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Abstract

Head and neck squamous cell carcinoma (HNSCC) patients have a poor prognosis, with invasion 

and metastasis as major causes of mortality. The phosphatidylinositol 3-kinase (PI3K) pathway 

regulates a wide range of cellular processes crucial for tumorigenesis, and PIK3CA amplification 

and mutation are among the most common genetic alterations in human HNSCC. Compared to the 

well-documented roles of the PI3K pathway in cell growth and survival, the roles of the PI3K 

pathway in tumor invasion and metastasis have not been well delineated. We generated a PIK3CA-

genetically engineered mouse model (PIK3CA-GEMM) in which wildtype PIK3CA is 

overexpressed in head and neck epithelium. Although PIK3CA overexpression alone was not 

sufficient to initiate HNSCC formation, it significantly increased tumor susceptibility in an oral-

carcinogenesis mouse model. PIK3CA overexpression in mouse oral epithelium increased tumor 

invasiveness and metastasis by increasing epithelial-mesenchymal transition and by enriching a 

cancer stem cell phenotype in tumor epithelial cells. In addition to these epithelial alterations, we 

also observed marked inflammation in tumor stroma. AKT is a central signaling mediator of the 

PI3K pathway. However, molecular analysis suggested that progression of PIK3CA-driven 
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HNSCC is facilitated by PDK1 and enhanced TGFβ signaling rather than by AKT. Examination of 

human HNSCC clinical samples revealed that both PIK3CA and PDK1 protein levels correlated 

with tumor progression, highlighting the significance of this pathway. In summary, our results 

offer significant insight into how PIK3CA-overexpression drives HNSCC invasion and metastasis, 

providing a rationale for targeting PI3K/PDK1 and TGFβ signaling in advanced HNSCC patients 

with PIK3CA amplification.

Keywords

HNSCC; invasion and metastasis; PIK3CA; EMT; cancer stem cell; genetically engineered mouse 
model

Introduction

Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer 

worldwide, with 650,000 new cases and 350,000 deaths every year.1 There are 55,000 new 

cases and over 15,000 deaths from HNSCC annually in the U.S.2 The most common 

etiological factors for HNSCC are tobacco exposure, alcohol, and human papilloma virus 

infection3. Although tremendous efforts have been made to improve the treatment for 

HNSCC patients, HNSCC remains a lethal disease, with 5-year survival rates below 50%, a 

number that has not significantly changed in several decades.2 Locoregional invasion, 

recurrence, and metastasis are largely responsible for the poor prognosis of HNSCC patients. 

However, the underlying molecular mechanisms for HNSCC progression are still poorly 

understood.

The phosphatidylinositol-3-kinase (PI3K) signaling pathway is a key mediator of cell 

survival, growth, and metabolism, and is commonly altered in many human malignancies, 

including HNSCC.4–6 The PI3K family is comprised of three subclasses of lipid kinases. 

Class IA PI3K, composed of a heterodimer between a p110 catalytic subunit and a p85 

regulatory subunit, has been intensively studied and demonstrated to be commonly altered in 

human cancers.4,5 PI3K phosphorylates phosphotidylinositol-4,5,bisphosphate (PIP2) to 

phosphotidylinositol-3,4,5,trisphosphate (PIP3), a reaction which is antagonized by the 

tumor suppressor phosphatase and tensin homolog (PTEN). In turn, PIP3 binds a subset of 

pleckstrin homology domain-containing proteins, including AKT and 3-phosphoinositide-

dependent protein kinase (PDK1). AKT is activated by phosphorylation on serine 473 by the 

mTORC2 complex, and on threonine 308 by PDK1. Activated AKT directly regulates 

multiple downstream molecules, such as mTORC1 and p70-S6, to transduce the major 

downstream PI3K signal pathway.4,5 However, it has been shown that, in certain contexts, 

PI3K signaling and AKT activation can be uncoupled.7–9

Recent exome sequencing in human HNSCC samples revealed that molecular alterations in 

the PI3K pathway are the most common genetic changes in HNSCC patients’ cells.10–12 

Among those changes, PIK3CA, the gene coding for the p110α catalytic subunit of PI3K, is 

most frequently altered through either gene amplification or gain-of-function mutations.10–12 

Over 40% of HNSCC cases exhibit PIK3CA amplification, and about 10% harbor PIK3CA 
gain-of-function mutations.4–6,10–13 Although several studies suggest PIK3CA alterations 
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correlate with advanced HNSCC stage,10,14,15 vascular invasion,16 and lymph node 

metastasis,17 there are no in vivo studies that have elucidated the mechanisms by which 

PIK3CA alterations lead to HNSCC development and progression.

To address this, we generated an inducible head-and-neck specific genetically engineered 

mouse model (GEMM), in which PIK3CA is overexpressed in head and neck epithelium. 

Our results showed that in this GEMM overexpression of PIK3CA alone resulted in head 

and neck epithelial hyperplasia but was not sufficient to initiate tumorigenesis. However, 

overexpression of PIK3CA significantly increased susceptibility to oral carcinogen-induced 

head and neck tumorigenesis. Strikingly, PIK3CA overexpression promoted HNSCC 

invasion and metastasis through epithelial-mesenchymal transition (EMT) and enrichment of 

putative head-and-neck cancer stem cells (CSCs). Further molecular studies showed that 

activation of PDK1 and enhanced TGFβ signaling play an important part in HNSCC 

progression. Our findings highlight the key role of PDK1 and TGFβ signaling in HNSCC 

invasion and metastasis, and suggest that targeting PDK1 and TGFβ signaling may be 

effective approaches to controlling HNSCC progression, particularly in patients with 

PIK3CA gene amplification.

