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Abstract

Mixed Variational Bayesian Learning Methods and Inverse Prediction of Continuum
Deformation Mappings

by
Chao Wang
Doctor of Philosophy in Civil and Environmental Engineering
University of California, Berkeley

Professor Shaofan Li, Chair

In this dissertation, I present a computational framework to predict the inverse deforma-
tion mapping. Under this framework, two algorithms have been developed. The first one is
called the material deformation finding (MDF) algorithm with a specific application in ad-
ditive manufacturing. This method is designed to quantify the permanent (non-zero strain)
continuum/material deformation. Different from physical-based modeling, the method de-
veloped here is based on a data-driven statistics approach, which solves the problem without
needing information about the physical deformation process. The proposed method relies
only on the scanned material data from the thermal distorted configuration as well as the
shape of the initial design configuration. In this work, the MDF algorithm was first validated
by a 2D synthetic example. We then demonstrate that the proposed MDF method can accu-
rately find the permanent thermal distortion of a complex 3D printed structural component,
and hence identify the thermal compensation design configuration. The results obtained
in this work indicate that one can use this data-driven statistics approach to significantly
mitigate the thermal distortion of 3D printed products in additive manufacturing.

The second algorithm developed is a mixed variational Bayesian learning finite element
method (VBL-FEM), based on a Bayesian statistical continuum mechanics theory, in which
elastic potential energy is used as a prior in a Bayesian regularization network, which can
intelligently recover unknown continuum deformation mapping with only the information of
the shapes of the deformed and undeformed continuum body without knowing actual bound-
ary conditions, both traction as well as displacement boundary conditions and the precise
material constitutive relation. Moreover, we also develop the related finite element formula-
tion in a computational probabilistic mechanics framework. Using a data-driven likelihood
function, we construct an entropic variational principle of continuum mechanics based on
the maximum a posteriori (MAP) probability estimation and Bayesian regularization. By
solving the probabilistic Galerkin variational problem, we also demonstrate in several exam-



ples that the proposed method is able to inversely predict continuum deformation mappings
with strong discontinuity or fracture without knowing the external load conditions. This
long-sought-after inverse problem solution has been a major challenge in structure failure
forensic analysis in the past several decades, and the proposed method provides a machine
intelligent solution for it.
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Chapter 1

Introduction

1.1 Motivation and Backgrounds

In continuum solid mechanics, under external loading, a continuum object deforms from the
referential configuration €2y to a deformed configuration €2,. This deformation process can
be described by a continuous function v : Qx — €2, which is called as the deformation map
or mapping (see Fig. 1.1). The fundamental problem of continuum mechanics is to find the
deformation mapping under given boundary or loading conditions. Boundary value problem
solutions in continuum mechanics have been well developed including analytical solutions as
well as numerical solutions, such as finite element solutions [98].

However, in many engineering applications, we do not know the boundary conditions,
and in many cases we do not even know the precise material properties [15]. This is because
in many engineering applications, those information are either unknown or incomplete. For
instance, after a traffic accident, one can have the image of the car wreckage configuration
without knowing the details of the car collision process, and thus it is impossible to find the
crash deformation map by using forward analysis or calculation. The only known information
or data available is the deformed configuration of the continuum object, which may be
obtained by various image processing procedures. Nevertheless, we would like to know the
precise deformation field of the continuum object, so that we can find the strain and maybe
even stress field of the continuum. This is the fundamental inverse problem of continuum
mechanics.

Another major application for the inverse problem is in additive manufacturing (AM).
AM has become an emerging technique in various engineering and technology disciplines as
a result of its many technical benefits, which include unprecedented design flexibility and
low lead times [38, 30]. Three-dimensional (3D) printing technology is distinguished by its
ability to directly manufacture complicated structures and reduce the waste associated with
traditional production [17, 9, 60]. During the production process that uses 3D printing,
the level of geometric complexity has no effect on the amount of construction efficiency.
Therefore, no extra work is necessary to design the molding structure, which makes 3D
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Reference configuration W Deformed configuration

Figure 1.1: Schematic illustration of deformation mapping of a continuum solid.

printing a highly promising production approach [62, 92]. In light of the bright prospects
it presents, research efforts have been stepped up across the board in the manufacturing
industry, as well as in the fields of material science, computational mechanics, and artificial
intelligence [54, 11, 95].

Despite these promising aspects, one of the primary problems for large-scale industrial
uses of 3D printing technology is figuring out how to minimize or limit structural distor-
tion of the items that are formed during 3D printing processes, as illustrated in Fig. 1.2.
Because of this structural distortion, the benefits of accuracy and production in a single
step are significantly reduced. Melting materials into a liquid or mushy condition is of-
ten the first step in the normal 3D printing process. Next, the melted material is swiftly
prototyped into a variety of different specified forms. This procedure includes a significant
increase or decrease in temperature, which causes the material to shrink, as well as a variety
of thermally-induced permanent deformations and any residual stresses that were created
during the printing process. This is not a straightforward thermal-mechanical procedure. It
is a complicated interaction between and within the material layers in various stages and
temperatures. Variations and oscillations in the underlying process parameters control its
behavior [89, 76, 22].

The inverse problem-solving method may be used to assess and correct thermal distortion
in AM [44, 5] systems. For instance, this new compensation strategy may consist of two parts.
First, post-process measurements make it simple and accurate to determine the deformed
shape of a printed item. Second, the inverse problem-solving technique may be used to detect
and quantify the distortion field and develop a new design with compensation.

In this particular scenario, the inverse forensic analysis [20] may be carried out once it
has been determined how to infer the missing information, such as the pre-crash speed and
angle, by the use of machine learning (ML) techniques that are based on the inverse analysis,
for example. However, in order for the ML-based inverse solution to operate, the permanent
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Figure 1.2: An example of thermal distorted 3D printed product: Distortion on a 3D printed
Inconel competent heated only from below (left) versus the same Inconel component that
was made when heated from above and below (right).

plastic deformation field must still be sent to the deep learning neural network as an input.
Despite the significant progress that has been made in the forward computation of solid
mechanics, the inverse prediction continues to be a difficult subject [16, 86].

Over the course of many decades, a variety of theoretical and numerical approaches to
solving inverse problems have been developed. For instance, Alves et al. [2] came up with
a theoretical formulation to describe the inverse scattering for elastic plane fractures, and
they proposed it. Ballard et al. [6] spoke about reconstructing the stress field based on
the observations of the stress on the boundary. A mathematical-physical framework was
provided by Weglein et al. [90] for the inverse scattering series. Guzina et al. [35] developed
a different analytical framework, which they called the inverse scattering of elastic waves.

In recent times, due to the rapid advancements made in fields like as artificial intelligence
and data science, techniques that are based on machine learning have garnered a lot of
attention. Deep neural networks [53], also known as DNN, have the best performance of all
machine learning techniques across a wide variety of applications, including computer vision
(CV) [87] and natural language processing (NLP) [39].

Besides the achievements in computer science, DNN is also applied to the inverse problem
solutions in mechanics. Chen et al [19] proposed a novel deep learning inverse solution to
determine the loading conditions of shell structure. After training the DNN, the loading
can be identified by the information of the plastic deformation of a shell structure. Ni et
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al [69] discussed the application of DNN on identifying the elastic modulus based on the
measured strain field. By collecting typical representative of shear modulus, the trained
DNN can learn the mapping between stress and strain with high accuracy. A deep energy
approach [80, 68, 50| was also proposed to identify the displacement field by structual energy
informed DNN. In the field of computational mechanics, in addition to feed forward neural
networks, an image-based concurrent neural network (CNN) [33] was also included in the
research. A unified solution for both forward and inverse problems was developed by Gao et
al [31]. using a physics-informed graph neural Galerkin network. Piecewise polynomial basis
function was used to interpolate the search space, as opposed to standard physics-informed
neural networks (PINNs) that have insufficient scalability and strict boundary enforcement.

The speed of offline training is one of the primary obstacles to the implementation of
deep learning algorithms in mechanics. Another obstacle is the difficulty of interpreting the
physical meaning of the model. In general, DNN functions as a black box inside the frame-
work. One might easily adapt it to a certain case. However, it is challenging to explain and
use the application in a broader context. In order to address these drawbacks, approaches
based on the Gaussian mixture model (GMM) [79] have recently been used to inverse anal-
ysis. The current non-rigid registration method is not designed to inversely recover the
three-dimensional continuum deformation mapping in engineering applications, where many
deformations may be discontinuous or have strong discontinuities. And it is limited to the
the one-to-one matching process of data points on the peripheral or configuration boundary
of a continuum object.

1.2 Overview of the Dissertation

The aim of this work is to construct a framework for the inverse prediction of continuum
deformation mappings. In order to do so, two different methods are developed which are the
material deformation finding (MDF') and variational Bayesian learning finite element method
(VBL-FEM). The MDF algorithm described in this dissertation have been published by the
dissertation’s author previously in [88].

The organization of this thesis is given as follows.

Chapter 1 describes the motivation and background of the dissertation. The background
and the significance of the inverse problem in mechanics are introduced. In particular, the
application of the inverse deformation finding to additive manufacturing is discussed in detail
in this chapter. Then the limitations of current models both the numerical simulation based
and the machine learning based are discussed.

Chapter 2 provides a description and summary of both the mechanical concepts and
statistical concepts. For the concepts in mechanics, it introduces and summarizes the inverse
problem statement, the weak form and variational form of the mechanics problem, and
the finite element method (FEM). For the concepts in statistics, it presents the maximum
likelihood estimation (MLE), Gaussian mixture model (GMM), expectation-maximization
(EM) algorithm, and coherent point drift (CPD) algorithm.
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Chapter 3 introduces the MDF' algorithm. This MDF algorithm is developed to quantify
the compensation of the thermal distortion in additive manufacturing. The motivation
and application of this algorithm are explained. Comparisons between the MDF and CPD
algorithms are also discussed.

In chapter 4, we developed the VBLL-FEM based on a Bayesian statistical continuum
mechanics theory, in which elastic potential energy is used as a prior in a Bayesian regu-
larization network, which can intelligently recover unknown deformation mapping without
knowing external traction loading conditions as well as the displacement boundary condi-
tion. Moreover, we have developed the related finite element formulation in a computational
probabilistic mechanics framework.

In chapter 5, several numerical examples are performed and discussed. First, the MDF
algorithm is validated and compared by a synthetic 2D example under non-uniform defor-
mation. Then, it is applied to quantify the deformation fields for additive manufacturing
for both the lattice structure and the double cantilever bean structure. Several numerical
examples for the VBL-FEM algorithm are also discussed in this chapter. Those examples
include both the elasticity and plasticity problems in both 2D and 3D.

This dissertation is summarized in chapter 6. Comments and perspectives on the MDF
and VBL-FEM algorithms are also given.



Chapter 2

Related Work and Problem
Statements

This chapter discusses the related work and problem statement. It first introduces the me-
chanical problem statement and the inverse of it. Then, the alternative forms and numerical
methods of the mechanical problem are also discussed. Finally, several useful statistical
methods are introduced for self-containedness.

2.1 Forward and Inverse Problem Statements

Forward Problem Statement

Let 2 and 1(Q2) be the reference configuration and current configuration in R" respectively
(shown in Fig. 1.1). Points X € ) are called material points. Then a deformation mapping
1) is defined as a mapping from €2 to ¥ (£2), which assigns a new position & to each material
point X in () as,

x=YP(X). (2.1)
Therefore, the reference and current configurations can also be denoted as 2y and 2, re-
spectively.

Given boundary conditions and a constitutive model, for infinitesimal deformation, the
conventional continuum mechanics can determine the deformation mapping or the associ-
ated displacement field by solving the following boundary-value problem (BVP) that can be
summarized below:
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Infinitesimal Mechanical Problem (Strong form).
Find ¢ : Q@ — ¥ (22) C R™ and the corresponding displacement field u = ¢ (X) — X,
satisfying

divie(u)]+b =0 in Qx,

u=1u on I',, (2.2)

o-n=t on Iy,

where b is the body force per unit volume; t is the prescribed traction on the traction

boundary, and u is the imposed displacement on the displacement boundary. The

stress o = o (u) is determined by the given constitutive model, and the strain field is

defined as e(u) = SymV ® (u).

Note that in Eq. (2.2) Q € R" (for n = 1,2,3) is a continuous bounded domain with
essential boundary condition I',, and natural boundary condition I';. In order to have a well-
posed problem, all points on the boundary I' must have one but only one type of boundary
conditions. This can be expressed by Eq. (2.3),

r,.NnT'y=@o and T',Ul'y =00. (2.3)

Next let us consider the three-dimensional cases. If the stress tensor is represented by
Cartesian component
011 012 013
[O’] = 091 0922 093 y (24)
031 032 033
then its divergence can be expressed as

%)

011 012 013 e 011,1 + 0122 + 0133
. )
[div(e)] = | 021 022 023 35 | = | 0211 T 0222+ 0233 ) (2.5)
9
031 032 033 Fas 031,1 + 0322 + 0333
. . 8 ..
where z;, 7 = 1,2, 3, are the Cartesian components of x, and 0, = 8‘;’}:.

