
UC San Diego
Technical Reports

Title
Cumulus: Filesystem Backup to the Cloud

Permalink
https://escholarship.org/uc/item/21j2n5mk

Authors
Vrable, Michael
Savage, Stefan
Voelker, Geoffrey M

Publication Date
2008-07-31

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/21j2n5mk
https://escholarship.org
http://www.cdlib.org/

Cumulus: Filesystem Backup to the Cloud

Michael Vrable, Stefan Savage, and Geoffrey M. Voelker

University of California, San Diego

Abstract

In this paper we describe Cumulus, a system for effi-

ciently implementing filesystem system backups over the

Internet. Cumulus is specifically designed under a thin

cloud assumption — that the remote datacenter storing

the backups does not provide any special backup ser-

vices, but only provides a least-common-denominator

storage interface (i.e., get and put of complete files).

While Cumulus can thus use virtually any storage ser-

vice, we show that it still provides efficiencies compara-

ble to integrated approaches.

1 Introduction

It has become increasingly popular to talk of “cloud com-

puting” as the next infrastructure for hosting data and de-

ploying software and services. Not surprisingly, there

are a wide range of different architectures that fall un-

der the umbrella of this vague-sounding term, ranging

from highly integrated and focused (e.g., Software As

A Service offerings such as Salesforce.com) to decom-

posed and abstract (e.g., utility computing such as Ama-

zon’s EC2/S3). Towards the former end of the spectrum,

complex logic is bundled together with abstract resources

at a datacenter to provide a highly specific service —

potentially offering greater performance and efficiency

through integration, but also reducing flexibility and in-

creasing the cost to switch providers. At the other end of

the spectrum, datacenter-based infrastructure providers

offer minimal interfaces to very abstract resources (e.g.,

“store file”), making portability and provider switching

easy, but potentially incurring additional overheads from

the lack of server-side application integration.

In this paper, we explore this thin-cloud vs. thick-

cloud trade-off in the context of a very simple applica-

tion: filesystem backup. Backup is a particularly attrac-

tive application for outsourcing to the cloud because it

is relatively simple, the growth of disk capacity relative

to tape capacity has created an efficiency and cost inflec-

tion point, and there are few entrenched business cases

for keeping backup local. For end users there are few

backup solutions that are both trivial and reliable (espe-

cially against disasters such as fire or flood), and ubiq-

uitous broadband now provides sufficient bandwidth re-

sources to offload the application. For small to mid-sized

businesses, backup is rarely part of critical business pro-

cesses and yet is sufficiently complex to “get right” that it

can consume significant IT resources. Finally, larger en-

terprises benefit from backing up to the cloud to provide

a business continuity hedge against site disasters.

However, to price cloud-based backup services attrac-

tively requires minimizing the capital costs of data cen-

ter storage and the operational bandwidth costs of ship-

ping the data there and back. To this end, most exist-

ing cloud-based backup services (e.g., Mozy, Carbonite,

Symantec’s Protection Network) implement integrated

solutions that include backup-specific software hosted

on both the client and at the data center (usually using

servers owned by the provider). In principle, this ap-

proach allows greater storage and bandwidth efficiency

(server-side compression, cleaning, etc.) but also re-

duces portability — locking customers into a particular

provider.

In this paper we explore the other end of the de-

sign space — the thin cloud. We describe a cloud-

based backup system, called Cumulus, designed around a

minimal PUT/GET/LIST/DELETE interface that is triv-

ially portable to virtually any on-line storage service.

Thus, we assume that any application logic is imple-

mented solely by the client. In designing and evalu-

ating this system we make several contributions: First,

we show through simulation that, through careful de-

sign, it is possible to build efficient network backup on

top of a generic storage service — one competitive with

integrated backup solutions, in spite of having no spe-

cific backup support in the underlying storage service.

Second, we have built a working prototype of this sys-

tem, using Amazon’s Simple Storage Service (S3), and

demonstrated its effectiveness on real end-user traces.

Finally, we describe how such systems can be tuned for

cost instead of for bandwidth or storage, both using the

Amazon pricing model as an example as well as for a

range of storage to network cost ratios.

In the remainder of this paper, we first describe prior

work in backup and network-based backup, followed by

a design overview of Cumulus and an in-depth descrip-

tion of its implementation. We then provide both simu-

lation and experimental results of Cumulus performance,

overhead and cost in trace-driven scenarios. We conclude

with a discussion of the implications of our work and

how this research agenda might be further explored.

1

2 Related Work

Many traditional backup tools are designed to work well

for tape backups. The dump, cpio, and tar [9] utilities are

common on Unix systems and will write a full filesystem

backup as a single stream of data to tape. These utilities

may create a full backup of a filesystem, but also sup-

port incremental backups, which only contain files which

have changed since a previous backup (either full or an-

other incremental). Incremental backups are smaller and

quicker to create, but mostly useless without the backups

on which they are based.

An organization may establish a backup policy estab-

lishing at what granularity backups are made, and how

long they are kept. A policy might be that backups are

made each night and kept for one month, except that one

backup each week is kept for six months instead of one.

A mixture of full and incremental backups can more ef-

ficiently implement a backup policy. Long-term backups

may be full backups so they stand alone; short-term daily

backups may be incrementals for space efficiency. Tools

such as AMANDA [2] build on dump or tar, automating

the process of scheduling full and incremental backups

as well as collecting backups from a network of comput-

ers to write to tape as a group.

Tivoli Storage Manager [7] offers “progressive incre-

mental backup”, in which only one full backup of a

filesystem is needed. After that, only changes are stored;

a database tracks what file data is stored where. If back-

ing up to tape, old tapes may contain a mixture of still-

needed data and dead space; a tape reclamation process

may compact the useful data onto fewer tapes to recover

space.

The falling cost of disk relative to tape makes backup

to disk more attractive, especially since the random ac-

cess permitted by disks enables new backup approaches.

As a general rule, though not universal, disk-based

backup tools avoid the need for occasional full backups

(as Tivoli Storage Manager does). After the first backup,

only changes need to be sent. Doing so significantly re-

duces bandwidth needed for backups and is particularly

important if backups are sent over a wide-area network

for storage.

A mirror is the simplest disk-based backup approach:

keep on a second disk a copy of the data which is to be

backed up. Rsync [14] can efficiently mirror a filesystem

from one disk to another across a network, transferring

only those parts of files that have changed. Users usually

want backups at multiple points in time; rsnapshot [11]

is a wrapper around rsync that will store multiple snap-

shots, each as a separate directory on the backup disk.

Unmodified files are hard-linked between the different

snapshots, so storage is space-efficient, and snapshots are

easy to delete.

