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1 | INTRODUCTION

The major histocompatibility complex (MHC) is a genetic region in
jawed vertebrates harboring key immune genes involved in the im-
mune response (Kaufman, 2018). Among them, the classical MHC-|
genes and MHC-II genes code for proteins that conform to the so-
called “MHC molecules” (Martin & Kaufman, 2022), which are in-
volved in the presentation of parasite antigens (in the form of short
peptides) to T lymphocytes (Rock et al., 2016). If peptides are rec-
ognized as non-self, it triggers the activation of cytotoxic T cells or
switching on B cells to produce antibodies (Radwan et al., 2020).
Because of this key role in immune defenses, MHC genes have
been described as the “center of the immunological universe”
(Trowsdale, 1995). MHC-I molecules mainly present peptides from
intracellular antigens, in contrast, MHC-Il present those from extra-
cellular ones (Hess & Edwards, 2002).

Depending on the species, avian MHC genes have been found
being both polygenic (one to several loci) and polymorphic (mul-
tiple alleles at each locus). Individual MHC is characterized by the
number of gene copies (specific to each species) (Minias et al., 2019;
Westerdahl et al., 2022) and by the heterozygosity at each locus
(Alcaide et al., 2008). These will determine the number of MHC
molecules (or MHC diversity) expressed by an individual, and col-
lectively that of an entire population. MHC genes are codominantly
expressed (both alleles at each locus) (Murphy & Weaver, 2017);
thus, depending on the MHC genotype, each individual will express
different MHC molecules, varying in their ability to present antigens
(Nikolich-Zugich, 2004).

MHC are the most polymorphic genes found in vertebrates
(Borghans et al., 2004), and this polymorphism results from the
elevated variability observed in the peptide binding region (PBR),
the cleft where peptides accommodate in the MHC molecule
(Lenz, 2011). Different non-exclusive mechanism have been pro-
posedto explain MHC diversity (Edwards & Hedrick, 1998; Piertney
& Oliver, 2006; Radwan et al., 2020; Spurgin & Richardson, 2010;
van Oosterhout, 2009). Among them, the parasite-mediated

selection. We obtained generalized additive mixed models to explore the associations
between MHC-I and MHC-II diversity and latitude. We also explored the relation-
ship between infection status and latitude/biome. We found a non-linear association
between the MHC-Il amino acidic allele diversity and latitude. Individuals from north
Chile presented a lower MHC genetic diversity than those from other locations. We
also found an association between deserts and xeric shrublands and a lower preva-
lence of Haemoproteus parasites. Our results support a lower MHC genetic in arid or

semi-arid habitats in the region with the lower prevalence of Haemoproteus parasites.

haemosporidian parasites, major histocompatibility complex, parasite-mediated selection

TAXONOMY CLASSIFICATION

selection hypothesis states that MHC diversity is maintained by
selective pressures caused by parasites (Piertney & Oliver, 2006).
MHC should reflect the past and current selective pressures that
a species (or population) has suffered over evolutionary time
(Hasselquist, 2007; Levy et al., 2020; Minias et al., 2019; O'Connor
et al., 2019). Within birds, passerines generally have more MHC
gene copies than non-passerines, evidencing different evolution-
ary histories (Minias et al., 2019; O'Connor et al., 2019). Having an
elevated MHC allele diversity (heterozygous advantage hypothe-
sis) or rare MHC alleles (rare allele advantage hypothesis) would
increase the recognition and presentation of peptides from para-
sites to the immune system cells (Spurgin & Richardson, 2010). In
turn, spatially heterogeneous selective pressures from parasites
would maintain different MHC alleles at a local scale (Loiseau
et al., 2009).

Associations between MHC and the occurrence of diseases have
been found in humans and other vertebrates (Lundie et al., 2008;
Sanchez-Mazas, 2020), supporting the role of parasites in the evo-
lution of MHC. Several resistance/susceptibility associations in
birds have been observed in both experimental and field studies
(reviewed in O'Connor et al., 2019), thus stimulating further re-
search on the role of MHC in wild birds (Hasselquist, 2007; Minias
et al.,, 2019; O'Connor et al., 2019). Due to its global distribution
and relative ease of sampling, avian malaria parasites Plasmodium
and Haemoproteus have become an excellent model for studying the
ecology of host-parasite interactions in birds (Santiago-Alarcon &
Marzal, 2020). Parasites of the Plasmodium and Haemoproteus gen-
era have a cosmopolitan distribution and include diverse molecu-
lar and morphological species (Clark et al., 2014). These parasites
are blood protozoan parasites that commonly infect birds in the
wild (Valkitnas, 2005) and are transmitted by dipteran vectors of
the Family Culicidae (Plasmodium), Ceratopogonidae (Subgenus
Parahaemoproteus), and Hippoboscidae (Subgenus Haemoproteus)
(Santiago-Alarcon et al., 2012). Local extinctions of bird species have
evidenced their impact on avian hosts (Atkinson et al., 2000), det-
rimental effects on individual fitness (Asghar et al., 2015; Merino
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et al., 2000), survival (Martinez-de la Puente et al., 2010), and viru-
lence (Videvall et al., 2020). However, infections are commonly de-
tected as low parasitemia chronic infections with mild or not
apparently detrimental effects on individuals (Asghar et al., 2011).

