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ARTICLE

Mutations in FGF17, IL17RD, DUSP6, SPRY4, and FLRT3
Are Identified in Individuals with Congenital
Hypogonadotropic Hypogonadism

Hichem Miraoui,1,2 Andrew A. Dwyer,1,2 Gerasimos P. Sykiotis,2,3 Lacey Plummer,2 Wilson Chung,4

Bihua Feng,2 Andrew Beenken,5 Jeff Clarke,6 Tune H. Pers,7,8,9 Piotr Dworzynski,7 Kimberley Keefe,2

Marek Niedziela,10 Taneli Raivio,11 William F. Crowley, Jr.,2 Stephanie B. Seminara,2 Richard Quinton,12

Virginia A. Hughes,1,2 Philip Kumanov,13 Jacques Young,14 Maria A. Yialamas,15 Janet E. Hall,2

Guy Van Vliet,16 Jean-Pierre Chanoine,17 John Rubenstein,6 Moosa Mohammadi,5 Pei-San Tsai,4

Yisrael Sidis,1,2 Kasper Lage,7,8,18,19,20 and Nelly Pitteloud1,2,20,*

Congenital hypogonadotropic hypogonadism (CHH) and its anosmia-associated form (Kallmann syndrome [KS]) are genetically hetero-

geneous. Among the >15 genes implicated in these conditions, mutations in FGF8 and FGFR1 account for ~12% of cases; notably, KAL1

and HS6ST1 are also involved in FGFR1 signaling and can be mutated in CHH. We therefore hypothesized that mutations in genes en-

coding a broader range of modulators of the FGFR1 pathway might contribute to the genetics of CHH as causal or modifier mutations.

Thus, we aimed to (1) investigate whether CHH individuals harbor mutations in members of the so-called ‘‘FGF8 synexpression’’ group

and (2) validate the ability of a bioinformatics algorithm on the basis of protein-protein interactome data (interactome-based affiliation

scoring [IBAS]) to identify high-quality candidate genes. On the basis of sequence homology, expression, and structural and functional

data, seven genes were selected and sequenced in 386 unrelated CHH individuals and 155 controls. Except for FGF18 and SPRY2, all

other genes were found to be mutated in CHH individuals: FGF17 (n ¼ 3 individuals), IL17RD (n ¼ 8), DUSP6 (n ¼ 5), SPRY4 (n ¼
14), and FLRT3 (n ¼ 3). Independently, IBAS predicted FGF17 and IL17RD as the two top candidates in the entire proteome on the basis

of a statistical test of their protein-protein interaction patterns to proteins known to be altered in CHH. Most of the FGF17 and IL17RD

mutations altered protein function in vitro. IL17RD mutations were found only in KS individuals and were strongly linked to hearing

loss (6/8 individuals). Mutations in genes encoding components of the FGF pathway are associated with complex modes of CHH inher-

itance and act primarily as contributors to an oligogenic genetic architecture underlying CHH.
Introduction

Congenital hypogonadotropic hypogonadism (CHH [MIM

146110]) due to gonadotropin-releasing hormone (GnRH)

deficiency and/or resistance is a rare genetic disorder char-

acterized by abnormal pubertal development and infer-

tility.1 CHH is often associated with anosmia and is then

termed Kallmann syndrome (KS [MIM 308700, 147950,

244200, 610628, 612370, and 612702]), as well as with

other phenotypes including unilateral renal agenesis, skel-

etal abnormalities, midline malformations, and hearing
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pital, University of British Columbia, Vancouver, BC V6H 3V4, Canada; 18Ped

Analytical and Translational Genetics Unit, Department of Medicine, Massach

tion Center for Protein Research, University of Copenhagen, Copenhagen 220
20These authors contributed equally to this work

*Correspondence: nelly.pitteloud@chuv.ch

http://dx.doi.org/10.1016/j.ajhg.2013.04.008. �2013 by The American Societ

The Am
loss.2 A number of genes are associated with congenital

GnRH deficiency.3 Nevertheless, <40% of individuals

have been shown to harbor mutations in one or more of

the >15 known genes. Most of the genes mutated in

CHH encode receptor-ligand pairs (GNRHR [gonado-

tropin-releasing hormone receptor; MIM 138850]

and GNRH1 [gonadotropin-releasing hormone 1; MIM

152760]; PROKR2 [prokineticin receptor 2; MIM 607123]

and PROK2 [prokineticin 2; MIM 607002]; TACR3 [tachyki-

nin receptor 3;MIM162332] andTAC3 [tachykinin 3;MIM

162330]; KISS1R [KISS1 receptor; MIM 604161] and KISS1
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[KiSS-1 metastasis suppressor; MIM 603286]; and FGFR1

[fibroblast growth factor receptor 1; MIM 136350] and

FGF8 [fibroblast growth factor 8;MIM 600483]), suggesting

that multiple receptor-ligand-encoding gene networks are

involved in the molecular pathology of the disease.

The discovery of mutations in FGFR1 and FGF8 in

CHH4,5 has demonstrated a previously unappreciated

role of FGF8-FGFR1 signaling in GnRH neuron ontogeny.

We have documented a lack of GnRH neurons in the hypo-

thalamus of Fgf8 hypopmorphic mice, which underscores

the exquisite sensitivity of the GnRH neuronal population

to FGF8 signaling.5 Subsequent studies have established

FGF8 as a critical morphogen for GnRH neuron fate speci-

fication, as well as for the development of the olfactory sys-

tem.6 Other tissues patterned by FGF8 include the ears,

eyes, kidneys, and limbs,7–10 all of which can be affected

in CHH.11

KAL1 (Kallmann syndrome 1 sequence [MIM 300836])

and HS6ST1 (heparan sulfate 6-O-sulfotransferase 1 [MIM

604846]), two genes known to be mutated in CHH, also

encode important components of FGF8-FGFR1 signaling.

KAL1, the first gene discovered to harbor mutations

in KS,12,13 encodes anosmin-1, which enhances FGF

signaling by direct physical interactions with the FGFR-

FGF-heparan sulfate proteoglycan (HSPG) complex on

the cell surface.14 HS6ST1, which encodes a heparan sulfo-

transferase enzyme, was identified as a gene mutated in

CHH on the basis of a C. elegans study demonstrating

that heparan 6-O-sulfation was required for anosmin-1

function in vivo.15 The fact that multiple genes encoding

components of the FGF pathway are already known to be

mutated in CHH (e.g., KAL1, HS6ST1, FGF8 and FGFR1)

led us to hypothesize that a broader survey of the FGF

network might uncover additional mutated genes.

Expression data from diverse organisms have identified a

cluster of genes that are similarly expressed and regulated

during development, and these are collectively referred

to as ‘‘the FGF8 synexpression group.’’16–18 These genes

not only show spatiotemporal expression patterns similar

to that of FGF8 but also specifically modulate the signaling

efficiency of FGF8 through FGFR1 as enhancers or inhibi-

tors (Table 116,18–36 and Figure 1A). We therefore consid-

ered five members of the FGF8 synexpression group as

candidate genes: interleukin 17 receptor D (IL17RD [MIM

606807]), dual specificity phosphatase 6 (DUSP6

[MIM 602748]), sprouty homolog 2 (Drosophila) (SPRY2

[MIM 602466]), and sprouty homolog 4 (Drosophila)

(SPRY4 [MIM 607984]), which are inhibitors, and fibro-

nectin leucine rich transmembrane protein 3 (FLRT3

[MIM 604808]), which is an enhancer16–18 (Table 1 and

Figure 1A). We also selected FGF17 (fibroblast growth fac-

tor 17 [MIM 603725]) and FGF18 (fibroblast growth factor

18 [MIM 603726]) because of their high homology to FGF8

(with which they encode the so-called ‘‘FGF8 subfamily’’ of

fibroblast growth factors [FGFs]),37 their coexpression with

Fgf8 in the olfactory placode, and their shared ability to

signal through FGFR1c37 (Table 1 and Figure 1A).
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Thus, the primary objective of this study was to investi-

gate whether CHH individuals harbor mutations in genes

encoding members of the extended FGF8-FGFR1 network.