Results

Overexpression of PIK3CA in murine head and neck epithelia resulted in increased 
susceptibility to head and neck carcinogenesis

Although PIK3CA amplification/mutation has been described in human HNSCC, little is 

known about its in vivo role during head and neck tumorigenesis. To this end, we developed 

an inducible, head-and-neck specific PIK3CA genetically engineered mouse model 

(PIK3CA-GEMM) using previously published methods.18 Briefly, the PIK3CA-GEMM 

consists a transactivator mouse line (K5.GLp65) and a target mouse line (tata.PIK3CA) 

(Figure 1a). In the transactivator line, the keratin 5 (K5) promoter is used to restrict 

expression of the GLp65 fusion protein to the basal layer of stratified epithelia (e.g. buccal 

mucosa, tongue). GLp65 consists of a GAL4 DNA binding domain, the NF-κB p65 

transactivation domain, and an RU486-inducible truncated progesterone receptor ligand 

binding domain (ΔPR-LBD). The K5.GLp65 mice were bred to the tata.PIK3CA mice to 

generate the bigenic K5.GLp65/tataPIK3CA (hereafter referred to as PIK3CA-GEMM). The 

monogenic K5.GLp65 and tata.PIK3CA mouse lines were used as experimental controls. 

Starting at four week of age, mice were orally treated with RU486 dissolved in sesame oil. 

As shown in Figure 1b, upon RU486 application, the expression level of PIK3CA mRNA 

increased about 8–10 fold in the buccal mucusa and tongue tissues from the PIK3CA-
GEMM compared to those from the control mice or the PIK3CA-GEMM without RU486 

application. Correspondingly, the protein level of p110α (encoded by the PIK3CA gene) 

was also increased in PIK3CA-GEMM head and neck tissues upon RU486 application 

(Figure 1c).

After verifying induced expression of PIK3CA in the PIK3CA-GEMM head and neck 

epithelia following RU486 administration, we treated PIK3CA-GEMMs with oral RU486 

(20 μg/mouse) twice weekly. Epithelial hyperplasia and carcinoma in situ with increased cell 

proliferation were observed in both buccal mucosa and tongue tissue as early as six months 
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after initiation of treatment (Supplementary Figure S1). However, these premalignant lesions 

failed to progress into squamous cell carcinomas, suggesting that PIK3CA overexpression 

alone is not sufficient to induce HNSCC formation.

One of the major etiological factors of human HNSCC development is tobacco exposure.3 

To mimic this human situation and investigate the interaction between environmental factors 

and genetic susceptibility, we applied the 4NQO-induced HNSCC carcinogenesis protocol to 

the PIK3CA-GEMM. 4NQO is a DNA adduct-forming agent widely used as a tobacco 

surrogate to induce HNSCC in mouse models.19 As shown in Figure 2a, PIK3CA-GEMM 

and control mice were treated with RU486 applied orally twice weekly and with 4NQO 

added to drinking water (50 μg/ml) starting when the mice were one month old. Mice were 

exposed to 4NQO for 16 weeks, and received RU486 through the end of the 12 month 

experiment. PIK3CA overexpression significantly enhanced susceptibility to 4NQO-induced 

head and neck carcinogenesis (Figure 2b). By 5–6 months of age, 39% of PIK3CA-GEMMs 

developed HNSCC, compared to only 8% of control mice (p<0.01). By 10–12 months, all 

4NQO-treated control and PIK3CA-GEMM mice developed HNSCC. The authentication of 

the PIK3CA tumors was validated by transgene-specific genotyping PCR (Supplementary 

Figure S2). By the time of tumor harvest, there were no differences in the general health and 

nutritional status (e.g. activity or body weight) between the control mice and the PIK3CA-
GEMMs.

Overexpression of PIK3CA in murine head and neck epithelia promotes tumor invasion 
and metastasis

It was immediately clear that tumors from PIK3CA-GEMMs and those from control mice 

differed in gross appearance: while most control tumors were papillomatous, tumors from 

the PIK3CA-GEMMs were flat (Figure 2c). Histologically, the majority of the control 

tumors had an out-growth pattern with intact basement membranes (left panels of Figure 2d 

and Supplementary Figure S3), while tumors from the PIK3CA-GEMMs predominantly had 

a down-growth pattern with broken basement membranes and invasion into muscle (right 

panels of Figure 2d and Supplementary Figure S3). While over 60% of the control tumors 

were well-differentiated or carcinoma in situ, over 50% of the PIK3CA-overexpressing 

tumors were poorly-differentiated as confirmed by a head and neck pathologist (Figure 2d, 

2e, Supplementary Figure S3). Notably, metastases were observed in ~40% of the PIK3CA-

GEMMs (regional lymph node or lung metastases) compared to no metastases in control 

mice (Figure 2f). These data showed that overexpression of PIK3CA promoted 4NQO-

induced HNSCC progression, particularly tumor invasion and metastasis.

PIK3CA overexpression induced de-differentiation, epithelial-mesenchymal transition, and 
enriched cancer stem cell properties

The poorly differentiated tumor histology observed in the PIK3CA-GEMMs was further 

confirmed by immunostaining of several differentiation markers. As shown in Figure 3a, 

while Keratin 1 (K1, green) was still retained in the control tumors, marking well-

differentiated SCC, it was lost in the PIK3CA-GEMM tumors. In contrast, Keratin 8 (K8, 

red), seen in poorly-differentiated SCC, was rarely expressed in control tumors, whereas it 

was highly expressed in tumors from PIK3CA-GEMMs. This differential keratin expression 
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was further confirmed by K1 and K8 mRNA expression quantified by qPCR (Figure 3b). In 

addition to these findings, epithelial to mesenchymal transition (EMT) was observed in the 

PIK3CA-GEMM tumors. As shown in Figure 3c, in contrast to the universal expression of 

the epithelial marker E-cadherin (green) in control tumors, E-cadherin expression was lost in 

the PIK3CA-GEMM tumors. Conversely, the mesenchymal marker Vimentin (red) was 

expressed only in the stroma of the control tumors, but was expressed in the epithelium of 

PIK3CA-GEMM tumors, suggesting that EMT had taken place. This was further confirmed 

by qPCR showing decreased E-cadharin and increased Vimentin mRNA expression in the 

PIK3CA-GEMM tumors (Figure 3d). Lastly, relative to controls, the PIK3CA-GEMM 

tumors showed significantly increased expression of several transcription factors regulating 

EMT, including Twist1, Zeb1, Zeb2 and Snail1 (Figure 3e). Thus, the PIK3CA-GEMM 

tumors exhibited both histopathological and molecular signature of EMT.

