through ideas. Innumerable thanks to Francisco Machado, Bingtian Ye, Rahul Sahay,
Bryce Kobrin, Thomas Schuster, Greg Meyer, Best Akkaravarawong, Chris Olund, Jack
Kemp, Max Block, and (in a new context) Soonwon Choi. Among the experimentalists, I



ix

could always find helping hands and sounding boards. Special thanks to Chong Zu, Satcher
Hsieh, Prabudhya Bhattacharyya, Emily Davis, Jordan Hines, and Tim Höhn. I would be
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Chapter 1

Introduction to NV Sensing and
Simulation

1.1 Motivation

The Platonic form of a diamond is a perfect lattice of identical carbon-12 atoms stretching
from one facet of the diamond to the other. A jeweler—indubitably, most of the world—
would lament replacing any one of the atoms in that pristine gem with anything else. In the
minority as usual are the scientists, who tirelessly struggle against nature to achieve their
own notions of perfection. Indeed, the Platonic—and mathematical—form of the Nitrogen-
Vacancy (NV) center (Fig. 1.1a) is a single nitrogen atom adjacent to a single vacant
lattice site in an otherwise perfect diamond. No such specimen of the NV exists–it is always
surrounded by other imperfections that can change the properties of both the NV and the
diamond. As testament to the fanatical obsession with which resilient and relentless scientists
seek truth, despite lacking such a perfect specimen, The NV’s intrinsic properties have been
extensively examined regardless, the NV’s popularity has exploded, and focus has shifted
instead towards employing the NV in quantum tools: sensors, computers, and simulators.

One could argue that the NV’s popularity for quantum technology applications stems
from the ease with which one can build an apparatus to manipulate and read its spin state.
At room-temperature, the NV can be initialized repeatedly and reliably into the same spin
state within „ 1µs using green light. The coherence of that state lasts for „10-100 µs on
average, which is exceptionally long compared to the „ 10 ns duration required to perform an
operation upon it; the NV can be programmed with thousands of commands each millisecond
in principle, though rarely does a protocol require more than ten or a hundred. When
desired, the interactions with other NVs or defects in the diamond can be enhanced with
proper quantum programming or simply by increasing the density of defects. Because it is
hard and inert, a diamond containing NVs can easily be moved around and even swallowed
[89], allowing an experiment to reuse NVs that have ideal properties. The diamond can be
fabricated for seamless integration into practical devices [83]. Finally, since the technology
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of lasers, microwaves, and diamond fabrication is so mature, the instruments involved in
using NV spins are relatively cheap, permitting scalable technologies [83, 92, 132, 89, 154,
109, 91, 122, 42, 39, 58] and fundamental physics research [157, 15, 64].

1.1.1 Local Environments

The emphasis on myriad implementations is the correct path forward for science and tech-
nology related to the NV. This thesis contributes to the effort in two essential manners:
the calibration and understanding of signals intrinsic to NV systems and the creation of
new NV-based tools, both of which rely on the study of the surroundings within tens of
nanometers of the NV—its “local environment.”

The NV’s spin is sensitive to a wide range of external signals: from magnetic and electric
fields to pressure, temperature and rotation [108, 100, 155, 2, 45, 37, 36, 35, 93, 6]. This
sensitivity is both a boon and a burden. Whereas all atoms of the same species are identical,
each diamond is not; the crystallographic defects, atomic impurities, and surface chemistry
are unique to each diamond. For each new instrumentation, the NV experiences a new
local environment of surrounding charges, magnets, crystal strain, and temperature, all of
which alter its sensitive properties. Therefore, to use an NV in any application properly,
the influence of the local environment must be first calibrated so as not to conflate it with
the desired signal to be measured. This calibration could come in the form of detecting how
nearby charges and crystallographic strain influence the NV before the it is used to probe
another signal (Chapter 2, Chapter 3), or by verifying the geometry of the local environment
(Chapter 4, Chapter 5).

Calibrating the NV also entails understanding the physics of the local environment, which
contributes to the pursuit of answers to outstanding questions about the NV. For example,
this thesis’ work on the local charge environment of the NV (Chapter 2) provides some clues
into the source of the NV’s additional charge (Section 1.2.4). Understanding this source is
crucial to the future of creating NV probes. In addition, the techniques developed to study
the local charge environment are also applicable to studies of charges on the surface of the
diamond that are believed to cause spectral diffusion in NV close to the surface.

The new tools this thesis develops depend on the study of the local environment as well.
In creating an NV-based probe that can withstand high pressures, we found that the local
stress the NVs experience could potentially reflect the stress experienced by a sample of
interest nearby. By fully exploring the local stress environment, the work paved the way to
sensing high-pressure phase transitions in exotic materials [136]. Furthermore, the study of
local charge as a hindrance to be calibrated away suggests a path towards building nanoscale
electric field sensors that can handle a range of extreme environments [16]. The smaller and
more robust the sensor, the more versatile the application.

1.1.2 Sensing and Simulation

Simulation is an extension of sensing.
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The NV probes in this thesis are used either as quantum sensors or in quantum simula-
tions. In both scenarios, we consider an NV surrounded by an environment that perturbs it.
The environment could comprise a single charge, a ‘bath’ of spins, or a field induced globally
upon the diamond by a sample, to name a few examples.

As quantum sensors, NVs reflect changes in their environments as alterations in their
magnetic resonance spectra (see 1.5.2 and 1.5.3). As long as the probe’s interaction with the
environment can be written as a term in the Hamiltonian, this spectroscopy method can be
used to calculate information about the source of the environmental changes. These sources
could be, for example, the dynamics of electric and magnetic impurities in the diamond, or
an exotic sample placed on the diamond’s surface which creates a field that the NVs detect.

For use as a sensor, the NV’s local environment is often a hindrance to be calibrated, if
possible. With enough thought however, otherwise troublesome local spin baths can instead
become the expansive playground for quantum simulations and the exploration of exotic
phases of matter. As the essential component to quantum simulations, the NV probes its
local environment of interacting defects. For our experiments, the NV serves as the probe
and a surrounding ensemble bath of strongly-interacting spins perform the simulation. Other
experiments instead create a dense ensemble of strongly interacting NVs to both simulate and
probe itself [26]. Notably, whether it is the experimentally-designated probe or a designated
bath spin, each spin in the system is constantly probing its local environment.

While spectroscopy is generally utilized as a sensing technique, its core notion of isolating
individual frequency components is essential to the study of simulations. The quantum
simulations in this thesis employ “dynamical decoupling” sequences that selectively filter
certain noises in the environment (frequency and/or source) to isolate other noises, which is
in essence spectroscopy. The key difference is that the purpose is to isolate the particular
aspects of the dynamics being simulated when applying such spectroscopy in simulations,
rather than to extract information about a source as occurs in sensing.

1.1.3 Organization of this Thesis

This thesis studies local environments as both burdens and boons. First, the theoretical
and experimental considerations of the NV are introduced in detail for the remainder of this
chapter. It is intended to serve as a manual for advanced undergraduate or early graduate
students starting research. There are many concepts and facts that I felt I learned too slowly
or too late in part because they were not in a single location, so I wanted anyone working
with NVs to have as much essential information as possible in one place. To that end, I
have added in all of the intuition I could think of that made concepts click in my own head,
which is missing from the extreme majority of textbooks and papers I have read. I tried to
present them in a order such that each concept builds off of the previous ones, so no prior
knowledge is necessary if they are read in order.

The remaining chapters review experiments on the discovery of a previously overlooked
local charge environment (Chapter 2); the integration of NVs into a hybrid high-pressure
sensor, including the calibration and utility of the local stress tensor (Chapter 3); the use
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of the NV’s local spin bath as a quantum simulator in low dimensions (Chapter 4); and the
study of exotic Transition Metal Dichalcogenides (TMDs) by placing them within the local
environment of NVs (Chapter 5).

1.2 NV Basics

1.2.1 Diamond Types

Before discussing the NV or any other specific defects in the diamond, we must start with
the scientific classification of diamonds by their levels of impurity. There are four main
types of diamond: Ia, Ib, IIa, and IIb. For both Type I diamonds, nitrogen is the main
impurity. For Type Ia, nitrogen is at levels ¿500 parts per million (ppm). At these levels,
the nitrogen are most likely to be clustered into pairs or larger even-numbered groupings. If
the the nitrogen groups are predominantly pairs, which does not affect the diamond color,
the diamond is categorized as the subtype IaA, and if the nitrogen groups are predominantly
large even-numbered groupings, which adds yellow to the color, the diamond is subtyped
as IaB. Around 95% of natural diamonds are type Ia. For Type Ib diamonds, the nitrogen
content is in the range 1-500 ppm, which is unlikely to produce nitrogen pairs. Most diamonds
fabricated by high-pressure high-temperature (HPHT) techniques are type Ib. For both Type
II diamonds, the nitrogen content is below 1 ppm. Type IIa is the most pure. Artificial Type
IIa are most often produced by chemical vapor deposition (CVD) techniques and come in
two subgrades: optical and electronic grades. Both grades have nitrogen content less than or
approximately 5 parts per billion (ppb) and grown by CVD. The difference is that electronic
grade has additional boron doping, which is usually small enough that it does not bother
NV experiments.

In addition to classifying diamonds by type, they can also be classified by single- and
poly-crystalline structure. Single crystal diamond have a single periodic carbon lattice (ne-
glecting species impurity) over the diamond sample. Polycrystalline diamonds have only
locally periodic carbon lattices, the grain of the diamond changing on occasion. Most CVD
diamonds used for NV experiments are single crystal, especially then the experiment focuses
on individual NVs.

1.2.2 Generating NVs

The P1 defect center (Fig. 1.1b) is a nitrogen swapped in for a carbon atom–a ‘substitutional
nitrogen.’ The vacancy defect is simply a missing carbon. Vacancies are much less thermally
stable than P1s, so when the diamond is annealed (typically 400-1200 C), vacancies hop
around, and even out of the diamond if they reach its edge. However, vacancies that meet P1s
settle into place, the nitrogen-vacancy pair being much more thermally stable together. One
can quickly intuit why by looking at the atomic numbers of carbon and nitrogen. Notably,
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Figure 1.1: a) Molecular diagram of an NV center. b) Molecular diagram of a P1 center

this pairing is not yet the NV used throughout this thesis, it will require an additional charge
(Section 1.2.4) from a donor.

The process for generating NVs in general amounts to creating both vacancy and P1
defects in n-doped diamond and then increasing the temperature so that the vacancies even-
tually collide with the P1s. Most often this is achieved artificially by first implanting the
nitrogen to create P1s, then irradiating the diamond with electrons or with 12C to damage
the lattice and create vacancies, and finally annealing the sample at temperatures ranging
between 200 C and 1200 C [115]. There are many parameters to tune in this method that can
control density (gas pressure), depth (implantation energy), and spin and spectral properties
(diamond cleanliness). There are also other methods available, most notably introducing ni-
trogen during the growth process of the diamond, a process called delta-doping [117]. Also,
NVs will naturally occur in diamond. If a sample of natural diamond has other defect and
crystalline impurity levels that are tolerable, an NV experiment can use a natural NV instead
of generating one. For a more complete review of NV generation and a very nice summary
of what each technique can accomplish, see [12] and especially their Table IV.

1.2.3 Physical Structure

Since the physical shape of the nitrogen-vacancy pairing impacts the location, dynamics, and
energy of its electrons, knowing the structure of the diamond NV is crucial to understanding
its electronic and spin properties. The NV structure is constrained by the geometry of the
diamond lattice to abide by C3v symmetry (Fig. 1.2). The C3v symmetry group is that
of a three-sided pyramid (tetrahedron) with a painted tip or an equilateral triangle in two
dimensions: three mirror planes, two rotations, and the identity. As opposed to atoms in
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Figure 1.2: The NV has the same symmetries as a tetrahedron with a painted tip, or an equi-
lateral triangle (restricted to 2-dimensional operations): reflections through mirror planes
(M1, M2, M3), rotations by ˘120˝ (R1, R2), and the identity.

free space, whose electronic states are rotationally invariant, the NV’s electronic states are
characterized by how they transform under C3v symmetry operations. The fascinating details
and intuition of deriving electronic and spin properties are described in (Section 1.3).

The symmetry axis of the C3v point-group is the nitrogen-vacancy bond of the NV.
This bond can orient in any one of the four crystallographic directions of the diamond axis,
creating four “orientation groups” of NVs with distinct XYZ axes. A typical external field
(electric, magnetic, etc.) will have a different projection onto the axes of the NVs of each
orientation groups, which changes that group’s response to the field.

1.2.4 NV Charge States

Experiments have determined the existence of two NV charge states, the neutral NV0 and
the singly-charged NV´, distinguished by a zero-phonon line (ZPL) at 575 nm [51] and 637
nm [112, 95], respectively. NV0 has 5 electrons, 3 associated with the dangling carbon bonds
(carbon to vacancy) and 2 valence electrons from the nitrogen. NV´ has one additional
electron (6 total), presumably donated by other impurities in the diamond. Due to a lack of
useful polarizable spin states, the neutral NV0 is often neglected or treated as an undesirable
byproduct. Experiments and theory almost exclusively focus on the NV´. The work in this
thesis pertains only to the NV´, hereafter referred to simply as the NV.

1.2.5 Electronic Structure and Levels

To date, there is no perfect derivation of the electronic energy levels of the NV (Fig. 1.3b)
from first principles, but between theory and experiments, more than enough has been
worked out to provide accurate models of electronic structure and dynamics [95, 103, 101,
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Figure 1.3: a) The NV states exist within the diamond’s 5.5 eV bandgap at an unknown
location. b) The NV electronic and spin energy levels

107, 150, 128]. Experiments have confirmed the NV’s C3v symmetry [31], verifying that the
electronic ground and excited states’ two electrons can each be in either a anti-symmetric
or symmetric spatial configuration, forcing their total electronic spin into a triplet or singlet
configuration, respectively. In both the electronic singlet ground and excited states, spin
triplets [126, 127, 97, 118, 102] have been well-measured, providing some distinctive and
well-established parameters: a 2.87 GHz zero-field splitting in the electronic ground state’s
spin triplet, a 1.42 GHz splitting in the electronic excited state’s spin triplet [150], and a
637 nm electronic dipole transition between the ground and excited states (Fig. 1.3b). As
well, the splitting due to the Coulomb interaction for the electronic triplet ground state
(spin singlet) has been measured as 1040 nm [129]. The exact location of the ground state
electronic-triplet-spin-singlet between the ground and excited electronic-singlet-spin-triplet
states is yet unverified (Fig. 1.3a). The electronic triplet excited state is proposed to exist,
but relatively few attempts have been made to measure any of its properties. Lastly, all of
the NV states exist within the bandgap of diamond, which is crucial because if these states
were within the conduction or valence bands they would ionize the NV; however the location
within the bandgap is unknown.
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Figure 1.4: a) the NV states are all smeared towards higher energies by phonon excitations
of the diamond lattice. This is represented as the gradient shading. b) NV absorption and
emission spectra [29]. The central spike is the ZPL.

1.2.6 Phonon Sidebands

The aforementioned values are true of the NV in the absence of any perturbations. The
picture of the NV described so far is no different from that of an atom, which suggests that
one could use the electronic dipole transition to perform qubit operations. However, the
NV lives in a solid-state system that introduces many environmental influences, completely
destroying this possibility and adding many complicating factors. The most prominent of
these is finite temperature, which adds vibrational excitations in the diamond (phonons) that
smear the energy of each electronic state upwards (Fig. 1.4a). In this section, I will cover
only the general idea of how vibrational excitations influence the NV. For a more complete
understanding, look into the Franck-Condon principle (Wikipedia has a nice diagram showing
how the vibrational wavefunction overlap matters).

Because the average thermal energy of a phonon is „ 10´4 eV/K, the smearing completely
obfuscates observing the spin resonances optically until the temperature reaches Æ10K. The
‘Zero-phonon line’ (ZPL) specifically refers to the ideal case without any phonons present,
whereas the ‘phonon sideband’ refers to the continuous band of vibronic states (phonon-
occupation number states) that smears out the electronic resonance. When a vibronic state
is excited, it will on average gain or lose phonons depending on whether it sits below or above
the average of the thermal Boltzmann distribution of phonons. This is akin to the everyday
intuition that the temperature of an object on average warms up or cools down until it equili-
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brates to the temperature of its surrounding. At the usual experimental temperatures, there
are more optically accessible states above the average, so it’s more common to lose phonons
than gain phonons. Consequently, absorption spectra display a sideband with wavelengths
mostly below the ZPL, while emission spectra display a sideband with wavelengths mostly
above the ZPL (Fig. 1.4b). Note that phonon dispersion turns the coherent electronic tran-
sition into an incoherent process, negating the possibility of using it as a cycling transition.
This fluorescence process leads to emitting a longer wavelength than what was absorbed.
Typically NV fluorescence is spread between 650 nm and 800 nm, with the ZPL accounting
for only a few percent of the total photon emission, even at low temperatures.

1.2.7 Polarization/Read-Out Models

Because the phonon sideband smears them out, the spin states are not initially addressable
with microwaves. This is annoying since most of the utility of the NV stems from making
a qubit out of these states that is highly sensitive to its surroundings. Thankfully, the
NV can be easily polarized and read-out even at room-temperature by applying optical
radiation, which then permits the states to be addressed with microwaves. The mechanism
of initializing the NV population into the ms “ 0 state can be described quite accurately
by classical rate models; however, a lack of understanding of the ground state spin singlet
precludes complete knowledge [150, 128].

In general, the process of polarization is as follows. Assuming a thermally mixed ground
state spin triplet, optical light1 excites the electronic dipole transition, transferring all popu-
lations from the ground state (gs) into the excited state (es) spin triplet. Since the operator
of the transition is that of an electric dipole, magnetic spin is preserved,2 that is

|0gsy Ñ |0esy
|´1gsy Ñ |´1esy

|`1gsy Ñ |`1esy

Once excited, the lifetime of the excited state is „10 ns,3 after which the NV decays through
one of two decay pathways. Either it can decay 1) back through the same spin-preserving
dipole transition while emitting an optical photon in the range „600-800 nm; or 2) by an
effectively non-radiative secondary pathway through the ground state spin singlet (electronic
triplet) (Fig. 1.5). The singlet pathway is known

• to happen more than 3x as often for |˘1esy than for |0esy [128],

1Normally 532 nm is applied at room temperature because it is a cheap wavelength to buy, addresses a
large portion of the phonon sideband, and is speculated to pump more charge out of nearby defects to ensure
the NV’s charge state is negative. At lower temperatures, the optimal wavelength approaches the ZPL.

2...more than 98% of the time [128]
3The exact lifetime depends on a few factors: which excited triplet state, whether it is bulk or nanodia-

mond, the temperature, and the excitation wavelength [128]. It also varies from NV to NV, all other factors
being equal.
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Figure 1.5: Schematic of NV polarization and read-out. m2 “ ˘1 states are drawn on the left
ms “ 0 states are drawn on the right and the spin singlet states are represented with a single
line in the middle. All ground states are excited via 532 nm light through a spin-conserving
electric dipole transition to the phonon sideband. After the phonons scatter, they most often
decay after „10 ns by the same electronic transition emitting in the range 600-800 nm. The
excited ms “ 0 state decays via a non-radiative process at a rate k0 to the singlet states.
The excited ms “ ˘1 states decay to the singlet states at 3 times this rate. The singlet
states have a total lifetime „300 ns before decaying non-radiatively to any ground state. As
a results, the ground ms “ ˘1 states are darker than the ground ms “ 0 state.
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• to decay randomly into any spin triplet ground state at roughly the same rate [150],

• to have a lifetime „ 300 ns [128] (30x longer than the excited triplet lifetime), and

• to emit a 1040 nm infrared (IR) photon while decaying between the electronic triplet
states [129],

although notably there is not yet consensus on the matrix elements of this decay. The first
two items are primarily what pump population from the ground ms “ ˘1 states to the
ground ms “ 0 state. Often, polarization between 80-90% of the NV population in ms “ 0
at room-temperature are achieved after a few hundred nanoseconds [128], depending on the
laser power and wavelength. To complete the polarization procedure, after the laser is turned
off, experiments should wait for this metastable spin singlet state to decay back to the ground
spin triplet manifold—usually about „ 1µs.

The second two items in the above list permit the NV spin state to be read out. The
measured fluorescence rate of the NV decreases if it starts in the ms “ ˘1 states, decaying
through the spin singlet state more often. Consequently, until the read-out light re-polarizes
the NV, it will appear dimmer the larger the ms “ ˘1 components in its spin state.

At this point, take a moment to appreciate how incredibly versatile the NV is to be
housed in a durable, inert, readily-and-cheaply-fabricated solid4, while also being polariz-
able/readable at room-temperature with coherence times „100 µs to 1 ms simply by applying
a cheap laser. Compare this to other efforts for making qubits, requiring complex vacuum
systems, many wavelengths of lasers, dilution fridges, and complex fabrication patterning.

1.3 Representation Theoretic Derivation of NV

Properties

Representation theory (RT) came to me too late. I have read and re-read every text on the
RT of the NV I could find, but did not feel satisfied with my understanding until I started
pestering every theorist I knew with questions on the topic. There are numerous issues I
take with the other texts out there, the most important being that they fail to introduce
the basic concepts of RT clearly. The abstract nature of RT deters experimentalists a few
years distanced from higher mathematics. This is a shame because understanding the RT
of the NV provides a wealth of useful intuition best employed early on in one’s study of the
NV. In fact, the learning curve isn’t actually so steep for one merely seeking some deeper
understanding of the NV. It just needs to be introduced fully, which is what I attempt in
this section.

Starting with the NV’s electronic spatial symmetries, RT rigorously and elegantly defines
the NV’s intrinsic magnetic spin z-axis and zero-field splitting—reread that and try to reflect

4For at home experimenting, you can buy diamond powder for a few cents a gram or nanodiamonds with
for a few bucks a gram. You’ll find tons of NVs in each.
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on how incredible that is. But RT does more. It reveals why the bare ground state spin
Hamiltonian is DgsS

2
z , what polarization of optical light excites the NV, what electronic

energy levels exist and how they reduce to the triplet ground state manifold, and much
more. The intuition we gain can immediately be used in back-of-the-envelope estimations
or in qualitative predictions of the NV’s response to any stimuli.

The following sections assume familiarity with quantum mechanics, linear algebra, and
the group axioms (closure, associativity, identity and invertibility), and walk through the
fundamental RT derivation of many NV facts from the previous section. Unlike in other
representation theoretic derivations of the NV, this section does not assume any knowledge
of RT. It starts with the general scheme a representation approach takes to analyzing the
NV, which is also the general approach for any quantum systems. This section clearly
defines what a representation itself actually is as well as the common vocabulary used when
discussing it, since these often are points of confusion. Only then does the section derive
the NV’s properties. If you wish to see the full NV Hamiltonian without going through
the derivation, skip to Section 1.3.4. However, I highly recommend reading this section
thoroughly at some point.

1.3.1 Intuitive Representation Theory for NVs

Representation theory is essentially a way to study abstract algebraic objects by representing
them with matrices and employing the techniques of linear algebra. Quantum mechanics is
often performed with representation theory,5 even if no one tells you; so to ensure you don’t
go as long as I did without realizing RT’s influence, this section walks through the general
scheme of deriving the NV properties using RT. By keeping the discussion general, the section
introduces the essential concepts of RT that are relevant to the derivation in the following
section.

In the case of the NV, RT is effective for enforcing the NV’s spatial symmetries and
discovering the phenomena derived from them. The approach is as follows. First, the group
of NV symmetry operators are rewritten as a group of simplified matrices. In general, this
basis of simplified matrices is not the diagonal basis of the Hamiltonian. The matrices are
then block-diagonalized, one block for each possible way the NV symmetry operators can
transform state vectors. For the NV, after block-diagonalization there are 6 matrices each
with 3 blocks representing the 18 possible ways a single-electron orbital could transform
under the NV symmetry operators.6 These transformations constrain all Hamiltonian terms
to components that transform according to 18 possibilities. This includes the electrons’
Coulomb interaction with the atomic nuclei. We then note that perturbations, by virtue of
being small, should not change the way orbitals transform under the symmetry operators.

5Any time a matrix is used to perform operations on states, e.g. Bloch sphere operations on a qubit.
6The block diagonalization and derivation of representations has been done over many decades by math-

ematicians. Once a symmetry group is identified, anyone can look up what the representation is, so I will
not go over the diagonalization process.
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This permits us to add all relevant spin-perturbations to the NV to simplify the derivation
of the spin Hamiltonian as well as the general effects of extra perturbations.

Before diving into the derivation, we must note that the literature on representation the-
ory uses somewhat poor language. By definition, a representation is a group homomorphism—
a transformation or mapping between groups that preserves algebraic structure. It is not
the image (final group) to which the initial group is transformed. However, in both math
and physics, the image is commonly called the representation when the homomorphism is
clear from context. Often, the phrases “elements of the representation” or “lives in the rep-
resentation” refer to the elements of the image matrices or of the vector spaces upon which
the homomorphism acts. Since the representation is not a group but the mapping between
groups, these phrases are absolutely incorrect; however, the meaning is clear once one ac-
cepts the conflation and broadens their personal definition of ’representation’ to encompass
all above-mentioned usages. In this section, I will largely conform to the vernacular, and
occasionally offer mathematical precision.

The RT derivation of the NV properties starts with the tight-binding picture of a vacancy
in diamond, wherein electrons are bound into pure atomic orbitals of the atoms in the
diamond. The vacancy creates broken bonds. The N and three C atoms lack immediate
neighbors to form a covalent bond for each of their valance electrons. Each atom’s unpaired
single-electron orbital (sp3 for both C and N) is called a ’dangling bond,’ written as σ1, σ2,
σ3, for the carbon and as σN for the nitrogen. In general, these dangling bonds are not the
single-electron orbitals of the defect, but form a complete basis for them in the tight-binding
picture.

Given the symmetry of the diamond lattice, the group of NV spatial symmetries is
the C3V point group.7 With some thought, we can use our knowledge of lattice sites and
indistinguishability to determine why the NV symmetries form a point group and find the
elements of the point group. Most atoms can only stably inhabit the sites of the diamond
lattice. A nitrogen, vacancy, or carbon atom out of place will be restored by strong Coulomb
forces into a lattice site, while a silicon atom notably could float between two lattice sites
(when forming a Silicon-Vacancy center). For the NV then, symmetry operations must
transform atoms from lattice sites into lattice sites; consequently, they are discrete spatial
transformations. Next, because quantum particles are indistinguishable, we cannot notice
when carbons swap locations, but we can notice a transformation that swaps the locations
of distinguishable particles (e.g. the nitrogen, vacancy, and carbon); such a transformation
cannot be a symmetry of the NV. Since the N and V can’t swap with any other particles, they
must remain in their original lattice sites They are fixed points imposed on any operation
claiming to be a symmetry of the NV. We can intuit then that all points along a line formed
by the N and V are fixed points: the fixed points of the NV point group are the entire NV
z-axis (connecting the nitrogen and vacancy). The only six symmetry transformations that

7A point group is a group of symmetry operations that all leave at least one point in space fixed. For
example, a group of rotation operations that share the same rotation axis do not change any points along
their shared axis, so their group is called a point group.



CHAPTER 1. INTRODUCTION TO NV SENSING AND SIMULATION 14

meet the lattice-site and fixed-point criteria in a diamond lattice are the identity, rotations
around the z-axis by 120˝ or by 240˝, and reflections through any one of the three vertical
planes that each contain the nitrogen and one of the three carbons (Fig. 1.2.

This point group is the absolute symmetry of the bare NV. The way this point group
acts upon each dangling bond can be represented using 4x4 matrices in the basis of the
4 dangling bonds (with the mapping from point group operators to matrices being the
true representation). Much in the same way linearly-dependent matrices can be reduced
to linearly-independent matrices, representations from a basis that fails to diagonalize the
Hamiltonian can be decomposed into “irreducible representations,” a process which simul-
taneously block-diagonalizes the unperturbed NV Hamiltonian H0. Each block is the image
from an irreducible representation, but will be referred to as irreducible representations them-
selves since the homomorphism is clear. The new 4x4 matrices representing the symmetry
operators in the irreducible representations are block-diagonalized in the same way as the
Hamiltonian. This is directly because the symmetry operators tPRu leave the energy of a
state unchanged by definition:

xψ|P´1
R H0PR|ψy “ xψ|H0|ψy (1.1)

and consequently satisfy rH0, PRs “ 0.
Group theoreticians have already performed the dirty work of solving for the irreducible

representations of the C3v point group and performing the block diagonalizations, so we
just have to look up their results. There are three irreducible representations (blocks):
A1, A2, and E.8 The first two irreducible representations are each 1x1 blocks, and the E
representation is a 2x2 block. Since the new matrices are block diagonalized, we see that
neither the point group nor the Hamiltonian can mix basis states living in different irreducible
representations—they are closed subspaces under the action of the point group.9 We can
then label the elements of vectors and blocks of matrices by the irreducible representations
they live in using superscripts:

|ψy “

¨

˚

˚

˝

ψpA1q

ψpA2q

ψpExq

ψpEyq

˛

‹

‹

‚

, PR “

¨

˚

˝

P
pA1q

R

P
pA2q

R

P
pEq
R

˛

‹

‚

, H0 “

¨

˚

˝

H
pA1q

0

H
pA2q

0

H
pEq
0

˛

‹

‚

(1.2)

where Ex and Ey are the two degenerate basis states living in the 2x2 E representation.
They transform like x and y vectors, but are explicitly not x and y vectors.

The specific matrix elements of these blocks for each point group operator are listed
in Table 1.1. From the table, we see that states in A1 have all of the symmetries of the
NV, since every operator acts like the identity when applied to such states. States in A2

8In this case, E is not the identity operator. I will use 1
9However, keep in mind that a basis state in an irreducible representation generally transforms into a new

state within the same irreducible representation under these operations. No single vector in an irreducible
representation has C3v symmetry—the entire irreducible representation does.
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P1 PC3 PC13 Pσ1
v

Pσ2
v

Pσ3
v

A1 1 1 1 1 1 1
A2 1 1 1 -1 -1 -1

E

ˆ

1 0
0 1

˙

˜

´1
2

?
3

2

´
?

3
2

´1
2

¸ ˜

´1
2
´
?

3
2?

3
2

´1
2

¸

ˆ

´1 0
0 1

˙

˜

1
2

´
?

3
2

´
?

3
2

´1
2

¸ ˜

1
2

?
3

2?
3

2
´1

2

¸

Table 1.1: Matrix elements of the C3v group operators for each irreducible representation.
The operators are P1 for identity, PC3 for rotation by 2π{3, PC13 for rotation by ´2π{3, Pσ1,2,3

v

for reflection through the plane formed by the z-axis and either the first, second, or third
carbon.

transform as pseudo-vectors along the z-axis; unchanged by the identity or rotations, but
flipped when reflected through the z-σ1,2,3

v plane. Already, we can guess that there will not
be A2 components in the bare NV electronic Hamiltonian, since electronic states transform
as vectors, not pseudo-vectors. The NV spin Hamiltonian likewise lacks A2 components,
since it originates from a dipole-dipole interaction, which will be discussed later. Finally, we
see that the blocks in the E representation are the appropriate 2-dimensional rotation and
reflection matrices, one would expect. States in the E representation transform like vectors
in the NV’s x-y plane.

By multiplying together vector- or operator-elements living in different representations
and decomposing their product, we find that there are patterns in the results. Each possible
product can be reduced to components that live in a subset of the irreducible representations.
The general scheme for products of vector- or operator-elements living in different represen-
tations is summarized in Table 1.2. These combinations hold regardless of the specific basis
or vector space and also works for a product between an operator and a vector. For example,
the state produced by the A1 component of an operator and the A2 component of a vector
must belong to the A1 b A2 “ A2 representation.

This table’s true predictive power for quantum mechanics stems from an important for-
mulation of the Wigner-Eckhart theorem: since scalars belong to the A1 representation,
and the product of two vectors is a scalar,

@

ψpΓ1q
∣∣OpΓ2q

∣∣ψpΓ3q
D

is non-vanishing only if A1

is contained in the product Γ1 b Γ2 b Γ3, for Γi denoting the irreducible representation of
each factor. This formulation drastically simplifies derivations and provides useful intuition.
For example, we will see later that the Wigner-Eckhart theorem illuminates that the laser
polarization must have a linear component in the NV’s x-y plane to induce an electronic
transition (given the irreducible representations of the ground and excited electronic states).

1.3.2 Derivation of Energy Levels and Ground State

Now that the tools of representation theory have been established, we can derive properties
of the NV. We find the linear combinations of dangling bonds tσN , σ1, σ2, σ3u that form the
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b A1 A2 E

A1 A1 A2 E
A2 A2 A1 E
E E E A1 + A2 + E

Table 1.2: Direct Product Table. The product between elements of two representations
produces a new vector or linear combination of vectors belonging to the representations
listed.

single electron orbitals by projecting the bonds on to each irreducible representation [107]

aN “ σN

aC “
1
?

3
pσ1 ` σ2 ` σ3q

ex “
1
?

6
p2σ1 ´ σ2 ´ σ3q

ey “
1
?

2
pσ2 ´ σ3q

The aN and aC orbitals are totally symmetric in C3v and so belong to the A1 irreducible
representation, whereas ex and ey are the two basis vectors of the E representation. Since
they share the same symmetries, aN and aC are degenerate in energy, and likewise for ex
and ey. Also, notice that there is no single electron wavefunction belonging to the A2

representation as predicted above.
To find the relative energies of these wavefunction, Maze et. al. introduce the electron-ion

interaction between electrons and the nitrogen and carbon ions forming the NV

V “ vn |σNy xσN |`
ÿ

i

vi |σiy xσi|` hn |σiy xσN |`
ÿ

iąj

hc |σiy xσj| (1.3)

where vi “ vc ă 0 and vn ă 0 are the Coulomb self-energies at the carbon and nitrogen
sites and h represent interaction strengths between sites. With a new Hamiltonian term
added to the tight-binding model, the previous representations are no longer the irreducible
representations. Using the Wigner-Eckhart theorem to impose symmetry constraints, we
find that this interaction leads to a new basis that is the same up to mixing of the aN and
aC orbitals

a1 “ αaN ` βaC (1.4)

a11 “ βaN ` αaC (1.5)

ex “
1
?

6
p2σ1 ´ σ2 ´ σ3q (1.6)

ey “
1
?