A secondary objective was to validate the ability of a bioin-

formatics tool on the basis of protein-protein interactome

data to identify high-quality candidate genes and to prior-

itize them for experimental confirmation.
Subjects and Methods

Subjects
CHH was diagnosed and classified as KS or normosmic idiopathic

hypogonadotropic hypogonadism (nIHH) according to standard

criteria.38 A cohort of 386 CHH individuals included 199 KS indi-

viduals (152 men and 47 women) and 187 nIHH individuals (140

men and 47 women). Several CHH probands harbored mutations

in genes previously identified to be associated with nIHH and/or

KS: FGFR1 (n ¼ 34 individuals), KAL1 (n ¼ 17), FGF8 (n ¼ 5),

HS6ST1 (n ¼ 7), PROKR2 (n ¼ 14), PROK2 (n ¼ 4), GNRHR (n ¼
16), GNRH1 (n ¼ 2), KISS1R (n ¼ 5), KISS1 (n ¼ 1), NSMF

(NMDA receptor synaptonuclear signaling and neuronal migra-

tion factor, formerly known as NELF [MIM 608137]) (n ¼ 4),

TAC3R (n¼ 19), and TAC3 (n¼ 1).15,39–42 Also includedwas a con-

trol group of 155 unaffected subjects of European descent (83 men

and 72 women) with normal reproductive function. The studywas

approved by the human research committee of Massachusetts

General Hospital, and all subjects provided written informed con-

sent prior to participation.

DNA Sequencing
Genomic DNA was extracted from peripheral-blood samples. The

coding exons and proximal introns (R15 bp from splice sites) of

FGF17 (five exons), FGF18 (five exons), IL17RD (13 exons),

DUSP6 (three exons), SPRY2 (two exons), SPRY4 (two exons),

and FLRT3 (one exon) were amplified by PCR and determined

by direct sequencing. Each gene’s sequence was identified with

the use of the UCSC and ENSEMBL genome databases. All DNA

variants were found on both DNA strands and were confirmed

in a separate PCR. Genes and proteins are described according to

HGVS nomenclature. A variant was considered a mutation if it

had a minor allele frequency (MAF) < 1% in unaffected controls

(which includes ‘‘disease-only’’ variants with MAF ¼ 0% in con-

trols) and in the 1000 Genomes data set and if it altered a

conserved amino acid or/and was predicted to cause loss of func-

tion by at least one prediction program (PolyPhen-2,43 SIFT,44

PMut,45 or Mutation Taster46 for missense variants and

NNsplice47 for splice-site variants). When a mutation was shown

to impact protein function in in vitro studies, it was considered

‘‘functional.’’

Candidate-Gene Prioritization by Interactome-Based

Affiliation Scoring
We applied a bioinformatrics method to discover and/or prioritize

CHH candidate genes. The algorithm determines whether the

interaction between a candidate protein (Cp) and a set of pheno-

type-causing proteins (PCPs) involved in a phenotype (F) is signif-

icant, contingent on the pattern of interactions observed between

PCPs in a cross-validation step. A series of permutation procedures

are used for ensuring that the interaction data and results are not

confounded by biases or errors in the interactome data. If the
013



Table 1. CHH Candidate Genes Associated with the FGF8 Network

Gene
RefSeq
Transcript

Chromosomal
Location

Protein
Size (aa)

Rationale for Selection Expression in Micea

Mouse
Knockout
Phenotype

Human
Disease References

FGF8
Synexpression
Member

Homology
to FGF8

Olfactory
Placode
(E9.5–E11.5)

Hypothalamus
(Adult)

FGF17 NM_003867.2 8p21 216 � þ þ þ medial cerebellar
defects, frontal
cortex anomalies

KS, nIHH this study, Bachler and Neubüser,19

Cholfin and Rubenstein,20

Topp et al.,21 and Xu et al.22

FGF18 NM_003862.2 5q34 207 � þ þ � craniofacial
defects, abnormal
limb development

� Bachler and Neubüser,19

Liu et al.,23 and
Ohbayashi et al.24

IL17RD NM_017563.3 3p14.3 739 þ � þ þ hearing defect,
cerebellum
anomalies

KS this study, Fürthauer et al.,16

Tsang et al.,18 and Abraira et al.25

SPRY2 NM_005842.2 13q31.1 315 þ � þ þ craniofacial
defects, hearing
defects

� Fürthauer et al.,16 Mailleux et al.,26

de Maximy et al.,27 and Shim et al.28

SPRY4 NM_030964.3 5q31.3 322 þ � þ þ craniofacial
defects, abnormal
limb development

KS, nIHH this study, Fürthauer et al.,16

de Maximy et al.,27

Shim et al.,28 Taniguchi et al.,29

and Leeksma et al.30

DUSP6 NM_001946.2 12q22–q23 381 þ � þ þ craniofacial defects,
hearing defects

KS, nIHH this study, Dickinson et al.,31

Li et al.,32 and Vieira and
Martinez33

FLRT3 NM_198391.2 20p11 649 þ � þ þ abnormal neural tube KS this study, Böttcher et al.,34

Maretto et al.,35 and
Robinson et al.36

Abbreviations are as follows: nIHH, normosmic idiopathic hypogonadotropic hypogonadism.
aAllen Brain Atlas and Brain Gene Expression Map databases.
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Figure1. FGF-Network-AssociatedGenes
Harbor Mutations in CHH Individuals
(A) A simplified schematic of the FGF
pathway includes frequencies of mutations
identified in CHH individuals. KAL1
and FLRT3, encoding enhancers of FGF
signaling, are shown in green; IL17RD,
DUSP6, and SPRY4, encoding inhibitors,
are in red; HS6ST1, encoding the HS-modi-
fying enzyme, is in blue; FGF8 and FGF17,
encoding ligands, are in yellow; and
FGFR1, encoding the receptor FGFR1, is
in gray.
(B) Number of nIHH and KS individuals
with mutations in each gene.
interaction between a Cp and the PCPs is significant, a Cp is deter-

mined to be associated with the F on the basis of its interactome;

hence, we named the method interactome-based affiliation

scoring (IBAS). Interactome data come from a well-established hu-

man protein interaction network (InWeb) of ~430,000 protein-

protein interactions among 12,507 human proteins (InWeb48–50).

In this work, the PCPs are 14 proteins encoded by genes known

to be involved in GnRH deficiency: GNRH1, GNRHR, PROK2,

PROKR2, KAL1, FGF8, FGFR1, TAC3, TACR3, KISS1, KISS1R,

HS6ST1, CHD7 (chromodomain helicase DNA binding protein

[MIM 608892]), and PCSK1 (proprotein convertase subtilisin/

kexin type 1 [MIM 162150]). First, IBAS was trained, parameter

optimized, and validated on this set of known PCPs for the iden-

tification of the optimal set of parameters that could predict the

PCPs among random proteins. In a standard leave-one-out cross-

validation, the PCPs predicted each other with an area under the

receiver-operating-characteristic curve of 0.8 (p< 0.002with a per-

mutation test). This allowed all candidates (i.e., 12,493 proteins

covered by interaction data, excluding PCPs 1–14 in InWeb) to

be scored and ranked, and permutation tests were used for deter-

mining the significance of the observed scores. IBAS will be pre-

sented in a separate paper in fuller detail, including a discussion

of confounding factors, permutation strategies, and applications

to data types, such as next-generation sequencing (K. Lage, unpub-

lished data).

Functional Analyses of IL17RD Mutations
The ability of altered IL17RD proteins to inhibit FGF8 signaling

was assessed in human embryonic kidney (HEK) 293 cells. The

long form of human IL17RD-encoding cDNA (RefSeq accession

number NM_017563) was subcloned into vector pcDNA3.1(þ)

(Invitrogen, Carslbad, CA, USA), and altered proteins were gener-

ated by site-directed mutagenesis. HEK293 cells were transiently

transfected in 24-well plates at 40% confluency with 5 ng wild-

type (WT) FGFR1c and 20 ng WT or altered IL17RD together

with 5 ng AP-1 luciferase reporter (Stratagene, La Jolla, CA) and

170 ng empty vector (EV) with the use of FuGene6 reagent (Roche

Diagnostics). AP-1 is activated by the mitogen-activated protein

kinase (MAPK) downstream of FGFR1.51 We avoided using consti-

tuvely active internal control reporters (such as pRL-TK or pRL-

SV40) to correct for variations in transfection efficiency because

they are responsive to FGFs.52 Instead, experiments were per-

formed in quadruplicate and repeated five times. After serum

starvation, cells were treated with 0.2 nM FGF8b for 16 hr in

serum-free medium. Data were normalized to the FGF8-treated

EV response, and the mean values from five independent experi-
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ments were compared between each altered and WT protein

with a Student’s t test. Data are presented as the mean 5 SEM.

Protein Expression and Glycosylation Analysis

To evaluate the potential effect of the mutations on IL17RD syn-

thesis and folding, we assayed total-protein expression and glyco-

sylation as previously described52 with minor modifications. In

brief, HEK293T cells were transiently transfected with 50 ng of

C-terminal HA-tagged WT or mutated IL17RD-encoding cDNA

and processed as reported. For immunoblot analysis, we used an

HA primary antibody (1:2,000; Sigma-Aldrich, Saint Louis, MO,

USA) and a rabbit anti-mouse horseradish-peroxidase-conjugated

secondary antibody (1:20,000, Invitrogen). Endoglycosidase ex-

periments were repeated three times, and protein expression and

maturation levels were compared between each altered and WT

protein with a Student’s t test. Data are presented as the mean 5

SEM.