It has been shown that de-differentiation and EMT correlate with enhanced cancer stem cell 

(CSC)/progenitor activity.20 We thus examined putative CSC markers of HNSCC by qPCR. 

As shown in Figure 3f, overexpression of PIK3CA significantly increased mRNA expression 

of CD44 and CD166, and reduced expression of CD24, all of which indicate an enhanced 

CSC phenotype. This result is further supported by increased mRNA expression of embronic 

stem cell markers Nanog, Oct4 and EZH2. Interestingly, increased expression of Wnt5a, 

which is implicated in migration/invasion, was also found in the PIK3CA-GEMM tumors 

(Figure 3f).

PIK3CA-GEMM tumors have increased PDK1 expression and activation

To investigate the molecular mechanisms of PIK3CA-driven HNSCC progression, we 

examined several key molecules in the PI3K pathway. It has been shown that the change of 

mRNA expression ratio between AKT1 and AKT2 regulates EMT in breast cancer cells.21 

However, there were no significant changes of mRNA expression of AKT1, AKT2, PDK1 or 

PTEN in the PIK3CA-GEMM tumors compared to control tumors (Figure 4a). AKT1 and 

AKT2 protein levels were similar between control and PIK3CA-GEMM tumors. However, 

PDK1 protein levels were increased in PIK3CA-GEMM tumors (Supplementary Figure S4). 

We then examined AKT and PDK1 protein activation by Western blotting. Surprisingly, we 

did not detect significant differences in AKT phosphorylation at either Ser473 or Thr308 

between the control and the PIK3CA-GEMM tumors. However, PDK1 activation by 

phosphorylation at Ser241 was significantly enhanced in PIK3CA-GEMM tumors (Figure 

4b). Similarly, IHC staining showed an increase of total PDK1 protein in the PIK3CA-
GEMM tumors (Figure 4c). These findings were unexpected and suggested that PDK1 may 

mediate oncogenic signaling in PIK3CA-driven HNSCC progression. Lastly, we examined 

several molecules which are commonly altered in human HNSCCs. 4NQO exposure causes 

the formation of DNA adducts, resulting in mutations.19 We first examined two oncogenes 

that are commonly mutated in HNSCC, i.e. Ras and PIK3CA. We sequenced eight PIK3CA-

GEMM tumors and eight control tumors for mutations at codons 12, 13 and 61 of the K-ras 
and H-ras genes, and exons 9 and 20 of the PIK3CA gene. The only mutation we found was 

a G to A point mutation in codon 12 of mouse K-ras gene, which changes glutamic acid to 

aspartic acid (Supplementary Figure S5). This mutation was found only in one control 

tumor. We then examined the mRNA levels of p16, EGFR, Stat3, CyclinD1, K-ras, H-ras 
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and N-ras in PIK3CA-GEMM and control tumors. We found increased Stat3 and decreased 

p16 mRNA in the PIK3CA-GEMM tumors compared to control tumors (Figure 4d).

To further examine whether PDK1 is involved in the tumor progression of the PIK3CA-

GEMM mice, we cultured primary tumor cells from both PIK3CA-GEMM tumors (CU110 

cells) and control tumors (CUCON cells). As shown in the Supplementary Figure S6A, 

consistent with the EMT changes in the tumor tissues, CU110 cells were more spindle-like, 

while CUCON cells were more round and epithelial-like. Overexpression of p110α was 

observed in the CU110 cells compared to that in CUCON cells (Figure 6e, left panel). We 

then stablely knocked down PDK1 in the CU110 cells (CU110-shPDK1), along with CU110 

cells with a scramble insert (CU110-SCR) as a control (Figure 4e and Supplementary Figure 

S6B). Knocking down PDK1 in the CU110 cells increased E-cadherin expression and 

decreased Vimention expression (Figure 4e), but had no effects on phosphorylations of 

Smad2 or Smad3 (Supplementary Figure S6B). In addition, knocking down PDK1 (CU110-

shPDK1) significanly reduced cell proliferation compared to the control cells (CU110-SCR) 

(Figure 4f). Moreover, knocking down PDK1 in the CU110 cells moderately attenuated cell 

migration (Figure 4g) and invasion (Figure 4h) abilities. These data suggested that PDK1 

contributed to the tumor progression phenotypes observed in the PIK3CA-overexpression 

HNSCCs.

PIK3CA overexpression led to increased inflammation in HNSCC tumor stroma

In addition to the de-differentiation and EMT changes in the PIK3CA-GEMM tumor cells, 

we observed numerous infiltrated leukocytes in the stroma of the PIK3CA-GEMM tumors 

on histological sections examined by HE staining (Supplementary Figure S7) and IHC with 

CD45 (Figure 5a). We then examined subtypes of infiltrated leukocytes using IHC. Tumor-

associated macrophages are stained by F4/80 antibody, and myeloid-derived suppressor cells 

(MDSCs) in a tumor microenvironment are stained by granulocyte markers Gr1 and 

CD11b.22 Both cell types were increased in PIK3CA-GEMM tumors compared to control 

tumors (Figure 5a). Lastly, we evaluated which cancer-associated inflammatory cytokines 

were up-regulated in PIK3CA-GEMM tumors. Among the fifteen inflammatory 

chemokines/receptors we evaluated, mRNA levels of CCL3, CCR7, CXCL12 and CXCR4 

were all significantly increased in the PIK3CA-GEMM tumors compared to the control 

tumors (Figure 5b).