M
u

lt
ip

le
sn

ap
sh

o
ts

S
im

p
le

se
rv

er

In
cr

em
en

ta
l

fo
re

v
er

S
u

b
-fi

le
d

el
ta

st
o

ra
g

e

E
n

cr
y

p
ti

o
n

rsync X —

rsnapshot X X

rdiff-backup X X X

duplicity X X X X

Brackup X X X X

Box Backup X X X X

Cumulus X X X X X

Multiple snapshots: Can store multiple versions of files at dif-

ferent points in time; Simple server: Can back up almost any-

where; does not require special software at the server; Incre-

mental forever: Only initial backup must be a full backup;

Sub-file delta storage: Efficiently represents small differences

between files on storage; only relevant if storing multiple snap-

shots; Encryption: Data may be encrypted for privacy before

sending to storage server

Table 1: Comparison of features among selected tools

that back up to networked storage.

rdiff-backup [4] is designed for efficient storage of

snapshots, using a mirror plus reverse incrementals ap-

proach: the most recent snapshot is a mirror of the files,

as in rsnapshot, and the rsync algorithm is used to cre-

ate compact deltas for reconstructing older versions. The

reverse incrementals are more space efficient than full

copies of files as in rsnapshot. Snapshots can be deleted,

but only starting with the oldest (some snapshots cannot

be expired earlier than others).

The previous disk-based backup tools rely on server

functionality (for applying the rsync algorithm), and

store data unencrypted on the server. Duplicity [5] stores

data in compressed, encrypted form on the server; files

are grouped together before storage for better compres-

sion and to reduce per-file storage costs at the server. No

special server support is needed beyond the ability to

store files. Incrementals use space-efficient rsync-style

deltas, like rdiff-backup, except that forward (traditional)

rather than reverse incrementals are used. The use of

forward incrementals means that occasional full backups

(with their associated large upload cost) must be made to

reclaim storage space.

Brackup [6], like duplicity, also stores encrypted back-

ups and needs no special server support. Brackup was

specifically designed to work with Amazon S3, though

it is not tied to it since the storage interface is generic.

Each file backed up is stored separately on the server,

so reclaiming space when deleting a snapshot is sim-

ple. Later versions may pack small files together for

efficiency, though doing so will complicate reclaiming

2

storage space (as we show in this paper).

Box Backup [13] supports encrypted storage of

backup data, rsync-style delta for incrementals, and good

reclamation of space on the storage server, but to do so

requires specialized software at the server.

Backup-as-a-service providers may offer a similar fea-

ture set: relatively-efficient backups, multiple snapshots,

no need to repeatedly upload a full backup, and encryp-

tion. However, these services tie backups to a particu-

lar provider, and precise implementation details may be

harder to come by.

Table 1 summarizes differences between some of the

tools listed above for backup to networked storage. In

relation to existing systems, Cumulus is most similar to

duplicity (without the need to occasionally re-upload a

new full backup), and brackup (with an improved scheme

for incremental backups including rsync-style deltas, and

much improved reclamation of storage space).

3 Design

In this section we present the design of our approach for

making backups to a thin cloud remote storage service.

3.1 Storage Server Interface

We assume only a very narrow interface between a client

generating a backup and a server responsible for storing

the backup, consisting of four operations:

Get: Given a pathname, retrieve the contents of a file

from the server.

Put: Store a complete file on the server with the given

pathname.

List: Get the names of files stored on the server.

Delete: Remove the given file from the server, reclaim-

ing its space.

Note that all of these operations operate on entire files;

we do not depend upon the ability to read or write ar-

bitrary byte ranges within a file. Support for reading

and setting file attributes, such as permissions and times-

tamps, is neither required nor used. The interface is sim-

ple enough that it can be implemented on top of any num-

ber of protocols: FTP, SFTP, WebDAV, S3, or nearly any

network file system.

One consequence of a narrow interface is that it be-

comes natural to adopt a write-once storage model, in

which a file is never modified after it is first stored ex-

cept perhaps to delete it to recover space. We do not de-

pend on server interfaces for modifying parts of a file, or

copying or renaming files, so the only way to accomplish

these operations is to completely re-upload any changed

files. Given this, there is little reason not to simply di-

rect all writes to new files (deleting old files later). The

write-once model also provides convenient failure guar-

antees: since files are never modified in place, a failed

backup run cannot corrupt old backups. At worst, it will

leave a partially-written backup which can be deleted by

a garbage-collection process.

The write-once storage model also implies that, since

creating a new backup does not modify the files that

make up the previous backup, keeping snapshots at mul-

tiple points in time simply amounts to not deleting the

files that make up old snapshots.

3.2 Storage Segments

When storing a snapshot, Cumulus will often group data

from many smaller files together into larger units called

segments. Segments become the unit of storage on the

server, with each segment stored as a single file. There

are a number of reasons for consolidating data into seg-

ments.

Avoid inefficiencies associated with many small files.

The storage server may not store many small files as effi-

ciently as a smaller number of large files. Some file sys-

tems will often round up file sizes to be some multiple of

a block size, so storage of small files is less efficient. A

storage server might also expose a preference for larger

files to the user. Amazon S3, for example, has both a

per-request and a per-byte cost when storing a file. For

files of 100 kB or smaller, the per-file cost dominates;

it is most economical to store data in units larger than

100 kB.

Numerous studies of file system metadata have shown

that small files predominate. Agrawal et al. find that the

median file size in their studies has remained at about

4 kB [1]. We find a similar pattern in our own evalua-

tions. With half of files 4 kB or less, it is desirable to

treat small files as a common case in the backup sys-

tem. Even average file size, though larger than median

file sizes, may still be relatively small: 20–150 kB in our

data sets.

Avoid high per-file costs in network protocols. Unless

the protocol used to communicate with the storage server

is pipelined to allow multiple outstanding put requests,

or multiple connections are opened in parallel, the file

transfer bandwidth will be limited to one file per network

round-trip. Over a high-latency network, this could sig-

nificantly slow down transfers. Grouping data together

into larger files reduces this overhead. We study this ef-

fect in more detail in Section 5.4.4.

Take advantage of inter-file redundancy with segment

compression. Compression may be used to reduce the

storage needed for backups. If all files are compressed

individually, however, especially in the case that there

are many small files, significant opportunities for com-

pression may be lost. By grouping related files together

into segments, compression can eliminate redundancy

3

Segment A Segment B

Segment Store

name: file1

owner: root

data: B/0

name: file2

owner: root

data: B/1 B/2

Date: 2008−01−01 12:00:00

Root: A/0

Segments: A B

Segment C

name: file1

owner: root

data: C/1

name: file2

owner: root

data: B/1 B/2

Date: 2008−01−02 12:00:00

Root: C/0

Segments: B C

Backup Descriptors

Figure 1: Simplified schematic of the basic format for storing snapshots on a storage server. Two snapshots are shown,

taken on successive days. Each snapshot contains two files. file1 changes between the two snapshots, but the data

for file2 is shared between the snapshots. For simplicity in this figure, segments are given letters as names instead

of the 128-bit UUIDs used in practice.

between files as well as within files. Section 5.4.2 eval-

uates the benefits of grouping files together before com-

pression.

Hide details of the file size distribution from the server.

Data may be encrypted before transferring it to the stor-

age server to provide privacy. However, if each file on the

client is stored as a file on the server, then even with en-

cryption the server can still learn many details about the

number and (approximate) size of the files on the client.

Grouping files into segments masks much of this infor-

mation.

Represent sub-file changes efficiently in incremental

backups. Even if the above reasons for choosing to group

data into segments did not apply to data at a file level —

if the average file size was large enough to make it ac-

ceptable to store each file separately — they apply once

sub-file incrementals are introduced. Isolated changes

in large files can be represented efficiently by dividing

each file into small (few kilobyte) chunks which can be

re-used or not to represent the modified file. However,

these chunks must either be stored separately (producing

a very large number of small files), or grouped together

for storage purposes — acting once again like the seg-

ment model.