2
pσ2 ´ σ3q (1.7)



CHAPTER 1. INTRODUCTION TO NV SENSING AND SIMULATION 17

Figure 1.6: NV electronic orbital energy levels with Coulomb potential. For 6 electrons, the
lowest two orbital are filled by 2 electrons each (one spin-up and one spin-down). The upper
two degenerate levels each contain 1 electron by Hund’s rules. The spins of those electrons
are form a triplet configuration in the ground state.

for α and β being complex coefficients α2 “ 1´ β2 “ 3h2
n{∆Ea1 , and with energies

Ea1 “
1

2
pvc ` 2hc ` vnq `

1

2
∆ (1.8)

Ea11 “
1

2
pvc ` 2hc ` vnq ´

1

2
∆ (1.9)

Eex “ vc ´ hc (1.10)

Eey “ vc ´ hc (1.11)

for ∆ “
a

pvc ` 2hc ´ vnq2 ` 12h2
n [107]. As usual, mixing states is accompanied by a

splitting of their energies. Qualitatively, this procedure finds the correct ordering of the
energy levels. The more symmetric the state, the lower its energy in attractive potentials.
While the ab initio density functional calculations provide more precise numbers [56][53], the
RT approach provides exceptionally clear insight for qualitative features by framing them in
terms of symmetry constraints.

Although the orbitals are determined, the dynamics of the NV depend on how they are
filled. For the negatively-charged NV in our experiments, there are six electrons. Checking
atomic numbers on the periodic table, we see that carbon each contributes one electron and
nitrogen (as a donor in diamond) contributes two. The origin of the last electron is still
unknown, though the work in this thesis contributes to cracking the mystery—it is likely
contributed by a proximal ionized nitrogen defect. With six electrons, the two lowest-energy
highest-symmetry states a1 and a11 are filled completely, and by Hund’s rule, the ex and ey
states will host one electron each.

The electronic dynamics of the NV can be described by either the full six-electron wave-
function, or equivalently by the dynamics of two holes in an otherwise full atomic shell (with
some interactions of the opposite polarity). For the sake of simplicity, this thesis will adopt
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the hole picture. In either case, we see that the ground state spin Hamiltonian is dominated
by the interaction between two spin-1

2
particles, which is why it is S2

z instead of just Sz.
One can also see that in either picture the first electronic excited state of the NV must move
an electron from the a11 state to either the ex or ey state. Since there are two choices for
where to promote the electron, the excited state is doubly degenerate at this order.

The representation ΓΨ of the full wavefunction Ψ, which includes all electrons and
their spin, is given by the direct product of the representation of each component ΓΨ “

ΠnpΓn b Γ 1
2
q, where Γn is the representation of each electron and Γ 1

2
is the representation

for a spin-1
2

particle in C3v. This representation is the representation for the Hamiltonian
containing the crystal field potential and any other interactions that are invariant under the
elements of the C3v point group; for example, spin-orbit, spin-spin, Coulomb, and any crystal
deformations that preserve the NV symmetry axis. Like before, reducing the representation
block-diagonalizes the Hamiltonian and determines the new eigenstates.

The full set of eigenstates is calculated in Maze et. al., so we will discuss only the key
intuitive results here.

• Not surprisingly, all states are the product of an electronic component and a spin
component. Since they represent two fermions, the spin component must be a singlet
or triplet state. An electronic (fermionic) wavefunction must be antisymmetric, so the
total wavefunction must be a product of the antisymmetric spatial state and the spin
triplet state or the symmetric spatial state and the spin singlet state.

• Because the electron-electron Coulomb interaction is repulsive and a much larger energy
scale than the spin-spin interaction, the lowest energy state must minimize the energy
of the electronic component of the wavefunction by separating the electrons as much
as possible. The antisymmetric electron configuration accomplishes this, which is why
the ground state spin Hamiltonian is triplet

• The ground state is (up to normalization):

|ψGSy “ |exey ´ eyexy b

$

’

&

’

%

|Òy
|Ö ` Œy

|Óy
(1.12)

It belongs to the A2 representation, which determines what operators vanish when
acting on the state (by Wigner-Eckhart).

• The excited state spin triplets belong to the E representation. Using the direct product
table (Table 1.2), we see that the only operators that do not vanish when sandwiched
between the ground and excited states contain components belonging to the E repre-
sentation. This means that the electric dipole transition between ground and excited
states must belong to the E representations. Electric dipoles in the E representation
are polarization components within the transverse plane.
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• The ground state triplet electron configuration is significantly higher energy, so the
ground state spin singlet is shown as fractions of eV above the spin triplet states in
our NV energy level diagrams. A very common question asked when students first see
the NV level diagram is why the ground state spin singlet manifold has three states.
Here, we plainly see that it is because the spin singlet manifold contains the electronic
triplet states. Incidentally, we expect much larger splitting in the spin singlet manifold
compared to the spin triplet manifold because the splitting is electronic in origin for
the spin singlet manifold.

• Notice too that the same combination of singlets and triplets exists in the electronic
excited state. The key difference is that because of the ambiguity of promoting to ex
or ey, the excited state spin triplet manifold contains six states and the spin singlet
manifold contains two.

• Finally, since the a11 orbital has much greater overlap with the nitrogen nucleus than
the ex or ey orbitals, its hyperfine interaction has a significant contact term.10 Con-
sequently, the electronic excited state has a much stronger hyperfine effect, than the
ground state.

1.3.3 Derivation of Ground State Spin Hamiltonian and
Zero-Field Splitting

To see how the ground state spin triplet is split by Dgs “ 2.87 GHz, we can look at how RT
simplifies the spin Hamiltonian. Since there are two particles of interest, the Hamiltonian is
the spin-spin dipole interaction. We can write it in a coupled spin basis

Hss “
´µ0

4π

pgµBq
2

r3
r3pS ¨ r̂qpS ¨ r̂q ´ S2

s (1.13)

where S “ sp1q ` sp2q is the spin-1 operator acting on the coupled state, composed of the
spin-1

2
operators Spiq. This can be decomposed into parts that act separately on the orbital

and spin components of the wavefunction

Hss „ DijSiSj (1.14)

where Dij “ x
3r̂ir̂j´δij

r3
y is a scalar tensor obtained from the orbital integrals (represented

by x y) of the portion of the operator D̂ “
3r̂ir̂j´δij

r3
that acts on the orbital part of the

wavefunction. Under Einstein notation, the indices of these operators iterate over the x, y,
z basis (i.e. tx̂, ŷ, ẑu, and tSx, Sy, Szu).

In general, Dij is a 3x3 tensor with 9 elements, but it is drastically simplified to 1
element in the following way.11 By the Wigner-Eckhart theorem, the scalar result of an

10Note, that 12C has no nuclear spin, so it is neglected in the NV hyperfine effect.
11We could start by recognizing exchange symmetry. Then the tensor must be symmetric, reducing the

number of possible unique elements to 6. However, this is an unnecessary step at this order, since the Wigner-
Eckhart theorem ensures only the diagonal elements contribute to the bare ground state Hamiltonian.
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orbital expectation value must belong to the A1 representation, ΓGS b ΓGS b ΓD P A1, with
Γi defined as in the previous section as the irreducible representation of the factor in the
product. Since the ground state orbitals belong to A2, and A2 b A2 “ A1 according to
Table 1.2, the only components of D̂ that do not vanish after integrating over the orbitals
are the components belonging to A1. To find these components, we consider carefully the
components of D̂. The r̂ operators can be decomposed into x̂, ŷ, and ẑ components, so r̂ir̂j is
decomposed into linear combinations of quadratic products of these operators (e.g. x̂ŷ` ŷx̂q
. Of the possible linear combinations, only ẑ2 and x̂2 ` ŷ2 belong to the A1 representation
of the C3v point group. Coincidentally, the δ-function portion of the operator is a non-zero
scalar that contributes only to these components of D̂. This reduces the tensor to only three
non-zero elements. Of these three, only two are unique. To see this clearly, consider

Dzz “ xD̂zzy

Dxx “ xD̂xxy “

B

1

2

´

D̂xx ` D̂yy

¯

`
1

2

´

D̂xx ´ D̂yy

¯

F

“

B

1

2

´

D̂xx ` D̂yy

¯

F

Dyy “ xDyyy “

B

1

2

´

D̂xx ` D̂yy

¯

´
1

2

´

D̂xx ´ D̂yy

¯

F

“

B

1

2

´

D̂xx ` D̂yy

¯

F

where
@

1
2

´

D̂xx ´ D̂yy

¯

D

“ 0 because it does not belong to A1. Consequently, there are only

two unique non-zero elements, Dzz and Dxx “ Dyy. We can now write the Hamiltonian as

Hss “ DzzS
2
z `DxxpS

2
x ` S

2
yq

However, this can be simplified further by considering the basic relation of the spin operator
S2
x `S

2
y “ S2´S2

z . When we make this substitution, we can safely ignore S2 since it simply
contributes a constant energy shift. We finally end up with

Hss “ DgsS
2
z (1.15)

where Dgs “ Dzz ´Dxx is the zero-field splitting.
Through this derivation, the origin of Dgs is clear: it is the dipole-dipole interaction from

the two holes (equivalently, valence electrons), as constrained by C3v symmetry (enforced
specifically through the form of the electronic ground state wavefunction and the Wigner-
Eckhart theorem). One can see how C3v constrains the electron spins to the z direction by
imagining that in the XY plane, the spins are free to rotate, averaging themselves out for
lack of a quantization axis in that plane. As well, we can see that regardless of whether
both spins have Sz “ `1 or both have Sz “ ´1, the NV state should have the same energy.
Up and down spins are arbitrarily defined in C3v systems since there is no magnetic field or
electronic structure to define higher and lower energy along the z-axis. For this reason, it is
actually fairly difficult to determine if an NV’s carbon bonds point towards or away from an
applied magnetic field aligned to the NV axis.

Experimentally, Dgs has been measured as 2.87 GHz, but it can be estimated either
precisely with density functional methods or roughly with a simple back-of-the-envelope
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Figure 1.7: Examples of strain perturbations that conserve (left) or break (right) the C3v

point group symmetry. Left: the NV was compressed evenly in all directions, effectively
shrinking it. Right: One of the nitrogen-carbon bonds was twisted out of place.

calculation using the natural constants in the dipolar interaction and a reasonable guess for
the separation of electrons in the NV (the lattice constant).

1.3.4 Perturbations

By the Wigner-Eckhart theorem, perturbations to the NV’s spin dipole-dipole Hamiltonian
must comply with C3v symmetry. The process of writing down the final form of each per-
turbation follows a process analogous to what was covered in the previous section. By the
indistinguishability of electrons, they also must have exchange symmetry of the two dipoles.
While exchange symmetry is absolute, C3v symmetry is only conserved as an approximation.
In reality, each perturbation either conserves or breaks the point group symmetry (Fig. 1.7).
Regardless, since the NV’s geometric symmetry is enforced by the Coulomb interaction,
which is much stronger than any other in the system, it is safe to assume the perturbative
Hamiltonian terms comply with C3v in practice.

All of the NV ground state spin Hamiltonian terms relevant to this thesis are constrained
by these conditions to form the Hamiltonian

H “DgsS
2
z ` γNV

~B ¨ ~S `Hss1 ` ~SA~I ` P

ˆ

I2
z ´

1

3
I2

˙

pΠz `∆DpT qqS2
z ` ΠxpS

2
y ´ S

2
xq ` ΠypSxSy ` SySxq (1.16)

where the first line contains all fundamentally-magnetic interactions, and the second contains
all fundamentally-electric interactions. The zero-field splitting DgsS

2
z , has already been

derived and discussed above. The other terms are derived through an analogous process
that will not be covered in this thesis. We will discuss each remaining perturbation in turn.

The second term γNV ~B ¨ ~S expresses the influence of any magnetic field ~B whose source
is external to the NV. This can include a magnet placed in the viscinity of the diamond,
or a field generated by the environment of paramagnetic impurities in the diamond. The
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pre-factor γNV “ geµB{h “ 2π ˚2.8 MHz/G is simply the gyromagnetic ratio for an electron,
where ge is the Landé g-factor for an electron, µB is the Bohr magneton, and h is the planck
constant. Since perturbative couplings to Sz preserve the goodness of the bare magnetic
quantum numbers (m), they are not suppressed by the large ZFS. As a result, γNV directly
sets the Zeeman splitting of both the NV and P1 spin states with axial magnetic fields Bz,
as mentioned throughout this thesis. Transverse magnetic fields break the axial magnetic
symmetry of the NV, so they do not preserve the m quantum numbers. They mix and split
the spin states at first order in perturbation theory, suppressed by Dgs, and shift the states
at second order.

The third term Hss1 is the dipole-dipole interaction with a nearby spin (eq. 1.13. This
interaction can be resonant (other NVs or P1s with 510 G applied) or off-resonant and is the
main physics underlying the work in Chapter 4. It can break symmetry in the same ways as
a generic magnetic field does in the previous paragraph, or it can lead to a coherent transfer
of population between the NV and the separate dipole. For electron-electron interactions,
all of the pre-factors in this term combine into the handy value 52 MHz/nm3, which can be
used to quickly estimate the NV ZFS (see the end of the previous section) or the effect of
temperature discussed below.

The remaining two terms in the first line ~SA~I`P
`

I2
z ´

1
3
I2
˘

are the hyperfine dipole and
quadrupole interactions respectively. A is the hyperfine matrix that encodes both the dipolar
and contact interactions with the nucleus, and ~I is the nuclear spin. When the contact term
is negligible, the interaction is often written in an expanded form

A‖SzIz ` AK pSxIx ` SyIyq ` P

ˆ

I2
z ´

1

3
I2

˙

to emphasize the common distinction between the axial A‖ and transverse AK components
of the dipolar hyperfine interaction. In general, hyperfine interactions add additional states
to the NV’s Hilbert space, coming from the tensor product of the NV spin and nuclear spin
states. Each NV state is split into the number of nuclear spin states. The two notable
hyperfine interactions for an NV are those with its own nitrogen nucleus, and those with
nearby 13C nuclei. Since the nitrogen nucleus can be either 14N (spin-1, 99.6% natural
abundance) or 15N (spin-1/2, 0.4% natural abundance), there are two sets of values for
the hyperfine parameters. For 14N, A‖ “ ´2.14 ˘ 0.07 MHz, AK “ ´2.70 ˘ 0.07 MHz,
and the quadrupole factor P “ ´5.01 ˘ 0.06 MHz; while for15N, A‖ “ 3.03 ˘ 0.03 MHz,
AK “ 3.65˘0.03 MHz, and there is no quadrupole term since its spin is 1/2 [47]. The values
of the 13C parameters depend highly on how far away it is from the NV. The additional
splitting it induces upon the NV ranges from negligible when it is far away to „ 1 MHz
when it is a few lattice sites away to „ 100 MHz when it is one of the carbons in the NV’s
structure, which imparts a significant contact interaction (see [137]).

The second line of this Hamiltonian contains all interactions that are electronic in nature:
electric fields, stress, and temperature. Each of these phenomena affect the NV spin by
deforming the electron orbital, either directly (electric field) or by deforming the diamond
lattice (stress and temperature). The temperature term ∆DpT q represents thermal expansion
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Figure 1.8: Example of a confocal microscope scan. Each pixel in the image represents a
spot of the diamond where the laser was focused and photons were counted. In this case,
the diamond was full of individual NVs spaced more than 1µm on average.

of the diamond, which preserves the NV’s physical symmetry, shifting the energy levels by
-14 GHz/K near room-temperature [70]. Since this is the effect of the atoms moving apart,
the 52 MHz/nm3 dipole-dipole interaction can again be used to estimate the effect.

The remaining terms in this line represent the components of stress and electric fields
Πx,y,z that transform as Ex, Ey, and A1 (the irreducible representations), respectively. The
derivation of these terms is covered in the upcoming publications and theses of Bryce Kobrin
and Satcher Hsieh, and so will not be covered here. While the final form of the electric and
stress interactions are indistinguishable, there are some key differences. First, as we exploit
in Chapter 2, the ratio of the coupling coefficients for the symmetry breaking to symmetry
conserving components of strain (i.e x,y to z) is order unity, whereas for the electric field
it is about 50. This means a randomly oriented electric field is much more likely to induce
splitting of the NV states than shifting, while a random stress is just as likely to split as to
shift. The reason for this ratio is covered in the above-mentioned works. Second, since the
electric field is a vector, its components that transform as Ex, Ey, and A1 are actually the
x, y, and z components of the electric field. By contrast, stress is not a vector, but a tensor,
so interpreting the underlying stress from the splitting and shifting of a single NV spectrum
is not straightforward (see Section 3.3.1). An electric field or stress applied at an arbitrary
angle breaks the NV’s axial symmetry, mixing and splitting the ms “ ˘1 states. It also
imparts a phase difference between these new states, which we exploit for our “imbalance”
technique in Section 2.4.

1.4 NV Systems

1.4.1 Some Microscopy Methods

In general, there are a number of methods for performing microscopy with NVs, but this
thesis will only mention two forms of confocal microscopy. Confocal microscopy is an imaging
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technique that increases resolution by focusing the image of the sample through a pinhole
before processing the image. Light that does not originate at the image (i.e. not in the
image plane) will not be focused through the pinhole and will instead be mostly blocked
by it. Confocal microscopy is employed in both scanning and wide-field forms. In scanning
microscopy, a diffraction-limited laser spot is rastered across the plane of the diamond (Fig.
1.8), permitting an experimenter to park the laser at a particular spot of interest, and
calibrate applied external fields (magnetic, electric, microwave, temperature, strain, etc.)
to that specific spatial point. The precision of the calibration enables the application of
complicated quantum protocols (e.g. detailed in 1.5), applying sequences of microwave
pulses, to measure fast dynamics in the system of interest (diamond environment or external
sample). By contrast, wide-field microscopy illuminates the microscope’s entire field of
view with light, effectively measuring the signal from each pixel in parallel. While this
method is in principle much faster at measuring large regions of a diamond than scanning
microscopy, the difficulty of applying homogeneous fields to such a large region („100x100
µm) prohibits complex quantum protocols. To date, wide-field microscopes are most often
used for measuring changes in the NV spectra versus time, pressure, temperature, or other
relatively slow environmental effects.

1.4.2 Single vs Ensemble NVs

Optical resolution determines whether one or more NVs are addressed by the applied laser,
effectively setting whether the system is measuring in the ‘single’ or ‘ensemble’ regime.
Barring super-resolution techniques, the resolution is the diffraction limit, for which NVs
spaced more than 1 µm apart (ă0.01 ppb) on average are individually resolvable (Fig. 1.8).

Single and ensemble measurements have specific advantages and drawbacks. The prop-
erties of an isolated single NV can be precisely measured, permitting quantum control with
exceptionally low error. In addition, single NVs can be chosen for having innately good
properties, such as coherence lifetimes in excess of 1 ms that permit quantum sensing to
high precision. Tomography on single NVs can then measure the environment particular
to that NV by, for example, localizing all charged/magnetic sources nearby to nanometer
precision [98][113]. It is worth noting that such localization uses the NV as the origin, which
can only itself be localized to the optical resolution, so the resolution of such localization
within the lab frame frame is likely the diffraction limit. Finally, one must take care that
when the single NVs are within „ 10 nm of the surface, prolonged exposure to a laser can
cause the NV’s excess charge to be trapped by particles bonded to the surface of the dia-
mond. These NVs are permanently ‘photobleached’ into the undesirable NV0 charge state.
To avoid photobleaching, the laser intensity and the duty-cycle of its application must be
reduced. Because of the manifold applications of using shallow NVs, chemically preparing
the diamond surface against photobleaching is an active area of research [7, 81, 164].

By contrast, the properties of an NV ensemble are averaged over the ensemble, which
reduces both calibration precision and lifetime, so quantum pulse control and sensing cannot
be as precise. However, as long as the gradient of local fields (microwave, magnetic, etc.)
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are small enough across the diffraction-limited laser spot (i.e. delivering microwave with
a stripline instead of a wire), pulse errors „ 1% are achievable, permitting the employ of
abovementioned quantum measurement protocols. There are in fact a few major advantages
ensembles boast over single NVs. First, assuming the signal being sensed by the NVs does
not vary considerably over the focused spot of the laser, the sensitivity of the ensemble
follows standard quantum limit (SQL) scaling „

?
N , for N being the number of NVs in the

ensemble. There are currently attempts to entangle the NVs to boost sensitivity beyond SQL
scaling by using many-body correlations [158, 135, 80, 19, 25, 13]. Second, NV ensembles
with high densities are associated with rich impurity environments, suitable for quantum
simulations. Both strongly-interacting ensembles of NVs as well as of P1s have been used for
this purpose [141]. Third, because there are so many NVs being addressed simultaneously,
all four NV orientation groups are represented at the same time. While this means that
there is a shot noise background from 3/4 of the NVs whenever one tries to address a single
orientation group, typically, having access to the information from all group within the same
spatial location is a boon.

1.4.3 Typical Experimental Apparatus

We conduct NV measurements in a scanning confocal microscope equipped with controllable
magnetic field and microwave delivery (Fig. 1.9). A 532 nm laser beam (Coherent Compass
315M) shuttered by an acousto-optic modulator (AOM, Gooch & Housego AOMO 3110-120,
rise time „25 ns) is used for both ground state preparation and spin state detection. An
objective lens focuses the beam to a diffraction limited spot size. The lens is designed to
use either immersion oil (Nikon Plan Fluor 100x, NA 1.49, diffraction limit „200-300 nm)
or air (Olympus LUCPLFLN, NA 0.6, diffraction limit „1 µm). The choice of lens depends
on the the size of the region of interest.

The combined action of an X-Y galvanometer (Thorlabs GVS212) and a 4F telescope
provides the ability to scan the sample at the focal plane of the objective lens. The 4F
telescope images the angle of the galvanometer’s mirror onto the laser beam’s angle of in-
cidence to the objective lens without varying the position of the beam on the input. The
objective lens then maps each incidence angle at its input to a position on the focal plane,
permitting scanning the plane with minimal alteration of transmission power. Such surface
scans are limited by the diameter of the lenses in the 4F telescope to a 200x200 µm region.
A closed-loop piezo mount (Physik Instruments) for the objective lens serves to move the
scanning plane in the longitudinal direction for depth scans.

The NV fluoresces in a spherical uniform radiation pattern. The objective lens collects
and collimates a solid angle of the radiation and sends it counter-propagating along same
optical path used by the excitation beam (Fig. 1.9). The fluorescence photons are separated
from the excitation beam path by a dichroic mirror (Semrock FF552-Di02), which transmits
red, but reflects green light. After passing a series of filters to remove errant excitation
photons, the coupling of the fluorescence beam to a single mode fiber serves as an effective
pinhole for the confocal microscope. The fiber shuttles the fluorescence photons to a single



CHAPTER 1. INTRODUCTION TO NV SENSING AND SIMULATION 26

Figure 1.9: Experimental Apparatus: A 532 nm laser shuttered by an AOM light switch
excites the NVs, both for state preparation and read-out. A 4f telescope permits the gal-
vanometer to scan the surface of the diamond and a piezo-mounted objective controls the
depth of the focal plane. The objective lens focuses the excitation beam and collects fluores-
cence. Microwave fields are delivered by a magnet wire (as pictured) or a coplanar waveguide.
Inset: Magnet wire stretched onto an optical rotation mount hovers over the surface of the
diamond

photon counting module (SPCM, Excelitas SPCM-AQRH-64-FC) or avalanche photodiode
(Thorlabs APD410A). We use a Data Aquisition card (DAQ) for fluorescence measurements
and subsequent data processing (National Instruments USB 6343).

A typical NV MW circuit has 4 essential components: a source to generate MW, a
shutter to block/pass them, an amplifier to increase the MW power to the desired value,
and a delivery line to transmit the magnetic component to the spins (Fig. 1.10).12 In
general, our microwave circuit works by having the source constantly output MW 100 MHz

12We cannot call the MW delivery line an antenna. Since our MW are in the GHz range, the wavelength
is „100 millimeters, which is far beyond the size of the „1 millimeter diamond, and the „10 µm distance
between the NVs and the MW delivery line. We are not actually transmitting photons to the spins in our
system. Instead we deliver an oscillating magnetic evanescent wave, which drives the NV spin transitions.
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Figure 1.10: A generic MW circuit block diagram. The source, two shutters (IQ mixer and
Switch), Amplifier, and delivery line are drawn. In our system, the source and IQ mixer
are both contained within the same Stanford Research Systems device. If we plan to apply
MW ultimately at a frequency f , we do the following. The source produces MW at f ´ 100
MHz. When the IQ Mixer shutter is open, it shifts the MW frequency up by 100 MHz, to
put it back onto resonance. The switch is a simple shutter than only blocks or permits MW
to pass. The Amplifier increases the power of the MW before they are appled to the NV via
the delivery line.

off-resonance, which are blocked from the remainder of the MW circuit by two shutters with
a total extinction greater than 150 dBm. One shutter is a semi-slow MW switch (ą 80 dBm):
leaking attenuated MW for about 16 ns before rising in about 4 ns when opening, and falling
in about 4 ns before leaking for about 16 ns when closing. Its primary use is to prevent the
very slow driving of the spins over microsecond to millisecond periods. The other shutter is
a fast IQ (70 dBm), with a rise/fall-time of about 1 ns, used for more precise shuttering of
the MW pulses. It has the additional task of modulating the source’s off-resonant MW by
100 MHz, putting it ultimately on resonance.

As a result of these two shutters, the off-resonant and highly attenuated MW that in-
evitably leak into the system can be neglected during measurements. For about 15 ns before
and after a pulse, less-attenuated off-resonant MW are applied to the spins. Finally, only
during the intended pulse period are MW unattenuated and resonant with the spins.

We use a Stanford Research Systems SG384 and/or SG386 as both source and IQ mixer
in combination with a Minicircuits ZASWA-2-50DR MW switch as a slow shutter and Mini-
Circuits ZHL-16W-43+ and ZHL-10W-2G+ as amplifiers (Fig. 1.10). Together, they gen-
erate signals for spin state manipulation. Microwave signals are delivered using a coplanar
waveguide (CPW) (or ‘stripline’) deposited on a coverslip. Each research group has their
own designs for the CPW. Figure 1.11 displays two designs our groups have used.

When needed, magnetic fields are applied by either a permanent magnet mounted on
adjustable optical posts or by a set of 3 orthogonal magnetic coils. To isolate the system from
stray magnetic fields and subsequently improve thermal stability, the sample and magnetic
field source are encased in a box of mu metal. To reduce the strength of vibrations due to
air currents and to block out additional photons, the entire table is shroud in black plastic
curtains.
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Figure 1.11: Examples of CPW designs used in our lab and confocal images of them. The
shaded blue regions mark the locations in which NVs can typically be placed. a) Our lab calls
this the ”Omega” pattern even though it is barely reminiscent of an omega. b) Watertower
pattern. The Watertower pattern is expected to have better impedance matching properties,
which should improve MW delivery.

1.4.4 A Quick Word on Immersion Oil

When the objective lens requires immersion oil, moving the objective lens with the piezo
mount perturbs the sample stage. As the oil dries out, the mechanical coupling between lens
and coverglass/sample increases. If there is too much oil on the lens, it can leak down the
sides of the lens and wick the oil out of the space between the lens and coverglass, amplifying
the mechanical coupling. It takes some practice and attention to get a sense of how long
to pause between piezo adjustments of various sizes, and how often to clean or refresh oil.
Usually, I provide a pause around 0.1 s (1 s) after piezo adjustments less than 1 µm, and
around 2 s (7 s) after adjustments around 10 µm given fresh (dry) oil. The most common
symptom of dry oil is an unstable or a relatively fast drift in z-position after using the piezo
to (re)focus on the NV.
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Figure 1.12: Generic Pulsed Sequence: The 532 nm laser polarizes the NV, „1 µs is waited
so spin singlet states can decay, the MW pulse sequence is applied, and the final state of the
NV α |0y ` β |´1y is read out by applying 532 nm.

1.5 Qubit Probe Measurements

This section describes the protocols and theory underlying the measurements used in this
thesis. Some of the physics studied in this thesis is understood by considering both the
NV and the P1 centers as qubits that probe their environments. While the descriptions
of these measurements often use the lexicon of NVs, they are largely general to all qubits
(P1, nuclear spins, atoms, etc.). The organization of the discussion introduces pertinent
concepts as they arise. It starts with general notes on implementing these protocols in a
lab. It then progresses through the most basic types of measurements that require the least
prior understanding as a means to build intuition. By the end of Section 1.5.5, the time is
ripe to open the floodgates and dive into the grittier concepts that often confuse people the
most, like decay processes and quantum interference. Once those concepts are mastered, the
remaining discussion on the quantum interference coherence protocols themselves (Ramsey
and the dynamical decoupling sequences) is much easier to grasp.

1.5.1 General Measurement Notes

There are a number of concepts pervading all of the measurements in this section that should
be kept in mind.

General Note: Continuous vs. Pulsed Protocols

Regardless of their intended purpose, all NV measurement protocols follow one of two
schemes: continuous or pulsed. Continuous measurement protocols simply apply a laser
beam and/or microwaves continuously. The scheme for pulsed measurements is always as
follows: polarize the NV, perform quantum operations, and read out the NV Sz state (Fig.
1.12). The NV must be polarized into one of its spin states in order to perform quantum
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operations, as argued in 1.2.6. To do so, a laser pulse is applied to pump the NV population
to ms “ 0. After the laser pulse ends, the experiment waits for „ 1µs to permit any residual
population stuck in the metastable spin singlet state to decay. Once polarized, quantum
operations can be performed on the spin states using microwaves. Then the final spin state
can be read out by measuring the fluorescence rate and comparing to the fluorescence rate
of the ms “ 0 state. The polarization and read-out process is described in detail in 1.2.7.

Because a laser or microwave is constantly applied, which alters the spin state, continuous
protocols are limited in their ability to probe or manipulate the NV coherence. They are
generally useful for quick (in human timescales) measurements of highly-averaged properties,
such as fluorescence rate, charge state conversion rate, optical absorption/emission spectra,
and rough magnetic spectra. By contrast pulsed measurements are capable of probing faster
spin dynamics of the NV, such as coherence times and interactions with other nearby defects.

General Note: Not Single-Shot

The last general note established that the NV’s state is determined from its fluorescence
rate. Since the NV is a quantum emitter, it can only emit one photon at a time at a maxi-
mum rate determined by the inverse of the excited state lifetime „1/(10 ns). Since it often
repolarizes after a few hundred nanoseconds (Section 1.2.7), even if an experiment could
collect 100% of the NV’s fluorescence and no background photons, it might barely measure
a statistically-significant signal after a single application of a measurement sequence. More-
over, the collection efficiency of the NV’s fluorescence is typically about 1% and background
photons exist, so only „1 NV photon is collected per NV in a single measurement. Con-
sequently, NV experiments repeat measurements on the NV thousands or even millions of
times. Thankfully, each measurement is quick, ranging from „ 1µs to „ 10 ms.

General Note: Differential Measurements

Pulsed measurements that measure the NV’s lifetimes (Sections 1.5.8-1.5.11) must be carried
out as ‘differential measurements.’ This entails, performing the measurement protocol once
to collect fluorescence counts F1, then repeating it once more with an additional π-pulse
tacked on the end to collect fluorescence counts F2 (Section 1.2.7, and see 1.5.5). This way,
the modified measurement detects the ms “ ´1 state projection. The final signal S takes
the difference between the two measurements up to a normalization

S „ F1 ´ F2 (1.17)

Differential measurements keep track of the maximum possible contrast. As well, the fluores-
cence rate corresponding to complete decoherence is the average of F1 and F2 at all iterations
of the measurement (Fig. 1.13b). These values can fluctuate given environmental variations
over time (e.g. local/global magnetic field variations, laser power fluctuations, etc.).
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Figure 1.13: a) Differential pulse measurements perform the pulse sequence once (Bright
Signal), then once more with an additional π-pulse (Dark Signal). b) Plot of the Bright
and Dark Signals normalized by the reference counts. The decoherence fluorescence rate is
the average of the Bright and Dark Signals. c) Contrast is the difference between the two
normalized signals.

General Note: SNR vs. Acquisition Window

The Signal-to-Noise Ratio (SNR), generally sets how long a measurement will have to average
to beat the background noise. The acquisition window is the time window over which the
photons are counted. Because the signal being detected is the difference between fluorescence
rates of the ms “ 0 and ms “ ˘1 states, and the NV re-polarizes to ms “ 0 when the read-
out laser is applied (Section 1.2.7), there is an ideal acquisition window for optimizing the
SNR. Acquire for too long and the NV repolarizes: you count a bunch of photons that
contain no information about NV’s state at the end of the measurement. These photons
only carry shot noise, reducing SNR by increasing noise. Acquire for too short a time and
you barely count any photons at all, reducing SNR by reducing signal. The duration and
location of the best acquisition window depends on the strength of the laser power and the
density of the NVs in the focus spot. To optimize any measurement, you must vary both
laser power and the acquisition window to optimize SNR.
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1.5.2 Continuous and Pulsed ODMR

Figure 1.14: Sequences for ODMR measurement. a) Continuous-ODMR applies both laser
and MW continuously, varying the MW frequency ω over time. b) Pulsed-ODMR applies a
MW pulse of fixed duration and power, but varies ω on each iteration of the measurement.

Optically Detected Magnetic Resonance (ODMR)13 is the most basic and robust spec-
troscopy method available. The NV probe is polarized into its initial state, ms “ 0. When
off-resonant MW are applied, the NV remains in ms “ 0, but when the MW is swept onto
resonance with one of the spin transitions ms “ 0 Ñ ms “ ˘1, they distribute population
to the darker ms “ ˘1 states, reducing the fluorescence rate (Fig. 1.14). The difference be-
tween continuous-ODMR (cODMR) and pulsed-ODMR (pODMR) is whether the laser and
microwave are applied simultaneously and constantly (cODMR) or sequentially (pODMR).

In cODMR, the laser’s polarization competes with the MW’s redistribution, so to use
this measurement, it must be well tuned. There are two parameters to consider when tuning
cODMR, SNR and the frequency resolution, which depend respectively on the contrast and
linewidth of the resonances. The competition between the laser and MW affects both contrast
and linewidth.

The contrast is easily calculated from the fluorescence rate for when the laser is applied
alone (or with off-resonant microwaves) RO, and the fluorescence rate for when the resonant
MW are applied RMW

C “
RO ´RMW

RO

(1.18)

Since the fluorescence rates are proportional the the spin population distribution, we infer
that the all-optical fluorescence rate is proportional to the rate of optical pumping into
ms “ 0, RO „ Γ, and likewise that the resonant MW fluorescence rate is proportional to
the Rabi frequency RMW „ Ω. We find then that the contrast depends directly on the
competition between laser and MW power.

C “„
Ω

Γ
(1.19)

While naively, this would suggest that one should simply crank up the MW power and reduce
the laser power, there are two physical impediments to doing so. First, the resolution of the

13Often called electron spin resonance (ESR), or electron paramagnetic resonance (EPR)
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measurement is roughly proportional to the Rabi frequency and laser power14. Turning up
the MW power increases the Rabi frequency, power-broadening the resonances and reducing
resolution. Second, the speed of the measurement depends on SNR “ CROt{N , which
relies on the total measurement time t and the noise N . Assuming shot-noise, N “ δS „
a

pRO `RMW qt,
15 we find the SNR is

SNR “ C
a

ROt (1.20)

Consequently, if contrast is maximized by reducing laser power, the SNR also diminishes.
Tuning cODMR amounts to finding the right balance between resolution and SNR, depending
on one’s needs.

cODMR is arguably the most versatile NV measurement. It is fast („1 s in some cases),
and easy to implement in many highly-constrained scenarios (e.g. inside a diamond-anvil
cell or using a widefield microscope). While most often used as a rough calibration of the
NV resonance, it is highly effective in sensing measurements.