By assuming a linear elastic isotropic material, the constitutive relationship between the
Cauchy stress o and infinitesimal strain € can be expressed as
ow
o =— = Mrle|l + 2ue, 2.6
e €]l +2p (2.6)
where W = W (e) is the strain energy density, I is the identity tensor, while A and p are
with Lamé constants.
[V ® u] is the gradient of u expressed in Cartesian component form as

Uq Uyl U2 U3
[V X U] = U9 [ 91 Oza Ozs } = U1 U22 U23 s (27)
us U311 U322 U33
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where u;,7 = 1,2,3 are the Cartesian components of the displacement u and w;; = gg?.
J
Therefore, the strain tensor can be represented as
1 1
€11 €12 €13 U1 5 (u1,2+ u21) 5 (ur3+us1)
1 1
€] = | e €20 €23 | = 5 (w12 + u21) U3 2 5 (ug3 +us2) | - (2.8)
1 1
€31 €32 €33 5 (urs +ugy) 5 (uzs+usp) us3

An example of a 2D boundary value problem is shown in Fig. 2.1.

t=t on T}

u=u on I,
u=u on I'y,

Figure 2.1: Schematic of a boundary-value problem in solid mechanics.

In the BVP of the Navier equation of linear elasticity, displacement field u(X) is the only
unknown. To solve the linear elasticity boundary value problem stated in Eq. (2.2), the
boundary conditions, external loads, material constants and reference configuration must be
given. These conditions are the inputs to a chosen partial differential equation (PDE) solver,
e.g. finite element method (FEM).

Inverse Problem Statement

The inverse problem referring to the above forward solution is that we aim to solve the
above problem without knowing the boundary conditions including the precise information
on I, and I'; as well as the precise material constitutive relations. The only information
that we have is the referential configuration of undeformed solid body, or the shape of the
undeformed body, 2 and the the deformed configuration of, or the shape of, the solid body
). Mathematically, we seek to find an one-to-one deformation mapping such that

x=(X), V x€Q,, andV X € Qy. (2.9)

In passing we note that ¥ (£2) needs not to be continuous everwhere, and it may contain
strong discontinuity, such as cracks. Since the displacement field determines the deforma-
tion map, we need to find the displacement field in this inverse problem setting, in which the
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external loading conditions are unknown, and the displacement boundary conditions are also
unknown. The only available information is the general shapes of the reference configuration
and current configuration, as described in Fig. 2.2. The comparison between the linear
elastic BVP and its inverse deformation map recovery problem is illustrated in Fig. 2.2. In
applications, this type of problems often occurs in material and structure forensic analysis,
structure failure analysis, as well as general deformation measurements in complex engineer-
ing setting such as nanoscale deformation measurement, determining plastic deformation of
a crashed vehicle, determine 3D printed product shape distortion, and hazard environment
deformation probe, among many others. In the above situations, we only have the image or
scanned data of the deformed structure parts, but we do not know the displacement field for
given material points, which is usually impossible to measure.

~

~

h

Material
Properties
or not

Figure 2.2: Comparison between the boundary-value problem and its inverse problem.

2.2 Variational Form and Weak Form in Mechanical
Problems

Introduction to the weak form

The equations shown in Eq. (2.2) are refered to as the strong form. This is due to those
equations require strong regularity of the basic unknown field u(X). Note that the first
equation in Eq. (2.2) applies two derivative to the unknown field u(X). Therefore, one must
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require that the second derivatives of u(X) make sense (they exist and are continuous). In
some realistic circumstances, these constraints might be too strict. Next, an alternative form
of the same problem that does not require these strong regularity conditions is developed.
It is the so-called the weak form.

These steps can be taken to manipulate the BVP as follows. We first introduce the
following space of functions

Vy={0u:Q—R":0u=0 on TI,} (2.10)

After multiplying the first equation in Eq. (2.2) by a general function du(x) (du : 2 — R")
and integrating over () clearly we obtain

/[diva+b] - Jud = 0, (2.11)
Q

for all functions du(x). Integrating by parts (Gauss theorem) the first term in this equality
we obtain

/51,1' (le(O’))dQ = / 5Uigij,de
Q Q

:/<5UiO'ij)de—/5ui7jO'ide

Q ’ Q

= 5uiaijnjdf—/6ui7jaijd§2
o0 Q

:/ 5uiaijnjdf—/6ui,jaide,
Iy Q

given the symmetry of the stress tensor . We have also used the notation e(du) := V*du =
(V5u—|— (V5u)T) /2. With this choice, the boundary integral vanishes outside I'; where
on =t (given). Combining then this result with the original equation, we obtain

(2.12)

/ o :e(du)df) = / b - dudf? +/ t-dudl VYoue), (2.13)
Q 0

ry

The above development can be summarized as follow:
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Infinitesimal Mechanical Problem (Weak form).
Find u: Q — R" satisfying the essential boundary conditions u =u on I';,, and

/ o :e(du)df) = / b - dudf2 —i—/ t-oudl You eV, (2.14)
Q Q

Iy
where the set of kinematically admissible variations V, is given by
Ve={u:Q—=R":fu=0 onl,} (2.15)

where o is given in terms of the unknown function u by the constitutive and compat-
ibility relations, that is, & = &(e(u)) with e(u) = V*u.

Remark 2.2.1. The weak statement in Eq. (2.14) enforces weakly equilibrium , whereas the
constitutive relation (o = &(g)), compatibility (e(u) = V°u) and natural boundary condi-
tions (u =w on I',) are enforced strongly or pointwise.

Introduction to the variational form

The weak form in Eq. (2.14) can be applied to both elastic and inelastic materials. In
particular, for elastic material and elastic problem, a wvariational form of the equilibrium
equation can be given as below.

Firstly, a conservative system can be defined as follow:

1. The constitutive relation is given by a stored energy function W = W (e) with
ow

=5

2. The external load can be represented by a functional Il..;(u), such that the (minus)
external virtual work in an admissible variation du is given by

:_/fﬁwﬁi/f&MT (2.17)
Q Iy

o =6(e) (2.16)

d
ezt (u, du) == d—nﬂm(u + nou)

n=0

Then, the variational form of the infinitesimal mechanical problem can be represented as

~N

Infinitesimal Mechanical Problem (Variational Form).
Find u : © — R", satisfying the essential boundary conditions u = u on I',, that
makes stationary the potential energy

M) = [ W(e()d + () (2.18)

among all admissible variations du € V,.
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It can be shown that the variational form statement implies the the weak form statement.
The stationary condition for attaining the extreme of II(u) is,

d
6]._.[ = d_T]H (un)

= 0. (2.19)

n=0

Follow the calculation, we arrive at the following result

ow de (u,)
Sl = | — (e (uy—0)) : 1 dQ) + 611y, 2.20
0 85 ( ( Ui 0)) dn =0 t ( )
where p
e (uy) = e = V*(0u) = e(éu). (2.21)
dn - ,=o

After substituting the Eq. (2.21) into Eq. (2.20), we arrive at

5T = :/Qé'(s(u)) ;e<5u)d9—/

b - dud) — / t-oudl =0, (2.22)
Q Iy

which is the weak form shown in Eq. (2.14).

2.3 Synopsis of Finite Element Method

Nowadays, a lot of people employ finite element methods to numerically address structural,
fluid,, and multiphysics issues [8, 77, 10]. The idea of FEM is to impose the Eq. (2.14)
not for all test functions, but rather for a specific set that can be handled simply (that is,
that may be described by a finite set of them). That will provide an approximate solution,
enforcing in this case equilibrium approximately. For FEM, the class of functions is piece-
wise polynomials.

In the finite element approach, the interpolation functions must be selected in order
to approximate the main field variable displacement u(X). As a result, the mathematical
model’s precise solution is estimated to within one finite element by

Uesact (X) & up(X) = > Ny(X) uy, (2.23)

where N; are the shape functions which are defined in a finite element €).. Similarly, the
virtual displacement du can also be estimated as

Mexaer (X) & 0wy (X) =D Ny(X) duy, (2.24)
I=1
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a) Ay 4 (xy, . L
(a) A (14 }4] 3 (_1‘34 v2) (b)

3(1,+1)

=
S

1 (v, vp) ' 1(-1-1)  2(1-1)

Physical coordinates Natural coordinates

Figure 2.3: Quadrilateral element in the geometric and natural coordinate systems.

Eq. (2.23) and Eq. (2.24) can be write compactly as
u, = [N°[u] , du, =[N [ou’] (2.25)

The whole reference configuration can be discretized by a set of finite element:
O~ Q" =0, (2.26)
e=1

where n, is the number of finite element in the reference configuration. The unknown
nodal displacement is represented by u;. For three-dimensional displacement, the nodal
displacement can be represented as u; = [uy, ug, us]?.

As one can see from Eq. (2.23), the main variable u is interpolated by the shape func-
tions N;. The isoparametric notion [7] is mostly employed as an interpolation approach for
numerous engineering problems due to its broad applicability. Under this concept, one use
the same shape functions N; to interpolate both the geometry and displacement. That is to
say,

X, = zn: Ni(X) X;. (2.27)

Forming the shape functions N;(X) directly is too burdensome. In practice, for the two
dimensional case, the physical coordinates system is represented by the natural coordinate
system of £ and 7 as shown in Fig. (2.3). Both ¢ and 7 are in the range -1 to 1 (refer to as
O=[-1,1]%).

For example, the shape functions for bilinear quadrilateral element is given as,

Ni(€,m) = 3 (14 €6) (1) (225)

where £; and n; are the natural coordinates of the node /. Similar equation can be deduced
for quadratic elements.
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In practice, the stress and strain are represented by the Voigt’s vector notation

T
[5]2[811 €92 £33 2812 2623 2631] s (229)

T
ol =[on 02 033 012 093 o3 | . (2.30)

Then the stress-strain relation can be written using the vector convention as
[o] = [Dlle], (2.31)

For linear elastic material in three-dimentional domain, the elasticity matrix [D] can be
represented as

_0'11_ _/\+2/JJ A A 0 0 O_ _511_
099 A )\ + 2/,L )\ 0 O 0 £929
033 . A A A+ 2,u 0 0 0 €33
012 - 0 0 0 12 0 0 2612 ' (232>
0923 0 0 0 0 12 0 2523
| 031 | | 0 0 0 0 0 moL 2831 ]
For plain strain, the above equation can be reduced to
011 A + 2/,6 A 0 €11
099 = A A+ 2,u 0 €929 . (233)
012 0 0 2 2e12
One can rewrite the weak form in Eq. (2.14) using the vector forms as
/ (e (6w)]7 [D][e(w)]d2 = / Su]T[F]dO + / (5w [Edr" (2.34)
Q Q T

Note that the relationship between strain tensor and displacement vector can be expressed
as

S T
€11 Oz g 0
€22 0 dzo 0
o 0o 0 2 Uy
= 9 9 Oz3 (%) . (235)
2612 5" A 0
Oxo 851 3 U3
€ 0 0
L =3l | s 0 aar
If we define the strain-displacement matrix as
- ON¢
or1 8](376 0
0 2% 0
T2
0 0 o
el __ o
[B7l = | ane one 83 : (2.36)
Oz oz,
0 ONt  ONg
Oxs ox.
oNp Ty oM
L Ox3 Oxr1
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Therefore, the relationship between strain and displacement can be expressed as
e (w)] = [B[u] , [e(dup)] = [B[ou’]. (2.37)

The weak form in Eq. (2.34) can be applied to element e, such that

/ 6[5(5uh)]T[D] e (uy,)] dQ = / (o] [£]dQ + / [6up]” [t]dr. (2.38)

oQeNI'y

e

Appealing to Eq. (2.25) and Eq. (2.37), the preceding weak form is written as
/ (B7] [5u))” [D] ([B] [u]) €2
= [ N gae [ (N )" g

eI’y

(2.39)

o] H / B D] B dQ} ] — / N a0 /8 N [E]df} —0. (2.40)
Due to the arbitrary nature of [du®], Eq. (2.40) leads to the linear system
K] [u] = [F], (2.41)

where
K= [ [B9" D) B
’ (2.42)
7] — / N [fla0 + /a N

[K¢] is the element stiffness matrix, [F€] is the element load vector. Finally, the element
local linear system can be assembled to arrive at the global system

(K] [u] = [F], (2.43)

[u] = K]~ [F]. (2.44)

2.4 Overview of Related Statistics Methods

This section begins with a quick overview of various important ideas and concepts in statistics
and machine learning. It is intended to guide readers through the development of the Co-
herent Point Drift approach, so that they may have a firm understand of the new algorithms
offered in the following chapters.
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Maximum likelihood estimation

Estimation theory [45] is a subfield of statistics that focuses on estimating the values of
parameters based on measurable empirical data that includes a component of randomness.
maximum likelihood estimation (MLE) is one of the parameter estimation methods which
estimates the parameters by maximizing the likelihood function [67, 71]. The definition of
the likelihood function Ly (60 | X) is given as follows,

N

Ly@O|X)=]]r(x:10), (2.45)

=1

where X, ..., Xy are random variables, f (X | €) is the probability density function (PDF)
for the random variable X with parameters @ = [0y,0,, ..., 60;]. MLE assumes that the ran-
dom variable X7, ..., Xy are independent and identically distributed (IID). The estimated
value of model parameters 6 can be calculated by maximizing the likelihood function over
the parameter space O,

~

0 = argmax Ly(0 | X) . (2.46)
0co

The log-likelihood function is defined as
In(O | X) =1log Ln(O) . (2.47)

The same model parameters @ maximize both £y(8 | X) and (8 | X).

In general, it is more convenient to work with the log-likelihood, This is because the
asymptotic properties of sums are easier to analyze, and the summation is more stable than
product in numerical calculations. MLE possesses a number of optimal properties, such as

sufficiency, consistency, and efficiency. The in-depth discussions of those properties can be
found in [18, 23].

The Gaussian mixture model and the expectation-maximization
algorithm

The common probability distributions, such as Gaussian distribution and the gamma dis-
tribution, are generally uni-modal. In practical applications, the data are multimodal. For
instance, the fictitious data points shown in Fig. 2.4(a) are apparently bi-modal. Therefore,
in order to model the multi-modal data sets, a mixture model technique needs to be applied.

