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ABSTRACT 31 

In mountain landscapes, surface temperatures vary over short distances due to interacting influences 32 

of topography and overstory vegetation on local energy and water balances. At two study landscapes 33 

in the Sierra Nevada of California, characterized by foothill oak savanna at 276-481 m elevation and 34 

montane conifer forest at 1977-2135 m, we deployed 288 near-surface (5 cm above the surface) 35 

temperature sensors to sample site-scale (30 m) temperature variation related to hillslope orientation 36 

and vegetation structure and microsite-scale (2-10 m) variation related to microtopography and tree 37 

overstory. Daily near-surface maximum and minimum temperatures for the 2013 calendar year were 38 

related to topographic factors and vegetation overstory characterized using small footprint LiDAR 39 

imagery acquired by the National Ecological Observatory Network (NEON) Airborne Observation 40 

Platform (AOP). At both landscapes we recorded large site and microsite spatial variation in daily 41 

maximum temperatures, and less absolute variation in daily minimum temperatures. Generalized 42 

boosted regression trees were estimated to measure the influence of tree canopy density, understory 43 

solar radiation, cold-air drainage and pooling, ground cover and microtopography on daily maximum 44 

and minimum temperatures at site and microsite scales. Site-scale models based on indices of 45 

understory solar radiation and landscape position explained an average of 61-65% of daily variation in 46 

maximum temperature; site-scale models based on tree canopy density and landscape position 47 

explained 65-83% of variation in minimum temperatures. Models explained <15% of variation in 48 

microsite-scale maximum temperatures but within-site heterogeneity was significantly correlated with 49 

within-site heterogeneity in modeled understory radiation at both landscapes. Tree canopy density and 50 

slope explained 33% of microsite-scale variation in minimum temperatures at savanna sites. Our 51 

results demonstrate that it is feasible to model site-scale variation in daily surface temperature 52 

extremes and within-site heterogeneity in surface temperatures using LiDAR-derived variables, 53 

supporting efforts to understand cross-scale relationships between surface microclimates and regional 54 

climate change.  Improved understanding of topographic and vegetative buffering of thermal 55 

microclimates across mountain landscapes is key to projecting microclimate heterogeneity and 56 

potential species’ range dynamics under future climate change. 57 
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Highlights 59 

● Spatial variation in daily maximum surface temperatures is high in foothill oak savannas and 60 

even higher in montane conifer forest landscapes  61 

● Modeled understory radiation, landscape position and tree canopy explain >60% of observed 62 

variation in daily surface temperature extremes 63 

● Topographic and canopy controls on surface temperature extremes vary seasonally 64 

● NEON LiDAR data are useful for modeling site and microsite variation in surface 65 

temperatures  66 
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Abbreviations 67 

Acronym Term units 

AOP NEON Airborne Observation Platform, which collects remote sensing 

data over NEON field sites. 

 

CAP Cold-air pooling index (Eq. 5) m 

CD Tree canopy density, the percent of ground covered by tree canopy (0-

100) in a circle of specified radius centered on the point (Eq. 1) 

% 

CDs Tree canopy density within a semi-circle of specified radius south of 

the temperature sensor 

% 

DEM Digital elevation model. m 

GCs Fractional ground cover (shrubs, large herbs and large woody debris) in 

a semicircle of specified radius south of the point. 

% 

LAI Leaf Area Index m
2
/m

2
 

LiDAR Light Detection and Ranging  

LPI Laser Penetration Index, derived from LiDAR (Eq. 2) 0-1 

NEON National Ecological Observatory Network  

S Slope calculated from DEM deg 

SJER San Joaquin Experimental Range  

SR Modeled integrated daily solar radiation  Whm
-2

 

TEF Teakettle Experimental Forest  

TPI Topographic Position Index, a proxy for cold-air drainage and pooling 

(Eq. 4) 

m 

UR Index of understory direct solar radiation (Eq. 3) WHm
-2

 

  68 
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1. Introduction 69 

Climate varies continuously across spatial scales ranging from macroclimates (>2 x 10
5
 m 70 

horizontally) to mesoclimates (10
3
 – 2 x10

5
 m), local topoclimates (10

2
-10

4
 m), and ultimately 71 

microclimates (10
-1

 - 10
2
 m) (Barry, 1970; Geiger et al., 2009). Microclimatic variation within a few 72 

decimeters of the ground surface is of particular interest to ecologists and natural resource managers 73 

because this is the climate that many organisms experience (Kearney and Porter, 2009; Rosenberg et 74 

al., 1983).  To better understand how species could be affected by ongoing climate change, ecologists 75 

have intensified research to characterize spatial variation in near-surface temperature regimes at 76 

topoclimate and microclimate scales (e.g., Ashcroft and Gollan, 2013a; Lenoir et al., 2017; Scherrer 77 

and Körner, 2011). Attention has focused on the potential for thermal refugia in mountain landscapes, 78 

which harbor large topographic variation in surface temperatures at topoclimate and microclimate 79 

scales (Ashcroft and Gollan, 2013b; Dobrowski, 2011). This fine-scale heterogeneity has important 80 

ramifications in moderating climate change exposure for species and communities (Hannah et al., 81 

2014; Woods et al., 2015). 82 

Overstory trees and shrubs are another important source of surface temperature variation. Numerous 83 

studies have documented large meter-to-meter differences in daily surface temperature extremes 84 

between understories compared to edges or open areas in temperate forests (reviewed by Chen et al., 85 

1999; Schmidt et al., 2017), semi-arid woodlands and savannas (Belsky et al., 1993; Breshears et al., 86 

1998; Parker and Muller, 1982) and shrublands (Pierson and Wight, 1991). Differences in daytime 87 

temperatures are mainly due to overstory interception of incident shortwave solar radiation and effects 88 

of vegetation on near-surface air movement and sensible heat exchange, whereas nighttime 89 

differences are largely due to canopy absorption and re-radiation of longwave radiation emitted by the 90 

ground surface (Geiger et al., 2009). Fine-scale spatial heterogeneity in surface temperatures is 91 

especially pronounced under discontinuous tree and shrub cover depending on canopy arrangement, 92 

height and closure (Breshears, 2006; Martens et al., 2000). Heterogeneity can be extreme in semi-arid 93 

ecosystems where high summer insolation and dry surface soils combine to produce high surface 94 

temperatures in open areas (Belsky et al., 1993; Parker and Muller, 1982).  95 
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In mountainous terrain the influence of overstory vegetation on surface temperatures is complicated 96 

by spatial variation in surface energy balance with changing elevation, slope orientation (Musselman 97 

et al., 2013), terrain shadowing (Flint and Childs, 1987), air flow patterns and cold-air pooling (Burns 98 

and Chemel, 2014; Lundquist et al., 2008), hillslope hydrology, snowpack depth and duration 99 

(Broxton et al., 2015), as well as the co-variation of vegetation structure with topographic position 100 

(Ford et al., 2013). Understanding the joint influence of vegetation and terrain on fine-scale variation 101 

in surface temperature extremes is important both in assessing the potential for climate buffering in 102 

mountainous areas and in weighing vegetation management options that favor biodiversity persistence 103 

(Frey et al., 2016).  104 

Small-footprint Light Detection and Ranging (LiDAR) imaging systems now provide unprecedented 105 

ability to characterize surface topography and overlying vegetation structure at very fine scales over 106 

large areas (Eitel et al., 2016), enabling cross-scale study of biophysical controls on solar radiation 107 

and associated surface temperature regimes in mountainous regions (Bode et al., 2014; Frey et al., 108 