Cell-Surface Expression

Expression of WT or altered IL17RD at the cell surface was quanti-

fied with an antibody-binding assay as previously described52 with

minor modifications. In brief, COS-7 cells were transiently trans-

fected with 125 ng of N-terminal Flag-tagged WT or altered

IL17RD. Cells were incubated with Flag antibody (1:1,000) and

[125I]-rabbit anti-mouse IgG (300,000 cpm/well; Perkin Elmer,

Whaltham, MA, USA) and processed as previously reported.52 Ex-

periments were performed in quadruplicate and repeated four

times. Specific cell-surface expression of altered IL17RD proteins

was compared to that of the WT with a Student’s t test. Data are

presented as the mean 5 SEM.

Functional Analyses of FGF17 Mutations
Expression and Purification of WT and Altered FGF17 Ligands

Bacterially expressed WT FGF17 and p.Ile108Thr, p.Arg177His,

and p.Asn187Ser altered FGF17 were refolded in vitro and purified

by heparin affinity chromatography; size-exclusion chromatog-

raphy was subseqntly performed at 4�C according to a published

protocol.5 The purification yield of the p.Ile108Thr altered protein

was significantly less than that of the WT as a result of its precip-

itation during refolding and purification; this is in agreement with

the prediction that the p.Ile108Thr substitution destabilizes the

b-trefoil core of FGF17.

Surface-Plasmon-Resonance Spectroscopy

Physical interactions between the ligand-binding region (D2-D3

fragment) of human FGFR1c and WT or p.Arg177His altered

FGF17 were analyzed by surface-plasmon-resonance (SPR) spec-

troscopywith a BIAcore 2000 system (GEHealthcare) as previously

described.37 WT FGF17, p.Arg177His altered FGF17, and FHF1b
013



(negative control) were immobilized onto separate flow channels

of a research-grade CM5 biosensor chip (GE Healthcare) with the

use of an amine coupling kit. In brief, carboxymethyl groups of

the CM5 chip were activated by injection of 35 ml of a freshly pre-

pared mixture of 0.05 M N-hydroxysuccinimide and 0.2 M

N-ethyl-N-(dimethyaminopropyl) carbodiimide at a 5 ml/min

flow rate. Thereafter, 5 mg/ml solutions of WT and p.Arg177His

altered FGF17 or FHF1b in HBS-EP buffer (0.01 M HEPES, pH 7.4,

150 mM NaCl, 3 mM EDTA, 0.005% Surfactant P20) were passed

over separate channels of the activated chip until 2,100 response

units of WT or p.Arg177His altered FGF17 or 1,200 response units

of FHF1b were immobilized. Unreacted sites on the chip surface

were then blocked by injection of 35 ml of 1 M solution of ethanol-

amine. Increasing concentrations (100 nM to 3.2 mM) of the ana-

lyte (D2-D3 fragment of FGFR1c) were prepared in HBS-EP buffer

and were passed over the channels containing the immobilized li-

gands at 50 ml/min, and the association phase of FGF17-FGFR1c

interaction was monitored for 180 s. Thereafter, HBS-EP buffer

was passed over the chip for 180 s for observation of the dissocia-

tion phase. Between analyte injections, the sensor surface was

regenerated by 35 ml of 2.5 M NaCl in 5 mM HEPES (pH 7.5). Sen-

sorgrams were processed in BIAevaluation software v.4.1.1.

Cell-Based Assays

FGF17-stimulated signaling activity was assessed in L6 myoblast

cells as previously described.5,53 In short, cells were transiently

transfected with WT or altered FGFR1c expression vector in com-

bination with the osteocalcin-FGF-response-element luciferase re-

porter. Cells were treated with increasing doses of WT or altered

FGF17 and assayed for luciferase activity as described. The data

were plotted and fitted with four-parameter sigmoidal dose-

response curves with Prism software (version 5; GraphPad). Trans-

fection experiments were performed in triplicate and repeated

three times. Individual experiments were expressed as a percent-

age of theWT, and themeanmaximal activity from three indepen-

dent experiments was compared to that of the WT by a Student’s

t test. Data are presented as the mean 5 SEM.
Mouse Studies
Mice were housed and handled in accordance with the Institu-

tional Animal Care and Use Committee of the University of Colo-

rado at Boulder. Mice homozygous for a hypomorphic Fgf8 allele54

and WT controls were obtained from the breeding of heterozy-

gotes. For double GnRH and IL17RD immunohistochemistry

(IHC), embryonic day (E) 10.5–E12.5 embryos were removed and

fixed by immersion in 4% paraformaldehyde for 6 hr, cryopro-

tected in 30% sucrose, and cut on a cryostat. Thaw-mount sections

(20 mm) were collected and processed for IHC with rabbit anti-

GnRH antiserum LR5 (gift from R. Benoit, Montreal General

Hospital) followed by goat anti-Il17rd antiserum (R&D Systems,

Minneapolis, MN, USA). Secondary antibodies conjugated with

different fluorophores were used for fluorescence labeling. For sin-

gle GnRH IHC, E13.5 embryos and postnatal day (P) 0 brains were

fixed, cryoprotected and sectioned as above, and processed as

described.55 Fgf17 whole-mount RNA in situ hybridization (WM-

ISH) was performed on Fgf8 hypomorphic and WT mice as

described56 with a 679 nt digoxigenin-labeled Fgf17 antisense ri-

boprobe.
Assessment of Oligogenicity
In the same individual, the simultaneous presence of mutations in

different disease-associated genes (oligogenicity) was evaluated for
The Am
all subjects of European descent (350 CHH individuals and 155

controls) as described previously.39 Each subject was scored as to

the total number of alleles harboring mutations. In subjects with

more than a single allele with such mutations (biallelic or trial-

lelic), it was further noted whether these mutations were on alleles

of the same or different genes (monogenic or oligogenic, respec-

tively) by the sequencing of individual alleles after the cloning

of PCR amplicons encompassing themutations in the pTOPO vec-

tor (Invitrogen). Oligogenicity was compared between CHH indi-

viduals and controls by a Fisher’s test.
Results

FGF17, IL17RD, DUSP6, SPRY4, and FLRT3 Harbor

Mutations in CHH Individuals

We sought mutations by Sanger sequencing in genes

belonging to the FGF8 subfamily (FGF17 and FGF18) and

the FGF8 synexpression group (IL17RD, DUSP6, SPRY2,

SPRY4, and FLRT3) among 386 CHH probands (199 KS

and 187 nIHH) and 155 controls. This functional candi-

date-gene approach was fruitful in yielding mutations

among CHH probands in five of seven genes screened,

and each individual gene contributed to a small percentage

of cases (1%–4%) (Figure 1A and Table S1, available on-

line). The genotypes and phenotypes of the CHH probands

with mutations in FGF17, IL17RD, DUSP6, SPRY4, and

FLRT3 are summarized in Table 2; individuals carrying

functionally characterized mutations in FGF17 or IL17RD

are presented in more detail below. Taking into account

the previously described CHH-associated mutated genes

that also belong to the FGF8 module (FGFR1, FGF8,

KAL1, and HS6ST1) (Tables S1 and S2), 23% (91/386) of

CHH probands harbored mutations in at least one gene

associated with the FGF network; 74% (67/91) of these

had KS (Figure 1B).
IBAS Identifies IL17RD and FGF17 as the Top CHH

Candidate Genes

A bioinformatics method (IBAS) was independently uti-

lized for identifying and prioritizing candidate CHH

genes. The protein-protein interactome-based algorithm

trained on the set of proteins encoded by the genes

known to be mutated in CHH identified 35 proteins

with a posterior probability [PP] score > 0.32 (Figure 2

and Table S5). We estimated the empirical probability of

observing a PP R 0.32 by ranking all 12,507 proteins in

InWeb by using 500 random models to obtain a null

distribution of random PPs; this indicated that a PP R

0.32 is highly significant at p < 1/500 ¼ 0.002. In a com-

parison between the ranked list and the sequencing re-

sults, it was notable that IL17RD had the highest PP

and that FGF17 had the second-highest PP; in constrast,

DUSP6, SPRY4, and FLRT3 were not among the top 35

proteins. Therefore, IL17RD and FGF17 were selected

among the five mutation-harboring genes for functional

characterization of the mutants and further experimental

validation.
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Table 2. Genotypes and Phenotypes of 30 CHH Probands with FGF8-Network-Associated Gene Mutations Identified Herein

Family
Proband
Dx Sex Inheritance Puberty

Hearing
Loss

Abnormal
Dentition

Low
Bone Mass Gene(s)

Nucleotide
Change(s)

Amino acid
Change(s)

