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Constrained binary classification using ensemble learning: an
application to cost-efficient targeted PrEP strategies

Wenjing Zheng™?, Laura BalzerP, Mark van der Laan?, Maya Petersen?, and the SEARCH
Collaboration
aDivision of Biostatistics, School of Public Health, University of Calfornia, Berkeley

bDept of Biostatistics, Havard T.H. Chan School of Public Health

Abstract

Binary classifications problems are ubiquitous in health and social sciences. In many cases, one
wishes to balance two competing optimality considerations for a binary classifier. For instance, in
resource-limited settings, an HIV prevention program based on offering Pre-Exposure Prophylaxis
(PrEP) to select high-risk individuals must balance the sensitivity of the binary classifier in
detecting future seroconverters (and hence offering them PrEP regimens) with the total number of
PrEP regimens that is financially and logistically feasible for the program. In this article, we
consider a general class of constrained binary classification problems wherein the objective
function and the constraint are both monotonic with respect to a threshold. These include the
minimization of the rate of positive predictions subject to a minimum sensitivity, the maximization
of sensitivity subject to a maximum rate of positive predictions, and the Neyman-Pearson
paradigm, which minimizes the type 11 error subject to an upper bound on the type I error. We
propose an ensemble approach to these binary classification problems based on the Super Learner
methodology. This approach linearly combines a user-supplied library of scoring algorithms, with
combination weights and a discriminating threshold chosen to minimize the constrained optimality
criterion. We then illustrate the application of the proposed classifier to develop an individualized
PrEP targeting strategy in a resource-limited setting, with the goal of minimizing the number of
PrEP offerings while achieving a minimum required sensitivity. This proof of concept data
analysis uses baseline data from the ongoing Sustainable East Africa Research in Community
Health study.

Keywords

Super Learner; constrained binary classification; Neyman-Pearson; sensitivity; Rate of Positive
Predictions; PrEP; ensemble classification; cross-validation

1. Introduction

Binary classifications problems often arise in health and social science applications, wherein
individuals classified into the “positive’ class are to receive an intervention of interest, which
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caries with it an associated resource cost. Therefore, it is often desirable, especially in
resource-limited settings, to strike a balance between capacity constraints and the sensitivity
of the classification algorithm. For example, consider a targeted HIV prevention strategy that
prescribes a Pre-Exposure Prophylaxis (PrEP) regimen to individuals with substantial risk of
infection. Delivery of PrEP requires a meaningful resource expenditure per individual
treated, including ongoing medication and monitoring costs [1]. WHO Guidelines advocate
targeting PrEP to subpopulations known to be at high risk for HIV infection [2]. However,
within a generalized epidemic, the optimal demographic subgroups to target may not be self-
evident, and simply offering PrEP to known high-risk subgroups, such as young women, or
mobile populations, may be inefficient. In other words, a strategy that targets PrEP based on
a more sophisticated use of individual characteristics may be able to reduce the resource
spending per new HIV infection prevented. A natural question, therefore, is ‘how can
individual characteristics be used to offer targeted PrEP in order to prevent as many new
HIV infections as possible, given some fixed constraint on the total number of PrEP
regimens offered?’. This questions translates into a binary classification problem that aims to
maximize sensitivity, subject to a constraint on the Rate of Positive Predictions (RPP).
Alternatively, one might ask ‘how should PrEP be targeted at the individual-level in order to
minimize the number of PrEP regimens offered while preventing a desired percentage of
new infections?’ This question translates into a binary classification problem that minimizes
the RPP, subject to a sensitivity constraint.

These two problems are ubiquitous in devising cost-efficient intervention or prevention
strategies. In fact, in many real-world applications, the cost of misclassification may be
much higher in one class than the other, or one may wish to balance two competing
optimality considerations for a binary classifier. To this end, we propose in this article a
general group of Super Learner-based binary classifiers that aim to satisfy a wide class of
performance-constrained optimality criteria. Super Learner [3] is an ensemble learning
method in which a user-supplied library of algorithms are combined through a convex
weighted combination, with the optimal weights selected to minimize a cross-validated
empirical risk specified by the user. It can accommodate large classes of user-specified
objective functions; standard implementations include optimizing the squared error loss or
the log-likelihood loss. Theoretical results [4—6] exist to guarantee that the ensemble
algorithm improves upon any of its constituent algorithms asymptotically. We first consider
the binary classification problem of minimizing the Rate of Positive Predictions, subject to
achieving a minimum sensitivity requirement. The proposed Super Learner-based binary
classifier is characterized by combination weights and a discriminating threshold for
classification that together aim to minimize a sensitivity-constrained RPP. Next, we describe
how the proposed method can be adapted to the converse problem of maximizing a RPP-
constrained sensitivity. We then further extend the proposed Super Learner to a larger group
of performance-constrained binary classification problems where the objective function and
the constraint function are monotonic in the same direction with respect to the threshold
function. This type of classification problem includes the Neyman-Pearson paradigm [7]
which minimizes the type Il error subject to an upper bound on the type I error.