2016; Lenoir et al., 2017; Musselman et al., 2013). From 2011-2017 we deployed temperature 109 

microsensors to monitor near-surface air temperatures in a foothill oak savanna landscape and a 110 

montane conifer forest landscape in the southern Sierra Nevada, California. We are studying these 111 

landscapes as part of a larger effort to relate microclimates to tree seedling establishment in California 112 

(Davis et al., 2016; Dingman et al., 2013; Serra-Diaz et al., 2016). In this paper we analyze daily 113 

maximum and minimum surface temperatures for 2013 in relation to topography and overstory 114 

vegetation as characterized by discrete return, small-footprint LIDAR data acquired in that year by the 115 

NEON AOP (Kampe et al., 2010). 116 

Our objectives here are to: 117 

1) Evaluate the magnitude and spatiotemporal patterns of local topoclimatic and microclimatic 118 

variation in daily surface temperature extremes across Mediterranean-climate savanna and 119 

forest landscapes. 120 

 - Based on physical theory and prior empirical research we expected greater 121 
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heterogeneity in maximum than minimum surface temperatures at both topoclimate and 122 

microclimate scales (Ashcroft and Gollan, 2013b); 123 

2) Quantify the dynamic influence of topography and overstory vegetation on surface 124 

temperatures at both topoclimate and microclimate scales as a function of time of year. 125 

 - We expected to observe a larger influence of topography on solar radiation and 126 

surface temperatures in areas with steeper slopes (Dubayah et al., 1990). We also expected 127 

topography to influence cold-air drainage and cold-air pooling in canyons and stream valleys 128 

(Bergen, 1969; Pypker et al., 2007; Lundquist et al., 2008).  We expected significant canopy 129 

buffering of surface temperature extremes at both topoclimate and microclimate scales, 130 

especially during summer months and in montane forested landscape with taller trees and 131 

higher tree cover (Breshears et al., 1998; Chen et al., 1999; Ma et al., 2010) 132 

3) Evaluate the potential to model microclimatic variation in temperature extremes using small 133 

footprint LIDAR obtained by the NEON AOP. 134 

 - Prior research has demonstrated the potential of small footprint LiDAR to 135 

characterize microtopography and 3-dimensional vegetation structure (Musselman et al., 136 

2013). Given NEON plans to deploy the AOP across multiple regions for many years, the 137 

present study constitutes an early test of the applicability of NEON LiDAR data products for 138 

microclimate research. 139 

2. Methods 140 

2.1. Study sites 141 

The Sierra Nevada region experiences a Mediterranean-type climate with warm to hot, dry summers 142 

and cool to cold, wet winters. Our foothill savanna landscape is the San Joaquin Experimental Range 143 

(SJER; 37°5’45"N, 119°43’W, www.fs.fed.us/psw/ef/san_joaquin), a rangeland research area that 144 

also serves as the NEON core site for the Pacific Southwest region (http://www.neonscience.org/field-145 

sites/field-sites-map/SJER) (Fig. 1, 2). Our measurements were from a ~24 km
2
 area spanning 276-146 

481 m in elevation with average slope of 8°. Mean monthly temperatures in winter have historically 147 

http://www.fs.fed.us/psw/ef/san_joaquin
http://www.neonscience.org/field-sites/field-sites-map/SJER
http://www.neonscience.org/field-sites/field-sites-map/SJER
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ranged from 4-10 °C and summer monthly mean temperatures from 24-27 °C 148 

(https://www.fs.fed.us/psw/ef/san_joaquin/). Most precipitation falls as rain between December and 149 

March, averaging around 490 mm annually. The area supports savanna and open woodland dominated 150 

by winter-deciduous blue oak (Quercus douglasii), evergreen interior live oak (Q. wislizenii), and 151 

evergreen foothill pine (Pinus sabiniana). Oaks are generally 6-10 m in height. The herb layer, which 152 

is grazed by cattle, is 0.1-1 m in height and dominated by Mediterranean annual grasses that senesce 153 

by May, notably Bromus hordeaceous, B. diandrus, and Avena fatua. 154 

[Fig. 1 about here] 155 

Our montane forest study landscape is within the Teakettle Experimental Forest (TEF; 36°58’N, 156 

119°1’W, http://www.fs.fed.us/psw/ef/teakettle), 53 km southeast of SJER (Fig. 1, 2). Our samples 157 

span a ~4 km
2
 area and range from 1977-2135 m elevations.  Based on 10 m digital elevation data, 158 

slopes across TEF average 24°. Intensive ecological and microclimate research has been conducted 159 

here over the past 20 years (Ma et al., 2010; North et al., 2010), and TEF is also one of two re-160 

locatable NEON sites for the Pacific Southwest region. Mean monthly summer temperatures range 161 

from 14-18 °C, winter temperatures from 0-2 °C. Mean annual precipitation is ~1200 mm, falling 162 

mainly as snow between November and April. Old-growth mixed-conifer forest ranges from open 163 

stands with isolated tree crowns to closed forest, and the landscape also contains persistent forest gaps 164 

averaging 5-20 m in diameter (Ma et al., 2010). Open areas are predominantly shrub covered, duff or 165 

rock outcroppings. The forest is dominated by evergreen conifers; white fir (Abies concolor), red fir 166 

(A. magnifica), sugar pine (Pinus lambertiana) and Jeffrey pine (P. jeffreyi) are among the largest 167 

diameter and tallest trees, with heights of 40 - >60 m. Shrub cover consists primarily of whitethorn 168 

ceanothus (Ceanothus cordulatus) and green leaf manzanita (Arctostaphylos patula) (North et al., 169 

2010). 170 

[Fig. 2 about here] 171 

2.2. Temperature data 172 

One hundred and thirty-three temperature sensors were located at 18 sites across SJER; 141 sensors 173 

were placed at 24 sites across TEF. Sites were chosen to sample topographic variation in surface 174 

https://www.fs.fed.us/psw/ef/san_joaquin/
http://www.fs.fed.us/psw/ef/teakettle
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temperature within a narrow range of elevations on northeast to southwest-facing slopes, ridges and 175 

valleys (Fig. 3). For the rest of the paper we refer to this sample of sites across the landscape as the 176 

"site scale" aimed at capturing topoclimatic effects related to landscape position and hillslope 177 

orientation. 178 

To characterize surface temperature variation within a site, 21 sensors were arranged in an identical 179 

pattern around and in six, 5x5 m experimental gardens (Fig. 4). We refer to these densely 180 

instrumented sites as “arrays” and within-array variation as "microsite scale” variation. The gardens 181 

were used for seedling establishment trials (Davis et al., 2016) and were located to sample microsite 182 

variation on generally north-facing, south-facing and level sites in the same local area of the 183 

landscape (Fig. 3). Gardens were deliberately located in canopy gaps at least 8-m wide, but the 184 

sensors in the surrounding arrays could be in gaps, tree understories, in or near shrub patches, and on 185 

various microtopographic positions.  The location of each temperature sensor was collected using a 186 

differential global positioning system that provided sub-meter accuracy for the majority of sensors 187 

and sub-2 m accuracy in all cases. 188 

Temperatures were recorded using HOBO© (Onset, www.onsetcomp.com) model U23-004 sensors, 189 

which have an operating range of -40° to 70 °C and accuracy of ±0.21 °C from 0° to 50 °C. Sensor 190 

integrity was checked for 24 h in a constant-temperature environment prior to field deployment. 191 

Sensors were suspended 5 cm above the soil surface and shielded from direct sunlight by inverted 192 

white styrene funnels 10 cm in diameter. For brevity we refer to these near-surface air temperatures as 193 