1 KS male S A � � � IL17RD c.392A>C p.Lys131Thr

2 KS male F P � þ � IL17RD c.392A>C p.Lys131Thr

3 KS female S A þ � þ IL17RD c.485A>G p.Lys162Arg

4 KS female S A þ � � IL17RD c.916C>Ta p.Pro306Ser

5 KS female F A þ þ þ IL17RD c.1136A>G p.Tyr379Cys

FGFR1 c.1042G>A p.Gly348Arg

6 KS male F A þ � þ IL17RD c.1403C>T p.Ser468Leu

7 KS male F A þ þ � IL17RD c.1730C>Aa p.Pro577Gln

8 KS male F A þ � � IL17RD c.2204C>T p.Ala735Val

KISS1R c.581C>A p.Ala194Asp

9 KS female F A � � þ FGF17 c.323T>C p.Ile108Thr

FLRT3 c.290A>G p.Glu97Gly

c.431G>Ta p.Ser144Ile

HS6ST1 c.917G>Aa p.Arg306Trp

FGFR1 c.749G>A p.Arg250Gln

10 nIHH male S A � � þ FGF17 c.530G>A p.Arg177His

11 KS male S A � � � FGF17 c.560A>G p.Asn187Ser

12 nIHH female F A � þ � DUSP6 c.229T>A p.Phe77Ile

13 KS male F A � þ � DUSP6 c.545C>T p.Ser182Phe

FGFR1 c.2075A>G p.Glu692Gly

14 KS male F A � � � DUSP6 c.566A>G p.Asn189Ser

15 KS female S A � � þ DUSP6 c.566A>G p.Asn189Ser

SPRY4 c.722C>A p.Ser241Tyr

16 KS female S A þ � þ DUSP6 c.1037C>T p.Thr346Met

SPRY4 c.722C>A p.Ser241Tyr

17 nIHH male S NA � � � SPRY4 c.46G>A p.Val16Ile

18 KS male S A þ � � SPRY4 c.299C>T p.Thr100Met

19 nIHH male F P � � � SPRY4 c.313G>A p.Asp105Asn

20 KS male S A � � � SPRY4 c.530A>G p.Lys177Arg

21 KS male S A � þ � SPRY4 c.530A>G p.Lys177Arg

22 KS male S A � � � SPRY4 c.530A>G p.Lys177Arg

23 KS male F A þ � � SPRY4 c.530A>G p.Lys177Arg

24 KS male S A � � � SPRY4 c.626G>A p.Cys209Tyr

25 KS male S A � � � SPRY4 c.722C>A p.Ser241Tyr

FGFR1 c.1447C>A p.Pro483Thr

26 nIHH female F A � þ þ SPRY4 c.722C>A p.Ser241Tyr

27 nIHH male S A � � þ SPRY4 c.841G>A p.Val281Met

28 nIHH female S P � � � SPRY4 c.910G>A p.Val304Ile

(Continued on next page)
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Table 2. Continued

Family
Proband
Dx Sex Inheritance Puberty

Hearing
Loss

Abnormal
Dentition

Low
Bone Mass Gene(s)

Nucleotide
Change(s)

Amino acid
Change(s)

29 KS female F A þ � þ FLRT3 c.205C>A p.Gln69Lys

FGFR1 c.2008G>A p.Glu670Lys

30 KS male F P � � � FLRT3 c.1016A>G p.Lys339Arg

Abnormal dentition includes abnormal development of teeth or crowded, extra, or missing teeth. Low bone mass includes osteopenia, osteoporosis, or fractures.
Abbreviations are as follows: Dx, diagnosis; S, sporadic; F, familial; P, partial; A, absent (absent puberty is defined as testicular volume % 3 ml or primary amen-
orrhea at presentation); and NA, not assessed.
aHomozygous mutation.
Mutations in IL17RD Are Associated with KS and a

High Frequency of Hearing Loss

Clinical data on the eight unrelated CHH probands

harboring missense heterozygous and homozygous

IL17RD mutations are summarized in Table 2 and

Figure 3B. Notably, all have KS; 7/8 have absent puberty,

and 6/8 exhibit congenital hearing loss, which is unilateral

in most (5/8). In fact, the two probands without hearing

loss (II-1 in F1 and II-2 in F2) carry the same c.392A>C

(p.Lys131Thr) mutation (Figure 3B). In two pedigrees

with hearing loss, the probands (II-4 in F4 and II-2 in F7)

carry homozygous IL17RD mutations; the parents, who

are known or assumed to carry one mutant allele, display

neither hearing loss nor hypogonadism (Figure 3B). In

two other pedigrees, the probands (II-2 in F5 and II-3 in

F8), who are the only family members with hearing loss,

demonstrate apparently oligogenic inheritance: a hetero-

zygous IL17RD mutation plus a heterozygous FGFR1 or

KISS1R mutation. Pedigree F5 indicates that the heterozy-

gous IL17RD mutation is insufficient to cause hearing

loss, given that the proband’s mother (I-2), who carries

the IL17RD, but not the FGFR1, mutant, has normal hear-

ing. Lastly, hearing loss does not cosegregate with the

IL17RD mutation in pedigree F6, given that the proband’s

fraternal twin (II-4) has hearing loss without the mutation

and their mother (I-2) carries the mutation but has normal

hearing (Figure 3B). Collectively, these data indicate that

IL17RD mutations are strongly associated with KS and

hearing loss; however, one allelic defect is most likely not

sufficient, meaning that additional affected alleles in the

same and/or other genes must be present to create the

phenotype of KS with hearing loss.

Functional Characterization of the CHH-Associated

IL17RD Mutations

All IL17RD mutations were predicted to be pathogenic in

three out of four prediction programs; the only exception

was c.485A>G (p.Lys162Arg), which was predicted to

cause loss of function by only one program (Table S1).

Because IL17RD is an inhibitor of FGF signaling

(Figure 1A), loss of IL17RD function is expected to lead

to higher FGF-pathway activity. The functional effect of

the identified mutations (Figure 3A) on FGF signaling

was tested in a cell-based reporter-gene assay. Cells express-
The Am
ingWT FGFR1c alone elicited a 3-fold increase in the activ-

ity of the AP-1 luciferase reporter when treated with FGF8b

(Figure 3C), whereas, similarly to untreated cells, cells co-

expressing WT IL17RD exhibited markedly lower activity

(70% inhibition). For a negative control, we employed a

truncated IL17RD form (D326) that lacks the entire intra-

cellular domain57 and fails to inhibit FGF8 downstream

signaling. The p.Lys131Thr, p.Pro306Ser, and p.Ser468Leu

altered IL17RD proteins inhibited FGF8 signaling to a

significantly lesser degree than did WT IL17RD (89%,

67%, and 32% relative to WT, respectively; p < 0.05)

(Figure 3C), indicating loss of function; the p.Tyr379Cys

and p.Pro577Gln altered proteins also demonstated

reduced inhibitory activity (75% and 82% relative to WT,

respectively), which approached significance (p ¼ 0.06)

(Figure 3C). The p.Lys162Arg and p.Ala735Val altered pro-

teins behaved similarly to WT IL17RD in this assay

(Figure 3C). Overall expression levels of the altered pro-

teins were similar to that of the WT (Figures S2A and

S2B). The mature IL17RD fraction of p.Lys131Thr and

p.Lys162Arg was increased compared to that of the WT

(122% and 105%, respectively; p < 0.05) (Figure S2C),

whereas that of p.Ser468Leu was decreased (80% relative

to WT; p < 0.05). The p.Lys131Thr, p.Lys162Arg, and

p.Ala735Val altered proteins all exhibited significantly

decreased cell-surface expression than did the WT (~15%,

p < 0.05), whereas that of the p.Ser468Leu altered protein

was ~50% of that of the WT (p < 0.05) (Figure S2D). The

other altered proteins (p.Pro306Ser, p.Tyr379Cys, and

p.Pro577Gln) had cell-surface expression similar to that

of the WT (Figure S2D).