PIK3CA-GEMM tumors have increased TGFβ1 ligand, and increased Smad3 expression 
and activation

The EMT change in tumor cells and the enhanced leukocyte infiltration in PIK3CA-GEMM 

tumors are similar to what we observed previously in HNSCC mouse models with aberrant 

TGFβ signaling.18,23,24 This prompted us to further investigate whether TGFβ signaling 

contributes to PIK3CA-driven HNSCC progression. We first used qRT-PCR to examine 

several TGFβ signaling pathway molecules known to be altered in human cancers. We found 

that mRNA levels of TGFβ1 and Smad3 were significantly higher in PIK3CA-GEMM 

tumor tissues than in control tumor tissues (Figure 6a). TGFβ1 protein level was also 

increased in the PIK3CA-GEMM tumor tissues, as determined by ELISA (Figure 6b). We 

then performed double IF of Smad3 and the epithelial marker E-cadherin. As shown in 
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Figure 6c, the Smad3 positive area was inversely correlated with E-cadherin positive 

staining, suggesting that Smad3 may contribute to the EMT changes in the PIK3CA-GEMM 

tumors. Increased phosphorylation of Smad3 in the PIK3CA-GEMM tumors compared to 

the control tumor tissues was also observed through Western blot analysis (Figure 6d).

To further assess the role of TGFβ signaling in mediating the tumor promoting effects of 

PIK3CA overexpression, we created CU110 cells in which the PIK3CA gene was knocked 

down (CU110-shPIK3CA), along with CU110 cells with a scramble insert (CU110-SCR) as 

a control (Figure 6e, right panel). To examine the effect of PIK3CA overexpression or 

knockdown on TGFβ pathway in the cultured HNSCC cells to check whether PIK3CA-

mediated regulation of TGFβ pathway is cell autonomous in cancer cells, we compared 

TGFβ1 mRNA levels in CUCON, CU110, CU110-shPIK3CA, and CU110-SCR cells. As 

shown in Figure 6f, TGFβ mRNA levels in the CU110 cells were about four times that in the 

CUCON cells. Conversely, knocking down PIK3CA significantly reduced TGFβ1 mRNA 

levels in CU110-shPIK3CA cells compared to the CU110-SCR cells, suggesting that the 

PIK3CA-mediated regulation of TGFβ pathway is cell autonomous in cancer cells. Lastly, 

we treated the PIK3CA-overexpressing CU110 cells with a TGFβ type I receptor kinase 

inhibitor, LY2157299, to address the contribution of TGFβ pathway to the PIK3CA-driven 

HNSCC progression. Treatment with LY2157288 effectively reduced Smad2 and Smad3 

phosphorylation, indicating the effectiveness of the inhibition of the TGFβ signaling 

pathway (Figure 6g). Following the treatment, both cell migration and invasion were 

significantly hampered (Figure 6h and i), with a minor effect on cell proliferation 

(Supplementary Figure 6C), indicating that the TGFβ pathway contributes to migration and 

invasion of PIK3CA-driven HNSCC tumorigenesis.

PIK3CA and PDK1 are associated with progression in human HNSCC

To address the clinical relevance of our results from the PIK3CA-GEMM, we examined 

PIK3CA, PDK1, and pAKT expression in primary human HNSCC samples, case-matched 

adjacent mucosa, and metastatic lesions, compared to normal oropharyngeal samples from 

patients with sleep apnea as controls. We first performed qRT-PCR to measure PIK3CA 
mRNA levels. Compared to normal controls, PIK3CA mRNA was increased in both 

adjacent mucosa and HNSCC samples (Figure 7a). Interestingly, increased PIK3CA 
expression positively correlated with reduced tumor differentiation and increased lymph 

node metastasis (Figure 7a). We then carried out IHC staining of p110α, PDK1, and pAKT. 

Figure 7b summarizes the percentage of cases with immunostaining ≥2+ in HNSCC tumors 

and metastases. Consistent with PIK3CA qRT-PCR results, we found increased p110α 
immunostaining both in poorly-differentiated HNSCCs and in metastases (Figures 7b and c). 

Interestingly, PDK1 expression positively correlated with PIK3CA expression and advanced 

disease (Figures 7b and c). However, AKT activation showed the opposite pattern, and 

demonstrated reduced expression in poorly-differentiated tumors and metastases compared 

to early stage lesions. These data from human tissue sample support our mouse model data 

that PIK3CA-driven HNSCC progression is predominantly mediated through PDK1, but not 

through AKT.
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Discussion

Previous mouse models were generated by knocking in PIK3CA mutant H1047 into 

different tissue contexts.25–29 However, somatic mutations of PIK3CA are infrequent 

(~10%) compared to PIK3CA gene amplification (~40%) in HNSCC patients.4,5 Thus, our 

PIK3CA-GEMM, in which the wild type PIK3CA is overexpressed specifically in murine 

head and neck epithelium, more closely mimics the majority of human HNSCC patients. 

Since this transgene can be induced in a spatio-temporal manner, our model is an ideal 

platform to assess the role of PIK3CA overexpression at each stage of HNSCC 

tumorigenesis. This also represents the first GEMM in head and neck tissue for studying the 

in vivo role of PIK3CA.

In the PIK3CA-GEMM we found that PIK3CA overexpression alone is not sufficient to 

initiate tumor formation in head and neck tissue. This is in contrast to the results of tumor 

formation in breast and lung cancer mouse models25–27. One explanation is that previous 

mouse models were based on gene mutations compared to our model which is based on gene 

overexpression; these two types of gene alterations may play distinct roles in tumorigenesis. 

The other possibility is that PIK3CA may have a context-specific role in tumorigenesis. For 

example, the same mutant PIK3CA-H1047 that causes spontaneous breast and lung tumor 

formation is not sufficient to initiate tumor formation in ovarian or colon tissues unless 

coupled with either a PTEN or APC deletion.28,29 Our data suggest that PIK3CA 
overexpression may not initiate tumorigenesis, but instead it promotes tumor progression in 

HNSCC.

Compared to the well-documented mitogenic signaling of PI3K in cell growth and survival, 

the role of PI3K in tumor invasion and metastasis has not been well delineated. In a subset 

of aggressive breast cancer which exhibits EMT and CSC characteristics, the authors found 

the mutation rate of PIK3CA reached nearly 50%, significantly higher than in any other 

types of breast cancer.30 Knocking in the PIK3CA mutant into a breast cancer cell line also 

resulted in an EMT phenotype.31 In line with these data, our PIK3CA-GEMM provides the 

first in vivo evidence that PIK3CA alteration is able to drive tumor progression at least 

partially through enriched EMT and CSC characteristics, which may be responsible for the 

invasive and metastatic phenotype observed in the PIK3CA-GEMM.