One way to generate a bi-modal distribution is by using the so-called Gaussian mixture
model (GMM) [79, 58]. For this example, the distribution can be modeled by a mixture of
two Gaussian distributions:

Xy~ ¢M170'1 ::N(Mlvg%) )

Xy ~ ¢u2702 =N (u%gg) ’ (248)
X=(1-A)- X +A- X,
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|—estimated model|
0.3 — 0.3 7
0.25 - 0.25
Z 02f Z 02f
o) o)
5 0.15 5 0.15
0.1 0.1
0.05 0.05

Figure 2.4: Gaussian mixture model example: (a) Histogram of data; (b) Gaussian mixture
model fitted by maximum likelihood estimation.

where N (p, 0?) is the standard notation for the normal or Gaussian distribution with mean
i and variance o?; X; and X, are two independent random variables that are normally
distributed with dlfferent parameters. The parameter A may be viewed as a discrete random
variable A € {0,1} with P(A = 1) = 7, where 7 € [0, 1] is a parameter. A is also referred
to as the latent variable which is not directly observed, but inferred from other observed
variables. The new random variable X can model the bi-modal distribution with a two-step
procedure. First, the value of A can be generated based on its probability value 7. Then,
the value of X can be calculated by the values of X; or X5, and A.
In this example the model parameters are

0= <7T7M170%7M27U§)' (249)

With the data in Fig. 2.4(a), the model parameter € can be fitted by the MLE. Let ¢g(x)
denote the Gaussian distribution. Then the log-likelihood function of the N data points will
be

N0 ] X)= Zlog (1 — 7)o, (Xy) + 7, (X)) (2.50)

Note that the above expression can be extended to random vector X |, i.e
N0 | X) Zlog (1 — ), (Xi) + ma, (X,)], X; € RP (2.51)

where D is the dimension of the vector space.

Maximizing ¢ (0 | X) directly is quite challenging, due to the sum of the terms inside the
logarithm. In actual computations, in order to maximize ¢y (80 | X), a so-called expectation-
maximization (EM) algorithm [24, 13] is used, which is an iterative or alternating method
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to find the maximum likelihood estimators on various incomplete data sets in statistics.
Precisely, the EM algorithm can use an iterative approach to find the maximum likelihood
estimation of interested parameters in the statistics model which heavily depends on missing
data or the so-called latent variables.

In the EM algorithm, the first iterative step is a soft imputation of the missing data with
“old” parameter values for all its possible values (E-step). For instance, the probability of
A, for i-th data points is given by Bayes rule,

P (A | Xi) = p(A)p (Xi | A) /p (X)) (2.52)

The second step is to update model parameters with the given imputed data (M-step) by
minimizing the objective function £y with respect to the "new” parameters.

N M

Lo == p"(A; | Xi)log (0" (A))p"" (X, | A)) (2.53)

i=1 j=1

By following the EM algorithm, the parameters of GMM in the example are fitted with
the data. The fitting result is shown in Fig. 2.4(b). The above example shows that the
centroids of each Gaussian distribution in GMM move to the dense areas where most data
points are located. The above phenomenon is the core concept in the CPD algorithm.

The CPD algorithm

Since there is a resemblance between the continuum/material deformation finding algorithm
and the original CPD algorithm [65, 66], for the sake of self-containedness, a brief review
of the CPD method for the non-rigid point registration is provided in this subsection. The
main notations in CPD are listed in Table. 2.1.

Table 2.1: Table of Notations in CPD

Symbol Description

D Dimension of data space (2 or 3)
N Number of points in un-deformed configuration
m Number of points in deformed configuration
XnNxD The node positions in un-deformed configuration
Xomx D The node positions in deformed configuration
o? Variance of Gaussian distribution in GMM
x(X) A general deformation mapping function which maps

the un-deformed configuration to the deformed configu-
ration
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The CPD algorithm was first proposed and developed by Myronenko and Song [66]. An
example of a registration problem, which can be solved by the CPD algorithm, is illustrated
in Fig. 2.5(a). The CPD algorithm first assumes that two point sets are given: (1) X;,xp =
(x1,. .. ,xm)T is the first set of data for spatial point positions in the deformed configuration,
and (2) Xyxp = (Xq,... ,XN)T is the second set of point positions in the un-deformed
configuration. In the later part of the paper, we use the shorthanded notation x to denote
XmxD = (X1, .. ,xm)T and X to denote Xyxp = (Xq, ... ,XN)T.

After having those two point sets, the goal of this registration problem is twofold: (1)
Align two point sets and identify the correspondence pairs of points (Xy,x;), and (2) Find
the non-uniform deformation map y.

Underformed Deforme.d Underformed Deformef:i
Configuration X Conﬂgura‘tn-:r] . Configuration Configuration

000000000000
o o

(a) (b)

Figure 2.5: The comparison between the non-rigid registration method and material de-
formation finding method: (a) Non-rigid registration problem in computer vision vs. (b)
Material deformation finding problem in 3D printing and continuum mechanics .

The point set registration in the CPD algorithm is formulated as a Maximum Likelihood
Estimation (MLE) of a Gaussian Mixture Model (GMM). For example, one can choose Xy p
as the data points and x,,xp as the GMM centroids. Then the probability density function
can be defined as

p(X;]0) = w) > p(A)p(Xs | &) +wp (X |A=m+1), (2.54)
7=1
where A € {1,2,--- ,m+ 1} is the latent variable, and 6 contains all the model parameters.

A =1,2,--- ,m correspond to the GMM; A = m + 1 is an added degree of freedom for
outliers, and I = 1,2,--- | N are indices for the data points. Here p(X; | A = j) is the
conditional probability of the data point X; with respect to the j-th Gaussian distribution in
GMM, while p(A = j) is the membership probability. Here we assume that each component
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probability shares the same value,
p(A=j)=—. (2.55)

In order to take into account noises and outliers, a uniform probability density function

P | A=m+1) = — (2.56)
N
is adopted for the mixture model. Then the final density function is a mixture model of
the original GMM and a uniform distribution with parameter w which represents our prior
belief of the level of noise in the data.
In the original CPD algorithm, the covariance matrices ¥ for each Gaussian distribution
are assumed to be the same, i.e.

Y= =5 =01, (2.57)

where I is the identity matrix, and all covariance matrices are controlled by the variance
o%. The model parameters @ contain the centroids of each Gaussian distribution and the
variance

0 = (x1,X2," " ,Xpm,0°). (2.58)
Then the conditional probability density function for the I-th data point X; on j-th
component in GMM is given as,

p(Xr | 4Aj) =

(27r02)D/2 exp(— 202

where the space is D-dimensional. In the registration cases, D usually equals 2 or 3. Finally,
the probability density function p(X; | @) can be expressed as

1 (1-w) & 1 X — %, 2
X, | 60) = w— exp(— =), 2.60
piX:8) N i m Z (2mo2) P/ P 202 (2.60)

By considering a statistical MLE, in which one maximizes the probability for each data
point by moving the GMM centroids, the spatial points move to align (overlap) with the
second set of data points in the undeformed configuration. That is to say, at the optimum,

we match the points in two sets and obtain the correspondence pairs of points (X, x;).
The likelihood function in the CPD algorithm is defined as

N

Lx(01X) = [[p(X: 1 6). (2.61)

I=1
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Thus, in essence, the model parameter set 6 is updated by maximizing the likelihood func-
tion, such that the GMM centroids can converge to the data point set X. That is

6 = argmax log<£N(0 | X)) (2.62)
0

In actual computations, the likelihood function is maximized by the EM algorithm, the
objective function L in t-th iterative step is defined as

m N 9 N.D
(t-1 12
Lo (6807D) o 1)2 ZZpt V(A X)) HX[—X N+ 222 10g ™" (2.63)
J=1 I=1
where 8¢—1) = (X&til),ngl), R oD%} is the model parameter set and x("1 are

the intermediate GMM centroid locations after ¢-1 iterations in EM algorithm;

Ny = i Zp(tfl) (Aj | Xr), (2.64)

j=1 I=1
2)

) + (2no0) M

and

Xjfxgvtfl)
o(t=1)

exp (—%
PV (A | X)) =

2.65
M 1 X[—X§t—1) 2 ( )
Zj:l exp -3

o(t—1)

The new model parameter 8® is obtained by maximizing the Lo (O(t_l)) in t-th M-step,
that is
0® = argmax L (O(t_l)) . (2.66)
0

By maximizing the likelihood function in Eq. (2.61), the GMM centroids (red) move
towards the data points (blue) as shown in Fig. 2.6. However, the GMM centroids may
move coherently by following the topological structure as shown in Fig. 2.6(a) or move
randomly as shown in Fig. 2.6(b). Both the registration results in Fig. 2.6(a) and Fig.
2.6(b) indicate the same value of likelihood. Therefore, maximizing the likelihood function
alone cannot guarantee a matching result which preserves the topological structure.

The essence of the CPD algorithm is to ensure that the topological structure of data sets
is preserved during the registration process as shown in Fig. 2.6(a). In order to distinguish
the differences between Fig. 2.6(a) and Fig. 2.6(b), one may need to add a prior term R to
the objective function L and convert it into a Maximum A Posteriori (MAP) estimation.
The prior term encodes our belief of coherent movement and smoothness of the displacement
field. The new objective function can be cast as

ﬁQR (9) = EQ (9) + AR (u) , (267)
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o ®

Figure 2.6: (a) A coherent registration between two point sets. (b) A less coherent registra-
tion between two point sets.

where \ is the trade-off parameters which defines the strength of regularization. Specifically,
the regularization term used in the nonrigid CPD algorithm is expressed as

[ )P
R (u) = /R » &0 ds, (2.68)

where G(s) is the Gaussian kernel which is defined as

B

where (8 is the width of the Gaussian kernel, and u is the Fourier transformation of the
displacement field which is defined as u = x’ — x. The integration is taken in the reciprocal
space with the wavenumber s. This regularization term can first filter the high spatial
frequency part of the displacement field and then add penalty on it. By penalizing the high
spatial frequency energy, this regularization term forces the displacement field to put more
energy on the low spatial frequency domain, hence smoothing the displacement field.

After defining the constraint on mapping the minimizer that minimizes Eq.(2.67) can be
obtained as follows,

G(s) = exp (—”282) , (2.69)

u(X) =) viG(X - X;) (2.70)

where v; is the unknow parameter and the detailed derivation can be found in Appendix A.
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Chapter 3

Material Deformation Finding
Algorithm

In this chapter, we introduce a computational probabilistic method to quantify the per-
manent (non-zero strain) continuum/material deformation. Different from physical-based
modeling, the method developed here is based on a data-driven statistics approach, which
solves the problem without needing the information of physical deformation process. The
proposed method relies only on the scanned material data from the thermal distorted con-
figuration as well as the shape of the initial design configuration. We coined this artificial
intelligence based algorithm as the material deformation finding (MDF) algorithm. Before
deriving this algorithm, an overview of the distortion compensation methods in AM are
firstly given.

3.1 Overview of the Distortion Compensation
Methods in AM

Numerous different strategies or technologies have been used or suggested for the purpose of
reducing or compensating for distortion in order to solve the issue of distortion compensation
in AM. The key for deformation compensation is to accurately predict or measure deforma-
tion under a given set of AM process parameters. The examination of AM distortion may be
broken down into three distinct categories: data-driven approaches, physics-based models,
and experimental observations.

The most direct and accurate method is the in-situ [12] measuring. Digit Image Corre-
lation (DIC) technique has been used for in-situ measuring distortion of Additive Manufac-
turing. By consecutive photographing a model in printing process, geometrical deformation
or shifting of the sample can be captured based on comparing a series of images [61, 70, 94].
Laser Displacement Sensor (LDS) has also been used to gather in-situ distortion data [37].
In addition to in-situ measure technologies such as DIC and LMD, the Coordinate-measuring
Machine (CMM) as post-process measurements can also be used to obtain distortion pro-
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files [26]. On the other hand, however, after we obtained thermal distortion data from
in-situ measurements, how to quantify the 3D distortion displacement field based on the
measurement data is still an open and challenging question.

Therefore, at the current stage, experimental approaches are usually coupled with nu-
merical modelings. The most used numerical modeling approach is Finite Element Method
(FEM), e.g. [26, 4, 63, 51, 83]. The residual stresses and thermal distortions in various
AM settings mainly by two methods—the thermo-mechanical approach [63, 4, 81, 96] and
the inherent strain method [64]. By using coupled thermal, fluid flow and structure finite
element models, T. Mukherjee et al. [63] studied the evolution of stresses and strains in
various 3D printed products and their dependence on major process parameters including
heat input and layer thickness. The thermo-mechanical method recently adopted the dy-
namic adaptive mesh refinement methodology [57, 72| to speed up calculations. However,
Additive Manufacturing is involved with complex physical processes such as materials phase
transformation, layer-by-layer material contact and mutual penetration, and even materi-
als chemical reactions. These complex physical processes are far beyond conventional FEM
modeling capability.

No matter which approach is adopted, experimental measurement or FEM modeling or
coupled approach, the ultimate goal is to find the distortion field or its mapping function
x = (X)) from the initial design state.

Recently the approximation theory-based machine learning algorithms have become an
active research topic in many industrial applications. The related applications in Additive
Manufacturing have also emerged. For example, Cheng et al. [21] proposed a geometry con-
trol method, in which the dimension deviation is modelled by the transfer learning method.
Francis et al [29] inserted a Convolutional Neural Network (CNN) into the framework In-
dustry 4.0 to model distortion in Laser-based Additive Manufacturing (LBAM) process,
especially taking local heat transfer into consideration. Huang et al. [41, 40, 97, 28] es-
tablished several methods to extract shape-independent derivation profiles. Several machine
learning strategies were then used to generate the compensation. Other developments can
also be found in [95, 47]. However, these machine learning approaches do not have generality,
because they were based specific ways to obtain data from a particular machine, particular
position, particular materials, etc. If any of the above situations changes, one has to take the
massive measurement again, which may not be suitable for industrial-scale batch production.