"surface temperatures" but emphasize that these were not taken on the ground surface. Temperatures 194 

were recorded at 10-min intervals. Data were downloaded manually twice over the course of the year 195 

and underwent extensive automated and manual quality control prior to the derivation of summary 196 

variables, resulting in a relatively conservative selection of daily values for the 2013 calendar year 197 

(Table A.1). Pre-processed and processed data can be downloaded from the Environmental Data 198 

Initiative (https://environmentaldatainitiative.org/). 199 
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2.3. LiDAR Data 200 

The NEON AOP simultaneously collects airborne LiDAR, hyperspectral and three-band color 201 

orthophotography datasets timed to be as close to the period of regional ‘peak vegetation greenness’ 202 

as practicable. In 2013, NEON AOP datasets were collected for SJER between June 9th and 13th and 203 

for TEF between June 14th and 15
th
 (Kampe et al., 2013). This was close to peak greenness for TEF, 204 

but late for April-May peak greenness at SJER. 205 

The 2013 NEON campaign at SJER and TEF is described in detail by Kampe et al. (2013). The 206 

LiDAR point cloud data have high ground locational precision (<0.1 pixel), vertical sampling 207 

precision of 0.3 m, and resolution ranging from 1.7 to 3.8 points m
-2

 at TEF and SJER, respectively. 208 

We did not conduct an independent test of the accuracy of the NEON Level 1 LiDAR point cloud 209 

data. The data products were released as engineering-grade, that is, produced using NEON-generated 210 

algorithms that are the preliminary versions of those that will be used for science-grade data products 211 

(Kampe et al., 2013). 212 

2.4. Elevation and slope 213 

NEON AOP Level 1 LiDAR data were reprocessed from calibrated point cloud data to create a 1-m 214 

resolution digital elevation model (DEM). The procedure discriminated ground vs. non-ground points 215 

and censored points that fell either below the immediate ground surface or that exceeded 80 m above 216 

the ground surface. We manually edited the point cloud classification to remove additional 217 

topographic outliers and anomalies. From the classified and edited point cloud, a 1-m resolution 218 

triangulated ‘last-return’ surface was rasterized to produce a DEM that was resampled to 2-m 219 

resolution to match the locational accuracy of the temperature sensors. Slope angle (S) was derived 220 

from the 2 m DEM using the ‘Slope’ tool in ArcGIS 10.4. 221 

2.5. Solar radiation 222 

The sum of direct and diffuse solar irradiance at each sensor location was calculated on a 30-minute 223 

time step and summed to calculate daily solar radiation using the ‘Points Solar Radiation’ modeling 224 

tool in ArcGIS 10.4 (Fu and Rich, 2002). Daily atmospheric transmittance values were estimated as 225 



 

12 

 

the ratio of ground to top-of-atmosphere solar radiation, where ground radiation data (300 to 2800 226 

nm) were obtained from flux towers maintained by the Southern Sierra Critical Zone Observatory for 227 

SJER (Goulden and Kelley, 2016) and the P301 Tower near TEF (37°04’N, 119°12’W, 2030 m 228 

elevation) (Goulden and Kelley, 2015). Microsite-scale daily incident solar radiation was modeled at 229 

2-m resolution (SR2); site-scale daily incident solar radiation was modeled at 30-m resolution (SR30). 230 

2.6. Tree Canopy Density, Laser Penetration Index, and Ground Cover 231 

LiDAR point returns were separated into ground surface returns, ground cover returns (<1 m above 232 

the putative ground surface), and tree overstory returns (> 1 m above the putative ground surface). 233 

The 1 m threshold for tree overstory returns follows Musselman et al. (2013).  Tree canopy density 234 

(CD) was calculated using the ‘Las Tools’ toolkit (https://rapidlasso.com) as: 235 

CD = [1 – (GR + GC) / TR] * 100      (1) 236 

where CD is the percent of the ground covered by tree canopy, TR is the total number of return points, 237 

GR is the number of ground returns, and GC the number of ground cover returns on a 1 m
 
grid,  238 

subsequently resampled to 2 m resolution. Site-scale canopy density (CD30) was calculated as mean 239 

CD within a 30-m radius centered on each sensor location or, in the case of sensor arrays, on the 240 

center of the array. We also calculated CD at 60 m and 90 m scales but model results were either 241 

comparable or inferior to those using CD30, so only results for CD30 are presented here. For 242 

microsite-scale analyses CD was calculated within circles of 2.5, 5, and 10 m radii (CD2.5, CD5, 243 

CD10). 244 

The Laser Penetration Index (LPI) is the fraction of LiDAR point returns that reaches the understory: 245 

LPI = (GR + GC) / TR        (2) 246 

where LPI is unitless and ranges from 0 to 1. To model sunlight penetration through the forest canopy, 247 

we calculated LPI for a semi-circle south of the sensor (LPIs) with a radius of 30 m for site-scale 248 

analysis (LPI30s) and 10m for microsite-scale analysis (LPI10s). 249 

https://rapidlasso.com/
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For modeling daily maximum temperatures, we calculated a simple proxy for understory irradiance 250 

as: 251 

UR = SR * LPIs         (3)  252 

 where UR is total daily understory irradiance in Whm
-2

. This proxy for actual understory incoming 253 

shortwave radiation does not separate direct from diffuse terms (see Bode et al. 2014), does not 254 

account for partial transmission of sunlight through the tree canopies or variation in path length 255 

through the tree canopy as a function of sun position, and ignores canopy interception of incoming 256 

direct beam radiation from the northeast and southwest quadrants during early morning and late 257 

afternoon hours between the Spring and Autumnal equinoxes.  258 

2.7. Cold-air drainage and pooling 259 

Previous studies in the Sierra Nevada, including TEF, have documented lower temperatures and 260 

greater snow persistence in riparian areas and local topographic depressions subject to the influences 261 

of cold-air drainage and cold-air pooling (Curtis et al., 2014; Lundquist et al., 2008; Rambo and 262 

North, 2009). We tested two topographic indices that have been developed to predict locations prone 263 

to cold-air drainage or cold-air pooling effects at landscape-to-regional scales. The cold-air pooling 264 

index of Lundquist et al. (2008) analyzes a DEM to locate flat valley bottoms and concave areas 265 

where cold-air pools are likely to form (Curtis et al. 2014). The algorithm relies on a Topographic 266 

Position Index (TPI) – the difference between a location’s elevation and the mean elevation in a circle 267 

surrounding the point that approximates the typical peak-to-peak or ridge-to-ridge distance: 268 

                        (4) 269 

where TPI is a location’s relative topographic position in meters, z is the elevation of the location, and 270 

           is the mean elevation in a circle with radius d  surrounding the point. Ashcroft and Gollan 271 

(2013b) developed a similar index using the difference between a location’s elevation and the 272 

minimum elevation in a circle of 500-m radius, taking the log of this distance as an index of cold-air 273 

pooling potential: 274 
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CAP = log(z – min(z(d)))      (5) 275 

where CAP is the cold-air potential in meters, z is the elevation of the location, and min(z(d)) is the 276 

minimum elevation within d meters of the location. Both TPI and CAP are scale-dependent and 277 

sensitive to extent of the circular neighborhood used to calculate relative elevation. To test these 278 

measures at different spatial scales we calculated both indices based on neighborhood radii of 150, 279 

250, 500 and 1000 m (TPI[150-1000],CAP[150-1000]). 280 

2.8. Statistical Analyses 281 

Temperature micro-sensors such as those used in this study measure temperature variation on the 282 

scale of cm and are highly sensitive to small differences in placement and radiation shield design 283 