AKT is largely regarded as the dominant mediator of oncogenic PI3K signaling.4 However, 

studies suggest that the link between PI3K and AKT can be uncoupled.7,8,32,33 Recent 

reports showed that AKT can directly phosphorylate Twist1 to promote EMT,34 and that the 

ratio of AKT1 and AKT2 and its regulated microRNAs are responsible for EMT and 

CSCs.21 However, we found no differences in AKT activation or expression of AKT 

isoforms between control and PIK3CA-GEMM tumors. Lack of AKT activation has also 

been observed in subset of PIK3CA mutated breast cancer,8 PTEN-null lung cancers,35 and 

BRAF-initiated melanoma.9 AKT activation can be detected in mouse models as early as 

pre-neoplastic lesions upon either 4NQO36 or NNK treatment,37 and AKT activation in the 

oral cavity can initiate benign tumor formation. However, it fails to promote tumor 

progression unless combined with p53 loss,38 suggesting that AKT activation may be 

involved in early events in HNSCC carcinogenesis, but not in tumor progression. In some 
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breast cancers with PIK3CA mutations, PDK1, but not AKT, is activated.8 Similarly, our 

results suggest that PDK1, rather than AKT, facilitates progression of PI3K-driven HNSCC, 

which raises the possibility of PDK1 as a therapeutic target in HNSCC patients with 

PIK3CA alterations.

PDK1 is a serine/threonine protein kinase that phosphorylates members of the AGC kinase 

superfamily, including AKT, and is implicated in cell proliferation, survival and 

metabolism.39 Interestingly, PDK1 has been shown to regulate cell migration but not 

proliferation in lymphocytes,40 and to promote EMT in cardiac development.41 Compared to 

the extensive research into AKT, less is known about the role of PDK1 in human cancers. 

Overexpression of PDK1 has been reported in several human cancers,42–44 and correlates 

with disease progression in patients with pancreatic cancer or melanoma.43,44 Interestingly, 

PDK1 is required for Kras-driven pancreatic cancer in murine models but not for the Kras-

driven lung cancer, suggesting a context-specific role of PDK1.45 In HNSCC, PDK1 has 

been shown to mediate G-protein-coupled receptor and EGFR cross-talk as well as cell 

growth, both in vitro and in vivo.46 It has become evident recently that the role of PDK1 in 

physiological and pathological conditions is not limited to AKT activation; it may also evoke 

other signaling for tumorigenesis. For example, PDK1 has been shown to activate SGK3 in a 

PI3K-dependent, AKT-independent fashion in breast cancer.8 PDK1 can also directly 

activate PLCγ1 to mediate cancer cell invasion.47 Moreover, PDK1 directly phosphorylates 

polo-like kinase 1 (PLK-1) to induce an embryonic stem cell-like gene signature associated 

with aggressive tumor behaviors and CSC self-renewal.48 Further investigation on the 

downstream molecular mechanisms underlying PI3K/PDK1 signaling in the PIK3CA-

GEMM will provide important insights into PIK3CA-driven HNSCC progression and 

identify novel therapeutic targets to control HNSCC progression.

The downstream mechanisms of PI3K/PDK1 in HNSCC invasion and metastasis are largely 

unknown. In this study, we found that the TGFβ1 ligand and its downstream mediator 

Smad3 are overexpressed in PIK3CA-GEMM tumor tissues. The positive correlation 

between PIK3CA and TGFβ1 levels was further detected in both PIK3CA-overexpressing 

tumor cells and PIK3CA-knockdown tumor cells, suggesting that the PIK3CA-mediated 

regulation of TGFβ pathway is cell autonomous. The contribution of TGFβ pathway to 

mediate migration and invasion of PIK3CA-overexpressing tumor cells was validated by 

treating these cells with a TGFβ pathway inhibitor. Cross talk between PI3K and TGFβ 
signaling can occur at multiple levels.49 For example, PI3K is able to mediate TGFβ-

receptor initiated intracellular signaling.50 Additionally, PI3K can antagonize TGF-β-

induced cytostasis and cause the shift in TGFβ signaling to tumor progression.49 However, 

prior reports on PI3K and TGFβ interplay were almost exclusively related to AKT 

signaling.49 Thus it remains unclear how PI3K/PDK1 interacts with TGFβ/Smad3 signaling 

during HNSCC progression.

Currently, the only FDA-approved targeted therapy for HNSCC is EGFR inhibitors.51 

Targeting the PI3K pathway represents a promising new strategy for treating HNSCC. The 

role of PDK1 in mediating invasion and metastasis of PIK3CA-driven HNSCC suggests it 

may be useful as a therapeutic target. Targeting PDK1 using either genetic approaches or 

pharmaceutical inhibitors has been shown to inhibit CSC self-renewal and metastasis.44,48,52 
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In one pre-clinical study on HNSCC, PDK1 inhibition showed anti-tumor effects either by 

itself or in combination with EGFR inhibition.46 Thus targeting PIK3CA or PDK1 presents 

an important new avenue for HNSCC treatment. Targeting TGFβ as anti-cancer therapy has 

been evaluated for a decade in multiple cancers.53 However it remains unclear how it may 

best be used and such therapies are highly stage- and patient-specific. The possible 

synergistic role of overactivated PI3K and TGFβ signaling in HNSCC progression 

demonstrated in this study has prompted testing of combination therapy. If proven effective 

in preclinical trials with PIK3CA-GEMM, this combination therapy will be immediately 

translated into clinical trials for treating advanced HNSCC patients who have PIK3CA 
alterations.

In summary, we report a genetically engineered mouse model which the PIK3CA is 

overexpressed in head and neck epithelia. Although overexpression of PIK3CA alone is not 

sufficient to initiate HNSCC formation, it significantly increased the susceptibility to the 

4NQO-induced HNSCC carcinogenesis. More importantly, PIK3CA overexpression 

promotes EMT and CSC properties and drives tumor invasion and metastasis, which is likely 

mediated by increased PDK1 expression and activation, and subsequent increased TGFβ1 

ligand and Smad3 expression and activation. Our study lays the foundation for future 

investigations into the mechanism of PDK1 and its interplay with TGFβ signaling in 

PIK3CA-driven HNSCC tumorigenesis. Moreover, it suggests that therapeutic targeting of 

PDK1 and/or TGFβ signaling may effectively control HNSCC progression, particularly in 

patients with PIK3CA amplification.