3.2 Motivation for the MDF algorithm

To motivate the innovation, we first examine the thermal compensation problem in 3D
printing. In 3D printing compensation, one needs to know the thermal distortion field of
each material point in the design mesh in order to create a new or compensated standard
triangle language (STL) file [85]. This is so that one can use the existing material and
printing process parameters to print a perfect product or 3D printing parts that the original
STL design file cannot do.
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Now the question is: how can we find the exact thermal distortion in every material
point in the design mesh? We have the original design configuration, which is essentially
determined by the material nodal points, i.e. Xyxp = (X3, X, -+ Xy). After the tryout
printing, one can scan the thermal distorted part to obtain a scanned file that contacts the
deformed material spatial positions, i.e. Ynuxp = (Y1,¥2, *Ym). In general, m >> N,
and the mesh nodal points in the designed mesh have nothing to do with the scanned mesh
nodal points. In other words, even though we know the scanned spatial nodal points {y;}/,,
we do not know their images in the design mesh. It could be true that none of the mesh
nodal points in the design mesh correspond to any of the scanned spatial nodal points in the
scanned mesh, i.e.

vi #xXy), ¥Vj=1,2,---m, and I =1,2,---N (3.1)
where y is the deformation map. Now our task is to find:
X[:X(X]), I = 1,2,N (32)

with only the available information of {y;}7-, and {X;}}_,. One can see that we cannot
use the CPD method to solve this problem, because 3D printing is “3D”, and we could have
no correspondence between any pair of points from set {y;}7-, and set {X;}_,.

Comparison between the CPD and MDF algorithms

To solve the thermal compensation problem in 3D printing, we propose here a material
“registration” in continuum media or a material deformation finding algorithm to match the
design mesh of a 3D printed model with a scanned material data set or mesh of the final
printed product.

In doing so, we always assume that two following point sets are given: (1) the data of
the spatial point positions in the deformation configuration, y,.xp = (yi, ... ,ym)T, and
(2) the data of the design mesh nodal point set in the undeformed configuration, Xy«p =
(X1,...,Xy)", as shown in Fig. 2.5(b). The main notations in the MDF algorithm are
shown in Table 3.1.

It should be noted that the spatial point set is denoted by y instead of x in the MDF
algorithm. This is because they could be two totally different sets of material points.

In general, the design meshes generated by computer-aided design (CAD) software are
high quality and almost uniformly distributed in the undeformed configuration. Whereas,
the scanned meshes generated by a scan machine are usually poor quality and non-uniformly
distributed in the deformed configuration.

For example, as shown in Fig.3.1, a 2D specimen of a unit square was chosen as the
shape in the referential configuration. This was first meshed with uniform triangle whose
nodal points serve as the reference, or data points. The uniform mesh in the referential
configuration is shown in Fig.3.1 II(a). It is also called the design mesh in the referential
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Table 3.1: Table of Notations in material deformation finding algorithm

Symbol Description

D Dimension of data space (2 or 3)
N Number of points in undeformed configuration
m Number of points in deformed configuration
XNxD The node positions in undeformed configuration
YmxD The node positions in deformed configuration
o? Variance of Gaussian distribution in GMM
x(X) A general deformation mapping function which maps
the undeformed configuration to the deformed configu-
ration
XNxD The locations of nodes X in the deformed configuration,
where x = x(X)
Y,.«D The locations of nodes y in the undeformed configura-
tioin, where Y = x(y)
V~VmX1 Weight vector for each Gaussian distribution
G.xm Gaussian kernel matrix
V.uxD Coefficient matrix

configuration. A locally refined non-uniform mesh was then generated by the Delaunay tri-
angulation algorithm [73], which is still in the referential configuration as shown in Fig.3.1
I(a). After that, a non-zero strain or non-rigid deformation was applied to the square speci-
men. [t deformed into a near rhombic shape as shown in Fig.3.1 I(b). The spatial positions
of the nodal points of the locally refined non-uniform mesh are assumed to be the scanned
material data (see Fig.3.1 I(b)). This is usually known by scanning the 3D printed product.
In this way, a simple 2D registration example was generated to demonstrate the real setting
in finding the 3D printing thermal-induced displacement field. In this example, the CPD
algorithm is capable of finding the displacement field in Fig.3.1 I and Fig.3.1 II. However,
the actually settings in 3D printing are shown in Fig.3.1 III.

As mentioned above, the main challenge is that there is no one to one correspondence
between the nodes in the two meshes. The goal of the MDF algorithm is to figure out
the deformation mapping function y between two point sets X and y without the help of
correspondence.

Besides the main difference above, there are also three important differences between
point set registration and material deformation finding problem. First, in the computer
vision application, both feature points in the two sets are obtained by the feature extraction
from images or triangulation data. This means that each feature set may contain noise. Our
material deformation finding problem, however, uses the exact design mesh as one feature
set. Therefore, only the scanned data set may contain noise data and the design data set is
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(I) Scan data (GMM centroids) deformation mapping: (IT) Design mesh mapping: (a) Undeformed designed mesh,

(a) Undeformed configuration and (b) Deformed configuration and (b) Deformed design mesh
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(III) Material deformation finding: (a) Undeformed designed mesh: (IV) The exact solution of the material deformation finding
X; #Y,;=x"'(y;), and (b) Deformed scan mesh y; # x; = x(X;)

Figure 3.1: Material deformation finding for a deformed two-dimensional unit square: (I)
Deformation of scanned data from the initial configuration to deformed configuration; (II)
Deformation of designed mesh; (IIT) Topology connection between undeformed design mesh
and scanned data in deformed configuration, and (IV) The exact solution for the material
deformation finding problem.

noise-free.

Second, in most cases, feature points in computer vision applications are only located
on the boundary of the given model. On the contrary, the material deformation finding
problem, as shown in Fig. 2.5(b), has feature points not only on the boundary but also in
the interior domain.

Third, the objectives of the CPD algorithm are to obtain correspondence between two
point sets and generate the deformation function y. On the other hand, the objective of the
MDF algorithm is to only find the deformation mapping x. One example of this difference is
shown in Fig. 3.2, which is a 1D example of a straight line. The real deformation applied to
the original red line is uniform stretching and translation to the bottom. The transformed
line is the blue line. However, the locations of the two middle points in the blue line are chosen
arbitrarily. This means that the two middle points in the blue line are not corresponding to
the two middle points in the red line. the MDF algorithm is shown in Fig. 3.2(b) where not
all GMM centroid y converge to a data point in X. But the deformation mapping function
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Point set registration meth-
ods

Material deformation finding
method

One to one correspondence for
most feature points;

No one to one correspondence for
most feature points.

Both data sets may contain noise;

Only the scanned data contains
noise or outliers.

Only need feature points on the
boundary of the body to define its
shape;

All feature points are inside the
domain of the body.

the objectives are to find corre-
spondence and deformation map-

the objective is only to find the
deformation mapping.
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ping;

Table 3.2: Comparison between the point set registration methods and the material defor-
mation finding algorithm.

generated by the movements of GMM centroid y is the real y. This example illustrates that
forcing the data points to match each other in a 3D printing setting may not be the optimal
choice. A summary of the differences is shown in Table 3.2.

data points X

Q----@----0----9©

data points X

(a) (b)

| GMM centroids y

Figure 3.2: An 1D example under uniform deformation: (a) Matching result based on the
non-rigid point registration of CPD algorithm, and(b) The true underlying deformation of
scanned data.

The comparison of different aspects of the two methods listed in Table 3.2 implies that
the CPD algorithm may not be suitable to solve the material deformation finding problem.
Therefore, a new method needs to be proposed. As discussed above, the original CPD
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algorithm assumes equal isotropic covariances and equal membership probabilities for all
GMM components. These assumptions fit well for the classical computer vision problems,
where two point sets contain corresponding features extracted from either 2D images or
3D models. In most cases, there is no underlying mesh from where those feature points
are selected. However, in our approach to the 3D printing thermal compensation problem,
those two data points Xyxp,ymxp are vertices of the triangle mesh defined in the STL
files. In fact, the mesh requirement is also not necessary, and the data points Xyxp, YmxD
can serve as a meshfree representation of the given 3D printed models in different geometric
configurations, i.e. spatial, as well as, referential configurations.

In meshfree particle methods e.g. [48, 52], the geometric state of a continuum is generally
represented by a finite number of discrete particles. The motion of the continuum body can
be tracked by the motion of these particles. In the Continuum Mechanics, by attaching a
small volume, each particle represents a given fraction of the domain. The mass of each
particle is proportional to the volume or area that each particle represents.

Figure 3.3: GMM density function: (a) non-uniform mesh with equal membership proba-
bility. (b) non-uniform mesh with specific membership probability for each member. (c)
uniform mesh with equal membership probability.

3.3 Material Deformation Finding Algorithm

Inspired by meshfree particle methods e.g. [48], we assume that the membership probabilities
for all GMM components and their corresponding covariances are proportional to the area
or the volume that each scanned data point is assigned based on the underlying mesh. We
can then define the weight @ for each membership probability in y and variance o2 as

W = (@, ..., 0m)" , (3.3)



CHAPTER 3. MATERIAL DEFORMATION FINDING ALGORITHM 30

where w; = ¢ - area(w;) and ¢ is a constant. To compute the weight vector W and to
determine the value of ¢, we add one constraint to it, which is

% > iy =1. (3.4)

Therefore, the j-th component in GMM p(X; | A;) and membership probability p(A;)
should be modified to

B [ y
X[ Aj) = ——Fzexp T, p(Ay) = (3.5)
! (2%6]2-)]3/2 ’ m
where 67 is defined as 67 = w; - 0>
Then the probability density function can be modified as
pXD) = o+ (1 0) 3 Py, | A)) (36)
J=1 m

After recasting Eq. (2.60) into Eq. (3.6), the material deformation finding problem
could be represented as an MLE and solved by the EM algorithm as in the original CPD
algorithm solution. The underlying assumption of this specific membership probability is
that the feature points is a meshfree representation of the model and then the shape of the
model should be independent of how it is discretized. Therefore, ideally, the GMM density
function generated by any arbitrary mesh should be identical to the GMM density function
generated by the uniform mesh. Furthermore, the registration between a uniform mesh
and an arbitrary mesh is conceptually identical to a registration problem between the two
same meshes which can be solved by the CPD algorithm. In other words, the weight of
several points in a dense area is equal to the weight of one single point in the same area. In
numerical simulation, the weight may represent the volume or the mass. In statistics, the
weight represents the probability density in that area.

For example, the GMM density function of a 2D model generated by different settings
is shown in Fig. 3.3. This illustrates the uniform mesh and non-uniform mesh with spe-
cific membership probabilities for each member having similar density functions in the unit
domain. However, the GMM density function of the non-uniform mesh with equal mem-
bership probability has two sharp modes where the mesh is dense, which makes it a poor
representation of the true underlying density function.

By modifying the EM algorithm, we can write the objective function Ly in Eq. (2.63)
as,

N m X, t 1)
NpD (t71)2
zzzpt RANED € = +— log o (3.7)

I=1 j=1 J

EQ (0("’1

Qg(t 1)
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where p*~1 is a conditional probability of each designed mesh nodal point to each member
of the GMM density function by using model parameters from the late iteration step,

)

X — yj(-til)

gt-1)

—1
XI_Y;t )

&(tfl)

exp(—3

j=1

pUV(A | X)) = (3.8)

2 Y

+c

D/2 . . .
where ¢ = (270?) / 2=%. In order to coerce GMM centroids to move in a consistent

behavior, the regularization term Eq. (2.68) is also included in the objective function. Then
the transformation of the GMM centroids can be defined as a generalized radial basis function
which can be derived by using the representation theorem in the reproducing kernel Hilbert
space (RKHS) (see [82]),

X(y)=y""V=y+ GV, (3.9)
where fo&g = (vit_l), ...,vfffl))T is the coefficient matrix that determines the displace-
ments. Then the regularization term R (u) can be reparameterized as a function of V,

S a2

R (VD) = / SO (Ve avi), (3.10)
ro G(s)

2

where G, is the Gaussian kernel matrix with element g;; = exp (—% % ) The
model parameter 6 can also be redefined as

0= (V,o?). (3.11)

With this regularization term, the objective function in Eq. (2.63) can be rewritten as
2
) 1 N m HXI _y](t—l)H
Lok (V(t_l)va(t_l) ) o1 PV (A 1 Xy) -
20 (t-1)* ; ; ’ w; (3.12)

4 Nl g L Yy (Vu—l)TGV(t—n)
2 2

For a general iteration, we can get rid of all the superscript (¢-1). Then, the objective
function in Eq. (3.12) can be rewritten in the following matrix form,

Lor (V,0?) :%‘2 {Tr (de (PT1> y) 2Ty (XTf’y> 2Ty (VTGPy> 4 Tr (XTd(f’l)X>}
+2Tr <VTGd(f’1)X> 4T (VTGd(f’l)GV)
N,D

=2 In(0?) + 5 Tr (VIGV)

T

(3.13)



CHAPTER 3. MATERIAL DEFORMATION FINDING ALGORITHM 32

where P is a m x N matrix with element P;; = p° (y;|X;), d(V) is a diagonal matrix with
elements on the diagonal equal the value of a vector V, 1 is a column vector where all the
elements equal one.