To test the parasite-mediated selection hypothesis and its
role in MHC allele diversity, we investigated the associations be-
tween MHC-I and MHC-II allele diversity and the prevalence of
Plasmodium and Haemoproteus parasites in the rufous-collared spar-
row (Zonotrichia capensis) (P. L. Statius Miiller, 1776) across a latitu-
dinal gradient along South America. The rufous-collared sparrow is
a small passerine (16.8-31g) found in open spaces from sea level to
high elevation (~4600m) (Rising & Jaramillo, 2023). Its distribution
range spans Central and South America, from southern Mexico to
Cape Horn in Chile. Numerous morphological subspecies have been
proposed resulting from geographical differences in plumage, mor-
phology and song (Chapman, 1940; Handford, 1985). All subspecies
are mainly sedentary except for the southernmost species, the long-
distance migratory Z.capensis australis. However, short-distance
movements have been observed in resident subspecies related to
altitudinal movements during winter/non-winter seasons (Poblete
et al., 2023; Rising & Jaramillo, 2023). The rufous-collared sparrow
is commonly infected by these parasites throughout its distribu-
tion range (Cadena-Ortiz et al., 2019; Doussang et al., 2019; Jones
et al., 2015; Mantilla et al., 2016).

Based on the decreasing latitudinal gradient in biological diver-
sity (LGD) from the Equator to high latitudes (Willig et al., 2003),
we hypothesize that birds from locations close to the Equator
would present higher MHC allele diversity and higher parasite
prevalence compared with birds from the austral region of South
America. By suffering a higher selective pressure from parasites,
individuals would have evolved a vast array of immune defenses,
that is, MHC allele diversity (Biedrzycka et al., 2018; Demas &
Nelson, 2012; Hasselquist, 2007; Mgller, 1998; Owen-Ashley
et al., 2008). Previous studies have found evidence of a latitudi-
nal gradient of Plasmodium and Haemoproteus infections in South
America, with a general decreasing of both parasites to the south
(Clark et al., 2014; Durrant et al., 2006; Fecchio et al., 2019; Merino
et al., 2008; White et al., 1978). However, other studies have not ob-
served this trend (Clark, 2018; Doussang et al., 2019). Thus, if avian
malaria parasites do not follow a latitudinal gradient in prevalence,
the MHC allele diversity would be lower in regions where parasite
prevalence is low or absent (Hawley & Fleischer, 2012; Johnson &
Haas, 2021). In this situation, biomes (Dinerstein et al., 2017; Olson
et al., 2001) could represent a better approach to explain MHC di-
versity, since the biotic and abiotic factors of these biomes may af-
fect the constitution of distinct assemblages of parasites, vectors,
and hosts (Chapa-Vargas et al., 2020; Cuevas et al., 2020; Doussang
et al., 2019; Garcia-Longoria et al., 2022; Hussing, 2020). In order to
test this hypothesis, we specifically (i) estimated MHC-l and MHC-II
allele diversity in rufous-collared sparrows in a latitudinal gradient in
South America (from Colombia to Cape Horn in Chile), (ii) explored
signals of positive selection on MHC alleles, (iii) investigated the as-
sociations among MHC allele diversity and latitude/infection, and

(iv) analyzed the associations among parasite infection status and

latitude/biomes.

2 | MATERIALS AND METHODS

2.1 | Study area and bird sampling

We investigated MHC-I and MHC-Il genes in 93 rufous-collared
from Colombia, Ecuador, Peru and Chile, sampled in different stud-
ies from 2011 to 2018 (Basto et al., 2006; Cadena, 2015; Cadena-
Ortiz et al., 2019; Gonzalez et al., 2015; Hussing, 2020; Martinez
et al., 2016; Marzal et al., 2015) (Figure 1, Table S1). Twenty-one in-
dividuals were sampled in Colombia, 22 in Ecuador, 11 in Peru, and
39 in Chile.