Materials and Methods

Generation and characterization of the inducible head-and-neck specific PIK3CA 
genetically engineered mouse model

All animal experiments were performed in accordance with protocols approved by the 

Institutional Animal Cancer and Use Committees of the Oregon Health & Science 

University (OHSU) and University of Colorado School of Medicine. The plasmid containing 

full length cDNA of PIK3CA (pcDNA3.1-PIK3CA) was obtained from Addgene under the 

MTA agreement. The PIK3CA fragment was subcloned into the target vector (ptata.A) using 

the XhoI site (Supplemental Figure S8a). A 3.5 kb HindIII/KpnI fragment including Gal4 

binding sites, minimal tata promoter, and the PIK3CA cDNA was microinjected into the 

pronucleus of single-cell embryo by the transgenic mouse core facility at OHSU. The 

embryos were implanted into pseudo-pregnant females and allowed to develop to term. PCR 

genotyping was performed at the three weeks of age using genomic DNA isolated from tail 

biopsies. Three lines (#5840. #5446, #5703) transmitted the transgene through their 

germline and was called tata.PIK3CA mouse line thereafter (Supplemental Figure S8b). The 

transgene specific primers covering HA tag were designed, along upstream sequence. The 

primers used to detect the ptata.PIK3CA transgene were: Forward: 

TGAGCAAGAGGCTTTGGAGT and Reverse: TGCATTCTAGTTGTGGTTT.

The target mouse line tata.PIK3CA was then bred to the transactivator mouse line, 

K5.GLp65, which was developed previously.18 The resulting bigenic mouse line K5.GLp65/
tata.PIK3CA is hereafter referred to as PIK3CA genetically engineered mouse model 
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(PIK3CA-GEMM). The PIK3CA-GEMMs were selected by using genotyping primers 

specific for GLp65 (forward: TGTCAAGGTCTTCTCGAGGA; reverse: 

GGCCATACACTTGAGTGACA), and the same primers that were used for detection of the 

PIK3CA transgene (above).

All mouse experiments were performed in a C57BL/6 background. Adult bigenic 

K5.GLp65/tata.PIK3CA and monogenic K5.GLp65, tata.PIK3CA, and non-transgenic mice 

(around one month old) were treated with RU486 for PIK3CA gene induction and with the 

rodent oral carcinogen, 4-nitroquinoline 1 oxide (4NQO). For the transgene induction, 100 

μl of RU486, dissolved in sesame oil (0.2 μg/ml), was applied in the oral cavity of mouse to 

induce either acute or sustained PIK3CA transgene expression as described previously.18 For 

the oral carcinogenesis experiment, 4NQO (Sigma) was prepared weekly in propylene 

glycol at a concentration of 5 mg/ml, and was placed into drinking water in a final 

concentration of 50 μg/ml. The water was changed once weekly, and was given to mice for 

16 weeks. The general health condition of mice was monitored twice weekly, and their body 

weight was measured once weekly. Mice were given softened food when there were signs of 

food-intake difficulty, or decreased body weight. At the end of animal experiment, mice 

were euthanized. Buccal mucosa, tongue, lymph node and lung tissues were harvested for 

histological analysis and immunostaining.

Patients

The clinical study protocol was approved by the Institutional Review Board-approved of 

OHSU, and written informed consent was obtained from all participants prior to sample 

collection. HNSCC and case-matched adjacent tissue samples were surgically resected from 

consenting patients at the Departments of Otolaryngology and Dermatology of OHSU. 

Tissues examined in this study include a total of 74 HNSCCs (26 SCCs of tongue, 19 SCCs 

of oral cavity, three SCCs of nasal pharynx, seven SCCs of oropharynx, seven SCCs of 

hypopharynx, 12 SCCs of larynx) and case-matched tissues adjacent to tumors, and 24 cases 

of lymph node metastases. 12 normal oropharyngeal samples from sleep apnea patients were 

used as normal controls.

Histology and Immunostaining

Tissues were fixed in 10% neutral buffered formalin, embedded in paraffin, and sectioned to 

5-μm thickness. Sections were stained with H&E and examined for the presence of 

hyperplasia, dysplasia, papillomas, carcinomas, and metastases. Tumor pathology and 

metastasis were examined by at least two investigators and confirmed by the head and neck 

cancer pathologist (SS). Quantitation of IHC staining of human p110α, pAKT and PDK1 

was performed by two independent investigators using methods described previously.54 

Double immunofluorescence was performed as previously described.24 Incubation with 

primary antibodies was as follows: Keratin 1 (K1) (Convance, PRB-165P), K8 (Fitzgerald, 

20R-CP004), Ecadherin (cell signaling, #3195), Vimentin (BD Pharmingen, RV202), Smad3 

(Novus, 378611). Immunohistochemistry was performed as described previously.24 

Incubation with primary antibodies was as followings: PDK1 (Abcam, ab52893), CD45 

(eBioscience, 14-0451), F4/80 (Serotec, MCA497GA), Gr1 (BD Pharmingen, 550291), 

CD11b (BD Pharmingen, 550282), p110α (cell signaling, #4249), Ki67 (abcam, ab16667) 
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and pAKTSer473 (cell signaling, #3787). Slides were examined with a Leica microscope, and 

images were taken using the Q Capture Pro software (Q imaging).

