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ABSTRACT
This is a study of a type of fluid dynaﬁics dominated by a
"6ne-body" dissipation mechanism expected to be relevant for aﬁ>assembly
of particles whose mean free paths are comparébie to or larger than the
size of the system. Two simple dissipation formulae are derived, one
relevant for the process of nuclear fission and the other for nuélear
collisioﬁs. The resulting predictions, free of adjustable parameters,

are compared quantitatively with measured fission-fragment kinetic
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energies}and qualitatively with nucleus-nucle@g collision data. The

one-body dissipation concept is also tested against classical and

quantal computer studies of particles in a deférming potential well. »
This briﬁgs out special effects associated with the symmetries of

the well andvpoints to a macroscopic dyﬁamics.9f nucleér deformations
which,_excepf for super-fluidity at very low téﬁpgratﬁres, consists

of a smootﬁ background dominated by 6ne—body disgiﬁation ("super-

viscidit&"'éf nuclei), on which are superposed modifications due to

symmetrieé‘ahd quantization.

L



1. INTRODUCTION
Equations of motion, including those governing the flow of
many familiar fluids, usually consist of three terms, which represent
the balance between conservative, dissipative and inertial forces.
The dissipative effects in fluid dynamics are often bulk phenomena

arising from the viscous shearing stresses between adjacent. layers

of fluid in nonuniform motion. The rate of enérgy dissipation, i.e.

the rate of flow of energy from collective degrees of freedom into
microscopic (molecular) degrees of freedom, may ﬁhen be expressed as
a voiume‘infegral (over the bulk of the fluid) of a suitable function
of the derivatives of the fluid velocity components at each point.
(An explicit formula of this type is displayed in Sectiom 4, eq. (4.1).)
The microscopic mechanism for the above energy.dissipation has its
roots in the (two-body) ihteractions between the ﬁolecules of the
fluid, and fhe physical content and mathematical structure of
conventional fluid dynamics is governed by the shortness of the
resulting mean-free-paths of the molecules compared to the size of
the system.

This '"two-body/short-path" dissipation mechanism may ‘be
contrasted with a different, "one—body/long—path"'mechanism, in
which the exchange of energy between collective .and microscopic
degrees of‘freedom proceeds through collisions of the particles with
a moving boundary of the system. This mechanism:would operate even
if there were no forces betweén the particles, as in the case of
an ideal gas of noninteracting mass poiﬁts bouncing about in a

deforming container. In this case the rate of enérgy exchange between
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the mass points and the moving walls, calculated-(gee below) to the
first order in the ratio of wall to particle velogities, leads to v
ghe ideal gas law stating the proportionality between the product of .
pressure ané Qoiume,and the temperature. The temperéture is itself

broportioﬁaitto the total kinetic energy K. E. of the molecules,

so that

pV.=NRT=%(K.E.) . " (1.1)

whe;e N is the number of molecules and R is the gés_constaht (p. 116,

ref 1). Thus-in a slow compression of an ideal gés By a piston the col-
lective energY'of the piston is converted into the microscopic kinetic en-
ergy of the ﬁélecules. S;nce this result follows from a calculation to
first order ip the wall vélocity the resulting eﬁergy expression is odd

in this velociﬁy and hence the energy flow has tq:be'reversible: on re-
tracting the piston siowly all of the microscopic_engrgy reéappears as
macroscobic &ork done on the piston. The underlying mechanism of this
familiar energy flow in the case of an ideal gas is just thé gxghange of
energy betweeﬁ a particle and a moving wall, more specifically the increaée'
or decrease in the speed of a particle bouncing gff an approaching or re-

ceding wall. .

By calculating the energy flow between wall and particles to
the next ordet in the ratio of wall to particle speeds one expects >

to find a term quadratic in the wall velocities, which would then

represent an irreversible dissipative flow of ehe:gy from the
collective degrees of freedom. An example of such a calculation

results, under certain assumptions, in the followipg simple expression
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for the rate of flow of energy E into a gas with mass density p,
composed of independent particles with average speed v, and contained

in a vessel of fixed volume, whose walls deform with normal velocities n :

E = p\-lfﬁz o . (1.2)

(The 1ntegra1 is over the surface of the vessel and the bulk of the

gas is ass@med to be at rest — for a derivation_see Section 2. . The

case when the bulk bf the gas is not at rest ié-discussed in Section 7.)
The one-body/long-path type of dissipafion, éxemﬁlified by

eq. (1.2) has, naturally enough, received in the pést less atESPtion

© e ——

than tﬁe standard two-body dissipation which is.dominant for‘many
ordinary_liduids and gases. (But see refs.2.) Nevertheless omne
would expeét that the one-body dissipation might be relevant for a
rarefied (Knudsen) gas (ref. 3) with a mean free path comparable to
or_longér’thgn the dimensions of a vessel deforming at a rate no
1ongér.negligible in comparison with molecular speeds. Also_for small
systems at temperatures close to thé absolute zero, such as nuclei
or liquid He3,_for which the particle mean free.paﬁh may again
‘become comparable to the dimensions of the system, fhe one-body
dissipation mechanism would be expected to become‘important. (See
especially ref. 4.)

iIn the present paper we shall describe értentati;e study of
‘the one-body dissipation mechanism and of the possible consequences
for the dynamics of nuclear systems. In Section 2 we shall derive
the dissipépion formula (1.2) (the ﬁwall formulaﬁ) as well ésra

related dissipation expression (the "window formﬁla") relevant for
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the case of two vessels (e.g. idealized nuclei_in a grazing collision)
exchaﬁging noninteracting particles through a small opening or window.
We shall also illustrate the generally large démping predicted, in '
the nuclear context, by the one-body dissipation‘mechanism.' In
Section 3 wé shall explore this further by adding'fhe wall formula
expressioﬁ to the usual equations of motion for’the small deformations
of an 1dealiied charged nuclear drop. 1In Sectibn,& we shall describe
a calculétion in which the above idealized nucléar drop with damping
is foilowedrihrough the{fission process, and we shall compare‘the
resulting.kinetic-e#ergies of the fission fragmeqts with experimént.
In Sectioﬁ 5 we shall attempt an estimate of the relation of the
window formula to experiments on grazing and deep-inelastic collisions
between nuclei. Section 6 is concerned with clarifying the foundations
of the wall formula and testing it against clasSical and quantal
computer studles of particles moving inside a deforming vessel.

In Sectionl7 we éhall generalize the wall formula to include
translations and rotation of the vessel‘containing the gas and then
we shall discuss the formal structure of the new dynamics which

follows when the motion of a fluid is dominated by the one-body

fx §

dissipation mechanism. Section 8 summarizes the paper.

t

2. DERIVATION OF TWO DISSIPATION FORMULAE

2.1 The Wall Formula

Consider first the evaluation of the pressure acting on an
element of area A0 of a plane container wall or piston in the case
when the wall begins, at time t = 0, to move with a constant normal

velocity q relative to a large volume of an ideal gas of uniform mass
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density p , consisting of mass points m whose velocities are originally
isotropic and specified by a velocity diséribution functiop f.

Choose a qbordinafe system moving wiﬁh the element of area Ao,
with the z-axis along the norﬁal to Ao (andvpointing away fréﬁ.the
gas), and the x and y axes in the plane of Ao. Lef the &elocity of
the gas as seen from thisvreferenpe frame be E, so that d is the
negative of the z-component, UZ , of E. (Té anticipate the discussion
in ééction 7, the velocity U characterizes the drift, with respect to
thé'sufface‘AO,'of particles about to strike?this'surféCe. Particles
not about to strike thevelement Ao, i.e. those whose velocities are
directéd away from it might,'in’genéral, be characterized by a -
different drift velocity.)

In the reference ffame moving with A0 the velocities 3 of the
particles of the gas are clustered in velocity space around a point
specified by ﬁ, the density fall-off of the isotropic c¢luster being
describéd by the function f (é Gaussian for a Maxwell-Boltzmann gas,
a step function for a completely degenerate Fermi gas)., See Fig. 1.

We shall presently require the.projected velocity distribution
function g(vz) which, when multiplied by dvz,,gives the fraction of
particles with velocities between v, and v, +~dvz. It is obtainedvh
by integrating over particles in a slab between,vZ and v, 47dyz in
Fig. 1, and the result is readily found to be

o

g(vz)= / dv 21v £(v) . o (2.1)

v=y -U
z Tz
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For.vz less than Uz’ when the lower limit is.negative, the
value of the function f is to be taken as the symmetric continuation
to negative arguments according to f(-v) = f(v). We also note the

result, to be used presently, that the derivative of g(vz) is given by

8'(v,) = -2M(v,~U,) £(v U ). I | (2.2)

At a time At after the beginniné of the motion of the wall with
respect tblpﬁe gas, a particle.initially in a slab of width dﬁvparallel
to the wali.and at a distance % from the oriéinai wall position, will have
collided:ﬁith the wall if its velocity v, in the;di;ection of the wall |
‘is such thaﬁ v, At > 2. Each colliding particle imparts to the wall a
normal momentum of magnitude 2mvz. The number of;partic}es per unit area
of the slab d2 is (p/m) df, and of these a fraction g(vz) dvz.has a
z—compongn; of‘velocity betveen v, and v, + dvz;::ihe pressure on

the wall, which is the momentum imparted per unit area per unit time ,

is therefore given by
p = Ef[ 2m vz-(p/m) dg - g(vz) dv_ , : (2.3)

where thé reglon of integration over £ and v, is defined by the
inequality 0 < & < vat (see Fig. 2).. Since the integrand is independent

of & we find at once

p= 2pf v vliegv) . | (2.4)

3.



Integrating by parts, using eq. (2.2) ,-.aﬁd assuming that g(vz)

- - falls off sufficiently rapidly so that % vz3 g(vz")» vanishes at infinity,
b we find _
P=0 l’—v3 4n(v_-u Yf(v -UA') av_, ) (2:5)
R 3 'z z "z z 'z z" ‘ T
- Yo

Changing the variable of integration to v, defined as vz-Uz-

(or vz-Ft.l), we find

. -, e
p=p 1l -]-'-(v+'U )3 4nvE(v) dv —-p l(v+U )3 lﬁr;r .f(v) dv
v 3 z z 3 r A z
o . o] )
7 3
= p -3—(v-q) /v + Ap
1 2 - . 1 -1 .3 : :
é'j'pv -ovq+pq—§DV q +4p, (2.6)

where

q
.. 3
Ap'= - p/ %—(v-—q) 4mv £(v) dv,
"o
and a bar denotes averaging with respect to the distribution function

f(v), i.e.

' v o= /dv 4 ‘-,2 f(v) vn//dv 4 v2 f(v) .
* v o Jo :

In the case of a Fermi distribution, when f(v) is a step function

dropping from f0=3/(41r V3F) to zero at a Fermi velocity v = Vg, we have

O = 3 Vn
n+t3 F 4

so that, for example, v = %"VF .
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The term Ap in eq. (2.6) is, for small ﬁ, a very small correction
of order:és. For example, in the case of the Fe;mi distribution mentioned -
above, Ap is readily calculated to be p&S/(ZOVFéyiif é is less than Vg
Imagine now that instead of a plane wall mdving yith respect to a
large body §f gas we have a finiEe veésel whose surface élements move
with normal'yelocities d with reépect to the bulk of the gas. (The
gas itséif;méy, in general, be endowed with some_dfift velopiﬁy.)
Insofar és the use of eq.(2-6)is justified in fhis.case (see below), the
leading term, after multiplication by the volume:v.of the vessel, wpuld

give

velyop?-2

where KE = %—pV v2 is the total kinetic energy of the molecules of the
gas. This is the ideal gas law.
More generally, the energy SE fed into the gas by normal displace-

ments 6n of the surface (and appearing as an increase 6(KE) of the

kinetic energy of the molecules) would be

-f p n do

- —;— ov? f én do + pv f 4 6n do + terms of higher

SE

[

i (2.7)
order in q/v . .

The leading term in eq. (2.7) would, by itself, give

sy = - 2wy &,



or, - _ : ,

- e
0. 0] 0 _

where thé éﬁbscripts zero denote some reference values of the quantities

in question. The above equation states correctly_the proportionality

of tﬁevkinetic energy residing in the mass pointé of an ideal-‘gas to

the two-thirds power of the density. (Note tﬁatvthis relation is

exactly the same for a classical and a quantiiedvgas - a consequence of

the adiabatic invariance of the action integral;';éfs. 5.) .

For a volume~preserving deformation the first term in eq. (2.7)

vanisheé; The energy change SE can now be written
GEéb\';f q 6ndo + ... o (2.9)
or |
g% = 5vf£;ﬁdo+ ) - (2.10)
If the bulk of the gas is at rest q and 1 are equal and we have

2 ' \ ’
dE _ - . :
a—t:——pvfn do + ... . : ' (2.11)
Here then is a simple expression suggesting a new form of |
dissipative force to be inserted into the equations'qf'motion in
certain idealized problems in fluid dynamics: the dissipative force

-in eq. (2.9) resisting the motion of a surface element do is

proportional to the normal velocity q of the surface element with
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respect to the bulk of the gas. The rate of energy dissipation in

eq. (2.11) is proportional to the surface integrai of the square of N
the normal surface velocity (rather than to a volume integral over v

the squates.qf velocity gradients in ﬁhe fluid, ésgin conventional
hydrodynamics). .