(Ashcroft and Gollan, 2013b; Geiger et al., 2009; Graae et al., 2012; Holden et al., 2013). Both 284 

absolute and relative temperatures will be affected by factors such as sensor height, weather 285 

conditions and shielding. Maximum surface temperatures may be especially sensitive to shield design 286 

(Holden et al., 2013). We focus here on relative differences as indicative results, although we expect 287 

differences will be larger in locations with more hot, sunny weather, or where sensors are 288 

inadvertently positioned slightly closer to the ground surface. 289 

Data from SJER and TEF were analyzed separately to model daily Tmax and Tmin as a function of 290 

site-scale and microsite-scale biophysical variables. At TEF we limited our analysis to the period 291 

April 1 to September 30, when most or all sensors were snow-free. For SJER we analyzed the 292 

complete calendar year. Predictor variables and scales were selected based on previous research 293 

outlined in the introduction, general principles of surface energy balance, and extensive exploratory 294 

analysis with solar radiation, canopy density, understory radiation and cold-air pooling rendered 295 

across a range of spatial scales. 296 

For the site-scale analysis we included a single sensor from each site across the landscape for each 297 

daily model. At sites with sensor arrays, we included the single sensor recording the median value for 298 

the array on that day. The resulting daily sample sizes were 21-24 for TEF and 17-18 for SJER. Given 299 

these small sample sizes we limited the number of site-scale model predictor variables to two and did 300 
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not include highly correlated variables in the same model. Predictor variables tested at the site scale 301 

included those characterizing solar radiation regime (SR30), canopy effects (CD30), understory 302 

radiation (UR30) and cold-air drainage or pooling potential (TPI[150-1000],CAP[150-1000]).  303 

For microsite-scale analyses we included only array sensors and analyzed each sensor’s departure 304 

from the daily mean of all sensors at that array. Microsite-scale variables included elevation (DEM2), 305 

slope angle from the 2-m DEM (S2), three scales of canopy density (CD2.5, CD5, CD10) and 306 

understory radiation (UR2.5, UR5, UR10), and solar radiation (SR2).  307 

Generalized Boosted Regression Tree models were estimated using the R package ‘gbm’ (Ridgeway, 308 

2007) along with the package ‘caret’ (Kuhn, 2017) for calibration. This ensemble statistical learning 309 

approach was selected because it is suitable for handling different types of predictor variables, and for 310 

characterizing complex data-generating processes (Elith et al., 2008; Hastie et al., 2009).  Site-scale 311 

model parameters were calibrated with 10-fold cross-validation and a full factorial design with 312 

interaction depth (i.e., decision tree size) varied from 1 to 3. We explored a range of parameter 313 

settings but in the models reported here the number of tree models varied from 1,000 to 5,000 in 314 

increments of 1,000, and the shrinkage rate was kept constant at 0.001. 315 

To simplify presentation of model results we report 2-factor models for those factors and scales that 316 

on average, based on adjusted r
2
, best predict daily temperature extremes across all daily models. 317 

Given high correlations among some predictor variables and for the same factor at different scales 318 

(Tables A.2, A.3), many other models were only slightly inferior to those reported here, and could 319 

even be slightly better on specific days.  320 

3. Results 321 

3.1. Daily surface temperature extremes at foothill savanna and montane forest landscapes 322 

Temperature records for the foothill and montane landscapes are summarized in Figure 5 and Table 1. 323 

Daily maximum temperatures across the foothill oak savanna landscape (SJER) routinely exceeded 50 324 

°C  in summer months and ranged widely between sites, with hottest and coolest sites differing on 325 

average by 13.1°C across the year as well as for the period April 1 through September 30 when data 326 
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were available for both savanna and montane forest sites. Spatial variation in Tmax across the 327 

montane forest landscape was generally higher than at the foothill landscape, with daily inter-site 328 

temperature range averaging 15.6°C from April through September. Between April and September at 329 

both sites, inter-site variation in Tmax was lowest in June-August summer months (Table 1, Fig. A.1). 330 

In absolute terms, inter-site variation in Tmin was low at both oak savanna and conifer forest 331 

landscapes, although relative to daily means the standard deviation in Tmin was as high or higher than 332 

that for Tmax (Table 1). 333 

[Fig. 5 about here] 334 

Daily Tmax was consistently 5-9 °C higher on the warmest (south-facing grassland) vs. coolest 335 

(north-facing woodland) arrays at SJER (Fig. 6). Within arrays, daily standard deviations in Tmax 336 

were comparable to those at TEF, averaging 3.4-4.6 °C. Daily Tmin in SJER arrays was generally 4-5 337 

°C lower on the coolest site (level open savanna) relative to the warmest site (rocky, southwest-facing 338 

slope) (Fig. A.2). Within-array variation in Tmin was low, with daily standard deviation of array 339 

means usually <1 °C.  340 

[Table 1 about here] 341 

At the montane landscape (TEF), daily Tmax was 3-7 °C higher for south and southwest-facing arrays 342 

vs. north and northeast arrays (Fig. 6). Tmax also varied considerably at the microsite scale within 343 

arrays, with daily standard deviations averaging 4-6 °C at five sites and a maximum of 9.7 °C at one 344 

level site. Daily Tmin values were typically 0.5-3 °C higher for arrays on two north-to-northeast 345 

facing slopes compared to those on south-facing and level sites (Fig. A.2). Microsite variation in 346 

minimum temperatures at TEF was low, with standard deviations of 0.2-0.5 °C within arrays. 347 

[Fig. 6 about here] 348 

3.2. Daily temperature models, oak savanna landscape 349 

At SJER, site-scale variation in Tmax was best modeled by the understory radiation index (UR30) and 350 

topographic position index (TPI250), which combined to explain 18-89% (mean adj. r
2
 = 0.63) of 351 
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variation in 365 daily models (Fig. 7). The relative influence of UR30 averaged 60% vs. 40% for 352 

TPI250. Partial dependence on UR30 averaged 2.3 °C; in other words, surface temperature at the site 353 

with highest UR30 was predicted to be, on average, 2.3 °C warmer than that at the site with lowest 354 

UR30. Model partial dependence on UR30 was lowest during late February-early March and June-355 

August when spatial variation in Tmax was also relatively lower (Fig. 7, Fig. A.1). The effect of 356 

TPI250 was most pronounced in March-May, when partial dependence generally ranged from 2-6 °C, 357 

and was lowest in July through October (Fig. 7). Thus maximum daily surface temperatures at sites 358 

that were higher in the landscape (upper slopes and ridges) were predicted to be warmer than 359 

relatively low sites in valleys and riparian areas. 360 

[Fig. 7 about here] 361 

Site-scale models for Tmin across the oak savanna landscape based on canopy density CD30 and 362 

CAP150 explained 0.19-0.86 (mean adj. r
2
 = 0.65) of daily site variation (Fig. 8).  Relative influence 363 

of CD30 exceeded that of CAP150 throughout the year, averaging 62%, but partial dependence varied 364 

from positive (i.e., higher canopy was associated with higher minimum daily temperatures) to 365 

negative from January through early May, was generally positive from mid-May through September, 366 

and then generally negative from October through December (Fig. 8). Partial dependence for CAP150 367 

ranged from 0.6-5.84 °C (mean 1.84 °C), such that sites relatively low in the landscape were modeled 368 

as experiencing consistently lower minimum daily temperatures (Fig. 8). 369 

[Fig 8 about here] 370 

Microsite-scale models for Tmax based on UR[5,10], SR2 and GCs2.5 were generally weak at 371 

predicting intra-site maximum temperatures (mean adj. r
2
 < 0.15). However, within-array standard 372 

deviation in Tmax was significantly correlated with within-array standard deviation in UR5 (r = 0.51, 373 

p < 0.001) (Fig. A.3).  374 

Microsite-scale models for Tmin based on CD10 and slope (S2) explained 0.07 – 0.51 (mean adj. r
2
 = 375 