2.2 | MHC primes design,
amplification, and sequencing

Genomic DNA was extracted by different methods depending on
the laboratory of origin (Cadena, 2015; Cadena-Ortiz et al., 2019;
Doussang et al., 2019; Gonzalez et al., 2015; Martinez et al., 2016;
Marzal et al., 2015). In Chile, and before molecular analyses, DNA
samples were quantified in a Qubit fluorometer (Thermo Fisher). A
Sequencing Library Preparation protocol (Illumina) was applied for
the lllumina MiSeq System to obtain MHC-l and MHC-Il sequences.
The workflow consisted of aninitial MHC primer design (Macrogen)
with an overhang adapter attached to MHC-I and MHC-II forward
and reverse primers. For MHC-I, we tested two different sets of
primers, GCA21M (5-CGTACAGCGGCTTGTTGGCTGTGA-3’)
and fA23M (5-GCGCTCCAGCTCCTTCTGCCCATA-3’) (Jones
et al., 2014), and MhcPasCI-FW (5-CSCSCAGGTCTSCACAC-3’)
and MhcPasCI-RV (5-CWCARKAATTCTGYTCHCACC-3')
(Alcaide et al., 2013). For MHC-II, we tested two sets of prim-
ers, HOPE1 (5-GAAAGCTCGAGTGTCACTTCACGAACGGC-3’)
and HOPE 10 (5-TCCACGCTGAACGGGCGGAACACCTC-3)
(Sato et al., 2011), and 2zffw1 (5-TGTCACTTCAYKAACGGCAC
GGAG-3’) and 2zfrv1(5-GTAGTTGTGCCGGCAGTACGTGTC-3’)
(Balakrishnan et al., 2010). We tested primers with the overhang
adapters in five individuals through a standard PCR (Sallaberry-
Pincheira et al., 2016). All primers worked successfully for the
rufous-collared sparrow, however, we finally selected GCA21M/
fA23M and HOPE1/HOPE10 because they were applied before
in this species successfully (Jones et al., 2014; Sato et al., 2011).
The GCA21M/fA23M primers amplified a region of 214 base pairs
(bp) inside exon 3 of the alpha chain, a part of the PBR, whereas
HOPE1/HOPE10 amplified 189 bp inside exon 2 of the beta chain,
also part of PBR. PCR conditions for GCA21M/fA23M consisted
of 94°C for 10 min, 35cycles of 94°C for 30s, 64°C for 30s, and
72°C for 1 min, and at 72°C for 10 min. PCR conditions for HOPE1/
HOPE10 consisted of a PCR of 94°C for 10 min, 35 cycles of 94°C
for 30s, 58°C for 30s, 72°C for 1 min, and 72°C for 10 min (Jones



RIVERO de AGUILAR T AL.

4of14 WI LEY—ECOIOgy and Evolution

Open Access.

Biomes
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[ Tropical & Subtropical Moist Broadleaf Forests

B Deserts & Xeric Shrublands

[ Montane Grasslands & Shrublands
Mediterranean Forests,Woodlands & Scrub

7] Temperate Broadleaf & Mixed Forests

FIGURE 1 Sampling locations and
biogeographical biomes of rufous-
collared sparrows. Biomes and map where
obtained with QGIS.

et al., 2014; Sato et al.,, 2011). Amplification success was con-
firmed by observing UV bands of appropriate size in an agar 1% gel
stained with SYBR Green (Sigma Aldrich). The MHC-1 and MHC-II
amplicons were sequenced in Macrogen. We included a PCR mix
reaction without a DNA template in every PCR run as the negative

control.

2.3 | Library preparation and sequencing

Purified PCR products in a final 30-pL volume with MHC-| and
MHC-Il amplicons were quantified in Nanodrop. After the purifica-
tion Nextera XT v2 Index Kit A indices were added (Illumina). After
a second purification with AMPure (Beckman Coulter), the libraries
were diluted in 10nM before making the equimolar pool, to which a
10% PhiX control library (lllumina) was added. The entire pool was
then diluted to 10 pM, which was loaded onto the MiSeq sequencer
(Hllumina) with the Kit v3 (600Cycles) and mode of sequencing
2x300pb (PE).