Thelcgntral assumption involved in‘épply1ng'the pressure
expression (2.6) (derived for the initiai;motianfof a plane wall with
respect to én infinite feservoir:of randomly moﬁiﬁgvgas particles) to
the 1ndividuél.surface.elements of a fiﬁité conﬁaihér deformingvfor
finite time intervals, is that eachvelement of-éufface continues to
be bombarded by particles as if these originated in a randomized
distribution.: This brings éut a keykhypothesis.of'the present treatment
of dissipafion, namely the hypothesis of the continued randomization
of the paftitle motions. If the particles are aésuméd to be’strictlyi
independent the randomization has .to rely on thé}collisions of the
particles with the vessel boundary. If this qundéry anq its motion
are sufficienfly irregular we may expect the hypothesis to be satisfied,
but if they are regular and symmetric we expect the hypothesis and the

associated dissipation formulae to fail. (Weak residual interactions

between the particles might help to preserve some measure of,validity

of the formulae, but strong interactions would, of course, invalidate

the whole basis of the one-body approach to‘the3problem gf dissipation.) .
We shall see e#ampleS'bf the failure of the randomization hypothesis

in Section 6. A more complete study of the effecp of symmetries on

the one-body dissipation is presented in ref. 6.
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‘,2.2 The Window Formula

Consider now the one¥body dissipative dfag between two systems,
A and B, in relative motion and communlcating through a small window
of area Aa. ‘(Fig. 3.) As before let the velocity of a particle with
respect to the window be Vv and the velocity of’the.gas with respect to
' > -> . . > >
the window be U for A and U' for B. (The velocities U,U' again charac-

v

terize the drift velocities, with respect to the window, of particles

about to traverse it.) Let the velocity of the?wiﬁdow with respect to
an 1nertial system of coordinates be ﬁ, so that.with respect to this
system the particle and drift velocities are v + W U + W and U' + w
v The window AG may be considered to divide the total system of
particles isto two sub-systems, one consistingfof'the particles which
at any insﬁant are in part A and one consisting:df the particles in
part B. The fofce §A on sub-system A is equal to the rate of change
of momentum of this group of particles and consists of thfee parts:
@) the'rsts:of change‘of momentum due to the collisions of the particles
with the opsn surface, denoted by A - Ao, of container A, (2) the flux

<>

of momentum £§%A from container B into container A, and(3) the negative
- ‘

of the flux of momen tum kéiiB from A into B. Thus

FA = / (- ph) do + Ao —@ Ao, (2.12)
A-Ac : ‘ '
where p is the pressure exerted by the gas on the walls of container A,
and B is the outward unit vector along the direction normal to the
surface. ‘
>

In order to calculate the momentum flux 595 we shall use
: T-AB

exactly the same considerations and the same % vs v, diagram as in
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the case of the pressure calculation in Sectioh 2.1, except that each
particle, instead of-centributing a momentum change 2m v, on hitting a
wall element, contfibutee a momentum loss from the container equal to

> > ‘ ' - A S
m(vHW). We shall re-write this as m[U + (v-U) + W] in order to deduce
by inspection that for particles in a slab dvz in velocity space’
(see Fig. 1) the average momentum loss per partlcle is m[U + (v -U )z + w]

(Here % is the unit vector along. the z-axis, assumed to point in the
direction of;;he normal to Ao, from A towards B.)- This is because the

X and y coﬁponents of v-U (the velocity with reépeet to,ﬁ) average out to
zefo by symmetry (see Fig. 1). We may further re-write the above expression

+
as m(ﬁl + ﬁ + vzz), where Ul is the two-dimensional vector component of

. >
i in the x,y plane. It now follows that in order to find_j?g we merely
- > v o . AB )
replace 2mvv2 in eq. (2.3) by m(U; + W + vzz), to obtain
N i b R |
- v
% _Eﬂm(Ulfw +vzz)-(_p/m)d2~g(vz)§1vz
> > “. : ’ . o
= f dvz(Ul+W+vzz) vzg(vz). o (2.13)

o

The second part of this integral is proportional to exacﬁly the
same integral over v, as the one in eq. (2. 4). The first part differs
by having one power of vz‘less. The result of integtatlng eq. (2.13)

by parts and manipulating the expression as before is, therefore,

(by inspection) 5
-> 1 ; L 3 -
= 1 v
% =3P @ L+ W5 (v+UZ)2/V‘+z 3(v+U) /V}+AﬁAB ,
~ where : o : (2.14)

z

>

Ihﬂh"

27 > 1, 3w .
V+Uz) (U, +W)+ §(v +Uz)_ z] 2mveE (v)

~
\
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> . ) 5
For small -13 the .term W is a very small correction of order U .
-+

In order to obtain the momentum flux & from B to A we merely
BA
replace’Ul by UJ. , Uz by -U; and change the sign of Z in eq. (16) (since

the direction of the z-axis is into container B). Thus

- -+

-1 ".'*,‘*»l 2 v 1 .v3-b.' b
‘?ﬁi = E.p’;{_(Ul+-w)E(v Uz) /v- 2 §(v-bz) /v } + A G BA s

(2.15)

A‘é =-pf dv[ (v U) (U +W)-—-—(v U) ] ZTrvf(v).

lSubstitutiqn of eqs. (2.14), (2.15) into eq. (2;12) now gives the force

on syste_ﬁl A, without any assumptions as to the smallness of the velocities
) t

N . _—
-ﬁ, -ﬁ' and W with respect to typical particle speéds v. If these velocities

are small and we retain only the leading terms in these quantities we find

5%3 =% {% % w)+ew2+vu)z+.“} ,

which leads to

f —pn)do - 3- pv ;Ao
A~-AC

+ %4)Ao { v -u Dt v(U -7 ) + ---}

(2.16)

If the surface elements of container A are not in motion with

respect to the gas inside it, the pressure p is given by the static
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value %-p'vz. The first line in eq. (2.16) is. then an integral of a
constant preésure taken over a closed surface (closed off by the term
.in Ac), and the result is identically zero. If fhe surface elements

are in motion with respect to the gas there wili be an additional
conﬁribution to the force on A, of the form of-fhe wall formula discussed

in Section 2.1, and associated with the container A itself. 1In any

case the force on A due to the-presence of B is given by the second

-

> . >
line in eq. (2.16). We shall denote it by FB on A or FBA' It can
be written as
F.o= n Ac(20, +u,) + ... , | (2.17) .
fo) It L

BA

where 3,'equa1 to ﬁ;-ﬁ, is the velocity of B'felative to A, énd‘ﬁn
and ;L aré tﬂe components of this velocity alohg'and at right angles
to the normal through: the window Ao (pointing from A to B). The’
quantify no,vequal to %nb;, is the static one-sided flux of particles
ih the gas (from left to right or right to left.across a unit area).

Equa;iOn (2.17) is the window formula for';ﬁe velocit&—dependent
dissipative drag of system B on systém A calculated to.first'order in

the relative velocity u. Note that this force is not, in general, parallel

<> .
to u, since the friction coefficient associated with motion normal to the

window is twice the corresponding coefficient for tangential friction.
" The reason for this may be traced to the circumstance that the normal
component of the motion (unlike the tangenfial component) affects the

rate of exchange of particles between the two containers. Note also

that to the first order in the velocities E,ﬁ',ﬁ the window formula (2.17)
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. » . . I3 -+ - v i
is independent of the window velocity W. Taken to higher orders the

. . . . + . . ) B
formula would contain a term lfnear in W associated with the mass flux
between the contéiners.

In the nuclear context we shall use a velocity or momentum .

distribution which is constant up to a maximum Fermi velocity-vF or

Fermi momentum P = va,‘so that
Vo= @3/ . - | S (2.18)

With four nucleons per h3 of phase space (h is Planck's

constant) the particle density p/m is related to P through

| (%»ﬂP%)_‘4/h3 f p/m = (g—FrOB m)—; | | : (2.19)
where m is the hucleon'mass and rO the nuclear radius conscant.v Using
these relations the quantity»p; appeering in the wall formulabeq. (2)
can be written as 4ﬂP4/h3, and the drag cbefficienc %-p; in the window‘
formule eq. (2.17) is eimply WPA/h3. For tangencialimotion, when u“=_0,
the window fcrmula reduces to the result quoted op P? 55‘in.ref;- 7.

We may note here that the.reservations one might have concerning
our derivation of the wall end window dissipatioﬁ fermulae, on account:'
of the disregard in those derivations of the Pauli exclusion principle,
are largely removed by the correspondence between classical and quantum
mechanics reveaied by Liotiville's theorem. According to this theofem

the representative points in phase space, for classical patticles.moving

i

under the influence of a time—dependent:one—body potential, exhibit the

properties of an incompressibie fluid. It follows that if a swarm
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of particles is distributed so as fo sgtisfy'the exclusion principle
inifially (5y having, say, four pareicles pér h? éf phése space) the
classical equations of motion ensure that the principle will be_obeyed
for all time, at least in the average sense of azfixed deﬁsity 4/h
in phase épace. |

2.3 Characteristic Damping Times for Nuclei  ~1 

Ve néte~chat there isvnothing'adjustable'in the wall and window
- formulae. When applied to the nuclear situat?on;.the nuclear density p
is known and the mean nucleonic speed v is knogﬁ."Thus we can at once
make anvesfimaté ﬁo see whether tﬁe dynamics éf a nucleus described by
the indepéndént-particlé (Knudsen-gas) model should be dominated by
digssipation or not. The simple order-of—magnifude way of doing this

is to write down the charaéteristic}decayvor démﬁing time of the one-body
digsipation theory resulting frém balancing typicél inertial and
~dissipative terms in the equations of motion. for'eXample, if in

" the fissioﬁ.process we imagine a nucleus (radius R), started off with

a collective kinetic energy E (in the form of é'surface deformation of-
ripple of multiple order 2,.say) the time to diésipate this collective
energy will be of the order of |

-1

|5

1
E

o

tdamp~’ t
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Let us write the wall-formula estimate for dE/dt as
E | _ - _ .
‘ %f = pv(4ﬁR2)(typical n2) R

and the estimate for the kinetic energy E as one half a typical mass
times a typical value of 62 . The typical mass in a multipole ripple
of order % is of the order of % (mass of nucleus), because the nodes

of the multipole ripple divide the nucleus into about & cells.' Dropping

all numerical factors we then find the order of magnitude relation

1 -
. & R/v
tdamplng '3 R/V)
Geometrical . Characteristic time
factor unit of the one-=body
dissipation theory.
The characteristic time unit is thus a nucleon transit time. It is

'in the range of (0.7 -1.3) x 10;225ec for mass numbers between 50 and 250,
(The corresponding damping widths in energy ﬁnitsrwould be h(v/R) =

5-9 MeV.) These are damping times intrinsically short compared fo many
characteristic collective times,; so the message here is that one-body
energy dissipation may often dominate collective nuclear dynamics. |

The mechanism of collective energy dissipation by collisions of particles.
Withbthe moving walls of the potential well appéars to. be ggﬁ_some

small correction, but a gross, dominating phenomenon that has to be
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looked at very seriously. It suggests at once that nuclei may often
be "superfviscid".

A similar order-of-magnitude estimate of the damping or stopping
time in nucleus-nucleus collisions goes as follows{ Imagine two nuclei
with radiivR_colliding with a relative velocity:-u.. The collective

kinetic energy is of order
EN(%?IIQ p) uZ.

(We are again dropping factors of order one.) If the nuclei are in

communication through a neck or window of area ﬂaz‘the window formula

says

git:l ~ % ov (1a2) (u?) .

Therefore the characteristic damping or stopping time is of order

' 3 2, -~-272 -
topop ~ R PUT/0Va = (R/a) 2 (R/V)
Geometrical Characteristic
factor time unit.
Again we see the product of a geometrical factor and the characteristic

(short) nucleonic time unit. If we compare this stopping time with a

collision time.defined by

1w

tcoll ~

we find

t
250~ (R/2)% (u/D)
coll ‘

or
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tstog o 2 Energy per nucleon above barrier
= (R/a)
teoll Fermi energy (~ 30 MeV)

Here the géometrical factor (R/a)2 is all—imbqrtant — the stopping
time goeé of course to = as the neck a tends to zero. But for not
too small_ﬁecks the above ratio might be of ordef 1 if the total
energy.ab6ve the barrier is not too many Mev;,‘In that case the super-
viscid hﬁclei might be brought to relative résﬁ in a time comparable
to thé coliision time, as required by the phenomenon of deep inelastic
scattering. |

This is the background of the idea of bqé—body dissipation and
of nuclear supef—viscidity. How does the idea fare when subjected to
further theoretical analysis and confronted wiﬁh éxperiment? In order
to ansﬁe;-ﬁhis question and to 1earh under whaﬁ conditions — if ever —
simple‘exﬁreséiohs of the type of egs. (2.11).éﬁd (2.17) are relevant
for practical applications, we shall proceed in two ways. In Section 6
we shall éttempt a discussion of the validity pf the assumptions under-
lying these equations. Subtle questions are inVélved to some of
which Wé'don't know the answer. Even pending the further clarification
of these questions we have thought it worthwhile to explore, in
Sections 3, 4, and 5, some consequences of tﬁese'equations and to
compare the results with experimental data on nﬁclear‘dynamics,

egpecially nuclear fission.
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3. SMALL VIBRATIONS OF A DROP .
The ordef of magnitude of the dissipation assoéiated with
eq. (2.11) in the context of nuclear dynamics may be illustrated by
adding such a term to. the equations of motioﬁ of an idealized
incompressible nuclear drop. (with a surface tension y and a‘uniformly
distributed total charge Ze) that is undergoing small motion around
~ the spherical shape. |

Let the radius vector of the surface be written as

_ v 3 . H
R(6,0) = —§ [1 + Z Z a, Y, (6,0 . (3.1)
wifh azm-= (—l)maZ’_m (to ensure the reality of R), A a scale factor
ensuringlconservation of volume, and the terms with £ = 1 _ensuring the
fixity of the center Qf mass. In what follows we shall_resfrict
ourselves to the case of Eggl_coefficients ag - This corresponds
to standing waves which carry no angular momentum.

The changes in the surface and Coulomb energies of . the distorted

drop are given by (ref. 8)

1g2 Ry | 3 2
pE, =2 REY DL DL (-1 () ay 2+
> 5T
3 29l - (-1 . 2 .
- - = e ! .
AE. = - 77 R, Z Z eFD Ym T g
7 |

so that the potential energy of the drop with respect to the spherical

shape may be written as
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-1 ¥ 2 o -
V=3 ZZ Cooag “+ oon , . (32)
2 -4 ' : ' ‘ ' -
where

C% = ROZY. [(z—l) (L+2) _.%QJ ., ) (3.3)

and x is the fissi1ity paraméter defined by (Ze)z/[lO(é-ﬂR03)Y].
1f, for purposeé_of illustration, we assume irroﬁatidnal flow,

the kinetic energy is (ref.8):

.1 : 9 . :
KE—ZZZ Ma, 24+ ..., o (3.4)
2 ' : :
where M, = pR 5/2
L 0’

It follows that the force resisting an increase dazm in one
' . : ) 3V ' : o
of the coefficients a is - 5— = -C, a , and that the inertial
£m da £ " fim
fm
reaction associated with an acceleration a in a is -M a, .
_ m 2m 27 %m

The dissipative force may be deduced with the aid of eq. (2.11).

Using

6n=Roii (SaQ,mYQm + ...
2. -3
2
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we find for the energy dissipated in a displacement &n the result

6(22 le)(zzéaﬁlm im. )
R, 4ov 2{: };; I

It follows that the dissipative force associated with a rate

-, . - . . ; _ 4 -
of change an in aQ’m is given by —Dgzm , Where D = RO pv.. (Notg

SE

that this friction term is independent of 2.)

The balance of inertial, dissipative. and conservative forces

requires that

My ¥ DA+ Chap =0 B o RN )

We note that if the damping were due to ordinary (two-body) viscosity
the equations of motion (again under the illustrative assumption of

irrotational flow) ﬁouldbbe

Mofom ¥ P2 ¥ G0 = 0 | | (3-6)
wherg’lo
D, = 2UR03 (-1) (2041) /%,

U being the usual viscosity coefficient of the fluid.
In the absence of dissipation the characteristic time of the

.collective vibrations described by eq. (3.5) or (3.6) would be
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On the other hand in the absence of driving forces‘(i.e. Cz = 0)

the e-folding time for the damping of an initial motion would be given

by {
(1) MQ R05p/2 1 _ .
“damp "D " g i "% Ro/V) ' (3.7a)
- o PV ’

in the case of one-body dissipation, and

M . o _
2 _%__ 1 2 '
“damp = B, “XB-D) (ZHD Ry 0/w) . | (3.7b)

in the case of two-body dissipation.