FGF8 Is Required for IL17RD Localization in the

Olfactory Placode

To link IL17RD to GnRH neuron fate specification and

migration, we investigated the localization patterns of

IL17RD and GnRH in the nasal region of mouse embryos

at E10.5–E12.5. IL17RD immunoreactivity was highest in

the E10.5 epithelium of the developing olfactory placode,

where FGF8 is present, whereas it was much milder in the

mesenchyme (Figure 3D, left panel).19 IL17RD localized to

the perinuclear compartment of the cell (Figure 3D, right

panel).58 At E12.5, IL17RD reactivity was no longer detect-

able in the olfactory epithelium (Figure 3E, lower inset) but
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Figure 2. An Integrated FGF Signaling Network of Protein-Protein Interactions and Gene-Synexpression Data Implicated in Human
Reproduction
Proteins identified by IBAS to significantly interact with FGF8 and FGFR1 are shown in this network. On the basis of high-quality pro-
tein-protein interaction data from InWeb, 17 proteins have genome-wide-significant IBAS scores as a result of their interaction patterns
with the FGFR1-FGF8 receptor-ligand pair. Moreover, five proteins (FGF17, IL17RD, DUSP6, SPRY4, and FLRT3) are synexpressed with
FGF8 and FGFR1 during development. IL17RD and FGF17 are the top-scoring candidates among 12,507 proteins in InWeb.
was detected in the septal area and in the midbrain-hind-

brain junction (Figure 3E). IL17RD was undetectable in

the brain of Fgf8 hypomorphic embryos.We also evaluated

localization patterns of IL17RD and GnRH at E11.5, when

GnRH neurons begin migrating from the olfactory placode

to the developing olfactory bulb. In these mice, IL17RD

levels were dramatically decreased overall relative to

E10.5 mice, yet IL17RD was present in a few GnRH neu-

rons (Figure S2E). Cumulatively, these studies suggest

that IL17RD might have a role in the early stages of

GnRH neuron fate specification.
732 The American Journal of Human Genetics 92, 725–743, May 2, 2
A KS-Associated FGFR1 Mutation Implicates FGF17 as

a Ligand Involved in GnRH Biology

FGF17 shares 61% overall sequence identity with FGF8b,

signals through FGFR1c, and exhibits the same receptor-

binding-specificity profile as FGF8b.37 The association be-

tween FGF8bmutations and KS was based on the discovery

of a heterozygous FGFR1c mutation, c.1025T>C

(p.Leu342Ser), in a KS individual in whom FGF8b binding

was abolished in transfected cells.53 The p.Leu342Ser

altered FGFR1c maps to a hydrophobic groove that is

conserved in the D3 of FGFR1c, FGFR2c, FGFR3c, and
013



Figure 3. IL17RD Mutations in Individuals with CHH
(A) Schematic of IL17RD domain structure and location of alterations. Abbreviations are as follows: SP, signal peptide; Ig-like, immuno-
globulin-like; TM, transmembrane; SEFIR, SEF/IL-17R domain; and *, homozygous.
(B) Pedigrees of KS probands harboringmutations in IL17RD. ‘‘F’’ indicates family number. The proband of each family is indicated by an
arrow and ‘‘P.’’ The available genotypes are indicated below each individual. Numbers within symbols denote the number of additional
siblings. Squares depict males, and circles depict females.
(C) Transcription reporter assay of WT and altered IL17RD. HEK293 cells were transiently cotransfected with FGFR1c-encoding cDNA
and WT or altered IL17RD together with AP-1 luciferase reporter and then stimulated with FGF8. Plotted are the means 5 SEM of
five independent experiments run in quadruplet; the results have been normalized to EV-treated cells (100%). The p.Lys131Thr,
p.Pro306Ser, and p.Ser468Leu altered proteins showed loss of function in this assay. The p.Tyr379Cys and p.Pro577Gln altered proteins
also demonstrated reduced inhibition activity, which was borderline significant (p¼ 0.06). p.Lys162Arg and p.Ala735Val were similar to
the WT in this assay. D326, a truncated IL17RD lacking the intracellular domain (which is the domain that interacts with FGFR1)57

served as a negative control. Abbreviations are as follows: a, p < 0.05; b, p ¼ 0.06; and ns, not significant.
(D)Widefield epifluorescence images of IL17RD immunoreactivity (red) and nuclearmarker DAPI (blue) in the nasal region of E10.5mice
(sagittal view) show IL17RD localization in the epithelium of the olfactory placode (left panel). Scale bars represent 100 mm (left panel)
and 10 mm (right panel). The area in the white box is enlarged in the right panel. Abbreviations are as follows: MES, mesenchyme; Opd,
olfactory placode (dorsal); Opv, olfactory placode (ventral); c, caudal; d, dorsal; r, rostral; and v, ventral; and Sef, similar expression as FGF
(former name of IL17RD).
(E)Widefield epifluorescence images of IL17RD immunoreactivity (red) and nuclear marker DAPI (blue) in E12.5mouse ventral forebrain
(sagittal view) of WT (left) and homozygous Fgf8 hypomorphic (right) embryos illustrate the complete absence of IL17RD in Fgf8 hypo-
morphic embryos. IL17RD immunoreactivity was high in the septal area and in the midbrain-hindbrain junction of the WT embryo
(upper inset) and nearly undetectable in the olfactory epithelium, where migrating GnRH neurons (green) in the developing nasal re-
gions are localized (lower inset). Scale bars represent 100 mm for all images except the insets, in which they represent 50 mm. Abbrevi-
ations are as follows: cb, cerebellum; GE, ganglionic eminence; SA, septal area; and oe, olfactory epithelium; and Sef, similar expression
as FGF (former name of IL17RD).
FGFR4 and is specifically contacted by FGF8 subfamily

members. Given the homology between FGF17 and

FGF8b, we demonstrate that p.Leu342Ser also abolishes
The Am
FGF17-stimulated signaling through FGFR1c (Figure 4A).

These data suggest that FGF17 might be implicated in

GnRH neuron biology as an alternative ligand to FGF8b.
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Figure 4. FGF17 Mutations in Individuals with CHH
(A) In cells transfected with FGFR1 and a FGF luciferase reporter, increasing doses of WT FGF17 produce a typical sigmoidal dose-
response curve (blue), which is abolished by the FGFR1c p.Leu342Ser alteration.
(B) Schematic of FGF17 structural domains and location of the identified alterations. The following abbreviations is used: SP, signal
peptide.
(C) The interface between FGF8b (orange) and D2 and D2-D3 linker (green) of FGFR2c as observed in the FGF8b-FGFR2c crystal structure
(Protein Data Bank ID 2FDB37) depicts the hydrogen bond between Arg177 (R177) of FGF8b and Asp247 (D247) in D2 of FGFR2c and the
hydrogen bonds between FGF8b and FGFR Arg251 (R251).
(D) The hydrophobic interior of the b-trefoil core of FGF8b illustrates the hydrophobic interactions among Ile108 (I108), Met151
(M151), Val65 (V65), Val67 (V67), Val99 (V99) (Ile99, I99 in FGF17), Leu86 (L86), Ile73 (I73), and Phe129 (F129).
(E) SPR analysis of the binding of FGF17WT (orange) and FGF17p.Arg177His (green) to the FGFR1c ectodomain. FGF17WT and
FGF17p.Arg177His were immobilized onto CM5 sensor chips, and varying concentrations of FGFR1c ectodomain were passed over. The
full dose-response curves for FGF17WT-FGFR1c and FGF17p.Arg177His-FGFR1c binding were generated. For comparison, an overlay of
the sensorgrams obtained upon injections of 800 nM solutions of FGFR1c over each ligand is shown.
(F) FGF luciferase-reporter assay showing that the p.Arg177His (green) and p.Ile108Thr (red) FGF17 alterations impair the ligand’s bio-
logical activity. Abbreviations are as follows: ns, not significant; and a, p < 0.05.
(G) The FGFR1c p.Arg250Gln and FGF17 p.Ile108Thr loss-of-function alterations act in additive fashion. Luciferase activity was plotted
as the mean 5 SEM of three independent experiments performed in triplicate (data are normalized to the WT), and a dose-response
curve was fitted as described in Subjects and Methods. The following abbreviation is used: a, p < 0.05.
(H) Fgf17 is expressed in the olfactory placode in a Fgf8-dependent manner. Fgf17 WM-ISH of E10.5 WT (panels 1 and 3) and Fgf8 ho-
mozygous hypomorphic (Fgf8�/�; panels 2 and 4) embryos is shown. A 679 nt digoxigenin-labeled Fgf17 riboprobe was used. Panels 1
and 2 show sagittal views of embryonic heads; scale bars represent 500mm. Panels 3 and 4 show ventral views of embryonic heads; scale
bars represent 250 mm. Arrows are used as follows: solid arrows, midbrain-hindbrain junction; dotted arrows, commissural plate; and
arrowheads, medial olfactory placode (where GnRH neurons emerge).
Functional Characterization of the CHH-Associated

FGF17 Mutations

Three unrelated CHH probands harbor heterozygous mu-

tations in FGF17 (Figures 4B and 5A), and their clinical
734 The American Journal of Human Genetics 92, 725–743, May 2, 2
data are summarized in Table 2. Given the strong sequence

identity between FGF8b and FGF17 and their similar re-

ceptor-binding-specificity profiles, we employed the previ-

ously established FGF8b-FGFR2c structure (Protein Data
013



Figure 5. FGF-Network-Associated Genes Contribute to the Oligogenic Architecture of CHH
(A) Pedigree of CHH-affected family with oligogenic inheritance. The proband is indicated by an arrow and ‘‘P.’’ The available genotypes
are indicated below each individual. Numbers within symbols denote the number of additional siblings. Squares depict males, and
circles depict females.
(B) Percentages of individuals with monoallelic, biallelic, and oligogenic mutations in FGF-network-associated genes and/or other genes
known to be mutated in CHH.
(C) Number of alleles with mutations in CHH individuals and controls.
Bank ID 2FDB)37 to model the mutations’ impact. FGF17