Lor (V,0?) is a quadratic function of coefficient matrix V. With the aim of updating V
that minimizes the objective function in Eq.(3.13), the derivative of function Log (V,0?) is
set to zero, which is

ILor (V,0?)

T — —GPy + Gd(P1)X + Gd(P1)GV + ¢*aGV =0 . (3.14)

Then, the value of coefficients V can be solved by the equation below,
d(P1)G + 02@1] V = Py — d(P1)X (3.15)
where the detailed derivation can be found in Appendix B.

The o2 can be obtained by setting the derivative of Lgg (V,0?) with respect to o2 to
zero,

0% = Ni - (tr (de (f’Tl) y> P <(PX)TT> + ot <TTd(f>1)T)) . (3.16)

To implement the above computational formulation, a pseudo-code of the material deforma-
tion finding algorithm is given as follows.
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Pseudo-code for the material deformation finding algorithm

Initialization: V =0, 0% = ﬁ Z;n:l Zévzl ly; — XIH2

Initialize model parameters: w, 3, \, W

calculate G : g;; = eXp(-ﬁ ly: — Yj||2>

Repeat the following E-step and M-step until convergence is reached:

— E-step: Compute P and P:

am " - exp <_2&1 1X; —y; +G(I, ‘)VH2>

2
* Dir = =
1 w  (2m0?)P/?m)
pl-D/2 e IX, — K.V
>l exp =gz 1K = v+ G VI + 2 270
* ﬁjI:%
— M -step:

* Solve V based on (G + )\02d(151)*1> V =d(P1)"'Py — X
«+ Np=1"P1,T=X+GV
* o2 = ﬁ <tr <de <PT1> y) — 2tr ((f’y)TT> + tr (TTd(f’l)T>>

Remark 3.3.1. In the proposed material deformation finding algorithm, there are three free
parameters: w, «, (. Parameter w indicates our prior belief on the level of noise in the data
set, and both o and [ determine the level of motion coherence that one wants to enforce.
We can tune all three free parameters until finding the best matching result.

3.4 Accelerated Computing Implementation

In engineering application, the numbers of design points and scan points are usually very
different. The number of design points are usually more than one hundred thousand, i.e. N >
100, 000, whereas the number of the scan points can exceed 1 million, i.e. M > 1,000, 000.
The two most time consuming steps in the application of the proposed MDF algorithm are:
To compute 131, PT1 and 15X, and to solve Eq.(3.15).
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Fast Gauss transform

In computing matrix-vector multiplications, it is found that the sum equations having such
form as

ZQIeXp _Hy] 3:"LH /h‘2) ) = 7 7”' 7M (317)

always appear in P1, PT1 and PX so that the Fast Gauss Transform (FGT) method is
introduced to convert O (M N) operations to O (M + N).

Remark 3.4.1. Due to different covariances 62, in various components, the bandwidth h?

in the exponential sum above are various. It is different from exponential sum in the CPD
method whose bandwidth h? is constant.

Using the improved fast gauss transform algorithm in high dimension [78], we can deal
with variable bandwidth Gaussian kernels, and the exponential sum can be expanded as,

lly; — *
E quXp< h
[l — ] ly; — .| 2(yj — @) (xi — 2
—g qzexp< B X exp _]h—? X exp J 2

in which,

i1 m
e [ Wi = nl*) plz (=)™ (g — =\ (3.19)
P h? ~ m! hi ’ '

m=0

by using Taylor’s expansion in multi-dimension.

Define the multi-index notation o = (ay, ag, - - - , ay) with the following rules,
la| = ag+as+---+ ag,
al = ajlag! - ay! (3.20)
x® = ras? .25t if x € RY

We can then write

- Z g (;%2)2 (y; — )" (2 —2.)" (3.21)
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In summary, the approximated exponential sum f (y;) can be written as,

K3 3

_ quxp LN S D" (o)

m=0

2% 1 o o
X Z NG (yj — xa)™ (2 — )™ | . (3.22)

o|<ph—1 v
2

After regrouping, we can put it into a succinct form,

m2a | i *|
Yy S e ()

m= 0|a\§p§ 1 i=1

1\ el . - X
X (p) (@i — @) Ny — 2™ (5 — 20)* (3.23)

Low-rank matrix approximation

The M x M matrix G with element g;; = exp( 1”y°’+3”) is a dense one. Once the
number of scan data points increases to be very large, it requires lots of storage resources so
that the MDF algorithm is NOT practical in some applications. Besides, solving Eq.(3.15)
needs O (M?) operations, which has a very large computational cost. Therefore, the low-rank
matrix approximation of matrix G is used,

G~ G =QNQ" (3.24)

in which, the diagonal matrix A stores the K largest eigenvalues and the matrix @ stores
corresponding eigenvectors.
By the Woodbury identity [91], the matrix inversion in Eq.(3.15) can be shown as,

QAQ™ + 20%\diag (131>_1] ) = MQ diag (P1) (2)\102)2dmg (151) Q
X {/\1 + 5 2Qszag (Pl) Q] B Qdiag (151)

(3.25)

the computation complexity can be decreased from O (M3) to O (K?).
The complexity comparison test is conducted in Intel Core i5-6440HQ CPU with serial
processing. So that one is to have time costs comparison as shown in Fig.3.4. It is found
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that when product M x N of two data sets exceeds 10° the effect of computing acceleration
becomes obvious. Currently the acceleration can save about 75% time, when M x N =

O (10%) and it is believed that the computation efficiency can increase further when more
data are included.

Unaccelerated
Accelerated

Figure 3.4: Computation complexity comparison between unaccelerated and accelerated
algorithm.
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Chapter 4

A Mixed Variational Bayesian
Learning Finite Element Method

In this chapter, we develop a mixed variational Bayesian learning finite element method
(VBL-FEM), based on a Bayesian statistical continuum mechanics theory, in which elastic
potential energy is used as a prior in a Bayesian regularization network, which can intelli-
gently recover unknown continuum deformation mapping with only the information of the
shapes of the deformed and undeformed continuum body without knowing actual boundary
conditions, both traction as well as displacement boundary conditions and the precise ma-
terial constitutive relation. Moreover, we develop the related finite element formulation in a
computational probabilistic mechanics framework.

4.1 A Mixed Entropic Variational Principle of
Probabilistic Elastic Continuum

In continuum mechanics, almost all finite element method formulations are based on ener-
getic variational principles. In this work, we developed finite element method based on a
probabilistic entropic variational principle. to solve the inverse problem of continuum me-
chanics. To do so, we first consider a generative model [36] to describe the formulation of
x from X. As a starting point, we consider that the reference configuration and current
configuration are represented by two different meshes or two different sets of points that
have no one-to-one correspondence as shown in Fig. 4.1. Using the terminology in computer
vision, we may call the points X in the reference configuration as the centroids of a GMM
and the points x in current configuration as the data points, which are usually the scan data
or image data. Under this circumstance, we can move the centroid points X in the reference
configuration towards the data points x in current configuration to recover the deformation
map. Similar with the updated Lagrangian method, the recovery displacement u,(X) in the
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deformation recovery process is defined as
w,(X)=X,—-X, — ¢,(x)=X¢+u, (4.1)

where Xy = X is the initial position for the material point X in the reference configuration,
and X, is the updated position for the same material point after nth iteration. In compu-
tation, all the quantities are computed in the moving mesh in the updated configuration.

Reference configuration

Deformed configuration

Figure 4.1: Schematic illustration of the inverse solution of continuum deformation mapping
recovery problem.

It may be noted that the determination of which configuration to move and which to
unmove is totally arbitrary. Therefore, it is feasible to move the current configuration towards
to the reference configuration, €2,, to recover the inverse of deformation mapping. We can
let xg = x and the recovered displacement field is defined as

u,(x) =x)—%x, — ¥, (x)=x—u,(x). (4.2)

This inverse recovery setting would be further discussed in section 5.2. Again, it is worthy
emphasizing that xo = x and Xy = X are not the same material point.

Nevertheless, in the following presentation, we assume that the material point X € Qx
move towards the current configuration. Then for a specific data point x € €2, the generative
model can be established in a two step procedure. First, a latent variable X, € Qy, is
generated, and then depending on the value of the probability distribution parameter A, a
data point x € €1, can be related with the variable X,, by the selected Gaussian distribution
centered at X,, as follows,

p(x, X,) = p(X,)p(x[X,) (4.3)

Then, by law of total probability, the total probability of the specific data point x is given
by

p(x) = / P(X,)p(x|X,.)dy (4.4)
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where p(X,,) is the prior distribution of the material point X. After applying the corre-
sponding displacement u, the Gaussian distribution p(x|X,,) is given as

(4.5)

X+u,—x 2
p(x|X,) = . 5.

(2r%:2)P/? eXp( 252

In order to distinguish the Cauchy stress with the Gaussian distribution variance, the vari-
ance is denoted by capital letter ¥. Then the log-likelihood of the probability of all data
points x can be expressed as

/Q z log(p(x))dS2, = /Q z log ( /Q N p(Xn)p(XIXn)dQX>dQZ,. (4.6)

We propose the following Bayesian probabilistic elastic entropy potential,

(u,3) == — /Q z 1og( /Q p(X)p(x|X)dQX>de—l—7 | owdax, (4.7)

where ¢(u) is a regularization function, A is a constant. We choose the probability
of the strain energy state as the prior probability and the probability of the L, error
norm between the current positions of material points and their measured position as
the likelihood function, i.e.

p(X) = exp(=FW(u))po(X), (4.8)

where po(X) is the original material probability distribution in the referential config-
uration. While the regularization function is a stabilized term, which may be chosen
as

o(u) = %uQ. (4.9)

Remark 4.1.1. One can see that the above probabilistic elastic potential entropy has two
sources: (1) The material-based probabilistic entropy, and (2) the deformation-based prob-
abilistic entropy. In this work, we choose the material-based probability distribution as a
uniform probability distribution, which means that we do not consider the effects of material
heterogeneity, which will be studies in the late sequence of this work.

The essence of the VBL-FEM is to minimize the elastic potential entropy by using finite
element method. The mixed functional in Eq. (4.7) can be minimized by using a staggered
EM algorithm [24, 13]. In EM algorithm, we first utilize Bayes’ theorem to calculate the
previous step posterior probability distribution p (X,, | x) based on the previous displace-
ment field u,. This is the expectation or the E-step in the algorithm. Then the unknown
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displacement u,, can be updated by minimizing the expectation of the complete negative
log-likelihood function,

O(un, 5n) = —/Q /Q p(Xn|x)log(p(X+un)p(x|X—|—un)>dQXde

+7 [ ¢(u,)dQx, (4.10)
Qx

which is the so-called maximization or the M-step. The posterior probability distribution
p (X, | x) can be expressed as

p(X, | x)=p(X+u,|x)
:p(x|X+un)p(X+un)
p(x)

1 || X4u,—x
exp (4 [

/ 1 H X4+u, —x

exp| —= || ——=——
Qx 2 Y
The EM algorithm is an iterative approach which is proceed by applying E-step and M-step
alternatively until convergence, which is guaranteed based on the fact that the probabilistic
entropy potential is monotonous decreasing.

To show that the proposed Bayesian probabilistic entropy potential in a deformable
continuum is a monotonous decreasing sequence, we first express Eq. (4.7) as

2 ﬁW(un)) (4.11)

2

- BW(un)> dQx

H(umEn):—/Q log p(x)d2, + 7y g o(u,)dQdx
v X (4.12)

_ / log p(x, X, )d2, + / log p(Xax)d% +7 [ (uwn)dy.
Qs Qz Qx

Then taking the expectation of Eq. (4.12) over all possible values of the latent variable X
under the current parameter estimate u,, Y, by multiplying both sides by p (X, | x) and
integrate over {2x. We have,

w50 == [ ] p X 30108 (p(Xp0eXe) a2ty + 7 | ofu)dekx

+/ / p (X, | x)log p(X,,|x)dQxd2, (4.13)
Qr JQx

= Q(un7 Zn) + H(una 271)7
where H(u,,>,) is defined as

H(u,,%,) :/ /Q p (X, | x)log p(X,,|x)d2xdS2,. (4.14)
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By Gibbs’ inequality, we have
H(u,,%,) > H(u,Y), VuX. (4.15)

Hence we can calculate the difference between two probabilistic elastic potentials correspond-
ing to two adjacent deformation configurations,

H(unJrl) - H(un> = Q(un+17 2nJrl) - Q(uny En) + H<un+1a 2nJrl) - H(um Zn)

S Q(un-i-b En-&-l) - Q(um En) (416)
<0.

Hence during the EM iteration the probabilistic entropic potential is monotonously decreas-
ing.

After showing the monotonous decreasing property of the probabilistic elastic potential,
we focus on the M-step in EM algorithm which may be formulated as the following opti-
mization problem.

Infinitesimal Deformation Recovery Inverse Problem (Variational Form).
Find u : Q — R and variance ¥2, such that it minimizes the probabilistic potential
energy

(u*,¥*) = argmin Q(u,X) (4.17)
u, VPRt

where the probabilistic potential energy is given as
2
I

own) = [ [ e, (ot

+y (u)dQX (4.18)
Qx

+ Dlog¥ + BW(u)) A0 dQ,

where D is the space dimension, and D = 2, 3.