Eqﬁétion (3.7) re-states quantitativelf the order-of-magnitude
result fqund in Section 2.3 , according to which the fundamental tiﬁe
unit of the one-body dissipation dynamics is the.transit.time RO/G;
Similarly the fundamental time unit for dynamics_dominated by two-body
dissipation is given by the expression Rozp/u iﬁ eq. (3.7a), which
may be rewrittgn in an instructive way by.using'an estimate for the
viscosify cpefficient which follows from the kinetic theory of gases,
viz | |

1 - .
H=gpvL o, , o - 3.8

where L is a suitable mean free path of the particles in the gas

(see p. 273, ref.1l). This leads to

2 _ 3 =
Cdamp = F(-1) (22F1) Ro/V) (Ry/L). 3.9

The fundamental time unit multiplying the geometrical factor
3/2(2-1) (22+1) is the transit time (RO/V) augméqted by the ratio

of Ry to L. (n this case RO/G is what the single-particle transit
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time would be if there were no collisions between particles.) For
magroscopic bodies RO/L is a large factor and viscous effects fqr
large fluid syétems are thus often of secondary importance. On the
other hand for small systems the damping time t(z) may become as
short as the transit time RO/; , which is itself shor; comp;red to
typical collective times. One would then expect such small systems
to be dominated.by‘viscosity. ‘(This is in accordance with the
observation that the dynamics of all ordinary fluids,.including the
Fermi liquid He3,.wouldvbe dominated by viscosity once the scale

: of the relevant objects reached the>level where only tgﬁs or‘hundreds
of molecules were involved - see pp. 53,v54, ref. 7.)

In the nuclear context eq. (3.9) might be relevant at very high
teﬁperatures, approaching or even exéeeding the Fefmi energy. (An'
extreme case is the recently discussed nugléar "firebéll”, ref. il)-.
At such-temperatures the exclusion principle is relafively less
important in inhibiting ﬁucleon—nucieon intefactions and nuqiear
matter is expected to become more nearly like anbordinary fluid,
cﬁaracterized by mean free paths of a cbuple of fermis. Since relevant
nuclear radii are unlikely to be more than a few ferﬁis, ratios RO/L
of around 3 ﬁay be.typical and for such systems sevérely overdamped
dynamics, with damping times of the order of the transit time RO/;,
may again be anticibated.

Coming back to eq. (3.5) we see that each amplitude ag obeys
the equation of>m9tion of a damped harmonic oscillator. Ihé.motion
is periodié (with damped amplitude) if D <2 /ﬁ;ﬁ; and‘aperiodic if~

D > ZVﬁZCQ . The critical value of D is thus
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o | | e - 7 %-1[,.. _20x |
‘ Dorit = 2MpCy = ZJORO Y g | A2 22,+1] . (3.10)
) | (1)

A dlmenSionless coefficient of overdamping Xg ° may be defined

for each mode by

R\ > - |
~ l g 2 ._Q 2
5V JY (2 ) for large 2 . . _ .(3.11)

This number gives the relative importance, for a given mode,

of the damping force compared to the inertial fdrce.

(1)

the expression
1

. "2
xP = Gneemt® s Vel [’L L (s+2- -zfz;o—’i‘-)]

Using again eqs. (2.18) and (2.19) we find for Xg

(In ref. 12 this formula was incorrectly written with a factor 3/8
instead of 3/16.) We give below a corrected table of the values of
xél) for three idealized nuclei and three harmonics (Lysekil parameters

were used, ref. 13.)

_ TABLE I
. g =2 4 8
20ye 1.51 0.97 0.69
10 |
1205, 2.62 1.46  0.97
50
238y 473 1.79  1.14

92
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The values of xél)

are larger than one except for very light nuclei .
and/or high harmonics, suggesting severely overdamped aperiodic motions
in most éases. Formally this ovérdamping would (for a giﬁep mode)
increase without limit for very large systems (see eq. (3.11)). The
idealized nuclei would become "super-viscid." TaBle i suggests thaf
many nuclei in the periodic table, especially the héavier ones, might
exhibit to é noticeable extent such super-viscid characte:istics.

A ﬁigh nuclear viscosity o; diésipation is indeed implied by
the existence of so-called deep inelastic procéSsesv(ref. 14), which
suggests tﬁat nuclei behave somewhat like two drops of honéy tﬁat get
stuck but do not easily flow together. Hoﬁever; highlgggfbody viscosity
18 inadmissible in fission, where it Qould prediCt étretched—out scission
shapes resulting in fission-fragment energies far below those observed
expe;imentally (see ref. 15 and section 4). This stretching out is due
to the stfonger damping of short wavelength modes, such as a necking-in of
the fissioning shape,rcompared to éﬁ overall eloﬁgation — exactly the
mechanism that is résponsible for the formation of a long neck in
dripping honey. This.is a well-known effect in hydrodynamics where 5
(ordinary) viscosity always becomes dominant for sufficiently short
wavelength médes (or sufficiently small systems - see above). A
quantitative’illustration of this is provided by'eq. (3.6). This time | -
the friction terms DQ depend on % (they increase linearly with % for

(2)

large %) and the coefficient of overdamping X , defined in analogy

(1)

with X , is given by | -
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1

: D D ' 2

(2) - "% _ L 2 . 20x

X, " =9, ~ =u@L+ D) o Ry ¥ g 42 - 50

SaAE int 2 C o

-2 ,
_ (3.12)
1/2 .
=~ —Z-E-—(—ﬁg-—) for large % -
VoY

0]
We readily find that the ratio of the overdampingfactors for two- and

one-body dissipation is

@
—y =3 AHDARY .
X .

It follows that for a mean free path of the order of 2 fm the
(2) (1

overdamping factors X would often be even larget than X , ranging
in faét betwéen 2.8 and 4.7 for the cases listed in Table I. We may
also note tﬁat for this choice of the mean free path, eq. (3.8) gives
for the viscosity of (hot) nuclear matter the valﬁe u.= 0.12 terapoise.
This is a very high value (about eight times larger than the moderate
viscosity used in ref. 18) and confirms that at least hot nuclear
matter (along with all known normal liquids) wéuldbéxhibit super-viscid
characteriStics when the relevant systems are sufficiently small.

ﬁote that, since a typical harmonic of ordgp £ corresponds to
a ripple with a separation between nodes of orde?'Ro/Q, eq. (3.12)
states that the relative importance of normal viécoéity is inversely
proportional to the square root of the wavelength of the disturbance

(1)
2

(for short wavelengths). In contrast, the coefficient y for one-body

dissipation is directly proportional to the square root of the wavelength
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“(eq. (3.11)). The reason for the extra power of a wavelength A in the
ratio x(l)/x(z) (or in the ratio t(z)/t(l)) is‘immediately clear from
the expressions for the rate of energy dissipation E in the two cases:
a surface integral of the square of the surfaée velocity in the first
case (eq,‘(i;ll)), and a véiume inteéral over the squares of Velocity
gradients,‘in'the second. To see this consider a wave of wavelength
Aon a plapeffluid surface. Let the amplitude change at-a rate n.
fhe ratevof ohe—body energy dissipation is proportional to (r'l)2 (area),
and 1s independent of A. 1In the case of normal h&drodynamiés a wave
of wavelengﬁh A disturbs a layer of fluid to a depth of the order of
A below the surface (ref. 16). The velocity gradients are therefore
of order n/\ and the volume of affected fluid is of order (area) (X).
Hence the volume integral over the square of the velocity gradient is
proportional té (area) ()\)_(ﬁ/)\)2 = (area) (ﬁ)zlk;. This expiains‘the
extra power of A and the inhibition of short'anelehgth modes (1ike
necking) in hydrodynamics with ordinary viscoSity.~-In the case of
Oné—bodyvdamping such an inhibition of short wavelength modes is not
present, gnd-it'is therefore quite possible that in a fission process
dominated by oné-body dissipation the scission shapes would be reasonably
compact and the fission fragment'kinetic energies would not come oug
in drastic disagreement with experiment. In the'ne#t section this
question will be investigated QUahtitativély.
| 4. FISSION OF AN IDEALIZED DROP
To exploré quanﬁitatively the effect of one—body'dissipafion on

the dynamics of fission we use an extension of the simple macroscopic

approach described in refs. 17 and 18. In particular, we describe the
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shape of the nucleus by means of N collective coordinates q = ql; ey
Ay and selve classical equations of motion to,detefmine their time
dependence,

The presence of dissipation introduces into the equations of
motion an additional force that is proportional to the genetalized

velocities. This modifies Lagrange's equations'to19

A(r)-2-z e
i i 944 :
where the‘Lagrangian L =T -V is the difference ﬁetween the collective
kinetic and potential energies and where F is the Rayleigh dissipation
function; &i denotes the collective velocity corfesponding to q,. These
N second-order differential equations are transformed into 2N first-order
differential equations for the coordinates and their conjugate momenta
(modified Hamilton's equations), which are integrated numerically to
determine the time evolution of the system for a'given set of initial
conditioﬁs.' |

The dynamical motion therefore depends in gengral upon the nuclear
potential eﬁergy of deformation V(q),_upon the collective kinetic energy
T(q,q), and upon the Rayleigh dissipation function F(q,4). The nuclear
potential energy is calculated by means of a modified liquid-drop mod§2’21
that takes into account effects‘due to the finite range of the nuclear
force in addition to the surface and Coulomb energies of the ofdinary
liquid—drop‘quel. In this model, the nuclear.macroscopic energy is

determined in terms of a double volume integral of a Yukéwa function.

Because we neglect single-particle corrections to the potential energy,
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our later comparisons with experimental data'must be restricted to nuclei
with moderately high excitation energies, where single—particie effects
are expected to become relatively small.

Tﬂé collective kinetic energy is calculated for incompressible,
nearly irrotational hydrodynamical flow by use of the Werner-Wheeler
method],"s’22 which approxima;es the true velocity_field v inside the
nucleus by the flow of circular layers of fluid; When the dissipation is
small the dynamical motion is affected strongly by the kinetic energy.
However, fbr iarge dissipatibn, such as-the one-body dissipation
consideréd here, the dynamical motion is relatiﬁely independent of the
kinetic enérgy. Therefore, in this'limit, the deficiencies of the Werner-
Wheeler method become unimportant.

For the ordinary>two—body viscosity considered in refs. 17 and 18,

the Rayleigh dissipation function (equal to half the rate of energy

diSSipatidn) is caléulated by means of the standard volume integral of

fluid dynam10523
F=%J{Vzv2+ (Vx92- W v x (VxWikr (4.1)

wheré M is the viscosity coefficient. (It is a volume integral over
squares and products of gradients of the flﬁid Velocity components .)
For tﬁe one-body dissipation considere& here, we calculate F by means
of the gurfacé-integral appeafing in eq. (2.11)’, where F = % %%.

We restrict ourselves to axially.symmetric nuclei and describe
the shape of a fissioning nucieus prior to scission in terms of smoothly

joined portions of three quadratic sﬂrfaces of re‘volution.22 The

results reported here are also restricted to reflection—symmetric nuclei,
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which means.that we consider explicitly only chreeideformation coordinates.

These specify (1) the distance between the ceﬁfers of the two end spheroids

that fo;m the shape, (2) the eccentricity’of thése end spheroids, and

(3) the eccentricity of the middle quadratic éurface that forms the neck.
_fby_displaying the dynamical paths of fissioniﬁg nuclei it is

conveniéhf,to project out of this three—dimenSional space (or iﬁ general

out of an infinite—dimensional space) the two most important symmetric

degrees of freedom, These are defined convenieﬁtly in terms of the

central momentsls’21l
r=2(2)

and

- 1/2
O=2<(z—(z))2 ,

where the éngular brackets () denote an averagé'bver the half volume to
the right of the midplane of the reflection-symmetric shape. .The
moment T givesbthe distance between the cénters‘of mass of the two
halves of the dividing nucleus, and 0 gives a measure of the elongation
of each half about its center of mass, |

As a unit of distance it is convenient to use the radius Ro of
the spherical nucleus, which we determine according to the simple -

relationship

wichl8>20,21,24

ro = 1,16 fm.
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In terms of the central moments r and © we show in Fig. 4 how
one-body diséipation has the opposite effect on the prescission dynamical
path compared to ordinary two-body viscosity. Relative to the reference
path for a nénviscous 236U nucleus (dot—-dashed curve), ordinary two-body
viscosity:éhifts the dynamical path toward increased fragment elongation
(dashed cﬁrves). This occurs because neck formafion is é process‘that
involves 1argé velocity gradients and that conééquently is_hindered by
two-body viscosity. In contrast, one-body dissiéation shifts thé dynamical
path toward_g_more compact configuration (solid curve).

vStrictly speaking, the initial conditions'ﬁéed in constructing
Fig. 4 correspond to starting from the 236U macroséopic saddle point with
1 MeV of kinefic energy in the fission direction for nonviscous flow.
However, the most probable paths corresponding ﬁo starting from rest an
infinitesimal distance from the saddle point ape‘bfacticaily indistinguish-~
able fromvthéée shown in Fig. 4.. Furthermore, for heavy nuclei the
dependence of the fission eigenvector upon dissipation is so slight that
it may be safely negiécted.

The opposite effects of two-body viscosity.and one-body dissipation
on the actual scission shapes are shown in Fig. 5 for the fission of four
nuclei that épan our present region of interest. As seen in the first
column, for nohviscous floﬁ the scission shapes are relatiﬁely compact
for light nuciéi and become more elongated for heavy nuclei. This
occurs becausé of the increased Coulomb repulsion for heavy nuclei. The
second column shows that for infinite two-body viscosity the scission
shapes become more elongated, with the amount of elongation increasing

for heavy nuclei. This increased elongation occurs because of the
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 1;fge vél&éity gfadients'involved in neck formatién, which is thérefore
hindered By two~-body viscosity. The third columh.showé;that for one-body
dissipation the scission shapes become more compact, and that furthermore
they are appfoximately the same for the fission of heavy nuclei as for

the fisSioﬁ of light nuclei.

| In fig. 5 the scission shapes for 236U areltaken froﬁ the'appropfiate
dyanmicgl paths of Fig. 4 and consequently refervstrictly to starting a

236U nuciéué,from its macroscopic saddle poin£ with 1 MeV of initial

k;netic eﬁergy in the fission direction for nonviscous flow. The scission
shapes for the remaining three nuclei in Fig. 5 ére calculated for nuclei
along Green's approximation to the valley of 8 stability%é with the indicated
values éf:ZZ/A; the nuglei with the closest intégfal values of Z and A

are also ihdicated. For these cases the scission shapes refer strictly to
most probabie paths. Furthermore, in calculating the most probable paths

for one-body‘dissipétion we heglect the inertia,vwhich is an excelleht
approximation because the one-body dissipation tensor is so large‘that

it dominatés,the solution. (The inertia is retained in calculating the

236U path for one-body dissipation.)  These technicalities have no visible
effect on the shapes shown in Fig. 5.