3.3 Snapshot Format

Figure 1 illustrates the basic format used to store backup

snapshots. A snapshot logically consists of two parts:

a metadata log which lists all the files backed up, and

the file data itself. Both metadata and data are broken

apart into blocks, or objects, and these objects are then

packed together into segments, compressed as a unit and

optionally encrypted, and stored on the server. Each seg-

ment has a unique name — we use a randomly generated

128-bit UUID so that segment names can be assigned in-

dependently. Objects are numbered sequentially within a

segment.

Segments are internally structured as a TAR file, with

each file in the archive corresponding to an object in the

segment. Compression and encryption are provided by

filtering the raw segment data through gzip, bzip2,

gpg, or other similar external tools.

A snapshot can be decoded by traversing a tree (or,

in the case of sharing, a DAG) of objects. The root ob-

ject in the tree is the start of the metadata log. This root

may contain some file metadata directly, or it may con-

tain pointers to objects containing other fragments of the

metadata log. This support for pointers between portions

of the metadata log allows flexibility in how the meta-

data log is written: it may be written incrementally, may

be spread across multiple segments, and portions of the

metadata log may even be shared between different snap-

shots (useful for compactly encoding metadata for files

that do not change). Objects containing the actual file

contents appear as leaves in the tree.

The metadata log entry for each individual file speci-

fies properties such as modification time, ownership, and

file permissions, and can be extended to include addi-

tional information if needed. It includes a cryptographic

checksum1 so that file integrity can be verified after a

restore. Finally, it includes a list of pointers to objects

containing the file data; concatenating the data in all of

these objects reproduces the original file data. Metadata

is stored in a text, not binary, format to make it more

1SHA-1 is currently used, but alternate algorithms may be easily

substituted.

4

transparent. Compression applied to the segments con-

taining the metadata, however, makes the format quite

space-efficient.

The one piece of data in each snapshot not stored in

a segment is a snapshot descriptor, which includes a

timestamp for the snapshot and a pointer to the root ob-

ject of the snapshot.

Starting with the root object stored in the snapshot de-

scriptor and traversing all pointers found, a list of all seg-

ments required by the snapshot can be constructed. Since

segments may be shared between multiple snapshots, it

would be incorrect to delete each of the segments used

by a snapshot when deleting the snapshot itself. Instead,

a garbage collection process identifies segments still ref-

erenced by current snapshots, then deletes unreferenced

segments. To simplify this process, each snapshot de-

scriptor includes, though it is redundant, a list of seg-

ments on which it depends. This list of segments can

also be used if it is necessary to restore the contents of a

snapshot, since it allows all needed segments to be down-

loaded before even beginning to parse the snapshot meta-

data log.

3.4 Sub-File Incrementals

If only a small portion of a large file changes between

snapshots, only the changed portion of the file should be

stored. The Cumulus format supports this in two ways.

First, the metadata for each backed-up file includes a list

objects that make up the file contents. If some of these

blocks remain unchanged in the new file version, point-

ers to these old objects may be used. This may occur

if there are a few in-place writes to a file, or new data

is appended at the end (at most the last block of the old

file will change). Hashes of block contents are used to

detect when a block can be re-used. These object hashes

also allows for coarse-grained data de-duplication during

backup — if the data needed for a new file matches the

hash of an old block, that block is re-used.

Second, the Cumulus format allows references to an

object to specify a byte range — thus, an object can be re-

used even if it overlaps a changed part of a file by using

a byte-range to select the unchanged part, and writing

the new data out to a new object. We discuss how our

implementation of Cumulus identifies unchanged data in

Section 4.3.

3.5 Segment Cleaning

When old snapshots are no longer needed, space on the

storage server may be reclaimed by deleting the root

snapshot descriptors for those snapshots, then deleting

any segments which are no longer reachable. It may be,

however, that some segments only contain a small frac-

tion of useful data — the remainder of these segments,

data from deleted snapshots, is now wasted space. This

problem is similar to the problem of reclaiming space in

the Log-Structured File System (LFS) [10].

There are differences between our situation and that

of LFS, however. Unlike LFS, which must only track the

current state of the filesystem, we keep references to the

state of the filesystem at multiple points in time. LFS

has a fixed target for total space used: the size of the un-

derlying disk, with no real benefit to staying significantly

below this limit. We have no hard limits, but an overall

preference to avoid wasted space where possible.

There are two approaches that can be taken in the

segment-cleaning process. The first, in-place cleaning,

identifies unused data in a segment and rewrites the seg-

ment to eliminate the unneeded data. In-place cleaning

can recover wasted space in a snapshot at any time.

This mode of operation has several disadvantages,

however. First, it violates the write-once storage model,

in that the data on which a snapshot depends is changed

after the snapshot is written, which can make reasoning

about backups more complex. It requires detailed track-

ing of which data is used by each snapshot, at the granu-

larity of objects, not just segments, to ensure that clean-

ing does not delete an object still in use, and thus com-

plicates the garbage-collection process. Second, repack-

ing data from an old snapshot can require the data to be

downloaded from the storage server, processed locally,

and re-uploaded since there may no longer be local copy

of the data. This step may generate extra network traffic

during a backup. Third, if data is encrypted before send-

ing it to the storage server, in-place cleaning will require

decrypting the backup data. If public-key encryption is

used, the backup process only needs access to the public

key, but cleaning will require access to the private key,

and so may require manual intervention (if the private

key is protected).

The alternative to in-place cleaning is to never modify

segments in old snapshots, through a multi-step process:

1. Identify segments which are poorly-utilized.

2. Ensure that subsequently created snapshots do not

reference the segments identified in the previous

step. If necessary, upload copies of still-needed data

in new segments.

3. As old snapshots are deleted, the segments identi-

fied in the first step can be deleted since all more

recent snapshots will not reference them.

This cleaning process avoids the disadvantages listed

above of in-place cleaning. However, it will not be

as space-efficient as in-place cleaning. Dead space is

not reclaimed until snapshots depending on the old seg-

ment are deleted. Additionally, during this time data

is stored redundantly: old snapshots reference the data

in the selected-for-cleaning segment, and new snapshots

5

reference the compacted version. We analyzed both ap-

proaches to cleaning in simulation, but found that the

cost benefits of in-place cleaning were not large enough

to outweigh its disadvantages, and so our Cumulus pro-

totype does not clean in-place.

3.5.1 Selecting Segments for Cleaning

The simplest policy for selecting segments to clean is to

set a minimum utilization threshold, α. We define uti-

lization as the fraction of bytes within the segment which

are referenced by a current snapshot. Any segment with

a utilization below α will have its data repacked. So,

α = 0.8 will ensure that at least 80% of the bytes in

segments are useful, and that at most 20% of the bytes

within segments is wasted. Letting α = 0 will disable

segment cleaning altogether. The storage overhead can

be bounded by 1/α, so values of α closer to 1 will tend

to decrease the storage overhead of a single snapshot in

isolation.

On the other hand, a high threshold for α, which will

clean aggressively, will transfer more data than neces-

sary. In the worst case, each segment will be cleaned

just at the threshold. In aggregate, over all snapshots

uploaded, the network overhead can be bounded by

1/(1 − α).