2.4 | Bioinformatics

Each MHC-1 and MHC-Il FASTQ sequences were merged with the
AmpliMERGE tool in AmpliSAT, and then, the quality was checked
with AmpliCHECK (Sebastian et al., 2016). Clustering and filtering
sequences were performed in AmpliSAS by selecting the Illumina

platform. Elimination of chimeras and sequences with a length dif-
ferent from the expected sequence size was also chosen in this step
(Rekdal et al., 2018). A total of 21.318.682 reads (59.5% quality
score>=Q30) were obtained from sequencing. From them, we ob-
tained the total number of MHC-I and MHC-II nucleotide sequences
for every individual. MHC-I and MHC-II sequences were aligned in
Bioedit (Hall, 2011) with CLUSTAL and translated into amino acids.
Sequences with stop codons were considered non-functional and
removed from the dataset. Amino acidic MHC sequences were re-
versed to nucleotides and searched in Blast (https://blast.ncbi.nlm.
nih.gov/Blast.cgi) to confirm whether they corresponded to new
(unpublished) or known MHC nucleotide sequences. Blast matches
lower than 100% were considered as new MHC alleles. We refer to
the “MHC allele,” although primers do not discern among loci and do
not cover all MHC-| exon 3 and MHC-Il exon 2. MHC-I and MHC-II
were considered all putative sequences even they came from one
PCR event.

2.5 | Phylogenetic reconstruction and selection
in the peptide binding region

We combined nucleotide sequences from all individuals in two
datasets (MHC-I and MHC-I), aligned with MUSCLE (Edgar, 2004),
and applied redundancy sequence removal in Jalview (Waterhouse
et al,, 2009). A maximum likelihood phylogenetic tree for each
MHC class plus other published rufous-collared sparrow MHC-I
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and MHC-II sequences were obtained in NGPhylogeny.fr (Lemoine
etal.,, 2019). We selected BMGE curation and PhyML tree inference.
The best model of molecular evolution was estimated by SMS (Lefort
et al., 2017) and node support with aBayes. Trees were edited in iTol
(Letunic & Bork, 2021), and chicken Gallus gallus MHC-I (GenBank
accession number KM014730.1) and MHC-1I (GenBank accession
number AY744349.1) were selected as outgroups.

To explore signs of positive selection operating on the MHC, we
performed a selection analysis of MHC-I and MHC-II nucleotide se-
quences in the Datamonkey 2.0 server (Weaver et al., 2018) by mean
of a Bayesian approach to infer non-synonymous (dN) and synony-
mous (dS) substitution rates per-site with FUBAR method (Murrell
et al., 2013). Excess of non-synonymous vs synonymous substitutions
was considered a sign of positive selection. In addition, we calculated
Tajima's D in the PBR versus the non-PBR positions under selection
following Minias et al. (2018) in MEGA11 (Tamura et al., 2021).

2.6 | Individual parasite infection status

Plasmodium and Haemoproteus infection status were determined
by amplifying the cytochrome b DNA by PCR, microscopy, or both
techniques (see Table S1). Different combinations of primers were
used in each laboratory of origin (Cadena, 2015; Cadena-Ortiz
et al., 2019; Doussang et al., 2019; Gonzalez et al., 2015; Martinez
et al., 2016; Marzal et al., 2015). Seventy-three out of 93 individuals
were also investigated by inspecting blood smears by microscopy
(Cadena-Ortiz et al., 2019; Gonzalez et al., 2015; Hussing, 2020).
The combined use of both methodologies enhanced the accuracy of
infection confirmation, as different primers can produce slight varia-
tions in parasite detection (Valkitnas et al., 2006, 2008).

2.7 | Statistical analyses
2.71 | Associations between MHC allele
diversity and latitude

Associations among MHC diversity and latitude were investigated
by generalized additive mixed models (GAMM) with the mgcv pack-
age (Wood, 2023) in R (R Development Core Team, 2016). For each
MHC class, we created a set of competitive models including MHC-I|
or MHC-Il amino acidic allele diversity as dependent variable, and
latitude, location, and year as explanatory variables. In the models,
latitude was included as a smooth parameter=restricted maximum
likelihood (REML). Because birds' sampling spanned different years
and several individuals came from the same location, year and lo-
cation were included as random effects. An AlCc model selection
(suited for small sample sizes) was performed over all model term
combinations with family=Poisson (MHC-I) or Gaussian (MHC-II),
based on previous data exploration of the dependent variable dis-
tribution. Model assumptions were checked with gam.check. We
evaluated the goodness of fit of the final models by inspecting
the dependence of the residuals, and checked their normality with

qgplots. The final best model and also the equally possible models

were obtained within a threshold of delta <2.

2.7.2 | Associations among infections and latitude/

biomes

In order to explore whether infections follow the same pattern as the
observed for MHC amino acidic allele diversity and latitude, we inves-
tigated the associations between infection status and latitude using
logistic GAMM models. Both Plasmodium and Haemoproteus infection
status (non-infected=0 and infected=1) were selected as the de-
pendent variables and latitude, location, and year as explanatory vari-
ables. As described previously, latitude was included as a fixed factor
and year and location as random effects. An AICc model selection was
performed over all models obtained with method="REML” and fam-
ily=binomial. Model assumptions were checked as before.