We compare in Fig. 6 some results of oufvéalculations with
experimental most probable fission—fragmént kinétic energieé for'the.
fission of nuclei throughout the periodic fable; The experimental data
all refer to moderately high excitation energies, where the most probable
mass division is into two equal fragments and where siﬁgle-particle

effects should be relatively small. The results calculated for non-

viscous flow (dot-dashed curve) agree with the‘eXpérimental values for
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‘1light nuclei.but are higher than the experimental values for heavy
nuclei. |

This discrepancy may Be removed either by two-body Qiscosity or
by one-body dissipation, but the detailed manner in which this occurs
is differeht_in the two cases. The final tranéiatibnal kinetic energy
of the fiséion fragments at infinity may be decomposed conceptually |
into.the.cbntribution that is acquired prior tb’scission and the remaining
contribution:that is acquired from the scissionzpoint onwards. For. light
nuclei the :elatively small distance_;etween the saddle and scission
points meaﬁs‘that the préscission kinetig energy is alwéys small, However,
for heavy ﬁuciei the relatively large distaﬁce bétweén the saddle_and
scission'points leads to a substantial prescissionlkinetic energy when
the hydrodynamical flow is nonviscous. This pregcission kinetic energy
is reduced by either two-body viscosity or by oné—body dissipation.

Because two-body viscosity leads to a more elongated scission
shape, the,boStscission kinetié energy is also less in this case. These
two effects combine to reduce the kinetic energy to the values given by
the dashed curve as the two-body viscosity coeféicient increases to ® .

As shown in‘refs. 17 and 18, the experimental kinetic'energies are
reproduced Satisfactorily in terms of two-body viécosity when the viscosity
coefficient U has the value

= 0.015 £ 0.005 terépoise =9t 3 x 10_24vMeV sec/fm3
This relatively small viscosity is about 30% of the value that is required

to critically damp the quadrupole oscillations of idealized heavy actinide

nuclei.
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Becéuse one-body dissipation lgads to a more compact'scission
shape, the poétscission kinetic energy increases iﬁ this case. The
combined effect of the decreased preécission kinetic energy and increased
postscission kinetic energy is a small decrease iﬁ the total at infinity,
as shown by the solid curve in Fig. 6. This cﬁfvé,'which'has been
calculated without the adjustment of any arbifrary parameters, reproduces
adequately the experimental.kinetic energies for the fission of nuclei

278110, although the calculated curve systematically :

ranging from 80Sr to

overestimates the experimental values for very ﬁe#&y nuclei by about 4%.
We should note here that the wall formula, eq. (2.11), (derived

-under the assumption that the relevant bulk dfvthe'gas is at rest) -

becomes inappropriate in the final stages of fission, when a neck has

restrictédvthe free passage of particles from one half of the system

to the otﬁer. The effect of this respriction is that particles bombarding

surface elements of, say, the left~hand part of the system, come mostly

from this.part and are therefore characterized By a leftward drift.

The relevant value of n for the left half of the system is then no

longer the normal surface velocity with respect to the bulk of the whole

system (which is at rest), but the velocity with respect to the leftward

moving part, which is the one supplying the particles impinging on this

part. of the surface. When the neck joining the two nascent fragments

has become small enough the window formula, eq. (2.17), would become

appropriate for describing the dissipative foréé opposing the sepération

of the fragments. According to this formula the dissipation goes to

zero as the window closes off. By contrast, the indiscriminate use of

eq. (2.11)‘would imply the nonsensical result that the fragments'
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translational motions after scission were ppposed by a dissipative
force. (See section 7 for a generalized wall formula that takes into
account translations.) The proper description of the ﬁransition
region between the regimes when the wall and window fofmulae are
applicable is, naturally; a more difficult problem than either limiting
idealization. The present calculations may be considered as aﬁ
approximation in which a sudden transition from the wall formula to
the window formula is made at scission. (The window formula is then
used only in the triViai sense of giving zefo dissipation for the
separation of the fragments.) A better approximation would be to.
make this tranéition somewhat earlier, when the window is sméll (but
not zero) or, even better, to make a smooth transition governed in
some way by the gradual losé of communication between the two halves
of the system. This is a problem for the future, but we wisﬁ to warn
the readef that the presently calculated fission-fragment kinetic
energies are subject to an uncertainty arisingbfrom the above schematic
treatment of.the transition from the wéll formula to the window formula
at scission. A general formulation of the one-body dissipation theory
applicable to this process can be found in ref. 6.

The curves invFig. 6 are calculated for nuclei along Green's

approximation to the valley of B stability,25

which is adequat¢ for

the comparison made here. ;The results are calculated for most brobable
dynamical paths corresponding to starting from rest an infinitessimal
distance from the macroscopic saddle point. In calculating the

prescission paths for one-body dissipation we make the excellent

~ approximation of neglecting the inertia. This means that the
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prescission contribution is zero identically for both the solid and

. dashed-cufyes. For these two cases the bostscission kinetic energy is
taken equal to the total nuclear plus CoulomB.iﬁféraction energy at
scission, since infinitely viscousvfragmeﬁts separéte without chahging
their shape. (The very small difference betweeﬁ_the dashed curve_in
Fig. 6‘an8‘the curve for infinite two-body viséoéity presented in

refs. 17 én& 18 stems from the use there of a slightly different method
for caléﬁiating the postscission kinetic energy;).

Because nonviscous fission fragments oédillate as they separate,
- the postsciésién contribution to their translational kinetic energy is
not equal simply to the total interaction energy at scission. Instead,
a small portion of this interaction energy isnéonverted ddring the
separation iﬁto vibrationalienergy raiher than into translational
kinetic enefgy.

In calculating the nonviscous franslatioﬁél kinetic energy, we
represent thg fission fragments in terms of tw6 éeparated spheroids
and integraﬁe numerically the postscission equations of motion until
the higher multipole corrections to the Coulomb interaction energy are
negligible. At this point the sum of the translational kinetic energy
and the Coulomb interaction energy is taken to be the final fission-
fragment kinetic energy at infinity. The initial conditions for the
postscissioﬁ motion are determined by making canfinuous the values 6f
r, g, r, and 6.at the scission point. VThis trénsit%on at scissién
from the thfee-quadratic-surface parametrization.'to the two-spheroid
parametrization introduces a small discontinuity in the various

contributions to the total energy.



-38-

The curves for nonviscous flow and for infinite two-body viscosity

1/3

in Fig..6'are visibly nonlinear in ZZ/A » whereas the curve for one-

body dissipation is approximately linear. This approximate proportionality

to ZZ/AI/3

arises because fér ongfbody dissipation the scission shapes
are approximately the same for all nuclei and beéause thg major portion
of the totaliinteraction energy at scission is'the Coulomb interaction
energy, which for a given shape is strictly proportional to 22/A1/3.
However,fthe-élope of the curve for ope-body dissipation dpes change

slightly, especially for small values of ZZ/A1/3, because the kinetic

13 _

energy must be zero for ZZ/A 0. (This is to be contrasted with

many semiempirical treatments of fissiqn-fragment kinetic energies,26

/3 _ o))

which would imply a finite kinetic energy for z%/a
In sgmmary,»exﬁerﬁmental most probable fission~fragment kinetic
energies may:be reproduced equally well in terms Of.eithér two-body
visgosity éf_one—body dissipation. With two-body:viscosity, the
viscosity coefficient must be adjusted to optimally reproduce the
experimental kinetic energies and turns out to be relatively small.
For this case, the fragments from the fission of a heavy nucleus have
already acquired substantial kinetic énergy by the time they reach
the scission point, which is moderately elongated. With one—body
dissipation there is no viscosity cqefficient to adjust and the motion
turns out to be dominated by dissipation. In‘this_case the fragments
from the fission of all nuclei are barely moving ét the scission point,
which is relatively compact.

It appears from the above that the decision whether nuclear

dissipation is like ordinary two-body viscosity or like the one-body
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dissipation considered here (or some combination of the two) will.have
to be made‘with reference to additional e#perimental data and theoretical
analysis; An important piece of experiﬁental eQidence in this connection
is the near-indepeﬁdence of the fission fragment'kinetic energies of
- the nuclear excitation, in the range from zero (spdntaneous fission) to
100 MeV and more. Ordinary viscosity is expected to be a sensitive
function of_fhe temperature T proportional, fo; éiFermi liquid, to T_2
at low temperatures. In contrast, and in agreémeﬁt with experiment,
one-body dissipation is.expected to be nearly iﬁaépendent of temperature,
the factor pv varying only slowly with excitatibﬁ;_

In'any.case it is pos;ible to say that the.bne body dissipation
formula; eq. (2.11), even though free of adjustable parameters, does
not meet wifh any obvious catastrophe when confrOntéd with experimental
data.on fission-fragment energies.

Oq the other hand there are many anticibatéd.corrections to
the simple';reatment of dissipation described in this section which,
taken together, might or might not spoil the prgsént degree of agreement.
(These include corrections for surface diffuseness, quantization,
symmetries, residual interactions, neck rupture'and.an improved transition
from the wall formula to the window formula near écission.) ‘Still, as
things stand, the fission-fragment energies are at the moment reproduced
adequately even though the system isfhighly overdamped and the descent
frqm saddle to scission is slow and creepy. Tﬂere_seems to exist,
. therefore, a chance of resolving the "viscous-of—non—viscous?" dilemma

raised by exﬁerimental data on fission and deep inelastic collisions.
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We have made some estimates relevant to this problem which we shall

present in the next section.

5. ONE-BODY DISSIPATION IN NUCLEAR COLLISIONS
_Abundant experimental evidence indicates fhat heavy nuclei colliding
peripherally at energies up to several MeV per nuéleon dissipate most of
their relative kinetic energy and angular momentum without fusing. A
closer analysis of the data suggests that the two nuclei rapidly assume
a stuck binary configuration which rotates like an almost rigid body and

subsequently divides into fragments with (initially) a very low relative

kinetic enérgy. -Hence ;t is an essential requirement of any theory of
nuclear dynamics'that it lead to a strong relaxat;on‘in the relative
degrees of freedom for nuclear collisions. In this section we discuss
the appiicatién of the one-body dissipation theory ' to the collisions
of heavy nuclei.

For semi-quantitative estimates of the degree of relaxation implied
by the one—bédy dissipation it may suffice to restrict the discussion
to the idealized éituation whére the nuclei are assumed to remain spherical
dhring the collision. This assumption is expected ﬁo be s;rongly violated
during the later stages of the collision process when the dynamical
development of the intrinsic shape degree$ of free@om, such as neck
formation and overall elongation, plays an important role, leading to
an appreciably lower interaction barrier in the exit channel. Hence the
estimates made in the following can only be taken as indicative; in

order to obtain more accurate values it is necessary to include to some

extent the shape dynamics.
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5.1 Simple Estimates

In a peripheral collision the relative veloéity u is almoSt.é#cldsively
tangential and the relative kinetic energva==%11u2;.which is the eﬁérgy
above the potential barrier, mainly derives from the angular motion; (Iﬁ this
section y stands fof the reduced mass.) According to the window formula the

rate of energy dissipation is then approximately given by

=N

T ~-70v u? Ao = -%m’r T Ao . o (5.1)

where AC denotes the effective area of the windoﬁ between the two nuclei.

Sigce the motion is essentially tangential the ihitial rate of angular

momentum degradation is given by the similar relation,

|-

L :——[l:np\'r' LA . ‘ (5.2)

From the ébove simple expressions 1t is poésible to obtain rough
estimates of the degree of relaxation of the relative motion in a given
nuclear collision. As an example, consider the case of a 86Kr pfojectile
colliding with a 197Au target. Taking the effective window radius to be
a=~ 3 fm (whiéh would be appropriate close to contact between the half-
density nuclear radii - see ref. 27),.we find fof_thé relative rate of

energy degradation

C-F/T = 0.25 x 1022 gec”!
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If the energy dissipation were to proceed at the initial rate (5.1) total
relaxation would be achieved after a time T given by
1 -2 -1

T G ov EAO)
Although the dissipation rate decreases with time, the quantity T can be
taken as a measure of the timé required for a substantial degree of
relaxation. In the case of Kr on Au T comes out to be around 4><10-22 sec,
which is of the same order as a typical interaction time for a peripheral
collision.?sz During the characteristic time T the relative radius vector

between the two nuclei turns through an angle given by

. - 21, 1/2 ¢
AO = 7T = (7;9 po ,

where r is the separation between the two nuclear centers. For Kr on

: 2 o '
Au this is approximately AO = (T/245 McV)l/ , which for a laboratory

bombarding energy of 600 MeV gives a result comparéble to the values

v . ) 28
extracted from the experimental data.

5.2 Dynamical Calculations
The method of estimation employed above is obviously a crude one

and it is omnly meant to serve as a rough ‘guideline. More detailed

e e s . e e

estimates can be obtained by following the dynamical develbpmgnt of

idealized collisions.
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Let us consider the éituation in which the two colliding nuclei
(denotéd‘by T and P) are aﬁprdximated by spheres. Thus.the degrees of
freedom tetained are the'relative separation r and»otien;étion O of
the‘two nuclei as well as their intrinsic orientations'OT, OP 5 the

‘neck degree of freedom és weil aé the mass flow between the nuclei are
» ignored. This-simple parametization aliows one to study approximately
1the dynamical relaxation of the relative degrees of f;eedom but is of
course inadequate to describe the overall shape evolution.

The inerﬁialvmasses associated with the four degrees of freedom
r,@,OT,Oé are taken as the reduced mas_s.p=mATAP/(AT + AP), the mément

of inertia associated with O and the rigid-rotation moments of

-2 2 , - oA
T,p B MT,P RT,P' (Herg the mass is MT,P = mAT,P and RT,P

is the equivalent sharp nuclear radius.zg)

inertia L

The two spherical nuclei are subject to the mutua1<Coulomb and

nuclear interactions. The former is taken as V = e?ZTZP/r; it would

be easy to modify the potential to take account of the finite extension
of the nuclear charge distribution but such a refinement does not seem
warranted at present. The nuclear interaction potential is very sensitive

to the separation between the two nuclear surfaces and it is necessary

to treat this dependence with care. This is accomplished by employing
| .30 .
the "Proximity Potential" for the nuclear interaction, given by

VN = 4TYRb &(s/b) where s =1 - CT—CP is the surface separation,

9

b is the surface width2 and R = CTCP/(CTi-CP); the "central radii"
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CT,P are felated29 to the equivaleﬁt sharb radii RT,P by C= R - bz/R.
Moreover, Yris the specific nuclear surface energy and the dimensionless
function ¢(g) is the incomplete integral of ¢(Z), the interaction energy
per unit area bétween two flat parallel nuclear surfaceé positioned at
the separation s = Cb.b The use of the proximity pbtential rather than
one based on the éurface energy of sharp-surfaces represents an essential
improvement and leads to a good account of experimental elastic—séattering
and fusion dafa.30 |

According td'the window formula the friction is proportional to the
(one-sided) flux of nucleons between the two nuclei. This quantity is
as sensifiﬁe_to the details of the gap between the two nuclei as the
s;atic nuclear interaction po;ential. Consequently we shall replaﬁe
the simple window formula (2.17) by the proximity-friction formula derived
in ref. (27). This formula approximatés-thé_one—body,friction by a
“method analogous to that employed for the)proXimity potential. That

, . . s , 27
treatment leads to the following expression for the dissipation rate.