By contrast, pODMR is usually a slower measurement protocol than its continuous coun-
terpart, but has the advantage that it is much easier to achieve a specific frequency resolution.
After polarizing, a single MW pulse is applied with a pre-set power and duration—typically
to completely flip the state to ms “ ˘116 (see 1.5.5) and with a certain bandwidth when
it is on-resonance. By sweeping the pulse frequency, pODMR creates a spectrum with a
frequency resolution equal to the bandwidth of the pulse. Since the laser and MW are ap-
plied at separate times, there is no competition between Rabi oscillation and re-polarization,
drastically increasing the contrast of the resonances over those in cODMR. The ease of deter-
mining the frequency resolution and the improved contrast makes pODMR highly desirable
and faster in specific scenarios. For example, when the pulse bandwidth is below the natural
linewidth of a resonance, the natural linewidth can be measured easily.

Notably, there is a practical limit to the frequency resolution of pODMR. The natural
linewidth is determined by the inverse of the ‘dephasing’ time T ˚2 (see Section 1.5.6). As
pulse bandwidth decreases below the natural linewidth (equivalently, pulse duration longer
than T ˚2 ), the contrast of the resonance decreases. This can be thought of as the pulse
bandwidth failing to address the complete NV population (in frequency space, Fig. 1.15a)
or as the NV state decaying before the pulse has fully flipped its state (in time, Fig. 1.15b).
As the contrast decreases, the time required to average out the noise increases.

14The laser broadens the resonance through a Zeno-type process at higher power, but will narrow the
resonance at intermediate regimes. At low laser power, the linewidth is power-broadened by the MW power.
At best, the linewidth is set by the dephasing lifetime. See equation 11 in [40] and [79]

15Shot-noise is a common assumption for NV experiments. Also, since the NV fluorescence is an incoherent
process with a minimum separation between the uncorrelated emission events set by the excited state lifetime,
we assume it follows Poissonian statistics. Uncertainty in each parameter is then the square-root of the total
counts collected. The noise then can be obtained from error propagation of the signal S “ CROt.

16If it is stronger/longer than this, additional oscillations appear in the spectrum. If it is weaker/shorter,
the contrast reduces.
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Figure 1.15: Two equivalent pictures for the practical limit to pODMR’s frequency resolution.
a) The ODMR bandwidth does not encompass all of the NV population. b) The NV state
decays before it is fully flipped by the pulse.

1.5.3 Spectroscopy with ODMR

Without any perturbations, the spectra discussed above are simple. The ms “ ˘1 states
are degenerate at 2.87 GHz. Perturbations of course change the spectrum dramatically (see
Section 1.3.4). In general, symmetry-preserving perturbations shift the ms “ ˘1 states
together, whereas symmetry-breaking perturbations split (and possibly mix) them. For
example, an external magnetic field aligned along the NV axis splits the states by 2ˆ2.8
MHz/G (each shifted 2.8 MHz/G in opposite directions) to first order. For NV ensembles,
the 4 orientation groups will each have a different projection of the applied field onto its axes,
and so will exhibit different splittings, resulting in a spectrum with 8 resonances (ms “ ˘1
for each of the 4 groups, Fig. 1.16).17 Conveniently, three of the four Bz projections are
sufficient to calculate the magnitude and orientation of the applied vector field. Generally,
this is exactly how NV sensing is performed with cODMR spectroscopy, as in Chapter 3.

1.5.4 T1 Depolarization

The simplest of the pulsed sequences is the T1 measurement, which measures how long the
NV spin state remains polarized. After the NV is polarized, we wait for a time before
reading out (Fig. 1.17a). The duration of the wait-time is swept from short to long times.
Any noise that can address the spin transitions, such as resonant phonons or a resonant

17If the measurement is performed with enough resolution, the NV’s hyperfine structure can be observed.
If the NV’s nitrogen is 15N, it’s nuclear spin is 1/2, whereas it is 1 for 14N. So the hyperfine spectra increases
the number of NV resonances to 16 for 15N nuclei and 24 for 14N nuclei.
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Figure 1.16: When all four crystallographic axes of the NV are included in an ODMR
measurement, 4 pairs of resonances appear, each pair corresponding to an orientation group.

Figure 1.17: a) T1 measurements sweep the time between the polarization and read-out laser
pulses. b) When other measurement sequences (e.g. T2) get long enough, they must be
immediately followed by a T1 measurement to isolate the effects of T1 decay.
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Figure 1.18: a) Rabi pulse sequence b) Rabi Signal

defect environment,18 will redistribute the NV population, eventually destroying any spin
polarization. This is observed as an exponential decay (or stretched exponential decay, see
Chapter 4) in the NV contrast. T1 is defined as the time when the contrast has decayed to
1{e of it’s original value. Typical T1 depolarization lifetimes at room-temperature for both
single and ensemble NVs are „ 1´ 10 ms. As the temperature decreases, or the NV’s local
environment is cleaned, T1 increases to „ 0.1´ 1 s and even more than a minute [74].

Since depolarization occurs primarily via local resonant noise, T1 measurements of the
spins can be used as a noise spectroscopy technique (Section 3.5). By sweeping the applied
magnetic field B, the NV resonance is swept, altering what depolarizing noise is resonant.
Measuring T1 versus B then provides a noise spectrum in the GHz range.

T1 measurements are also important in the interpretation of decoherence measurements
(T2 discussions below). When decoherence lifetimes are long enough, the effects of T1 decay
add additional decay to the signal. In order to isolate just the T2 decay, the T1 effect must
be removed. To do this, a T1 measurement is concatenated to the end of a T2 measurement
(Fig. 1.17b).

1.5.5 Rabi Oscillations

Rabi oscillations in a two-level system (or qubit) and the Bloch sphere (Appendix A) are
crucial atomic physics concepts to understand and have been covered in detail in many
textbooks and lectures [133]. As such, I will only briefly cover here the key ideas as they
pertain to NV experiments, though they apply equally well to any qubit (including the P1).

When an aligned magnetic field lifts the degeneracy between the ms “ ˘1 states, spin
transitions between ms “ 0 and either of the other states may constitute an effective two-

18Notably, the resonant defect environment must contain many defects. If there is only one other resonant
defect in the system, the NV and defect will simply coherently transfer the polarization between themselves,
which is observed as an oscillation. If there are many resonant defects in the system, the probability of the
NV polarization returning to the NV is diminishingly small
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level system. For most purposes, experiments choose the ms “ 0 Ñ ms “ ´1 transition
for the two-level system, since it is by definition a lower frequency transition, although the
decision is often arbitrary. A magnetic field projected into the XY plane of the NV (i.e. with
Sx and Sy components) that oscillates at or near the NV’s resonance frequency will transfer
the population from one of the eigenstates to the other and back (Fig. 1.18).19 The way
this is performed in the lab is to polarize the NV, drive the transition for a variable duration
with resonant MW (oscillating magnetic field), and read out the ms “ 0 population.

The angular frequency Ω of the population oscillations, called the ‘Rabi Frequency,’ is
related to the applied MW power PMW as Ω9

?
PMW . The MW pulse duration for which

the population has transferred completely from ms “ 0 to ms “ ´1 is known as the π-
pulse, since it the halfway point of the oscillation period. Likewise, pulses of any angle can
be defined, most notably the π{2-pulse, which transforms the ms “ 0 eigenstate |0y into
an equal superposition p|0y ´ i |´1yq{

?
2, where |´1y is the ms “ ´1 eigenstate. Pulses

of arbitrary lengths vary the distribution of the population between the two states in the
superposition.

The Rabi frequency of the pulses sets the bandwidth of the pulses, meaning that for MW
of an angular frequency ω any transitions within a frequency range of ω´Ω{2 ă ω ă ω`Ω{2,
are considered on-resonance. Bandwidth is an important consideration when NV (or other
defect) resonances become close to each other (e.g. for NV hyperfine resonances, or for off-
axis magnetic field ensemble measurements). Transitions outside of the bandwidth of the
pulse are driven with an effective Rabi frequency Ω1 “

?
Ω2 ` δ2, where the ‘detuning’ δ is

the difference between the MW center frequency ω and the off-resonant transition frequency.
Off-resonant Rabi oscillations do not perfectly transfer population. The amount of popu-
lation transferred is limited to pΩ{δq2) in the perturbative limit (δ large, Ω small). Due to
the variation in Rabi contrast and frequency, undesirable beating patterns can emerge in
measurements that drive multiple nearby off-resonant transitions.

Rabi measurements are usually the primary method of calibrating the pulses used in all
other measurement protocols, but they are quite useful beyond calibration. The decay of
the contrast throughout Rabi oscillations can indicate the pulse error or dephasing lifetime
(discussed in 1.5.6). Additionally, fast Rabi oscillations are the primary component of the
useful technique “Spin Locking.”

1.5.6 Lifetime Limits to Measurements: Dephasing T ˚2 and
Decoherence T2

With Rabi and the Bloch sphere in hand, we can now clearly discuss the phenomena of
dephasing T ˚2 and decoherence T2 lifetimes, which despite comprising quite distinct under-

19Note that because the NV is a spin-1 system, Sx and Sy matrices have a 1{
?

2 pre-factor. So for the
same applied MW power, NVs oscillate

?
2 faster than their spin-1/2 P1 counterparts. It is important to

remember that the dipole moments of systems with different spins are still different, even when you reduce
them both to two-level systems. Also note that if the the population in each state is equal, no population
oscillation is observed in general.
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Figure 1.19: a) Dephasing of a Rabi measurement. Each individual NV in the Rabi measure-
ment (dashed) would oscillate at a slightly different frequency. The averaged signal (solid
black) exhibits oscillation at the average frequency with an exponential decay envelope. b)
Decoherence in a Rabi measurement. For clarity, only the tip of the Bloch vector is plotted.
As the oscillations progress, the Bloch vector shortens, tracing a spiral into the center of the
sphere.

lying physics, are often confused with each other. Both should be considered whenever
the NV’s (or any qubit’s) state is transformed into a superposition containing both |0y and
|´1y (or whatever the qubit’s levels are). That is, for any measurement besides T1, their
effects are relevant. In fact, these two decay lifetimes are what the remaining measurement
protocols often seek to measure: they rotate the NV state onto the equator of the Bloch
sphere (|0y Ñ 1?

2
p|0y ´ i |´1yq), accumulate the effects of dephasing and/or decoherence,

and attempt to rotate the state back to |0y before read-out. In all of these measurements,
T ˚2 and T2 are the times at which dephasing and decoherence, respectively, have reduced the
contrast to 1{e of it’s original value. Notably, the shape of the exponential decay profile is
generally stretched (see Section 4.4).

Dephasing

Dephasing is a decay of signal contrast that appears only when all repetitions of a measure-
ment are averaged together. It is a phenomenon that emerges from the lack of single-shot
non-demolition read-out for each NV (see Section 1.5.1). Within each measurement, the
final state of the NV oscillates between |0y and |´1y perfectly until some other effect arises
(i.e. the T1 or T2 limit). However, the final state of each measurement accumulates a ran-
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dom phase relative to the final state of each other measurement in the set. Since the sum
of oscillations with random phases and/or frequencies tends to zero, the average over all
measurements displays a decay of the contrast.

We can see this effect clearly by taking as an example the decay of Rabi oscillations of
an NV ensemble (also see Ramsey in Section 1.5.8 for a different incarnation of dephasing).
Usually, the limit to Rabi oscillations in an ensemble originates from the gradient of the
MW field applied.20 Each NV in the ensemble sees a slightly different MW power and so
oscillates with a slightly different Rabi frequency. The total signal is the sum of the cosines
with a distribution of frequencies set by the gradient of the MW power. As time progresses,
the Rabi oscillations go out of phase with each other. The average signal is consequently a
single oscillation with an exponential decay envelope with T ˚2 lifetime (Fig. 1.19a).

As mentioned in Section 1.5.2, 1{T ˚2 sets the natural linewidth of the NV resonance.
The uncertainty principle provides the hand-waving intuition for why lifetime generally sets
linewidth. Time t and energy E are canonically conjugate variables, so σE „ h̄{σt. The
uncertainty in the energy σE is directly the linewidth of the resonance. The natural linewidth
depends on all noise intrinsic to the environment, which contribute to the decay of the NV
with a T ˚2 lifetime. In the example above, the decay was dominated by an effective MW noise
environment. In the Ramsey section below, we will explore a noise environment internal to
the diamond.

Decoherence

By contrast, decoherence is an absolute limit to the signal of each specific measurement
protocol.21 Specifically, it arises from the decay of the off-diagonal matrix elements of the
NV’s density matrix (also known as the ‘coherence’), which is responsible for the transfer of
population between the qubit levels. More intuitively, it is contrast decay from either or both
of the following: 1) the entangling of the NV’s state with the environment (e.g. the NV spin
superposition being shared with other spin defects);22 or 2) the altering of the environment
during a single measurement (e.g. rearrangment of environmental spins imparting a changing
magnetic field on the NV).23 In both cases, since measurements can only detect the NV’s

20A 1% variation in MW power across the diffraction-limited spot is considered good for a stripline.
21Each measurement protocol either isolates the NV from its environment or enhances its susceptibility

to the environment. These effects are inherent to the measurement protocol and lead to a different T2
decoherence lifetime for each. This is why T2 often comes with an additional superscript or subscript
labeling the measurement it applies to (e.g. TRabi

2 , TEcho
2 , etc.)

22This may sound similar to T1 depolarization, but it is distinct. In T1 polarization (often called longi-
tudinal relaxation), the qubit state |0y or |´1y (the longitudinal poles of the Bloch sphere) is flipped by the
transfer of population and energy to another defect through a resonant process. In T2 decoherence (often
called transverse relaxation), the superposition of the qubit states is entangled with the environment without
a flipping of the state, and need not be resonant.

23This could be conflated with the dephasing discussed in Section 1.5.8, but it should not be. In dephasing,
the environment’s state does not change, so it can be traced out of the NV-environment density matrix
without altering the NV’s reduced density matrix. In decoherence, because the environment’s state changes,
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Sz projection—tracing out the environment from the NV-environment density matrix—the
NV’s superposition changes from a pure state to a classical statistically mixed state.

As an example of the first type of decoherence effect, we consider now the decay of fast
Rabi oscillations of a single NV. See Section 1.5.9 on Spin Echo for an example of the second
type of decoherence, and for the reason why fast Rabi oscillations suppress both dephasing
and the second decoherence effect. Since we are focusing on a single NV, MW gradients can
be neglected. In this situation, each repetition of the Rabi measurement looks exactly the
same. The decay stems from the NV’s superposition becoming entangled with more and
more of the environment. The coherence between |0y and |´1y is drawn out of the NV as the
NV becomes more coherent with its surroundings. One can think that the environment is
constantly and slowly measuring the state of the NV through its interaction, which effectively
collapses the NV wavefunction from the experiment’s perspective. On the Bloch sphere, we
would see the length of the Bloch vector decreasing over time as it rotates perfectly around
the x-axis at a constant rate (Fig. 1.19b).

In the above situation, the T2 coherence time is limited to the rate of spread of the
NV coherence with the environment; however, that is not the theoretical limit. At room-
temperature, the rate of this decay is theoretically limited to the rate of T1 depolarization,
which has yet to to be achieved in experiments. In this limit, the two effects are indis-
tinguishable in an experiment, but that does not mean they are the same effect. When
there are few resonant phonons to drive depolarizing transitions between |0y and |´1y at low
temperatures, T2 ď 2T1 [114], clearly indicating a difference between the effects.

1.5.7 How All Coherence Decay Interference Measurements
Work

In short technical terms, the way coherence decay measurements (Ramsey and the dynamical
decoupling sequences) work is by encoding information in the phase of the NV’s coherence,
and then transferring that information into the population difference between |0y and |´1y
(i.e. the contrast). Let’s unpack that slowly.

At any given time, |0y and |´1y separately gain phase from almost any perturbation. As
long as the two eigenstates are separate, the phase difference between them doesn’t matter,
amounting to global phases. We can see this on the Bloch sphere easily. If a vector points
towards one of the poles, azimuthal angles are inconsequential.

When the eigenstates are made coherent with each other via a MW pulse that puts them
into a superposition, the phase difference between them gains a real meaning, but until one
studies and internalizes some of the more fundamental aspects of quantum mechanics, they
will often struggle to glean what that meaning is. Certainly, we can see that azimuthal

when it is traced out it removes some of the NV’s information with it, even if the NV is otherwise undisturbed.
Because the NV and environment are coupled by their interaction, a change to either of them is a change
to both of them. As we will see in Section 1.5.9, this change in the environment directly alters the phase
accumulation of the NV state.
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Figure 1.20: a) The precession of a classical gyroscope after an initial tilt θx, drawing the
spin axis of the gyroscope. The gyroscope is allowed to precess for a longer time on each
iteration of the experiment. b) The gyroscope spin axis at the end of each iteration after the
´θx tilt is applied. c) Plotting the z-projection of the gyroscope as the iterations progress.
Eventually, a full cosine curve will be plotted.

angles actually affect a vector on the Bloch sphere’s equator. Certainly, we can calculate the
phase gained by the coherence term in the density matrix. But what does this mean for a
qubit’s spin and why do these measurements actually work?

First, let’s start with the classical analog of spin: the gyroscope.24 When the gyroscope
is perfectly balanced, its axle points straight up, precisely parallel to the downward pull of
gravity along the z-axis. If one were to tilt the axle of the gyroscope away from the z-axis by
an angle θx around the x axis, it would precess around the z-axis. For us humans watching
a gyroscope precess, we can clearly see the entire gyroscope at all times. We see that it isn’t
changing size or shape, it is just spinning and precessing.

Now imagine that instead of being able to watch the entire gyroscope as we could nor-
mally, we are constrained only to observe the projection of the gyroscope’s axle onto the

24Remember, spin and gyroscopes are described by the same physics of angular momentum, but that
does NOT mean that spin represents the spinning of a quantum particle. As has been shown many times,
an electron is not a ball of charge with finite radius that spins like a top. The universe would’ve imploded
by now if that was the case. Still, I will speak of spin as if it is a top or a gyroscope throughout this thesis.
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z-axis. When the gyroscope is untilted, we see 100% projection of the axle along z (Fig.
1.20a b column 1). When the gyroscope is tilted and precessing, we can see that the z-
projection has reduced, but we can’t see the precession (Fig. 1.20a). At first, we seem to
have lost the ability to observe precession, but in fact, there is still a way to track it. When
the gryoscope is first tilted, we can record the angle θx by which we tilted it. Simultaneously,
we call the axis towards which we tilted, the y-axis, even though we may not know what
direction that is relative to the rest of the world. If we immediately reverse that tilt, rotat-
ing by ´θx before the gyroscope has the chance to precess, we will measure 100% projection
along z (Fig. 1.20b c column 1). This becomes our reference point: the initial state right
after tilting by θx but right before precession. Next, we let the gyroscope precess for a time
we record, and then rotate it by ´θx. Because the gyroscope is at a new azimuthal angle, this
rotation fails to return it to the z-axis (Fig. 1.20b). We no longer measure 100% projection.
However, if we repeat our experiment, varying the time we permit the gyroscope to precess,
we will plot out an oscillation in the z-projection (Fig. 1.20c). The rate and phase of this
oscillation is precisely the rate and phase of the precession! With this, we have extracted a
complete observation of the precession process.

The constraint and solution in our classical gyroscope are precisely those of our quantum
spin. One needs to remember that a quantization axis, along which we define our basis
{|0,˘1y}, creates a constrained coordinate system that we humans use to comprehend and
work with quantum states. It is a limitation on our part. The NV’s spin is actually tilting by
θx when we apply MW pulses. It is actually precessing. When we say there is a relative phase
accumulated between |0y and |´1y (or alternatively in the coherence), that is our human
way of expressing the precession using the coordinate system to which we are constrained.

No, we cannot observe precession directly. If we only look at the projection onto the
z-axis of the Bloch sphere after tilting the spin (i.e. apply a MW pulse, wait, then read-out
with the laser), we still cannot see it. Thankfully, we can detect precession by determining a
way to measure this phase. Applying a final MW rotation of ´θx,

25, we are no longer blindly
projecting onto the z-axis; we are transferring the relative phase to a measurable population
difference first. See Section 1.5.8 for a calculation explicitly showing phase imprinted upon
population. In fact, we can go further and declare that we actually interfere—homodyne—
the initial state before precession |ψiy with the final state after precession |ψfy, which we
explicitly see in the math as | xψi|ψfy |

2. This is how coherence interference works. This
interference of phase and amplitude between the two state is why these types of measurements
are especially effective for measuring the dephasing and decoherence decay lifetimes.

As a bonus note on this matter, sometimes it is experimentally possible (e.g. Spin
Locking) for us humans to chose a new quantization axis parallel to the tilted spin, call that
the z axis of a new tilted Bloch sphere, and watch the dynamics of precession from this new
perspective.

25The final rotation does not have to be around the same axis as the initial rotation, but it does make
the interpretation easier. There are many scenarios beyond the scope of this discussion when the final pulse
should be around other axes.
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Figure 1.21: The Ramsey pulse sequence

1.5.8 Ramsey

At first blush, Ramsey’s method26 seems to be the simplest of the coherence decay measure-
ments. A π{2 - pulse around the x-axis rotates the NV to the equator of the Bloch sphere
|ψiy “ 1?

2
p|0y ´ i |´1yq, it is allowed to evolve freely for a variable wait-time τ , and a final

´π{2 around x attempts to rotate the NV back to |0y (Fig. 1.21. However, we will see in
the following sections and Chapter 4 that this ‘simple’ measurement is almost insidiously
pervasive.

On the equator of the Bloch sphere, the NV superposition is susceptible to gaining phase
from almost any perturbation. First and foremost, a magnetic field along the NV/Bloch
sphere z-axis induces precession in the spin moment. Take as an example the unitary evolu-
tion for a duration τ due to a static Bz field

Upτq “ Exp

„

´ih̄

ż τ

0

γNVBz |´1y x´1|σzdt


Upτq “ Exp r´ih̄γNVBzτ sσz ` |0y x0|
Upτq “ Exp r´iφpτqsσz ` |0y x0| (1.21)

where we have absorbed the prefactors of the spin-1 Ŝz operator into Bz and σz is the pauli
spin-1 z-matrix. We have reduced and redefined σz as

σz “

ˆ

0 0
0 1

˙

“ |´1y x´1|

where the top left element is 0 because |0y lacks a spin moment and so is unaffected by Bz,
and the direction of the phase gained by the |´1y state is arbitrary (coefficient ´1 Ñ 1).
Applying eq. 1.21 to our Bloch vector,

|ψfy “ Upτq |ψiy “ Upτq
1
?

2
p|0y ´ i |´1yq “

1
?

2

`

|0y ´ ie´iφpτq |´1y
˘

(1.22)

26While Ramsey is a person, we usually call the method itself simply “Ramsey” in daily work. I will do
this for the rest of this thesis.
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we see that only the |´1y state gains a phase amounting to rotation around the Bloch sphere’s
z-axis by an angle φpτq “ γNVBzt, which is precisely Larmor precession. By finishing the
Ramsey measurement with a rotation of ´π{2 around x, we transfer the phase into the NV
population. There are two equivalent ways of seeing this in the calculation. Either we can
perform the final ´π{2 pulse and ask what the Sz projection is, or we can simply project
the final evolved state onto the initial state. I will do the latter to emphasize how this is an
interference measurement. The probability of being in |0y is

P0pτq “ | xψi|ψfy |
2
“

1

2
p1` cosφpτqq (1.23)

Note P0pτq “ 1 only if the Bloch vector returned to its initial position (i.e. the relative phase
between |0y and |´1y returns to its initial value up to factors of 2π).

Any perturbation that changes the splitting between |0y and |´1y, imparts a phase dif-
ference between them: oscillating magnetic fields, electric fields, stress, temperature, etc.
Because the initial and final π{2 pulses are around the same axis, Ramsey and the dynam-
ical decoupling measurements turn this phase difference into population by interfering the
final state with the initial state, as described in the previous section.

In the case of Ramsey, all perturbations influence the phase,27 generating precession
around the z-axis. The strength and the frequency of these perturbations each impart a
particular rate and pattern of rotation along the Bloch sphere equator. Integrating the
phase φpτq over different frequencies and patterns of precession creates a beating pattern in
the final signal, called “Ramsey Fringes.” The Fourier transform of this signal teases out the
individual perturbative frequency components, permitting Ramsey to extract information
about the noise environment of the NV.

Ramsey measurements on NVs tend to be dominated by random relatively-slow magnetic
noise through the dephasing process (see Section 1.5.6). On each run of Ramsey, there
is a strong possibility that the spins in the diamond reorient themselves due to thermal
fluctuations. Each unique configuration of spin baths imparts a different static magnetic
field on the NV, inducing a different precession rate. As discussed in Section 1.5.6, summing
over a distribution of frequencies leads to an exponential decay envelope. In actuality, the
decay envelope for Ramsey is in general a stretched exponential decay that depends on a
few factors (see Section 4.4).

The remaining dynamical decoupling measurements in this chapter are designed to ex-
tract information on particular types of noise. All perturbations also impart phase through-
out these measurements, but in contrast to Ramsey, dynamical decoupling selectively filters
phase accumulation from particular perturbations by performing additional operations be-
tween the two π{2 pulses. The process of selective filtering is called “dynamical decoupling.”
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Figure 1.22: a) The Spin Echo pulse sequence. The initial and final π{2-pulses are around
the x-axis and the refocusing pulse is around the y-axis. The phase accumulation of noise on
resonance with the filter function (blue dashed) is not suppressed. b) Spin Echo on the Bloch
sphere. After the π{2-pulse the spin is initially on the y-axis (top left). It then precesses by
some angle over time τ{2 (top right), is flipped by π around y (bottom left), and is permitted
to precess for the same duration τ{2 (bottom right).

1.5.9 Spin Echo

Often the first dynamical decoupling sequence students learn, there are many explanations
and gorgeous Bloch sphere animations to be found online for the spin echo method 28. Its
pulse protocol looks like Ramsey’s except for the single π-pulse in the middle, sometimes
called the “refocusing pulse” (Fig. 1.22a). This pulse reflects the spin across the pulse axis,
geometrically yielding the negation of the phase angle φ1pτ{2q Ñ ´φ1pτ{2q accumulated
over the first evolution time τ{2 (Fig. 1.22b). If the spin is permitted to continue evolving
for the same amount of time τ{2 and accrues the same phase angle φ2pτ{2q “ φ1pτ{2q, the
total phase of the final state is Φpτq “ φ2pτ{2q ´ φ1pτ{2q “ 0 and the final Sz projection is
perfect. This state with a refocused phase is called an ‘Echo.’29 Immediately, we see that
Spin Echo filters the effects of dephasing due to DC/slow noise, and of most correlated AC

27This is why Ramsey is also called “Free Induction Decay.”
28To comply with the vernacular of the lab, I will call it simple “Spin Echo” for the remainder of the

thesis.
29There are actually multiple echos after the first one, if the second evolution time is permitted to increase.

Each subsequent echo is less refocused than the first.
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noise. The only way to acquire a nonzero final phase is for the two evolution periods to impart
different phases φ1pτ{2q ‰ φ2pτ{2q. Decay in Spin Echo most often originates then from the
second type of decoherence (Section 1.5.6): from correlated AC noise that meets a resonance
condition intrinsic to the measurement’s filter and from the decorrelation of the environment.
The uncorrelated alterations of the environment trivially imply that φ1pτ{2q ‰ φ2pτ{2q, but
understanding the intrinsic resonance condition benefits from further attention.

AC noise whose period is an nearly an odd integer multiple of the total evolution time
τ resonates with the Spin Echo filter and passes through. We can see this diagrammatically
in Fig. 1.22a, or mathematically in the following example of unitary evolution due to a Bz

field oscillating with frequency ν. Over the first evolution period the evolution operator is

U1pτ{2q “ Exp

«

´ih̄

ż τ{2

0

γNVBz |´1y x´1|σzsinp2πνt` φ0qdt

ff

“ Exp

„

´i
h̄γNVBz

2πν
pcosp2πντ{2` φ0q ´ cospφ0qq



σz ` |0y x0|

“ Exp r´iφ1pτ{2qsσz ` |0y x0| (1.24)

where σz is defined as in the previous section. Over the second evolution period we see
similarly

U2pτq “ Exp

„

´i
h̄γNVBz

2πν
pcosp2πντ ` φ0q ´ cosp2πντ{2` φ0qq



σz ` |0y x0|

“ Exp r´iφ2pτqsσz ` |0y x0| (1.25)

Since the full calculation is a good exercise for the reader and does not add much more to
the current discussion of the resonance condition, we will trust that the π-pulse ensures the
final phase is the difference between these phases

Φpτq “ φ2pτ{2q ´ φ1pτq

“ ´
h̄γNVBz

2πν
rcosp2πντ{2` φ0q ´ cosp2πντ ` φ0q ´ cospφ0q ` cosp2πντ{2` φ0qs

“ ´
h̄γNVBz

2πν
sin2

´πντ

2

¯

cospπντ ` φ0q (1.26)

We see that the final phase is has maxima near ν “ n{τ for n being odd integers.
Since eqn. 1.26 is the phase due to a single frequency environment, by plotting it as

a function of frequency (and setting φ0 “ 0), we obtain the Spin Echo’s response to each
frequency component of the environment given a fixed evolution time τ (Fig. 1.22c). Such
functions are called the filter function of the sequence. The Spin Echo filter function is
peaked at the resonance ν “ 1{τ , with the higher/lower harmonics falling off in amplitude.
The width of the resonance is about 0.5{τ . The total phase accumulated during a measure-
ment is a convolution between the filter function and the noise spectrum of the environment.
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Typically, to measure the lifetime, τ is swept, which sweeps the location of the filter function
resonance as well. Sometimes, this makes interpreting the underlying physics of the environ-
ment more difficult, as different aspects of the environment are probed at each time-step of
the measurement. Other times, this sweeping is useful for performing spectroscopy on the
noise environment: the signal decays sharply at some τ corresponding to a large noise at
ν “ 1{τ and revives at other τ where there are no noise sources at a corresponding frequency.
For this reason, Spin Echo has immense popularity in multiple scientific fields.

A few remarks are in order. First, since the actual phase accumulated is the convolution
of the filter function and the noise spectrum of the environment, if off-resonant noise is much
stronger than resonant noise, the signal can still decay significantly. Second, Spin Echo is
a particular form of the more general suite of measurement protocols called Hahn Echo.
These sequences vary the pulse angles as well as the timing between pulses to alter the filter
function. They have been developed by the NMR community since Hahn’s original paper in
1950 [62], and should be kept in mind as a worthwhile literature review. Finally, the concept
of the filter function only works for correlated noise. If the noise is truly uncorrelated and
random, there is no reason applying a π-pulse should cancel any phase accumulation. We
can see that the phase integrals usually average out to zero, but the variance of the integrals
becomes nonzero. The variance autocorrelation of the noise becomes the source of decay (first
type of decoherence), and the sequence effectively reduces to a Ramsey sequence, incapable
of filtering any noise (Section 4.4).

1.5.10 DEER

The double electron-electron resonance (DEER) sequence is the same as Spin Echo, except
that during the refocusing π-pulse, an additional pulse is applied to the environment bath
(Fig. 1.23a). Assuming the additional pulse is a resonant π-pulse, the bath will reorient in
time with the probe and pass completely through the Spin Echo filter. For this reason, DEER
is effectively a Ramsey sequence performed on a select portion of the environment. The
selectivity grants DEER exceptional versatility as a spectroscopic tool. Holding evolution
times τ fixed, one could sweep the frequency of the bath pulse to perform an effective ODMR
on the bath (Fig. 1.23b). Sweeping the duration or power of the bath pulse (the pulse angle)
performs an effective Rabi measurement on a particular portion of the bath (Fig. 1.23c).
Finally, sweeping the evolution time, the decay profile is a direct measurement of the probe’s
interaction strength J with the selected bath TDEER2 „ 1{J . The resultant interaction-
induced decay can be either a dephasing or decoherence process, depending on what the
bath is and whether its interaction with the NV is coherent or incoherent (Fig. 1.23c).

1.5.11 CPMG and XY8

The Carr-Purcell-Meiboom-Gill (CPMG) and XY8 dynamical decoupling pulse sequences
(Figure 1.24) both accomplish the same goals: reduce the width of the filter function res-
onance, ensure the location of the resonance does not move, and suppress all off-resonant
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Figure 1.23: a) The DEER pulse sequence. b) As zoomed in portion of the spectrum of
P1 centers (around 875 MHz) and a free electron (around 865 MHz) at 309 G. c) P1 Rabi
oscillation vs the microwave pulse’s applied voltage. Because at sufficiently lower voltages,
the P1s are not driven, the curve should initially be flat before the oscillations begin. d)
DEER coherence decay measurement on P1 centers for variable external magnetic field angle
applied.
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Figure 1.24: a) The CPMG pulse sequence. The phase accumulation of noise on resonance
with the filter function (blue dashed) is not suppressed. The polarity of the final π{2-pulse
depends on the number of pulses in the sequence. b) The XY8 pulse sequence with unfiltered
phase accumulation (blue dashed) c) Zoom in on a two-pulse CPMG sequence to emphasize
how it can be decomposed into two concatenated Spin Echo sequences with unfiltered phase
accumulation (blue dashed). d) Filter function of CPMG vs pulse number for a sinusoidal
magnetic field with initial phase π{4. With increasing pulse number, the resonances in the
filter function sharpen and harmonics usually become suppressed. The shape of the filter
function is highly sensitive to the initial phase.

noise to a greater extent than Spin Echo. First, by extending the Spin Echo protocol with
more π-pulses; with ever more pulses, fewer frequencies are close enough to meeting the
resonance condition to contribute significant phase, reducing the filter function width. Sec-
ond, by keeping the inter-pulse time τp fixed and adding more pulses on each iteration,
the total evolution time of the measurement can be swept without sweeping the resonance
condition. Finally, by applying π-pulses more often with small τp evolution time, the small
phase accumulation during each τp is quickly cancelled, minimizing the effects of dephasing
and decoherence from environmental changes.30 This last feature drastically facilitates the
interpretation of CPMG and XY8 data, since it must be dominated by environmental inter-
actions on resonance with the protocol. In this case, the T

CPMG{XY 8
2 decay time is usually

30In the extreme case of our dense NV ensemble (Chapter 4), Spin Echo, CPMG, and XY8 filter enough of
the environmental interactions such that the dominant interaction became the unfiltered NV-NV interaction.
These measurements became NV-NV Ramsey measurements, proving once again, that Ramsey is not so
simple as it seems.
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due to the variance in the autocorrelation of the noise environment, as discussed in Section
1.5.9 and especially in Section 4.4. If desired, the number of pulses can be held fixed and
the evolution time swept instead for noise spectroscopy with an improved filter (see Section
5.3.2); though the interpretation of the decay is again more difficult (Section 1.5.9).