As an illustration of the proposed method, we develop and evaluate a hypothetical HIV
prevention strategy that uses a Super Learner-based binary classifier to offer PrEP to
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selected individuals, with the goal of minimizing the number of PrEP offerings while
achieving a minimum target sensitivity. We use baseline data from the Sustainable East
Africa Research in Community Health (SEARCH, NCT01864603) study, an ongoing cluster
randomized HIV “test and treat” trial in rural Kenya and Uganda, to illustrate the
development and evaluation of this targeted PrEP algorithm. We compare its projected
performance to standard subgroup-based PrEP strategies, which rely on broad demographic
categories (e.g. young women, fishermen). In this example, classifiers are trained to predict
baseline (prevalent) HIV status using individual-level demographics and other risk factor
variables collected at baseline. We note that in real-world development of such a targeted
PrEP algorithm, one would instead train the classifier to predict HIV seroconversions among
baseline HIV uninfected individuals. In the SEARCH Study, the method was applied to
interim seroconversion data from the intervention arm of the trial to develop an empirically
evaluated classifier. This classifier is being used in the second phase of the study to offer
PrEP to those who do not self-recommend or who are not in a serodiscordant relationship.
However, as these seroconversions are interim primary outcomes of the ongoing SEARCH
study, they will not be used in this example. We also employ in this example a second-level
cross-validation evaluation scheme to assess and compare the performance (in terms of
sensitivity and capacity savings) of different classifiers. This scheme seeks to mimic, to the
extent possible, an intervention in which the classifier is trained on a random subsample of
the population and applied to the remaining individuals. In this sense, we believe it to be a
more pragmatic approach to evaluating the performance of a classifier developed with this
objective than the standard area under the ROC curve [8].

1.1. Literature overview

A general solution to binary classification with performance constraints has been proposed
by Bounsiar et al. [9] within the context of statistical hypothesis testing, and encompasses
the problems considered in the current paper. While the solutions developed by Bounsiar et
al. [9] have universal applicability, their implementations are, to the best of our
understanding, with respect to specific classification or prediction algorithms, and therefore
may not be immediately translatable to ensemble learning, which allows one to combine
several algorithms, and may have a higher technical barrier for implementation.

Of the class of performance-constrained binary classification problems we consider here, the
Neyman-Pearson paradigm is perhaps the most common one. The theoretical properties of
single classifiers that solve the corresponding constrained optimization problem with biased
versions of the empirical False Negative Rate and empirical False Positive Rate were studied
by Cannon et al. [10] and Scott and Nowak [11]. Theoretical properties of an ensemble
classifier based on convex-weighted majority vote of the constituent classifiers, with weights
solving the corresponding convex optimization problem, were studied in Rigollet and Tong
[12]. In the current paper, we show that the performance-constrained problems considered,
including the Neyman-Pearson paradigm, can be recast as optimization of the objective
function evaluated at an appropriate threshold, and therefore applicable beyond problems
with convex objective and performance functions. We also approach the ensemble
differently, by employing cross-validated versions of the objective functions and
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performance constraints to reduce overfitting, and by developing both a scoring function and
a discriminating threshold to obtain a final classifier, instead of combining base classifiers.

In applications in HIV treatment, the use of individualized rules to offer selective HIV viral
load testing to detect treatment failure in resource-limited settings had been proposed by Liu
et al. [13] and Petersen et al. [14], among others. Liu et al. [13] models the distribution of
the risk score (based on a user-supplied scoring scheme) through a nonparametric or semi-
parametric approach, and seeks a tripartite rule that minimizes a user-specified weighted
combination of False Negative Rate and False Positive Rate, subject to a RPP constraint. In
this sense, this program aims to satisfy a different goal than the RPP-constrained sensitivity
or the Neyman-Pearson paradigm. While this constrained optimality criterion does not fall
into the class we study here, it is an optimization objective that is common to many
applications. The synergy between this work and the current paper would be a promising
direction of research.

Petersen et al. [14] proposed a Super Learner-based binary classifier to identify patients for
selective viral load testing based on routinely collected data. This classifier first obtains risk
prediction using the standard Super Learner which optimizes the log-likelihood loss
(described in section 2.2.2). A second-level cross-validation scheme is used to evaluate the
performance of classifiers (our proposed evaluation scheme models after this one). The
general performance of a classifier is summarized using the cross-validated area under the
ROC curve across a range of discriminating thresholds. For a given lower bound on
sensitivity, the cross-validated ideal RPP of a classifier is obtained by first computing on
each validation set the RPP under the largest threshold for which the sensitivity criterion is
satisfied, and then averaging this ideal RPP across the validation sets. This is the ‘ideal’ RPP
in that it uses the threshold one would have chosen if given the data-generating distribution
of the evaluation data, not a threshold estimated from the learning data. The methods
proposed in the current paper build upon and extend those in [14] in that the Super Learner
weights are now optimized for the target constrained classification criterion, construction of
the discriminating threshold is built into the classifier development, and the evaluation
scheme assesses the empirical RPP under the score function-threshold duo.