B ='21m0 Rb  ¥(s/b )(2u"2 +u?)

where n_ = %-pg denotes, as in Sec. 2.2, the one-sided flux in nuclear
‘matter. The dimensionless proximity flux function ¥(z), analogous to
o(L), is the-incomplete integral of the function Y{(Z) which is the one-

sided flux per unit area between two flat parallel surfaces with
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-separatidn"s.= Cb. The use of the broximity f:iction représents a
quantitative:improveﬁent'similar to that of infroducing the proximity
potential. o

We haVe carried out calculaqions for a number df target—p:ojectilev
combinatiéns‘in order to gain insight into the dYnamics of the relaxation
produced by.the one-body dissipation. As an exémﬁie we shall diséuss the‘

197

results of-86Kr on Au at laboratofy bombarding energies of 600, 800 and

1000 Mev.

in Fié;f}‘we display as a function of the initial angularvmomentum
21 the fiﬁ;i arbital angular momentum lf when tﬁe #wq nuclei have separated.
I; is seen thaﬁ the main part of the cross sectién is associated with-
fully damped events which, in our limited paramgffi?étion,means that the
velocity mismatch at fhe window vanishes. 1In thié situation the two
nuclei wiil roil on each other and carry a relaﬁiﬁe angular momentum
equal to ;ﬁi .(ref. 31 ). _

Anotﬁef'wéy of illustrating the results isvto élot the final kinetic
energy assoéiated with the relative motion, TCM’ as a function of the
scatteringvangle eCM (in the cehter-of—maSS'sysgem). This is done in
Fig. 8. The three curves exhibit a characteristié'z-shape which bears
a.qualitative resemblance to the structures‘observed'eXperimentally?8
However, thé‘iﬁclusion of the neck degree of freédom may considerably
change the results; in particular the final interaction barrier EB would
be lowered substantially. Hence, no detailed cdﬁpafison with experiment
should be attempted.

The dynamical evolution of the relaxation process is illustrated.

in Fig. 9 which is a plot of the relative energy'TCM versus the
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separation:rf The interaction potential corresponding to 2 = 0 is
indicated,':Thévthree collisions afe represented as dynamical trajectories
entering frdm the right at a level corresponding go the bombarding energy,
gradually sﬁfféring damping and finally leaving ﬁq_the right with a
substantiallylreduced energy. The duration of the various parté of the
process is illustrated by the black dots which iﬁdicape‘the pqsition at

equal time infervals of 10-22

sec. The values of thé orbital angular
momentum at#éigéd at the corresponding points invgimé are indic;ted, The
same initial~é£gular momentum li = 220 h was chosén for all three
bombarding_enefgies. For comparison at 1000 MeV the §alue 21 = 280 was
also used; this corresponds to thg same impact parémeter as for the Qi =
220 h trajectory at 600 MeV. We note that the largest part of the
dissipation'écéﬁrs before the radial turning point is-reaéhed; this is
evident from the energy as well as from the angulai momentum. . This
makesithe :;digi motion considerably slower on the way out than on the
way in; in"théAéase of 600 MeV only a few MeV of radial kinetic energy
is present during the reseparation. |

Taking'thé above results at their face value if is evident that the
one-body dissipation, as giVen in terms of the winddQ formula, does indeed
lead to a substantial degradation of the relative motion in a nuclear
collisidn. A more refined calculation, with a propér_inclusion of the
shape degrees'of freedom, might réproduce quantitatively thé'experimental
data. On the other hand there is enough uncertaiﬁty in the present
comparisons that it cannot be ruled out that the window fo:mulé, even
when fefiﬁed, is inadequate. Other mechanisms operating during the moment
of contact of two nuglear surfaces may be contributing in an essential way

to the dissipafion of energy.
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6. NUMERICAL TESTS OF THE WALL FORMULA
In addition to comparing the one-body dissipation with experimental

results on real nuclei (with all of the attendaﬁt complexities and
ambiguitiés of interpretation) it is instructivé t6 test the theory‘of
one—body_diSéipation-against simple, well-defined mbdel calculations.

In tﬁis séction we shall presenf a (far from exhaustive)_set Qf comparisons
with numeficalvcomputer studies of non-interactihg pérticleé bouncing
around in a time—dependent deforming container._wThe motion of the particles
is folloﬁed gither classically or quantally and fhe calculated increase in
the energy @fvthe particles in the course of tiﬁé is compared with the
predictiong of the wall formula.

6.1 Classical Results

As a first test we consider periodic multipéle distortions around
a spherical shape. The container has infinitely hard, perfectly reflecting
walls and its time-dependent shape is specified by the radius vector R(t),

R0

R(t) f Tr'(l + Gh(t) Pn(cose)) .
Here Ro is the radius of the sphere and A is a normalization factor
(a function of time) ensuring that the volume of the container remains
constant in time. Furthermore, Pn denotes the ﬁsual Legendre polynomial.

The coefficients 0% are chosen to be of the form

2n+1 )1/ 2

o (t) = ( 3 0 cos wt (6.1)

With this choice of normalization the root-mean—square deviation from

the sphere is, for a given o, the same for all mgltipolarities n (in
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the limit of small amplitudes.) This in turn implies that the dissipation
rate predicted by the wall formula (2.11) is the same for all values of

n and is,.as a quick calculation will verify, given by

- . 2
Ewall - ov f (Roanpn) do

=£gl0t2 pv R4 w2 sin2 wt

Direct intégfétion of this expression leads to theifollowing forﬁula,
for the excit;ﬁion energy a; a function of time:
wnll(t) = az pv RA'qut - %—sin wt) .. | | (6f2)
This simple prediction can be compafed with the results obtained
By sol§1ng nuﬁefically the exact classical equations of motion. For
this calculation the initial conditions are taken as a uniform spatial '
distribution of;particles inside the container and a uniform velocity
distribution Within a sharp Fermi sphere of radius Vg - To facilitate
later comparison with quantal calculations a density of four pérticles
per h3 of phase space is assumed. »The actual solution of the dynamical
problem is conveniently obtained by using a Monte-Carlo technique,
following a sémble of individual particles as they move along locally
straigﬁt trajectories, occasionally acquiring a modified energy and
velocity as a result of collisions with the moving container bouﬁdary.
Figure lp shows the calculated results for én amplitude of
o = 0.2 and a frequency of w = (0.19)Xl0225ec—1(cof:ésponding to the

frequency of a quadrupole oscillation of an idealized heavy nucleus).
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of course, the entire classical treatment can Be expressed in simple
dimensionless form, but to fac?litate the’comparisbn later on with the
quantal results we make the following specific chéices of the parameter
values.._The‘radius R.0 is taken to be 6.8465 fm, corresponding to a nucléus
with 184 éafticles. The Fermi energy is taken as.EF = 33.136 MeV, |
corresponding to a nuclear density described by-;.huclear radius constant
close to 1.2049 fm and a mean nuclear mass of 938;92MeV/c2. Thus we are
studying a:felatively heavy nucleus oscillating 5t_a'relétively lbw
ffeqﬁency. :

The-wail formula prediction corresponding ﬁb'these values is shown
és the full curve in fig.'lo.. We note that the form@la gives an excitation
pér cycle of around 0.6 MeV per particle or somé 110 MeV total'excitation.'
This indicates, in correspondence with Section 3,-the large absolute
magnitude pf the dissipation implied by the wal} formula.

Thé cléssical (Monte Carlo) computer results are displayed for
n = 2,4,6.  The following features should be noted. For n = 2 there is
a large build-up of excitation energy during the first half of the
cycle; during‘the second half a significant fraction (in this case 60%)
of this excitation disappears again, leaving the system with a net
excitation after the completion of the cyéle equal to around half of thev
‘value predictgd by the wall formula. For n = 4 thi$ appeafanéé of
partial feversibility is largely gone and the'curve%shows a structural
similarity with Ewall(t) but overshoots by around 40%. For n = 6 the
exact classical result follows closely the wall fbrmulé. 'Thié remains

true as one proceeds to n = 8 (not included in the figure).
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Thispat'first'sight confusing behavior can be qualitatively well
understood as.a consequence of the symmetry properpies of the various '
shapes considered. It was an important assumption in the derivatiop
of the wallvformula that the particles at any tiﬁe'constitute a
randomized gas; as would be the case for an irregular container. This
assumption mé;;be rephrased as the demand that there be no single-
particle constants of motion. Cléarly, this requifémeht is violated
if the conﬁaihér possesses special symmetries giying rise to additional
constants of @Qtion. In the present case the effecp of such approximate
symmetries is'eﬁhibited in the results fgr n= 2.v Fpr small amplitudes
the quadfupole shape is approximately a sphéroid which in turn forms
a separéble problem. The implications of approximate separability will
be discussed shprtly. At this point we note that és n is increased the
shape of the container becomes more and more randomized and thus approaches
the conditippsifor the applicétion of the wall formula. This is
demonstrated by the result for n = 6 (and n = 8). |

When the single-pargicle Hamiltonian possesses special symmetries
the phase spéqé can be divided into separate regions}with no dynamical
intercommunication, each region being characterizéd by a.specific value

of the_additiopal constant of motion associated with the particular
| :

k

symmetry present. In such casesthe dynamical variétion of the potential
can only lead fo randomization of the particle mofidn within each sub-
region separately, and the quantities characterizing the distribution,
such as the mean speed v, may have different valués from region to region;
the ovef—all.réstriction imposgd by the volume conservation is in general

not sufficientvtb ensure that these quantities be -the same for all
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regions 6f phase space. Hence the system appeafs as a collection of
seﬁaratelsystems which are dynamically independeht of each other, except
for the constraint imposed by volume consef&atioﬁ. - The most striking
consequenée of this is that the leading, reversible contribution'to_

the energy change in eq. (2.7) will no longer cancei'out,but may in

fact dominété over the second-order dissipative contribution.

Tﬁe above statements are quite general; in order to illuminate
their confeht we shall examine in somevdetail tﬁeﬁéése of a ﬁhree—
dimensiénal box. While quite simple to treat, cﬁis:example displays
the characfé?istic features arising from the presence of symmetriés.

Let the three_sides of the box have lengths 2a, 2b, 2c¢ so that the wall
velocities are given by a,b,é. The dynamical problem obviously separates
into three one-dimensional systems and the over-all volume conservation
.imposes the constraint that the product abc remain constant in time.

Consider first the motion in the direction parallel to the side
of length a; To leading order the particle collision frequency 154%;>va/a

and the energy change per collision is —2mvaé, so that the rate of change

—

in mean particle energy is given by éa = -mvaz(%) . Cleariy, this is

just the oﬁe—dimensional version of the ideal gas law and can be integrated
to giﬁe a reversible energy as a function of the distortion a. This
energy is readily seen to be inversely proportioﬁal fo the square of the
side length é; ' |

| From this result it immediately follows that for thé'three-dimensional
box the particle energy has, to leading order, fhe_following reversiblé

dependence on the distortions:

€ a_ 2 b 2 c 2
E(a,bye) =3 [(D + () + D1 .



-52-

Here it has been ‘assumed that when the sides are a ,b ,c the particles

are distriﬁqted isotropically with a mean energy €, We note in
passing tﬁat with fhis assumption we always have €(a,b,c) 2 e(ao,bo,co).
for distortions that conserve volume.

Now‘aésume that the box is subjected to a periodic volume-conserving

distortion of the form

= § % €08 wt ~ 2(1 + o cos wt) ,

) —%a cos wt 1 -
b=c=12%e ~ L(1 - E-a cos wt) -

Then, to leading order in o , we find for the reversible energy change
: L 2 2
Ae(t) = e(t) - €0~ ~ €o a“ (1l - cos wt)

This revé:sible_energy (times one half) is displéyed in fig. 10 (dashed

curve) for a box with the same volume as the sphere considered

_ bm .3
(i.e. 8 abc = 3 Rb)

the same value for the wall dissipation rate as for the oscillating

; the amplitude has been adjusted so as to give

‘ sphere (which in the present case implies eoaz = 0.3947 MeV). We'see
that the bump appearing in this case is somewhat reminiscent of the

bump in the exciﬁation curve for the quadrupole oscillation (though

it is bigger by a factor of two or three). This fap; can be taken

as aﬁ indication that the latter bump is due to the special (approximate)
symmetry of the P2 distortion, leading to an approximate separability

of the equations of motion. As in the case of the box this would

invalidate the assumption of the randomization of the motions of the
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particlés-rebéunding from variously moving eleménts of the surface.
In going to higher.mulpipoie deformations (P4,P6;P8) the regularity.
6f the approximately spheroidal P2 distortion is_lost, the particles
become randomized through collisions with the increasingly corrugated
'surféce; éhd the results of the computer studiesxsupport the validity
of the wail"formula once such randomization is.insurea;

This.interpretation of the results can be further tested by
introducihg an explicit randomization of the particle motions. Such
'randomizatidn can be enforced by making the particles jump, after a
certain length of travel, to a new random position énd take off from
there with é new random direction. This is superficially like introducing
a finite two-body collision mean free path but it is important to stress
that the similarity is superficial. Thﬁs even wﬁen'the free length of
travel isvshbrt (e.g. 1 fm) the particles are sﬁili completely independent
of each othér and the behavior of the gas does Egg!approach the hydro-
dynamic limit of correlated flows that would be expected when thevshort
mean free_path is a result of two-body collisions. The introduction of‘
the jumps iS.jUSt a stratagem to introduce randomization and destroy
the particles’ iong-range‘memory of the container's shape (including
its symmetries).

Figure 11 illustrates the results of such calculations with
jumps, for the case of quadrupole oscillations (n = 2). All the param-
eters of the container and gas are otherwise the éame'as in Fig. 10.

The thick curve labeled = is the same result as in Fig. 10, corre-
sponding to an infinite mean free path (i.e. no jumps). The other

thick curve is the prediction of the wallvformula,feXtended now over
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two periods of oscillation. The curve labeled 32.corfesponds to a mean
free path ofv32 fm (recall that the radius of the oscillating sphere is
about 6.8 fm). The result is not very different f;om:the case of an
infinite mean free path. A large reversible bump is again evident, and
it is repeated rather faithfuily.in the second cygle of the oscillation.
Going to a.mean free path of 16 fm, which is now éomparable with the
diameter of the.container, a dfamatic change is seen to occur. The
reversible ﬁump‘in the first cycle has disappeared and in the second
cycle a dip has.replaced the bump. With the mean f;ee path reduced to

8 fm the dissipation curve is seginning to show a'Qery rough resemblance
to the wall formula prediction, and reduction of the_mean free path to
4, 2 and 1 fﬁbééems to lead to a converging sequence approaching the
wall-formula éufve. We have not traced the reason_for the apparent
convergence to a value possibly a little higher'thah the solid curve.