Arg177 is conserved in FGF8 (Arg177) (Figure S1); in the

FGF8b-FGFR2c structure, it forms a hydrogen bond with

Asp247 in D2 of FGFR2c. Moreover, the D2 domains of

FGFR2c and FGFR1c share strong sequence homology,

and FGFR2c Asp247 is conserved in FGFR1c. On the basis

of these structural data, it is predicted that the

p.Arg177His altered FGF17 cannot form this hydrogen

bond and thus has reduced binding to FGFR1c

(Figure 4C). FGF17 Ile108 is also conserved in FGF8b

(Figure S1), and in the FGF8b-FGFR2c structure, its side

chain makes hydrophobic interactions with Met151,

Val65, Val67, Val99 (Ile99 in FGF17), Leu86, Ile73, and

Phe129 in the hydrophobic interior core. Hence, Ile108

is key for the stability of the b-trefoil core of FGF17 and

FGF8. The p.Ile108Thr substitution is predicted to weaken

these hydrophobic interactions in the FGF17 core region
The Am
and to thereby render the mutant ligand less thermally

stable and thus prone to unfolding (Figure 4D).

The individual harboring the FGF17 mutation, c.323T>C

(p.Ile108Thr), also carries FGFR1 c.749G>A

(p.Arg250Gln), as well as other mutations in genes

associated with the FGF8 network (described below).

Arg250 is located in the FGFR1c D2-D3 linker region,

which is invariably conserved among human FGFRs;

Arg250 is pivotal in FGF-FGFR binding affinity through

conserved hydrogen bonds with FGF ligands, including

FGF8. The p.Arg250Gln substitution is predicted to impair

the ability of FGFR1c to bind FGF17. On the other hand,

the p.Asn187Ser alteration maps to the C-terminal tail

of FGF17 and is predicted to have no impact on FGF17

function.

Consistent with the structural predictions, SPR data

showed that the p.Arg177His altered FGF17 exhibited
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Table 3. Mutations in 24 Oligogenic Cases among 350 CHH Probands of European Descent

Case Dx Sex
Number of
Mutations

Number of
Mutant
Alleles Gene

Nucleotide
Change

Amino Acid
Change

Mutation
Type Genotype

MAF in
Controls (%)

MAF in CHH
Individuals (%)

1 KS F 4 6 FGFR1 c.749G>A p.Arg250Gln missense heterozygous 0 0.4

FGF17 c.323T>C p.Ile108Thr missense heterozygous 0 0.1

FLRT3 c.290A>G p.Glu97Gly missense heterozygous 0 0.1

FLRT3 c.431G>T p.Ser144Ile missense homozygous 0 0.2

HS6ST1 c.916C>T p.Arg306Trp missense homozygous 0 0.2

2 nIHH F 3 3 FGFR1 c.716T>C p.Ile239Thr missense heterozygous 0 0.1

PROKR2 c.604A>G p.Ser202Gly missense heterozygous 0 0.1

GNRH1 c.91C>T p.Arg31Cys missense heterozygous 0 0.1

3 nIHH F 2 3 FGFR1 c.1409G>T p.Arg470Leu missense heterozygous 0 0.1

GNRHR c.317A>G p.Gln106Arg missense heterozygous 0.3 1.8

GNRHR c.785G>A p.Arg262Gln missense heterozygous 0 0.5

4 nIHH F 2 3 FGFR1 c.350A>G p.Asn117Ser missense heterozygous 0 0.1

GNRHR c.247C>G p.Leu83Val missense heterozygous 0 0.1

GNRHR c.317A>G p.Gln106Arg missense heterozygous 0.3 1.8

5 nIHH F 2 3 FGFR1 c.2165C>A p.Pro722His missense heterozygous 0 0.1

FGFR1 c.2172C>G p.Asn724Lys missense heterozygous 0 0.1

TACR3 c.857A>G p.Lys286Arg missense heterozygous 0.3 0.4

6 nIHH M 2 3 FGFR1 c.2302G>T p.Asp768Tyr missense heterozygous 0 0.1

FGF8 c.118T>C p.Phe40Leu missense homozygous 0 0.2

7 nIHH M 2 2 FGFR1 c.749G>A p.Arg250Gln missense heterozygous 0 0.4

FGF8 c.298A>G p.Lys100Glu missense heterozygous 0 0.1

8 nIHH M 2 2 FGFR1 c.1854G>T p.Lys618Asn missense heterozygous 0 0.1

GNRHR c.785G>A p.Arg262Gln missense heterozygous 0 0.5

9 nIHH F 2 2 FGFR1 c.682T>G p.Tyr228Asp missense heterozygous 0 0.1

KISS1R c.565G>A p.Ala189Thr missense heterozygous 0 0.1

10 KS M 2 2 FGFR1 c.1025T>C p.Leu342Ser missense heterozygous 0 0.1

NSMF c.1165-14_22del - splice site heterozygous 0 0.1

11 KS M 2 2 FGFR1 c.1864C>T p.Arg622* nonsense heterozygous 0 0.2

NSMF c.587G>A p.Arg196His missense heterozygous 0 0.1

12 KS M 2 2 FGFR1 c.1447C>A p.Pro483Thr missense heterozygous 0 0.1

SPRY4 c.722C>A p.Ser241Tyr missense heterozygous 0.6 0.5

13 KS F 2 2 FGFR1 c.1042G>A p.Gly348Arg missense heterozygous 0 0.1

IL17RD c.1136A>G p.Tyr379Cys missense heterozygous 0 0.1

14 KS F 2 2 FGFR1 c.2008G>A p.Glu670Lys missense heterozygous 0 0.1

FLRT3 c.205C>A p.Gln69Lys missense heterozygous 0 0.1

15 nIHH F 2 2 FGFR1 c.1553-2A>G - splice site heterozygous 0 0.1

KAL1 c.1759G>T p.Val587Leu missense heterozygous 0.4 0.2

16 KS M 2 2 FGFR1 c.2075A>G p.Glu692Gly missense heterozygous 0 0.1

DUSP6 c. 545C>T p.Ser182Phe missense heterozygous 0 0.1

(Continued on next page)
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Table 3. Continued

Case Dx Sex
Number of
Mutations

Number of
Mutant
Alleles Gene

Nucleotide
Change

Amino Acid
Change

Mutation
Type Genotype

MAF in
Controls (%)

MAF in CHH
Individuals (%)

17 KS F 2 2 FGFR1 c.1755C>A p.Tyr585* nonsense heterozygous 0 0.1

TACR3 c.1091G>A p.Arg364Gln missense heterozygous 0 0.1

18 KS F 2 2 DUSP6 c.566A>G p.Asn189Ser missense heterozygous 0 0.2

SPRY4 c.722C>A p.Ser241Tyr missense heterozygous 0.6 0.5

19 KS F 2 2 DUSP6 c.1037C>T p.Thr346Met missense heterozygous 0 0.1

SPRY4 c.722C>A p.Ser241Tyr missense heterozygous 0.6 0.5

20 nIHH F 2 2 SPRY4 c.722C>A p.Ser241Tyr missense heterozygous 0.6 0.5

TACR3 c.1345G>A p.Ala449Thr missense heterozygous 0.6 0.5

21 KS M 2 2 IL17RD c.2204C>T p.Ala735Val missense heterozygous 0 0.1

KISS1R c.581C>A p.Ala194Asp missense heterozygous 0 0.1

22 nIHH F 2 2 HS6ST1 c.1144C>T p.Arg382Trp missense heterozygous 0 0.2

TAC3 c.238C>A p.Arg80Ser missense heterozygous 0 0.1

23 KS M 2 2 KAL1 c.571C>T p.Arg191* nonsense hemizygous 0 0.2

TACR3 c.1345G>A p.Ala449Thr missense heterozygous 0.6 0.5

24 KS F 2 2 PROK2 c.70G>C p.Ala24Pro missense heterozygous 0 0.1

PROKR2 c.343G>A p.Val115Met missense heterozygous 0 0.1

Abbreviations are as follows: F, female; and M, male.
negligible binding to FGFR1c (Figure 4E). Moreover, the

p.Arg177His altered FGF17 had dramatically reduced abil-

ity to activate FGFR1c (Figure 4F); the p.Ile108Thr altered

FGF17 was also defective in FGFR1c activation, whereas

the p.Asn187Ser altered FGF17 was indistinguishable

from the WT (Figure 4F). Finally, the p.Arg250Gln altered

FGFR1c caused severe loss of function (Figure 4G). Because

the FGFR1c c.749G>A (p.Arg250Gln) and FGF17

c.323T>C (p.Ile108Thr) mutations co-occur in the same

individual, we exposed cells expressing the altered receptor

to the altered ligand; relative toWT FGF17, the p.Ile108Thr

FGF17 completely failed to activate the p.Arg250Gln

FGFR1c, indicating that these two loss-of-function substi-

tutions act in an additive fashion (Figure 4G).