0.33) of the variation in Tmin among sensors within garden arrays (Fig. 9). Minimum temperatures 376 

increased with increasing CD10, with partial dependence ranging from 0-1.2 °C (average = 0.6 °C). 377 
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Tmin also increased with increasing slope angle, although the magnitude of the effect was small 378 

(average partial dependence = 0.2 °C). 379 

[Fig. 9 about here] 380 

3.3. Daily temperature models, montane conifer forest landscape 381 

At TEF, general boosted models based on UR30 and TPI500 explained 35-94% (mean adj. r
2
 = 0.63) 382 

of observed site-scale variation in daily Tmax (Fig. 10a). Model skill was generally higher in May and 383 

June and lower on days with highest atmospheric transmittance (Fig. A.4). The relative influence of 384 

UR30 in daily models averaged 73% vs. 27% for TPI500. Partial dependence of Tmax on UR30 385 

ranged from 2 -10 °C (mean= 4.6 °C), and the association of UR30 with Tmax was generally weaker 386 

in late June through August when inter-site variation in Tmax was also lower (Fig. 10a, Fig. A.1). 387 

Model partial dependence on TPI500 generally ranged from -4 to 4 °C (mean= 0.9 °C) with one 388 

outlying value of 8.0 °C (Fig. 10a). From April through July, Tmax at the site with highest TPI500 389 

(i.e., highest relative elevation) was predicted to be 1.4 °C warmer on average than that with the 390 

lowest TPI500. The influence of TPI500 varied considerably from August through September, when 391 

on many days sites with lower TPI500 were relatively warmer (Fig. 10a). 392 

[Fig. 10 about here] 393 

General boosted models based on CD30 and TPI500 explained 32-95% (mean adj. r
2
 = 0.83) of site-394 

scale variation in Tmin, with less variation in daily model performance than for Tmax models (Fig. 395 

10b).  The relative influence of CD30 averaged 74% vs. 26% for TPI500. Partial dependence on 396 

CD30 ranged from -0.5-4.5 °C, and on average Tmin at the site with highest CD30 was predicted to 397 

be 2.6 °C warmer than the site with lowest canopy cover. Tmin at the site with lowest TPI500 was 398 

predicted to be 0.3 °C cooler on average than the highest site, although the effect of topographic 399 

position varied considerably in April, May and late September (Fig. 10b).  400 

At the microsite scale, fitted models (not shown) had low skill in predicting Tmax or Tmin, with 401 

adjusted r
2
 generally < 0.15. However, the magnitude of microsite variation (standard deviation) in 402 



 

19 

 

Tmax was significantly associated with microsite variation in ground cover (GCs2.5) (r = 0.62, p 403 

<0.001) and UR10 (r = 0.51, p < 0.001) (Fig. A.5). 404 

4. Discussion 405 

4.1. Site- and microsite-scale variation in surface temperature extremes 406 

Our study was designed to sample inter- and intra-site variation in temperature regimes in foothill oak 407 

savanna and montane conifer forest landscapes in Mediterranean-climate California. The deployment 408 

of 133 sensors at the foothill landscape and 141 sensors at the montane landscape, with 6 densely 409 

instrumented sites in both landscapes, allowed us to investigate spatial variability at both site and 410 

microsite scales. We recorded large site-scale and microsite-scale variation in surface temperature 411 

extremes across both landscapes, particularly in maximum temperatures. Warm, dry conditions and 412 

early snowmelt in the southern Sierra Nevada in 2013 associated with regional drought (Asner et al., 413 

2016; Robeson, 2015) produced unusually long periods of dry surface soils that probably exacerbated 414 

the role of discontinuous overstory vegetation as a source of both site- and microsite-scale spatial 415 

variation in Tmax (Belsky et al., 1993; Breshears et al., 1998). 416 

Across foothill savanna sites, the standard deviation of daily maximum temperatures was typically 5-417 

15% of the mean, with lower variation in summer and winter months and higher variation in spring 418 

and fall. Highest inter-site variation was recorded in early April, by which time the deciduous oaks 419 

were probably nearing full canopy development (Ryu et al., 2012) thereby enhancing contrast 420 

between grasslands and woodland sites (e.g., Baldocchi et al., 2004). Moreover, in April we would 421 

expect high spatial variance in midday solar irradiance and surface soil moisture as a function of local 422 

slope and aspect. Similarly, the lower spatial variation in summer surface Tmax is probably related to 423 

uniformly dry surface soil moisture conditions across the landscape and lower topographic variation 424 

in midday solar irradiance at higher sun angles. 425 

Spatial variation in daily maximum temperatures was even more pronounced across the montane 426 

conifer forest landscape, where inter-site standard deviation in daily Tmax often exceeded 20% of the 427 

mean. On clear days, sites and microsites could differ by 20 °C or more in daily maximum 428 
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temperatures. This high level of spatial variation at TEF was also documented by Ma et al. (2010), 429 

who observed inter-site differences in soil surface temperatures of up to 30 °C and standard deviations 430 

of  >3 °C in mean monthly soil surface temperatures from May through August. Ashcroft and Gollan 431 

(2013b) reported similar large variation in maximum surface temperatures at a semi-arid western 432 

Australian landscape, with site-scale and microsite-scale variation accounting for roughly 60% and 433 

40% of total spatial variance, respectively.  434 

Low microsite spatial variation in daily minimum surface temperatures has been previously reported 435 

at TEF (Dingman et al., 2013; Ma et al., 2010), and for other forests and woodlands (e.g., Ashcroft 436 

and Gollan, 2013b; Breshears et al., 1998; Frey et al., 2016; Suggitt et al., 2011). We also observed 437 

low within-site variation in Tmin, but at the site scale we recorded systematically higher or lower 438 

minimum temperatures, even over distances of less than 100 m, associated with topography and 439 

vegetation cover. 440 

4.2. Dynamic influence of tree canopy density and solar radiation 441 

Incoming shortwave solar radiation is a key driver of diurnal surface energy balance and a primary 442 

determinant of spatiotemporal variation in surface temperatures in rugged terrain (Dozier and Outcalt, 443 

1979; Geiger et al., 2009). In the absence of overstory trees, spatial variation in incoming shortwave 444 

radiation increases with average slope of the terrain and atmospheric transmittance, and varies 445 

dynamically during the course of the day and the year as a function of solar zenith angle (Dubayah et 446 

al., 1990). Site-scale (~30-90 m horizontal resolution) models of solar radiation have proven effective 447 

for modeling air temperatures at 1 to 2 m above the ground surface, (e.g., Flint et al., 2013; Fridley, 448 

2009; Lookingbill and Urban, 2003; Vanwalleghem and Meentemeyer, 2009). However, we found 449 

that modeled surface radiation that did not account for the forest canopy was less effective at 450 

predicting site- and microsite-scale surface temperatures than an index of direct understory radiation 451 

that accounted for overstory interception of incoming radiation. Much of the site-scale variation in 452 

daily maximum temperatures could be predicted with a simple proxy that reduced modeled top-of-453 

canopy solar radiation by fractional canopy density immediately south of the point. The index, which 454 
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is similar to the direct understory insolation term of Bode et al. (2014), is readily calculated so long as 455 

atmospheric transmittance data are available. 456 

Baldocchi et al. (2004) provide a detailed analysis of the dynamic effect of deciduous blue oak 457 

canopies on savanna microclimates.  Blue oaks at our foothill oak savanna landscape would be 458 

expected to have highest Leaf Area Index (LAI) between April and November (Ryu et al., 2012) and 459 

maximum gross carbon uptake and evapotranspiration in April through June (Goulden et al., 2012). 460 