By and 1érgg however, the conclusion at this stage.is that the wall
formula, derived originally for é unit areavof an ipfinite plane wall

or pistqn, doés represént; at least approximately and for a limited time,
the excitat16n énergy fed into a gas of non—interécting classical
particles by tﬁé moving boundaries fér an actual finite container -
provided, tﬁat is, that the particle motions have sﬁfficient opportunity
of becoming randomized, either.byvcorrugations qfvthe boundary of the
container or by other randomizing agencies. | |

6.2 Quantal Results

So far our discussion has been entirely within the framework of
classical mechanics. What if the particles in the well are quantized,

i.e. if their motions are followed according to the Schrodinger equation
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rather tﬁaﬁ.éccording to élassical equaﬁions 6f*ﬁotion? Will the simple
wall formula predictions become completely irreigvént or will they remain -
qualitativeiy or even quantitatively useful?

The:tools for studying this quéstion were‘étihand, in thevform}
of a computéf,program for numerically solving tﬁefsingle—particle 
Schr5dingéf équati0n in a timeQdependent Woodsésa%on well%2- One study
along these iines (for a sequence of fissioning'ghéﬁes) had in fact
alread& béén'reported33 and will be discussed pfésently. .In Fig. 12
we show the'résults of a related study, but for one cycle of a periodic
oséillatibn;:éhnilar to those of Fig. 10. The OScillation is now for
a hexadecépoie mode (n = 4), the freq;ency is considerébly higher

22 sec—l) and the ahplitdde is somewhat smaller. (The

(w=1.08 x 10
maximum value of o is 0.2 rather than 0.2/573; wﬁiqh would folibw
from eq. (6.1).) "Note that the comparison betweénnclassicai and quantal
calculations is now no longer clear-cut: the classiéal particles bounce
about in a sharp—walled well, whereas the quantiéed particles move in
a diffuse Woo&s—Saxon well.,

The solid curve in Fig. 12 is again the wéli‘formula prediction.
The friangles show the result of the classical céléulation. Thése results
are now closer to the wall formula than the simiiar hexadecapole curve
in Fig. 10. This might be due to the fact that;;because of the highér
frequency in Fig. 12, the particles have 5.68 tiﬁgé iess time (in one
cycle) to explore the shape Qf the container and to become aware of its
remaining regularities. |

The (lower) dashed curve represents the excitation energy

calculated quantally for a Woods-Saxon well with:éVdiffuseness parameter
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a = 0.66 fm (a value.characteristi9 of actual nuclei) and the dot-dashed
curve is for a much sharper well with a = 0.1 fm, |

Both quantal results are of the order of magnitude of the wall-
formulé prediéfion. There appears to be a rather strong dependence of
the quantal results on diffuseness (compare rgf. 6) and for the sharpef
of the two quds;Saxon wells the correspondence with the classical
calculations (iﬁ a sharp well) and with the wall_formula is quite
remarkable. It is something to marvel at that the dot—dashed curve
required a horrendous pumeriéal,sdlut;on‘of the Eime—dependent SéhrEdinger
equation in tﬁo:dimensions, for do;ens of single-pafticle wave-functions,
whereas the éolid line is a back-of-the-envelope calculation resulting in

the analytic formula (eq. 6.2)

E(t) ~ 1.9 (wt - %-sin wt) MeV.

testvthe reader géin the.impression that everything ébout the
problem can Bé:understood on the basis of thé wall forﬁula, we preseﬁt
a sequence ofvfigpfes illustrating that the reiation between the quantal,
classical and analytic (wallhformula) results can be much more comﬁlex
and is, at the.momeﬁt, éomewhat obscure. " | |

Figures 13-16 refér to thé oscillations of an exactly spﬁéréidai
well whése eqﬁation is\ o

2 2 -2

+ Y + = 1,.

X
a()?  aw)?  c)?
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where

and

The oscillation is thus about a deformed (ﬁr61ate) shape with a
ratio of aﬁes  c:a = 1.4305 and the ampiitude is fairly Qmall,vranging
from c:a 5 136283 at wt = 0 té 1.2655 at wt = T vTﬁe quantal calculations
are for paffié}es in a Woéds-Saxon well with the above geometrical shape
and.the cléésical calculations are for an infinite“équare well.

In Fig. 13 the frequency is w = 1.52 x 10°% sec™’ and the different
curves have the same meaning as in Fig. 12. We see that for aﬁoﬁt half
a period all,four-curves are fairly similar. Latéf‘the wall férmula
and the sharpéf Woods~-Saxon quantal results cbntinue to be somewhat
similar but'ﬁhe more diffuse Woods-Saxon quantal. result falls considerably
iower, aé does‘the clasgical result. 1In Fig. 14 the frequency is
w=0.76 x'102? sec-l. Here all four curves have about the éame magnitude
after a quarter of a period, after which the wall formula result is much
higher than the others. The more diffﬁse Woods-éaxon quéntal curve and
the classical results show a remarkable degree 6f correspondénce. In
Fig. 15 thé fréquency is lowered further to w = 0.38 X 1022 séc_l; .The
classical aﬁd more diffuse Wood-Saxon calculationsfboth éhow é large
reversible bump, reminiscent of Fig. 10. This bump dominates also
Fig. 16, where thevfrequepcy is w = 0.19 X lO22 seé‘l. In this case

the classical result is reversible to an astonishing degree, the

excitation at. wt = 27 being zero within the statistics of the Monte Carlo
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procedures. The result looks very much like the case of the parallél—
sided Box discussed earlier. The regularity of tﬁe spheroidal potential
must again be drasfically affecting the motion of.the'particles. Why
‘the curve‘fbr.the sharper Woods-Saxon well lies much lowe; than the
others is not clear - but an explanation might be,rélated to the generai
circumstance that in all the quantai results avnngfeature of the problem
emerges at low frequencies. Thus when the characteristic quantum energy
‘hw becomes leés than. the spacing of the single-particle levels at the
Fermi—surfaéé;‘the excitation energy calculated quantally might be
expected t; tend to zéro rapidly (exponentially) as the adiabatic limit
is approachéd.' (Recall the Landau-Zener theory ofisuch processes, ref. 34.)
The exciﬁation'curve in such cases may be dominated entirely by the
approach to each other, during the Aeformation, of>é single pair of
levels at the‘fermi surface. Such an approach may well occu? to a
greater extent for onevtype of well than for another; and the results
may differ drastically as one changes the parameters of the well or the
numbe:.of particles in it. We have indeed verified that the big bump
in Figs. 15 and‘l6 is due to a characteristic neaf—érossing of a pair
" of levels, and that the bump may be made to diéappéar by éhanging the
particle number slightly. We have not, however;,pursued the calculations
to a point where we would be in a position.to give a well-founded  ,
interpretation of all the effects involved. |

Finally, we show in'Fig. 17, based on ref. 33, the result of
comparing the wall formula with a quantal calculation for an aperiqdic
deformation. In this case a diffuse potential well.is following a

sequence of deformations calculated to be the saddle-to-scission
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trajectofy fdr an idealized 1liquid drop. The size and . .charge of the drop
in the ttajectory calculation were taken to represent a nucleus of 236U
and a féiriy'small (ordinary) viscosity of 0.02 terapoise was inéluded
(ref. 18). With these parameters (and an initial energy of 1 MeV in the
fission difection) the time fof'the desce%t frgm.éaddle to scission is
about 39 x lszz sec and the energyldissipated (béééuse of the ordinary
viscosity):isiaboutvo.l MeV per particle. This viscous excitatioq is
plotted aégéﬁfunction of time as the dashed curve in Fig. 17.

Tﬁé'sélid curve is the result of applying the wéll formula to the
reievant’seduence of shapes (and carrying out the integrations over the
surface and over time numerically). The dotted curve is a free-hand
Asketch mean#kés a reminder that the wall formula éhould not, in fact,
continue'to be used all the way up to scission, where the topology of
. the veséel iS'about to change from a single container to-.a pair of con-
tainers. in_the latter case the window formula would be more appropriate
(see Section 5). The result would be a dissipation curve with a near;y
horizontai slope at sciséion (the dissipgtion due to the relative motion
of the th_fragments'tends to zero as the neck between them pinches off).
The dotted.curve is a qualitative indication that somewhere around

22

t =~ 31-36 x.1of sec (see Fig. 18) such a flattening-out of the one-body

dissipation curve might be expeqtea.

The éolid and open circles show the resuits of the numerical
quantal éalculations. The former give the excitation energy (per particle)
taken with respect to the ground state of the s&stem at the time' in question.

Because of the axial and reflection symmetries of the potential well



-60-

this excitation is expected to include a reversible part, resulting from
the separability of the problem. (See Section 6.1.) An attempt to

estimate the irreversible part of the excitation (which is the part

that the wall formula is supposed to estimate)'is_shown by the open?'
circles. Tﬁey show the result of subtracting from the total excitat{on
energy -the energy of a "pseudo ground statg", defined as the state that
the system w§ﬁld'reach if fhe deformation were proceeding infinitely '
slowly. -Eéhéﬁse of the symmetries present, single—pérticle levels with
different:éﬁaﬁfum numbers are allowedrto cross during the defotmation and,
even when'the.rate of defqrmation is infinitely‘slbw, the'éystém does not
arrive at tﬁe t?ue ground state apbropriate to ité instanténeous shabe
but at a pseudo ground state with higher energy. This excess energy is,
however, reversible, since a reversal of the infinifely slow deformation
would bring»tﬁé system back to its original state (Because of the allowed
level croséingé). . This reversible energy is just a manifestation of the
separability 6f the‘problem discussed in Section é{i and illustrated there
by the box'caiéulation.

.The éonclusions to be drawn from Fig. 17'§éem to be as folloWé;
First, the ordér of magnitude of the quantal and wall-formula dissipation
energies are similar and, perhaps, can even bé said to exhibit a semi-
quantitative céfrespondence. Second, for the’ratg’df deformation hseh'
in the calculation, the absolute magnitude of the.excitation_énerg&
would be about %-Mev per particle, corresponding to a total excitation’
close to a couple of hundred MeV! This cdnfirmé.onée more the very
large absolute magnitude of one-body damping, alsé when it is treated

quantally. (As'can be seen by comparison with the dashed curve in
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Fig. 17_thisvdamping is an order of magnitude greéter than two-body
damping aéséciated with a viscosiﬁy coefficient,of 0.02 terapoise.)
This suggesté that it would be out of the question'fbr an actual
Uranium nuc1eus to descend from séddle to sciésibn“at the rate
corresponding to Fig. 17. (At least in the casé16f'fission at moderace
energies, when superfluidity and shell effecté may be disregarded.)
This is, bfvcourse, consistent with the resultglof'Section 4, which
show‘that ﬁhen one-body damping is allowed to dgtermiﬁe the dynamics
of the éaddle-to—scission descent, the process ié'slow and creepy.
' 7.. GENERALIZED WALL FORMULA AND THE Nﬁw DYNAMICS

In this section we shall first generalizé the wall formula (2.11)
to the case when the vessel containing the gas may be translating and/or
rqtating in addition to changing its shape. Wé shall then diséuss the
formal structure of the equations of motion for the shape changes of
a simply-goﬁnected leptodermous system in the case when one~body
dissipation dominates the deformations.

7.1 Generalized Wall Formula

In deriving the wall formula (2.11) the bulk of the gas was
assumed to be at rest. If the container is endowed with an overall
translation or rotation the formula, as it stands, woﬁldlpredict the
nonsensical result that even in the absence of any intrinsic changes
of shape there would be a steady dissipation associated with pure
translations or rotationms. |

This failure of eq. (2.11) is associated with the fact that a
steady translation or rotation of a rigid container would, in practice,

set up a drift (with the character of a translation or rotation) in
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the bulk of the gas. The relative normal velocity of a surface element
with respect to.the particles about to strike it would ﬁhen not be 1, the
normal velocity in sﬁace of fhe surface, but n-D, where D (a function
of position on the surface) is the normal component of the relevant

drift velocity of the particlés about to strike the element of surface

in question. If the drift reached a stage where its normai component

- D was actually equal to the normal surface velocity n itself, the pressure
change pov(2-D) associated with the motion of the surface element relative
to the gas would vanish and the flow of energy from the walls to.the
particles would cease.

The appearance of a drift in the gas in the case of translations
and rotations is associated with the failure of the randomization
hypothesis. A translation and/or rotation implies a highly correlated
vtyﬁe of motion of the surface elements, and particles in a container
that is set info translational and/or rotatibnal motion obviously do
not returnbto their original velocity distribution after a few collisions
with the walls but, on the contrary, are rapidly taught  to éb—translaté
and/or co-rotate wiﬁh the container. |

In general then the dissipation associated with surface displace~-

ments On proceeding at a rate 1 should be written as

8E = pv f (i-D)én do
or ' - o (7.1

txie
]

.where D specifies the normal component of the drift velocity of the

particles about to strike the surface element do. In the case of a
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rigid cdntainer endéwed with a steady translation with velocity V‘And
a steady rotation about an origin 0 with angul;r velocity 5 ;hé dissipation
would cease 1f the drift became such that
D= (+dxmy) K, o (7.2)
since this ié just the normal velocity n of a sﬁfface element of the
rigidly moving container‘(ﬁ is the radius vectbrufroﬁ 0 to the surface
element in Qhéstion). |
" Thus féf a rigid container in steady motioﬁxthe modified wall
formula (7Lii, with D given by (7.2), correctly prédicts>the vanishing
of energy-dissipatiqn. o |
Now comés the real question: what is the drift distribution D
to be inserted in (7.1) when the container is translating,vrotating
ggg_(slowly)bchanging its shape?
We'éhall try to solve.this problem by seeking.avfunction D
that |
a)b'hAS as little spatial structure as possible and
b) satisfies a.self—consistency constraint and the resulting
conservation cpnditions on linear and éngular mémentpm.
The condition of '"least spatial structure"ris motivated by the
long mean f;ée_path aspect of the problém and the assumed irregular
'shape of thé.container. This, we feel, makes it:iﬁpossible for the
gas to sustain any intricate velocity distributionlpatterns, such as
arise in the.case of nofmal fluids, where thé corpélatiéns induced
by short mean free paths lead to flow patterns in the bulk (e.g.,

an irrotational flow pattern). In the case of long mean free paths
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any such pattern, even.if set up at some instant, would quickly diffuse
away through the particles' uncorrelated .straight-line motions in the
. bulk of the gas and the randomizing collisions with the boundary (assumed
irregular). The only drift patterns that can survive would seem to be
those maintained by the regular, correlated features of the wall motions,
namely the féatures associated with translations énd‘fotations. (We -
should streséithat we are explicitly concentratihg.our.attention in
this section on irregularly-shaped vessels whose sﬁapes and;notions have
no regularitiés or symmetriés other than possible trénslations and
rotations.) |

The fufther (self-consistency) condition that we shall apply to
détermine D is the requirementbthat, when the model of a gas'in a
vessel is used for a self-cohesive system such as a nucleus, there should
be no net:flow of linear or angular momentﬁm between the gas and the
vessel. This is because iﬂ this case the vessel is not a material body
capablevof ;rading linear and angular momentum with the particles, but
merely a self-consistently generated potential welllproduced by thé
'particlés themselves. |