1.2. Organization

This article is organized as follows. In section 2.1 we formulate the binary classification
problem of minimizing RPP subject to a sensitivity constraint. In section 2.2 we propose a
cross-validated objective function and the implementation of a Super Learner-based
classifier that aims to optimize this objective function. In sections 3.1 and 3.2, we describe
how the proposed formulation can be extended to the converse problem of maximizing
sensitivity subject to a RPP constraint, and to a general class of binary classification problem
with monotonic objective function and performance constraints. The corresponding Super
Learner classifier is described in section 3.3. In section 4, we illustrate the development and
evaluation of a targeted PrEP strategy based on the Super Learner classifier proposed in
section 2. We conclude the article with a summary.
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2. Sensitivity-constrained minimization of the rate of positive predictions

2.1. Problem formulation

Consider the observed data structure O= (Y,W) ~ A, with Y€ {0,1} a binary class of
interest and Wa set of covariates. For a score function y: % — [0,1], and a threshold ¢, the
pair (y, ¢) defines a binary classification algorithm on W, wherein y{WW) = cis classified to
the class Y'=1. Our goal is to learn a classification procedure that achieves a sensitivity of at
least s, for some user-specified s € (0,1), with a minimal Rate of Positive Predictions.

The sensitivity of (y, ¢) under a data-generating distribution Pis given by
s(P,c) = P(p(W) = |Y=1). (1)

Note that 5(P,y, ¢) is monotonically non-increasing in ¢. In particular, for every y, we can
define a unique sensitivity threshold for v under P as:

o(P) = maz{c:s(Piy,c) = so}. (2)

In other words, (R y) is the largest threshold for - under distribution Pat which the
sensitivity is at least .

Consider an objective function for y, denoted /7y, ¢), that is monotonically non-
increasing in ¢. In this section, we take rto be the Rate of Positive Predictions:

r(Pi,¢) = P(Y(W) = ¢).

For a fixed data-generating 7, our goal is a binary classification algorithm (v, ¢) that
satisfies the sensitivity-constrained minimization

miny o (Poy, ¢) suchthat s(Pos, ¢) > so. ©)

Using the sensitivity threshold defined in (2), we can define a sensitivity-constrained
objective function as

T(PO;Q#/)) = T(P(];?;/J, C(Poﬂl)))' (4)

In words, this is the RPP of a classification procedure that combines the score function y
with its sensitivity threshold under Ay. Our optimal binary classifier is thus given by (yy,
Py, wp)), where the optimal score function is
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bo = a inr (Py;).
Yo rgminr( 0:%)) )

It is easy to see that the constrained minimization problem in (3) can be solved by (yy,

APy, wo))- Indeed, firstly, we know that (yyp, (P, o)) satisfies the sensitivity constraint of
(3). Secondly, suppose (v, ¢’) also satisfies the sensitivity constraint. Since for fixed £~ and
¥, sis a non-increasing function in ¢, the definition of (A, ¥") given in (2) implies that
APy, w") = . Since ris non-increasing in ¢, this inequality implies that /(Py; v, ¢’) =

(P, v, APo,w")) = NPy, ). By definition of yy as a solution of (5), we know that 7Py, v
) 2 [(Py; yo). Therefore Py, ¢') 2 APy y") 2 (Py; o) = MPo: wo, AP, wo)). In other
words, (yo, APy, wo)) achieves the minimum of /Py, ¢) under the constraint.

Consequently, we can solve the constrained minimization problem in (3) by minimizing the
sensitivity-constrained objective function in (5). The latter problem seeks a score function y
that minimizes the objective function when evaluated at its sensitivity threshold, compared
to other score functions at their respective sensitivity thresholds. The formulation in (5) is
more amenable to application under the existing Super Learner framework, and to
asymptotic studies of a cross-validated sensitivity-constrained objective function. We will
devote our attention to estimating this optimal classifier (yo, APy, w0))-

2.2. Super Learner classifier to minimize the sensitivity-constrained RPP

In this section, we consider a Super Learner-based classifier that estimates the unknown
optimal classifier defined in (5). Let @ denote the set of all distributions for O, including the
true unknown Ay, and ¥ denote the outcome space of W. A scoring procedure ¥ : M —
w101 inputs a distribution 2Zand outputs a score function ¥ = ¥ (A) : # —[0,1]. In most
applications, it is often difficult to specify precisely how a large number of risk factors W
interact to influence the outcome of interest. Therefore, we use a nonparametric model for
M. In such cases, an ensemble learning method such as Super Learner would allow one to
invoke a wide array of scoring procedures, both parametric and nonparametric.

For a measurable function 7(O) of the data, and a distribution 2, we will use the notation P f

= EA £(O)).

2.2.1. Cross-validated sensitivity-constrained RPP—We described an objective
function (4) for our classification problem, and appointed its minimizer (5) to be our
unknown optimal binary classifier. Therefore, estimating this objective function is central to
our tasks of assessing the performance of candidate algorithms and selecting the optimal
among them. To provide protection against overfitting, we will accomplish these tasks using
cross-validation.