Ideally we would have multi-date LiDAR imagery to capture the seasonal phenology of these 461 

woodlands. Low LAI from November through March may partially explain why modeled canopy 462 

density (CD30) was associated with lower minimum nighttime temperatures between October and 463 

April and higher minimum temperatures from May through September. The negative association of 464 

Tmin and CD30 in winter months may be more related to the association of higher tree density with 465 

cooler, north-facing slopes and ravines. Microsite-scale influence of canopy density within 5-10 m on 466 

daily temperature extremes suggests the highly localized influence of isolated oak canopies on surface 467 

microclimates (e.g., Parker and Muller 1982). 468 

The combination of rugged topography and tall, evergreen conifer canopies at the montane forest 469 

landscape resulted in pervasive site- and microsite-scale buffering of surface temperature extremes 470 

throughout the snow-free period of 2013. The contrast in incident solar radiation at the soil surface 471 

between understories and sunlit gaps was presumably much greater in this conifer forest than in 472 

foothill oak savanna. One-sided LAI is >7 for Abies concolor and A. magnifica trees (Westman, 473 

1987). At ecosystem scales, effective tree canopy LAI – which includes all light intercepting canopy 474 

elements – ranges from 0 to 1 on the continuum from grassland to Q. douglasii woodland (Ryu et al., 475 

2010) compared to 0 to 3.5 on the continuum from gaps to denser tree patches in Sierra mixed-conifer 476 

forest (Musselman et al., 2013). 477 

The generally lower model performance for maximum temperatures on clear summer days at the 478 

montane forest site could be due to less reliable temperature readings for sensors in hot sunlit areas or 479 

the challenge of modeling microsite-scale variation in incoming radiation (sunflecks) on clear days at 480 

high elevations (e.g., Ustin et al. 1984). Better prediction of surface temperatures should be obtainable 481 
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with more complete models of canopy sunlight interception by discontinuous tree canopies (e.g., 482 

Bode et al., 2014; Gryning et al., 2001; Musselman et al., 2013). For example, Musselman et al. 483 

(2013) present a sophisticated solar raytrace model that calculates light paths through LiDAR-derived 484 

3-dimensional forest structure over heterogeneous terrain. They demonstrate the model using 1-m
3
 485 

discrete cubic volumes (voxels) for mixed-conifer forest very similar in structure and composition to 486 

Teakettle Experimental Forest, revealing large microsite-scale differences in solar radiation at the 487 

surface, even in the tallest (>60 m) conifer forest. A systematic comparison of the power of these 488 

different approaches for modeling surface temperature regimes in discontinuous plant canopies would 489 

be useful, especially for characterizing the very high microsite-scale variation in surface temperatures 490 

associated with Mediterranean-climate ecosystems. We were unsuccessful at predicting this microsite 491 

variation in maximum temperatures, although the high correlation between microsite spatial 492 

heterogeneity in UR10 and Tmax suggests that it is at least possible to model the magnitude of 493 

microsite variation in Tmax within sites across these landscapes. 494 

4.3. Dynamic influence of topographic position related to cold-air drainage 495 

In mountainous regions, nocturnal surface cooling is controlled by both fine-scale surface longwave 496 

energy balance and larger-scale downslope advection of cold air due to more rapid radiative cooling 497 

in highlands vs. lower elevations (Bergen, 1969; Burns and Chemel, 2014; Pypker et al., 2007). Cold-498 

air pooling is well documented in wide valleys of the Sierra Nevada, especially in dry, stable, clear-499 

sky conditions (Lundquist and Cayan, 2007). Our temperature data show evidence of cold-air 500 

drainage and perhaps localized shallow pooling – especially in the foothill oak savanna landscape. 501 

The montane study landscape lacks large topographic depressions where extensive, deep pooling 502 

would be expected (Rambo and North, 2008; Curtis et al., 2014; Lundquist et al., 2008). Accordingly, 503 

we suspect the small cold-air effects detected in our analysis are mainly the result of cold-air drainage 504 

and, at the montane conifer forest landscape, riparian influence (Rambo and North, 2008; Rambo and 505 

North, 2009). Rambo and North (2009) measured air temperatures from 5-45 m above the forest floor 506 

at TEF and found that both summer and winter nighttime minimum temperatures were consistently 507 

cooler than those in surrounding upland forests. On the other hand, they observed that in summer 508 
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daytime maximum temperatures in riparian areas tended to be higher than adjacent upland areas, 509 

which they attributed to the influence of warm upslope winds. In a related study at TEF, Rambo and 510 

North (2008) found that the zone of riparian influence was confined to a few meters horizontally and 511 

vertically from the stream channel and noted that effects of local shrubs and trees could dominate over 512 

riparian influence. Although our study was not designed to systematically investigate riparian 513 

environments, our results generally associate lower position in the landscape with lower daily 514 

minimum and maximum surface temperatures. The patterns can vary both seasonally and on a daily 515 

basis, and at the montane study landscape (TEF) late summer maximum daytime temperatures were 516 

frequently higher in valley and riparian locations. Our models help reveal how much these patterns 517 

can vary from day to day, perhaps in relation to variable local wind effects. 518 

The relative elevation metrics proposed by Lundquist et al. (2008) and Ashcroft and Gollan (2013b) 519 

were significantly correlated at scales from 150-1000 m (0.34 – 0.86) (Tables A.2, A.3) and both 520 

proved effective for modeling spatial variation in surface temperature extremes, although TPI[500-521 

1000] yielded better models at the montane forest landscape  vs. TPI250 and CAP150 at the foothill 522 

savanna landscape. The shorter scales at SJER suggest more localized cold-air effects consistent with 523 

shorter ridge-to-ridge distances here compared to TEF. 524 

In principle, given average lapse rates in the southern Sierra Nevada of -6-7 °C/km (Lundquist and 525 

Cayan, 2007), we would expect elevational cooling effects of 1.2-1.4 °C and 1.0-1.1 °C across our 526 

foothill and montane sites, respectively. However, as pointed out by Lundquist and Cayan (2007), 527 

lapse rates in the Sierra Nevada can vary dramatically from one day to the next and are highly 528 

location-dependent. Within our study landscapes, topographic position or cold-air pooling indices 529 

yielded better model predictions for both Tmax and Tmin than simple elevation, and the direction of 530 

the elevation effect was usually inverse to the regional lapse rate. Across both landscapes, sites at 531 

lowest relative elevations generally recorded Tmax and Tmin values that were 1-2 °C cooler than 532 

nearby upland sites. Correlations between elevation and TPI or CAP were low at the montane 533 

landscape (0.03 < |r| < 0.41) and moderate-to-low at SJER (0.39 < r < 0.57), and with more samples 534 
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across a greater range of elevations we may have been able to tease apart the contrasting influences of 535 

average regional lapse rates from local cold-air drainage and riparian effects. 536 

4.4. Modeling variation in site and microsite temperature extremes with NEON AOP LiDAR 537 

data 538 

With a small set of LiDAR-derived topographic and canopy variables, we were able to account for, on 539 

average, 61-83% of variation in site-scale daily surface temperature extremes. These results compare 540 

favorably with other efforts to model surface or near-surface air temperature extremes using ground 541 

observations of canopy cover (Ashcroft and Gollan, 2013b) or other small-footprint LiDAR systems 542 