The difference between CPMG and XY8 is the degree to which they suppress certain types
of pulse error. In theory, XY8 should reduce the effects of pulse error more than CPMG.
By alternating π-pulses around the X and Y axes, the XY8 pulses repeatedly perform Spin
Echo sequences on their own pulse error. In practice, it does not always perform better
[8]. There are also other pulse sequences (XY4, KDD, etc.) that also address pulse error,
with varying degrees of success. For all of these pulse error-correcting sequences, the entire
sequence must be applied to suppress the error. Performing only a portion of the pulses
in these sequences could actually magnify the pulse error. For this reason, CPMG is more
advantageous to perform when early-time resolution is necessary, since it can be performed
with only 2 π-pulses.

Note, the evolution time τ{2 between the π{2-pulses and their adjacent π-pulse is half of
the time τ between adjacent π-pulses. The intuition for this is that at a time τ{2 halfway
between the π-pulses, the Bloch vector should refocus into an Echo. Clearly, these protocols
are simply repeating Spin Echo multiple times over. However, despite concatenating Spin
Echo, the filter function resonance frequency of CPMG and XY8 is half that of Spin Echo.
Comparing the diagrams for each sequence closely (Figures 1.22 and 1.24), we see that to
resonate with CPMG and XY8, the noise must progress through only a quarter of a cycle
for each τ{2, whereas it must progress a half-cycle in the same time for Spin Echo.

Lastly, like Spin Echo, CPMG and XY8 both lend themselves to a DEER/Ramsey mod-
ification simply by applying bath pulses concurrently with the probe pulses. One caveat to
note is that because the sequences suppress noise, they also suppress DC disordered fields
for both the probe and the bath spins.31 Less disorder means that the probe is more likely
to be on resonance with the bath spins, and the bath spins more on resonance with each
other, boosting each interaction.

1.5.12 Correlation Spectroscopy

While we ultimately did not use any of the data, we did perform some measurements with the
correlation spectroscopy technique and discussed its viability many times. For completion, I
think it is worth mentioning broadly. Since it comes in many forms, I will stick only to the
form used in NV experiments for measuring properties of a bath. In this case, what seems
to confuse the most people is that correlation spectroscopy is not a coherence interference
measurement even though it looks like one. It works by first creating a correlation function
between two measurements of NV phase, rather than interfering the two phases (adding

31Each bath spin also accumulates phase due to random DC fields. By applying pulses to the bath, its
phase is also cancelled out.
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Figure 1.25: a) A block diagram of the correlation spectroscopy sequence as used for mea-
surements on a bath. Two identical dynamical decoupling (DD) sequences are applied to
the NV, with a fixed wait time t " T2 separating them. At the end of the first dynamical
decoupling sequence, the NV has accumulated φ1 phase from the environment and its Bloch
vector has been projected onto the z-axis of the Bloch sphere. The magnitude of this projec-
tion is determined by φ1. The second NV dynamical decoupling imparts φ2 phase onto the
NV and creates a correlation function relating the two phases. The value of this correlation
function changes as the bath measurement sequence changes. b) An example of a correla-
tion spectroscopy sequence that measures P1 Ramsey. The two NV dynamical decoupling
sequences are Spin Echo sequences. The Bath sequence is the P1 Ramsey sequence. The
value of the correlation function changes with the free induction decay time τ , reflecting the
Ramsey measurement.
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or subtracting them). Then, changes in the phase correlations reflect the result of the
measurement performed on the bath.

A generic correlation spectroscopy sequence is shown in the block diagram of Figure
1.25a and one particular example, of the many possibilities, is shown in Figure 1.25b. The
sequence is composed of three essential parts: 1) an initial dynamical decoupling sequence
on the NV; 2) a wait period during which a measurement sequence is applied to the bath;
and 3) a final dynamical decoupling sequence on the NV.

First, a dynamical decoupling sequence is applied to the NV, so it gains some phase φ1.
By the end of this step, the NV has been projected back onto Sz, the z-axis of the Bloch
sphere.32 The phase φ1 determines the magnitude of the this projection. For this particular
run of the measurement, the NV signal S1 at the end of this step is

S1 „ F pφ1q

where F is some function determined by the particular dynamical decoupling sequence ap-
plied. Second, a fixed wait period t " T2 is applied to the NV, and a measurement sequence
is applied to the bath. It is crucial that the wait period is much longer than the NV’s deco-
herence time. This ensures any Sx or Sy components of the NV’s Bloch vector are decohered
and may be safely ignored. Finally, a second dynamical decoupling sequence is applied to
the NV. This sequence is identical to the first and imparts a phase φ2 on the NV. If it were
the only measurement performed on the NV, the signal would be S2 „ F pφ2q, but because
the first two parts of correlation spectroscopy reduced the length of the NV’s Bloch vector
to S1, the final signal for one run of the measurement is the product of the two

S „ S1S2 „ F pφ1qF pφ2q

By repeating the measurement sequence many times, we take the average of the final signal

xSy „ xF pφ1qF pφ2qy (1.27)

This result is a correlation function that relates the two phases accumulated by the NV.
The value of each phase changes on each run of the measurement, but the correlation

between them is constant for constant NV and bath measurement sequences. Varying the
bath measurement sequence will change the correlation between the two phases.33 Tracking
these changes in the correlation with respect to the bath measurement then extracts the
desired information about the bath.

32I use the word “projected” here instead of the usual word “stored.” When people say the phase or
magnetization is stored on the z-axis, it sounds like the all of the information of the Bloch vector is saved
for later. This is absolutely false. By saying “projected” I hope it is a bit clearer that information about Sx

and Sy will be thrown out during the wait period.
33We assume we keep t and the NV sequence fixed, so it is strictly a bath measurement. If we allow these

to vary, they will also affect the correlation.
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As an example, Figure 1.25b shows what the sequence looks like when the two dynamical
decoupling sequences are Spin Echo sequences, and the bath sequence is a Ramsey measure-
ment on the P1s. The final signal in this case should be

xSy „ xsinpφ1qsinpφ2qy (1.28)

since the final Sz projection from a Spin Echo sequence is a trigonometric function of the
phase accumulated. By sweeping the free induction decay time τ of the P1s and holding
the wait time of the NV, this correlation function reflects the results of the P1 Ramsey
measurement.

1.5.13 Other Dynamical Decoupling Sequences

While the dynamical decoupling sequences outlined above are excellent at decoupling off-
resonant on-site disorder (Sz-dominated noise), they do nothing to filter out transverse in-
teractions (Sx-dominated). Typically, the large ZFS or the application of an external aligned
magnetic field suppress transverse noise without the need for a pulse sequence, but when
that noise is on resonance (e.g. resonant flip-flop dipolar interaction), they become signifi-
cant hindrances and sometimes desirable targets of study. Thankfully, there are many other
dynamical decoupling sequences in existence, some with names like WAHUHA and DROID
[24, 169] and some unnamed, that can accomplish this. As a general principle, sequences
can only cancel interactions along the axis for which they consider phase accumulation.
The measurements described above only consider phase rotations around the z-axis, limiting
them to Sz noise. By contrast, WAHUHA and DROID rotate the Bloch vector sequentially
to each of the x, y, and z axes to collect phase along all of them. New pulse sequences are
crafted all the time for the unique purposes of the immediate experiment—one should not
hesitate to seek them out or invent for something new.

As an aid to compare common NV measurement protocols, Tables 1.3, 1.4, and 1.5
compile all of the spectroscopic techniques mentioned in this chapter as well as a few others.
This is by no means an exhaustive list.
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Name & Description Measures Pros Cons

Continuous ODMR
Laser/MW always applied

T˚2 , NV Resonance

• Easiest implementation; no
need for pulsed controls

• Very fast for low frequency
resolution

• Difficult to set resolution
due to competition between
laser and MW power

• Contrast drastically reduces
with increased resolution

Pulsed ODMR
One MW pulse

T˚2 , NV Resonance
• Frequency resolution equals

the Rabi frequency Ω
• Slower than cODMR at low

resolution

Table 1.3: Summary of spectroscopic measurement protocols for NV resonances. MW fre-
quencies are swept.
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Name & Description Measures Pros Cons

T1
Polarize-τ -Readout

T1, Resonant Noise • Easy implementation
• Must sweep B-field strength

for full noise spectrum

Ramsey

π{2-τ -π{2
T˚2

• Easy implementation
• Dominated by DC noise

• Difficult when T˚2 „ Ω
• Hard interpretation in the

presence of many noise
sources

Spin Echo

π{2-τ{2-π-τ{2-π{2
TEcho2

• Easy implementation
• Widely used (many refer-

ences)
• Filters DC noise

• τ -sweep changes location of
filter function, changing sus-
ceptibility to noise sources

Hahn Echo
(Instantaneous Diffusion)
π{2-τ{2-θ-τ{2-π{2

Intragroup interaction
(at high density)

• Widely used in NMR
• Provides a continuous probe

parameter θ

• No clear quantum coherent
intuition (classical picture
as a probabilistic flipping of
spins)

• Susceptible to undesired
noises

• Need to apply 4 times in
a row with “phase-cycling”
technique

CPMG
π{2-pτ{2-π-τ{2qN -π{2

TCPMG
2 ,

Intragroup interaction
(at high density),
an AC signal synchro-
nized to pulse timing

• Isolates AC signal
• Strongly suppress off-

resonant noise
• Sweeping N fixes filter func-

tion location
• Better time resolution than

XY

• For sensing: limited by
intragroup interaction for
high density samples

• Sometimes worse pulse error
than XY

XY-[4,8,16, . . .]

Similar to CPMG, but
phase of π-pulse alternates

TXY2 ,
Intragroup interaction
(at high density),
an AC signal synchro-
nized to pulse timing

• Isolates AC signal
• Strongly suppress off-

resonant noise
• Sweeping N fixes filter func-

tion location
• Sometimes better pulse er-

ror than CPMG

• For sensing: limited by
intragroup interaction for
high density samples

• Worse time resolution than
CPMG

Table 1.4: Summary of spectroscopic measurement protocols using NVs. Sweep evolution
time τ for first four, and the number of pulses for the last two. Ω is Rabi frequency.



CHAPTER 1. INTRODUCTION TO NV SENSING AND SIMULATION 56

Name & Description Measures Pros Cons

DEER (aka SEDOR)

Similar to Spin Echo, but during
π-pulse there is an additional pulse
on the target spin

Intra- and
Inter-group
interaction,
Resonance
spectrum of
target spin

• Applies to any MW-
addressable spin

• Can perform ODMR / Rabi
on target spin.

• Corresponds to NV-
Ramsey, isolating target
spin contribution

• Basic idea extends to other
sequences

• Intragroup interactions may
dominate (high density)

WAHUHA
 

πx
2

-2τ -´πx
2

-τ -
πy

2
-2τ -

´πy

2
- τuN

TWAHUHA
2

• Cancels interactions be-
tween spin-1/2 (e.g. P1s)

• Can apply in parallel to NV
sequence

• Can be applied to NVs to
turn dipolar into Heisenberg
interaction

• (High density) limited by
higher-order interaction
terms

Correlation Spectroscopy

Two DD sandwiching bath se-
quence
DD spacing " T2

Bath’s T1, T˚2 ,
T2, τc

• Uses NV to measure defects
that can’t be read directly

• Low contrast/long integra-
tion

Stimulated Echo
In general: any 3 pulses with spac-
ing ! T2
In particular: Correlation spec-
troscopy with DD spacing ! T2

Combination of
T1, T˚2 , T2, τc

• Widely used in NMR

• Signal includes contribu-
tions from T1, T˚2 , T2, τc

• Often an unwanted byprod-
uct

• Not clearly useful to NV
community

Advanced DD
Specified by designer

Specified by de-
signer

• Can design pulse sequences
to suppress interactions, on-
site fields, pulse errors. . .
[24]

• May be difficult to realize in
a lab (e.g. limited power
and inhomogeneity of MW
driving)

Table 1.5: Summary of spectroscopic measurement protocols on: P1, 13C, other NV groups,
any MW-addressable spin. DD is dynamical decoupling and τc is the correlation time of the
bath.
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Chapter 2

Imaging the Local Charge
Environment

2.1 Introduction

In the previous chapter, we motivated and outlined the use of NV centers [34, 132] as sensors,
establishing that its electronic spin is sensitive to a wide range of external signals [108, 100,
155, 2, 45, 37, 36, 35, 93, 6]. While the language employed was specific to the NV, the
ideas are general to many nano-scale solid-state defects, which has generated great intrigue
[5, 132]. In this chapter, we explore one of the primary obstacles to using any solid-state
defect. The sensitivity of these defects is a double-edged sword: at once suggesting their
use as nanoscale quantum probes of external signals, but muddling the desirable signal with
a turbulent internal local environment. To successfully utilize these defects in a tool, one
must accurately calibrate the tool itself first.

Pre-calibration is especially germane to probes composed of spin defect ensembles. As a
means to enhance the probe’s sensitivity, many efforts have focused on exploiting the power
of many-body correlations available in interacting ensembles [158, 135, 80, 19, 25]. In NV
systems, numerous studies have striven toward this goal by leveraging the properties of high-
density NV systems [3, 144, 99, 2, 140, 123, 74, 11, 75]. However, the local environment
of dense ensembles is far more complex than that of single defects, owing to the fact that
with high NV densities come high densities of other defects. As a result, multiple effects
contribute to the local noise: lattice strain, paramagnetic impurities, charge dynamics, and
NV-NV dipolar interactions. Depending on the diamond sample, some or all of these effects
strongly influence the NV’s magnetic spectrum. Most often though, an external magnetic
field is applied to suppress undesirable effects, but doing so constrains the scope of sensing
applications to those that can tolerate the extra field. Other applications would remain
inaccessible, such as zero-field nuclear magnetic resonance spectroscopy [159, 151], or strain-
sensing [136] (see also Chapter 3). Thus, studying the zero-field spectral properties of NV
ensembles is a crucial step towards expanding the versatility of defect-based quantum sensors.
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Figure 2.1: Typical optically-detected magnetic resonance (ODMR) spectrum of an
electron-irradiated and annealed Type-Ib diamond sample (S1) at zero magnetic field. The
spectrum exhibits heavy tails which cannot be reproduced by either a double Lorentzian
or Gaussian (orange fit) profile. The blue theory curve is obtained via our microscopic
charge model. (Left inset) A typical zero-field spectrum for a single NV center shows only
a single resonance. (Right inset) Schematic depicting an equal density of positive (e.g. N`)
and negative (e.g. NV) charges, which together, create a random local electric field at each
NV center’s position. (b) Nanoscale localization („5 nm) of a single positive charge via
dark-state spectroscopy of an isolated NV center. The shaded regions indicate the prob-
able location of the charge with darker indicating a higher likelihood. Percentages shown
correspond to the confidence intervals of the dark/light region, respectively. (c) Analogous
localization of a more proximal charge defect („2 nm) for a different NV center.

In this chapter, we present three main results. First, we demonstrate that the charac-
teristic splitting of the NV’s magnetic resonance spectrum (Fig. 2.1a), observed in ensemble
NV experiments [59, 89, 14, 37, 68, 49, 171, 134, 4, 86, 90, 17, 130, 73, 134, 104, 22, 96, 142],
originates from its local electric environment; this contrasts with the conventional picture
that strain dominates the zero-field properties of these systems (Section 2.2). Second, we
introduce a charge-based model (Fig. 2.1a, right inset) that quantitatively reproduces the
observed ODMR spectra for samples spanning two orders of magnitude in NV density (Sec-
tion 2.3). Third, our model suggests the ability to directly image the position of individual
charges inside the diamond lattice (Section 2.4. To this end, we propose and implement
a novel method that localizes such charges to nanometer-size volumes (Fig. 2.1b,c). The
essence of our approach is to leverage the interplay between the polarization of the applied
microwave field and the orientation of the local electric field. After discussing the results,
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Figure 2.2: Pulsed ODMR spectra at zero magnetic field for (a) a Type-Ib untreated
diamond sample (S5) and (b) a Type-IIa electron-irradiated and annealed sample (S3). The
spectra portray the two qualitative regimes one expects based upon the average electric field
strength as shown schematically in the right panel of Fig. 2.3d. The blue theory curve is
obtained via our microscopic charge model. (inset) The spectrum for S3 at a magnetic field
« 45 G exhibits three identical hyperfine resonances.

we provide more details into the methods involved in this work.

2.2 Magnetic spectra of NV ensembles

As discussed in Chapter 1, the NV center has a spin triplet ground state (|ms “ ˘1, 0y),
which can be initialized and read out via optical excitation and coherently manipulated
using microwave fields [107]. In the absence of any external perturbations, the |ms “ ˘1y
states are degenerate and separated from |ms “ 0y by Dgs “ p2πq ˆ 2.87 GHz (Fig. 2.3a).

This leads to the usual expectation of a single resonance peak at Dgs, consistent with
experimental observations of isolated NVs (Fig. 2.1a, inset). However, for high-density NV
ensembles, one observes a qualitatively distinct spectrum, consisting of a pair of resonances
centered at Dgs (Fig. 2.1a, sample S1). This spectrum poses a number of puzzles: First,
the line-shape of each resonance is asymmetric and cannot be captured by either a Gaussian
or Lorentzian profile. Second, the central feature between the resonances is sharper than
the inhomogenous linewidth. Third, despite the presence of a strong splitting, there exists
almost no shift of the NV’s overall spectrum.

These generic features are present in diamond samples with NV and P1 (nitrogen impu-
rity) densities spanning over two orders of magnitude. Fig. 2.2 demonstrates this ubiquity.
In particular, it depicts the spectrum for two other samples: one with a significantly lower
NV concentration (Fig. 2.2a, sample S5) and a second with significantly lower concentra-
tions for both NVs and P1s (Fig. 2.2b, sample S3). In this latter case, the P1 density is
low enough that the hyperfine interaction between the NV’s electronic spin and its host 14N
nuclear spin can be resolved. Normally, this hyperfine splitting would simply result in three
identical resonances split from one another by Azz “ p2πqˆ 2.16 MHz [137] (Fig. 2.2, inset).



CHAPTER 2. IMAGING THE LOCAL CHARGE ENVIRONMENT 60

  

 

(a) Shifting

 

(b)
Splitting

Strain Field Strength

F
re

q
u

e
n

c
y

Electric Field Strength

F
re

q
u
e
n
c
y

S3 S1,S5

Strain Field

 Field

(d)

(c) (shifting)

(splitting)

(shifting)

(splitting)

+ hyperfine

+ hyperfine

Figure 2.3: Both strain and electric fields lead to (a) shifting Πz and (b) splitting 2ΠK
of the |ms “ ˘1y manifold. (c) When averaged over an ensemble of NV centers, random
local strain fields lead to a single broad spectral feature (at large strain). (d) In contrast,
random local electric fields lead to two distinct spectral regimes: at small electric fields, the
center hyperfine resonance splits, leading to a total of four resolvable features (S3); at large
electric field, one obtains the characteristic split resonance seen in typical high density NV
ensembles (S1, S5).

However, as shown in Fig. 2.2b, one finds that the central hyperfine resonance is split in
direct analogy to the prior spectra.

The most distinct of the aforementioned features – a split central resonance – has typ-
ically been attributed to the presence of lattice strain [14, 37, 68, 49, 171, 134, 4, 86, 90,
17, 130, 73, 134, 104, 22, 96, 142]. Such strain can indeed lead to a coupling between the
|ms “ ˘1y states, and thus split their energy levels. However, a more careful analysis reveals
an important inconsistency. In particular, given the measured strain susceptibility parame-
ters [14], for each individual NV, any strain-induced splitting should be accompanied by a
comparable shift of the overall spectrum (Fig. 2.3). When shifting is comparable to splitting,
each NV typically leaves a resonance at the central frequency value. Ensemble averaging then
naturally leads to a spectrum that exhibits only a single broadened resonance (Fig. 2.3c).

2.3 Microscopic charge model

In contrast, we demonstrate that all of the observed features can be quantitatively explained
via a microscopic model based upon randomly positioned charges inside the diamond lattice.
The physical intuition underlying this model is simple: each (negatively charged) NV center
plays the role of an electron acceptor, and charge neutrality implies that there must be a
corresponding positively charged electron donor (typically thought to be N`, a positively
charged P1 center).

Such charges produce an electric field that also (like strain) couples the |ms “ ˘1y states,
leading to the splitting of the resulting eigenstates. Crucially, however, the NV’s suscepti-
bility to transverse electric fields (which cause splitting) is „50 times larger than its suscep-
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Sample
ρc

(ppm)
ρNV

(ppm)
ρs

(ppm)
Γ

(MHz)
Ib treated (S1) 1.35(5) 1-10 70(5) 1.16(2)
Ib treated (S2) 1.7(1) 1-10 100(5) 0.78(3)
IIa treated (S3) 0.06(2) 0.01-0.1 12(3) 0.26(2)

Ib untreated (S4) 3.6(4) 0.001-0.01 90(20) 1.0(1)
Ib untreated (S5) 0.9(2) 0.001-0.01 130(30) 3.3(1)
IIa untreated (S6) 0.05(1) 0.001-0.01 16(2) 0.08(3)

Table 2.1: Summary of the measured and extracted parameters for each diamond sample. ρc
and Γ are directly extracted from our microscopic model, while ρs is independently measured
at high magnetic fields and ρNV is estimated from fluorescence counts.

tibility to axial electric fields (which cause shifting) [119, 1]. This implies that even upon
ensemble averaging, the electric-field-induced splitting remains prominent (Fig. 2.3d).

Qualitative picture in hand, let us now introduce the details of our microscopic model.
In particular, we consider each NV to be surrounded by an equal density, ρc, of positive and
negative charges1. These charges generate a local electric field at the position of the NV
center and couple to its spin via the Hamiltonian:

H “pDgs ` ΠzqS
2
z ` pδBz ` AzzIzqSz`

ΠxpS
2
y ´ S

2
xq ` ΠypSxSy ` SySxq. (2.1)

Here, ẑ is the NV-axis, x̂ is defined such that one of the carbon-vacancy bonds lies in the
x-z plane (Fig. 2.1a, right inset), ~S are the electronic spin-1 operators of the NV, ~I are
the nuclear spin-1 operators of the host 14N 2, and δBz represents a random local magnetic
field (for example, generated by nearby paramagnetic impurities). Note that we absorb the
gyromagnetic ratio into δBz. The two terms Πtx,yu “ dKEtx,yu and Πz “ d}Ez characterize

the NV’s coupling to the electric field, ~E, with susceptibilities
 

d‖, dK
(

“ t0.35, 17u Hz
cm/V [119].

In order to obtain the spectra for a single NV, we sample ~E and δBz from their random
distributions and then diagonalize the Hamiltonian. Moreover, to account for the natural
linewidth of each resonance, we include an additional Lorentzian broadening with full-width-
half-maximum, Γ (Section 2.6.3). Averaging over this procedure yields the ensemble spec-

trum. The distribution of ~E is determined by the random positioning of the aforementioned
charges. The distribution of δBz is determined by the local magnetic environment, which
depends sensitively on the concentration of spin defects (Table 2.1).

1We assume that the charges are independently positioned in three dimensions
2We note that the the hyperfine interaction in the Hamiltonian is obtained under the secular approxi-

mation.
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Figure 2.4: Charge localization via dark-state spectroscopy. (a) Single NV ODMR spectra
(untreated Type-Ib diamond) for two different microwave polarizations, φMW, depicting the
reversal of the split-peak imbalance. The data correspond to the localized charge shown
in Fig. 2.1b. (inset) Top view through the NV-axis (ẑ), where φE and φMW are defined
with respect to x̂ (along a carbon-vacancy bond). (b) Analogous split-peak imbalance data
corresponding to the localized charge shown in Fig. 1c. (c) By changing the microwave
polarization, φMW, one can directly control the coupling strength between the |0y and |˘y
states. (d) Measuring the change in the imbalance as a function of φMW allows one to extract
the orientation of the electric field. Dashed lines indicate the polarizations plotted in (a).

In samples S1 and S5 (Type-Ib diamond), δBz is dominated by the dipolar interaction
with a high-density P1 spin bath, whose concentration, ρs, is independently characterized.
Meanwhile, in sample S3 (Type-IIa diamond), the P1 density is over two orders of magnitude
smaller, leading to a δBz that is dominated by interactions with 13C nuclei (with a natural
abundance of 1.1%); despite this difference in microscopic origin, one can also characterize
the effect of this nuclear spin bath using an effective density, ρs. For each sample, using this
independently characterized ρs, we then fit the experimental spectrum by varying ρc and Γ .
We find excellent agreement for all three samples (Fig. 2.1, 2.2) despite their vastly different
defect concentrations (Table 2.1).

A few remarks are in order. First, the presence of local electric fields suppresses the effect
of magnetic noise when δBz ! ΠK “

a

Π2
x ` Π2

y. This is precisely the origin for both the
sharpness of the inner central feature seen in Fig. 2.1a, as well as the narrowness of the inner
hyperfine resonances seen in Fig. 2.2b. In the absence of electric field, the magnetic noise
Bz leads to a symmetric lineshape arising from the symmetric distribution of Bz. However,
in the presence of an electric field, the energy splitting is given by 2

a

pgBzq
2 ` Π2

K, where
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g is the Landé g-factor of NV´ electron. As a result, for the local charge configuration of
each NV´, there is a minimum splitting of 2ΠK and the presence of Bz can only increase it,
leading to an asymmetric lineshape. These results then also suggest that the density of the
charge defects is similar to the density of NV´; because most configurations have a non-zero
minimum splitting 2ΠK, the ensemble averaging largely preserves this sharp inner feature.
Second, in samples where the electric field dominates, the long-range, power-law nature of
the electric field leads to a particularly heavy tailed spectrum. Third, the extracted charge
density, ρc, is consistent with the estimated NV density, ρNV, for all “treated” (electron-
irradiated and annealed) samples (S1-S3). This agrees with our previous physical intuition:
NVs behave as electron acceptors while P1s behave as electron donors. Interestingly, this
simple picture does not directly translate to “untreated” samples (S4-S6) where the observed
charge density is significantly larger than ρNV (Table 2.1); one possible explanation is that
such samples harbor a higher density of non-NV charged defects (e.g. vacancy complexes
[32]).

2.4 Nanoscale imaging of a single charge

Our microscopic model suggests that in samples where one can resolve single NV centers, it
should be possible to directly probe the local charge environment. However, one expects a
key difference in contrast to ensemble measurements: for a single NV, the electric field has
a definite orientation with respect to the NV axes (Fig. 2.4a diagram).

Crucially, this orientation (namely, the angle, φE, in the NV’s transverse plane) dictates
the way in which the electric field mixes the original |ms “ ˘1y states into bright and dark
states:3

|˘y “ 1
?

2

`

|ms “ `1y ¯ e´iφE |ms “ ´1y
˘

. (2.2)

Applying a linearly polarized microwave field will then drive transitions between the |ms “ 0y
state and the |˘y states. However, the relative strength of the two transitions depends on
both φE and the polarization of the microwave field, φMW (Fig. 2.4c). Thus, one generally
expects the measured amplitudes of the corresponding resonances to be different. These
expectations are indeed borne out by the data (Fig. 2.4a,b) 4. We note that this observed
imbalance in the inner hyperfine resonances for a single NV is naturally averaged out in an
ensemble measurement.

Our detailed understanding of this spectroscopy for a single NV suggests a novel method
to extract the full vector electric field and to localize the position of the corresponding charge.
In particular, by measuring the imbalance as a function of φMW, one can extract the electric

3So called because for an single NV the bright state can be addressed with microwaves while the dark
state theoretically cannot. This leads to the “imbalance” discussed in this section. Albeit, we do not observe
perfect bright or dark states. While we did not study deeper as to why, see Section 2.7.4 for our guesses.

4We measure the ODMR spectra of 68 single NV centers in an untreated Type-Ib sample, and find four
that exhibit a significant electric-field-induced splitting with amplitude difference at zero magnetic field.
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Sample name Synthesis
[N]

(ppm)
Electron

irradiation dose
Energy
(MeV)

Anneal temperature
(˝C)

Spectrum

Ib treated (S1) HPHT À200 2ˆ1018 cm´2 2 800 Fig. 2.7a, main text Fig. 1a
Ib treated (S2) HPHT À200 1ˆ1017 cm´2 14 400; 800; 1200 Fig 2.7b
IIa treated (S3) CVD À 1 1ˆ1017 cm´2 2 700; 875 Fig. 2.7c, main text Fig. 2a
Ib untreated (S4) HPHT À200 n/a n/a n/a Fig. 2.8a
Ib untreated (S5) HPHT À200 n/a n/a n/a Fig. 2.8b, main text Fig. 2b
IIa untreated (S6) CVD À1 n/a n/a n/a Fig. 2.8c

Table 2.2: Details of all samples shown in main and supplementary text. All samples are
sourced from Element Six. [N] is specified by the manufacturer.

field orientation, φE. More specifically, we define the imbalance, I ” A`´A´
A``A´

, where A˘ are

the amplitudes of the |ms “ 0y Ø |˘y resonances and derive:

I „ ´ cosp2φMW ` φEq. (2.3)

Thus, φE “ 124p5q˝ can be extracted as the phase offset in Fig. 4d. In combination with the
observed splitting and shifting of the inner resonances, Πz “ 30p50q kHz, ΠK “ 650p10q kHz,
one can fully reconstruct the local electric field vector. We do not observe any changes to
this field over the course of the experiment (months) and find that it varies for different NV
centers. This suggests that it originates from a stationary local charge environment. More-
over, charge neutrality and a low defect density suggest that the electric field is generated
by a single positive charge, which we can then localize to within a nanoscale volume (Fig.
2.1b,c).

2.5 Apparatus and Samples

2.5.1 Sample details

The six diamond samples used in this work are all sourced from Element Six. Three of them
have been treated (electron irradiation at Prism Gem and vacuum annealing) to increase
NV density. The details are listed in Table 2.2.

2.5.2 Experimental apparatus

The experimental apparatus is as described in Section 1.4.3, with some modifications. Fore-
most, to rotate the MW polarization, we deliver microwaves via a 46 AWG magnet wire.
The wire is mounted on a lens rotation mount (Thorlabs RSP05)), and is long enough to
prevent major stress on the wire during rotation. By rotating the wire using the mount, we
effectively change the polarization of the microwaves at the site of the single NV center of
interest. The calculation of the polarization angle in the NV center frame is discussed later
in the Section Microwave Angle Projection.



CHAPTER 2. IMAGING THE LOCAL CHARGE ENVIRONMENT 65

Using a translation stage the height and XY position of the wire is set so the wire hovers
a few microns above the back surface of the diamond, and approximately 550 um above the
focal plane containing our single NVs. This configuration was designed for simplicity, rather
than efficiency. While approximating the microwave linear polarization angle at the location
of the NV is simplified, the power delivery to the NV is severely limited, as will be more
explicitly addressed in the discussion of Rabi frequency calibration. The wire heats due to
poor transmission, but since it is not in thermal contact with the diamond, positional drift
of single NVs is undetectable.

When needed, magnetic fields are set by a permanent magnet mounted on adjustable
posts. Since only rough alignment to the NV z-axis is required for our purposes, the magnetic
fields are aligned by hand. The posts can be moved to different locations on the optical table
for alignment to each of the four possible NV orientations.

2.5.3 Isolating single NVs

The diamond sample used for single NV experiments is sample S4 (untreated type Ib).
We found a region of the sample where we could isolate single NVs as confirmed by a gp2q

measurement (Fig. 2.5).

Figure 2.5: g2pτq measurement on NV1: the extracted g2p0q “ 0.17`0.05
´0.03 ă 0.5 definitively

confirms it is a single NV center.

We chose this type for the high charge density that ensemble measurements on similar
samples suggested. High charge density should increase the chance that any given NV would
exhibit a signature of local charge in its spectrum.

Whereas the expected NV density of Type Ib diamond precludes addressing single NVs
with a diffraction-limited optical resolution, in our sample, the observed NV density varies
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over orders of magnitudes between distinct regions. Within one confocal scan, four regions
are easily distinguished. In the darkest of these regions, isolated single NVs are spaced
roughly 2 µm apart. We do not know the origins of these regions, but suppose they are
related to the growth process.

The charge source in regions is highly correlated to the NV density, so we should not
expect to find many isolated single NVs exhibiting a charge signature. Indeed, we searched
through 68 isolated single NVs in this dark region and found only 4 single isolated NVs
exhibiting a charge signature, much lower than the NV density. Evidently, in the low density
region, where the NVs are too far apart for their charges to contribute much to each other,
charge interaction likely arises due to a mechanism distinct from that of the high density
region. Further study is required to understand the origin of charges for individual NVs and
whether the charge density can be accurately estimated by the number of spectra exhibiting
charge influence.

2.6 Charge model and ensemble spectrum: details

In this section, we provide additional details regarding our charge model. This includes an
analysis of the electric and magnetic field distributions, as well as an explanation of the
fitting procedure of the ensemble spectra and the estimation of error bars.

2.6.1 Electric field distribution

In our model, we consider each NV to be surrounded by an equal density, ρc of positive and
negative point-like charges. We simulate the positions of these charges by randomly placing
a large number (Ncharge „ 100) of points within a spherical volume. The radius of the sphere,
R, is determined such that the average density of the charges matches ρc; in particular, this
implies

R “

ˆ

3

4π

Ncharge

n0ρc

˙
1
3

(2.4)

where n0 “ 1.76 ˆ 10´4 (ppm¨nm3)´1 is the factor relating the number density (in ppm) to
the volume density. Based on the positions of the charges t~riu, we calculate the electric field
at the center of the sphere (the NV’s location):

~E “
ÿ

i

e

4πε0εr

r̂i
r2
i

(2.5)

where εr “ 5.7 is the relative permittivity of diamond[160].

Sampling over t~riu yields a distribution for ~E. We are particularly interested in the
transverse component, EK, which couples „ 50 times stronger to the NV, i.e. ΠK “ dKEK.
The distribution P pΠKq for various densities are shown in Fig. 2.6. We note that these

distributions are related to each other by a simple rescaling, ΠK Ñ ρ
2{3
c ΠK, though we do

not incorporate this rescaling explicitly in our sampling procedure.
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Figure 2.6: Distributions for the transverse electric field component, ΠK “ dKEK, at var-
ious charge densities. The distributions were generated by the charge sampling procedure
described in the text.

2.6.2 Magnetic field distribution

We assume that the local magnetic environment arises from interactions with other magnetic
impurities. For Type-Ib diamond, the dominant impurities are the electronic spins associated
with P1 centers. For Type-IIa diamond, the leading contribution comes from the nuclear
spins associated with 13C (1.1% natural abundance).