Finally, differences in Plasmodium and Haemoproteus prevalence of
infection among biomes were investigated by Fisher exact tests with
post hoc Bonferroni correction applied among factor levels. Biomes
were obtained for every location by importing GPS data points into
QGIS (QGlIS.org, 2022) and loading a shapefile layer of “Biomes of the
World” for each country (Dinerstein et al., 2017; Olson et al., 2001).

3 | RESULTS

3.1 | MHCallele diversity

The average number of reads + [SD] per sample was 1273 +361
(MHC-I) and 901+ 198 (MHC-II). We obtained 48 MHC-I and 104
MHC-II nucleotide sequence variants when considering all individu-
als (Tables S1 and S2). Individual MHC allele nucleotide diversity
ranged from one to four alleles for MHC-I (mean=1.8, SD=0.99),
and from one to six for MHC-II (mean=3.34, SD=1.21). When
converted to amino acids, the MHC allele amino acidic diversity
was similar (MHC-I: mean=1.57, SD=0.87; MHC-Il mean=3.28,
SD=1.16). A total of 21 MHC-I stop codon sequences were removed
from the dataset, while no stop codon sequences were observed for
MHC-II. Considering that MHC genes are codominantly expressed,
the maximum number of MHC-I alleles found in an individual was
four, indicating the presence of at least two loci (assuming all loci are
heterozygous). For MHC-II, the maximum number of alleles was six,
suggesting at least three loci. We excluded several individuals with
low-quality MHC sequences from the analyses (Table S1).

MHC-I blast search indicated that 21 out of the 48 nucleotide
sequences were new MHC alleles (GenBank accession numbers:
OR578737-0OR578757) (Table S2). The most common alleles were
ZocaU*2 (60 individuals) and ZocaU*5 (10 individuals). Less than 10
individuals shared the rest of the alleles. For MHC-II blast, they re-
sulted in 104 haplotypes (GenBank accession numbers: 0Q377810-
0Q377913). The most common MHC-II alleles were alleles Zocal
(85 individuals), Zoca9 (14 individuals), and Zocalé (13 individuals),
all of them new alleles.
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3.2 | Selection and phylogenetic reconstruction

We detected signs of positive selection in both MHC-I (amino acid
positions 12, 48, 51) and MHC-II (amino acid positions 10, 15, 18,
27, 33, 37,40, 47, 50, 51, 53, 57, 58). The positions identified in our
analysis coincided with those previously observed under positive se-
lection in passerine birds at rates of 9.1% for MHC-I and 69.2% for
MHC-II (Minias et al., 2018) (Figure S1). And a coincidence rate of
0% for MHC-1 and 35.2% for MHC-1l when compared to human PBR
positions (Brown et al., 1993; Saper et al., 1991). Tajima's D neutral-
ity test confirmed a greater number of non-synonymous versus syn-
onymous substitutions in the PBR compared with non-PBR regions
for both MHC classes (Tables S3 and S4).

3.3 | Individual parasite infection status

A higher prevalence of Plasmodium than Haemoproteus was found,
with 24% and 12% of birds infected, respectively. The detected
parasites corresponded to Plasmodium (Haemamoeba) catheme-
rium (ZOCAP15), Plasmodium (Novyella) homopolare (BAEBIC02),
Plasmodium SGS1, Haemoproteus (P.) sp1 (ZC1), Haemoproteus coat-
neyi, Haemoproteus erythrogravidus, and Haemoproteus CHLOPO1
(Table S1). All these infections have been previously reported
(Basto et al.,, 2006; Cadena, 2015; Cadena-Ortiz et al., 2019;
Doussang et al., 2019; Gonzalez et al., 2015; Hussing, 2020;

Martinez et al., 2016; Marzal et al., 2015), except for the new in-
dividuals from Chile to whom PCR, and microscopy was done in
this study. Some infections could only be identified at the genus
level for some individuals, leaving them as Haemoproteus sp. and
Plasmodium sp.

3.4 | Associations between MHC allele
diversity and latitude

GAMM model selection for MHC-I resulted in a best model with only
the intercept as the final term, excluding models that incorporated
latitude (Table 1, Figure 2). Models including latitude, year, or loca-
tion were equally plausible based on delta <2, but latitude was not
statistically significant in any model. However, in two models, year
was statistically significant, indicating a random effect of year on
MHC-I. For MHC-II, the best GAMM model retained latitude as the
final term. MHC-IlI amino acid allele diversity was non-linearly as-
sociated with latitude (Table 1, Table S5). Specifically, MHC-1l amino
acid allele diversity was low in North Chile (latitude -18° to -20°)
and locations near the Equator (0° to 4°), then increased in Peru (-6°
to -12°), and further increased from central to the austral region of
Chile (-33° to -54°) (Figure 2). Based on delta <2, three other mod-
els were also plausible, with latitude always being statistically signifi-
cant, but not location or year, excluding any random effects of these

variables. All models' assumptions were met.