(Frey et al., 2016). Our study suggests that NEON AOP data, combined with inexpensive temperature 543 

micro-sensor arrays, can be used to monitor and model temperature variation over large areas. This 544 

information could increase understanding of microclimates near the ground in heterogeneous 545 

landscapes, support calibration and validation of more mechanistic niche models (Kearney and Porter, 546 

2009), and inform spatially explicit population models for improved projections of species 547 

vulnerability to climate change (Dullinger et al., 2012; Franklin et al., 2014). 548 

4.5. Cross-scale modeling of thermal microrefugia in mountainous terrain 549 

The complex thermal microclimates in landscapes of the Sierra Nevada are under a hierarchy of 550 

controls related to regional weather conditions, environmental lapse rates, topographic position and 551 

microsite location relative to vegetation overstory and surface characteristics (Broxton et al., 2015; 552 

Dobrowski et al., 2009; Lundquist and Cayan, 2007; Musselman et al., 2013). At very fine 553 

microclimate scales, surface temperature regimes can depart significantly from landscape and  554 

regional trends and thus provide potential opportunities for species' stepping stones, holdouts or 555 

microrefugia under rapid climate change (Hannah et al., 2014), not only in the Sierra Nevada but in 556 

mountain landscapes in general. Although our study focused on modeling surface temperatures and 557 

did not explicitly account for mediating effects of water availability, soil moisture also covaries with 558 

topography and overstory vegetation at site- and microsite scales (e.g., Villegas et al., 2010), adding 559 

additional buffering capacity in these landscapes. 560 
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The empirical statistical models reported here were fitted to specific landscapes over a single year and 561 

are correlative. Nevertheless, they demonstrate the magnitude of fine-scale variation in temperature 562 

extremes in these Mediterranean-climate landscapes that must be accounted for when considering 563 

climate change effects on species ranges at broader spatial scales, and the mediating influences of 564 

local biophysical factors (i.e., microtopography, vegetation structure) on regional climate change 565 

exposure (Lenoir et al., 2017). Forest canopy effects on surface temperatures were comparable to or 566 

exceeded the effects of topographically induced variation in solar radiation, highlighting the potential 567 

for biological moderation of surface temperature regimes associated with regional climate and, by 568 

extension, regional climate change (Lenoir et al., 2017; von Arx et al., 2013; Woods et al., 2015).  569 

The increasing prevalence of global change-type droughts, however, as well as increasing wildfire 570 

activity, has increased forest mortality events across the Sierra Nevada and western North America 571 

more generally (e.g., Denison et al., 2014), altering the moderating effects of overstory vegetation and 572 

reducing heterogeneity in microclimates and associated species’ habitats over large areas. 573 
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Table 1. Summary of daily surface temperature extremes at the foothill oak savanna landscape 803 

(SJER) and montane forest landscape (TEF) for 2013.  Entries are the means of daily values for the 804 

indicated monthly time periods. 805 

 Foothill (SJER) Montane (TEF) 

Month Tmin (°C) CV (%) Tmax (°C) CV (%) Tmin (°C) CV(%) Tmax ((°C) CV (%) 

Jan - Mar 3.3 33 24.8 13 NA NA NA NA 

Apr 8.7 32 38.6 12 0.2 57 23.5 25 

May 12.0 15 45.2 8 2.8 148 28.2 15 

Jun 16.7 10 51.1 6 7.8 24 35.6 10 

Jul 21.0 8 54.8 5 11.6 11 39.3 9 

Aug 17.7 10 52.2 6 9.1 17 38.4 10 

Sep 15.1 12 47.0 8 6.8 12 32.9 15 

Oct-Dec 5.5 17 31.2 14 NA NA NA NA 

 806 

  807 
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Fig. 1. Location map for San Joaquin Experimental Range (SJER) and Teakettle Experimental Forest 808 

(TEF) study landscapes. Elevations from the San Joaquin Valley floor up the western slope of the 809 

Sierra Nevada are displayed on shaded relief. 810 

Fig 2. Photos of Teakettle Experimental Forest a) north-slope and b) south-slope sites,  and San 811 

Joaquin Experimental Range c) north-slope and d) south-slope sites illustrating the difference in 812 

vegetation structure at the two landscapes. Fenced experimental gardens and a subset of the surface 813 

temperature sensors (vertical posts) in site sensor arrays are also visible. 814 

Fig. 3. Surface temperature sensor locations at a) foothill savanna landscape, San Joaquin 815 

Experimental Range (SJER) and (b) montane forest landscape, Teakettle Experimental Forest (TEF).  816 

Yellow triangles are locations of single temperature sensors and open white circles are locations of 817 

21-sensor arrays. Background is shaded relief, illuminated from due south. LiDAR-derived tree 818 

crowns are displayed as two height classes, < 25m (light green) and >25m (dark green). 819 

Fig. 4. Spatial arrangement of temperature sensors (closed dot) and weather station (open dot) in and 820 

around experimental gardens (open square) used to characterize microsite temperature variation. 821 

Fig. 5. Time series of daily maximum (red) and minimum (blue) surface temperatures at (a) foothill 822 

oak savanna, San Joaquin Experimental Range (SJER), and (b) montane conifer forest, Teakettle 823 

Experimental Forest (TEF), for the 2013 calendar year. Daily temperatures at 24 sites at TEF and 18 824 

sites at SJER are displayed; vertical line length shows the daily temperature range among sites.  825 

Dashed vertical lines divide months shown on the X-axis. 826 

Fig. 6. Loess-smoothed average maximum daily surface temperatures and standard deviations (shaded 827 

bands) for sensor arrays at 6 sites at (a) the San Joaquin Experimental Range foothill oak savanna 828 

landscape and (b) Teakettle Experimental Forest montane conifer forest landscape. Labels indicate the 829 

topographic positions of the arrays (N – north facing, NE – northeast, L – level, VF, valley floor, S – 830 

south, SW – southwest). 831 

Fig. 7. Generalized boosted model results relating daily site-scale maximum temperatures (Tmax) in 832 

the foothill savanna landscape (SJER) to (a) modeled understory radiation (UR30) and (b) a cold-air 833 
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drainage index (TPI250); Partial model dependence on UR30 and TPI250 is the difference in 834 

predicted temperatures at lowest and highest observed values of the predictor variable. (c) Model 835 

adjusted r
2
, the squared correlation between predicted and observed temperatures for each daily 836 

model. 837 

Fig. 8. Generalized boosted model results for daily site-scale minimum temperatures (Tmin) at San 838 

Joaquin Experimental Range (SJER) showing model partial dependence on (a) canopy density 839 

(CD30) and (b) a cold-air drainage index (CAP150) as well as (c) model adjusted r
2
 for each daily 840 

model. 841 

Fig. 9. Generalized boosted model results for daily microsite-scale minimum temperatures (Tmin) at 842 

San Joaquin Experimental Range (SJER) showing model partial dependence on (a) microsite canopy 843 

density (CD10) and slope angle (S), as well as (c) model adjusted r
2
 for each daily model. 844 

Fig. 10. Generalized boosted model (GBM) results for (a) daily site-scale maximum surface 845 

temperatures (Tmax) at Teakettle Experimental Forest (TEF) showing model partial dependence on 846 

(top panel)  modeled understory radiation (UR30) and (middle panel) a cold-air drainage index 847 

(TPI500), as well as (bottom panel) model adjusted r
2
 for 183 daily models between April 1 and 848 

September 30, 2013. (b) GBM results for daily site-scale minimum surface temperatures (Tmin) at 849 

TEF in relation to (top panel) tree canopy density (CD30) and (middle panel) TPI500; (bottom panel) 850 

daily model adjusted r
2
.  851 
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Table A.1.  Screening criteria used to delete daily temperature data records that were deemed 854 

potentially unreliable. 855 

1. Logger temperature changed by more than 20 °C in any 60 minute period – daily record 

removed. 