Theorem 4.1.1. Foru €V and ¥ € R, there exists a unique solution (u*,X*), such that

Q=) = _inf Q)

u,XeVERtT
Proof. The stationary condition for attaining the extreme of Q(u, ) is
Q1Y) = 6:Q(u, ) + 6,Q(u,X) =0, V(éu,6%) € Vo dR" (4.19)

where

X+u—x|* D
5EQ(u,E):/ / p(X+u\x)-<—w+§>-5Edﬁdez (4.20)
x QX
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and
5,01, %) 5/ / (X +1u | x) - S(e(u)) : dedyd,
Qx
t33 /Qz /pr(XjLu | x) - (X +u—x)0udQxdS, +7/QI So(u)d(%:21)

Since 0% and du are independent, we have

IQ(u,X) =0 — 6,Q(u,X) =0 and IxQ(u,X)=0.

From d5Q(u, ) = 0 and using Eq. (4.20), we can obtain

1
= _/ / p(X+u|x)||X+u—x|dxd, (4.22)
D Ja, Jax

The sufficient condition for Q(u, ¥?) having an infimum is:

0*Q(u,3%) = 05,Q(u, ) + 2035Q(u, ¥) + 055 Q(u, 2) > 0, (4.23)

where

2,0 = //QX (X +u | x)-(de

2
05x@ = //p(X+u\x)- 3IX+u-x" D - (6%)2dQxdQ,  (4.25)
Q. Jax 24 22

2,0 = — /Q /Q p(X+u|x)-<<X+Z+X))~5u52dQXdQI (4.26)

0%
oudu

5€+—5u 5u> A d, +0u- Ju (4.24)

We can rewrite 6°Q(u, X)) as

2 2

oW 0°¢
2 _ : : . :
°Q(u, X) —/x /pr(X +u | x) ((56 Y 5e0e .5e)dQXde+’y/Q$ u Sudu oudS,

1 X+u—x_)\2
—|—§/Qx/ﬂxp(X+u]X) (5u—T(5E> dQxdS,

2[X+u—x||* D
+/ / p(X+u|x)( | = all —§>-(52)2d§zxd9x
Qr JQx
(4.27)

Because the regularization term is positive definite, the first term in Eq. (4.27) is positive
(definite), if the strain energy is convex. The second term of Eq. (4.27) is always positive.
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Considering Eq. (4.22), we can rewrite the third term of Eq. (4.27) as

2X +u—x|? D
/ | /Q p(X—I—u|X)< - MO

22D D (4.28)
RN —ﬁ)(azf
2
= D<5§2> > 0.

Thus, we conclude that
2Q(u, %) >0 . (4.29)

That is: the mixed probabilistic variational principle (Eq.(4.19) is a minimum there is a
solution (u*,X*) € V @ R" such that it minimizes Q(u, X), i.e.

YN = inf %) . 4.30
Qu, 37 = Jnf e Qw3 (4.30)

]

Remark 4.1.2. As shown in Eq. (4.18), the functional Q(u,X) is a Kullback-Leibler diver-
gence, or it is a relative entropy. This is the foundational origin of the maximum principle
stated in Theorem 2.1.

4.2 Variational Bayesian Learning Finite Element
Formulation and Implementation

We now present the VBL-FEM formulation for general elastic continua. Note that the elastic
continuum itself is not necessarily statistical or stochastic. it is lacking of information, or
epistemic uncertainty, that makes VEL-FEM formulation probabilistic.

Assume that in an elastic continuum, the stress-strain state is (o (x), €(x)),Vx € Q.
Based on Theorem 2.1, to maximize the Kullback-Leibler divergence or the relative entropy,
we first consider the following variational formulation:

5a0(y, 5) = 5/ /p<x+un|x).a<X):5edQXde
Qx J Qg
+i/ /p(X+un|X)‘(X+un—x)5udede
22 Ja. Ja,

—l—’y/ u, - oudQy = 0. (4.31)
Qx
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Input:
¢ Mesh in intial configuration
¢ Some non-corelated information
in current configuration

Initialization:
¢ Choose A, f3,[D]

« Initialize the variance X2

[
)

E-step: Compute p (X +u, | x)

2
exp (4 [~ pwun))
/ x 1| X +u,—x
Qx s 2 z:n

M-step: Compute [K] and [b]
_[6] = Jo[N]b(X)dQ2
(K] = BIK] + A[M] + 5;[M]

P(X + | @)=

2
—ﬁW(un)> dQx

l
M-step: Update [u,] and X3
[un] = [K]~'[b]
52 _ Jog Jo P (X) | X +u—a|’dQud0
n D

Check
Convergence

no

Output: [u,]

Figure 4.2: Flowchart for VBL-FEM inverse recovery algorithm for continuum deformation
mapping.

The equivalent stress (X) and the equivalent body force b(X) that share similar properties
as their finite element counterparts can be defined as

&(X) :/Q p(X 1, | %) o(X +u,)d, (4.32)

and

b(X) = % / p(X+u,|x) (x—X—u,)d,. (4.33)

x
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Furthermore, to simplify Eq. (4.31), we define an equivalent probability p(X) as

p(X) = / p(X+u, | x)d,. (4.34)

x

Hence, Eq. (4.31) can be rewritten as follow:

1 _
I5; a‘:5edQX—i—7/ u:5udQX—i-—2/ ﬁu:éudQX—/ b:dudQy =0, (4.35)
Qx Qx 2% Jayx Qx

which is the Galerkin weak formulation or the so-called principle of virtual work (PVW) for
the VBL-FEM. Considering finite element interpolation e.g. [42],

u" = [N][d], éu" =[N][6d], and €" = [B][d] (4.36)

the entropic Galerkin weak formulation can be discretized as:

/ BITed0x + / Nudy + — [ [NJpudQy — / INJbdx =0, (4.37)

2
Qx by Qx Qx

where [N] is the global shape function matrix, [B] is the global strain-displacement matrix,
and [d] is the finite element nodal displacement. Then the equivalent stress & can be defined
as

o (X) = p(X)[D][B][d], (4.38)

where [D] is the the elastic modulus matrix and [u] is the global nodal displacement vector.

Let the internal force vector £ and the external force vector £f¢** be expressed as
) 3 1 B
fint — / Bl adQx + ”y/ [NJudQx + ﬁ/ [N]pudQ x (4.39)
Qx Qx Qx
and
et _ / N]bdCy. (4.40)
Qx

Then, Eq. (4.37) can also be expressed as,
£t — fert =, (4.41)

which is the discrete version of equilibrium equation in continuum mechanics.
For each element in the reference configuration, the element nodal force is defined as

. 3 1 3
fint :/ B ad). + ”y/ [N]udsf2. + 57 / [N]pud(2,
‘ ‘ ‘ (4.42)

:/B[KG] [de] + ’7[Me] [de] + [Me] [de]a

1
2
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where [d], is element nodal displacement vector, and [K.], [M,] and [M,] are defined as

K= [ p0[BJ[DI[Blac, (4.43

M. = [ INTINR,, and (ML) = [ pOOIN]TING (4.44)

Correspondingly, the equivalent element nodal force [b,] can be defined as follow:

[b,] = " = / [N]b(X)dS2, . (4.45)
After obtaining the element equivalent stiffness matrix [K.], the global equivalent stiffness
matrix [K] can be connected by the connectivity matrix [L.|, which is
_ Ne = o
K] = A [LJ7[K, (4.46)
where N, is the total number of elements, and AXe, element assembly operator [42]. Simi-
larly, the global matrices [M], [M] and [b] can also be assembled as
Ne _

M] = A [LJ'M.], [M] =) [LJ'M.], and [b] = [L]"[b.]. (4.47)

e=1
e e

Therefore, substituting Eq. (4.46) and Eq. (4.47) into Eq. (4.37), one obtains

£ — £ = B[K][d] +~([M][d] + %[M] [d] — [b] = 0. (4.48)
If we define the total stiffness matrix [K] as
K] = B[K] +7[M] + [M], (4.49)

by substituting Eq. (4.49) into Eq. (4.48), the discrete FEM governing equation becomes,
[K][d] = [b], (4.50)

which has the same form as that in the static finite element analysis. Finally, the nodal
displacement vector [d] can be solved by the same methods used in classical finite element,
such as

[d] = [K]~'[b]. (4.51)

Next, we consider the variational formulation for the statistical parameter:

2
6EQ(unazn) :/ / p(X—l—un ’ X) . —||X+un XH + 2 (SEdede
Qz JQx E% En

(4.52)
—0, V6% € RT
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Note that the above equation is valid for any arbitrary 62 € R*. As a result, the Eq. (4.52)

implies that
X+u,—x||> D
/ / p(X +u, | x)- (_ IX + a x| _> A dSY, = 0. (4.53)
Qp JQx Zn Zn

After some algebraic manipulations, Eq. (4.53) can be expressed as

_fﬂx fgzp(X +u, | x) - [ X+u, - X||2 dQ,dQ x
DfQX fQIP(X +u, | x) dQ,d2x

_«fﬂx Jo,pX+u, | x)- X +u, - x||* dQ,dx

B c-D ’

22

(4.54)

where constant ¢ represents the area of the mesh in the current configuration. After solve
the nodal displacement vector [u] in Eq. (4.51), all the variables on the right hand side of
the Eq. (4.54) are given. Therefore, the Gaussian distribution variance 32 can be obtained
by applying Gauss quadrature to integrate the numerator in Eq. (4.54). In summary, the
procedure of VBL-FEM is shown as Fig. 4.2.
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Chapter 5

Numerical Examples

In this chapter we present several numerical examples for both MDF and VBL-FEM. The
MDF algorithm is validated by a synthetic 2D problem and applied to compensate distortion
in AM. Then we demonstrate in several examples that the VBL-FEM is able to inversely pre-
dict continuum deformation mappings with strong discontinuity or fracture without knowing
the external load conditions.

5.1 MDF Experiments and Results

In this section, three examples are presented to demonstrate the accuracy, robustness, and
improvement of the material deformation finding algorithm over the original CPD algorithm.
The first example is a synthetic 2D problem. The last two experiments are a real application
in 3D printing. In this example, the material deformation finding algorithm was used to find
the displacement field of a distorted printed part.

Registration between uniform mesh and locally refined
non-uniform mesh

As stated previously, the most difficult aspect of determining the distortion displacement
field for a 3D-printed structure component is that we only know the spatial positions of
material points in the current configuration and not the corresponding material coordinates
in the referential configuration. To calculate the displacement field, one must determine
the material coordinates of all spatial material locations using material registration. In this
example, the suggested MDF method was used to recover the material coordinates for the
scanned material points shown in Fig. 3.1 I(b) based on a set of reference or created nodal
points indicated in Fig. 3.1 II(a).

To begin, the open source general purpose mesh generator was used to build the triangular
meshes shown in Fig. 3.1 I(a) and Fig. 3.1 II(a). The polynomial displacement field
with random coefficients was then used to construct three distinct arbitrary non-uniform
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Figure 5.1: 2D point sets registration results. (a) three different nonrigid deformations before
registration. (b) the registration results of CPD algorithm. (c) the registration results of
material deformation finding algorithm.

deformations. Random coefficients with varied amounts of non-uniform deformation were
selected for each of the three sets. After that, the locally refined mesh was subjected to the
non-uniform movements or deformations selected(see Fig. 5.1 (a)).

In this numerical experiment, Table 5.1 lists the hyperparameter values for both the MDF
and CPD algorithms for all three situations. These hyperparameter settings were selected
such that both the MDF and CPD algorithms yielded optimal matching results.

Hyperparameters o [ w

Case 1 3 20 0.05
Case 2 3 3 0.05
Case 3 3 2 0.05

Table 5.1: Values of hyperparameters for all three cases.
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The results of the registration are shown in Fig. 5.1 for three distinct prescribed defor-
mation scenarios. The experimental settings for the three distinct experiments are shown in
the left column. The CPD algorithm’s registration results are shown in the center column
of the table. The registration results obtained via the use of the MDF method are shown in
the right column.

This figure indicates that the non-uniform deformation in all circumstances can be suc-
cessfully represented by the suggested MDF approach, particularly for the border points that
determine the shape of the domain, while the original CPD method fails to register the two
data sets.

In addition, as seen in Figure 5.2, in order to quantitatively evaluate the outcomes of the
CPD and MDF algorithms, the average registration errors of the four corner points and all
the data points in the three scenarios are compared using Euclidean distance.

Note that the average registration error for all data points is the weighted mean with
the weight vector W in Eq. (3.3), whereas the average registration error for the four corner
points is simply the arithmetic mean. The performance of the suggested MDF algorithm
is consistently and noticeably superior than that of the CPD algorithm, regardless of the
extent of non-uniform deformation.

0.2 0.12 T
I CPD algorlthm Il CPD algorithm
MDF algorithm 01k I VDF algorithm
0.15F
0.08
Al 2006}
| |
0.04
0.05F
0.02
0 0
Case 1 Case 2 Case 3 Case 1 Case 2 Case 3
(a) (b)

Figure 5.2: (a) Average registration errors for four corner points, and (b) Average registration
errors for all data points.

Lattice structure registration

Lattice structures that have a large number of holes or voids in their models are attracting
a growing amount of interest and attention. This is due to the fact that models including
these interior gaps allow for lighter components while yet retaining outstanding mechanical
performance. However, traditional subtractive manufacturing techniques like mold manu-
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facturing may not be able to produce such lattices with intricate interior structures. As a
result, the use of additive manufacturing is very close to being required in order to create
complicated lattice models.

The unexpected distortion brought on by thermal variation, edge swelling brought on by
residual stress existing in free surfaces or thermal concentration, and the staircase effect in
cutting layers are some of the most common geometric defects that occur in lattice models
while they are being manufactured using additive manufacturing.

The lattice models are created by Rhinoceros [59]. It is a three-dimensional model builder
with a very powerful extension thanks to Grasshopper, a plugin that builds models using vi-
sual programming. Crystallon [74] is utilized to create complicated lattice-shaped structures
in our two three-dimensional models(see Fig.5.3).