FGF8 Is Required for Fgf17 Expression in the Olfactory

Placode

To link Fgf17 to GnRH biology, we examined its expression

pattern in the nasal cavity of mouse embryos through

WM-ISH at E10.5, when GnRH neuron fate specification

occurs. Fgf17 was robustly expressed in regions where

Fgf8 is known to be highly expressed: the commissural

plate (Figures 4H1 and 4H3), the midbrain-hindbrain junc-

tion (Figure 4H1), and the medial olfactory placode

(Figure 4H3), where GnRH neurons emerge.19 Importantly,

there was hardly any Fgf17 expression in Fgf8 hypomor-

phic mice (Figures 4H2 and 4H4), suggesting that Fgf17

should be considered a member of the Fgf8 synexpression

group.
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Mutations in FGF8-Network-Associated Genes

Contribute to Oligogenic CHH

To assess oligogenicity, we investigated a subset of individ-

uals comprising all European-descendent probands (n ¼
350/386) and controls (n ¼ 155/155) screened for the

nine genes associated with the FGF pathway. Seventeen

genes were analyzed (the nine genes encoding members

of the FGF network [Figure 1A] and eight others: PROKR2,

PROK2, KISS1R, GNRHR, GNRH1, TAC3R, TAC3, and

NSMF). We identified mutations in 35% of probands

(124/350) (Table S3). Nearly all mutations in the 17 genes

cause loss of function in vitro and/or are predicted in silico

to be deleterious (Table S1).39–41,59–62 Notably, 69% (86/

124) of these CHH probands harbor at least one mutation

within the genes encoding members of the FGF network

(Table S3), highlighting the major contribution of muta-

tions affecting this pathway to the genetic architecture of

CHH. Of the 124 probands harboring mutations, 14 carry

biallelic mutations in the same gene (i.e., 11% homozygos-

ity or compound heterozygosity) and 24 carry at least two

mutant alleles from different genes (i.e., 19% oligogenic-

ity; 95% confidence interval: 12%–26%) (Figures 5B and

5C and Tables 3 and S3). In 23/24 cases, the oligogenic in-

teractions include at least one gene associated with the FGF

network (Figure 5B and Table 3). Among the controls, 16%

(25/155) harbor missense mutations; each subject carries a

single heterozygous mutation (Table S4). Four mutations

(with MAF < 1% in controls) within genes encoding com-

ponents of the FGF network are also present in the CHH
erican Journal of Human Genetics 92, 725–743, May 2, 2013 737



cohort (Table S4): FGF8 c.77C>T (p.Pro26Leu), IL17RD

c.392A>C (p.Lys131Thr), KAL1 c.1759G>T (p.Val587Leu),

and SPRY4 c.722C>A (p.Ser241Tyr) (Table S4). Notably,

most CHH probands harboring a mutation present in the

control population also carry an additional gene defect.

This is consistent with the fact that oligogenicity was

found only in probands and never in controls (24/350

versus 0/155, p ¼ 0.0003; Figure 5C); biallelic mutations

(homozygous or compound heterozygous) were also

more frequent in probands than in controls (14/350 versus

1/155, p ¼ 0.04; Figure 5C).

The female KS individual (Table 3, case 1) is a notable

example of oligogenicity: she not only carries the FGF17

c.323T>C (p.Ile108Thr) loss-of-function mutation but

also harbors previously characterized mutations in FGFR1

(c.749G>A [p.Arg250Gln]; heterozygous) and HS6ST1

(c.916C>T [p.Arg360Trp]; homozygous),15 as well as muta-

tions in FLRT3, c.431G>T (p.Ser144Ile) (homozygous) and

c.290A>G (p.Glu96Gly) (heterozygous) (Figure 5A, X-2 in

family 9). She had primary amenorrhea (successfully

treated with pulsatile GnRH, resulting in ovulation), severe

osteoporosis (Z score¼�3) withmultiple fractures, surgery

for bilateral genu valgus, and severe obesity and developed

type 2 diabetes before 40 years of age. The proband is part

of a large French Canadian family (previously described in

great detail) with several loops of consanguinity and in

which 27% of family members exhibit CHH.63 Interest-

ingly, our genetic analysis revealed that all affected sub-

jects in this pedigree harbor a loss-of-function FGFR1

c.749G>A (p.Arg250Gln) mutation, as well as other muta-

tions in genes associated with the FGF network: each

affected CHH family member (IX-1, IX-6, X-2, and X-5 in

family 9) carries three to six mutant alleles among four

different FGF-network-associated genes (FGF17, FLRT3,

HS6ST1, and FGFR1), whereas asymptomatic family mem-

bers (IX-2, IX-3, IX-4, IX-5, IX-7, and X-4 in family 9) har-

bor zero to two mutant alleles. In another notable case of

oligogenicity, the KS proband (Figure 3B, F5 II-2) harbors

a loss-of-function heterozygous c.1136A>G (p.Tyr379Cys)

IL17RD mutation inherited from her anosmic mother (I-2

in F5). However, the female proband also harbors a de

novo heterozygous c.1042G>A (p.Gly348Arg) FGFR1 mu-

tation that is predicted to cause loss of function by all

four in silico prediction programs (Table S1). This combi-

nationmanifested in the proband with a severe phenotype

including KS with dental agenesis, hearing loss, osteopo-

rosis, and a complete absence of puberty.
Discussion

In this work, we identify mutations in five genes encoding

components of the FGF pathway (FGF17, IL17RD, SPRY4,

DUSP6, and FLRT3) in CHH individuals. All together, 27

mutations were found in 30 unrelated CHH probands,

and mutations in each gene accounted for 1%–4% of

CHH cases. Together with the other FGF-network-associ-
738 The American Journal of Human Genetics 92, 725–743, May 2, 2
ated genes previously known to be mutated in CHH

(FGFR1, FGF8, KAL1, and HS6ST1), 23% (90/386) of CHH

individuals have at least one mutation affecting the FGF

pathway, indicating a major contribution of this network

to GnRH ontogeny. The majority of probands display ol-

factory defects, consistent with the critical role of the

FGF8 synexpression group in early stages of GnRH neuron

development. Traditionally, the average success rate of

candidate-gene approaches in CHH is ~30%;3 70% of the

screened candidate genes associated with the expanded

FGF network had mutations. There were two orthogonal

components to the successful strategy: (1) focus on the

‘‘FGF8 synexpression group’’ and (2) utilization of a bioin-

formatics algorithm for gene prediction and prioritization.

Genes that are ‘‘synexpressed’’ with FGF8 share a similar

spatiotemporal expression with FGF8 during develop-

ment, and the proteins they encode specifically modulate

the efficiency of FGF8 signaling through FGFR1c

(Figure 1A).16–18 Alterations in the modulators (inhibitors

or activators) of FGF8 most likely disrupt the fine-tuning

of FGF8 signaling, leading to abnormal development of

GnRH neurons and the olfactory system. The mechanisms

by which altered FGF8 signaling impacts GnRH neuron

fate specification are not well understood, largely because

no marker for GnRH neuron progenitors is known. Still,

it is known that FGF8 is a potent cell-survival factor during

early neural development in the forebrain and the

midbrain-hindbrain boundary, as well as for migrating

neural crest and olfactory stem cells.64 Consistently, Fgf8-

conditional-knockout mice exhibit increased levels of

apoptosis in the developing olfactory epithelium (OE) be-

tween E10.5 and E12.5;65 thus, decreased FGF8 signaling

might lead to premature elimination of GnRH progenitor

cells. Recently, FGF8 was shown to maintain the gene-

expression signatures and proliferative identities of two

precursor classes in the OE: MEIS-positive cells (which

reside in the lateral OE) and SOX2- and ASCL1-positive

cells (which reside in the medial OE). Thus, decreased

FGF8 signaling might hamper progenitor cells from

becoming GnRH neurons.66

The second component to the strategy applied was an

unbiased approach to identifying high-quality candidate

genes by analyzing the interactome of proteins encoded

by genes known to be mutated in CHH independently of

the synexpression data. Among the entire proteome, the

IBAS algorithm awarded significant scores to a small set

of 36 proteins, among which IL17RD and FGF17 were

the top ranked. Although one might intuitively expect

that proteins related to FGFR1-FGF8 signaling would score

well in IBAS, such results were not observed for other

receptor-ligand pairs associated with CHH. In fact, the

FGF8-associated proteins were awarded high scores

because they have been shown to have high-quality, spe-

cific interactions with FGFR1 and/or FGF8. Because

FGFR1 has >300 annotated interaction partners in InWeb,

it was not itself awarded a significant IBAS score because

the likelihood of interacting directly with 1/14
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CHH-associated proteins (in this case, FGF8) given a total

of 300 annotated interaction partners is not significant.