Consider a split of a sample of nindependent and identically distributed (i.i.d.) copies of O
into a validation setand a training set. This can be represented by a random vector B € {v,
%, indicating whether each of the /7 observations is in the validation set (1) or the training

set (). We use P, to denote the empirical distribution of the 7i.i.d. observations, P!, the
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empirical distribution of the validation set, and Pf_B the empirical distribution of the training
set. Note that in our notation for B, we suppressed the fact that B depends on 7. The
particular choice of cross-validation procedure is characterized by the outcome space and
distribution for B. For instance, in an M-fold cross-validation, the distribution would place
weight 1/Mto each of the M vectors corresponding to each of the M folds.

We define the empirical cross-validated sensitivity-constrained RPP of ¥ as

rn(Pn, ¥) = Egr (P:.B ;\Ij(Pj,B )) " (6)

In words, for a sample spilt B, we obtain the constrained objective ™ (PﬁB ;‘II(P,?B)) as

follows:

L Fit ¥ on the training set Pnt,B to obtain a score function

G5 = U(P! )W —[0,1],

2. Obtain the sensitivity threshold ¢, 5 = C(P,ﬁB ., ) of this score function under
the empirical distribution of the validation set. That is, we apply ;, g to obtain
scores for the validation set observations, and find the largest threshold ¢ for
which the sensitivity constraint is satisfied, i.e.

P I(4, ;(W) > ¢, Y=1)/P" I(Y=1) > so. This can be implemented using
the quantile function on the observations in the validation set with Y= 1.

The constrained objective 7 (P! ;¥ (P! ) is given by the

RPP P’ 1(¢n (W) > ¢, ), i.e. the proportion of the observations in the
validation set whose score under y, g surpasses the corresponding threshold
cﬂ,B-

Note that this empirical cross-validated sensitivity-constrained RPP in (6) is an estimator for
the oracle cross-validated sensitivity-constrained RPP

70(Pn, W) = By r(Po; U (P ). )

In words, if we knew £, we would fit ¥ on the training set to obtain the score function
vy, 5 and then determine the sensitivity-constrained threshold and corresponding RPP for
this score function y, g under the true ~. This is the true conditional sensitivity-constrained
RPP of the procedure ¥, conditional on being fitted on the training sets under the specified
cross-validation procedure on a sample of size 7.

2.2.2. Super Learner: a general overview—Super Learner is a generalized stacking
learning method that finds the best convex combination of a given set of constituent
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procedures for a user-specified optimality criteria. Suppose we have Jconstituent scoring
procedures W1, ... ¥/ A constituent procedure may be a pre-specified parametric
regression model, as well as machine learning approaches such as neural networks and
random forests. It can also be augmented with a screening algorithm (e.g. only using
variables that pass a correlation criterion).

For a in the (/1)-simplex A’, we define
J . .
Uo(P) =) o/ WI(P).
j=1

Each ¥, is thus an algorithm that takes Jindependent variables, which are the scores from
the Jconstituent algorithms, and combines them through the linear combination given by a.

To apply the framework from the previous section, we can consider a representation A’ of
A\ by partition into K{(r7) many grids with size converging to 0 (e.g. size 1/ for g >0). As

discussed in van der Laan et al. [3], minimization over A’ vs A/ would produce
asymptotically equivalent procedures.

Consider an M-fold sample split, with P, and Pfhm denoting the /7+th empirical
distributions of the validation and training sets, respectively. Standard implementations of
Super Learner [15] use the minus log-likelihood loss or a squared error loss as optimality
criteria. Specifically, they produce predictor ¥, ,, where a, minimizes

2 py (WP

M m=1T Tm n,m

)) (O), with L(\Ifa(P,ﬁm)) (O) being the minus log-likelihood loss

7{Yloglpa(P7§,,m)(Av W)+(17Y)10g (17\11a(Prtz/,m)(A7 W))}' (8)

or the squared-error loss (Y—\Ifa(P,f%m)(A, W))Q. A Super Learner that maximizes the area
under the ROC curve is presented in LeDell et al. [16].

2.2.3. Super Learner classifier for the proposed problem—Now we are ready to
present a Super Learner for the binary classification problem under consideration. The goal
is to find the optimal weight a, and a corresponding threshold c.

The proposed Super Learner scoring function, which optimizes the constrained criterion in
(3), is given by ¥, where a, minimizes the empirical cross-validated objective function in

(6):

acA] acAJ ;

. 1 ) R
o = arg min 1, (P, ¥, )=arg min MmZZIT (Pmn;Z(w ol (Pn’m)) ©
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In words, for each a, we implement the function (P, ¥ ,) as follows:

1. At mrth fold, fit each ¥/ on the training set to obtain a score function

\Iﬂ'(PfL’m):W — [0, 1], and then use a to combine these to produce an ensemble

score function Zjaj‘l’ (Phn) = Va(Py )W — [0,1],

2. Then use the validation set P, ,,, to obtain the sensitivity threshold

¢(Py,

n,m?

P (Uo(P) ) = c(Py .. Ya(P),,))) for this combined score function.