In both cases, we model the effect of the magnetic impurities as a dipolar interaction
between the NV and a bath of electronic spins

`

s “ 1
2

˘

at density ρs:

Hdipolar “
ÿ

i

´
J0

r3
i

´

3pŜ ¨ r̂iqpP̂i ¨ r̂iq ´ Ŝ ¨ P̂i

¯

. (2.6)

Here t~riu are the positions of the magnetic impurities, Ŝ, P̂i are the spin operators for the NV
and impurities, respectively, and J0 “ p2πq52 MHz¨nm3. Under the secular approximation,
this interaction further simplifies to:

Hdipolar “ δBz Sz , δBz “
ÿ

i

´
J0

r3
i

p3n̂zi ´ 1q pi , (2.7)

where n̂zi “ ẑ ¨ r̂i, and pi “ ˘1{2 are the spins of the magnetic impurities at the mean-field
level.

A few remarks are in order. First, the coupling strength for nuclear spins is „ 2600 times
weaker. This can be effectively modeled by an electronic spin bath, whose the density is



CHAPTER 2. IMAGING THE LOCAL CHARGE ENVIRONMENT 68

reduced by the same factor. All samples are then characterized with a single parameter ρs.
Second, the 13C nuclear spins give rise to an additional interaction via the Fermi contact
term [137]. Because directly accounting for this is difficult, we approximate its effect as
an extra contribution to ρs. The resulting spectra are in quantitative agreement with the
experimental data at high field (Fig. 2.7,2.8), validating this approximation.

Similar to the electric field distribution, we sample t~riu for Nspin „ 100 from a sphere
whose radius is chosen to be consistent with ρs (Eq. 2.4). In this case, we also sample a
configuration of spins tpiu from a uniform distribution. Inserting t~riu and ρs into Eq. 2.7
allows us to calculate δBz for each realization.

2.6.3 Fitting procedure and error estimation

Our fitting procedure for each ensemble sample consists of two steps. First, we fit a spectrum
taken at high magnetic field, where the effects of electric fields are highly suppressed and
the dominant broadening is due to magnetic impurities (Figs. 2.7 and 2.8, left column).
This allows us to characterize ρs independently. Second, we fit a spectrum at zero applied
field using the previously determined magnetic noise and an additional contribution due to
electric fields (Figs. 2.7 and 2.8, right column). This determines the charge density ρc, as
well the the natural linewidth Γ.

For the high-field spectra, we sample over the magnetic impurities configurations following
the procedure outlined in the previous section. For each configuration, we calculate the NV’s
resonance frequencies using the full Hamiltonian of the system, Eq. (1) of the main text.
Repeating this procedure for „ 5000 realizations, we obtain a histogram of resonance energies
that is proportional to the experimentally observed spectra. We generate such spectra for a
range of ρs and fit each individually to the high-field measurement, optimizing with respect to
the center frequency, vertical offset, and overall amplitude. We characterize ρs by calculating
the least-square residuals between our simulated spectra and the experimental data (Figs. 2.7
and 2.8, left column). In particular, we identify ρs that minimizes the residual as the best-fit
parameter and estimate its error from the range of values whose residuals lie within 10% of
the minimum.

The fitting procedure for the zero-field spectra follows in close analogy, except we now av-
erage over both the charge distribution and the magnetic impurity distribution. Specifically,
we first sample the positions of the charges and calculate the electric field at the NV center
(„ 5000 realizations). For each charge realization, we then sample over many configura-
tions of magnetic impurities to simulate the magnetic noise (additional „ 5000 realizations).
Another important difference from before is that we now incorporate a natural linewidth
for each resonance. To do so, we convolve the distribution of resonance frequencies with a
Lorentzian profile characterized by a full-width-half-maximum Γ. This linewidth accounts
for broadening that is independent from the charge environment or static magnetic fields.
For example, it would include contributions from power broadening, fluctuating fields in the
environment (i.e. T2,echo), and strain-induced broadening.
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c)

a)

b)

Figure 2.7: Ensemble fitting procedure applied to the treated samples: (a) Ib treated (S1),
(b) Ib treated (S2), and (c) IIa treated (S3). The main plots show the least-square residuals
as a function of ρs (left) and ρc (right) under large („ 25-50 G) and zero applied field,
respectively. We identify the best-fit values for ρs, ρc based on the minimum residual, and
we estimate their error from the range values whose residuals lie within 10% of the minimum
(blue shaded regions). The insets depict the best-fit spectra (blue curve), along with the
experimental data (black points).
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c)

a)

b)

Figure 2.8: Fitting procedure applied to the untreated samples: (a) Ib untreated (S4), (b)
Ib untreated (S5), and (c) IIa treated (S6). See caption of Fig. 2.7 for description.

To isolate the effects due to the charge environment, we fit the zero-field spectra as a
function of ρc while fixing the magnetic noise (ρs) based on the previous step. For each value
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of ρc, we optimize with respect to the natural linewidth Γ, the center frequency, overall
amplitude, and vertical offset. These results are shown in the right column of Figs. 2.7 and
2.8. As before, we estimate the error on ρc from the 10% interval of the residuals, while for
Γ we take the standard error estimated by the fitting routine.

All simulated spectra agree quantitatively with the experimental data, and the extracted
ρs, ρc and Γ are listed in Table I in the main text. We note that for one of the six samples
(S5), the linewidth contribution from δBz is on the same order as Γ. Since we assume δBz

is the dominant source of noise in the high field spectra when extracting ρs, the magnetic
impurity density for this sample may not be precise.

2.7 Charge localization using single NVs: details

In this section, we discuss the details associated with the charge localization based on a
single NV. We consider the derivation of the imbalance and relate it to the electric field
orientation and the microwave polarization. We note that the imbalance of the resonances
is strong evidence for the presence of a nearby charge, as most other interactions would not
modify the transition amplitudes differentially with respect to linearly polarized microwave
fields.

To extract the position of the charge, we first calculate the polarization of the microwave
field in the reference frame of the NV, φMW (Fig. 2.6a inset of the main text). By varying
φMW, and measuring the imbalance one can directly extract the transverse orientation of
the electric field φE. Combined with the observed splitting 2ΠK and shifting Πz we can
fully determine the local electric field vector and localize the corresponding charge. These
procedures are detailed below.

2.7.1 Derivation of the Imbalance

In order to quantitatively extract the orientation of the electric field φE, we introduce the
notion of imbalance as the difference in the weights of the resonances in the observed spectra.
This imbalance I is directly related to φMW and the transverse orientation of the electric
field φE.

We begin by focusing our attention to the states with 14N nuclear spin mI “ 0 (two
inner resonances). In the presence of an electric field, these states are described by the
Hamiltonian:

H “ pDgs ` ΠzqS
2
z ` ΠxpS

2
y ´ S

2
xq ` ΠypSxSy ` SySxq. (2.8)

One finds that the electric field couples only the |ms “ ˘1y states, leading to the new eigen-
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states:

|`y “ 1
?

2

`

|ms “ `1y ´ e´iφE |ms “ ´1y
˘

(2.9)

|´y “ 1
?

2

`

eiφE |ms “ `1y ` |ms “ ´1y
˘

(2.10)

with energy splitting 2ΠK “ 2
a

Π2
x ` Π2

y.
The magnetic resonance spectrum is obtained by driving transitions from the |ms “ 0y

state to the |˘y states using a linearly polarized microwave field. The matrix elements
associated with these transitions are

M˘ “ x0|Sx cosφMW ` Sy sinφMW |˘y (2.11)

“
1

2

“

e´iφMW ¯ eipφE`φMWq
‰

(2.12)

where φMW is the direction of microwave polarization. This results in two resonances with
amplitudes, A˘ ” |M˘|

2:

A˘ “
1

2
¯

1

2
cosp2φMW ` φEq. (2.13)

By defining the imbalance I ” A`´A´
A``A´

, we recover Eq. (2) in the main text:

I “ ´ cosp2φMW ` φEq. (2.14)

We note that the imbalance reverses direction for φMW Ñ φMW ` 90˝ and that, for certain
microwave angles, the amplitude of one resonance can fully vanish.

For completeness, we also derive the imbalance of the outer 14N hyperfine states, which
correspond to mI “ ˘1. The derivation follows the same logic as above, except the Hamil-
tonian is now

H “ pDgs ` ΠzqS
2
z ` ΠxpS

2
y ´ S

2
xq ` ΠypSxSy ` SySxq ˘ 2AzzSz. (2.15)

The eigenstates |˘y are split by 2
a

A2
zz ` Π2

K. For mI “ 1, one finds

|`y “ 1
a

1` ξ2

`

|`1y ´ ξe´iφE |´1y
˘

(2.16)

|´y “ 1
a

1` ξ2

`

ξeiφE |`1y ` |´1y
˘

(2.17)

where

ξ “
Azz
ΠK

¨

˝

d

1`

ˆ

ΠK
Azz

˙2

´ 1

˛

‚ (2.18)
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An analogous expression holds for mI “ ´1. In both cases, the amplitudes of the |ms “ 0y
Ø |˘y resonances are

A˘ “
1

a

1` ξ2

`

1` ξ2
¯ 2ξ cosp2φMW ` φEq

˘

. (2.19)

This leads to an imbalance:

I “ ´2ξ cosp2φMW ` φEq

1` ξ2
. (2.20)

Thus, the imbalance of the outer resonances follows the same phase dependence as the inner
resonances, but the maximum imbalance depends on the ratio ΠK{Azz. In particular, in the
limit ΠK " Azz, ξ « 1 and a fully dark state is still possible; whereas, for ΠK ! Azz, the
maximum imbalance is reduced to Imax « ΠK{Azz.

The resulting dependence on φMW and φE does not change if we include the interaction
with a nearby 13C (within the secular approximation), since it interacts with the NV in a
similar fashion to 14N hyperfine.

2.7.2 Microwave Angle Projection

We define pX̂, Ŷ , Ẑq as our lab frame shown in Fig. 2.9a and the NV frame px̂, ŷ, ẑq as shown
in Fig. 2.1a left inset in Section 2.4. These two frames are related by the crystallographic
axes of the sample, and can be easily related once the angle of the NV axis is determined by
an external magnetic field. The translation to the origin of the NV frame from the origin of
the lab frame is known to within a few tens of um by a series of overlapping confocal image
scans.

Because the magnet wire is so long and placed so far away from the target NVs, we
approximate the microwave delivery wire to be infinitely long, with an angle φWire with
respect to X̂, and an in-plane distance r away from the NV. We extract φWire and r from an
image of the sample geometry (Fig. 1.9 inset). The height h of the wire’s plane above the
NV is assumed to be 550 ˘ 100 µm given the thickness of the diamond 500 µm, the wire
diameter 40 µm, and an intentional air gap to avoid contact to the sample („ 30 µm). The
wire carries a current which generates a linearly polarized microwave field at the location of
the NV (Fig. 2.9) whose transverse projection φMW drives the |ms “ 0y Ø |˘y transition.
φMW is fully determined by the values tφWire, h, ru.

To estimate error in each realization of φWire, we use a Monte Carlo method. We account
for the existence of an immeasurable tilt of the wire. This tilt is imperceptible because the
wire is so close to the diamond surface that the rotation mount obscures viewing the tilt.
As well, the immersion oil distorts the image of any tilt. Consequently, we assume the tilt
has an upper bound of ˘10˝ out of the plane. We sample φMW across the random variables
4000 times to obtain a distribution for the φMW.
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Figure 2.9: a) Top view of lab frame, X̂, Ŷ , and Ẑ axes are defined as shown. Wire is
displayed at an angle φWire relative to X, and r is the distance between the wire and the
NV. The top-right corner of the diamond has been marked as a fiducial. b) Side view of

lab frame. With φWire “ 0, when the oscillating current ~I flows in the direction shown, we
calculate the direction of the magnetic field vector ~B at a height h below the wire as shown.

2.7.3 Experimental Hindrances to Localization

There are some limitations to this set up. First, there are some angles for which the pro-
jection of the microwave magnetic field onto the NV transverse plane is much lower than
the projection onto the NV z-axis. At these angles, the maximum Rabi frequency is much
lower, reducing contrast in our measurements, as explained in Section 1.5.2. Often, the Rabi
frequency is slower than the decoherence rate, such that no Rabi oscillations can be observed
at all. In these cases, we assume the decoherence rate to be an the upper bound on the Rabi
frequency and the actual frequency resolution.

Second, since our frequency resolution is slower than the decoherence rate, the contrast of
these spectra is very small. Consequently, the measurement takes „week to complete. Since
a single high-quality ODMR spectrum captures the shifting and splitting necessary to extract
the magnitudes of the axial and transverse electric fields, we only took one complete ODMR
spectrum with high resolution. For the polarization rotation angles, we either reduced the
frequency resolution, or measured at only 6 specific frequencies as detailed in the following
section.

Third, since the ultimate MW polarization the NV receives is φMW “ arctanpBy,NV {Bx,NV q,
there are potentially a large range of polarization angles that are highly sensitive to small
changes in the wire geometry due to the large slope in the arctangent function. Particularly,
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(a)

(b)

Figure 2.10: Spectra taken with and without a magnetic field applied along the NV z-
axis. a) Left: zero-field spectrum for NV1 with microscopic model fit; Right: spectrum
with an applied magnetic field and a fit to 3 Lorentzians. b) Left: zero-field spectrum for
NV2 with microscopic model fit; Right: spectrum with an applied magnetic field. The fit
function is two sets of three Lorentzians. The Lorentzians in each set are separated by the
14N hyperfine splitting. The sets are split from each other by a fit parameter for the 13C
hyperfine interaction.

if the over displacements in the XY plane between the NV and the wire is small, minor
changes to the displacement transform to large polarization rotations in the NV transverse
plane. To combat this, we displace the wire by r “ 100µm ˘ 30µm from the NV, which
effectively reduces the sensitively.

2.7.4 Single Charge Localization

We search through 68 single NVs and find four exhibiting a significant imbalance in the
zero-field spectrum consistent with a nearby charge, from which we analyze two in this work
(referred to as NV1 and NV2). Because these spectra can also be affected by the presence
of a nearby strongly-coupled 13C, we apply a bias Bz field, which suppresses the effect of the
electric field and reveals such a presence. The zero- and high-field spectra for these two NVs
are shown in Fig. 2.10. For NV1, we find three resonances spaced „2.16 MHz apart, a signal
associated exclusively with 14N hyperfine. In contrast, for NV2 we observe four resonances,
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Figure 2.11: Position of the six frequencies (red) considered when computing the imbalance.
Instead of measuring full-spectra, we take data points closely spaced at the location of each
of the two inner resonances and two data points far from the resonances, so as to measure
the baseline signal.

indicating the additional presence of a strongly-coupled 13C. We fit the spectrum of NV2 to
extract the 13C hyperfine coupling strength « 1.65(7) MHz. To confirm the charge origin,
we then measure the full imbalance curve using dark-state spectroscopy.

For NV1, we can clearly resolve the four resonances. The information about the imbalance
is encoded into the amplitude of the inner two resonances. To estimate these amplitudes
we measure only six spectral data points for each φMW (Fig. 2.11): two data points closely
spaced at the location of each of the two inner resonances and two data points far from
the resonances (measurement of the baseline contrast) . The imbalance extracted with this
method is shown in the main text Fig. 4d, from which we extract φE “ 124p5q˝.

For NV2, since we cannot clearly resolve the four resonances due to the presence of the
nearby 13C, we estimate imbalance by integrating the area on either side of the fit center
frequency (Fig. 2.12 a). For these set of spectra, the frequency resolution can be reduced,
which increases the speed of the measurements. The imbalance curve is shown in Fig. 2.12b,
from which we extract φE “ 236p15q˝.

We note that the amplitudes of these curves are much smaller than unity. This discrep-
ancy from our simple theoretical model can also be explained by a few possibilities. First,
our methods do not directly probe the weight of the transitions. Second, due to the intrinsic
linewidth and power broadening, the inner and outer resonances overlap, which precludes
isolating any single transition. Third, a dynamic charge bath may generate a background
spectrum that is not included in our model.

In order to localize the charge, we also need to extract the charge-induced splitting ΠK
and shifting Πz. In direct analogy to the treatment of ensembles, we fit the full zero-field
single NV spectra using our microscopic model to extract these parameters as follows:
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Figure 2.12: a) Two spectra from NV2 with fit from the microscopic model at different
values of φMW. The dashed vertical line indicates the fit center frequency (2.8706 GHz). We
estimate the imbalance by compare the integral on either side of the center frequency. b)
Resultant imbalance sinusoid, from where we extract φE “ 236p15q˝.

1. The spectra depend on five physical parameters: the three components of the electric
field ~E, the density of magnetic defects ρs, and the natural linewidth Γ. We also include
a global amplitude scaling factor and background offset.

2. To account for the magnetic noise distribution, we follow a prescription similar to the
previous magnetic field distribution section. We begin by considering the distribution
of magnetic field for ρs which yields a probability distribution for measuring a particular
value of δBz. We then discretize over δBz and for each possible value, perform steps
3-5. Each of the resulting spectra is weighted by the probability of measuring δBz.

3. We solve the full Hamiltonian of the system (including 13C and 14N hyperfine interac-
tions where applicable) to find the positions of the resonances.

4. We generate a spectrum by weighting each resonance by its transition amplitude with
the |ms “ 0y state. We compute the weight by fixing the microwave direction in the x̂
axis and computing |x0|Sx |˘y|2.

5. We broaden each resonance by a Lorentzian distribution with full-width-half-maximum
of Γ.

6. We use a least-squares regression method on steps 1-5 over the seven fitting parameters,
reproducing the experimental spectra.

Note, in order to determine Πz, we use the ensemble-averaged Dgs “ 2870.25p5q MHz from
the adjacent region of the same diamond containing a high density of NVs as a reference
value (Figure 2.8a).



CHAPTER 2. IMAGING THE LOCAL CHARGE ENVIRONMENT 78

From the fits (see Figure 2.4a,b) we extract the shifting and splitting due to the electric
field:

NV1: Πz “ p30˘ 50q kHz , ΠK “ p650˘ 10q kHz (2.21)

NV2: Πz “ p270˘ 70q kHz , ΠK “ p850˘ 80q kHz . (2.22)

Using the susceptibilities [119], we extract the electric field vectors at the position of the
single NVs:

NV1: pEx, Ey, Ezq “ p´2.1˘ 0.2, 3.2˘ 0.2, 9˘ 14q MV/m (2.23)

NV2: pEx, Ey, Ezq “ p´2.8˘ 1.1, ´4.1˘ 0.8, 77˘ 20q MV/m . (2.24)

The parameters of the electric field uniquely determine the position of the positive single
fundamental charge (main text Fig. 1b and 1c). The confidence intervals can be estimated
using a Monte Carlo method.

2.8 Summary and outlook

This chapter demonstrates that the zero-field spectral features of NV ensembles are in fact
dominated by the influence of local electric fields, an explanation that stands in stark contrast
to the notion that is originates from lattice strain as is asserted abundantly in literature.
Our microscopic charge model quantitatively captures the magnetic resonance spectra for
NV ensembles spanning two orders of magnitude in defect density. It also suggests a method
to locate the position of individual charges near a single NV center. We then employed this
method to image a single charge to within a nanoscale volume of an NV.

Our work encouraged a path for a number of follow-up studies and applications. First,
while we consistently correlated charge density and NV density in all of the treated samples
we measured (simultaneously consistent with the expectation of charge neutrality), all of the
untreated samples exhibited spectral features indicative of an anomalously large charge den-
sity. The origin of these additional charges remains an open question as of the time of this
writing. Second, the picture our results provides for NV ensembles at low magnetic fields lays
the groundwork for precise sensing of electric fields, lattice strain [66, 136], gyroscopic pre-
cession, and magnetically-sensitive quantum materials. Third, by using the charge-induced
suppression of δBz, one could conceive of a method to enhance the NV’s resilience to mag-
netic noise. Fourth, to date, the charge model has been expanded to provide explanations for
exotic optical phenomena in the NV, and is the central foundation for an enhanced electric
field sensing technique [16]. Finally, given the previous success with understanding optical
phenomena, there is hope that further understanding the local charge environment of single
NVs could reveal the physics of optical spectral diffusion at low temperatures [28, 78].
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Chapter 3

NVs Under Pressure

3.1 Introduction

In the pursuit of understanding materials on a fundamental level, one of the generic tech-
niques is to tune the strengths of the interactions intrinsic to the object of study. In physics,
the material is often cooled, which brings its particles closer together, strengthening their
interactions. However, few table-top experimental physicists have paid much attention to a
technique common to the realm of geo- and planetary-sciences: increasing pressure. While
the effects of temperature have a hard cut-off of 0 K and the coldest achievable temperatures
are currently limited to Bose-Einstein condensed gases, in principle pressure can increase in-
teractions far beyond the limits of temperature—just look at white dwarfs and neutron
stars—and do so for almost any material. Using pressure, the physical, chemical and elec-
tronic properties of matter are all highly tunable. This knowledge compelled the geo- and
planetary -sciences to develop the diamond anvil cell (DAC), enabling tabletop experiments
to investigate a diverse landscape of high-pressure phenomena ranging from the properties
of planetary interiors to transitions between quantum mechanical phases.

In this chapter, we demonstrate the versatility of a novel platform based upon NV spin
defects combined with the common DAC [76, 61]. In particular, we instrument DACs with a
layer of NV centers directly at the tip (culet) of the diamond anvils, enabling the pursuit of
two complementary objectives in high pressure science: first, to understand the strength and
failure of materials under pressure (e.g. the brittle-ductile transition) and second, to discover
and characterize new phases of matter (e.g. high temperature superconductors) [161, 65, 54,
41, 138]. Achieving both goals hinges upon the sensitive in situ imaging of signals within the
high pressure chamber of the DAC. For the first goal, measuring the local stress environment
permits the direct observation of inhomogeneities in plastic flow and the formation of line
defects. For the second goal, the ability to spatially resolve field distributions can provide
a direct image of complex order parameters and textured phenomena such as magnetic do-
mains. Unfortunately, the utility of most conventional tabletop spectroscopy techniques is
limited from achieving either goal due to enormous stress gradients generated near the sam-
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ple, which stem from the high pressure inside the chamber and ambient pressure outside. As
a result, conventional techniques are often restricted to measuring bulk properties averaged
over the entire DAC geometry via a probe external to the device.

Our approach to these challenges is to utilize an ensemble of NV centers („1 ppm density)
implanted „50 nm from the surface of the diamond anvil culet (Fig. 3.1, A and B). Crucially,
both the nature and energy of these spin states are sensitive to local changes in stress,
temperature, magnetic and electric fields (Fig. 3.1C) [Barson:2017a, 4, 108, 37, 121, 35,
143]. Their energy levels are probed by performing ODMR spectroscopy (Fig. 3.1D). [87,
20, 113].Measuring the local stress environment intrinsic to the DAC serves as a calibration
for using the NVs subsequently as probes of a multitude of extrinsic signals (akin to the
previous chapter) over the wide range of environmental conditions and DAC can produce.

3.2 Experimental Apparatus Particulars

3.2.1 Diamond Anvil Cells

In our experiments, we utilize a miniature DAC (Fig. 3.1, A and B) consisting of two opposing
anvils compressing either a beryllium copper or rhenium gasket [145]. The sample cham-
ber defined by the gasket and diamond-anvil culets is filled with a pressure-transmitting
medium (either a 16:3:1 methanol/ethanol/water solution or cesium iodide) to provide a
quasi-hydrostatic environment. The miniature diamond anvil cell body is made of nonmag-
netic steel with cubic boron nitride backing plates (Technodiamant). Microwave excitation
is applied via a 4 µm thick platinum foil compressed between the gasket and anvil pavil-
ion facets [146], while scanning confocal microscopy (with a transverse diffraction-limited
spot size „600 nm, containing „103 NVs) allows us to obtain two-dimensional ODMR maps
across the culet.

All diamond anvils used in this work are synthetic type-Ib ([N] À 200 ppm) single crys-
tal diamonds cut into a 16-sided standard design with dimensions 0.2 mm diameter culet,
2.75 mm diameter girdle, and 2 mm height (Almax-easyLab and Syntek Co., Ltd.). For
stress measurement, both anvils with (111)-cut-culet and (110)-cut-culet are used, while
for magnetic measurements on iron and gadolinium, (110)-cut-culet anvil is used. We per-
form 12C` ion implantation (CuttingEdge Ions, 30 keV energy, 5 ˆ 1012 cm´2) to generate
a „50 nm layer of vacancies near the culet surface. After implantation, the diamonds are
annealed in vacuum (ă 10´6 Torr) using a home-built furnace with the following recipe: 12
hours ramp to 400˝C, dwell for 8 hours, 12 hours ramp to 800˝C, dwell for 8 hours, 12 hours
ramp to 1200˝C, dwell for 2 hours. During annealing, the vacancies become mobile, and
probabilistically form NV centers with intrinsic nitrogen defects. After annealing, the NV
concentration is estimated to be around 1 ppm as measured by fluorescence intensity. The
NV centers remain photostable after several iterations of compression and decompression
up to 48 GPa, with spin-echo coherence time T2 « 1 µs, mainly limited by the nitrogen
electronic spin bath.
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Figure 3.1: NV centers integrated into a diamond anvil cell. (a) Schematic of the DAC
geometry. Two opposing anvils are compressed by a nonmagnetic steel cell and cubic boron
nitride backing plates (gray). NV centers are initialized and read out using a 532 nm laser
focused to a diffraction-limited spot („600 nm) which is scanned across the culet surface.
(b) The DAC sample chamber is defined by the gasket-anvil assembly (diagram not to scale);
it is loaded with the sample of interest, a pressure-transmitting medium, and a single ruby
microsphere (pressure calibration). A „50 nm layer of NV centers is embedded into the
diamond anvil directly below the sample chamber. (c) Stress (top) both shifts and splits
the |ms “ ˘1y sublevels at first order; in particular, the shifting is characterized by Πz “

α1pσxx`σyyq`β1σzz, and the splitting is characterized by Π2
K “ rα2pσyy ´ σxxq ` β2p2σxzqs

2
`

rα2p2σxyq ` β2p2σyzqs
2. An axial magnetic field (bottom) splits the |ms “ ˘1y sublevels at

first order, but a transverse magnetic field leads to shifts only at second order. (d) ODMR
spectrum from an NV center ensemble under an applied magnetic field. (e) Each pair
of resonances in (D) corresponds to one of the four NV crystallographic orientations. (f)
Comparison of high pressure magnetometry techniques. We define the spatial resolution as a
characteristic sensor length scale over which the sample magnetism is integrated. Estimates
for our current work are shown assuming a sample suspended in a pressure medium 5 µm
away from the culet (black open circle). We project that by exfoliating a sample directly
onto the culet surface and using 5 nm implanted NV centers, the distance from the sample
can be significantly reduced, thus improving both dipole precision and spatial resolution
(open red circles). Inductive methods (pickup coils [green diamonds] and SQUIDs [blue
squares]) integrate the magnetization of a sample over the coil’s area [146]; to this end, the
diameter associated with the coil is taken as the “spatial resolution” although in principle,
the sample inside the chamber can be significantly smaller. In contrast, high energy photon
scattering techniques (x-ray magnetic circular dichroism [orange hexagons], and Mössbauer
spectroscopy [pink triangles]) probe atomic scale magnetism [146]; the length scale for these
methods is shown here as the spot size of the excitation beam.
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Figure 3.2: (A) Schematic of the setup explicitly depicting the platinum foil used for mi-
crowave excitation. The gasket has been cross sectioned for visual clarity. (B) Schematic
from the perspective of the objective lens. The anvil has been omitted for visual clarity.
Diagrams are not to scale.

3.2.2 Cryostat

To create the gadolinium P-T phase diagram (Section), we put the DAC into a closed-cycle
cryostat (attocube attoDRY800). The DAC is placed on the sample mount of the cryostat,
which is incorporated with a heater and a temperature sensor for temperature control and
readout from 35 - 320 K. The AOM and the SPCM are gated by a programmable multi-
channel pulse generator (SpinCore PulseBlasterESR-PRO 500) with 2 ns temporal resolution.
A microwave source (Stanford Research Systems SG384) in combination with a 16W amplifier
(Mini-Circuits ZHL-16W-43+) serves to generate signals for NV spin state manipulation.
The microwave field is delivered to the DAC through a 4 µm thick platinum foil compressed
between the gasket and anvil pavilion facets (Fig. 3.2), followed by a 40 dB attenuator and
a 50 Ω termination. Electrical contact between the conducting gasket and platinum foil
reduces the microwave transmission efficiency and was chosen out of technical simplicity.

For this experiment, we use beryllium copper gaskets in the DAC. The Gd sample is cut
from a 25 µ m thick Gd foil (Alfa Aesar Stock No. 12397-FF) to a size of „ 30 µm ˆ 30 µm
and loaded with cesium iodide (CsI) as the pressure-transmitting medium. A single ruby
microsphere loaded into the chamber is used as a pressure scale.

For each experimental run, we start with an initial pressure (applied at room tempera-
ture 300 K) and cool the cell in the cryostat. Due to contraction of the DAC components
with decreasing temperature, each run of the experiment traverses a non-isobaric path in
P-T phase space, Fig. S16A. Using fiducial markers in the confocal scans of the sample
chamber, we track points near and far from the Gd sample throughout the measurement.
By performing ODMR spectroscopy at these points for each temperature, we monitor the
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magnetic behavior of the sample. More specifically, comparing the spectra between the close
point (probe) against the far away one (control), Fig. 3.10, enables us to isolate the induced
field from the Gd sample.

3.2.3 Noise Spectroscopy Humidity Control

The T1 measurements in Section 3.5 were performed by placing the sample on a Peltier
module to reduce temperature. We these measurements did not require cooling to freezing
temperatures, they still needed temperatures below the dew point of the lab. Out of expedi-
ency, we decided to forgo a vacuum chamber and directly reduce the dew point around the
sample to prevent condensation. We used a normal dehumidifier to reduce moisture in the
room, and placed as many silicone desiccants (both tubs and packets) around the sample
and mount as we could fit. Finally, we covered the sample region of the table with plastic
cloth to minimize moist airflow

3.3 Stress Sensing

Stress imaging in a DAC permits the study of pressure-related phenomena to a level of de-
tail that was previously impossible. For example, access to the fine details of the stress in a
material reveals specific modes of failure, the precise nature of plastic flow, and the partic-
ularities of defect formation. In addition, stress imaging is a prerequisite for the imaging of
magnetic, electric, and thermal textures in a DAC, for in order to isolate their effects, the
effects of the pressure-induced stress must first be calibrated.

3.3.1 Stress and Strain

Stress and strain provide complementary perspectives on the phenomena of deformation.
Strain is a measure of the displacement between a particle’s position in a deformed material
relative to its position in that material before it was deformed. Stress is a measure of the
internal forces that neighboring particles in a continuous material exert on each other1. The
transformation between the two is akin to the transformation between a magnetic field and
the displacement of a magnetic particle: it is direct, but relies on particular susceptibilities
the particle has to being moved. Given the meanings of each quantity, it is clear why stress
(akin to magnetic fields: maps of the force a magnetic particle would feel at any given
location) appears in the Hamiltonian.

Both quantities are 3-dimensional rank-2 tensors (i.e. 3x3 matrices) describing the state
of an infinitesimal volume. The specific quantities of the tensor elements depends on the
choice of coordinate system. Their diagonal elements represent forces and displacements in
the X, Y, and Z directions, while their off-diagonal elements represent torque and rotational

1Technically, stress expresses the derivative of the force with respect to an infinitesimal surface area.
The study of continuous materials relies on differential geometry.
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displacements around the X, Y, and Z axes. As long as the material has finished deforming, it
is in static equilibrium, so all forces and torque must be balanced, implying straightforwardly
that the tensors must be symmetric. As an example, consider the off-diagonal stress element
σxy which represents a force in the y-direction applied to a surface facing the x-direction in a
Cartesian coordinate system. It is a torque on the XY corner of an infinitesimal cube. There
is only one other torque on this corner coming from the σyx element, representing a force in
the x-direction applied to a surface facing the y-direction. Since in static equilibrium there
can be no net torque, the two components must be equal and opposite torques.

As described in Section 1.3.4, any Hamiltonian perturbing the NV must abide by C3v

symmetry, which reduces any perturbation to components that transform like A1, ex, and ey.
Rotations and torques independently do not transform this way, but their linear combinations
may, as presented in the following section. Since each independent NV can only provide two
parameters (splitting and shifting)2, extracting the entire stress tensor requires more careful
planning than a vector electric field, even though their perturbations ultimately look the
same. A symmetric 3x3 matrix only has 6 distinct elements, which at first glance suggests
a mere 3 of the 4 NV orientation groups within a diffraction-limited spot are sufficient to
reconstruct the stress tensor; however, given the geometry of the DAC and the cut of the
diamond culet, many NV orientation groups experience identical stress (see the works and
theses of Satcher Hsieh and Bryce Kobrin for details). The solution then is to use a different
cut of diamond for the other anvil and ensure the pressure medium is hydrostatic.

3.3.2 Stress Hamiltonian

Here, we focus on the sensing of stress and magnetic fields, wherein the NV is governed by the
Hamiltonian [14, 156], H “ H0`HB`HS, with H0 “ DgsS

2
z (zero-field splitting), HB “ γB

~B ¨
~S (Zeeman splitting), and HS “ rα1pσxx ` σyyq ` β1σzzsS

2
z`rα2pσyy ´ σxxq ` β2p2σxzqs pS

2
y´

S2
xq` rα2p2σxyq ` β2p2σyzqs pSxSy`SySxq capturing the NV’s response to the local diamond

stress tensor, σ (Fig. 3.1C). Note that in the above, γB « p2πqˆ2.8 MHz/G is the gyromag-
netic ratio, tα1,2, β1,2u are the stress susceptibility coefficients [35, 14, 143, 146], ẑ is the NV
orientation axis, and x̂ is defined such that the xz-plane contains one of the carbon-vacancy
bonds (Fig. 3.1E). In general, the resulting ODMR spectra exhibit eight resonances arising
from the four possible crystallographic orientations of the NV (Fig. 3.1D). By extracting the
energy shifting and splitting of the spin sublevels for each NV orientation group, one obtains
an overconstrained set of equations enabling the reconstruction of either the (six component)
local stress tensor or the (three component) vector magnetic field [146].

2Actually, individually-resolvable NVs can provide up to three parameters for Stress and Electric fields
by using Dark State Tomography (Section 2.7).
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Figure 3.3: Full tensorial reconstruction of the stresses in a (111)-cut diamond anvil.
(A) Spatially resolved maps of the loading stress (left) and mean lateral stress (right),
σK “

1
2
pσXX ` σY Y q, across the culet surface. In the inner region, where the culet surface

contacts the pressure-transmitting medium (16:3:1 methanol/ethanol/water), the loading
stress is spatially uniform, while the lateral stress is concentrated towards the center; this
qualitative difference is highlighted by a linecut of the two stresses (below), and reconstructed
by finite element analysis (orange and purple dashed lines). The black pixels indicate where
the NV spectrum was obfuscated by the ruby microsphere. (B) Comparison of all stress
tensor components in the fluid-contact region at P “ 4.9 GPa and P “ 13.6 GPa. At
P “ 13.6 GPa, the pressure-transmitting medium has entered its glassy phase and we observe
a spatial gradient in the loading stress σZZ (inset).