Figure 5.3: Two lattice models: (a). simple cubic lattice; (b). body-centered cubic lattice;
(c). 103032 scatter nodes of simple cubic lattice; (d). 247720 scatter points of body-centered
cubic lattice.
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Table 5.2: Simulation Parameters in ANSYS Additive manufacturing

Material Layer thickness Layer power Scanning speed Scan width Voxel size
IN718 a20um 195 W 1000 mm/s 100pm 0.3um

To simulate geometric faults in lattice models, we utilized the ANSYS Additive Manufac-
turing program [55]. The ANSYS Additive Production program can simulate metal powder
bed manufacturing using an STL file. The program provides settings for controlling the
manufacturing process, and the appropriate parameters selected in our simulation are listed
in the table 5.2.

Because ANSYS Additive Production software automatically compensates for geometric
flaws throughout the manufacturing process, the difference between the design model and
the created model is small. The non-rigid transformation is done to points of the produced
model in order to have evident geometric flaws:

y=RSx+t

in which, y is transformed point coordinates, « is manufactured model point coordinates, R
is the three-dimensional rotation matrix, S is scaling matrix and ¢ is a translation vector.

In the non-rigid transformation, the 3D rotation is # = [1°,1°,1°], the scaling factor
S =10.8,1.0,1.2] and translation vector ¢ = [1,1,0]. The points set registration comparison
between the MDF method and the CPD method are shown in Fig.5.4 ~ Fig.5.5. It has been
discovered that the CPD method may generate obvious mismatches between the design
model points and the manufactured model points, whereas the MDF method generates very
excellent points set registration results, especially for the points in interior surfaces. This is
especially true for the points in interior surfaces.

An additive manufacturing compensation method based on the
MDF algorithm

In this experiment, the MDF method that was presented was used to solve an issue with
the thermal distortion adjustment for 3D printing. Fig. 5.6 presents a flowchart of the
compensation plan that incorporates the new MDF algorithm that has been developed.

This compensation plan begins with a design model including the intended geometry of
a 3D-printed component. In spite of this, the 3D-printed item has undesirable distortions
related to material shrinkage and different thermal-induced permanent deformations. The
MDF method then registers both the design data and scanned data. By interpolating the
registration result, the distortion field is formed. Finally, a new design model is reprinted
with preset reverse distortion. The preset reverse distortion field mitigates or compensates
for the initial distortion. Consequently, this redesigned model with reverse correction may
reach a high degree of geometric precision.
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Figure 5.4: The MDF method and the CPD method comparison for simple cubic lattice
model: (a). MATLAB default view of design model (blue nodes) and transformed manu-
factured model (red nodes); (b). front view of design model and transformed manufactured
model; (c). MATLAB default view of CPD method registered manufactured model (red
nodes) and design model (blue nodes); (d). front view of CPD method registered manu-
factured model and design model; (e¢). MATLAB default view of MDF method registered
manufactured model (red nodes) and design model (blue nodes); (f). front view of MDF
method registered manufactured model and design model.
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Figure 5.5: The MDF method and the CPD method comparison for body-centered cubic
lattice model: (a). MATLAB default view of design model (blue nodes) and transformed
manufactured model (red nodes); (b). front view of design model and transformed manu-
factured model; (¢). MATLAB default view of CPD method registered manufactured model
(red nodes) and design model (blue nodes); (d). front view of CPD method registered man-
ufactured model and design model; (e). MATLAB default view of MDF method registered
manufactured model (red nodes) and design model (blue nodes); (f). front view of MDF
method registered manufactured model and design model.
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]
Design Model i

1
1
1
e o e e e o e o e o e o 1
Design Data Scan Data
o0 N \—l—l MDF algorithm
( I
i 1
Scan Distorted | e ! Matched Two
Part g RV Point Sets
[ Zoom In Interpolation
Reverse Distortion
Compensated Field
Design
Redesigned Model with
Compensation
Reprinted Part !
with the New 1 '
Design File e !

Figure 5.6: Flowchart of the compensation plan with the new proposed MDF algorithm.

In this experiment, a double cantilever beam with a sawtooth support structure was
used to verify the suggested compensation strategy. Fig. 5.7(a) illustrates the geometry
of the design model. The AM process parameters and design model dimensions are given
in Tables 5.3 and 5.4, respectively. With these process parameters, the Ultimaker 3 man-
ufactures a double cantilever beam. Fig. 5.7(b) depicts the deformed shape of the printed
output.Note that both the original design model and the modified model with compensation
were produced using the same process settings.

Material ~ Nozzle Size Layer Height Line Width Print Speed Print Temperature
Blue ABS 0.4mm 0.1lmm 0.35mm 30mm/s 230 °C

Table 5.3: Values of process parameters.

Part Length Part Width Part Height

80mm 7.2mm S8mm

Table 5.4: Values of design model dimensions.

After obtaining the deformed model, a 100-micron-resolution ATOS 3D scanner was used
to scan it. In this instance, there are 103,784 nodes in the scanned mesh and 11,261 nodes in
the design mesh, indicating that matching all the original nodes directly is not a time-efficient
process.
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(b)

Figure 5.7: (a) Referential mesh of the design model in the initial or material configuration,
and (b) Spatial mesh and spatial material nodes of theMDF/ scanned data.

In order to overcome the aforementioned issue, a box grid filter was used to downsample
the nodes in both data sets. In order to enforce the requirement of a single point inside a
1mm? cube, the size of the box grid filter was set at 1mm in each direction for both meshes.
In the case that a 1mm3 cube has more than one node, a point was selected at random to
serve as a representation for all of the points included in that cube, and the weights of the
points that were removed were added to the weight of the point that was chosen. Following
the use of the downsampling technique, the design data include 4,369 nodes whereas the
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scanned data have 4,722 nodes. The feature points in each data set are made up of that
relatively small amount of data points.

The material deformation finding algorithm then recorded two downsampled feature point
sets in the subsequent phase of the process. Fig. 5.8(a) illustrates the nonrigid deformation
that takes place between two feature point sets. In the simulation scenario described in this
study, the following hyperparameter values were selected: 8 = 3,a = 2, and w = 0.1. In
this instance, the scan feature points were regarded as GMM centroids, whereas the design
feature points were considered data points. As a consequence of this, the scan feature points
move in a coherent way to match the design feature points, and the displacement field was
interpolated by the displacements of the GMM centroids. The majority of the feature points
move in a way that is consistent with the appropriate directions, as can be seen in the
illustration that can be found at Fig. 5.8(b).

After matching the two point sets, the displacement field u was calculated by the GMM
centroid displacements

u=Y -y (5.1)

where y is the spatial location of the scanned data nodes, Y’ is the location of the nodes
of the scanned data after material deformation finding. The displacement values at addi-
tional locations were then interpolated using k-nearest neighbors (KNN) regression [1]. KNN
regression is a non-parametric technique that interpolates the displacement field in a new
configuration using the k training data nearest to it in the feature space. Let Ni(y) denote
the k values of yq,...,y: that are closest to a new location y where need to interpolate.
Then the estimator is the mean over the corresponding displacements u;,

u(y) = % Z u; . (5.2)

iy €ENg(y)

The motivation for this estimator is that nearby observations are representative for the
samples around a particular point y [25]. Not usually true, it is still a good approximation,
if u is smooth enough, and the neighborhood support is small.

After identifying the heat distortion displacement field, a 85% inverse displacement field
was added to the original design mesh. The redesigned result is illustrated in Fig. 5.9.
Finally, this modified model was printed using the same AM settings with additional support
structure by the Ultimaker 3. Fig. 5.10 displays an overview of the suggested compensating
strategy together with the printed outcome of a model that has been altered. Regardless
of the quality of the support structure in the corrected model, the newly introduced inverse
displacement field counteracted or minimized the thermal distortion to a significant degree.
The highest distortion value was reduced from 3mm to 0.6mm.
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Figure 5.8: (a) Two feature point sets before the registration. (b) The registration result of
two feature point sets.
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I Distortion Compensated CAD data (85% compensation)

Distorted part directly printed using
original CAD data l

Compensated part printed using
modified CAD data

Figure 5.10: A summary of the thermal compensation of the double cantilever comb beam
part. Note that the photos of the printed parts are real images of the printed products,
and the small defects are due to the printing process fluctuation not from the thermal
compensation algorithm.

5.2 VBL-FEM Numerical Examples

In this section, we demonstrate how the proposed VBL-FEM can be used to recover the
deformation mapping. The first subsection discusses a two-dimensional thin plate with a
hole problem on linear elasticity. Later, two cases with plasticity deformation and fracture
propagation are studied. The recovery results for all three cases are then compared with the
available numerical solutions. The implementation of VBL-FEM has been carried out using
the MFEM package [3].

Linear elasticity problem of a thin plate with a hole

To verity the effectiveness of the proposed VBL-FEM, a thin plate with a hole under oblique
traction is conducted. The dimensions of the thin plate are shown in Fig. 5.11, where
L = 20 ¢m, I = 10 cm, and the thickness of the plate is 1 ¢m. A circular hole with a
diameter of d =5 ¢m is positioned in the center of the thin plate.

This thin plate is fixed at the bottom and an oblique uniformly distributed load p is
applied at the top of the plate which reads:

pe = 0.01 MPa, p,=0.1 MPa (5.3)
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where p, and p, are the  and y components of the distributed load p respectively. The
constitutive model of this plate is chosen as isotropic linear elasticity with Lamé constants
A = 0.58 M Pa and p = 0.38 M Pa (corresponding to Young Modulus £ = 1.0 M Pa and
poisson ratio v = 0.3).

Then the thin plate is meshed by 712 linear triangular elements in Gmsh [32]. This mesh
is generated uniformly on the boundary with mesh size equals 0.2 mm and local refinement
around the circle hole is performed to capture the high stress and strain (see Fig. 5.12 (a)).
Finally, a finite element analysis is conducted by using a open-source FEM package called
MFEM [3]. The FEA deformation result is shown in Fig. 5.12 (b).
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Figure 5.12: The finite element meshes for the thin plate example: (a) Mesh in the initial
configuration; (b) The same mesh in the final configuration; (c¢) Coarse mesh in the final
configuration.

The proposed VBL-FEM is then utilized to recover the deformation mapping. The initial
and final finite element configurations, as illustrated in Fig. 5.12, are given as the inputs to
the VBL-FEM. And the constitutive model of VBL-FEM is also chosen as isotropic linear
elasticity. The mesh in the initial configuration is chosen as the Gaussian distributions and
the mesh in the final configuration is selected as the data points. Therefore, the initial mesh
moves towards the final mesh to recover the deformation.

In order to better illustrate the capacity of VBL-FEM, three different cases are conducted
with increasing complexity. In the first case, the same Lamé constants, A = 0.58 M Pa and
i = 0.38 M Pa, and the same mesh utilized in FEA are given as the inputs to the VBL-
FEM model. For the second case, in order to increase the deformation recovery complexity,
the Lamé constants are selected as A = 0.001 M Pa and p = 0.001 M Pa which are not
the real material parameters. For the last case, not only the Lamé constants are chosen
as A = 0.001 MPa and p = 0.001 M Pa, but also the mesh in the final configuration is
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Figure 5.9: Redesigned model with KNN Regression.

Figure 5.11:

[

The setup of the thin plate with a hole example.
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regenerated to a coarse one with only 317 linear triangular elements (see Fig. 5.12 (c¢)). The
setups for all three case are shown in Fig. 5.13. Other model parameters for all three cases
are shown in Table 5.5. Note that the values of hyperparameters $ and A are chosen to
achieve the best accuracy for each case respectively.
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Figure 5.13: Three different setups for the VBL-FEM model with the corresponding matching
results for example 1.

Table 5.5: The VBL-FEM model hyperparameters for example 1.

Model parameters Casel Case2  Case 3
Hyperparameter 3 6x1077 8x107* 8x10~*
Hyperparameter A 1x1077 1x107* 1x107°
Max number of iterations 200 200 450

Fig. 5.14 presents the displacement recovery process for case 1. The final configuration is
shown in gray as the true underlying deformation mapping. The initial configuration which
is color-coded by the magnitude of displacement moves along the matching process. As it can
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be seen from Fig. 5.14, the iteration process stops at 147 steps of iterations and recovers the
majority of displacement. In order to better exemplify the accuracy of deformation recovery,
the average nodal deformation error € is evaluated, which is given as

TSR .
n < 'op 4 - ! ¢ 2 )
i= i=

where e; is the nodal displacement error for the ith node, n is the number of nodes in the
given mesh, P4 is the final position for ith node which is calculated by FEA, ;""" is
the recovered final position for ith node by the VBL-FEM model and || - ||2 represents the
Euclidean norm. The history of the average error e and the standard deviation ¥ of the
Gaussian distribution are shown in Fig. 5.15 (a).

It can be seen that both the average of nodal error and the standard deviation ¥ decrease
exponentially along the iteration process. The decrease of the standard deviation ¥ indicate
the increase of alignment between the two meshes. While, the average error decreases from
41 em to 2.2 em which indicates a recovery of 94.6% of the magnitude of the nodal displace-
ment. Meanwhile, as displayed in Fig. 5.15 (b), the majority of nodal absolute errors are
located in the [0, 0.04] interval and none of the nodal absolute error is larger than 0.18 cm.
It clearly shows the recovery accuracy for all nodal points in this thin plate example.