V. (P, m)) and the corresponding sensitivity-constrained RPP

3. The desired (P, Y o) is given by the average of such fold-specified sensitivity
constrained RPPs across the M folds.

To obtain the desired optimal a,, we can use a nonlinear optimization algorithm such as the
nl opt r package inin R[17].

To complete the classifier, we now require a threshold. The score function ¥, is one that
has minimal (cross-validated) RPP at its sensitivity threshold. Therefore, we now focus our
efforts on estimating its sensitivity threshold. Following analogous procedure, consider the
empirical cross-validated sensitivity of a classification procedure based on a scoring
procedure ¥ and threshold c:

M

1
Sn Pm\I/ C ]V_ Z nm; nm ]Vf Z nm ( ) 2 C|Y:1)' (10)
m=1 m=1

This is an estimator of the oracle cross-validated sensitivity

M

1
SO(Pn;\Ija C):M Z S (P(J»\Ij(Prtl m) )
m=1

This latter is the true conditional sensitivity of ¥ under threshold ¢, conditional on the
training sets used to fit the scoring procedure. The sensitivity threshold for ¥, , can then be
estimated by finding a threshold that satisfies the constraint on the empirical cross-validated
sensitivity:

cn = max {c € (0,1):5,(Pn;¥a,,c) = so}.  (11)

The final classifier is given by the pair (¥ 4, (Py), ¢,), Where the score function

‘I’an(Pn):Zja%‘I” (Pn) iis obtained by using a,to combine the constituent score functions
fitted on the full dataset. It classifies a given Was /(¥ o, (P)(W) = cp).

2.2.4. Case-control sampling in applications with rare outcomes—In the HIVV
example considered in this paper, as well as in other applications, the outcomes of interest
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may be rare. In such cases, irrespective of the objective function considered, instead of using
the full sample, the Super Learner can use a case-control subsample [18, 19] that consists of
all the H cases in the full sample plus a random sample of (C-1) xH controls, for a user-
specified C. Each observation in the subsample will be weighted by the inverse of its
probability of being sampled from the learning data: cases will have weights 1, controls will
have weights given by the number of controls in the full data divided by the number of
controls in the subsample. Subsequently, the algorithm fits on the training set, as well as the
fold-specific evaluations of the constraint and objective function, will use weighted
observations. Moreover, we can implement the Super Learner using a M-fold sample split
that is stratified by outcome case, and thus ensuring that the validation sets have similar
number of cases.

3. More general performance-constrained binary classification problems

In section 2, we considered a Super Learner-based binary classifier that minimizes the RPP
subject to achieving a minimum sensitivity. In this section, we first consider the converse to
this problem: maximizing the sensitivity subject to an upper bound on the RPP. We then
unify these two under a larger class of constrained binary classification problems.

3.1. RPP-constrained maximization of sensitivity

Suppose our goal now is to learn a classification procedure that can achieve maximal
sensitivity subject to an upper bound s, on the RPP, for some user-specified s € (0,1). To
keep the language and notations parallel, we will formulate this problem in terms of
minimizing the False Negative Rate (FNR), subject to a minimum Rate of Negative
Predictions (RNP).

The RNP of a classifier (y, ¢) under a data-generating distribution Pis given by

s(Pi,c) = P(b(W)<c).  (12)

This is the cumulative distribution of y( W), and hence is monotonically non-decreasing in c.
In particular, for every y, we can define a unique RNP threshold for w under Pas:
o(Pyp) = min{c:s(Pi),c) > so}.  (13)

In other words, (R y) is the smallest threshold for y under distribution £at which the RNP
is at least .

Consider the objective function for v, denoted /P, y, ¢), to be the False Negative Rate:

r(Py,c) = P(y(W)<c|Y=1).

Like (P;y, ¢), (P, ¢) is also non-decreasing in c.
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For a fixed data-generating Ay, our goal is a binary classification algorithm (y, ¢) that
satisfies the RNP-constrained minimization

miny .r(Poy, ¢) suchthat s(Posy, ¢)>s0. (14)

Using the RNP threshold defined in (13), we can define a RNP-constrained objective
function as

T(Pof(fl}) = T(Po;’(,/), C(PO7 /l/})) (15)

In words, this is the FNR of a classification procedure that combines the score function y
with its RNP threshold under 7. Our optimal binary classifier is thus given by (yy,

APo, wo)), Where

Py = arg n}jnr (Po;t). (16)

It is easy to see that the constrained minimization problem in (14) can be solved by (yy,
APy, wp))- Indeed, firstly, we know that (yp, (P, wp)) satisfies the RNP constraint of (16).
Secondly, suppose (v, ¢) also satisfies the RNP constraint. Since for fixed A and y, sis a
non-decreasing function in ¢, the definition of (A, ") given in (13) implies that oAy, v') <
¢’. Since ris non-decreasing in ¢, this inequality implies that (Py; v, ¢') = (Po; v, APo, v
")) = n(Py; w"). By definition of yy as a solution of (16), we know that /(Py; w") = 1(Py; wy).
Therefore (Py; v, ¢') = (P, v") = HPo; wo) = HPo; wo, A(Po, wo))- In other words, (wyp,
APy, wp)) achieves the minimum of /(~;y, ¢) under the constraint.