3.6 Restoring from Backup

Restoring data from previous backups may take several

forms:

• Perform a complete restore: restore data from all

files on a given date.

• Perform a partial restore: restore data from a spec-

ified file, or a specified set of files, on a given date.

• Report on a file history: list all the available ver-

sions (different dates) of a specified file, or set of

files.

Cumulus is primarily optimized for the first form of

restore — recovering all files, such as in the event of the

total loss of the original data. In this case, the restore pro-

cess will look up the root snapshot descriptor at the date

to restore, then download all segments referenced by that

snapshot. Since segment cleaning seeks to avoid leav-

ing much wasted space in the segments, the total amount

of data to be downloaded will not be much more than

needed.

For partial restores, Cumulus needs to download those

segments that contain metadata for the snapshot, to lo-

cate the files requested, and then locate each of the seg-

ments containing file data. It is possible that the quantity

of data downloaded significantly exceeds the size of the

data to restore, since the selected files may be scattered

across many segments. For example, if a request is made

to restore the contents of a directory as of a given date,

and files in that directory had been added gradually, those

files are likely scattered across segments initially created

on many different days.

Cumulus is not optimized for tracking the history of

individual files — the only way to determine the list of

changes to a file or set of files is to download and process

the metadata logs for all snapshots.

One important issue in restoring from backups is that

the order data appears in the metadata log (filesystem

traversal order) is often different from the order data

appears segments (roughly chronological by modifica-

tion time). Since reading data from segments may be

expensive (possibly involving downloading and decom-

pression/decryption), an initial scan of the metadata log

is made to read all file metadata, then file data is restored

in segment order.

3.7 Limitations

Cumulus is not designed to replace all existing backup

systems; there are situations in which other systems will

do a better job.

First and perhaps most obviously, Cumulus is not de-

signed for environments where backup is done to tape,

since it assumes random access to the segments within a

backup snapshot.

The approach embodied by Cumulus is for the client

making a backup to do most of the work, and leave

the backup itself almost entirely opaque to the server.

This approach makes Cumulus portable to nearly any

type of storage server, but also means that it cannot take

advantage of any special capabilities of the server. In

cases where there are resources to create a specialized

backup server — for example, centralized backup for a

department — the specialized server may perform better.

Certainly, a server that understands the backup format

can avoid the difficulties that Cumulus faces with seg-

ment cleaning, since the server could simply reclaim any

wasted space without any help needed from the client.

Another area in which a smarter server can provide ben-

efits is in restoring a small collection of files (rather

than an entire snapshot), or fetching information about

changes to that set of files.

Cumulus does not offer coordination between multiple

backup clients. An intelligent backup server could per-

form tasks such as data de-duplication across all backup

clients. Cumulus, as designed, cannot naturally support

this.

The design of Cumulus is predicated on the fact that

backing up each file on the client to a separate file on

the server may introduce too much overhead, and so Cu-

mulus groups data together into segments. However, if

it is known that the storage server and network protocol

6

can efficiently deal with small files, then grouping data

into segments adds unnecessary complexity and over-

head. Other disk-to-disk backup programs may be a bet-

ter match in this case.

4 Implementation

We discuss details of the implementation of the Cumu-

lus prototype in this section. Our implementation is rel-

atively compact: only slightly over 3000 lines of C++

source code (as measured by SLOCCount) implementing

the core backup functionality, along with another roughly

700 lines of Python for tasks such as restores, segment

cleaning, and statistics gathering.

4.1 Local Client State

Each client stores on local disk information about recent

backups, primarily so that it can detect which files have

changed and properly reuse data from previous snap-

shots. This information could be kept on the storage

server, however storing it locally reduces network band-

width and improves access times. None of this informa-

tion is needed to recover data from a backup, so its loss

is not catastrophic. However, this local state does enable

various performance optimizations during backups.

The client’s local state is divided into two parts: a local

copy of the metadata log, and an SQLite database [12]

containing all other needed information.

Note that the information stored locally and its for-

mat are not specified by the Cumulus backup format.

It is entirely possible to create a new and very differ-

ent implementation which nonetheless produces backups

conforming to the structure described in Section 3.3 and

readable by our Cumulus prototype.

4.1.1 Local Metadata Cache (Statcache)

The client saves a local copy of the metadata log from

the most recent snapshot. This data is also referred to

as the statcache file, since in large part it caches the re-

sults of the stat system call on each file from the pre-

vious backup. The statcache file serves multiple pur-

poses. First, it greatly speeds up the backup process. If

file metadata (size, modification time, inode number) for

the current version of a file matches the metadata in the

statcache file, then the file is unchanged and it is not nec-

essary to read the full contents. The file metadata from

the statcache file (including pointers to the file data from

the previous backup) can simply be re-used.

Second, the statcache file is instrumental in delta-

encoding metadata logs between snapshots. Along with

file metadata, the statcache file records the location of

the metadata for each file within the last backup. If a file

does not change, this information can be used to emit a

reference to the old metadata log entry.

Since Cumulus will iterate through the entire contents

of the statcache file on a backup anyway, the statcache

file is simply saved as a flat text file.

4.1.2 Local Client Database

All client state stored locally that is not part of the stat-

cache is kept in an SQLite database file. SQLite was

chosen since the database engine is embedded directly

into the Cumulus executable, so there are no external de-

pendencies when running Cumulus. But it still provides

the convenience of a real database — it allows for effi-

cient random access to information, automatically main-

tains indices over the data, and allowed for more rapid

prototyping of Cumulus features. Additionally, SQLite

is transactional so an interrupted backup will not corrupt

the local database.

Cumulus keeps a record of recent snapshots, and

all segments and objects stored in them, in the local

database. The table of objects includes an index by the

content hash so that duplicate data (at the level of an ob-

ject) can be identified, and only one copy written out.

4.2 Segment Cleaning

Segment cleaning heuristics are not implemented di-

rectly as part of the Cumulus backup program (in C++).

Instead, cleaning is done by the Cumulus utility program,

implemented in Python. Communication between these

two programs is mediated by the local database.

When each snapshot is written, the Cumulus backup

program records in the local database a summary of all

segments used by that snapshot and the fraction of the

data in each segment that is actually referenced. The Cu-

mulus utility program uses these summaries to identify

segments which are poorly-utilized, and then marks the

selected segments as “expired” in the local database. On

subsequent backups, the Cumulus backup program will

avoid referencing objects in expired segments. If such

data would have been used, the data is instead written

out as a new object.

The Cumulus utility program may additionally write

out a hint with each object in an expired segment to di-

rect how objects should be grouped together when they

are rewritten. The Cumulus utility may sort expired ob-

jects based on age (the date at which an object was first

written is recorded in the local database), group them in

to buckets, and labels into the local database. When the

Cumulus backup program runs, objects with different la-

bels that must be rewritten are placed in separate seg-

ments; this gives a mechanism for grouping data by age

when repacking segment data.

4.3 Sub-File Incrementals

As discussed in Section 3.4, the Cumulus backup format

supports efficiently encoding differences between file

7

versions. Our implementation detects changes by divid-

ing files into small chunks in a content-sensitive manner

(using Rabin fingerprints) and identifying chunks that are

common, as in the Low-Bandwidth File System [8].