Similarly, the displacement recovery process for case 2 and case 3 are shown in Fig. 5.17
and Fig. 5.19, respectively. The error histories and final error histograms for both cases
are illustruted in Fig. 5.16 and Fig. 5.18 respectively. Moreover, the comparison of the
displacement recovery accuracy among all three cases is shown in Table 5.6. As one can
see that the displacements are recovery with high accuracies in all three cases, even though
different meshes are used to represent the reference and current configurations and different
material models are chosen in the recovery process.
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Figure 5.14: The displacement recovery process for case 1 in example 1.
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Figure 5.15: (a) The history of average nodal absolute error and standard deviation for case
1 in example 1; (b) The distribution of nodal absolute errors for the final result (iteration
147) for case 1 in example 1.
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Figure 5.17: (a) The history of average nodal absolute error and standard deviation for case

2 in example 1; (b) The distribution of nodal absolute errors for the final result (iteration
147) for case 2 in example 1.
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Figure 5.18: The displacement recovery process for case 3 in example 1.
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Figure 5.19: (a) The history of average nodal absolute error and standard deviation for case
3 in example 1; (b) The distribution of nodal absolute errors for the final result (iteration

147) for case 3 in example 1.

Table 5.6: The comparison of displacement recovery accuracy between three cases.

Recovery accuracy

Casel Case?2 Case3

Average nodal absolute error [m)]
Displacement recovery rate [%)]

0.022  0.011 0.031
94.6 97.3 92.4

Ductile fracture of a thin plate

To further investigate the properties of the entropic variational theory, we consider an ex-
ample of ductile fracture of a thin plate which was utilized in [84, 49]. The edge lengths of
the plate are L =4 mm and [ = 2 mm. The initial crack is in the middle of the thin plate
with size d = 0.5 mm (see Fig. 5.20). This thin plate is under uniaxial tension condition
with velocity boundary conditions, V' = 10 m/s, prescribed at both ends of the plate.

For this example, the Gurson-Tvergaard-Needleman(GTN) constitutive model [34] is

taken into account with parameters:

E =211GPa
p = 7800 kg m?®
v=0.3
oy = 469MPa
g =15, q =1.0,
fn=0.02, f.=0.15,

ENZO.?), SN:O.l.

q3 = 225,

fo = 0.0025,
ff = 025,
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-

Figure 5.20: The setup of the ductile fracture of a thin plate.

%

(a) (b) ()

Figure 5.21: The finite element meshes ductile fracture of a thin plate: (a) Mesh in the
initial configuration; (b) The same mesh in the final configuration; (c) Coarse mesh in the
initial configuration.

The mesh used in the numerical simulation is shown in Fig. 5.21(a) which contains 5,000
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quadrilateral elements. The result of the simulation with crack propagation is shown in Fig.
5.21(a). Unlike the example in section 5.2, for this two-dimensional ductile fracture problem,
the mesh in current configuration is set as the GMM centroids. And a coarse version of the
mesh in initial configuration with 999 linear triangular elements (see Fig. 5.21(c)) is chosen
as the data points. Therefore, during the recovery process, the deformed mesh shown in
Fig. 5.21(b) moves to align the coarse initial mesh in Fig. 5.21(c). Furthermore, in contrast
to the numerical simulation which use the GTN model, a linear elastic model is taken into
account in the VBL-FEM. The values of Lamé contants and other model parameters are
shown in Table 5.7.

Table 5.7: The VBL-FEM model parameters for example 2.

Model parameters Value
Lamé constant A [MPa]  0.001
Lamé constant p [MPa] ~ 0.001
Hyperparameter 3 4 %107
Hyperparameter A 1x107°
Max number of iterations 200
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Figure 5.22: The displacement recovery process for the ductile fracture of a plate.
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Figure 5.23: (a) The history of average nodal absolute error and standard deviation for the
ductile fracture of a plate; (b) The distribution of nodal absolute errors for the final result
(iteration 200) for the ductile fracture of a plate.

Fig. 5.22 shows the displacement recovery process for the ductile fracture of a plate.
Similarly, The coarse mesh in the reference configuration is shown in gray as the true inverse
deformation mapping. The current configuration which is color-coded by the magnitude
of displacement moves back to the reference configuration along the matching process. As
it can be seen from Fig. 5.23, the iteration process stops at 200 steps of iterations. The
majority of inverse displacement mapping is recovered at 60th iteration. And the error is
mainly introduced by the alignment of the crack tip. At the end of the recovery process, the
average nodal inverse displacement error which is calculated by Eq. (5.4) is decreased from
0.18 mm to 0.019 mm. That is to say, 89.4% of the total inverse displacement is recovered
by the VBL-FEM. It can be clearly seen that the proposed VBL-FEM is capable of the
recovery of both the forward and inverse deformation mapping and can be applied to both
elastic and plastic problem with fracture propagation in two dimension.

Thin shell cylinder subjected to internal pressure

In this numerical example, the VBL-FEM is applied to recover the displacement field of a
thin shell cylinder subjected to internal pressure. The dimension of this example is shown
in Fig. 5.24. The GTN constitutive mode is chosen. This thin shell cylinder is subjected to
internal pressure which is 10 M Pa. Further details of numerical simulation can be found in
[75].
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Figure 5.24: The setup of the thin shell cylinder.

The FE model for this thin shell cylinder is shown in Fig. 5.25(a) with 13,848 tetrahe-
dron elements. Then a dense mesh is generated on the initial configuration with 110,784
tetrahedron elements which is shown in 5.25(b). And the result of the simulation with crack
propagation is shown in Fig. 5.25(c). For this example, the mesh in current configuration is
set as the GMM centroids. And a coarse version of the dense mesh in initial configuration is
chosen as the data points. Therefore, during the recovery process, the deformed mesh shown
moves to align the dense undeformed mesh.

Rati29)
S

DBk
KOO0

Figure 5.25: The finite element meshes for the thin shell cylinders: (a) Mesh in the initial
configuration; (b) A finer mesh in the initial configuration; (¢) Mesh in the final configuration.

Furthermore, in contrast to the numerical simulation which use the GTN model, a linear
elastic model is still taken into account in the VBL-FEM. The values of Lamé contants and
other model parameters are shown in Table 5.8.
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Table 5.8: The VBL-FEM model parameters the thin shell cylinder example.

Model parameters Value
Lamé constant A [MPa]  0.001
Lamé constant p [MPa]  0.001
Hyperparameter 4 %107
Hyperparameter A 1x107°
Max number of iterations 50

Fig. 5.26 shows the displacement recovery process for the thin shell cylinder. Similarly,
The dense mesh in the reference configuration is shown in gray as the true inverse deformation
mapping. The current configuration which is color-coded by the magnitude of displacement
moves back to the reference configuration along the matching process. As it can be seen from
Fig. 5.27, the iteration process stops at 30 steps of iterations. At the end of the recovery
process, the average nodal inverse displacement error which is calculated by Eq. (5.4) is
decreased from 0.11 m to 0.0058 m. That is to say, 94.7% of the total inverse displacement
is recovered by the VBL-FEM. It can be clearly seen that the proposed VBL-FEM is capable
of the recovery of three dimensional problem with fracture propagation.
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Figure 5.26: The displacement recovery process for the thin shell cylinder.
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Figure 5.27: (a) The history of average nodal absolute error and standard deviation for the
thin shell cylinder; (b) The distribution of nodal absolute errors for the final result.



78

Chapter 6

Conclusions and Outlook

In this dissertation, the MDF and VBL-FEM algorithms are proposed. We first develop
an MDF algorithm and apply this MDF algorithm to calculate the thermal compensation
allowance in 3D printing product design. A double cantilever beam is used in the verification
process for the MDF algorithm. In this data-driven methodology, the only information that
is required is the spatial locations of the material points, also known as the scan positions in
the current configuration. Whereas the information about the matching material coordinates
in the reference configuration is not required. By completely exploiting the information
included in the STL file, a unique weight is assigned to each feature point based on the areas
of triangle components, causing the spatial material points to converge back to their original
or material coordinates through maximum probability optimization. Finally, it is possible
to determine the displacements as well as the deformation of each and every material point
that is included in the scanned data.

We have proved via quantitative analyses that the MDF method presented here is accu-
rate and robust. This innovative Al-based continuous manifold registration solution might
pave the way for the elimination of heat distortion in additive manufacturing and 3D printing.

Moreover, a mixed variational Bayesian learning finite element method has been devel-
oped, which provides a machine intelligence numerical solution for the inverse problem of
recovering continuum mappings only based on the initial undeformed and final deformed
configurations of continuum solids and structures that can contain defects and strong dis-
continuities. Comparing to the non-rigid registration algorithms in computer vision, the
proposed VBL-FEM approach is an inverse solution for three-dimensional solids, whereas
the current GMM-based registration algorithms are only for matching the surface or domain
boundary points. Moreover, the VBL-FEM inverse solution does not require the data point
sets in the initial and final configuration have one-to-one correspondence.

It is demonstrated that the VBL-FEM can provide practically useful inverse solutions
with good accuracy, and this inverse finite element solution procedure can be applied to a
host of engineering problems, such as structural forensic analysis, digital image correlation,
predictive modeling of geometric deviations in 3D printing, Al-aided diagnosis of medical
imaged, and among many others.
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Of course, there are a few aspects that need further investigation. The first one is the
finite deformation version of VBL-FEM. One can easily extend the proposed VBL-FEM
formulation to the nonlinear FEM [93] which has the capacity to model large deformation
accurately and is robust to rotation. By incorporating finite deformation theory, one can
have better results for the distortion field with large deformation and rotation. In addition,
the proposed VBL-FEM can be extended for image registration. Several statistical and
FEM-based models [56, 43, 27, 14, 46] are proposed recently. Following the same approach,
the image can be represented by control points and then further modeled by a unity finite
element mesh. By applying the VBL-FEM, the pixels in the target image shall move along
the unity finite element mesh to match the pixels in template one.
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Appendix A

The minimizer of the variational
principle

The variational formulation in the approximation problem is
N
Hu) = [lu(X;) = X|* + AR [u] (A1)
i=1
in which, the smoothness function R [u] is defined as,

Ru] = » %ds (A.2)

Based on Fourier transform, one is to have,
_ ~ iX-s
u(X) = / u(s)e™?ds
R4

substitute back to the variational formulation, one is to have,

2 u(—s) - a(s)

N

Hia) =)

i=1

X; — / u(s)exp(iX; - s)ds
R4

where 0(s) = u(—s), because u is real.
To find the desired minimizer, we take the Gateaux derivative of the expanded functional
and set it to zero,

1
oM = lim —<7—[(ﬁ + 7o) — H(ﬁ)) — H'(q)6a = 0,
7T—0 T
L 8] _ H'(4) =0, VtecR®.
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Thus we have,

N

6H[ﬁ] 0 ~ iX;-8
Sa(e) ~ a(D) 2 "/Rd“@e s

After some mathematical manipulations the first term of the above becomes

/ ) iX; st
N

= 2) <X —/Rd ﬁ(s)eixi'sds> /R Z?l—g;eixims

=1

S i(—s) - (s)
"5 / Gs)

2

6ﬁ(t

- QZ(XZ»—u(Xi)) A(s —t)eXitds

and the second term becomes

o u(—s) - u(s) B
sa(t) /R Gs) T2

where

and

are the Kronecker deltas.
Therefore, substituting the two expansions back, we can have,

Z (X; — u(X;)) e™it + /\% =0 (A.4)
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after exchanging t <> —t,

finally

where v; = Xi—uXi)

Taking the inverse Fourier transformation, we find the final minimizer of the variational
problem,

N
_ ST iXi(—t) | it X
u(X) » G( t);vze e dt
N
= Y v | G(-t)e' XXt
i=1 JRI
N
= sz/ é(t)ei(x_xi)'tdt
i=1 JRY
N
= ) vGX-X)) (A.5)
i=1

where G(—t) = G(t) due to symmetry.
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Appendix B

Derivative of Ly (V, 02) with respect
toV

Taking derivative of Lor (V,0?) with respect to the matrix C, one has,

2
OLor (V, 0 oL X, — Yl vkG (Yom — Yor) A
—Q%(v 7 :—C;; (=1 (A, X0) H = 27 H 5y (VIGY)

It can be split into two terms, one is to consider the derivative with respect to v; first, i.e.

2

0 X . HX Ek 1 UeG (Yom — Yor)
a_’l)lzzp(t : (A Xn) 202,
n=1 m=1
N M (t—1) 2 (Xn - 224:1 v, G (yOm - yOk))
- Z Zp (A X0) 202 (=G (Yom — Yo))

1

3
H-
3
Il

-X, + 224:1 VG (Yom — yOk)G (

NE
Mz

p(t_l) (Am|Xn) 0_2 Yom — yOl)
n=1 m=1
1 & P (AL X))
= 72 Z Z @0 Z'va (Yom — Yor) - G (Yom — Yor)
m=1 m k=1
M
1 S PV (AL X)) X,
_; 21 : o G (yom - ym)
1 X i
= ;ZG(yOl—yOm)diag<Pl)G V——ZG Yor — Yom) ( X>
m=1

— LG, diag (P1)Gv - %G’ ) (Px)

o2
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so that the matrix form of the first term is obtained,

2
0 X X, — S0k kG (Yom — Yor)
a_vzzp(t_l) (A X5) H - 2’;2” : - H

n=1 m=1

- % [Gdz’ag (151) GV -G (PX)]

The second term is to consider indices form,

0 0
WTr (VTGV) = qu (VijGitVij) = 0ip0iqGire Viej + VijGibiplijq

= kavkq + ‘/;qGip =GV + VTG =2GV .
Summarily, we can have

&CQR (V, 02)
ov

so that the system for V' will be

— Gdiag (151> GV -G (PX) +0?AGV =0

[dmg (151) G+ 02/\1] V-PX.
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(B.1)

(B.2)