3.2. A general class of performance-constrained binary classification problems

The two constrained binary classification problems we considered in section 2 and 3.1 can
be generalized to a larger class of constrained binary classification problems where the
objective function and the constraint are monotonic with respect to the threshold.

Specifically, for a binary classifier characterized by a score function y-and a threshold ¢, we
wish to minimize an objective function 1(Py; v, ¢) that is monotonic in ¢, subject to a
constraint 5(Pp; y, ¢) = 0, where the constraint function 3 Py; y, ¢) is also monotonic in c.
Suppose the constraint function is monotonic in ¢in the same direction of the objective
function r— that is, either both are non-decreasing in ¢ or both are non-increasing in c.
Then, we can define o(Py, w) = max{c. 5(Py; v, ¢) = 0}, in the non-increasing case, and
APy ) =min{c. APy, w, ¢) 2 0}, in the non-decreasing case. In the two problems we
considered previously, the RPP and the minimal sensitivity requirement correspond to non-
increasing objective and constraint, and the FNR and the minimal RNP requirement
corresponds to a non-decreasing objective and constraint.
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The constrained binary classification problem of

minr(Pp;e, ¢) suchthat §(Py;p,c) > 0
e

can thus be solved by (wy, APy, wo)) Where

1o = argminr(Posi, ¢(FPo, 1)).
%

Indeed, if a pair (y’, ¢’) satisfies the constraint, then either ¢ < o(Py, ") and APy, v, ¢') =
r(Po;w’, (P, ¥")) in the non-increasing case, or ¢ = Py, v’) and Py, ') = r(Poiv’,
o(Py, ")) in the non-decreasing case. Hence, in both cases, APy, v, &) = r(Po; v, dPo, v
")) = r(Po; wo, APo, wo)), by definition of yy.

This group of classification problems includes most constraint and objective functions that
are the traditional performance metrics, and addresses many applications where one must
balance competing performance criteria. In particular, it includes the commonly known
Neyman-Pearson criterion, which aims to minimize type Il error (i.e. minimize False
Negative Rate) with an upper bound on type I error (i.e. lower bound on True Negative
Rate).

3.3. Super Learner

Once the parallel formulation to the problem considered in section 2 is established, the
corresponding Super Learner-based classifier can be obtained in a similar manner. We will
not repeat the entire description here, but only highlight the relevant modifications.

The empirical cross-validated objective value (P, Y ,) of each potential weight a is
obtained as follows. At fold /m, fit each constituent algorithm ¥ ;on the training set to

_ _ . o
produce the combined score function Vo(Ppm) = Zjo‘] U(Pym). To compute the
threshold ¢ (P, ,,,, Vo (P ,,,)) of this score function under the empirical distribution of the

validation set, we apply \Ifa(men) to obtain scores for the validation set observations, and
either find the largest threshold ¢, in the case of non-increasing objective and constraint, or
find the smallest threshold ¢, in the case of non-decreasing objective and constraint, among

those satisfying the constraint, i.e. among the set { c:§(P,’§,m;\Ifa(men), ¢) > 0}. The
corresponding constrained objective value of ¥, on this fold is thus

7 (PY %Py )y e (PY . Ua(Ph ), ie. the objective function evaluated at the score

n,m> n,m
function ¥ (P ,,) and its corresponding constraint threshold ¢ (P ,,,, o (P ,,)). The
desired cross-validated objective value of ¥, is thus given by the average of such fold-
specific objective values:
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1 ; '
T”(Pm \Ij(!) = MZT (Prlz),'rn;\IlQ(P;i,m% c (Prlz),m? \Ija(sz,m)))'

m

The Super Learner weights a, is the weight vector that minimizes r,(#, ¥ ,). In the RNP-
constrained minimization of FNR considered in section 3.1, the threshold for the fold m

would be the smallest ¢ such that P;’,ml(\lla(P;;’m)(W)<c)—so > 0, and the corresponding
objective value on this fold is the FNR P}L’J,LI(\IJG(PfL’m)(W)<c, Y=1)/P; ,1(Y=1).

Correspondingly, the empirical cross-validated constraint function 5 of a classification
procedure based on scoring procedure ¥ and threshold cis

M

- 1 o
Sn(Pn;\Ij7 C):M ZS(Pﬁ,m;\IJ(PfL,m)?C)'

m=1

Consequently, the threshold for our score function ¥, , can be estimated by finding a
threshold that satisfies the empirical cross-validated constraint:

cn = max {¢:8,(Py;¥,,,,c) > 0} and ¢, = min {¢:8,(Pp;¥a,,c) > 0},

in the non-increasing and the non-decreasing cases, respectively.

The final classifier is given by the pair (¥ 4, (Py), ¢,), where the score function

‘I’an(Pn):ZﬂJn‘I’j (Pn) iis obtained by using a,to combine the constituent scoring
procedures fitted on the full dataset. It classifies a given Was /(¥ o, (P (W) = cp).

The comments in section 2.2.4 on case control sampling in applications with rare outcomes
naturally apply here.