When a file is first backed up, it is divided into blocks

of about a megabyte in size which are stored individually

in objects. In contrast, the chunks used for sub-file incre-

mentals are quite a bit smaller: the target size is 4 kB

(though variable, with a 2 kB minimum and 64 kB max-

imum). Before each megabyte block is stored, a set of

chunk signatures are computed for it: the data is divided

into non-overlapping chunks that cover the entire block

(the last chunk may be short), and a (20-byte SHA-1 sig-

nature, 2-byte length) tuple is computed for each chunk.

The list of chunk signatures for each object are stored in

the local database. These signatures consume 22 bytes

for every roughly 4 kB of original data, so the signatures

are about 0.5% of the size of the data to back up.

Unlike LBFS, we do not create a global index of

chunk hashes — to limit overhead, we do not attempt

to find common data between different files. When a file

changes, we instead limit the search for unmodified data

to the chunks in the previous version of the file. Specif-

ically, Cumulus reads from the statcache file the previ-

ous list of objects in the file, and loads the chunk sig-

natures for each of those objects into memory. Finally,

chunk signatures for the new file data are computed. Any

chunks which match an old chunk are written as a refer-

ence to the old data; new chunks are written to new ob-

jects (and chunk signatures for those objects stored in the

local database too).

In the common case where a consecutive sequence of

chunks in the new file matches a consecutive sequence

in the old, a single combined reference is written to the

metadata log instead of listing each chunk separately.

4.4 Segment Filtering and Storage

The core Cumulus backup implementation is only capa-

ble of writing segments as uncompressed TAR files to

local disk. Additional functionality is implemented by

calling out to external scripts.

When performing a backup, all segment data may be

filtered through a specified command before writing it.

Specifying a program such as gzip can provide com-

pression, or gpg for encryption.

Similarly, network protocols are implemented by call-

ing out to external scripts. During a backup, segments

are first written to a temporary directory locally. Once a

segment is completely written locally, an external script

is called to transfer the segment to the remote storage

server. One upload is permitted at a time, but uploads are

allowed to proceed in parallel with the main backup pro-

cess for better throughput. A limit is placed on the num-

ber of completed segments not yet uploaded — progress

in backing up is throttled so an unbounded amount of

temporary space is not needed. Upload scripts may be

quite simple; a script for uploading to Amazon S3 is

merely 12 lines long in Python using the boto [3] library.

4.5 Snapshot Restores

The Cumulus utility tool written in Python implements

complete restore functionality. This tool is able to auto-

matically decompress and extract objects from segments,

and can efficiently extract just a subset of files from a

snapshot.

5 Evaluation

We use both trace-based simulation and a prototype im-

plementation to evaluate the use of thin cloud services

for remote backup. Our goal is to answer three high-level

sets of questions:

• What is the penalty of using a thin cloud service

with a very simple storage interface compared to a

more sophisticated service?

• What are the monetary costs for using remote

backup for two typical usage scenarios? How

should remote backup strategies adapt to minimize

monetary costs as the ratio of network and storage

prices varies?

• How does our prototype implementation compare

with other backup systems? What are the addi-

tional benefits (e.g., compression) and overheads

(e.g., metadata) of an implementation not captured

in simulation? What is the performance of using an

online service like Amazon S3 for backup?

The following evaluation sections answer these ques-

tions, beginning with a description of the trace workloads

we use as inputs.

5.1 Trace Workloads

We use two traces as workloads to drive our evaluations.

A fileserver trace tracks all files stored on our research

group fileserver, and models the use of a cloud service

for remote backup in an enterprise setting. A user trace

is extracted from the Cumulus backups of the home di-

rectory of one of the author’s personal computers, and

models the use of remote backup in a home setting. The

traces contain a daily record of the metadata of all files

in each setting, including a hash of the file contents. The

user trace further includes all data necessary to construct

the contents of all files at any point in time in the trace,

necessary for evaluating the effects of compression and

sub-file incrementals in an implementation. Table 2 sum-

marizes the key statistics of each trace.

8

Fileserver User

Duration (days) 157 223

Entries 26673083 122007

Files 24344167 116426

File Sizes

Median 0.996 kB 4.4 kB

Average 153 kB 21.4 kB

Maximum 54.1 GB 169 MB

Total 3.47 TB 2.37 GB

Update Rates

New data/day 9.50 GB 10.3 MB

Changed data/day 805 MB 29.9 MB

Total data/day 10.3 GB 40.2 MB

Table 2: Key statistics of the two traces used in evalua-

tions. File counts and file size statistics are for the last

day in the trace. “Entries” counts the number of files,

directories, symlinks, etc. “Files” counts the subset of

entries that refer to regular files.

5.2 Remote Backup to a Thin Cloud

First we explore the overhead of using remote backup to

a thin cloud service that has only a simple storage inter-

face. We compare this thin service model to an “optimal”

model representing more sophisticated backup systems.

We use simulation for these experiments, and start by

describing our simulator. We then define our optimal

baseline model and evaluate the overhead of using a sim-

ple interface relative to a more sophisticated system.

5.2.1 Cumulus Simulator

The Cumulus simulator models the process of backing

up collections of files to a remote backup service. It uses

traces of daily records of file metadata to perform back-

ups by determining which files have changed, aggregat-

ing changed file data into segments for storage on a re-

mote service, and cleaning expired data as described in

Section 3.

The simulator tracks three overheads associated with

performing backups. It tracks storage overhead, the to-

tal number of bytes to store a set of snapshots, computed

as the sum of the size of each segment needed. Storage

overhead includes both actual file data as well as wasted

space within segments. It tracks network overhead, the

total data that must be transferred over the network to

accomplish a backup. On graphs, we show this overhead

as a cumulative value: the total data transferred from the

beginning of the simulation until the given day. Since re-

mote backup services have per-file charges, the simulator

also tracks segment overhead as the number of segments

created during the process of making backups.

The simulator also models two snapshot scenarios.

In the single snapshot scenario, the simulator maintains

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 0 50 100 150 200 250

S
iz

e
 (

M
B

)

Days

Cumulative Transfers
Snapshot Size

Figure 2: Storage and network overhead for an optimal

backup of the files from the user trace.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 50 100 150 200 250

O
v
e
rh

e
a
d
 v

s
.

O
p
ti
m

a
l
(%

)

Days

Storage (No Cleaning)
Storage (Cleaning)
Upload (Cleaning)

Figure 3: Overheads with and without cleaning; seg-

ments are cleaned at 60% utilization. Only storage over-

heads are shown for the no cleaning case since there is

no network transfer overhead without cleaning.

only one snapshot remotely and it deletes all previous

snapshots. In the multiple snapshot scenario, the sim-

ulator retains snapshots according to a pre-determined

backup schedule. In our experiments, we keep the most

recent seven daily snapshots, with additional weekly

snapshots retained going back farther in time so that a

total of 12 snapshots are kept.

The simulator makes some simplifying assumptions

that we explore later when evaluating our implementa-

tion. The simulator detects changes to files in the traces

using a per-file hash. Thus, the simulator cannot detect

changes to only a portion of a file, and assumes that

the entire file is changed. The simulator also does not

model compression or metadata. We account for sub-

file changes, compression, and metadata overhead when

evaluating the prototype in Section 5.4.