DNA sequencing, RNA isolation and quantitative reverse transcription-PCR (qRT-PCR)

Genomic DNA isolation from mouse tumor tissues was performed as described previously.23 

Exon 1 and exon 2 of mouse H-ras, or K-ras, and exon 9 and exon 20 of mouse PIK3CA 
were amplified by PCR and sequenced using the sequences listed in Table S1. RNA isolation 

and cDNA synthesis were performed as described previously.24 cDNAs were subjected to 

qRT-PCR using either the SYBR mix (Biorad) or the TaqMan Assays-on-Demand probes 

(Applied Biosystems). qRT-PCR was run on the CFX connect qPCR machine (Biorad). β-

actin was used as an internal control. Primer sequences for mouse SYBR qRT-PCR assay are 

listed in Table S2. Primer sequences for human PIK3CA qRT-PCR are: forward-

ACCTGAATAGGCAAGTCGAGGCAA, reverse-ACAGAAAGCCCTGTAGAGCATCCA. 

Each sample was examined in triplicate. The relative RNA expression levels were 

determined by normalizing to the internal control, the values of which were calculated using 

the comparative Ct method.

Protein Analysis

Whole head and neck tissues and tumors tissues were lysed using a homogenizer (Pro 

Scientific) in lysis buffer (Roche) containing a pellet of protease inhibitor cocktail. Protein 

concentration was measured using Pierce 660 nm protein assay reagent (Thermo), and 40 μg 

of protein lysates were analyzed using the standard Western protocol we have described 

previously.37 Blots were incubated with primary antibodies at 4°C overnight and secondary 

antibodies for 1 hour at room temperature. Western blots were imaged by ECL (Biorad) and 

normalized with respect to GAPDH (Cell Signaling, #5174) expression. The primary 

antibodies were as follows and purchased from Cell Signaling: p110α (#4255), PDK1 

(#3438), pPDK1Ser241 (#3061), pAKTSer473 (#4058), pAKTThr308 (#9275), AKT1 (#2938), 

AKT2 (#4057), pSmad2 ser465/467 (#3101), and pSmad3ser423/425 (#9520). TGFβ1 ELISA 

was performed as described previously using the R&D systems kit.18

Cell Culture

Cells were cultured from either a 4NQO-induced control tongue SCC (CUCON), or a 

4NQO-induced PIK3CA-GEMM tongue SCC (CU110). Tumor tissues were minced with 

blade, and digested in 0.35% collagenase (GIBCO) followed by two rounds of 1% trypsin 

digestion at 37°C. Single cells were obtained through a cell strainer (70 mm nylon, BD 

Biosciences), and plated at 1×105/ml in 10cm dishes. Cells were cultured in DMEM+10% 

FBS and 100 U/ml penicillin/streptomycin (GIBCO). The authentication of the cultured 

cells was validated by the transgene-specific genotyping PCR (Supplementary Figure S2).

Knockdown experiment—PIK3CA or PDK1 knockdown was achieved using a 

lentiviral-based sh-PIK3CA or sh-PDK1 purchased from Sigma (MISSION shRNA). 

TRCN0000361413 or TRCN0000361331 was used for mouse PIK3CA or PDK1 

Knockdown, respectively, and SHC002 as a scramble control.
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Cell Proliferation assay—Cells were seeded into 24-well plates as 1×105 cells/well, and 

were treated with 0–80μM LY2157299 (MedKoo Biosciences) for 48 hr. The cell 

proliferation was determined by using Vi-cell XR cell viability analyzer (Beckman Coulter). 

For the cell proliferation assay in CU110-shPDK1 and CU110-SCR cells, the assay was 

performed using cell counting kit 8 (Dojindo Molecular Technologies)

Migration and Invasion assay—The migration and invasion assays were performed 

using CytoSelect 24-well wound healing assay kit (Cell Biolabs) and QCM ECMatrix cell 

invasion assay kit (EMD Millipore). Three individual experiments were performed for each 

assay.

Statistical analysis

Statistical analysis for all qPCR data was performed using a two-sample equal variance and 

2-tailed Student’s t-test. All of the above statistical analyses were performed using Prism4 

(GraphPad). A P-value of less than 0.05 is considered statistically significant.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Generation and characterization of the inducible, head and neck-specific PIK3CA 
genetically engineered mouse model (PIK3CA-GEMM)
(a) Schematic of generating the PIK3CA-GEMM by breeding the transactivator mouse line 

K5.GLp65 to the target mouse line tata.PIK3CA.

(b) Fold inductions of the PIK3CA mRNA quantified by qRT-PCR using transgene specific 

primers. RU=RU486, n=6, *p<0.05.

(c) Western blot analysis on protein lysates from the buccal mucosa and tongue of the 

PIK3CA-GEMMs.
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Figure 2. Overexpression of PIK3CA together with 4NQO treatment increases tumor 
susceptibility and promotes tumor invasion and metastasis of the 4NQO-induced HNSCC
(a) Schematics of the animal experiment. Starting at one month of age, PIK3CA-GEMMs 

and control mice were given 4NQO (50 μg/ml) in the drinking water for 16 weeks, and 

RU486 (20 μg/mouse) applied orally twice weekly until harvesting mice at 12 months.

(b) Summary of tumor incidences in the PIK3CA-GEMMs and control mice. All mice 

underwent a biweekly full oral cavity examination, and any pathologic changes were 

documented. Tumor onset was significantly earlier for the PIK3CA-GEMMs (5–6 months) 

than for the control mice. *p<0.01

(c) Gross morphology of tongue SCCs from control mice (upper) and PIK3CA-GEMMs 

(lower). Dotted lines delineate the tumor boundary. Note that tumors from the control mice 

are papilloma-like, while those from the PIK3CA-GEMMs are flat.

(d) H&E staining of representative tongue tumors shows that tumors from control mice have 

an out-growth pattern with intact basement membrane (upper left panel), and are well-
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differentiated (lower left panel), while tumors from the PIK3CA-GEMMs have a down-

growth pattern, with invasion to the tongue muscle (upper right panel), and are poorly-

differentiated (lower right panel). Scale bar: 100 μm for upper panel, and 25 μm for lower 

panel.

(e) Histopathological summary of oral tumors from control mice and PIK3CA-GEMMs. 

Poorly: poorly differentiated tumors; Mod: moderately differentiated tumors; Well: well 

differentiated tumors; CIS: carcinoma in situ.

(f) H&E staining of representative lymph node and lung metastases. Dotted line delineates 

the upper boundary of the tumor. Scale bar: 100 μm.