3.3.3 Stress Imaging

We begin by probing the stress tensor across the culet surface using two different cuts of
diamond (i.e. (111)-cut and (110)-cut culet). For a generic stress environment, the intrinsic
degeneracy associated with the four NV orientations is not sufficiently lifted, implying that
individual resonances cannot be resolved. In order to resolve these resonances while pre-
serving the stress contribution, we sequentially tune a well-controlled external magnetic field
to be perpendicular to each of the different NV orientations [146]. For each perpendicular
field choice, three of the four NV orientations exhibit a strong Zeeman splitting proportional
to the projection of the external magnetic field along their symmetry axes. Crucially, this
enables one to resolve the stress information encoded in the remaining NV orientation, while
the other three groups of NVs are spectroscopically split away. Using this method, we obtain
sufficient information to extract the full stress tensor, as depicted in Fig. 3.3. A number of
intriguing features are observed at the interface between the culet and the sample chamber,
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which provide insight into both elastic (reversible) and plastic (irreversible) deformations.
At low pressures (P “ 4.9 GPa), the normal stress along the loading axis, σZZ , is spatially

uniform (Fig. 3.3A), while all shear stresses, tσXY , σXZ , σY Zu, are minimal (Fig. 3.3B). These
observations are in agreement with conventional stress continuity predictions for the interface
between a solid and an ideal fluid [46]. Moreover, σZZ is consistent with the independently
measured pressure inside the sample chamber (via ruby fluorescence), demonstrating the
NV’s potential as a built-in pressure scale [33]. In contrast to the uniformity of σZZ , the
field profile for the mean lateral stress, σK ”

1
2
pσXX`σY Y q, exhibits a concentration of forces

toward the center of the culet (Fig. 3.3A). Using the measured σZZ as a boundary condition,
we perform finite element simulations to reproduce this spatial pattern[146].

Upon increasing pressure (P “ 13.6 GPa), a pronounced spatial gradient in σZZ emerges
(Fig. 3.3B, inset). This qualitatively distinct feature is consistent with the solidification of
the pressure-transmitting medium into its glassy phase above Pg « 10.5 GPa [84]. Crucially,
this demonstrates our ability to characterize the effective viscosity of solids and liquids
under pressure. To characterize the sensitivity of our system, we perform ODMR spec-
troscopy with a static applied magnetic field and pressure under varying integration times
and extract the frequency uncertainty from a Gaussian fit. We observe a stress sensitiv-
ity of t0.023, 0.030, 0.027u GPa/

?
Hz for hydrostatic, average normal, and average shear

stresses, respectively. This is consistent with the theoretically derived stress sensitivity,
ηS „

∆ν
ξC
?
Nt
“ t0.017, 0.022, 0.020u GPa/

?
Hz, respectively, where N is the number of NV

centers, ∆ν is the linewidth, ξ is the relevant stress susceptibility, t is the integration time,
and C is an overall factor accounting for measurement infidelity [146]. In combination with
diffraction-limited imaging resolution, this sensitivity opens the door to measuring and ulti-
mately controlling the full stress tensor distribution across a sample.

3.3.4 Extracting splitting and shifting information

Having developed a technique above to spectrally resolve the resonances, we extract the
above-mentioned splitting and shifting by fiting the resulting spectra to four pairs of Lorentzian
lineshapes. Each pair of Lorentzians is defined by a center frequency, a splitting, and a com-
mon amplitude and width. To sweep across the two-dimensional layer of implanted NV
centers, we sequentially fit the spectrum at each point by seeding with the best-fit param-
eters of nearby points. We ensure the accuracy of the fits by inspecting the frequencies of
each resonance across linecuts of the 2D data (Fig. S3B).

Converting the fitted energies to shifting (Πz,i) and splitting parameters (ΠK,i) requires
us to take into account two additional effects. First, in the case of the shifting parameter, we
subtract off the second-order shifting induced by transverse magnetic fields. In particular, the
effective shifting is given by Πz,B « pγBBKq

2{Dgs, which, under our experimental conditions,
corresponds to Πz,B « 5 - 10 MHz. To characterize this shift, one can measure each of
the NV orientations with a magnetic field aligned parallel to its principal axis, such that the
transverse magnetic shift vanishes. In practice, we obtain the zero-field shifting for each of the
NV orientations without the need for additional measurements, as part of our electromagnet
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calibration scheme. We perform this calibration at a single point in the two-dimensional map
and use this point to characterize and subtract off the magnetic-induced shift in subsequent
measurements with arbitrary applied field. Second, in the case of the splitting parameter,
we correct for an effect arising from the NV’s charge environment. We discuss this effect in
the following section. The final results for the shifting (Πz,i) and splitting (ΠK,i) parameters
for the (111)-cut diamond at 4.9 GPa are shown in Fig. 3.6C.

3.3.5 Effect of local charge environment

As discussed in Section 1.3.4, Bz will suppress both stress and electric fields, so extracting
stress components requires no external Bz. However, as described in Chapter 2, in the
absence of magnetic fields, charged defects dominate the spectra of NV ensembles (splitting
5-10 MHz) for Type Ib diamonds). This effect should be subtracted from the total splitting
to determine the stress-induced splitting at zero axial magnetic field.

To this end, let us first recall the NV interaction with transverse electric fields:

HE “ dK
“

ExpS2
y ´ S

2
xq ` ExpSxSy ` SySxq

‰

(3.1)

where dK “ 17 Hz cm/V. We can define

Π̃x “ Πs,x ` ΠE,x (3.2)

Π̃y “ Πs,y ` ΠE,y (3.3)

where

Πz,i “ α1

`

σpiqxx ` σ
piq
yy

˘

` β1σ
piq
zz (3.4)

Πx,i “ α2

`

σpiqyy ´ σ
piq
xx

˘

` β2

`

2σpiqxz
˘

(3.5)

Πy,i “ α2

`

2σpiqxy
˘

` β2

`

2σpiqyz
˘

(3.6)

ΠE,tx,yu “ dKEtx,yu (3.7)

σpiq is the stress tensor in the local frame of each of NV orientations labeled by ti “ 1, 2, 3, 4u,
and tα1,2, β1,2u are stress susceptibility parameters. The combined splitting for electric fields
and stress is then given by

2Π̃K “ 2
`

pΠs,x ` ΠE,xq
2
` pΠs,y ` ΠE,yq

2
˘1{2

. (3.8)

We note that the NV center also couples to longitudinal fields, but its susceptibility is „ 50
times weaker and is thus negligible in the present context.

To model the charge environment, we consider a distribution of transverse electric fields.
For simplicity, we assume that the electric field strength is given by a single value E0, and
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Figure 3.4: Interplay between stress and random electric fields. (A) Theoretical curve (blue)
for the total splitting in the presence of stress and electric fields, Eq. (3.9). We compare this
to a quadratic sum (red). (B-C) Measured splitting parameter (blue) for uniaxial pressure
applied to a (110)-cut and (100)-cut diamond, reprinted with permission from [14]. We fit
the data using (a) a linear function (orange), Π̃K “ ΠE,K`ΠS,K, and (b) the aforementioned
theoretical curve, Eq. (3.9) (green). Both fits include two free parameters: ΠE,K and a “
ΠS,K{P . We report the best-fit value for the latter parameter in the inset.

its angle is randomly sampled in the perpendicular plane. Adding the contributions from
stress and electric fields and averaging over angles, the total splitting becomes

Π̃K,avg “

ż

dθpΠ2
S,K ` Π2

E,K ` 2ΠS,KΠE,K cos θq1{2

“
1

π

»

–

b

Π2
s,K ´ Π2

E,KEllipticE

¨

˝´
4ΠS,KΠE,K

b

Π2
S,K ´ Π2

E,K

˛

‚

`

b

Π2
S,K ` Π2

E,KEllipticE

¨

˝´
4Πs,KΠE,K

b

Π2
S,K ` Π2

E,K

˛

‚

fi

fl (3.9)

where EllipticEpzq is the elliptic integral of the second kind. This function is plotted in
Fig. 3.4A, and we note its qualitative similarity to a quadrature sum.

To characterize the intrinsic charge splitting (ΠE,K), we first acquire an ODMR spectrum
for each diamond sample under ambient conditions. For example, for the (111)-cut diamond,
we measured ΠE,K « 4.5 MHz. For subsequent measures under pressure, we then subtract off
the charge contribution from the observed splitting by numerically from inverting Eq. (3.9)
and solving for Πs,K.
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3.4 Magnetometry in a DAC

3.4.1 Magnetic Imaging at Room Temperature

Having characterized the stress environment, we can safely remove its effect while uti-
lizing the NV centers as an in situ magnetometer to detect phase transitions inside the
high-pressure chamber. Analogous to the case of stress, we observe a magnetic sensitiv-
ity of 12 µT/

?
Hz, in agreement with the theoretically estimated value, ηB „

δν
CγB

?
Nt
“

8.8 µT/
?

Hz. Assuming a point dipole located a distance d „ 5 µm from the NV layer, this
corresponds to an experimentally measured magnetic moment sensitivity: 7.5ˆ10´12 emu/

?
Hz

(Fig. 3.1F).
Sensitivity in hand, we begin by directly measuring the magnetization of iron as it under-

goes the pressure-driven αØ ε phase transition from body-centered cubic (bcc) to hexagonal
close-packed (hcp) crystal structures [149]; crucially, this structural phase transition is ac-
companied by the depletion of the magnetic moment, and it is this change in the iron’s
magnetic behavior that we image. Our sample chamber is loaded with a „10 µm polycrys-
talline iron pellet as well as a ruby microsphere (pressure scale), and we apply an external
magnetic field Bext„180 G. As before, by performing a confocal scan across the culet, we
acquire a two-dimensional magnetic resonance map (Fig. 3). At low pressures (Fig. 3A),
near the iron pellet, we observe significant shifts in the eight NV resonances, owing to the
presence of a ferromagnetic field from the iron pellet. As one increases pressure (Fig. 3B),
these shifts begin to diminish, signaling a reduction in the magnetic susceptibility. Finally, at
the highest pressures (P „ 22 GPa, Fig. 3C), the magnetic field from the pellet has reduced
by over two orders of magnitude.

To quantify this phase transition, we reconstruct the full vector magnetic field produced
by the iron sample from the aforementioned two-dimensional NV magnetic resonance maps
(Fig. 3.5, D-F). We then compare this information with the expected field distribution at
the NV layer inside the culet, assuming the iron pellet generates a dipole field [146]. This
enables us to extract an effective dipole moment as a function of applied pressure (Fig. 3.5G).
In order to identify the critical pressure, we fit the transition using a logistic function [146].
This procedure yields the transition at P “ 16.7˘ 0.7 GPa (Fig. 3.5J).

In addition to changes in the magnetic behavior, another key signature of this first
order transition is the presence of hysteresis. We investigate this by slowly decompressing
the diamond anvil cell and monitoring the dipole moment; the decompression transition
occurs at P “ 10.5 ˘ 0.7 GPa (Fig. 3.5J), suggesting a hysteresis width of approximately
„6 GPa, consistent with a combination of intrinsic hysteresis and finite shear stresses in
the methanol/ethanol/water pressure-transmitting medium [149]. Taking the average of the
forward and backward hysteresis pressures, we find a critical pressure of Pc “ 13.6˘3.6 GPa,
in excellent agreement with independent measurements by Mössbauer spectroscopy, where
Pc « 12 GPa (Fig. 3J) [149].
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Figure 3.5: Imaging iron’s α Ø ε phase transition. Applying an external magnetic
field (Bext„180 G) induces a dipole moment in the polycrystalline iron pellet which gen-
erates a spatially varying magnetic field across the culet of the diamond anvil. By map-
ping the ODMR spectra across the culet surface, we reconstruct the local magnetic field
which characterizes the iron pellet’s magnetization. (A-C) Comparison between the mea-
sured ODMR spectra (dark regions correspond to resonances) and the theoretical resonance
positions (different colors correspond to different NV crystallographic orientations) across
vertical spatial cuts at pressures 9.6 GPa, 17.2 GPa and 20.2 GPa, respectively (16:3:1
methanol/ethanol/water solution). (D-F) Map of the measured energy difference of a par-
ticular NV crystallographic orientation (blue lines in (A-C)). Black pixels correspond to
ODMR spectra where the splitting could not be accurately extracted owing to large mag-
netic field gradients [146]. (G-I) Theoretical reconstruction of the energy differences shown
in (D-F). Data depicted in (A-C) are taken along the thin black dashed lines. (J) Measured
dipole moment of the iron pellet as a function of applied pressure at room temperature,
for both compression (red) and decompression (blue). Based on the hysteresis observed
(„ 6 GPa), we find the critical pressure Pc “ 13.6 ˘ 3.6 GPa, in excellent agreement with
previous studies [149].
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Iron Dipole Reconstruction

In this section, we discuss the study of the pressure-induced α Ø ε transition in iron. In
particular, we provide the experimental details, describe the model used for fitting the data,
and outline the procedure to ascertain the transition pressure.

For this experiment, the DAC is prepared with a rhenium gasket preindented to 60 µm
thickness and laser drilled with a 100 µm diameter hole. We load a „ 10 µm iron pellet,
extracted from a powder (Alfa Aesar Stock No. 00737-30), and a ruby microsphere for
pressure calibration. A solution of methanol, ethanol and water (16:3:1 by volume) is used
as the pressure-transmitting medium.

The focused laser is sequentially scanned across a 10ˆ10 grid corresponding to a „ 30
ˆ 30 µm area of the NV layer in the vicinity of the iron pellet, taking an ODMR spectrum
at each point. Each pixel in the grid is integrated for „3 minutes. As discussed previously,
the energy levels of the NV are determined by both the magnetic field and the stress in the
diamond. Owing to their different crystallographic orientations, the four NV orientations in
general respond differently to these two local parameters. As a result, for each location in
the scan, eight resonances are observed.

A large bias magnetic field („ 180 G), not perpendicular to any of the axes, is used to
suppress the effect of the transverse stress in the splitting for each NV orientation. However,
the longitudinal stress still induces an orientation-dependent shift of the resonances which
is nearly constant across the imaging area, as measured independently (Fig 3.6C).

By analyzing the splittings of the NV resonances across the culet, we can determine the
local magnetic field and thereby reconstruct the dipole moment of the iron pellet.

To estimate the error in pressure, a ruby fluorescence spectrum was measured before and
after the ODMR mapping, from which the pressure could be obtained [33]. The pressure
was taken to be the mean value, while the error was estimated using both the pressure range
and the uncertainty associated with each pressure point.

Extracting Splitting Information

The eight resonances in a typical ODMR spectrum are fit to Gaussian lineshapes to extract
the resonance frequency (Fig 3.7A). Resonances are paired as in Fig. 1D of the main text:
from outermost resonances to innermost, corresponding to NV orientations with the strongest
magnetic field projection to the weakest, respectively. Once identified, we calculate the
splitting and magnetic field projection for each NV orientation.

We note that there are two regimes where our spectra cannot confidently resolve and
identify all the eight resonances. First, at high pressure, the resonance contrast for some NV
orientations is diminished, possibly due to a modification of the frequency response of the
microwave delivery system. Second, close to or on top of the iron pellet, the resonances are
broadened; we attribute this to the large magnetic field gradients (relative to the imaging
resolution) caused by the sample. The resulting overlap in spectral features obfuscates the
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Figure 3.6: Stress reconstruction procedure applied to the (111)-cut diamond at 4.9 GPa.
(A) A typical ODMR spectrum under an applied magnetic field. The resonances correspond
to each NV crystallographic orientation fit to a pair of Lorentzian lineshapes. (B) A line-
cut indicating the fitted resonance energies (colored points) superimposed on the measured
spectra (grey colormap). (C) 2D maps of the shifting (Πz,i) and splitting parameters (ΠK,i)
for each NV orientation across the entire culet.
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Figure 3.7: (A) Example of a typical spectrum with a fit to eight free Gaussians. Resonance
pairs are identified as in Fig. 1D of the main text: NV4 has the strongest magnetic field
projection and NV1 has the weakest. (B) Example spectrum for which resonances are
broadened and shifted. In this case we cannot correlate any resonances in the spectrum to
specific NV orientations.

identity of each resonance (Fig. 3.7B). In both cases, we fit and extract splittings only for
the orientations we could identify with certainty.

Point Dipole Model

We model the magnetization of our pellet sample as a point dipole at some location within
the sample chamber. The total magnetic field is then characterized by the external applied
field, B0, the dipole of the sample, d, and the position of the dipole, r. Because of the
presence of a large applied field, we observe that the magnetization of the sample aligns
with B0, and thus, we require only the strength of the dipole to characterize its moment,
d “ DB̂0. We expect the external magnetic field and the depth of the particle to remain
nearly constant at different pressures. This is indeed borne out by the data. As a result, we
consider the external magnetic field B0 = (-23(7), -160(1), 92(2)) G and depth of the iron
pellet rZ = 5(1) µm to be fixed.

Due to the dipole of the iron pellet, the magnetic field across the NV layer at position x
is given by:

Bpxq “ B0 `
µ0

4π

1

|x|3
p3x̂pd ¨ x̂q ´ dq (3.10)

where hats represent unit vectors. At each point, the local field induces a different splitting,
∆piq, to the 4 NV crystallographic orientations i P 1, 2, 3, 4, measured by diagonalizing the
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Figure 3.8: Measured map of the splittings of one of the NV orientations (left). Near the
top of the plot we observe a much stronger splitting compared to the bottom of the plot.
Throughout the measurement, the shift in the pressure induced a shift in the dipole moment
of the sample. We consider 3 different regions (seperated by horizontal lines) corresponding
to 3 different dipole strengths. The reconstructed map of the splittings is shown on the right
in agreement with the data. From the center and the spread of dipole strengths, we extract
the dipole moment and its error. Black bar corresponds to 10 µm.

Hamiltonian H “ DgsS
2
z `B

piq
z Sz `B

piq
K Sx, where Bz “ |B ¨ ẑ

piq| is the projection of B onto

the axis of the NV, and B
piq
K “

b

|B|2 ´ pB
piq
z q2q its transverse component. Dgs is the zero

field splitting of the NV. For each choice of D, rX and rY , we obtain a two dimensional
map of t∆piqu. Performing a least squares fit of this map against the experimental splittings
determines the best parameters for each pressure point. The error in the fitting procedure
is taken as the error in the dipole strength D.

Large error bar in the 11 GPa decompression point

During the decompression, around 11 GPa, we observed a significant drift of the pressure
during measurement of the ODMR spectra. Unfortunately, the starting pressure was close
to the transition pressure, and the drift in pressure led to a very large change in the pellet’s
dipole moment throughout the scanning measurement. This is clear in the measured data,
Fig. 3.8, with the top-half of the map displaying a significantly larger shift with respect to
the bottom-half.

To extract the drift in the dipole moment, we divide the two-dimensional map into three
different regions, each assumed to arise from a constant value of the dipole moment of the
pellet. By fitting to three different dipole moments (given a fixed position, rX and rY ) we
obtain an estimate of the drift of the dipole moment that allows us to compute an errorbar
of that measurement. The estimated dipole moment at this pressure point is taken as the

midpoint of the three extracted values,
Dmax `Dmin

2
, while the error is estimated by the
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range,
Dmax ´Dmin

2
.

3.4.2 In Situ Magnetometry at Extreme Temperature and
Pressure

We demonstrate the integration of our platform into a cryogenic system, enabling us to
make spatially resolved in situ measurements across the pressure-temperature (P -T ) phase
diagram of materials. Specifically, we investigate the magnetic P -T phase diagram of the
rare-earth element gadolinium (Gd) up to pressures P « 8 GPa and between temperatures
T “ 25´340 K. Owing to an interplay between localized 4f electrons and mobile conduction
electrons, Gd represents an interesting playground for studying metallic magnetism; in par-
ticular, the itinerant electrons mediate RKKY-type interactions between the local moments,
which in turn induce spin-polarization of the itinerant electrons [120]. Moreover, much like
its other rare-earth cousins, Gd exhibits a series of pressure-driven structural phase transi-
tions from hexagonal close-packed (hcp) to samarium-type (Sm-type) to double hexagonal
close-packed (dhcp) (Fig. 3.9)[77]. The interplay between these different structural phases,
various types of magnetic ordering, and metastable transition dynamics leads to a complex
magnetic P -T phase diagram that remains the object of study to this day [77, 131, 120].

In analogy to our measurements of iron, we monitor the magnetic ordering of a Gd flake
via the NV’s ODMR spectra at two different locations inside the culet: close to and far
away from the sample (the latter to be used as a control) [146]. Due to thermal contraction
of the DAC (which induces a change in pressure), each experimental run traces a distinct
non-isobaric path through the P -T phase diagram (Fig. 4C, blue curves). In addition to
these DC magnetometry measurements, we also operate the NV sensors in a complementary
mode, i.e. as a noise spectrometer.

We begin by characterizing Gd’s well-known ferromagnetic Curie transition at ambient
pressure, which induces a sharp jump in the splitting of the NV resonances at TC “ 292.2˘
0.1 K (Fig. 4D). As depicted in Fig. 4A, upon increasing pressure, this transition shifts to
lower temperatures, and consonant with its second order nature [63], we observe no hysteresis;
this motivates us to fit the data and extract TC by solving a regularized Landau free-energy
equation [146]. Combining all of the low pressure data (Fig. 4C, red squares), we find a linear
decrease in the Curie temperature at a rate: dTC{dP “ ´18.7˘ 0.2 K/GPa, consistent with
prior studies via both DC conductivity and AC-magnetic susceptibility [77]. Surprisingly,
this linear decrease extends well into the Sm-type phase. Upon increasing pressure above
„ 6 GPa (path [b] in Fig. 4C), we observe the loss of ferromagnetic (FM) signal (Fig. 4B),
indicating a first order structural transition into the paramagnetic (PM) dhcp phase [77]. In
stark contrast to the previous Curie transition, there is no revival of a ferromagnetic signal
even after heating up („315 K) and significantly reducing the pressure (ă 0.1 GPa).

A few remarks are in order. The linear decrease of TC well beyond the „2 GPa structural
transition between hcp and Sm-type is consistent with the “sluggish” equilibration between
these two phases at low temperatures [77]. The metastable dynamics of this transition are
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Figure 3.9: Fig. 4. Magnetic P -T phase diagram of gadolinium. A „ 30 µmˆ30 µmˆ25 µm
polycrystalline Gd foil is loaded into a beryllium copper gasket with a cesium iodide pressure
medium. An external magnetic field, Bext„120 G, induces a dipole field, BGd, detected by
the splitting of the NVs (right inset, (B)). (A) The FM Curie temperature TC decreases
with increasing pressure up to „4 GPa. NV splittings for three P -T paths, labeled by their
initial pressure P0, are shown. The P -T path for run [a] (P0 “ 0.5 GPa) is shown in (C). The
cool-down (blue) and heat-up (red) of a single P -T cycle shows negligible hysteresis (inset).
(B) If a P -T path starting in hcp is taken into the dhcp phase (at pressures Á 6 GPa) [77],
the FM signal is lost and not reversible, as shown in (C) (path [b]). Upon cool-down (dark
blue), we observe the aforementioned Curie transition, followed by the loss of FM signal at
6.3 GPa, 130 K. But upon heat-up (red) and second cool-down (light blue), the FM signal is
not recovered. When the pressure does not go beyond „ 6 GPa, the FM signal is recoverable
(left inset) [146]. (C) Magnetic P -T phase diagram of Gd. At low pressures, we observe the
linear decrease of TC (black line) with slope ´18.7˘ 0.2 K/GPa, in agreement with previous
measurements [77]. This linear regime extends into the Sm-type phase (black dashed line)
due to the slow dynamics of the hcp Ñ Sm-type transition [77]. When starting in the Sm-
type phase, we no longer observe a FM signal, but rather a small change in the magnetic
field at either the transition from Sm-type to dhcp (orange diamonds) or from PM to AFM
(green triangle), depending on the P -T path. The bottom two phase boundaries (black
lines) are taken from Ref. [131]. (D) At ambient pressure, we observe a Curie temperature,
TC “ 292.2˘ 0.1 K, via DC magnetometry (blue data). Using nanodiamonds drop-cast onto
a Gd foil (and no applied external magnetic field), we find that the depolarization time (T1)
of the NVs is qualitatively different in the two phases (red data). T1 is measured using the
pulse sequence shown in the top right inset. The T1 measurement on another nanodiamond
exhibits nearly identical behavior (bottom inset).
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strongly pressure and temperature dependent, suggesting that different starting points (in
the P -T phase diagram) can exhibit dramatically different behaviors [77]. To highlight this,
we probe two different transitions out of the paramagnetic Sm-type phase by tailoring specific
paths in the P -T phase diagram. By taking a shallow path in P -T space, we observe a small
change in the local magnetic field across the structural transition into the PM dhcp phase
at „6 GPa (Fig. 4C, path [c], orange diamonds). By taking a steeper path in P -T space,
one can also investigate the magnetic transition into the antiferromagnetic (AFM) Sm-type
phase at „ 150 K (Fig. 4C, path [d], green triangle). In general, these two transitions are
extremely challenging to probe via DC magnetometry since their signals arise only from
small differences in the susceptibilities between the various phases [146]. To improve upon
this weak signature, complementary schemes are required that depend on more relevant
quantities (see Section 3.5).

Additional Data

In this section we present all of the data for the different paths taken in P-T phase and
the resulting fits. Table 3.1 summarizes the observations for all experimental runs. Figure
3.10 contains the data used in determining the linear pressure dependence of the hcp phase.
Figure 3.11 comprises the data used in determining the transition to the dhcp phase, either
via the FM hcp to PM dhcp transition, Figure 3.11B, or via the difference in susceptibilities
between PM Sm-type and PM dhcp of Gd, Figure 3.11C and D. We emphasize that in the
blue path, we begin the experiment below 2 GPa and thus in the hcp structure, while for
the orange and green, we begin above 2 GPa, so we expect the system to be in Sm-type.
Finally, Figure 3.12 contains the data where we observe a change in the susceptibility of Gd
that occurs at the purported Sm-type PM to AFM transition.

Fitting the phase transition of Gd

There are three different transitions we attempt to identify in Gd’s P -T phase diagram:
a magnetic transition from PM dhcp to FM dchp; structural phase transitions, either
hcp Ñ dhcp or Sm-type Ø dhcp; and a magnetic phase transition from PM Sm-type to
AFM Sm-type.

In order to extract the transition temperature of the paramagnet to ferromagnet tran-
sition from our data, we model the magnetization of our sample near the magnetic phase
transition using a regularized mean field theory.

The magnetism of gadolinium is well-described by a three dimensional Heisenberg magnet
of core electrons [120]. In the presence of an external magnetic field, the free energy near
the critical point is expanded in even powers of the magnetization with a linear term that
couples to the external magnetic field:

f “ ´Bm`
α

2
pT ´ TCqm

2
`
β

4
m4, (3.11)
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Figure 3.10: (A) Paths in the P -T phase space that inform about the hcp PM phase to the
hcp FM phase. (B-O) Measured NV splitting and corresponding fit. The resulting transition
temperatures are highlighted in (A) with squares. Shaded region corresponds to the part of
the spectrum fitted.
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Run Direction Phase transition Remarks, visible in Fig.
1 Heat-up hcp (FM) ÝÑ hcp (PM) New sample, Fig. 3.10B
2 Cool-down hcp (PM) ÝÑ hcp (FM) Fig. 3.10C
3 Cool-down hcp (PM) ÝÑ hcp (FM) Fig. 3.10D
4 Cool-down No observation Probably starting in Sm due

to large initial pressure

5 Cool-down hcp (PM) ÝÑ hcp (FM) New sample, Fig. 3.10E
6 Heat-up hcp (FM) ÝÑ hcp (PM) Fig. 3.10F
7 Cool-down hcp (PM) ÝÑ hcp (FM) Fig. 3.10G
8 Heat-up hcp (FM) ÝÑ hcp (PM) Fig. 3.10H
9 Cool-down hcp (PM) ÝÑ hcp (FM) Fig. 3.10I, 3.11B

ÝÑ dhcp (PM)
10 Cool-down Weak evidence for Probably starting in Sm due

Sm (PM) ÝÑ Sm (AFM) to metastability, Fig. 3.12B

11 Cool-down hcp (PM) ÝÑ hcp (FM) New sample, Fig. 3.10J
12 Heat-up hcp (FM) ÝÑ hcp (PM) Fig. 3.10K
13 Cool-down hcp (PM) ÝÑ hcp (FM) Fig. 3.10L
14 Cool-down Weak evidence for Probably starting in Sm due

Sm (PM) ÝÑ dhcp (PM) to large initial pressure
15 Cool-down Weak evidence for Probably starting in Sm due

Sm (PM) ÝÑ dhcp (PM) to metastability, Fig. 3.11C
16 Heat-up Weak evidence for Fig. 3.11D

dhcp (PM) ÝÑ Sm (PM)

17 Cool-down hcp (PM) ÝÑ hcp (FM) New sample, Fig. 3.10M
18 Heat-up hcp (FM) ÝÑ hcp (PM) Fig. 3.10N
19 Cool-down hcp (PM) ÝÑ hcp (FM) Fig. 3.10O

and start of transition to dhcp (PM)

Table 3.1: Summary of all experimental runs in the P -T phase diagram, indexing either a
decrease or increase in temperature during this path, and the observed phase transitions.
Each group of runs, between double lines in the table, corresponds to a different sample.



CHAPTER 3. NVS UNDER PRESSURE 100

100 200 300
Temperature (K)

580

590

600

N
V

 S
p

lit
tin

g 
(M

H
z)

150 200 250 300
Temperature (K)

585

590

595

600

605

N
V

 S
p

lit
tin

g 
(M

H
z)

100 150
Temperature (K)

585

590

595

600

605

N
V

 S
p

lit
tin

g 
(M

H
z)

0 1 2 3 4 5 6 7 8
Pressure (GPa)

0

50

100

150

200

250

300
Te

m
p

er
at

ur
e 

(K
)

A

B C D
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dhcp phase. (B-D) Measured NV splitting and corresponding fit. The resulting transition
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where m is the magnetization, B is the external magnetic field, α and β the expansion
coefficients, T the temperature, and TC the transition temperature. In this treatment, we
implicitly assume that α and β do not vary significantly with pressure and thus can be taken
to be constant across paths in P -T phase space. The magnetization mmin is then obtained
by minimizing the free energy.

Because our observation region extends far away from the transition, we observe a
plateauing of the splittings that emerges from the microscopics of Gd. Using R as the
regularization scale and Ã as the maximum magnetization of the sample we propose the
simple regularization scheme:

mpT, P q “ Ã
mmin

mmin `R
. (3.12)

The splitting of the NV group, up to some offset, is proportional to the magnetization of
the sample. This proportionality constant, A, captures he relation between magnetization
and induced magnetic field, the geometry of sample relative to the measurement spot, as
well as the susceptibility of the NV to the magnetic field. The splitting of the NV is then
given by:

∆ “ A
mmin

mmin `R
` c (3.13)

where we incorporated Ã into A as well. Normalizing α and β with respect to B, we obtain
six parameters that describe the magnetization profile, directly extracting TC.

In the case of the first order structural phase transitions, similar to that of iron, we take
the susceptibility to follow a logistic distribution. We model the observed splitting as:

∆ “
A

eBpT´TCq ` 1
` c (3.14)

Fitting to the functional form provides the transition temperature TC. Error bar is taken as
largest between 1{B and the fitting error.

In the case of the paramagnetic to antiferromagnetic transition, we use the mean field sus-
ceptibility across the phase transition of the system. The susceptibility across such transition
is peaked at the transition temperature:

χpT q9

$

’

’

’

’

&

’

’

’

’

%

1

T ´ θp
T ą Tc

C
3L1pH{T q

T ´ θp3L1pH{T q
T ă Tc

(3.15)

where C is chosen to ensure continuity of χ, L1pxq is the derivative of the Langevin function
Lpxq, H is a measure of the applied field, and θp is the asymptotic Curie point. Finally, we
fit the observed splitting to:

∆ “ AχpT ;Tc, H, θpq ` c (3.16)

where, as before, A captures both the geometric effects, as well as the response of the chosen
NV group to the magnetic field.
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Recreating the P-T phase diagram of Gd

The rich magnetic behavior of Gd is partially dependent on its structural phases, captured in
the sequence: hexagonal closed packed (hcp) to Samarium (Sm) type at „ 2 GPa, and then
to double hexagonal closed packed (dhcp) at „ 6 GPa. In particular, while the paramagnetic
(PM) phase of hcp orders to a ferromagnet (FM), the PM phase of Sm-type orders to an
antiferromagnet (AFM) [77]. Similarly, dhcp undergoes a PM to magnetically ordered phase
transition.

For experimental runs with initial pressures ă 2 GPa (runs 1-3, 5-9, 11-13, 17-19), we
observe a PM Ø FM phase transition in hcp Gd. In agreement with previous studies, we
see a linear decrease of the Curie temperature with increasing pressure up to „ 4 GPa [30].
Notably, prior studies have shown a structural transition from hcp to Sm-type at 2 GPa
[30, 131, 71], which is believed to be “sluggish” [77, 30]. This is indeed consistent with
our observation that the linear dependence of the Curie temperature persists well into the
Sm-type region, suggesting the existence of both structural phases over our experimental
timescales.

Furthermore, in run 9 (Table 3.1 and Fig. 3.11A,B), we observe a complete loss of FM
signal when pressures exceed „ 6 GPa at „ 150 K, in good agreement with the previously
reported phase transition from hcp (FM) to dhcp (PM) structure [131, 30]. Upon performing
a similar path in P -T space (run 19), we observe the same behavior. In contrast to the
previous slow hcp to Sm-type transition, we believe that the equilibrium timescale for the
hcp (FM) to dhcp (PM) transition is much faster at this temperature.

After entering the dhcp structure (run 9), we no longer observe a clear FM signal from
the sample even after heating to 315 K and depressurizing ă 0.1 GPa. This can be explained
by the retention of dhcp or Sm-type structure in the sample. Previous studies, suggesting
that the Sm-type phase in Gd is metastable up to ambient pressure and temperature [77],
corroborate that our sample is likely still in the Sm-type structural phase. It is not too
surprising, that by continuing to cool down and walking along a slightly different P -T path,
we observe only a small change in the NV splitting at „ 150 K and „ 5 GPa as we cross the
purported Sm-type PM to AFM phase boundary (run 10 in Table 3.1)[131, 77, 30].