Thus, the identification by IBAS of IL17RD and FGF17 as

the top two candidates, matching the results of the genetic

analysis, indicates that IBAS is a powerful methodology for

genome-scale candidate prioritization. IBAS, along with

many more details, will be made broadly available as a

community resource (K. Lage, unpublished data).

The top protein prioritized by IBAS (IL17RD) was

validated by the identification of homozygous and hetero-

zygous mutations in KS probands. IL17RD is a single trans-

membrane glycoprotein with sequence similarity to the

intracellular domain of the interleukin-17 receptor; it is

one of the major antagonists of FGF downstream signaling

in vivo16,18 and in vitro.57,58 The mechanisms by which

IL17RD inhibits FGF signaling are contentious because it

has been shown to act both at the level of the FGF recep-

tors (FGFR1 and FGFR2)18 and on downstream compo-

nents of the Ras-ERK1/2 pathway by capturing active

MEK and ERK complexes at the Golgi apparatus and inhib-

iting their dissociation.16,58 Close spatiotemporal interde-

pendence between FGF signaling and IL17RD expression

has been reported in various mammalian tissues.67 Here,

we document high IL17RD expression in the olfactory

epithelium at E10.5, coinciding with the timeframe of

GnRH neuronal fate specification, which is dependent on

FGF8. The coexpression of IL17RD with FGF8 in the olfac-

tory placode during embryogenesis suggests a potential

role in the early development of both GnRH and olfactory

neurons. Notably, most of the IL17RDmutations identified

were shown to cause loss of function; given that IL17RD is

an inhibitor, the mutations increase FGF8 signaling

in vitro. This might appear counterintuitive given that

CHH-associated loss-of-function mutations in FGF8,

FGFR1, KAL1, and HS6ST1 described thus far lead to

decreased FGF8 signaling. Nevertheless, Il17rd�/� mice

(which display increased FGF8 activity) and IL17RD-over-

expressing chickens (which display decreased FGF8 activ-

ity) both show defects in the cochlear nucleus and

dysfunction of the auditory brainstem.25 Moreover, com-

plete elimination or overexpression of FGF8 increased

apoptosis in olfactory progenitor cells, whereas a lesser

decrease in functional FGF8 expression resulted in cell sur-

vival, suggesting nonlinear dosage effects.68

All studied individuals with IL17RD mutations have KS,

and the fact that six out of eight (75%) have hearing loss

suggests a frequency much higher than the 6% reported

previously.69 It appears that either biallelic IL17RD muta-

tions or an additional mutation in another locus is needed

to cause KS or hearing loss. The hearing-loss phenotype is

consistent with the fact that IL17RD is a powerful inhibitor

of FGF8 signaling: acting through FGFR1c, FGF8 is a

morphogen for otic development in both chickens and

mice.7,70 In zebrafish, the injection of sef (also called

il17rd) mRNA into embryos produces a phenotype similar

to that of fgf8 deficiency, including a smaller otic vesicle.16

Further, Il17rd�/� mice or IL17RD-overexpressing chickens
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exhibit auditory brainstem defects.25 Thus, IL17RD ap-

pears to be critical not only for GnRH neuron ontogeny

but also for the normal development of the auditory sys-

tem by modulating FGF signaling. The present study was

not specifically designed to investigate the frequency of

IL17RD mutations among CHH individuals with hearing

loss; after the identification of IL17RD as a locus for CHH

with this particular subphenotype, a next logical step is

to screen a larger cohort of CHH individuals with hearing

loss for mutations in IL17RD. Moreover, because CHH is

usually only diagnosed at or after the age of puberty, it

would be interesting to test prepubertal individuals with

congenital hearing loss for this gene, especially those

with other clinical manifestations suggestive of KS (i.e.,

cryptorchidism, anosmia, skeletal defects, etc.).

The second-highest ranked gene was FGF17, which

emerged as the gene encoding the second-most critical

FGFR1c ligand for GnRH neuron ontogeny. This link is

based on (1) the decreased binding of FGF17 to the KS-

associated c.1025T>C (p.Leu342Ser) FGFR1c mutant, (2)

the identification of loss-of-function FGF17 mutations in

CHH individuals with severe associated skeletal anomalies,

and (3) the demonstration that Fgf17 is a member of the

Fgf8 synexpression group in the medial aspect of the olfac-

tory placode in E10.5 mice, where its expression requires

Fgf8. Mice lacking FGF17 have cerebellar defects and selec-

tive reduction in the size of the dorsal frontal cortex,

consistent with a role similar to that of FGF8 in patterning

the neocortical map. However, the olfactory bulbs seem

unaffected in FGF17-deficient mice; thus, FGF17 appears

to be a less powerful morphogen than FGF8.20 Similarly

to that of other FGF subfamilies, the expansion of the

FGF8 group has most likely been contributed to by gene-

duplication events throughout evolution. The high con-

servation of FGF17 suggests that, in addition to providing

functional redundancy with FGF8, it might have evolved

unique roles for each subfamily member. In this regard, it

is interesting that in adult zebrafish, Fgf8 signaling is

restricted to the periventricular area whereas Fgf17 is

widely expressed in the hypothalamus21 because this sug-

gests a different function for Fgf17, such as a potential role

in GnRH neuron survival in adulthood.

The mutations in DUSP6, SPRY4, and FLRT3 were not

functionally characterized in this study. These members

of the FGF8 synexpression module play pleitropic roles

in embryogenesis and adulthood. DUSP6 is a dual-speci-

ficity protein phosphatase, which dephosphorylates and

thereby inactivates MAP kinases.32 In rat PC12 cells,

DUSP6 reduces neurotransmitter release by decreasing

the expression of the L-type calcium channel cav1.2.71 In

mice, a Dusp6 mutant allele causes variably penetrant,

dominant postnatal lethality, skeletal dwarfism, premature

fusion of the cranial sutures (craniosynostosis), and hear-

ing loss.32 SPRY proteins antagonize FGF signaling by in-

hibiting the receptor-induced activation of the MAPK

pathway; SPRYs are positioned upstream of RAS activation

and impair the formation of active GTP-RAS.72 SPRY4
erican Journal of Human Genetics 92, 725–743, May 2, 2013 739



regulates neurite outgrowth in rat PC12 cells and mouse

hippocampal neurons in culture by inhibiting the MAPK

pathway;73,74 Spry4�/� mice have craniofacial defects and

abnormal limb development.29 FLRT3 encodes a trans-

membrane cell-adhesion protein that is characterized by

a cluster of leucine-rich repeats and one fibronectin type

III domain within its extracellular region. Its action pro-

motes the activation of FGF signaling by increasing ERK

phosphorylation.34 FLRT3 positively regulates neurite

outgrowth in rat neuronal cells36 and acts as a repulsive

guidance cue for UNC5-positive neurons in mice.75 The

present identification of mutations in DUSP6, SPRY4, and

FLRT3 in CHH individuals might offer new opportunities

for studies of these genes in GnRH biology.

Studying FGFR1 mutations in CHH has been pivotal in

challenging the traditional monogenic view of this disor-

der and in transitioning toward more complex genetic

models.5,39,53 Proof of concept for the oligogenic paradigm

has been provided by model organisms; for example,

Fgfr1þ/� Fgf8þ/� double heterozygous mice show an addi-

tive loss of GnRH neurons,76 and Il17rd and Spry2 syner-

gize in zebrafish to regulate the expression of Gbx2 in

the mid-hindbrain region.77 The present identification of

five additional genes with mutations in CHH expands

not only the percentage of cases with a known genetic

cause but also the percentage of individuals with evidence

of oligogenicity: among the 17 genes analyzed, oligogenic-

ity accounts for 19% of individuals compared to 10% in

prior work examining eight CHH loci.39 The updated fre-

quency of oligogenicity (19%) considers only the one-third

of individuals (124/350) found to harbor at least onemuta-

tion; we therefore anticipate that the true frequency of oli-

gogenicity in CHH is substantially higher and that our es-

timates will better approach it as mutations are identified

in further loci, especially through application of next-gen-

eration-sequencing technologies to large CHH cohorts.
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Supplemental Data include two figures and five tables and can be
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