TABLE 1 Associations among rufous-

df logLik AIC Delt L o
OgH ¢ eita collared sparrow major histocompatibility
MHC-| Intercept 0 -121.908 245.861 0 complex (MHC) amino acidic allele
Latitude + Location 2 -121.685 247.508 1.646 diversity and latitude, year, and location,
Latitud ) 121,685 247 509 1647 investigated by generalized additive
atitude ’ ’ ’ mixed models (GAMM) and AlCc model
Latitude + Location + Year 2 -121.504 247.855 1.994 selection.
Latitude + Year 2 -121.504 247.855 1.994
MHC-II Latitude 7 -122.012 261.375 0
Latitude + Location 7 -122.012 261.382 0.006
Latitude + Year 8 -121.567 262.737 1.361
Latitude + Year + Location 8 -121.567 262.738 1.362
. 3 o o o o o o . © - o o
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3.5 |
biomes

Associations between infections and latitude/

GAMM models found no association between infection status for ei-
ther Plasmodium or Haemoproteus and latitude. The best GAMM model
for Plasmodium included latitude as an explanatory term, along with
several plausible models that included combinations of year and loca-
tion (Table 2). In the best model and the equally plausible models, the
association with latitude were not statistically significant (Table Sé6,
Figure S3). For Haemoproteus, the best model showed a marginally
significant association with latitude (p=.051), with a pattern similar
to that observed for MHC-II, with individuals from north Chile having
a low prevalence of infection (Table Sé, Figure S3). Another plausible
model also included latitude and year as factors.

Finally, we found a statistically significant association between
Haemoproteus infection and biome (Fisher's exact test, p=.0018).
Haemoproteus prevalence was higher in the tropical biome compared
with the desert biome (post-hoc Bonferroni test: tropical vs. desert,
n=69, adjusted p=.007) (Figure 3). There was also a significant as-
sociation between Plasmodium prevalence and biome (Fisher's exact
test, p=.028); however, this result became non-significant after the
Bonferroni test (post hoc Bonferroni test: tropical vs. desert, n=69,
adjusted p=.281).

4 | DISCUSSION

In this study, we explored the relationships between MHC diversity
and avian malaria infections (Plasmodium and Haemoproteus) across

TABLE 2 Associations among rufous-
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a latitudinal gradient in a passerine bird species in South America.
While avian MHC is known to respond to a diverse array of anti-
gens, there is compelling evidence linking MHC alleles to avian
malaria infections (O'Connor et al., 2019). Based on the latitudi-
nal gradient in biological diversity (LGD) hypothesis, we expected
a decrease in MHC allele diversity from the Equator to the austral
region of South America, which would correspond to a decrease in
the prevalence of Plasmodium and Haemoproteus parasites at higher
latitudes. However, if the prevalence of infection does not follow
the trend predicted by the LGD, then MHC diversity should be lower
in regions where the prevalence of infection is lower or absent. We
found that Individuals from north Chile exhibited the lowest MHC-II
diversity, a finding that aligned with the absence of infections by
both parasites. MHC diversity could be in part explained by a low
prevalence of avian malaria parasites in the region. This result was
supported by the observation that individuals from the deserts
and xeric shrublands (intermediate latitude, north Chile) were less
infected by Haemoproteus parasites compared to individuals from
tropical and subtropical biomes.

Although LGD is observed for many plant and animal spe-
cies, other taxonomic groups, like parasites, have less clear pat-
terns (Clark et al., 2014), even the reverse, as is the case for the
Leucocytooon parasite, a closely related species (Cuevas et al., 2020;
Fecchio et al., 2020; Merino et al., 2008). In rufous-collared spar-
rows, in the most complete study to date, the higher preva-
lence of Plasmodium is found in central Chile and in Peru, and for
Haemoproteus in central and northern Chile (Doussang et al., 2019),
and the lowest prevalence for both parasites in Colombia and the
austral region of Chile. This trends is supported by a low prevalence