5.2.2 Optimal Baseline

A simple storage interface for remote backup can incur

an overhead penalty relative to more sophisticated ap-

9

 0

 0.5

 1

 1.5

 2

 0 0.2 0.4 0.6 0.8 1

 3.77

 3.78

 3.79

 3.8

 3.81

 3.82

 3.83

 3.84
O

v
e

rh
e

a
d

 v
s
.

O
p

ti
m

a
l
(%

)

R
a

w
 S

iz
e

 (
T

B
)

Cleaning Threshold

64 MB Segments
16 MB Segments

4 MB Segments
1 MB Segments

(a) Average daily storage

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 0.2 0.4 0.6 0.8 1

 9.9

 10

 10.1

 10.2

 10.3

 10.4

 10.5

 10.6

O
v
e

rh
e

a
d

 v
s
.

O
p

ti
m

a
l
(%

)

R
a

w
 S

iz
e

 (
G

B
/d

a
y
)

Cleaning Threshold

64 MB Segments
16 MB Segments
4 MB Segments
1 MB Segments

(b) Average daily upload

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 10 20 30 40 50 60 70

N
e

w
 S

e
g

m
e

n
ts

 D
a

ily

Target Segment Size (MB)

(c) Average segments per day

Figure 4: Overheads for backups in the fileserver trace.

 0

 5

 10

 15

 20

 25

 0 0.2 0.4 0.6 0.8 1

 2.7

 2.8

 2.9

 3

 3.1

 3.2

 3.3

O
v
e

rh
e

a
d

 v
s
.

O
p

ti
m

a
l
(%

)

R
a

w
 S

iz
e

 (
G

B
)

Cleaning Threshold

16 MB Segments
4 MB Segments
1 MB Segments

512 kB Segments
128 kB Segments

(a) Average daily storage

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 0.2 0.4 0.6 0.8 1

 38

 40

 42

 44

 46

 48

 50

 52
O

v
e

rh
e

a
d

 v
s
.

O
p

ti
m

a
l
(%

)

R
a

w
 S

iz
e

 (
M

B
/d

a
y
)

Cleaning Threshold

16 MB Segments
4 MB Segments
1 MB Segments

512 kB Segments
128 kB Segments

(b) Average daily upload

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 2 4 6 8 10 12 14 16

N
e

w
 S

e
g

m
e

n
ts

 D
a

ily

Target Segment Size (MB)

(c) Average segments per day

Figure 5: Overheads for backups in the user trace.

proaches. To quantify the overhead of this approach, we

use an idealized optimal backup as a basis of comparison.

For our simulations, the optimal backup is one in

which no more data is stored or transferred over the net-

work than is needed. Since simulation is done at a file

granularity, the optimal backup will transfer the entire

contents of a file if any part changes (results from the pro-

totype implementation in Section 5.4.1 indicates that this

simplifying assumption is reasonable). Optimal backup

will, however, perform data de-duplication at a file level,

storing only one copy if multiple files have the same hash

value. In the optimal backup, no space is lost to frag-

mentation when deleting old snapshots. Cumulus could

achieve this optimal performance in this simulation by

storing each file in a separate segment—that is, to never

bundle files together into larger segments. As discussed

in Section 3.2 and as our simulation results show, though,

there are good reasons to use segments with sizes much

larger than the average file.

As an example of these costs and how we measure

them, Figure 2 shows the optimal storage and upload

overheads for daily backups of the 223 days of the user

trace. In this simulation, only a single snapshot is re-

tained each day. Storage grows slowly in proportion to

the amount of data in a snapshot, and the cumulative net-

work transfer grows linearly over time.

Figure 3 shows the results of two simulations of Cu-

mulus backing up the same data. The graph shows the

overheads relative to optimal backup; a backup as good

as optimal would have 0% relative overhead. These re-

sults clearly demonstrate the need for cleaning when us-

ing a simple storage interface for backup. When seg-

ments are not cleaned (only deleting segments that by

chance happen to be entirely no longer needed), wasted

storage space grows quickly with time — by the end of

the simulation at day 223, the size of a snapshot is more

than double the required size. In contrast, when segments

are marked for cleaning at the 60% utilization thresh-

old, storage overhead quickly stabilizes below 10%. The

overhead in extra network transfers is similarly modest.

5.2.3 Cleaning Policies

Cleaning is clearly necessary for efficient backup, but it

is also parameterized by two metrics: the size of the seg-

ments used for aggregation, transfer, and storage (Sec-

tion 3.2), and the threshold at which segments will be

cleaned (Section 3.5.1). In our next set of experiments,

we explore the parameter space to quantify the impact of

these two metrics on backup performance.

Figures 4 and 5 show the simulated overheads of

backup with Cumulus using the fileserver and user

traces, respectively. The figures show both relative over-

heads to optimal backup (left y-axis) as well as the abso-

lute overheads (right y-axis). We use the backup policy

of multiple daily and weekly snapshots as described in

Section 5.2.1. The figures show cleaning overhead for

10

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 0.2 0.4 0.6 0.8 1

O
v
e
rh

e
a
d
 v

s
.

O
p
ti
m

a
l
(%

)

Cleaning Threshold

Total Overhead
Duplicate Data Overhead
Wasted Segment Space

Figure 6: Detailed breakdown of storage overhead when

using a 16 MB segment size for the fileserver workload.

a range of cleaning thresholds and segment sizes. Each

figure has three graphs corresponding to the three over-

heads of remote backup to an online service. Average

daily storage shows the average storage requirements per

day over the duration of the simulation; this is the total

storage needed for tracking multiple backup snapshots,

not just the size of a single snapshot. Similarly, average

daily upload is the average of the data transferred each

day of the simulation, excluding the first. The first day

is excluded since any backup approach must transfer the

entire initial filesystem. Finally, average segments per

day tracks the number of new segments uploaded each

day to account for per-file upload and storage costs.

Storage and upload overheads improve with decreas-

ing segment size, but at small segment sizes (< 1 MB)

backups require very large numbers of segments and

limit the benefits of aggregating file data (Section 3.2).

As expected, increasing the cleaning threshold increases

the network upload overhead. Storage overhead with

multiple snapshots, however, has an optimum cleaning

threshold value. Increasing the threshold initially de-

creases storage overhead, but high thresholds increase it

again; we explore the this behavior further below.

Both the fileserver and user workloads exhibit simi-

lar sensitivities to cleaning thresholds and segment sizes.

The user workload has higher overheads relative to op-

timal due to more potential benefit from sub-file incre-

mentals, but overall the overhead penalties remain low.

Figures 4(a) and 5(a) show that there is a cleaning

threshold that minimizes storage overheads. Increasing

the cleaning threshold intuitively reduces storage over-

head relative to optimal since the more aggressive clean-

ing at higher thresholds will delete wasted space in seg-

ments and thereby reduce storage requirements. Figure 6

explains why storage overhead increases again at higher

cleaning thresholds.

It shows three curves, the 16 MB segment size curve

Fileserver Amount Cost

Initial upload 3563 GB $356.30

Upload 303 GB/month $30.30/month

Storage 3858 GB $578.70/month

User Amount Cost

Initial upload 1.82 GB $0.27

Upload 1.11 GB/month $0.11/month

Storage 2.68 GB $0.40/month

Table 3: Costs for backups in US dollars, if performed

optimally, for the fileserver and user traces using current

prices for Amazon S3.

from Figure 4(a) and two curves that decompose the stor-

age overhead into individual components (Section 3.5).