2. Recorded temperature remained identical for ten or more readings – daily record removed. 

3. For sensors in garden arrays, single temperature reading was more than 5 °C above or below 

daily maximum or minimum values for any other sensor in the garden array. This process was 

run repeatedly until no more daily records could be removed. 

4. If sensor daily temperatures remained in the range -2 °C to 2 °C, it was assumed that the 

sensor was submerged in snow and that sensor's daily record was removed. 

5. If physical sensor issues or data download issues were noted during manual data download, 

data were manually inspected and suspicious daily records were removed. 

 856 

  857 
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Table A.2. Correlation matrix, LIDAR-derived measures for Teakettle Experimental Forest (TEF) 858 

temperature monitoring sites (n=24), including elevation (DEM), tree canopy density (CD) at 30, 60 859 

and 90m scales, cold-air pooling index (CAP) at 150, 250, 500 and 1000m scales, and topographic 860 

position index (TPI) at 150, 250,500 and 1000m scales. Entries in bold are significant at p <0.05. 861 

 DEM CD30 CD60 CD90 CAP150 CAP250 CAP500 CAP1000 TPI150 TPI250 TPI500 TPI1000 

DEM 1 0.37 0.47 0.53 0.33 0.18 -0.06 -0.26 0.05 0.14 0.41 0.24 

CD30 0.37 1 0.91 0.86 -0.09 -0.08 -0.23 -0.36 -0.17 -0.24 -0.34 -0.2 

CD60 0.47 0.91 1 0.96 -0.12 -0.07 -0.28 -0.39 -0.21 -0.29 -0.31 -0.19 

CD90 0.53 0.86 0.96 1 -0.11 -0.14 -0.33 -0.46 -0.26 -0.32 -0.22 -0.24 

CAP150 0.33 -0.09 -0.12 -0.11 1 0.7 0.63 0.45 0.46 0.52 0.58 0.57 

CAP250 0.18 -0.08 -0.07 -0.14 0.7 1 0.9 0.67 0.68 0.7 0.34 0.76 

CAP500 -0.06 -0.23 -0.28 -0.33 0.63 0.9 1 0.79 0.73 0.75 0.42 0.78 

CAP1000 -0.26 -0.36 -0.39 -0.46 0.45 0.67 0.79 1 0.56 0.59 0.42 0.86 

TPI150 0.05 -0.17 -0.21 -0.26 0.46 0.68 0.73 0.56 1 0.96 0.51 0.67 

TPI250 0.14 -0.24 -0.29 -0.32 0.52 0.7 0.75 0.59 0.96 1 0.66 0.75 

TPI500 0.41 -0.34 -0.31 -0.22 0.58 0.34 0.42 0.42 0.51 0.66 1 0.66 

TPI1000 0.24 -0.2 -0.19 -0.24 0.57 0.76 0.78 0.86 0.67 0.75 0.66 1 
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Table A.3. Correlation matrix, LIDAR-derived measures for San Joaquin Experimental Range 863 

(SJER) temperature monitoring sites (n=18), including elevation (ELEV), tree canopy density (CD) at 864 

30, 60 and 90m scales, cold-air pooling index (CAP) at 150, 250, 500 and 1000m scales, and 865 

topographic position index (TPI) at 150, 250,500 and 1000m scales. Entries in bold are significant at p 866 

<0.05. 867 

 DEM CD30 CD60 CD90 CAP150 CAP250 CAP500 CAP1000 TPI150 TPI250 TPI500 TPI1000 

DEM 1 0.3 0.42 0.44 0.53 0.52 0.49 0.46 0.43 0.5 0.57 0.39 

CD30 0.3 1 0.92 0.86 0.14 0.06 -0.05 -0.05 -0.1 -0.13 -0.16 0.02 

CD60 0.42 0.92 1 0.98 0.15 0.07 -0.06 -0.09 -0.07 -0.1 -0.1 0.05 

CD90 0.44 0.86 0.98 1 0.11 0.04 -0.1 -0.14 -0.12 -0.14 -0.12 -0.01 

CAP150 0.53 0.14 0.15 0.11 1 0.97 0.87 0.78 0.64 0.75 0.83 0.61 

CAP250 0.52 0.06 0.07 0.04 0.97 1 0.86 0.78 0.7 0.81 0.86 0.65 

CAP500 0.49 -0.05 -0.06 -0.1 0.87 0.86 1 0.95 0.67 0.78 0.87 0.6 

CAP1000 0.46 -0.05 -0.09 -0.14 0.78 0.78 0.95 1 0.67 0.77 0.85 0.58 

TPI150 0.43 -0.1 -0.07 -0.12 0.64 0.7 0.67 0.67 1 0.96 0.8 0.96 

TPI250 0.5 -0.13 -0.1 -0.14 0.75 0.81 0.78 0.77 0.96 1 0.92 0.88 

TPI500 0.57 -0.16 -0.1 -0.12 0.83 0.86 0.87 0.85 0.8 0.92 1 0.67 

TPI1000 0.39 0.02 0.05 -0.01 0.61 0.65 0.6 0.58 0.96 0.88 0.67 1 

 868 

  869 



 

41 

 

Captions for Supplementary Figures 870 

  871 
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Fig. A.1. Spatial variation in Tmax, measured as the standard deviation of maximum daily 872 

temperature, across (a) 18 sites at the foothill savanna site, San Joaquin Experimental Range (SJER), 873 

and (b) the montane forest site, Teakettle Experimental Forest, as a function of day of the year, 874 

January 1 – December 31, 2013. Loess locally-weighted regression line ± standard error (shaded 875 

region) are also shown. Note the change in horizontal scale, as indicated by arrows. Temperature data 876 

were only analyzed from day 91 to 273 at TEF. 877 

Fig. A.2. Loess-smoothed minimum daily surface temperatures (Tmin) and standard deviations 878 

(shaded areas) for sensor arrays at 6 sites at the foothill oak savanna landscape (SJER, top panel) and 879 

montane conifer forest landscape (TEF, lower panel). Labels indicate the topographic positions of the 880 

arrays (N – north facing, NE – northeast, L – low slope, VF, valley floor, S – south, SW –  881 

southwest). 882 

Fig. A.3. Predicted versus observed within-array standard deviation in daily Tmax at the foothill 883 

savanna landscape, San Joaquin Experimental Range. Results are for a linear mixed model with 884 

garden array as a random effect and an index of microsite understory radiation (UR5) as a fixed 885 

effect. Daily values for different gardens are plotted as different colors for arrays located on south 886 

slope (S), valley floor (VF), level (L), southwest slope (SW), northeast slope (NE) and north (N). 887 

Fig. A.4. Relationship between model fit (adjusted r
2
) and atmospheric transmittance for generalized 888 

boosted models of site-scale Tmax at TEF. The line is a locally weighted regression line with standard 889 

error ribbon. 890 

Fig. A.5. Predicted versus observed within-array standard deviation (SD) in daily Tmax at the 891 

montane conifer forest landscape, Teakettle Experimental Forest (TEF). Results are for a linear mixed 892 

model with garden array as a random effect and an index of microsite understory radiation (UR10) 893 

and fractional ground cover within 5 m south of the sensor (GCs5) as fixed variables. Daily values for 894 

different gardens are plotted as different colors for arrays located on south slope (S), valley floor 895 

(VF),  level (L), southwest slope (SW), northeast slope (NE) and north slope (N). 896 
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