Moreover, the metastable dynamics of hcp to Sm-type transitions are strongly pressure
and temperature dependent, suggesting that different starting points (in the P -T phase
diagram) can lead to dramatically different behaviors. Indeed, by preparing the sample
above 2 GPa at room temperature (run 4), we no longer detect evidence for a ferromagnetic
Curie transition, hinting the transition to the Sm-type structure. Instead, we only observe
a small change in the NV splitting at „ 6 GPa and „ 170 K, which could be related to
the presence of different paramagnetic susceptibilities of the Sm-type and dhcp structural
phases. Interestingly, by cycling temperature across the transition (run 14-16 in Table 3.1),
we observe negligible hysteresis, suggesting fast equilibration of this structural transition.
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3.5 Noise Spectroscopy

Motivated by the limitations to DC magnetometry we encountered above, we demonstrate a
complementary NV sensing modality based upon noise spectroscopy, which can probe phase
transitions even in the absence of a direct magnetic signal. [21]. Thanks to the simplicity
of the measurement, the technique is easy to implement in a DAC. Specifically, returning to
Gd’s ferromagnetic Curie transition, we use nanodiamonds at ambient pressure to monitor
the NV’s depolarization time, T1, as one crosses the phase transition (Fig. 3.9D). Normally,
the NV’s T1 time is limited by spin-phonon interactions and increases dramatically as one
decreases temperature. Here, we observe a strikingly disparate behavior. In particular, us-
ing nanodiamonds drop-cast on a Gd foil at ambient pressure, we find that the NV T1 is
nearly temperature independent in the paramagnetic phase, before exhibiting a kink and
subsequent decrease as one enters the ferromagnetic phase (Fig. 3.9D). We note two intrigu-
ing observations: first, one possible microscopic explanation for this behavior is that T1 is
dominated by Johnson-Nyquist noise from the thermal fluctuations of charge carriers inside
Gd [85].3 Gapless critical spin fluctuations or magnons in the ordered phase, while expected,
are less likely to cause this signal [146]. Second, we observe that the Curie temperature, as
identified via T1-noise spectroscopy, is „ 10 K higher than that observed via DC magnetom-
etry (Fig. 3.9D). Similar behavior has previously been reported for the surface of Gd [120,
148], suggesting that our noise spectroscopy could be more sensitive to surface physics.

3.5.1 Specifics

In order to perform magnetic noise spectroscopy of Gd at temperatures ranging from 273 K to
340 K, we attach a small chunk of Gd foil (100 µm ˆ 100 µm ˆ 25 µm) close to a microwave
wire on a Peltier element with which we tune the temperature. Instead of millimeter-scale
diamonds as before, we use nano-diamonds (Adámas Nanotechnologies, „ 140 nm average
diameter). The nano-diamonds are prepared in solution and allowed to evaporate onto the
Gd foil to minimize the distance to the surface of our sample.

With no external field applied, all eight resonances of the NVs inside the nano-diamonds
are found within our resolution to be at the zero-field splitting Dgs for either para- and
ferromagnetic phase of Gd, leading to a larger resonance contrast since we can drive all NVs
with the same microwave frequency. Measuring the NV’s spin relaxation time T1 under
these circumstances is equivalent to ascertaining the AC magnetic noise at „ 2.87 GHz.

For this purpose, we utilize the following pulse sequence to measure T1. First, we apply
a 10 µs laser pulse to intialize the spin into the |ms “ 0y state. After laser pumping, we let
the spin state relax for a variable time before turning on a second laser pulse to detect the
spin state (signal bright). We repeat the exact same sequence once more, but right before
spin detection, an additional NV π-pulse is applied to swap the |ms “ 0y and |ms “ ˘1y
populations (signal dark). The difference between signal bright and dark gives us a reliable

3As opposed to isolated NV samples, where T1 is limited by spin-phonon interactions.
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measurement of the NV polarization (Fig. 4D top inset) after time . The resulting T1 curve
exhibits a stretched exponential decay 9e´pτ{T1q

α
with α „ 0.65 (Fig. S19).

By sweeping the Peltier current over a range of „ 3.5 A, we adjust the temperature of
the sample from 273 K to 340 K, therefore determining the temperature dependence of T1.

This procedure is performed on two different nano-diamonds on top of the Gd flake to
confirm that the signal is not an artifact. Furthermore, this is contrasted with an additional
measurement at a nano-diamond far away from the Gd foil, exhibiting no temperature de-
pendence of T1.

3.6 Conclusions and Outlook

In this chapter, we discussed the development of a hybrid platform integrating quantum
sensors into DACs. This work succeeded in creating the first image of the complete local
stress tensor across the sample and gasket as a function of pressure. Primarily, calibrating
the local stress environment of the NVs inside the culet permits their use in probing further
phenomena unique to DACs. By studying the stress of other fluids and solids, we may dis-
cover new insights into viscous flow, plastic deformation, pressure-dependent yield strength,
and other mechanical phenomena. The NV-DAC platform is then a clear advancement be-
yond the CPU limitations of numerical finite-element simulations or the practical hurdles
of more conventional experimental methods. Furthermore, it may eventually enable control
over deviatoric- and normal-stress conditions in a high pressure apparatus [48].

The technique developed in this chapter can be expanded to employ other atomic defects
instead of or in addition to the NV center. The increasingly-popular silicon-vacancy centers
in diamond could be a natural candidate due to their all-optical control schemes that may
supplant the need for pesky microwave delivery wires [10]. As well, there are DAC applica-
tions that benefit from anvils made of materials other than diamond. Recent studies find
that moissanite anvils (6H silicon carbide) host optically-active defects one may also use as
local sensors [10]. One distinct advantage of moissanite anvils is that they can be manufac-
tured with centimeter-scale or larger culets, in contrast the the millimeter-scale or smaller
culets of diamond anvils. Defect sensors in these larger DACs could potentially release the
constraints on experiments by increasing the sample volumes.

We found that the proximity with which we can place our highly-sensitive NV probes
near a sample under extreme pressure provides many capabilities beyond previous techniques
(Fig. 1F); including for example, measuring nuclear magnetic resonance (NMR) at picoliter
volumes [82] and single grain remnant magnetism [55], in addition to imaging phenomena
that exhibit spatial textures such as magnetic skyrmions [38] and superconducting vortices
[152]. We expect that the manifold sensing capabilities that have been extensively-developed
for NV centers (i.e. electric, thermal, gryroscopic precession etc.) may now be implemented
in high pressure environments. This work reveals the potential for a vast range of new exper-
iments that quantitatively characterize materials under extreme temperature and pressure,
finally complementing the work of first-principles theory.
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Chapter 4

Quasi-2D Defect Dynamics

4.1 Introduction

Dimensionality has emerged as a promising tuning-knob in the enduring pursuit of improved
sensors and exotic many-body phases of matter. Sensors comprising spin systems benefit
from lower dimensions. Reducing the spread of spins reduces signal broadening and the gra-
dient of MW pulses across the probes, both of which are sources of error in the measurement.
Decreasing the thickness of the NV layer has also been found to extend the coherence time
[117, 43]. Delta-doped layers of spin ensembles with thickness much less than the diffraction
limit holds much promise for sensing applications. In the realm of simulation, spin systems
in three dimensions are subject to a fast thermalization that precludes the observation of ex-
otic driven phases of matter (owing to the long-range nature of the dipolar interaction) [88],
but lowering the dimensions of the spin system abates the issue by extending the prethermal
lifetime of the desired phase.

While three-dimensional spin systems of NVs have been used extensively for research
and technological applications as seen throughout this thesis, the advent of the delta-doping
technique has kindled anticipation for two-dimensional NV spin platforms [117, 110]. The
technique permits nanometer-precision depth control of nitrogen-doping near the surface of
synthetic diamond. Irradiation then generates NV and substitutional nitrogen (P1) spin de-
fects in layers of nanometer-scale thickness. Even in samples with high NV and P1 densities,
long NV coherence times are expected for clean enough diamonds [43, 72]. In principle, delta-
doping can create quasi-two-dimensional (q2D) defect environments, in which the average
defect spacing is larger than the layer thickness, yet no conventional sample characterization
methods have proven the growth of q2D NV systems.

In this Chapter, we present theoretical developments and on-going research that exploit
the local dynamics of the NV to verify the q2D nature of a platform for subsequent studies of
exotic may-body phenomena in lower dimensions. First, we discuss a proposal and its chal-
lenges for verifying the dimensionality of a q2D NV-P1 spin defect sample grown via delta-
doping. This procedure entails the observation of non-monotonic variations in the coherence
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lifetimes of the NV ensemble over a sweep of the angle of an externally-applied magnetic
field. These variations in lifetime are a distinctly two-dimensional signature. Second, we
provide an analytical understanding of the coherence decay dynamics for any dimension. In
our Ising-dominated regime, the ensemble average of the coherence decay has a parametric
dependence on dimension and the interaction exponent. Consequently, we observe stretched
exponential decay profiles, with a stretched power depending on the convolution of the mea-
surement protocol’s filter function and the autocorrelation of the bath. Finally, we discuss
on-going research utilizing the change in the stretched exponential decay profile as the NVs
enter different regimes of interaction. For any ensemble of interacting spins in a quasi-2D
environment, there is an interaction-regime crossover between the ensemble exhibiting corre-
lated dynamics and uncorrelated dynamics. In our NV-P1 environment, both the NVs and
the P1s are interacting ensembles of spins, presenting the possibility of up to two crossovers
in any coherence decay measurement.

4.2 Experimental Apparatus and Sample

The experimental apparatus used for the work presented in this chapter is indistinct from
those described in Section 1.4.3: a confocal microscope with 3D magnetic coils and mu-metal
shielding that delivers MW using a stripline. However, since measurement sequences in this
chapter aimed to use 100s or 1000s of MW pulses, the pulse error had to be more carefully
analyzed and minimized. To this end, we create and test the pulse error properties of a few
different stripline designs. The only other distinguishing feature of this apparatus from those
in previous chapters is the diamond sample itself.

4.2.1 Microwave Pulse Error in Striplines

Our stripline MW delivery design is as described in Section 1.4.3. It was used in all ex-
periments that do not use a magnet wire. The coverslip was hosted on a printed circuit
board (PCB), which the conducted the MW from the SMA connectors that served as the
ports for the MW cables. Both the coverslip and SMA connectors were soldered to the PCB.
Since we used XY8 sequences with hundreds or thousands of pulses in the process of this
research, small pulse error could accumulate into large effects. More than ever, we needed
to characterize and minimize pulse error.

Using a 13 GHz bandwidth oscilloscope, we could resolve the details of the shape of our
MW pulses (Fig. 4.2a). By varying where in our circuit we diverted MW to the scope,
we could identify impurities in the pulse shape. We tested both the amplifier output and
stripline output. Taking the Fourier transform of specific regions of the traces, we found
resonant noise following the end of each pulse (Fig. 4.2b). By adding a circulator either
after the amplifier or after the stripline, we found that the resonant noise output from the
stripline was only partially suppressed (beyond the insertion loss of the circulator), suggesting
the noise is resonant reflections occurring within the stripline PCB board itself.
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Figure 4.1: a) A π-pulse output from the stripline observed on a 13 GHz bandwidth oscil-
loscope. Since the MW are „2 GHz and the pulses „ 20 MHz, the MW oscillate too fast
to resolve individual oscillations at the given time resolution, instead appearing as a solid
block of color. Left: Entire pulse on the scope (red). Right: Zoom in on the black boxed
area of the left plot, which enhances the voltage resolution of the scope. Individual sections
that are analyzed in b) are colored non-blue: MW switch turns on pre-π-pulse (red), three
of four possible post-π-pulse ringdown regimes that were observed (orange, purple, green).
The time preceding the pulse is found to contain only off-resonant noise, whereas the time
following the pulse is found to contain some resonant noise. b) Fourier transforms of the time
windows colored non-blue for either amplifier output or stripline output with or without a
circulator in place to suppress reflections. The circulator suppressed resonant noise (blue
dashed box), but also added new resonances to the amplifier output (red boxes).
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Figure 4.2: Deterioration of stripline properties with time. a) Reflection spectrum of
stripline. b) Transmission spectrum of stripline. Both reflection and transmission spec-
tra developed resonances with time. Poking the SMA connectors on the PCB could move
these around.

We can directly measure transmission and reflection properties of the stripline and its
PCB mount. Using a vector network analyzer, we observed the emergence of transmission
dips after using the stripline for about 5 months. We found we could move the location
of the dip by pressing on the SMA connectors. In addition, pressing the connectors too
much created a second transmission dip, that moved and permanently combined with the
first. After discussing these as well as the FFT tests above with other NV research groups,
we concluded that the PCB solder connections were wearing out. In addition, the slope
of the initial transmission spectrum is worse than observed in some other research groups,
suggesting the need to improve impedance mismatch in our PCB design.

The second design we implemented replaced solder with silver epoxy paste. It also by-
passed the PCB by connecting the SMA to the coverslip directly to reduce the number of
connections. As of the time of this writing, the new design is awaiting testing and imple-
mentation for final measurements of the sample.

4.2.2 Quasi-2D Sample

Our gracious collaborators in Prof. Ania Jayich’s research lab grew the q2D sample used
throughout this chapter. We aimed to grow an isotopically-purified 12C diamond sample
containing a thin layer of NV and P1 centers such that each spin-1 NV center is surrounded
by an ensemble of spin-1/2 P1 centers (Fig. 4.3a) with no significant interactions between
the NVs. In such a sample, the NV center serves as a probe of the local P1 environment
because its electronic spin triplet ground state (|ms “ ˘1, 0y) can be initialized and read out
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Figure 4.3: a) An NV surrounded by a thermal spin bath of P1 centers. When DEER is
performed, we can select a portion of the P1 population to interact with the NV. b) The
delta-doping scheme. Starting with x100y cut diamond, a buffer layer of isotopically-purified
12C diamond is grown. During the growth process nitrogen is introduced and incorporated.
Finally, a capping layer of purified diamond protects the delta-doped layer. c) Secondary
Ion Mass Spectroscopy (SIMS) reveals the relative densities of 13C and nitrogen vs depth
below the diamond surface. The resolution of the device is 8 nm, suggesting the width of
the delta-doped layer may be less.

via optical excitation and can be coherently controlled with microwave fields [107], whereas
the P1 centers’ electrons are unpolarized and cannot be read out. Instead, the P1 centers
form a thermal spin bath whose dipolar field dominates the NV decoherence.

To shield the q2D layer from extraneous influences, a buffer layer of purified diamond
attenuates interactions between the delta-doped layer and spins from the diamond bulk; as
well a capping layer of purified diamond is grown on top of delta-doped layer to protect the
it from the effects of surface chemistry (Fig. 4.3b). The sample was created from a Type
Ib diamond, cleaned and etched to 10 pm flatness. The growth procedure was as follows: a
10 minute hydrogen etch at 400 sccm, a 3.5 hour growth of 99.999% 12C enriched diamond
buffer layer using an isotopically purified methane at 0.2 sccm; a 10 minute growth of 98%
14N enriched nitrogen doped layer at 5 sccm; and a 4.5 hour capping layer growth with
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the same purified methane. Throughout growth, the pressure was held at 25 Torr and the
temperature at 800˝C.

A transmission electron microscope beam of 145 keV generated vacancies at specific
locations in the diamond. The exposure time at each selected location was varied, creating
a range of total electron fluence from approximately 7ˆ1020 e´/m2 to 7ˆ1025 e´/m2 (Fig.
4.3c). The irradiation spot we use throughout this work had a total fluence of 7ˆ1024 e´/m2

The diamond was annealed at 800˝C to generate NVs. Secondary Ion Mass Spectroscopy
(SIMS) reveals a high nitrogen concentration in a layer at most 8 nm thick, the resolution of
the device, and buffer/capping layers „100-200 nm thick (Fig. 4.3d). Comparing the SIMS
results to those of previous recipes, the P1 density is estimated at „10 ppm. NV density is
estimated at „1 ppm using optical brightness. Since the average spacing between defects is
on the order of or larger than the thickness of the defect layer, the sample is expected to be
q2D; however, proof requires the observation of a signature specific to two dimensions.

4.2.3 3D Delta-Doped Sample

In Section 4.4.2, we analyze a 3D sample grown for us by collaborators by Prof. Ronald
Walsworth research group. The sample started as an Element-6 electronic-grade diamond.
The company delta-doped a „ 1µm thick layer with 15N, then irradiated and annealed it.
Within the layer, they quote an NV density „1 ppm and a P1 density „3 ppm with an
isotopically-purification of 12C„99.995%.

4.3 Proposals: Dimensionality via Density Scaling

and Magnetic Tomography

We can observe distinctly 2D signatures using the NV coherence decay. The NV coherence
times T SE2 and TD2 , undergoing respectively Spin Echo (SE) or Double Electron-Electron
Resonance (DEER) measurement protocols, are inversely-proportional to the interaction
strengths in the system. All interactions in our system are dipolar, whose average strength
J depends on the average spin spacing r̄ as well as on the relative angle between spins. As
a result, we expect T2 to scale with both density ρ and field angle in distinct manners for
each dimension.

If one could increase the density of the P1s in the sample, they naively should expect
T2 to scale nonlinearly in 2D and linearly in 3D.1 We can see this by comparing the dipolar
interactions and r̄ in each dimension. In any dimension, the average dipolar interaction
depends on the average spin spacing as J „ 1{r̄3. The relationship between ρ and r̄, is
unique to each dimension, since density is volume is dependent in 3D ρ „ 1{r̄3 and and area
dependent in 2D ρ „ 1{r̄2. Swapping spacing for density results in a J „ ρ3{2 scaling in 2D
and linear scaling in 3D.

1This naive calculation is well-founded, as we will see in Section 4.4.
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Figure 4.4: When the applied magnetic field is aligned with the NV, one P1 orientation
group is also aligned, and the other three are misaligned by the same angle. The aligned
P1 group exhibits larger hyperfine splitting than the unaligned groups, resulting in 5 P1
resonances, each representing a fraction of the total P1 population.

To perform this measurement, we could find samples with the same thickness and different
P1 density, and measure Spin Echo on them, but ensuring the same nano-scale thickness is
beyond current practical technology. Instead, we can use a method demonstrated in another
work by the Yao group.2 The effective density of the P1 bath can be tuned between 1/12,
1/4, and 1/3 of its total population by addressing the associated hyperfine resonances during
DEER measurements. A large applied magnetic field sets the P1 electronic spin quantization
axis, but the hyperfine interaction’s quantization axis is set to any of the 4 crystallographic
orientations via the Jahn-Teller effect. If we apply a B field aligned along one diamond axis,
it sets all of the electron spin axes, but does not alter the hyperfine axes. When the P1 spin
and hyperfine axes are aligned, the P1 will exhibit stronger hyperfine splitting than when
unaligned. Given that the Jahn-Teller-induced hyperfine axis is randomly distributed and
that the axis flips to another crystallographic axis on roughly second timescales, at any given
time an NV’s hyperfine axis has a 1/4 chance to be each crystallographic axis. As a result,
1/4 of the P1 population will split more than the remaining 3/4 of the population.3 As a

2In review at the time of this writing.
3In truth, the spectra will not actually be symmetric. The hyperfine interactions of the aligned vs

unaligned groups have different projections onto the electronic spin SxIx and SyIy that will also shift the
spectra (even when Iz=0). The shift is stronger for the more aligned electron and nucleus. Consequently, the
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Figure 4.5: a) Two dipoles can switch their interaction from attractive to zero to repulsive,
depending on their relative angle. b) Simulated polar-angular dependence of the NV-P1
interaction that dominates DEER measurements. c) Spin Echo dependence on field polar-
angle. For both b) and c) the azimuthal angle is assumed to be the NV’s azimuthal angle.

result, there are 5 distinct P1 resonances, each with a fraction of the total P1 population
{1/12, 1/4, 1/3, 1/4, 1/2} (Fig. 4.4). Since the resonances are separated by „ 10 ´ 100
MHz, a DEER measurement can easily address a subset of them, effectively choosing and
tuning a P1 density.

As an alternative to the previous proposal, one can exploit the angle of the applied field
to switch the NV-P1 interaction from attractive to repulsive by rotating the P1 spin axis
(Fig. 4.5a). Whereas the NV spin quantization axis is set parallel to one of the diamond
crystallographic axes by its large zero-field splitting, the P1 spin axis is set by the external
magnetic field. When considering the possible geometric configurations of NV-P1 systems,

splitting between the lowest two frequency resonances is less than that between the highest two frequency
resonances. Also, the resonance corresponding to 1/3 of the P1 population has has a small splitting between
the 1/12 and 1/4 resonances comprising it. Most often, the bandwidth of the P1 drive pulses are much larger
than this splitting.
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Figure 4.6: a) DEER interaction scaling with P1 density for a 330 G field. b) Side view of
NV indicating the definition of the polar angle θB c) DEER interaction scaling with 270 G
magnetic field polar angle. c) Spin Echo interaction scaling with 270 G magnetic field angle.
The measured data in b) and d) does not match any predicted simulations.

we can see that an NV surrounded by a P1 spin bath has an average angular dependence
that is entirely distinct to the number of dimensions of the spin bath’s geometry. Sweeping
the angle of an externally applied field causes the NV coherence times to fluctuate through
patterns that are qualitatively unique to the number of dimensions of the system. Not only is
the numerically-predicted 3D pattern smaller in magnitude, but it also fluctuates completely
out of phase with the 2D pattern.

We chose one NV orientation group at a particular spot on our diamond and attempted
these measurements. We measured TD2 with varying effective P1 density (Figure 2a), as well
as T SE2 and TD2 while deviating the polar angle of an applied magnetic field from the NV
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Figure 4.7: a) Example of hyperfine beating observed in Spin Echo signal for a 270 G field
at the polar angles θB “ 88˝. THe solution to the hyperfine Hamiltonian fits well at early
times, but not at late times. Of the free fit parameters, A corresponds to the exponential
decay amplitude, alpha to the stretched power of the decay, and T2 to the T2 decay time.
b) The free fit parameters are highly correlated, stifling the extraction of T2.

axis (Fig. 4.6a). In all measurements, we find that the decay envelope of the data fits to
a stretched exponential with stretched power βSE “ 0.5 ˘ 0.05 and βDEER “ 0.39 ˘ 0.05
for Spin Echo and DEER, respectively. However, the results of extracting timescales over
density and angle are disappointing. Instead of 3/2, we find J „ ρ1{βDEER . As well, through
both SE and DEER we measure no significant variations in the dipolar interaction strength
that match any patterns we predicted (Fig. 4.6b & c).

4.3.1 Challenges

There were a few impediments hindering a successful experiment. The first two largely
affected only the angular sweep measurements, but the last one affects both. We must
surmount all three to successfully implement the proposed experiments in the lab.

14N Hyperfine Oscillations

Foremost, at many steps of the field sweep, there is a large angle between the applied
magnetic field and the NV axis, creating a significant transverse field in the coordinate
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system of the chosen NV orientation group. We observe a beating pattern in both SE and
DEER measurements at these angles (Fig. 4.7a). The beating is produced by a strong
back-action of the hyperfine interaction on the 14N nuclear spin states. Specifically, the SxIx
hyperfine term induces a onsite disorder on the NV’s electronic spin equal to the hyperfine
splitting (« 2 MHz) at first order. This explains why there should be fast oscillations. At
second order, the term mixes the |mI “ ˘1y nuclear spin states. These states have slightly
different hyperfine splittings due to their Iz interactions, so coupling their slightly different
hyperfine oscillations leads fast oscillations with a beat envelope. Under a large transverse
field this term becomes strong even to second order, generating coherent oscillations with
the nucleus that can completely flip the Sz projection throughout our measurement.

For a known NV-magnetic field angle and field strength, we can solve the NV hyperfine
Hamiltonian to obtain beating oscillations. We can then multiply the fixed solution by a
decaying exponential with two free parameters to fit the model to the data (Fig. 4.7a).
However, while the fit is fantastic at fitting early-time data, it clearly fails to do so at later
times. We could not tell if we simply could not find the correct beat frequency or if the
beating suffered from nuclear dephasing, adding more frequency components to the beat.
Worse still, fitting to the hyperfine oscillations removes the envelope’s weight from the fit,
which led to large correlations between the free fit parameters. As a result, we could not
fit consistent decay amplitudes A or stretch powers α across our data sets, so the fit decay
times T2 could not be compared. We tried a few other fitting methods, including Fourier
transforms and fits by eye, but could not extract a reliable T2 scaling pattern. The T2 fits
presented in Figure 4.6c & d are for free envelope fit parameters.

Dependence on Thickness

A more careful look at our numerical predictions of DEER reveals that adding even a small
finite width to a 2D layer drastically alters the pattern of interaction strength versus magnetic
field angle (Fig. 4.8). Increasing the thickness to 4 nm, the predicted pattern is highly
deviated from that of a pure 2D system. When the thickness is 8 nm (the resolution of SIMS),
the system is nearly indistinguishable from 3D. The T2 predicted by these simulations is on
the same order of magnitude as what is measured in our experiments, indicating that there
are few experimental imperfections to deviate the measured signals from these predictions.
Even if we could see an fluctuation in the T2 with magnetic field angle, this effect then
precludes a guarantee that we would be able to distinguish q2D from 3D.

Stretched Exponential Factor

We find that regardless of how we fit, the envelope of the decay clearly does not follow
a single exponential, but rather a stretched exponential with power β ă 1 (Fig. 4.9).
Stretched exponential decay has been observed and numerically predicted in the SE signal
of a three-dimensional NV-bath system, but to date has lacked an analytical explanation
[141]. A deviation from exponential decay suggests more complicated physics underlying our
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Figure 4.8: Numerical simulations of the dependence of DEER 1{T2 on the polar angle θB of
an applied 270 G field, varying over the thickness of the delta-doped layer. The azimuthal
angle is assumed to aligned with the NV axis. The DEER measurement is assumed to be
performed on the 1/3 group, so the P1 density is taken as 10/3 ppm.

data. Without a definitive understanding of and predictive power over the stretch, we will
have a hard time convincing ourselves that any trends in T2 are entirely due to q2D nature
phenomena. So even the pleasant result that the interaction strength scales as J „ ρ1{βDEER ,
seemingly depending on the decay exponent, cannot be proven to be more than coincidence.
Furthermore, the ultimate purpose of growing a this sample is to study exotic driven phases
of matter, once its q2D nature has been verified. For such research, any underlying physics
that could produce a stretch factor could muddle our interpretation of the exotic phase.

4.3.2 Proposed Solutions

There are a few possibilities for overcoming the challenges to magnetic tomography. For
those issues arising out of the hyperfine backaction, we could first try to reduce the magnetic
field strength while rotating the field to diminish the effect. Unfortunately, we found that at
fields ă 200 G, we could observe 13C hyperfine oscillations in our data. We would need to
regrow a more isotopically pure sample to work at lower fields, which is difficult in its own
right. A better solution for this diamond is to increase the field. At high enough fields, the
14N nuclear spin’s population polarizes into one of its three states. By polarizing the nucleus
into one of its states, there is little population to beat, so the contrast of the hyperfine
oscillations should drastically reduce.

Another consideration is to perform a measurement that is insensitive to hyperfine effects.
By increasing the magnetic field to „510 G, the NV and P1 become resonant with each
other (neglecting hyperfine interactions). Much as we addressed different P1 populations



CHAPTER 4. QUASI-2D DEFECT DYNAMICS 117

Figure 4.9: Spin Echo and DEER measurements used to create the interaction scaling in
Figure 4.6a. a) Spin Echo b-d) DEER for the indicated P1 density fraction.

by varying the MW frequency, varying the field around this value can shift the different
hyperfine-split densities of P1s on to resonance with the NV [RT3]. In this regime, we could
look at T1 scaling against density. Scaling with density should be non-linear in dimensions
less than three, as discussed previously in this section. We also avoid rotating the field for
this series of measurements. This experiment also circumvents the possibility of the layer
being too thick, as scaling is distinct for each thickness.

However, none of these solutions fix the problems stretched exponential decay poses to
a complete interpretation of the data. The best option we have to address this issue is to
study it deeply, which is exactly what we do in the remaining sections of this chapter.
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4.4 Coherence Decay Dynamics

4.4.1 General Form of Coherence Decay for Ising Qubit-Bath
Interactions

To better understand the source of the stretch, we provide a well-motivated and general
analytical derivation. We assume that the central NV spin shares an Ising interaction
J0{r

αSzNV S
z
j with each P1 bath spin and that P1-P1 interactions are fully dipolar. For

a single realization of the positional disorder of the P1 bath, the time average of the single
central NV coherence is

xSxNV ptqy “
1

2
Re

"B

Exp

„

iΣj
J

rαj

ż t

0

Szj pτqηpτqdτ

F*

(4.1)

where ηpτq is the filter function of Spin Echo or DEER in the time domain. For a thermal
P1 bath, we take the natural assumption that the accumulated phase is a Gaussian variable,
which permits us to exploit the relationship RexeiXy “ exX

2y, for Gaussian variable X. This
average of the square of the Gaussian variable provides us with an autocorrelator of the bath’s
spin configuration xSzj pt

1qSzj pt
2qy. We now see the phase as a convolution χptq between the

autocorrelation of the bath and the filter function of the measurement with some coefficients
in front representing the squared interaction strength:

xSxNV ptqy “
1

2
ΠjExp

#

´
1

2

„

J

rαj
χptq

1
2

2
+

(4.2)

where

χptq “ xp

ż t

0

Szj pτqηpτqdτq
2
y «

ż t

0

dt1
ż t

0

dt2ηpt1qηpt2qe´
|t1´t2|
τc (4.3)

for xSzpt1qSzpt2qy “ e´
|t1´t2|
τc , and τc being the spin correlation time of the bath. The ex-

ponential form of the autocorrelator is one way of expressing the assumption that it peaks
when t1 « t2. It is motivated by the decay profile of depolarization in single-NV experiments.

All of this solved for a single positional realization. Now we must average over positional
disorder—the entire NV ensemble. To do so, we pull the parametric time dependence out of
the positional integral to find a general form of the coherence decay

xSxptqy “ Expr´pJ2χq
D
2α s (4.4)

This general solution does not assume anything about the timescales in the problem,
permitting decay by both types of decoherence as discussed in Section 1.5.6. In this case,
the filter-autocorrelator convolution χ is solved for analytically (Table 4.1). With the ana-
lytical solution in hand, we can isolate the effects of the two types of decoherence by taking
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Measurement χptq χpt ! τcq χpt " τcq

Ramsey-type 2τct´ 2τcp1´ e
´ t
τc q t2 ´ t3

3τc
2τct´ 2τ 2

c

Spin Echo-type 2τct´ 2τcp3` e
´ t
τc ´ 4e´

t
2τc q t3

6τc
2τct´ 6τ 2

c

XY8
τ2p

12τc
t

τ2p
12τc

t
τ2p

12τc
t

Table 4.1: The general analytical solution of the phase convolutions for different measurement
sequences, as well as the limits for large and small evolution time with respect to bath
dynamics.

the limits t ! τc (coherence spreading) and t " τc (environment changing). Notably, the
Ramsey- and Spin Echo-type measurements exhibit drastically different behaviors in the two
regimes because they are initially influenced by coherent interactions between the probe spin
and the bath (coherence spreading) until the incoherent interaction with the decorrelated
bath dominates (dephasing and decoherence from environment changing). By contrast, the
behavior of an ideal XY8 does not change between the two regimes because it perfectly
suppresses coherent interactions between the probe and the bath at all times, implying that
the decay can only be from decoherence due to decorrelation in the bath. Crucially, while
the stretched power of the decay in the uncorrelated regime is the same for all measurements
for each dimension, the T2 measured in those regimes is different for each measurement due
to the degree to which each protocol filters the interaction with the bath. Take for example,
Spin Echo and XY8. Both are capable of suppressing the probe’s interaction with the corre-
lated bath and its interaction with the decorrelation dynamics in the bath. The difference is
that Spin Echo’s suppression of correlated dynamics is imperfect, whereas XY8’s is perfect,
so Spin Echo’s T2 should be smaller in principle. Furthermore, XY8 can also improve its
suppression of the uncorrelated bath dynamics by decreasing the inter-pulse time τp and
increasing the number of pulses, in which case it still decays with a stretched power of 1/3,
but T2 Ñ 8.

A few remarks are in order. First, ensemble-averaging xSxptqy ensures both the expo-
nential form and the parametric dependence D{2α. The exponential form arises from a
geometric identity associated with multiplying the outcomes from every possible location of
bath spins. Specifically, we integrate over spherical shells, with each shell having a proba-
bility of containing a P1 that can cause the NV to decay.

xSxptqy „
ź

Shells

pProbability of no particleqpNo Decayq ` pProbability of a particleqpDecayq

“
ź

ri

p1´ ρ4πrD´1
i drqp1q ` pρ4πrD´1

i drqpe´γitq

“
ź

ri

Exp
“

´ρ4πrD´1
i drp1´ e´γitq

‰

(4.5)

where ρ is the bath spin density, ri is the radius of the spherical shell being integrated over,
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and γi is the associated NV decay rate for a bath spin located on the corresponding spherical
shell. The parametric dependence extracted from

xSxptqy „ Exp

„

´

ż 8

0

e´
J
rα
tρ4πrD´1dr



(4.6)

is necessary from dimensional analysis. The D{2α comes from reconciling the power-law α
scaling of the dipolar interaction and the D-dimensional Jacobian of the spatial integral; the
2 comes from the assuming Gaussian variables, transforming rα Ñ r2α. Second, the assump-
tion that the central spin shares an Ising interaction with the bath is a good approximation
for our system since the NV and P1 are far off-resonance with each other, suppressing flip-
flops. Third, the stretch power derivation can be generalized beyond a Gaussian distribution
of phase accumulation. At least for a binary distribution of phases, the same parametric
dependence will be isolated (eq. 4.4 due to the geometric nature of the ensemble average.
The only difference is the addition of a coefficient inside the exponent of order 1.

Finally, one might reasonably assume that τc ąą T2, so τc ąą t in most experiments.
Ising and flip-flop terms in the bath dipolar interaction share the same coefficient for any pair
of bath spins. Notably, the Ising contribution to disorder is cumulative with the number of
neighboring bath spins whereas the flip-flop contribution to decorrelation in the bath is not.
Consequently, for any given flip-flop rate, disorder is likely to be a stronger interaction, scal-
ing with both the number of spins and the volume of the d-dimensional geometry. However,
this assumption must be checked self-consistently in the experiment, and in our case, it is not
true. We believe this is the reason the predicted stretch powers are a bit larger than what
was measured. While there are a number of experimental reasons for this—local density
fluctuations, the existance of more flip-flop than predicted, one-dimensional contributions,
etc.—we find that it arises out of the fact that we are measuring evolution times both before
and after τc, so we probe both correlated and uncorrelated bath dynamics. When there are
two distinct and subsequent stretched exponential decays, fitting a single stretched exponen-
tial is inappropriate. In the next section, we will explore the ongoing efforts to observe the
crossover between these different interaction regimes of our model stemming from this fact.