.Consider'thenAa vessellwhose surface 2:' atuﬁime t is specified
by a radius vector R(t) taken (for definitenesé) from thevcenter of
gravity C of the space enclosed by the vessel. The vessel is filled
with a gas exerting a (veétor) bfessure ; along thé normai direction
n at each poiptvon the surface. .The total force % and total torque %

exerted by the gas on the vessel are given by
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i sf;do , S (730
> . > > : ' :

T =f Rxp do . : S . (7.3b)

The work done by the container on the gas when the surface elements

> > >
are displaced from R to R + OR is

5E=,-f'p’ -8R = - f pén : o 7w

where p iélghe magnitude of ; and 6n 1is the norﬁél'COmponent'of the -
displapementvéﬁ of a surface element. |

For a real two-component system, consistiﬁg_éf a gas énd a
material vessél; the total force F and torque %Lﬁay or may not vanish
(e.g., 1f p is a constant then f-and % vanish bﬁt, for some arbitrary
distribution‘Of the pressﬁre, % énd % would,'intgeﬁeral, not be zero).
However, as‘noted above, when we use the model.&f akvessel filled ﬁith
a gaé to represent a single-syétem, such as a ﬁﬁgleus;‘where the vessei
is merely the potential well generated by the parﬁicles, we must insist
that F and T vanish identically (otherwise fhe particles of the model
nucleus, gvén,when left to themselves in force-free space, could start
moving spOnﬁaneously, their linear and angular momenta changing in time).
The vanishiﬁg of eqs. (7.3a) and (7.3b) thus impq;eéztwo condiFions on
the admissible expressions for the pressure ;. Wifh the pressure wtitten
as -
2

-»> l © - v
P=3 ovin-pv@-D)n + ...
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(compare'eq._2.6) these become conditions on the drift pattern D:

: f _(ﬁ_-D) ndo =0 , R (7.5)
f_ﬁ:x}i (h-D) do = 0 - o (7.6)

or - . . ) ;
f&_?’ldo=0 B R (7.7)
j; Rxhgq do =0 , R (7.8)

where Q'sfandé for the relative normal'velocity:—'
4 = &-D SR ' o . (7.9)

We shall now.incorporate our 'least structure' requirement on-D

i

by trying the'following two-parameter functional.formjfor D:
N > L B -
D= (V+&xr)-4 : b (7.10)

Thus we shall assume that also in the generaIICase the functional
form of D is.that associated with a translationﬁ% and a rotation 5‘(ab§ut
the éenter of mass C), the vectors 5 and § being.ﬁéraheters to be
.detefmined‘presently. This is done by inserting (7.10) into (7.5) and (7.6),

which leads to

f[ﬁ - (3 + §x§)-ﬁ‘]§ do = 0 , ' o (7.11)

f(Exﬁ)[ﬁ—($+§x§)-x‘{] @ =0 . (7.12)
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These are two lidear equations for the time-dependent vectors
V(t), §(t)? the coefficients in the equations being given in terms
of the configuration of the surface,.specified by E? and its state of
motion,‘sﬁécified by 1. As we shall sﬁow thefsdldtion of equations:.
(7.11), (7;12) has a relatively sidble geoﬁetrical'interpretatidn. :To
see this denote the configuration of a deforming surface at time t
by 2::(t)'and at time t + St by 2:(t + 8t). Sdppose.one wishes to
make the beét possible fit to the new surface zzft_f 8t) by taking
the old surfdce 2: (t) and rigidly translating‘itdbi some distance
and rotating it by some angle about its center C; It'turns out (see
below) that if for the translation one takes th'and for the rotation
one takes 5><§ St, where 3 and 5 satisfy (7.11) and (7.i2), the fit
to the surfdce 2:(t + 6t) will be optimal in the sense of a.leasf—
squares adjdstment of the integrated normal disfanCe between the two
surfaces.’

To verify tﬁis define a quantity Q, proportidnal to the surface
integral (divided by (Gt)z) of the square of the‘normal distance

between the surface 2:(t + 6t) and the translated and rotated surface

> (t). Thus

- . > > .2
°pv§d0 [n - (V+ QxR) - n]

p\'r"fdcc‘lz .

(The factor p; is included to bring out the similarity of Q and E .)

Foll
H

If Q is to be statiomary with respect to variations &, Q, 65 Q associated
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o > ->
with arbitrary changes 6V and 60 we must have

S R .
6’,-‘;Q = pvf do 2q(-8v-1) = 0

and
- L e ) L ] .* _> V .
6:§Q = pvf do 2q(-8@ xR -n) = 0 ,
or .
'f_ci‘ﬁ.d'o =0
and

Now these are .precisely the equations (7.11), (7.12); which proves that
for the V'éﬂa 5 dgduced from these equations, the value,of‘Q would be

. stationary (in fact a minimum). We shall referito gﬁe V(t) and ﬁ(t)
obtained byrsolving eqﬁations (7.11) and (7.12) asAthe "instantaneous
(rigid—motion):tracking parameters' of the defor@ing'shape 2:(t).

Thus we ﬁave the following theorem: "Ther}eastestructured drift
pattern (i.e a rigid-motion type of pattern deséribea by W + axﬁ) < 1)
that ensures cbnsérvation of linear and angular momentum of a gaé in
a movihg.and deforming container is such tﬁat ; and 6 are the
instantaneéus tracking parameters of the container's motion." We may

now write the generalized wall formula for the rate of energy dissipation

that follows from eq. (7.4) as
. -— e e . - . > > g U. . .
E=pv®Pqn do = pv@[n-(V+QxR) *n]} n do , (7.13)

where V,Q are the instantaneous tracking parameters defined above. They
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are functions of the configuration and its state of motion, as given by
equations (7.11) and (7.12). Note that in virtue of these equations the

value of E may also be written as

L A 2 R

E=opvg [&-(V+QxR) - ¥] do = Q (7.14)

The rate of dissipation E in eq. (7.13) is a definite (though
implicit) function of the configuration of theisufface and its state of
motién; Tﬁe Ray1eigh dissipation function (in‘terms of which equationé
of motion iﬁ generaliéed coordinates for dissipative systems are
commonly derived) is one-half of this function E.v

The generalized wall formula (7.14) has now manifestly no problems
as regards conservation of linear or angular mdﬁenta for gteady transla-
tions or fotétions. Also the energy dissipation,yanishes for such'steady
motions. Some misuﬁderstandings in this respeét seem to have arisen with
reference to the wall formula (2.11) because 1tlw;éisometimes not stressed
sufficientlyithat eq. (2.11) was derived for a'gas éssumed to be at rest,‘
with no ma§r63copic drifts present. In this connection we might dispose
of another miéunderstanding,revealed by discussions with our colleagues,
according to which the one-body dissipation, debending as it does on
the relative no:mal velocity of the fluid and the héighboring surface
element, would have to vanish identically because of the (hydrodynamical) -
boundary coﬁdition which demands that the particle fiux across the moving
boundary, aﬁd thus the normal relative velocity, vanish. The important
thing to femember in this connection is that the_pfessure expression
(governing the rate of energy dissipation) is given in terms of the

surface velocity relative to the drift velocity characteristic of the
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particles about to strike it, whereas the average local maés flow of the

fluid is given iﬁ terms of the drift velocity oflgll particles in a

given volume élement. There is then nothing inconsistent in having one

" drift for particles about to strike an element 6frsurface (such that

the surface}is in motion with respect to this drift) and another dfift

for the total'mass flow of all particles near the surface, such that this
mass flow foilows the boundary, without violating the proper boundary con-
dition. The simple example of a piston moving into a cylinder filled with an
(originally) stationary 1ong—mean—free—path gas illustrates this point.
Thé drift vélocity of the gas is (originally) zérq.and the piston moves
with respect to (the dfift ofs the particles about to strike it. But
thevregion close to the advancing piston contaips both the particles

about to strike it ggg;the particles that have juét re-bounded, whose
speeds have been increased by the collision. 1In the region of space
close to the piston there is, therefore, a Egg_dfift in tﬁe diréétion

of the piston's motioﬁ,‘ whiqh is ih fact just sufficient to keep vacating
the space claiméd by the piéton and to satisfy the no-flux boundéry
condition.

Figure 19a illustrates the situation in velocity space. 1t is
similar tp'Fig. 1 and gives the §elocity distribution for particles in
the immediate vicinity of the advancing piston. For éase of illustration
we consider the velocity distribution function f(y) of the undisturbedv
gas in the qylinder to be a Fermi function Qith Fermi Qelocity Vs
indicated as a sphere centered on the point 0 in Fig. 19. This point
corresponds to fhe origin of a reference frame in which the undisturbed

gas is at rest. The point 0' locates the (negative) normal velocity
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of the piéfoﬂ as‘seen from such a frame. The pa?ticles ﬁhich have just
collided wifh the piston have had their z—compbﬁents of velbcity with
respect to the piston reversed, and are therefdré bounded.by (a portion
of) a sphere‘Centered on 0'', where 0" 0' is equal to 0'0.

The velocity distribution of the particles in the immediate
vicinity of the piston is zero out51de the reflection symmetric boundary
in Fig.19a and constant inside. (The constancy,of the distribution
funétion is an'immediate consequence of Liouville's theorem and may be
verified by a trivial‘calculation of the collisiéﬁ kinematics. In
particular there is no doubling of the veloqity distribution function
in what would be_the'overlap region of. the two Fermi spheres. Note
also that §iﬁce a general velocity distribution.f(v) ¢an be considered
as made up of stacks of step-like Fermi distributions with different
radii Vs tﬁevgeneralization of Fig. 19a is obviéqs'and consists of
stacking up,distributions similar to Fig. 19a but witﬁ a variety of.
values of vF,) |

It is‘élear now that even though particles about to strike the
piston (thoée to the right of the dashed line in Fig; 19a) are
characterized:by a velocity drift of mggnitude QfO with respect to
the piston, the drift of all particles with respect to the piston is
zero, because of the reflection Symmétry about Of.A it is also clear
that because of this symmetry there is no flux of éarticles through
the moving piston, go that the continuity condition at the piston is
satisfied. We note, however, that the volume of the distribution in
Fig. 19a is greater than the volume of a single ééhére of radius Vo

Since (again by Liouville's theorem) the density of representative
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points in bhése space is fixed, it follows that the particleAdensity in
real space must have increased in the vicinity of the piston. This dénsity
pile up inéreases with the speed of the piston, téaching a limiting value
of a factprvof two when the piston spee@ exceeds the velocity Ve
(Fig. 19b.) If“the piston were receding, the boundary_in velocity space
would bé as shown in Fig. 19c, and the particle density near the piston
would have decreased. Fér a piston receding wiﬁh_a speed exceeding £
the volume in fig. 19c Qould vanish and the density wpuld be zero, as one
would expeéfﬁll

From.thedabove discussion it is clear that ;he motion of ;he surface
elements of a'deforming vessel must induce density changes (near the
_ surface) away from the average deﬁsity p, but that this is not
inconsistent.wi;h the hypothesis that (because of fhe randomization of
the particles' motions) the effective density of the particles about
to strike the‘surface continues fo be characterized by p. The continued
use of the wall formula (2.11) with a fixed average value of p may then
be justified to the extent of the v#lidity of the randomization hypothesis.

The'réason for the original miSunderstanding concerning the
bpundary céndition is that in conventional (short-mean-free-path) -fluid
mechanics oné.does not make a distinction betwéén.the drift of particles
about to ﬁit an element of surface and the total drift. Because of the
short mean free paths a single local d;ift is assumed to characterize
each point in.space and the velocity distribution at any point in space
is always assumed to be spherically symmétric about the local drift

velocity. Distributions like Fig. 19 are not contemplated in short-path

fluid mechanics.
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The situation is difféfentvin the case of long méan free péths
and a careful disﬁinction should be made between thé drift of partiéles
about fo hit the surface and.the fotal drift. This is also the reason
why in this section we were carefui to refer to D as the normal drift

component of particles about to hit an element of surface located by

’ - : . . . : > > >
the vector R, without implying that the total drift at R is VH{xR.

. . —

There is similarly no implication that the total drift at a point r

> > >
in the bulk is V + OQx .

7.2 Equations of Motion

Iﬁlbrder to derive the general equations of motion of a system
experiencing one-body dissipation we need, iﬁ addition to the Rayleigh
diséipation fuhction given as one-half of E in eq. (7;14), the poténtial
and kinetic energies of the syétem, expressed in terms of its configuration
and state of motion. In the case of the kinetic energy this calls for an
analysis of the collective drift of the particles in the bulk of the
éystem (and not only of the normal surface cémponent D of the particles
about to strike the surface). |

Insofar as the system is dominated by dissipation a blausible
hypothesis would seem to be that the kinetic energy would have the
same form as for a very viscous body,'i.e. that as'regar&s translations
and rotations the system behaves like an (almost) rigid body and that
as regards intrinsic changes of shape the kinetic energy associated
- with these changes is negligible. Thé equations of motion for the
translation and orientation degrees of freedoﬁ would then presumably
be the familiar equations for an asymmetric top (with a slbwly varying

inertia tensor) and for the intrinsic changes of shape they would be
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first order equations (without an inertial term) balaﬁcing conservative
and possibly centrifugal.(bu; not>Coriolis) forces against-dissipative
forces. |

We have so far not been entirely successful in writing down the

ggneral equations embodyipg thg above hypothesis and in what foliows

we shall only illustrate the structure of the equations of  motion
governing iﬁtrinsic'cha.nges of shape in the case when the angular
momentum is zero and the probiem of roﬁatidnal degrees of freedom does
not arise.

Consider for definiteness a leptodermous, incompressible system
such as an idealized nucleus, whose potential energy, apart from a
constanﬁ volume term, consists of a surface energy ES associated with a
surface tension Y and a Coulomb energy Ec due to a uniform charge
density.pe. The change in the total energ; associated ﬁith a surface
displacement specified by normal deformations dn is, by well-known

theorems (ref. 35), given by the following surface integral

8E = 6E_ + S8E
s ¢

f (v +% P Sndo

where K is the total curvature of the surface and ¢ is the electric potential
at the‘point in question; The quantity yK +-% pe¢ thus ﬁlays the role

of a generalized force for each element df surface do, such ihaf this

force times the displacement 6n of do gives the contribution to the 1

total energy associated‘with do. As remarked in-SectionVZ, the

dissipative force opposing the motion of a surface element do is,
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accordiné fo the w;11 formula, equai to -pvn (Wheﬁ“no drifts are present).
.In.order‘fqr these forces to balance (recall'that'ﬁe are disregarding
the inertial resistance to the motion) the sum'must be zero. More.
precisely, if only volume-preserving displacemeﬁts are cqntempléted,

it is suffiéient that the sum of the forces at each point be a constant

independent of position on the surface. Thus
1 - _
YK fff pe ¢ - pvn = constant . . 1 _ (7.15)

(This is‘becéusé the expfession.j‘.(const) Sndo isiidentically zero
for volume-preserving deformations.)