collared sparrow infection status with df logLik AlCe Delta
latitude, year, and location, investigated Plasmodium Latitude 4 -27.494 63.549 0
by generalized additive mixed models Latitude + Year 4 27494 63549  0.0001
(GAMM) and AlCc model selection. . .
Latitude + Location 5 -26.629 65.047 1.498
Latitude + Year + Location 5 -26.629 65.047 1.498
Haemoproteus Latitude 5 -43.298 98.424 0
Latitude + Year 5 -43.295 98.433 0.0096
0.25
0.20 3
3 203
c (0]
< ©
© >
> (0]
® 0.15 S
. o ® 0.2
FIGURE 3 Plasmodium and £ =1
K = 2
Haemoproteus parasite prevalence 5 0.10 o
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for both parasites reported in an Andean community of birds in
Colombia (although at elevations ranging from 2100 to 4000 m.a.s.l)
(Gonzalez et al., 2015). Overall, these contrasting results highlight
the variability in the patterns of avian malaria prevalence detected
in South America. These differences may be better understood by
considering the type of biome. North Chile is characterized by des-
erts and semi-arid habitats, including the presence of the Atacama
Desert, the driest desert on Earth (Darack, 2008). This disrupts the
expected linear decreasing latitudinal pattern for the prevalence of
avian malaria. Thus, biome could be a factor that better summarizes
the effect of latitude, along with other biotic and abiotic factors, on
infections (Fecchio et al., 2019). In the case of avian malaria para-
sites, precipitation and temperature are main factors affecting the
life cycle of insect vectors (Doussang et al., 2019; Martinez-de la
Puente et al., 2009). Hence, desert or semi-arid habitats could limit
the occurrence and their activity (Chapa-Vargas et al., 2020). On
the contrary, tropical and subtropical environments may harbour a
larger community of insect vectors, which is reflected in the higher
prevalence of Haemoproteus and greater diversity of MHC-II com-
pared to desert biomes. However, in locations close to the Equator
in South America, a low prevalence of infection have been also re-
ported, possible related to a dilution effect, where high diversity
of host birds is associated with a decrease in parasite transmission
among hosts of the same species (Moens & Pérez-Tris, 2016). This
could explain the moderate MHC-II diversity levels observed in
our study. However, an intermediate prevalence of Plasmodium and
Haemoproteus (23%-50%, respectively) is also observed in Ecuador
(Cadena-Ortiz et al., 2019), and in our study.

Contrary to our findings, Doussang et al. (2019) reported an
elevated prevalence of infection by Plasmodium and Haemoproteus
in rufous-collared sparrows in northern Chile. In the same region,
another study reported Plasmodium infecting house sparrows
(Passer domesticus) but not rufous-collared sparrows (Martinez
et al.,, 2016), and Haemoproteus was observed infecting eared
doves (Zenaida auriculata). This parasite belongs to the subgenus
Haemoproteus (different from the subgenus Parahaemoproteus
that usually infects rufous-collared sparrows), thus confirming
local transmission of Plasmodium and at least the Haemoproteus
subgenus. Differences in results among studies could be due to
particularities among sampling localities or other factors, includ-
ing the sampling period. Although arid, the region presents valleys
and oases with water presence where suitable conditions could
exist for vectors, favoring local transmission (Gonzélez-Gomez
et al., 2018). One possibility is that the birds concentrate in these
oases, generating greater density in those areas and favoring the
transmission of the parasite. On the contrary, the prevalence of in-
fection varies with season, so it can confound the actual prevalence
if not sampled throughout the year. Birds included in our study
were sampled in this region during the austral summer (January)
and winter (June-July) in 2012 and 2017, covering a broad period
where transmission is expected to occur and in different years.
The detection of avian malaria parasites in local birds supports
active transmission, but also indicates differential transmission

depending on the host species (Clark, 2018; Doussang et al., 2021).
Differences in prevalence in bird species from the same area could
be related to life-history traits like nestling period, nest location,
vegetation strata, or body mass that increase the exposition to
vectors (Quillfeldt et al., 2011). In order to account for this vari-
ability, we included year as a random effect in the models, but no
effect was observed.

Evidence of low MHC diversity in species living in environments
with a low prevalence of parasites has been observed in other birds.
For example, the prevalence of blood parasitic infections is low in
seabirds, which have been related to the reduced occurrence of
vectors in marine environments (Quillfeldt et al., 2011). Moreover,
in a latitudinal study ranging from Peru to South Chile evaluating
Magellanic and Humboldt penguins, only Humboldt penguins from
Peru were infected with Haemoproteus compared with southern
locations. Precisely, individuals from the infected population ex-
hibited elevated MHC-I and MHC-II allele diversity, suggesting a
greater diversity associated with the infections (Sallaberry-Pincheira
etal., 2015, 2016). Interestingly, it has been observed that Magellanic
penguins translocated to other parts of the world, such as zoos from
the northern hemisphere, tend to succumb to infection caused by
avian malaria parasites (Hernandez-Colina et al., 2021). This results
supports that parasites' absence or low abundance could result in
low MHC allele diversity in rufous-collared sparrows in this region
(Radwan et al., 2010).