Note that our proposed method focuses on how to combine a given set of constituent scoring
procedures and how to find a discriminating threshold to satisfy the constrained optimality
criterion of interest. We have not discussed how each of these constituent scoring procedures
should be fitted. Standard fits for these procedures are not tailored for the desired
constrained optimality criterion. One can derive for each constituent procedure the optimal
fit for the target criterion under consideration, but it may make certain algorithms difficult to
implement and raise the technical barrier for the use of these classification tools. Using the
standard fits for the constituent procedures could be a practical tradeoff, at the expense of
potentially shortchanging performance compared to using fits tailored for the target
criterion. In the summary section we will discuss future work to investigate this tradeoff.
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4. Application to an individualized targeted PrEP strategy
4.1. Background

We now consider an example from HIV prevention. Pre-exposure prophylaxis (PrEP) is an
HIV prevention method in which uninfected individuals follow a regimen of antiretroviral
medication to reduce their risk of infection. As of September 2015, the World Health
Organization recommends that individuals with high risk of HIV infection be offered PrEP
as part of a comprehensive prevention strategy [2]. The success of this prevention tool relies
on consistent use of the medication and regular monitoring, leading to considerable resource
expenditure associated with each PrEP regimen. Therefore, for long-term sustainability,
prevention programs need strategies for identifying high risk individuals for PrEP eligibility
that optimize population level impact within resource constraints. In regions with
generalized epidemics, offering PrEP to known demographic risk groups may be neither
optimally effective nor optimally efficient. The highest risk subgroups, such as individuals in
a serodiscordant relationship, may represent only a minority of total new infections in the
general population, while broader demographic groups, such as young women, that include a
larger proportion of new infections may have too low an incidence to form the basis of a
cost-efficient targeting strategy. Flexible machine learning methods for building individual
risk scores that appropriately tradeoff sensitivity and constrained roll out therefore have the
potential to improve the impact and sustainability of PrEP as an HIV prevention tool.

In this example, we consider a hypothetical PrEP-based prevention program in Eastern
Uganda. The goal of this program is to offer PrEP to select HIV uninfected individuals in the
target population in order to prevent 80% of new infections, while keeping the number of
such offerings to a minimum. To this end, we would like an algorithm that uses individual-
level data to identify prospective seroconverters with a sensitivity of at least 80% while
minimizing the number of positive predictions. To further illustrate strategy development,
we consider an implementation scenario where, while the algorithm training has at its
disposal a large array of variables, at the program rollout only a limited number of variables
can be collected at real-time on the prospective individuals. Consequently, the constrained
optimality criterion will also be used to select a small subset of the variables to be used in
the implemented algorithm. We will compare the performance of the targeted Super Learner-
based strategy to a conventional subgroup-based strategy wherein one offers PrEP to
everyone in a pre-specified subgroup defined by strata of demographic factors. In this
example, we could also use a standard implementation of the Super Learner with a minus
log-likelihood loss function, as carried out in [14] for predicting viral load failure among
HIV patients on treatment (more detail in section 1.1). This standard implementation is not
designed to optimize the constrained criterion under consideration, but it is still of interest
for our application. It will be included in our example for comparison.

4.2. Methods

4.2.1. Data, target population and outcome of interest—In this example, we will
use baseline data from the SEARCH study to illustrate the development and demonstrate
applicability of such an targeted PrEP algorithm. The SEARCH study is a cluster-
randomized trial that includes 32 communities of roughly 5000 adults (age = 15) each, in
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rural Uganda and Kenya. The first phase of this study tests a community-level intervention
that consists of annual community-based HIV and multi-disease testing, with immediate
linkage to care, antiretroviral therapy (ART) eligibility for all HI\-infected individuals, and
streamlined ART delivery using a patient-centered model. At baseline, the population of
each community was enumerated through a door-to-door household census, and basic
demographics (age, sex, marital status and occupation) were collected on all household
members. Then, baseline HIV testing and other baseline data collection were performed
during a community health campaign and subsequent home-based tracking for those that did
not attend the campaign. We refer to Chamie et al. [20, 21] for a detailed exposition on the
census and the community-based HIV and multi-disease testing campaign. In this example,
we use baseline data from 10 communities in Eastern Uganda.

Our target population is adult community residents with a conclusive baseline HIV test
result from these 10 communities. Our classifier will be trained to predict the baseline
prevalent HIV status with the goal of achieving at least 80% sensitivity while minimizing the
number of positive predictions. Importantly, this baseline data analysis is intended solely as
a proof of concept; in designing a classifier for use in the actual targeted PrEP strategy
deployed in the second phase of the SEARCH study, we instead trained the classifier to
predict seroconversion outcomes among baseline HIV uninfected individuals. However, as
these seroconversions are interim primary outcomes of the ongoing SEARCH study, this
seroconversion analysis is not described here. We chose Eastern Uganda as an illustration of
the method because it has the lowest baseline HIV prevalence, and is thus more comparable
to a seroconversion outcome, which is expected to be rare.