The c§nstant in eq. (7.15) (a Lagrange multiplier) is readily
determined bybsubtracting from eq. (7.15) its surfaée average. This

gives
- 1 T - . ' o :
Y(kK) + 5 0 (9=0) -V 8 = 0 | | (7.16)
(The average of n for a volume-preserving displacemént is zero.) Hence

gﬂ-_-__l___ (@ - ) , . (7.17)
t

pv
where ¢ is the total generalized conservative force acting on a surface
element, and 5 is its surface average. (In the illustrative example

used above o-0 may be re-written as3S

fl) )]
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where K, is the ﬁotal curvature_and ¢0 is the electric surface potential
of the spherical shape, BS and BC are the surface an& Coulomb energies
in units of their values for the sphere, and x is the fissility parameter
defined in conmection with eq. (3.3).) In any case the contentvof
eq. (7.17) is the simple statement that the rate of displacement of a
sﬁrface elementvié equal to the effective driving force @ - & divided
by the dissipation coefficient pv. The ielation (7.17) is a first-
order equation, so that the configuration of theisystem at one instant
(without regard to the initial velocities) determines the subsequent
motion. In a numerical step-by-step solution of eq. (7.17) omne could,

for example, calculate the normal displacements 6n in a time St by

n = = (0-9) 6t
ov

the right—hénd side being a quantity calculable in terms of the
configuration in question.

The equation of motion (7.17), even tﬁough specialized to
non-rotating systems, serves to illustrate the relative simplicity of
the smooth background equation of the "Ne& DynamiCS" that arises>when
the motion is dominated by one-body dissipation, Thié éimplicity, as
compared to ordinary (e.g; nonviscous) hydrodynamics, is twofold.
First, the equation of motion is of first rather than second order.
Moreover, thevdegrees of freedom of an idealized leptodermous nucleus
are contained in the specification qf the surface only, and not in the
specification of a bulk velocity flow pattefn. (The degrees of freedom

are thus doubly rather than triply infinite.)
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7.3 Comments .

We-shall end this Section with several comﬁents on the‘relation
of the one-body dissipation thedry to other.diSéuSSions éf the nuclear
problem._.First we note that the Time—Dependent.Hartfée—Fock fréatﬁent
of a nuciéﬁs is a theory of the one-body type, invwhiéh the ndéléoﬁsvére
independent éxcept'through their interactions withua common one¥body
potential. The TDHF theory is, in addition, e#p}icitly.self—¢onsistentb
the potential well is not an external céntainer}buf is génerated by the
nucleons tbéﬁselves. Numerical TDHF calculatioﬁé could thus ekﬁloré the
shortcomingé 6f the one-body dissipation théory described in the present
paper arisiﬁg from the disregard (except for the conservation conditions
imposed in Section 7.1) of self-consistency. Invadditién such calculations
could test the degree of validity of the sﬁooth JYnamiés, suggestéd in
Section 7.2, as regards the effects of quantizaﬁién, symmetries and small
particle numbers. If TDHF calculations could bé performéd for relatively
large systems, devoid of symmetries and/or excited to temperaturés where
shell effects are suppressed, one might look for Quéntitative aérgement
with the predictions of the smooth macroscopic dyﬁamics (unless the self-
consistency problem was a crucial one.) For smaller systems at low
temperatufes drastic modifications might be expec;ed. (Some cautibn may
be necessaty in such comparisons in connection with the strictly single-
determinant nature of TDHF calculations. The full implications of this
feature of the TDHF theory is not clear to us.)

As regards the relation of the present work to the diffusion-type
treatments of heavy—ibn collisions, one suspectsfthe existence of intimate

connections between the two. For example, in the discussion of the window
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formula drag Bétween.two nuclei, the underlying mechanism is the exchange, back
and forth, Qf nucleons. If this exchange is assumed to have the properties

of a statistical random walk,' the width of the mass distributiéq of the
fragments isvexpected to be related to the sqﬁare root of the number of

steps in the random walk, i.e. to the number of exchénges of nuclebné

through the1window. Since this number of exchanges governs the drag
rbetween.the ﬁuclei, there should be a definite cgrrelation between the
variance ofvthe fragment mass distribution and the.energy loss in grazing

‘and deep-ineiaéticvcollisions. Stu&ies of such:cdrrelations are reported

in ref. 37..

The.intimate relation between the dissipa;iop—dominated dynamics
envisioned in the present paper and diffusion—typé theories is also
illustréted'by the qualitative observation that in'bofh cases the time-
developmentvdf nuc1ear shapes is expected to be slow and creepy. Such |
a slow and creepy time development in the context of nuclear fission
had been anticipated many years ago by P. Fo£1g38 and:had been a constant
theme in hisZStatistical treatment of fission. The equations of our
smooth dyﬁamics suggest a quantitative way of descriﬁing the saddle-to-~
scission stagg pf the process, a problem that isvleft open in the above

treatment of fission.
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8. SUMMARY AND OUTLOOK

The situation suggested by this_study appenrs to be as follows.

By taking at face value the‘independent—narticle model of nuclear
structure, niso when the nucle%r potential well is a slowly varying
function_nf-time, one 1s led to suspect that mncroscopic nuclear
dynamicsvmight often Be dominated by dissipative effects. A "randomization
hypothesié" leads to two particularly simple dissipation expressions,
the wall formula and the window formula. The fundémental time unit for
energy dissipation implied by these formulae turns out to be the
relatively short single-particle transit time R/vV (in order of magnitude).
The wall formula, when applied to the description of nuclear fission,
does not lend to serious disagreement with experiment.. The window
formula, when applied to nucleus-nucleus collisions, implies a fairly
rapid dissipation of the energy of relative motion;_but whether- there
is quantitative agreement or not with experimental data is not certain.

Further theoretical studies (both those réported here and those:
in ref. 6), nring out the expected failure of the randomization hypothesis
for nuclear shapes and motions characterized by special regularities and
symmetries. Quantal effects also set a limit to the applicability of
simple macroscopic formulae, especially for small systems at low
temperétures. Finally at high temperatures approéching the Fermi
energy, the independent-particle model and the associated dissipatidn
formulae aré éxpected to break down, the nuclear médiun becoming more

like an ordinary fluid (which, however, is still expected to be dominated

by viscosity - see Section 3).
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Taking a broad view of_the situation, the'following features
appear'to emergé. A two;part approach to nuclear dynamics, in which
effects of.shell structure are added to a smooth baékground, somewhat
analogous to the two-part approach to nuclear staﬁiCS,36 should
be uséful; .Apart from super-fluidity at very low nuclear excitations,
the smooﬁh baékground dynamics would aﬁpear to be characterized by
super-viséidity, i.e., a pronounced dominance of the motions by
dissipative effects. .At moderate temﬁeratures, in the domain of the
approximate validity of the independent—particle_model, the dissipation
is probably iafgely of thé 6ne—body kind, presumabiy giving place to
more convéntional two-body viscosity at high tempeiatures. This smooth
dynamics (whosé key equations are relatively simple,_especially in
the one-body domain) is expected to be modified more or less drastically
at moderate and low températures by symmetries and quantal features.

The fufu?e.development of macroscopic nuclééf dynamics might
thus be found’to parallel the development of macroscopic nuclear statics.
There, the simple smooth background equations fof.the macroscopic nuclear
potential enérgy (written down in the thirties) weré followed (in the
sixties) by é graaual understanding of the special effects of symmetries

and quantization.
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-FIGURE CAPTIONS

Distribution function in velocity space for particles about to

~ strike an element of area AU, as seen from a coordinate system

moving with Ac. The z-direction is alohg the normai to Ao. The

_vélocities of thé mass points clustér symmetrically about the

- .
relative gas drift velocity U, whose magnitude in the z-direction

) ’ -
vis_U_z and whose component in the transverse direction is U; . A

R - _ .
typical particle has velocity v, with .a z-component vz;. The
average velocity of particles in a slab-dvz is U+ VZZ, and the
number of such particles is proportional to the projected

distribution function g(vz).

‘The region of integration in the space of % (thé distance of a

slabjof particles from the surface) and vz(normal componént

-of a particle's velocity). The projected distribution function

g(vz) in the integrand is indicated.

Two systems in relative motion and communicating through a

small window Ao. The particles about to traverse the window
from A to B are characterized by a drift velocity with respect

>
to the window given by U, and the particles about to go from

B to.A are characterized by a velocity ﬁf.

Dynamical paths in r-0 space of a 236U nuéleus from its macro-—
scopic saddle point to scission. The reference path for
nonviscous flow is given by the dot-dashed curve. The dashed
curves show thg paths éalculated in ref. 18 for various values

of the two-body viscosity coefficient u, which is measured in
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2 22

units of terapoise (1 TP==1O1 dyn sec/c_m2 = 6.24 x 10~

MeV sgc/fm3).
The-solidlcurve shows the path for the bné—body dissipation |
considered here. The scission points are indicated by the tips

of the arrowheads.

Effgct of dissipation oﬁ scission shapeécfor the fission of four
nuélei. The reference shapes for nonviécous'flow are given in

the first column. The second column shéﬁs the scission shapes

for ihfinite two-body yiscosity, and théjthird column those for
theJéﬂe~boay dissipation considered here;‘

Comparisoh of calculated and experimental most probable fission-
fragment kinetic energies as a function of 22/A1/3. ~The kinetic
enérgies calculated for nonviscous flow are given by the dot-dashed
curve. The dashed curve shows the results for infinite fwo—body
viscosiﬁy, and the solid curve shows‘the'resﬁlts for the one-body
diésiﬁation considered here. The experimental data are for cases

in ﬁhich the most probable mass division is into two equal fragments;
the opén symbols represent values for equél mass divisions only

and fhe_solid symbols represent values a&eraged over all mass
divisions. The.original sources for the experimental data are

given in.ref. 18. |

Thg final orbital angular momentum as a function of the initial
angular momentum for an idealized 86Kr nucleus bombarding an
idealized 179Au nucleus at laboratory energies of 600, 800, and

1000 MeV. The window formula, in the form of the Proximity Frictiom,

was used to describe the dissipation of energy. The value

Zf = ; 2_-corresponds to.the rolling condition which, within the
i v -
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limitations of the model, correspondsito total relaxation in the
relative angular degree of freedom. A large part of the

cross~section is seen to correspond to . such a relaxed situation.

Fig. 8 Energy vs angle plots (Wilczydski diagrams) for the idealized

86Kr on 179Au at three (lab ) energies. The labels

.céilision of
‘on the circled points give the final“orbital angular momentum
:aépropriate to the angle and energy indicated. ‘The interaction
barrier‘EB (the séme; in the model uséd,ﬂfor the entrance and
éxit channels) is indicated. :
Fig. 9 Relative center of mass energy ECM (denoted in the text by TCM)
vs center separation for four collisions of 86Kr on 179Au
(E;pp =600 MeV, £, =220 h; E ,. =800 MeV, %, =220 h; E , = 1000
'MeV,_2i==220 h and 280 h.) The time evolution‘of the collisions
is indicated by dots giving the position.ﬁt intervals of 10_22
sec and the labels on the dots refer to the cﬁrrent orbital .
angular momentum. The upper part of the curve for ELAB= 1000 MeVv
has two seﬁs of dots, one for the trajectdry starting with
21={220 h and the otﬁer with £, =280 h.. (The trajectories are
almost identical at first.) Note that the approaéh of the orbital
angular momentum to its asymptotic valqe is not quite monotonic.
The lower curve is the interaction energy between the two nuclei.
Fig. 10 The excitation energy per classical particle vs the phase of
oscillation of a spherical container with infinitely hard walls.

The dimensions of the container and the initial distribution

of particle velocities were chosen to approximate a nucleus with

184 particles and the oscillation frequency was w = 0.19 X% lOzzseEJﬂ
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Results for quadrupole (n=2), hexadecapole (n=4) and n=6
oscillations are displayed, showing a coﬁvergencg towards the wall
formula prediction (solid line). The déshed line shows the result
for-g parallelepipedal box oscillating about the cubical shape,
with the same rms amplitude as in the other cases.

Tﬁe_éame spherical éontainer as in‘Fig. lolis oscillating in the
duadrupole mode with the same amplitude andAfrequency as before.
Thé'partly reversible bump& structure iﬁ the excitation energy
pet particle, ascribed to the symmetry‘of'the quadrupolé mode,

céﬁ B; destroyed by randomizing the particles' motions by making
fﬁemvjump after‘é given distance of travel (indicated, in fermis,
on thé right of the curve in question). ‘When the jumps are every
1l or 2 fm the excitation curve is close to the wall formula
prediction.v

A comparison of the wall formula wigh ciéssical and quantal computer
sﬁudies. The oscillating container in the classical calculation

is'the same as in Fig. 10 and in the quantal calculation it is a

- Woods-Saxon potentia].wellwithzadiffuseneés 'parameter a = 0,66

or a-='o.1. The multipolarity of the oscillation is n.= 4, the

freqﬁency in 1.08 ><‘1022 sec—l, and the number of doubly filled

orbit$ is 56 (N - 112).

This is similar to Fig. 12 but the shape of the container (or
Woods-Saxon well) is an exact spheroid, oscillating about a
deformed prolate shape with a ratio of axes of c:a = 1.4305. The

frequency is 1.52 x 1022 sec™L.
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Fig. 14 Same as Fig. 13 but the frequency is 0.76 x 107" sec .
. 2 -1

Fig. 15 Same as Fig. 13 but the frequency is 0.38 X 10«2 sec .

. . _ -1
Fig. 16 Same as Fig. 13 but the frequency is 0.19 X'1022 sec .

Fig. 17 Comparison of the wall formula with a quantal calculation for
~ the excitation energy in the case of particles in a well .
foilowing a sequence of saddle-to-scission shapes. The quantal
feéﬂlt is based on following 144 neutrons (i.e. 72 doubly
occupied eigenfunctions) in the diffuse.well shown in Fig. 18._
Thevtime dévelopment of these shapes ié based on a ciassical |
hydfodynamic calculation including a viscosity of 0.02 terapoise,
which results in the viscous damping shown by the dashed curve.
The full circles give the quantal excitation energy with respect
“to the ground state of the system with the appfopriate shape.
The open circles are an estimate of the.irreversible part of this
exéitation (see text). The dotted CurQe‘is an indication of how
the one-body dissipation would be expected to deviate from the
wall formula prediction in the vicinity of scission.
Fig. 18 Tﬁé‘io,30,50,70 and 90 percent contours are showh for three
shapes in the saddle-to-scission sequeﬁce used in the calculation
‘underlying Fig. 17. | |
Fig. 19 The boundary of the velocity distribution function inlthe immediate
vicinity of an element of area moving normally with respect to a
long mean-free-path Fermi (or Knudéen) gas, originally at rest
and characterized by a limiting velocity Vpe The particles about
to strike the surface are to the right_of the dashed line, those

that have rebounded are to the left. 1In (a) the element of
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surface is moving towards the gas with a speed less than Vi

in (b) with a speed greater than Vs and in (c) it is moving away

from the gas with a speed less than Ve
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