Due to the latitudinal amplitude of the work and the small sample
size, we could not perform a detailed analysis of the associations be-
tween MHC diversity or specific alleles on infections. However, for
both types of MHC we have detected positive selection on PBR. In
the case of MHC-I, several alleles were closely related to other alleles
previously associated with Haemoproteus infections in Pert (Jones
et al., 2014, 2015). The most common Haemoproteus molecular lin-
eage detected in those studies was H. (P.) sp1 (ZC1) (KC480265). This
parasite corresponds to the same lineage reported in (Cadena-Ortiz
etal.,, 2019; Doussang et al., 2019; Merino et al., 2008) and detected
in our study in individuals from Ecuador. Its high prevalence in South
America is suggested possibly associated with chronic infections of
low virulence (Doussang et al., 2019; Merino et al., 2008). This par-
asite has been related to the morpho species H.coatneyi parasite.
H.coatneyi is closely related to H. erythrogravidus (which was also de-
tected in our study), and both share Z.capensis as a host. They have
a wide distribution and impact various bird species across South
America. H.coatneyi has a broad geographical distribution, occur-
ring in South, Central, and North America, infecting several species,
whereas H.erythrogravidus occurs only in South America and is re-
stricted to infecting only two species: the rufous-collared sparrows
and the blue-winged mountain tanager (Anisognathus somptuosus) (F.
Thraupidae) (de Oliveira et al., 2020; Valkitnas, 2005). On the con-
trary, the other lineage found in our study, CHLOPO1, was restricted
to Z.capensis in Peru (Marzal et al., 2015); however, the virulence
of these parasites is unknown. With respect to Plasmodium para-
sites infecting rufous-collared sparrows we detected Plasmodium
(Haemamoeba) cathemerium (ZOCAP15), Plasmodium (Novyella)
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homopolare (BAEBIC02), and Plasmodium relictum SGS1. In Bosque
de Jerusalem in Ecuador, the prevalence of ZOCAP15 was very low,
which could mean that it is either rare in the population or actually is
very virulent (Cadena-Ortiz et al., 2019). Interestingly, one individual
infected by this lineage had one of the highest parasitemia, suggest-
ing high susceptibility to this lineage. On the contrary, BAEBICO2
has been reported to infect several passerines, mainly species from
Emberizidae and Passerellidae families, included rufous-collared
sparrows (Cadena-Ortiz et al., 2019; Rivero de Aguilar et al., 2018;
Walther et al., 2014). Plasmodium relictum SGS1 has been recently
detected for the first time in Peru and is considered an invasive spe-
cies for the South American continent. Therefore, it is necessary to
continue monitoring these parasites to discern the effects they may
have on the host and their role on parasite-mediated selection on
MHC. For example, in Bosque de Jerusalem in Ecuador, the prev-
alence of both genera was among the highest among all locations,
suggesting that individuals cannot avoid infections, instead trying
to keep infections at low intensities through their immune system,
that is, MHC genes.

Our results generally support variability in MHC diversity on a
latitudinal scale related to biome; however, we have also identified
other factors that could explain our results. On the one hand, our
results support differences both in MHC diversity and infection
prevalence in a specific area coinciding with an arid biome, but also
a result consistent with the separation between Zonotrichia con-
trol region-based molecular lineages observed between northern
Chile and Peru. In South America, there is evidence of molecularly
distinct clusters based on a mitochondrial control region genes
(Lougheed et al., 2013). Thus, the genetic differentiation of these
populations could determine the differences observed in the MHC
genes. Conversely, differences in MHC diversity may reflect the
distinct demographic histories of populations from various regions.
Reduced MHC diversity could result from low genetic diversity in
bottlenecked or inbred populations (Radwan et al., 2010). Moreover,
MHC diversity variation found in our study should reflect adapta-
tion to the local community of parasites, however, selection can be
modulated or being stronger toward other pathogens (Llanos-Soto
et al., 2017; Loiseau et al., 2008). Finally, bird movements could be
affecting our results' accuracy. The rufous-collared sparrow is con-
sidered a sedentary species in most of the distribution, except for
southern Chile, with only one subspecies Z.c.australis being a long-
distance migrant from central Chile and Argentina to the Magallanes
region. Even for a common species, such as the rufous-collared spar-
row, there is still scarce information about the migratory status of
many populations (Medrano et al., 2018). Nevertheless, in a broad
latitudinal scale, as is our study, we should have captured latitudinal
differences in the MHC related to local parasites.
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