Du et al. Page 19

Oncogene. Author manuscript; available in PMC 2017 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. PIK3CA overexpression in tumor tissue promotes cellular de-differentiation, epithelial-
mesenchymal transition (EMT) and enrichment of cancer stem cell properties
(a) Double immunofluorescence (IF) staining of keratin 1 (K1, green) and keratin 8 (K8, 

red) markers on tongue tumor samples from control mice and PIK3CA-GEMMs (n=7). K1 

indicates well-differentiated cells, while K8 indicates poorly-differentiated cells. Scale bar: 

25 μm.

(b) Relative mRNA levels of K1 and K8 measured by qRT-PCR, normalized to β-actin. 

Results are averages of triplicate experiments. *p<0.05 (n=6 for each group).

(c) Double IF staining of epithelial marker E-cadherin (green) and mesenchymal marker 

Vimentin (red) on tongue tumor samples from control mice and PIK3CA-GEMMs (n=12). 

Scale bar: 25 μm.

(d) Relative mRNA levels of E-cadherin and Vimentin measured by qRT-PCR, normalized 

to β-actin. Results are averages of triplicate experiments. *p<0.05 (n=6 for each group).

(e) Relative mRNA levels of EMT-related molecules measured by qRT-PCR, normalized to 

β-actin. Results are averages of triplicate experiments. *p<0.05 (n=6 for each group).

(f) Relative mRNA levels of putative markers for cancer stem cell of HNSCC (left panel) 

and molecules regulating CSC phenotype (right panel) measured by qRT-PCR. Results are 

averages of triplicate experiments. *p<0.05 (n=6 for each group).
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Figure 4. Overexpression and activation of PDK1 but not AKT in PIK3CA-GEMM tumors
(a) Relative mRNA levels of PIK3CA, AKT1, AKT2, PDK1 and PTEN measured by qRT-

PCR. Results are averages of triplicate experiment. *p<0.05 (n=6 for each group).

(b) Western blotting analysis of tumor samples from control mice and PIK3CA-GEMMs 

using the antibodies as indicated.

(c) Immunohistochemistry (IHC) staining of p110α, pAKTser473 and PDK1 in tumors from 

PIK3CA-GEMMs and control mice. Scale bar: 50 μM

(d) qRT-PCR examination of mRNA levels of molecules commonly altered in human 

HNSCCs. Results are averages of triplicate experiments. *p<0.05 (n=6 for each group).

(e) Relative mRNA levels of PDK1, E-cadherin, and Vimentin in CU110 cells with PDK1 

knockdown (CU110-shPDK1) or with a scramble control (CU110-SCR) measured by qRT-

PCR. *p<0.05.

(f) Cell proliferation assay of CU110-shPDK1 and CU110-SCR measured by the Cell 

Counting Kit-8. *p<0.05.

(g) Migration assay in CU110-shPDK1 and CU110-SCR cells. Dotted line defines the edges 

of cells. All experiments were performed in triplicate. *p<0.05.

(h) Invasion assay in CU110-SHPDK1 and CU110-SCR cells. All experiments were 

performed in triplicate. *p<0.05.
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Figure 5. Increased leukocyte infiltration and inflammation in tumors from PIK3CA-GEMMs
(a) Detection of leukocyte subtypes in tumors from PIK3CA-GEMMs and control mice 

using IHC with CD45, F4/80, Gr1, and CD11b. Scale bar: 50 μM.

(b) qRT-PCR examination of inflammatory-related cytokines/chemokines and receptors. 

Results are averages of triplicate experiments. *p<0.05 (n=6 for each group).
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Figure 6. Increased TGFβ ligand and smad3 expression and activation in tumors from PIK3CA-
GEMMs
(a) qRT-PCR examination of molecules in the TGFβ signaling pathway. *p<0.05 (n=6 for 

each group).

(b) ELISA quantification of TGFβ1 ligand (n=5)

(c) Double IF staining of epithelial marker E-cadherin (green) and Smad3 (red). Note the 

inverse correlation between Smad3 and E-cadherin in control and PIK3CA-GEMM tumors. 

(n=4), scale bar: 25 μm.

(d) Western blot analysis of phosphorylated Smad3.

(e) Western blot analysis of p110α in cells cultured from a 4NQO-induced control tumor 

(CUCON) and a 4NQO-induced PIK3CA-GEMM tumor (CU110), and CU110 cells with 

either a PIK3CA knock-down (sh-PIK3CA), or a scramble control (SCR).
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(f) qRT-PCR examination of TGFβ1 mRNA levels in CUCON and CU110 cells (left panel), 

and CU110 cells with PIK3CA knock-down (sh-PIK3CA) or scramble control (SCR) (right 

panel). *p<0.05.

(g) Western blot analysis of phosphorylation of Smad2 and Smad3 in CU110 cells treated 

with a TGFβ type I receptor inhibitor, LY2157299, or DMSO (control).

(h) Migration assay in CU110 cells treated with a TGFβ type I receptor inhibitor, 

LY2157299, or DMSO (control). Dotted line defines the edges of cells. All experiments 

were performed in triplicate. *p<0.05.

(i) Invasion assay in CU110 cells treated with a TGFβ type I receptor inhibitor, LY2157299, 

or DMSO (control). All experiments were performed in triplicate. *p<0.05.
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Figure 7. PIK3CA, PDK1 and pAKT alterations in human HNSCCs
(a) qRT-PCR quantitation of PIK3CA mRNA expression in human HNSCCs. Error bars 

indicate mean±SD. *p<0.05. NN: Normal controls; Adj: adjacent mucosa; Well: well 

differentiated tumors; Mod: moderately differentiated tumors; Poorly: poorly differentiated 

tumors; LN mets: Lymph node metastases.

(b) Percentage of human HNSCC cases which exhibited ≥2+ IHC staining of p110α, PDK1, 

and pAKT. Well: well differentiated tumors; Mod: moderately differentiated tumors; Poorly: 

poorly differentiated tumors; LN mets: Lymph node metastases. *p<0.05.

(c) IHC staining of serial sections of a poorly differentiated HNSCC. Scale bar: 50 μm.
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