One is overhead due to duplicate copies of data stored

over time in the cleaning process; cleaning at lower

thresholds reduces this component. The other is due to

wasted space in segments which have not been cleaned;

cleaning at higher thresholds reduces this component. A

cleaning threshold near the middle, however, minimizes

the sum of both of these overheads.

5.3 Paying for Remote Backup

The evaluation in the previous section measured the over-

head of Cumulus in terms of storage, network, and seg-

ment resource usage. Remote backup as a service, how-

ever, comes at a price. In this section, we calculate

monetary costs for our two workload models, evaluate

cleaning threshold and segment size in terms of costs in-

stead of resource usage, and explore how cleaning should

adapt to minimize costs as the ratio of network and stor-

age prices varies.

We use the prices for the Amazon S3 service as an

initial point in the pricing space. As of May 2008, these

prices are:

Storage: $0.15 per GB · month

Upload: $0.10 per GB

Segment: $0.01 per 1000 files uploaded

With this pricing model, the segment cost for upload-

ing an empty file is equivalent to the upload cost for up-

loading approximately 100 kB of data, i.e., when upload-

ing 100 kB files, half of the cost is for the bandwidth

and half for the upload request itself. As the file size in-

creases, the per-request component becomes an increas-

ingly smaller part of the total cost.

Neglecting for the moment the segment upload costs,

Table 3 shows the monthly storage and upload costs for

each of the two traces. Storage costs dominate ongo-

ing costs. They account for about 95% and 78% of the

monthly costs for the fileserver and user traces, respec-

tively. Thus, changes to the storage efficiency will have

a more substantial effect on total cost than changes in

11

 0

 0.5

 1

 1.5

 2

 0 0.2 0.4 0.6 0.8 1

 610

 612

 614

 616

 618

 620

C
o
s
t

In
c
re

a
s
e
 v

s
.

O
p
ti
m

a
l
(%

)

C
o
s
t

($
)

Cleaning Threshold

64 MB Segments
16 MB Segments
4 MB Segments
1 MB Segments

Figure 7: Costs in US dollars for backups in the fileserver

assuming Amazon S3 prices. Costs for the user trace

differ in absolute values but are qualitatively similar.

bandwidth efficiency. We also note that the absolute

costs for the home backup scenario are very low, indi-

cating that Amazon’s pricing model is potentially quite

reasonable for consumers: even for home users with an

order of magnitude more data to backup, yearly ongoing

costs are roughly US$50.

Whereas Figure 4 explored the parameter space of

cleaning thresholds and segment sizes in terms of re-

source overhead, Figure 7 shows results in terms of over-

all cost for backing up the fileserver trace. These re-

sults show that using a simple storage interface for re-

mote backup also incurs very low additional monetary

cost than optimal backup, from 0.5–2% for the fileserver

trace depending on the parameters, and as low as about

5% in the user trace. When evaluated in terms of mon-

etary costs, the choices of cleaning parameters change

compared to the parameters in terms of resource usage.

The cleaning threshold providing the minimum cost is

smaller and less aggressive (threshold = 0.4) than in

terms of resource usage (threshold = 0.6). Furthermore,

in contrast to resource usage, decreasing segment size

does not always decrease overall cost. At some point

— in this case between 1–4 MB — decreasing segment

size increases overall cost due to the per-file pricing. The

results for the user workload, although not shown, are

qualitatively similar.

The pricing model of Amazon S3 is only one point

in the pricing space. As a final cost experiment, we ex-

plore how cleaning should adapt to changes in the rel-

ative price of storage versus network. Figure 8 shows

the optimal cleaning threshold for the fileserver and user

workloads as a function of the ratio of storage to net-

work cost. The storage to network ratio measures the

relative cost of storing a gigabyte of data for a month

and uploading a gigabyte of data. Amazon S3 has a ra-

tio of 1.5. In general, as the cost of storage increases,

it becomes advantageous to clean more aggressively (the

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 1 10

E
s
ti
m

a
te

d
 O

p
ti
m

a
l
C

le
a
n
in

g
 T

h
re

s
h
o
ld

Storage / Network Cost Ratio

Fileserver
User

Figure 8: How the optimal threshold for cleaning

changes as the relative cost of storage vs. network varies.

optimal cleaning threshold increases). The ideal thresh-

old stabilizes around 0.5–0.6 when storage is at least ten

times more expensive than network upload, since clean-

ing too aggressively will tend to increase storage costs.

5.4 Prototype Evaluation

In our final set of experiments, we compare the overhead

of the Cumulus prototype implementation with other

backup systems. We also evaluate the sensitivity of com-

pression on segment size and the overhead of metadata in

the implementation, and the time it takes to upload data

to a remote service like Amazon S3.

5.4.1 System Comparisons

First we provide results from running our Cumulus pro-

totype and compare with two existing backup tools. We

use the complete file contents included in the user trace

to accurately measure the beavhior of our full Cumulus

prototype and other real backup systems. For each day

in the first two months of the user trace, we extract a full

snapshot of all files, then back up these files with several

backup tools:

Incremental tar: Backups using GNU tar and the

--listed-incremental option. This option pro-

duces incremental backups at a file-level granularity.

Duplicity: Backups using duplicity, with encryption

disabled. These backups are much like the incremental

tar backups, except that the rsync algorithm efficiently

captures small changes to files.

Cumulus: Our full prototype implementation.

In all tests, data is compressed using gzip at the max-

imum compression level.

Figure 9 shows the storage costs for the three systems,

taking a single full backup at the start and then incremen-

tals each following day; in the case of Cumulus, all snap-

shots are retained. The initial cost of a full backup in all

three systems is comparable, since all are effectively stor-

ing a copy of each file compressed with gzip. Cumulus

12

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 0 10 20 30 40 50 60

C
u
m

u
la

ti
v
e
 S

iz
e
 (

M
B

)

Days

Incremental tar
Duplicity

Cumulus (no sub-file)
Cumulus (sub-file)

Figure 9: Cumulative storage costs for actual runs of

multiple backup systems.

uses slightly less space since it performs deduplication at

a coarse level (fixed 1-MB blocks), and identifies a small

amount of duplicate data. Second, the rate of growth of

Cumulus and incremental tar backups are comparable.

This result is not too surprising since, in this mode of op-

eration, on each successive day Cumulus backs up most

data in all changed files. Duplicity performs better than

the other two schemes by taking advantage of sub-file in-

crementals. Finally, when sub-file incremental backups

are enabled in Cumulus, its daily upload rate falls so that

it almost exactly matches that of duplicity.

Over the course of the two-month simulation, tar up-

loads 1355 MB in incrementals and duplicity uploads

971 MB. For comparison, Cumulus uploads 1287 MB

without sub-file incrementals, and 1048 MB with sub-file

incrementals. Since duplicity is assumed close to optimal

in generating efficient incrementals, the network upload

overhead of Cumulus is just under 8%.