4.4.2 Interaction Crossovers

Given our strongly-interacting system, one could reason that the correlation time τc of the
bath might be small enough to observe. If so, we qualitatively expect stretch exponential
decay with stretched powers as presented in Table 4.2 for each measurement protocol. To
verify the crossover from correlated bath dynamics to uncorrelated bath dynamics, we mea-
sure Spin Echo, DEER, XY8, and XY8-DEER for our ostensibly 2D sample as well as a 3D
sample with NV density „ 1 ppm and P1 density „ 4 ppm (Section 4.2.3). Since these are
qualitative theoretical predictions of power-law decays, we plot the results in log-log space
with fits by eye to two stretched exponential decays fixed at the predicted stretched powers
(Fig. 4.10 & Fig. 4.11). On the whole, the data exhibits the qualitative behavior of Ramsey
decay in 2D (2{3 Ñ 1{3) for the 2D sample and in 3D (1 Ñ 1{2) for the 3D sample.
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2D 3D
Measurement χpt ! τcq χpt " τcq χpt ! τcq χpt " τcq
Ramsey-type 2/3 1/3 1 1/2

Spin Echo-type 1 1/3 3/2 1/2
XY8 1/3 1/3 1/2 1/2

Table 4.2: The general analytical solution of the phase convolutions for different measurement
sequences, as well as the limits for large and small evolution time with respect to bath
dynamics.

Figure 4.10: Crossovers verified in 2D sample for different measurements. a) Spin Echo b)
DEER c) XY8 d) XY8-DEER
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Figure 4.11: Crossovers verified in 3D sample for different measurements. a) Spin Echo b)
DEER c) XY8 d) XY8-DEER

The DEER and XY8-DEER measurements are expected to follow Ramsey trends and
directly measure the P1 correlation time, since they intentionally target the NV-P1 interac-
tion; however, one would not also expect Spin Echo and XY8 to exhibit trends reminiscent
of Ramsey. We can understand this surprising Ramsey-type result by observing the overall
behavior and the T2 for Spin Echo and XY8. First, the very existence of a crossover in
both Spin Echo and XY8 means that there is some kind of dense bath transitioning from
correlated to uncorrelated dynamics. If they were dominated solely by bath decorrelation
due to a very short τc, then both Spin Echo and XY8 would exhibit a 1/3 stretched power
decay throughout the measurements, and if they were dominated solely by coherent interac-
tions with correlated dynamics they would exhibit simple exponential decay. Since the P1
correlation times measured in DEER and XY8-DEER are much shorter than the correlation
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Figure 4.12: TXY 8
2 vs τp. At short τp we observe a steep dropoff due to large pulse errors.

At longer interpulse times, we observe a plateau. If the XY8 decay were due to a bath that
could be filtered, we would expect monotonically decreasing T2 with increasing τp as the
bath becomes less filtered. The plateau suggests that there is a bath that is unaffected by
the XY8 filter.

times measured in Spin Echo and XY8, we can surmise that they are suppressing the NV-P1
interactions effectively and are instead probing a different bath with a lower density. Second,
T2 does not increase dramatically between Spin Echo and XY8. XY8 should be much more
effective at suppressing all interactions between the NV and P1 bath than Spin Echo, so
if Spin Echo was decaying due to NV-P1 interactions (coherent and incoherent), we would
expect the XY8 T2 to be much larger than the Spin Echo T2. The fact that it is not suggests
that XY8 is not efficiently filtering the interactions with whatever bath is dominating the
measurements. Third, when we decrease the inter-pulse time τp of XY8, we observe a plateau
of the overall T2 before it drops off at very short τp (Fig. ??). The drop-off at short τp is
an effect due to the accumulation of pulse error (many more pulses are applied when the
inter-pulse time is short). The plateau strongly indicates that XY8 is not only inefficient at
filtering the bath in question, it is incapable of doing so.

Taken together, we have a dense bath that is not composed of P1s, is sparser than
the P1 bath, and cannot be filtered by Spin Echo and XY8. The only particles in the
system that meet these criteria are the NVs themselves. We conclude then that Spin Echo
and XY8 effectively measure NV-NV Ramsey and the NV bath correlation time. The P1
correlation crossover still exists within these measurements, but is too suppressed to be
observed. With this consistent explanation of the qualitative decay behavior of two separate
diamond samples, we have not only verified the predictive theory, but also the dimensionality
of the q2D sample.
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4.5 Conclusion and Outlook

This chapter reviewed work on the observation of 2D dynamics in a spin defect system. All
efforts employed the local coherence dynamics of the high-density NV-P1 system to verify
the q2D nature of a delta-doped diamond sample. Two experiments were proposed and
attempted: one probing the scaling of local interactions with bath density, and another per-
forming magnetic tomography of the geometric dependence of the dipolar interaction in 2D.
Both measurements met with complications that halted their progress, the most crucial im-
pediment arising out of the shape of the stretched exponential decay profile. This hindrance
became a boon. Developing an analytical derivation of the stretched exponential decay first
provided us with the understanding we needed to predict the existence of a crossover between
correlated and uncorrelated bath dynamics. We then observed the transition in experiments
for two diamond samples.This research lays the groundwork for the study of exotic driven
phases of matter using dipolar spins in lower dimensions, such as the quasiperiodic prether-
mal time crystals [44]. Furthermore, it provides a more accurate and precise understanding
of the coherence decay dynamics of any-dimensional spin ensemble system dominated by
Gaussian statistics.

Equipped with a solid understanding of the diamond sample, we are prepared for explor-
ing some of the exotic 2D physics it offers. Of the compelling phenomena are 2D many-body
localization, 2D diffusion and hydrodynamics, and quasiperiodic time crystals, but also this
platform positions our group to distinctly answer numerically- and analytically-intractable
questions, such as what the nature of 2D groundstate of disorderd dipoles is. Future samples
could offer better properties for simulation or sensing, but will always need to consider the
influence of the local dynamics studied in this chapter.
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Chapter 5

A Trial in TMDS

With the advent of graphene, next-generation nano-electronic devices are being designed
around 2D materials whose favorable characteristics are distinct from their bulk counter-
parts [116, 94]. Whereas graphene is the quintessential 2D conductor, group-VI Transition
Metal Dichalcogenides (TMDs) are the semiconductor analogs. When they are multilayered,
TMDs are indirect bandgap semiconductors, but they become direct gap semiconductors
as monolayer. Monolayer TMDs garnered attention for spin-valley properties suggesting
applications in opto-electronics [139], transistors [125] and spin- and valley-tronics [111, 60].

This chapter recounts a project attempted as part of the Yao group’s first experimental
thrust—the study of 2D TMDs using NVs. We performed the work in collaboration with the
research group of prof. Feng Wang. The idea was to use shallow („ 5 nm) NVs to turn the
TMD dynamics into the local dynamics of the NV as a means to boost the NV’s sensitivity.
We had chosen to work with low enough densities that we could resolve individual shallow
NVs with the hope that we could work towards nano-NMR of defects in the TMDs. The
project was eventually dropped due to shifting interests, but served as a launchpad for the
lab’s experimental trajectory, and its understanding of the NV environment.

The physics used to describe TMDs is very much solid state physics, but the general
scheme for deriving its properties is similar to that found in the atomic physics of Section
1.3. Since this is an atomic physics thesis, I will try to conform the discussion of TMDs as
much to our familiar atomic language as I can.

5.1 Introduction to TMDs

Group-VI TMDs are composed of a single transition metal atom connected to two chalco-
genide atoms, with a stoichometric formula MX2 for M “ [Mo, W] and X “ [S, Se]. The
monolayer physics is essentially the same for any combination of atomic species, each com-
bination having its own energy splittings. Looking from above, the atoms in the monolayer
layer form a hexagonal lattice alternating M and X (Fig. 5.1b). Looking from the side,
we can see that there are actually two layers of X atoms, one above and one below the M
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Figure 5.1: a) MX2 from the side, exhibiting H-stacking. 6 X atoms form a trigonal prism
centered around each M atom. b) Top-view of MX2 hexagonal lattice.

atoms, with every 6 X atoms forming a trigonal prism centered around an M atom (Fig.
5.1a).

Multilayer and bulk TMDs are stacks of the 2D layers, which are strongly-bonded but
weakly coupled via Van der Waals interaction. The stacking order is 2H (Fig. 5.1a) with
a symmetry group D4

6h that contains inversion symmetry. From the stacking diagram, we
can see now why the TMD physics changes so drastically from bulk to monolayer (or to
thin films with an odd number of layers): a monolayer breaks inversion symmetry and adds
reflection symmetry, as the layer’s symmetry group reduces to a D1

3h crystal point group plus
a reflection through the horizontal plane intersecting the M atoms.

To construct the energy diagram (band structure1) of the monolayer, we will briefly
highlight a representation theoretic derivation highly reminiscent of the one from Section
1.3. We will start with a basis of atomic orbitals (d-orbitals of the M atom), and then apply
symmetry constraints from from the symmetry group of the unit cell to find the irreducible
representations. Any additional perturbations must comply with the symmetry group, e.g.
constraining the polarization of the optical dipole transitions to circular.

The d-orbitals of the M atom are are projected onto three irreducible representations of
the D1

3h group: A1pdz2q, Epdxy, dx2´y2q, and E 1pdzz, dyzq. The additional reflection symmetry
serves to hybridize the the A1 and E orbitals, which creates splitting between their energies—
a ‘bandgap’ at particular locations with high symmetry in momentum space called ‘K’ and
‘´K’ points [105]. The K and ´K points are valleys in the energy potential landscape that
are time-reversals of each other (i.e. time-reversed momentum). With the symmetries at

1Electrons in a solid are free to travel throughout the solid, as opposed to being constrained to a small
volume around an atom or molecule (i.e. NV center). Since electrons are waves whose wavelength depends
on its momentum, the direction of the electron’s velocity determines the periodic pattern of the crystal
lattice potential that it encounters and the speed determines the resolution (from wavelength) with which it
samples that lattice. As a result, the potential energy landscape (and linear combination of atomic orbitals)
of the electron changes with momentum. This is what band structures represent. We will be focusing on a
small enough portion of this landscape (the ˘K points), that we can treat the band diagram as an atomic
level diagram for our purposes.
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Figure 5.2: Energy level diagram of TMD. This is a zoom-in on the points of the band
structure. Optical polarization selection rules are labelled.

these points we now have the basis functions

|φcy “ |dz2y , |φτvy “
1
?

2
p|dx2´y2y ` iτ |dxyyq (5.1)

for τ “ ˘1 being the valley index, and cpvq indicate conduction (valence) bands.
With the wavevector basis near these points, we can now form the associated Hamilto-

nian and obtain the energy level diagram (Fig. 5.2). The Hamiltonian at these points in
momentum space is k ¨ p, which is exactly what describes monolayer graphene with stag-
gered sublattice potential [162], but in addition, the M ’s d-orbitals adds a strong spin-orbit
coupling (SOC) L ¨ S

Ĥ “ k ¨ p` L ¨ S « atpτkxσ̂x ` kyσ̂yq `
∆

2
σ̂z ´ λτ

σ̂z ´ 1

2
ŝz (5.2)

where σ̂ are the Pauli matrices for two basis fucntions, a is the lattice constant, t is the
effective hopping integral, ∆ is the energy gap, 2λ is the energy splitting due to SOC, and
σ̂z is the Pauli spin-z matrix. We see from this Hamiltonian that the spin and momenta are
completely decoupled, so sz is a good quantum number. Also, the time-reversal symmetry
between the valleys intuitively flips the orientation of the spins in each valley. Finally, since
the conduction band wavevector is made of dz2 , which has Z2 symmetry, it is spin-degenerate
[163].
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The Hamiltonian permits calculating the coupling strength of of optical transitions. It is
found that the conduction and valence bands are coupled exclusively by circular polarization
σ` (σ´) in the K (´K) valley [163]. Just like with the NV, optical fields couple only to
the orbital portion of the wave function so spin is conserved in these transitions. Because of
the time-reversed spin orientations of the valleys, the valleys’ optical selection rules become
spin selection rules, and each frequency drives transitions of opposite spins in each valley. In
the end, there are four distinct selective excitations of spin and valley indices, which can be
exploited for many of the aforementioned applications.

5.1.1 Van der Waals Glue

The van der Waals force typically is a weak attractive interaction that exists between all
atoms and molecules at short distances [69]. It originates from the multipoles that two atoms
or molecules mutually-induce in each other when they are „ 0.5 nm apart: the polarization
of the electron clouds around each nucleus becomes correlated in the two particles in an
attractive way. When the particles become even closer (ă 0.4 nm), the force becomes
repulsive due to the pauli exclusion of their electron clouds. The force is relevant over short
enough distances such that it is generally considered only between nearest neighbors. For this
reason, it is additive without saturation when two atomically thin sheets come into contact—
serving as strong adhesion. The van der Waals force is the main reason 2D materials can
be stacked into structurally-sound ‘heterostructure devices’ or can be exfoliated onto the
surface of a diamond for study with nearby NVs.

5.1.2 Resident Electron Spin Polarization

The dynamics in TMDs are typically orders of magnitude faster than in NVs („ fs or ps versus
„ ns or µs) [168, 67, 23, 165]. However, the lifetime of electrons or holes respectively above
or below the Fermi level within a valence band, so called ‘resident carriers,’ are expected
to be „ ns [167, 166]. While these lifetimes are still short relative to NV dynamics, since
they are much longer than other TMD excitations or polarizations, resident carriers could
feasibly produce a detectable magnetic field if the TMD is continuously driven. This section
will outline our understanding of the process for polarizing the spin of resident carriers in
one of the valleys to produce a magnetic field.

When circularly-polarized light is applied on an intravalley resonance, it creates an ex-
citon, an electron-hole bound pair with one charge in the conduction band and the other in
the valence band. Most of the time, excitons decay in „ ps, or scatter into other valleys as
a bound pair while flipping its spin « 300 fs [165, 23, 168]. Any field produced by excitons
either decays or inverts so quickly that it averages to zero on NV timescales. Fortunately,
there exists experimental evidence of an intervalley scattering process that unbinds the ex-
citons, leaving a hole in the initial valley and an electron in the opposing valley [167, 166].
Under this process, the imbalance of resident electrons between the valleys and their long
lifetimes could produce long-lived fields [67].
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Figure 5.3: Proposed polarization process. a) The Fermi level is doped below between the
two levels of the valence band, so holes occupy the upper SOC levels. b) Circularly-polarized
light creates excitons in one K point. Some fraction of them quickly unbond into separate
resident electrons and resident holes. c) The electrons scatter randomly and redistribute
between the two K points. d) Finally, the electrons decay, filling the holes in both valence
band.
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The process is as follows. In a hole-doped TMD, the Fermi level can be tuned to sit
between the two valence bands, above the lower band and under the upper band (Fig. 5.3).
Circularly polarized light on resonance with the upper valence band excites some number
of excitons. Given the scattering and decay processes described above, most of the excitons
decay without issue, but the few whose electrons and holes are unbound have much longer
ns lifetimes. The resident electrons are redistributed between the two K points, whereas the
resident holes are left in their initial valley. Finally, the electrons decay back to the valence
band and recombines with the holes, leaving an imbalance in the number of holes between the
two K points. Since the K points have opposite spin orientations, this imbalance generates
a net magnetization that lasts for the lifetime of the resident carriers „ ns. While ns is long
for TMDs, since it is short for NV sensing times, the field generated would be detected as a
noise source that broadens the NV’s natural linewidth or shortens its T ˚2 .

5.2 Proposed Experiments

There were two experiments our lab designed and seriously considered performing, detailed
below.

5.2.1 Absolute Spin Density

By polarizing the spin of the resident carriers to produce a magnetic field which NVs could
detect, we could potentially measure a value indicating the absolute density of resident
carriers σ. This is opposed to Kerr measurements [167] that can only provide the relative
change in spin density.

To see this, we estimate the size of the magnetic field produced by a monolayer TMD.
Exciting the layer with a laser focused to a spot of radius R, we assume the resident electrons
are generated instantaneously to form a uniform spin bath polarized along the out-of-plane
direction ẑ within a 2D disk of radius R (Fig. 5.4). Our NV sits a distance d below the
2D plane and detects the magnetic field from the disk. The magnetic scalar potential of a
magnetic dipole is

ψp~rq “
~m ¨ r̂

4π|~r|2
(5.3)

where ~m is the magnetic moment and ~r is the displacement vector from the dipole. We can
integrate eq. 5.3 over the disk to get a formula for the potential at the NV

ψdisk “
σ

2

ˆ

1´
d

pd2 `R2q1{2

˙

(5.4)

where the resident carrier density σ is the magnetic moment per unit area. The field at the
NV is then

~H “ ´∇ψ “ σR2

2pd2 `R2q3{2
sinθẑ (5.5)
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Figure 5.4: The NV can detect the magnetic field from a disk of resident electrons excited
by a laser. To solve for the field of the disk, one must integrate over the radius a of rings.
Since the depth d „ 10 nm of the NV is much smaller than the diffraction-limit of the laser
in z, both the NV and the TMD can be in focus simultaneously.

where θ is the angle the NV makes with the ẑ axis (θ « 36˝ for a [100] cut diamond). We see
that the magnetic field on the NV is composed entirely of predetermined geometric factors
d, R, and θ and the spin density σ. Consequently, a measurement of the field for a known
geometry is a direct measurement of the absolute spin density.

Both the disk radius and NV depth are controlled by choice of experimental tools and
for this experiment would be R „ 500 nm and d „ 5´ 30 nm. The magnetization density σ
depends on the TMD chosen, but could be estimated by a simple calculation

σ “ Iτkeσ

ˆ

hc

λ

˙´1

µB (5.6)

where I is the laser intensity („ 1µW/µm2, τK is the lifetime of the resident electrons
(‘Kerr lifetime’ of the local magnetic field), eσ is the photon-to-carrier conversion efficiency
(„ 0.05´ 5% for MoS2 and WSe2), λ is the wavelength of the exciton resonance, and µB is
the Bohr magneton. The Kerr lifetime depends on temperature, believed to be „ 10 ns at
77 K and „1 µs at 4 K for MoS2 and WSe2.

One issue that immediately arises is that the spin density could vary drastically for the
ranges of Kerr lifetime and conversion efficiency. We estimated the possible spin densities for
a variety of conversion efficiencies, Kerr lifetimes, and temperatures in WSe2 heterostructures
and monolayers (Fig. 5.5). In the worst case, only tens of resident electrons would be
generated spread over a relatively immense area, producing a tiny signal. From the figure,
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Figure 5.5: Number of spins per micron for given photon-to-carrier efficiency and Kerr
lifetimes. We can compare this to expectations for the monolayer and heterostructures at
different temperatures to determine which experiments are plausible.

we suspect we would need to study either heterostructures of TMD at 4 or 77 K or monolayers
at 4 K to ensure a large enough signal.

5.2.2 FRET for TMD Transition Dipole Moment

Förster Resonance Energy Transfer (FRET)2 is a transfer of an excitation from an excited
particle (‘donor’) to an unexcited particle (‘acceptor’) via a non-radiative evanescent wave.
Fundamentally, it is the same as one excited atom radiatively decaying and another atom
absorbing the radiation. Both are mediated by electric dipolar interactions. The difference
is that FRET occurs when the particles are too close for the donor to emit a photon to
transfer its energy to the acceptor.

The efficiency of energy transfer through FRET E is expressed simply as

E “
1

1` pr{R0q
6

(5.7)

with r being the separation between the two particles and R0 being the Förster distance,
the separation at which the efficiency drops to 50% [50]. The Förster distance encodes a
ton of physics, most notably the overlap integral between the donor’s emission spectrum

2Also called Fluorescence Resonance Energy Transfer by those who don’t want to type ‘ö’
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and acceptor’s absorption spectrum as well as the relative orientation of the two dipoles and
their dipole moments. Typically for optical FRET R0 „ 1´ 10 nm.

Most often, FRET is used in biological studies to transfer energy between fluorophores
and chromaphores as part of marking schemes [18]. In our case, we propose using FRET
for two purposes. First, we would use it to determine the transition dipole moment of the
TMD excitons µTMD. Since the transition dipole moment of NVs µNV is well-known [27],
we can measure the FRET efficiency of a set of NVs at a pre-measured separations from
and orientation to a TMD monolayer with a known absoprtion spectrum. The efficiency for
transfer from a sole dipole to a sheet can be calculated [147]

E “
ΓNV {TMD

ΓNV
“

m˚

64πε2h̄2r4
µ2
TMDµ

2
NV psin

2θ ` 2cos2θq (5.8)

where ΓNV {TMD,NV is the NV’s fluorescence rate respectively with and without the TMD
present, m˚ is the effective mass of the exciton (half the electron mass), ε is the permittivity
of diamond (« 5.5ε0), and θ is the angle the NV makes with ẑ. Knowing the relevant
absorption/emission spectra and the relative orientation, the only unknown parameter is the
transition dipole moment of the TMD.

Before investing in the experiment, we would like to estimate µTMD to ensure it is a
feasible quantity to measure. We can do so by noting that it is the proportional to the
overlap integral of the conduction and valence bands, which should place it around the size
of the unit cell „ 3 ´ 5 angstroms for any TMD. With this quantity, we can also estimate
the Föster distance to be about 5 nm, meaning that we need NVs very close to the diamond
surface in order to see the TMD quench the NV’s fluorescence.

The second purpose of FRET measurements is much simpler in comparison to the first.
Once µTMD is determined, the TMD monolayer can be easily used to calibrate the depth of
shallow NVs below the surface of diamond using the FRET rate.

5.3 Experimental Efforts

Before shifting focus to other projects, we built the lab’s first microscopy apparatus and per-
formed two main sets of measurements on this experimental thrust, detailed in this section.

5.3.1 Experimental Apparatus

The apparatus we used for the following measurements is the most basic form of what was
discussed in Section 1.4.3. We used a stripline to deliver microwaves to the NVs and applied
magnetic fields with a permanent magnet on adjustable posts.

For the proposed measurements using the NV as a quantum sensor to study TMDs, we
would need to exfoliate a flake of TMD or heterostucture onto the diamond surface. The
NVs in the diamond need to be very shallow „ 1 ´ 10 nm below the surface. Finally, the
TMD/diamond sample needs to be cooled to liquid nitrogen (77 K) or liquid helium (4
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K) temperatures. At the time of these measurements, we did not own a cryostat, but it
would be required eventually. A crysostate would limit us to using air-based objective lenses
which have a diffraction limit around 1 µm (we took this into account for our spin density
estimates).

5.3.2 Shallow NV Depth Calibration

The first step to either the spin density or FRET measurements is to determine the precise
depths of a set of NVs below the diamond surface. This depth becomes the separation d
between the NV and the TMD that we would input into eqns 5.5 and 5.8. In addition, the
NVs’ bare fluorescence rates, saturation curves, and lifetimes must be characterized. Once
the TMD is placed on the surface, we would extract information about the TMD based on
how each of these changes.

We need a diamond sample with „ 100 pm flatness to undergo implantation of nitrogen
with low enough energy and density that the resultant single NV centers are distributed
within „ 1´10 nm. Fortunately, techniques for generating such shallow NV samples are well-
developed [7, 81, 164]. We can thank our collaborators for walking us through the fabrication
process and creating a sample. Starting with an electronic-grade Type IIa diamond, the
surface is etched first with Ar and Cl2 and then with O2 to a flatness „ 100 pm. Nitrogen
ions were implanted with an energy of 2 KeV, which should create an average NV depth
around 5 nm. Finally, the diamond was annealed in an O2 environment at 800 C to both
generate NVs and to terminate the diamond’s surface dangling bonds. Terminating the
surface prevents charge and magnetic impurities from bonding to the surface, increasing the
rate of photobleaching and reducing the coherence times [164].

To calibrate the depths of the NVs, we followed a procedure that isolates the strength of
the noise from a known proton bath [124]. The immersion oil we use to increase the refraction
index of our objective lens and optimize the optical resolution is full of free-floating protons.
An external field applied to the system causes the protons to Larmor precess at a frequency
determined by the strength of the field (Fig. 5.6a). Seeing as they are in a viscous room-
temperature medium, the amplitude and phase of the proton’s Larmor precession varies over
short timescales such that the net magnetization of the oil is negligible, but the variance in
the magnetization is non-zero and proportional to the spin density.

For fields ą 150 G, the precession frequency is in a range for NV spectroscopy methods
relying on T2 decoherence. The magnetization variance can then be directly measured via
the decoherence in an XY8 decoupling sequence (Section 1.5.11). By varying the inter-
pulse time, XY8 sweeps through the noise spectrum of the environment. At the Larmor
frequency of the protons, the XY8 noise spectrum should exhibit a dip with contrast and
width determined by the density of the proton bath and the distance the NV is away from
the bath [124]. As long as we know the density of the proton bath and the magnetic field
strength, the only free parameter is the NV depth (Fig. 5.6b). As the NV depth increases,
the contrast of the noise Larmor precession decoherence signal decreases. Increasing the



CHAPTER 5. A TRIAL IN TMDS 135

Figure 5.6: a) Schematic of NV depth calibration. With an applied external magnetic field,
a free-floating proton bath in the oil creates a magnetic field that is zero on average, but has
a non-zero variance due to the Larmor precession. b) In frequency space, the strength and
width of the proton signal is determined by its depth. We measure the signal with the XY8
sequence.

number of pulses in the XY8 sequence permits the NV to decohere longer, boosting the
contrast of the signal for deeper NVs.

We measured the proton density in the immersion oil at the Berkeley NMR facility. We
then applied XY8 sequences on a set of NVs with a 200 G applied field, sweeping inter-
pulse time to obtain noise spectra. The NV exhibited decoherence due to a single consistent
Larmor frequency (within daily variance in external field). Fitting to the noise dips, we
obtained a range of NV depths between 7nm and 20 nm (FIGURE). However, we never
measured NVs shallower than 7 nm.

The question as to why we did not find NVs shallower than 7 nm was not answered before
our experimental interests shifted. There were a set of NVs we found whose ODMR spectra
displayed no NV resonances, which suggests exceptionally low T ˚2 for these NVs and/or a
high conversion rate to the NV0 charged state. For all other NVs, we measured T ˚2 „ 0.5µs
and T SE2 „ 30µs for this set of NVs, which is similar to the lifetimes in comparable samples
[52, 106, 57]. It seemed then that the surface O2 termination had succeeded in reducing
magnetic noise, but was not adequately protecting the charge state of the shallowest NVs.
We planned to redo surface cleaning and possibly the termination, but our experimental
interests shifted before we proceeded further.
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Figure 5.7: a) Saturation curves for two WSe2 flakes and a shallow single NV. The flakes are
two orders of magnitude brighter than the NV. b) The fluorescence rate of a spot on a WSe2

flake versus time, exhibiting photobleaching. c) Confocal image with 532 nm laser light.
Colorbar indicates photon counts. The red circled areas are locations that photobleached.

5.3.3 Burning TMDs

To test the feasibility of using the NVs and a monolayer TMD together, we wanted to probe
for unexpected experimental issues. Our collaborators exfoliated a few flakes of monolayer
WSe2 onto the surface of a clean diamond with a low natural abundance of NVs (Type IIa).
WSe2 was chosen because its absorption and emission spectra are peaked at around 740 nm
[9, 153], so it should exhibit a large FRET quenching of the NV and its emissions could
feasibly be filtered away from the NV fluorescence.

We measured how the WSe2 fluorescence saturated with increasing 532 nm laser intensity
using an air objective to avoid contaminating the flake with oil (Fig. 5.7a). From saturation
curves of two flakes we could make two conclusions. First, we found that using diamond as
a substrate did not diminish the optical properties of the TMD. The fluorescence rate was
comparable to what was expected given the photon collection efficiency of our setup. Second,
by comparing the TMD’s saturation curve to one of our shallow NVs, the WSe2 is too bright
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to be used as is with the single shallow NVs. The fluorescence rate of individual NVs is two
orders of magnitude smaller than the rate of the monolayer at all laser intensities. Because
the fluorescence of the TMD is a shot noise background that covers our NV’s signal, the
sensing SNR is reduced by more than a factor of 10, increasing all measurement times by a
factor of 100. Even more crucially, small variations in this brightness completely obfuscates
the location of the individual NVs. We would not be able to find and track individual NVs
just a few nanometers below the WSe2 layer if they appear as 1% variations in brightness
under a layer with ą 10% variations in brightness intrinsically measured.

The large disparity in brightness could naively be overcome by using a filter to cut out
both NV and WSe2 fluorescence above 740 nm; however, the TMD’s emission does not simply
cut off below 740nm. There is a phonon sideband that extends to lower wavelengths. We
feared that there would still remain enough background fluorescence to stifle the experiment
at room temperature. The natural solution then is to reduce the temperature of the sample to
minimize the phonon sideband. Alternatively, our collaborators could stack heterostructures
with a shifted emission spectrum. Before testing any of these solutions, a more pressing
problem confronted us.

Continuously shining a laser on the WSe2 flake under ambient conditions photobleached
the flake irreversibly similar to how shallow NVs photobleach (Section 1.4.2). Over the
course of a few minutes or hours, the photoluminescence diminished by a factor of 10 (Fig.
5.7b). In subsequent image scans of the flake under 532 nm illumination, we could observe
holes seemingly burned into the flake (Fig. 5.7c). White light images revealed that the
dim portions of the flake were still there, suggesting that they were photobleached, rather
than truly burned away. The reduction in brightness occurred within hours even at laser
intensities lower than what is feasible for using NVs. Unfortunately, this photobleaching was
observed by our collaborators even at cryogenic temperatures when the laser intensity was
at levels useful for NVs.

For a while we were not sure how to surmount the problem reasonably. We could reduce
the duty cycle with which we apply the laser pulse to the sample. The TMD fluorescence
lifetime did increase with lower duty cycle, but the integration times of our experiments would
drastically increase. Eventually, we became privy to a solution with growing popularity in
the 2D materials community: capping with hexagonal Boron Nitride (hBN). hBN is a 2D
semiconductor that is found to be inert, so it does not alter the properties of other 2D layers
in its heterostructure nor is it reactive to air and dust under ambient conditions. It is also
transparent, permitting the study of optical properties of materials underneath it. The best
solution then is to exfoliate the TMD flake onto the diamond, then protect the TMD against
any chemical reactions on its surface that photobleach it by sealing its surface under a layer
of hBN. Before implementing any of these solutions discussed, our experimental trajectory
shifted, and projects on sensing properties of TMDs were put on hold. The Yao group
did eventually return to sensing TMD heterostructures and exotic 2D materials, but using
ensembles of shallow NVs instead (see the works of Satcher Hsieh and Jordan Hines).
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5.4 Conclusions and Outlook

The work in this chapter attempted to turn the dynamics of an external TMD monolayer into
the local dynamics of shallow NV centers by using FRET. In principle, such measurements
would extract the transition dipole moment of the TMD. An additional experiment we
considered was the measurement of the absolute spin density of an excited TMD. Before
performing either experiment, the work was hindered by the local charge dynamics of the
NV that shifted the defects to the neutral charged state, followed by the shifting of the lab’s
experimental trajectory.

Most crucially, this work led the Yao group to reflect deeply on the choice between single
and ensemble NV experiments, and the limitations of the diamond sample we used. At
first glance, shallow single NVs seem to hold many advantages over ensembles, such as a
lower MW pulse error and precise depth calibration. Certainly these alluring traits are what
swayed our group to this choice of sample, but in hindsight, they do not seem necessary to
perform the desired experiments. Particularly, the measurement of the absolute spin density
would likely be much easier using a delta-doped NV ensemble „ 50 nm below the diamond
surface, so that it is protected from deleterious surface effects. The field of a 2D magnetic
disk 1 µm in diameter only drops by 5% over a 100 nm depth, leaving a strong signal with
a small gradient across the layer, so even with a significant layer thickness (determined by
SIMS measurements to 8 nm precision), the measurement with the layer would still produce
fairly small errorbars on the absolute spin density. Finally, the ensemble would benefit from
Heisenberg scaling sensitivity and a two or more orders of magnitude increase in brightness,
putting it on par with the TMD brightness.

While an ensemble may have been less suited for a FRET measurement3, many others
were considered infeasible because we limited ourselves to the shallow single NV sample.
Of note, an experiment we were considering after the ones in this chapter involved studying
defects in TMDs. The primary obstacle to using single NVs for this purpose is the alignment
of the defect to the NV—almost impossible. On the contrary, alignment is no issue for
ensembles, and for many types of extended defects (line, and domains) an ensemble could
image the entire target without issue4. Considerations involving a more thorough analysis
of the expected field and the limitations of multiple types of samples are what led the group
to choose ensembles in many subsequent sensing experiments, some of which are described
in preceding chapters.

3FRET applies equally well to ensembles of NVs and has been used to calibrate an ensemble less than 4
nm from the diamond surface [7]. One could conceive of another diamond sample with a shallow ensemble of
NVs grown via delta doping [117]; however, since the FRET distance is on the order of the layer thickness,
the ultimate calculation of the TMD’s transition dipole moment would have large errorbars.

4For point defects the story changes slightly. Neither type of plate diamond sample would necessarily be
the competitive choice. Instead, a nanodiamond on an AFM would be the clear winner by miles [170]
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Appendix A

Bloch Sphere

The transformation from one eigenstate into an arbitrary superposition lends itself to the
‘Bloch sphere’ picture, wherein a ‘Bloch vector’ pointing from the origin to the north (south)
pole of the sphere corresponds to the |0y (|´1y) eigenstate. MW pulses applied to the state
rotate the vector to new locations on the sphere. Projections onto the z-axis of the sphere
correspond to the NV’s population difference (the sum of the modulus of the coefficients in
the superposition).

Since global phases are negligible, the first MW pulse in the measurement protocol can
be defined to rotate the Bloch vector around the x-axis. This subsequently defines the y-
axis of the sphere as the transverse axis that lies in the plane formed by the z-axis and the
Bloch vector after the application of the first the MW pulse (Fig. A.1a). Until the NV
is re-polarized by a laser, this remains the y-axis. The angle the Bloch vector’s transverse
component makes with the y-axis of the sphere now encodes the relative phase between

Figure A.1: The Bloch sphere places |0y at the north pole, |´1y at the south pole. a) The
path of an π{2-pulse. Supposing it was the first pulse in the sequence, it is a rotation around
the x-axis. b) The path of a Rabi oscillation. c) The path of a detuned Rabi oscillation.
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the eigenstates. After the first MW pulse defines the y-axis, rotations around any axis of
the sphere can be performed by shifting the phase of subsequent MW pulses. For example,
rotations around the y-axis are performed by a MW pulse with a ˘90 degree phase shift
relative to the first MW pulse applied. As an illustrative example, in the measurement
of Rabi oscillations, the motion over the sphere is simply rotation around the x-axis, the
projection onto the z axis following a perfect cosine pattern (Fig. A.1b). When driving
an off-resonant transition, the detuning δ tilts the rotation axis away from the x-axis (it
is effectively a Bz field). The resultant oscillation around the tilted axis cannot reach the
south pole, but since it travels a shorter path, the Bloch vector completes its cycle faster
(Fig. A.1c).
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