Duplicity is unable to delete old snapshots as long

as more recent incrementals depend on them. To al-

low daily incrementals to be deleted, we configured du-

plicity to create weekly incrementals relative to the pre-

viously weekly backup, and daily incrementals during

the week. With this configuration, duplicity uploads

1105 MB, more than 5% more than Cumulus. Eventu-

ally, to recover the space from the first full backup, there

must be another full backup—at which point the over-

head for duplicity rises dramatically (another 1200 MB

to transfer).

In summary, the Cumulus prototype further shows that

using a thin cloud service with a simple storage interface

for remote backup suffers little penalty relative to more

sophisticated backup system configurations.

5.4.2 Segment Compression

To isolate the effectiveness of compression at reducing

the size of the data to back up, particularly as a function

of segment size and related settings, we used as a sample

the full data contained in the first day of the user trace:

the uncompressed size is 1916 MB, the compressed tar

size is 1152 MB (factor of 1.66), and files individually

compressed total 1219 MB (1.57×), 5.8% larger than

whole-snapshot compression.

Varying the segment size used to aggregate data for

backup, we calculated the average compression ratios us-

ing gzip and bzip2. Larger segments produce better

compression ratios. gzip compression stabilizes at a 2.7

ratio at a segment size of 300 kB, and bzip2 stabilizes

at 3.2 at 1–2 MB.

5.4.3 Metadata

The Cumulus prototype stores metadata for each file in a

backup snapshot in a text format, but after compression

the format is still quite efficient. In the full tests on the

user trace, the metadata for a full backup takes roughly

46 bytes per item backed up. Since most items include a

20-byte hash value which is unlikely to be compressible,

the non-checksum components of the metadata average

under 30 bytes per file.

Metadata logs can be stored incrementally: new snap-

shots can reference the portions of old metadata logs that

are not modified. In the full user trace replay, a full

metadata log was written to a snapshot weekly, but on

days where only differences were written out, the aver-

age metadata log delta was under 2% of the size of a full

metadata log. Overall, across all the snapshots taken, the

(compressed) data written out for file metadata was ap-

proximately 5% of the total size of the (compressed) file

data itself.

5.4.4 Upload Time

As a final experiment, we consider the time to upload

to a remote storage service. Our Cumulus prototype is

capable of uploading snapshot data directly to Amazon

S3. To simplify matters, we evaluate upload time in iso-

lation, rather than as part of a full backup, to provide a

more controlled environment. Cumulus uses the boto [3]

Python library to interface with S3.

Figure 10 shows the results of our measurements of

upload performance to Amazon S3. As these results are

from one experiment from a single computer (from a uni-

versity campus network), they should not be taken as a

good measure of the overall performance of S3. How-

ever, they do illustrate a few general features relevant to

Cumulus. Upload rates for large (about a megabyte or

larger) files approaches a speed of about 800 kB/s, but

the upload rates for small files are significantly smaller.

This behavior is expected: uploads are accomplished us-

ing an HTTP PUT request; since these requests cannot be

pipelined, there must be at least one network round-trip

for each file uploaded. The upload rates were consistent

with a latency of around 100 ms per upload.

13

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 500 1000 1500 2000 2500 3000 3500 4000

U
p
lo

a
d
 R

a
te

 (
k
B

/s
)

File Size (kB)

Measured Upload Rates to Amazon S3

Figure 10: Measured upload rates for Amazon S3 as a

function of file size. The measurements are fit to a curve

where each upload consists of a fixed delay (for connec-

tion establishment and receiving a status code after the

transfer) along with a fixed-rate upload.

With these rates, files one megabyte or larger are up-

loaded at effectively maximum speed. Other protocols

might support pipelining upload requests, and thus sup-

port better uploads of many small files. However, by us-

ing moderately-sized segments, it is possible to get good

performance out of any protocol, pipelined or not.

For perspective, assuming the maximum transfer rates

above, ongoing backups for the fileserver and user work-

loads will take on average 3.75 hours and under a minute,

respectively. Overheads from cleaning will increase

these times, but since network overheads from cleaning

are generally small, these upload times will not change

by much. For these two workloads, backup times are

very reasonable for daily snapshots.

6 Conclusions

It is fairly clear that the market for Internet-hosted

backup service is growing. However, it remains unclear

what form of this service will dominate. On one hand,

it is in the natural interest of service providers to pack-

age backup as an integrated service since that will both

create a “stickier” relationship with the customer and al-

low higher fees to be charged as a result. On the other

hand, given our results, the customer’s interest may be

maximized via an open market for commodity storage

services (ala S3), increasing competition due to the low

barrier to switching providers, and thus driving down

prices. Indeed, even today integrated backup providers

charge between $5 and $10 per month per user while the

S3 charges for backing up our test user using the Cumu-

lus system was only $0.51 per month.2

2For example, Symantec’s Protection Network charges 9.99 per

month for 10GB of storage and EMC’s MozyPro service costs

3.95+0.50/GB per month per desktop.

Moreover, a thin-cloud approach to backup allows one

to easily hedge against provider failures by backing up to

multiple providers. This may be particularly critical for

guarding against business risk — a lesson that has been

learned the hard way by customers whose hosting com-

panies have gone out of business. Providing the same

hedge using the integrated approach would require run-

ning multiple backup systems in parallel on each desktop

or server, incurring redundant overheads (e.g., scanning,

compression, etc.) that will only increase as disk capaci-

ties grow.

Finally, while this paper has focused on an admittedly

simple application, we believe it identifies a key research

agenda influencing the future of “cloud computing”. The

fundamental question is whether one can build a compet-

itive product economy around a cloud of abstract com-

modity resources or if there underlying technical reasons

that ultimately favor an integrated service-oriented in-

frastructure.

References
[1] AGRAWAL, N., BOLOSKY, W. J., DOUCEUR, J. R., AND

LORCH, J. R. A five-year study of file-system metadata. ACM

Trans. Storage 3, 3 (2007), 9.

[2] The advanced maryland automatic network disk archiver. http:

//www.amanda.org/.

[3] boto: Python interface to amazon web services. http://

code.google.com/p/boto/.

[4] ESCOTO, B. rdiff-backup. http://www.nongnu.org/

rdiff-backup/.

[5] ESCOTO, B., AND LOAFMAN, K. Duplicity. http://

duplicity.nongnu.org/.

[6] FITZPATRICK, B. Brackup. http://code.google.com/

p/brackup/, http://brad.livejournal.com/tag/

brackup.

[7] IBM. Tivoli Storage Manager. http://www.ibm.com/

software/tivoli/products/storage-mgr/.

[8] MUTHITACHAROEN, A., CHEN, B., AND MAZIÈRES, D. A

low-bandwidth network file system. SIGOPS Oper. Syst. Rev. 35,

5 (2001), 174–187.

[9] PRESTON, W. C. Backup & Recovery. O’Reilly, 2006.

[10] ROSENBLUM, M., AND OUSTERHOUT, J. K. The design and

implementation of a log-structured file system. ACM Trans. Com-

put. Syst. 10, 1 (1992), 26–52.

[11] rsnapshot. http://www.rsnapshot.org/.

[12] Sqlite. http://www.sqlite.org/.

[13] SUMMERS, B., AND WILSON, C. Box backup. http://www.

boxbackup.org/.

[14] TRIDGELL, A. Efficient Algorithms for Sorting and Synchroniza-

tion. PhD thesis, Australian National University, Feb. 1999.

14