4.2.2. Candidate predictors and models—In this example, we consider an
implementation scenario where only a limited number of risk factors can be collected on the
prospective individuals during the rollout of the program. Therefore, as part of the algorithm
development the investigator must decide which subsets of the variables should be used.
Suppose also that variables within the same domain can often be found in the same data
source. Therefore to minimize the number of data sources needed at the program rollout, one
would group the variables by domain:

. Demographics: age, gender, occupation, marital status, polygamy, educational
attainment, and circumcision (for males).

. Mobility: number of months a resident had lived outside the community in the
past year, number of nights spent in one’s residence in the past month.

. Reproductive Health: pregnancy in the past 12 months (females), whether self
or partner is currently using contraception.

. Drinking: whether drink alcohol, frequency of binge drinking (defined as 6 or
more drinks at once), number of days in a months drink alcohol, number of
drinks in a typical day.

. Depression: Patient Health Questionnaire-2 score [22], Generalized Anxiety-2
score [23].
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Work Productivity: days worked in the past month, hours worked in a normal
day in the past week.

From here onward, by a ‘Model” we mean a combination of risk factor variables from these
domains. For instance the model Demographics.Mobility would use the variables under the
domains Demographics and Mobility. We will be considering models that combine
Demographics with each one of the other domains. These make up a total of 6 models under
consideration.

4.2.3. Building the Super Learner-based classification algorithm—~For each of
the models considered, we apply the Super Learner classifier described in section 2 to
classify the baseline HIV status, with the goal of minimizing the Rate of Positive Predictions
while achieving a sensitivity of at least 80%. The constituent algorithms consist of
screening-scoring pairs. The scoring algorithms include Lasso regression [24], main term
logistic regression, generalized additive model [25, 26], random forest [27], Bayes logistic
regression [28], and recursive partitioning regression [29]. We will use the standard fits of
these algorithms as implemented in R. Each of these candidate scoring algorithms is
augmented with screening algorithms that either use a) all the variables, b) only the top 10%
most correlated variables, or ¢) only variables with a T-test p-value of less than 0.1. We
implement a Super Learner-based classifier that constructs a score function through a linear
combination of the constituent algorithms, with weights minimizing the sensitivity-
constrained RPP, and uses as its threshold the cross-validated sensitivity threshold in (11).
The optimal weights are computed using an algorithm for finding global optima in the

nl opt r package ([17]) in R Besides the proposed Super Learner, we can also use a standard
implementation of the Super Learner prediction (with weights minimizing the standard risk
associated with minus log-likelihood loss), coupled with the cross-validated sensitivity
threshold in (11). We will call the former the constrained RPP Super Learner, and the latter
the Jog-likelihood Super Learner. We will apply both Super Learner-based classifiers in this
example for comparison.

As we described in section 2.2.4, to mitigate the low prevalence outcome, the Super Learner
uses a case-control subsample from the input data that consists of all the A baseline HIV
positive cases and a random sample (with replacement) of (C-1) xH controls, with C= 10.
Each of these observations are inversely weighted by the probability of being sampled from
the input dataset. We implement the Super Learner using a 10-fold sample split that is
stratified by outcome case. This stratification means that each validation set will have
approximately the same number of cases.

4.2.4. Performance assessment—We assess the performance of each classifier in terms
of empirical sensitivity, as measured by the true positive rate, and the number needed to treat
(NNT), as measured by the total number of positive predictions divided by the total number
of cases identified. If a case consisted of a seroconversion (rather than, as here, a prevalent
HIV case), NNT conveys the number of individuals offered PrEP per infection potentially
prevented. Actual infections prevented would of course also depend on uptake and
adherence to PrEP among those individuals to whom it was offered. NNT allows for
capacity-spendings comparison across individual-based and subgroup-based strategies. The
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empirical sensitivity and NNT are assessed through the average of 10 repetitions of a 10-fold
split of the baseline target population into a learning dataset and an evaluation dataset.
Specifically, we split the sample into 10 folds; on each fold, we use the learning dataset to
learn the Super Learner classifier (characterized by weights a, and threshold ¢, with “full
data’ P, being the learning dataset), and then apply it to classify the individuals in the
evaluation set and obtain the fold-specific sensitivity and NNT measures of the classifier. We
then average each performance measure across the 10 folds to obtain the cross-validated
sensitivity and the cross-validated NNT of this classifier under the 10-fold split. Lastly, we
repeat this 10-fold splitting and cross-validation evaluation scheme 10 times, and then
average the resulting cross-validated sensitivity and cross-validated NNT. We call these the
average cross-validated sensitivity (aCV-sensitivity) and the average cross-validated
NNT (aCV-NNT), respectively. They would assess the average sensitivity and NNT of a
strategy where we use a random subset of individuals in the population to train the classifier
and apply the learned strategy to an independent sample from the same population.

These average cross-validated sensitivity and NNT measures can also be applied to evaluate
the performance of subgroup-based strategies, wherein one only recommends PrEP to
individuals in a pre-defined subgroup prescribed by baseline variable strata. In these cases,
as there is no algorithm fitting in the learning set, the fold-specific sensitivity is the number
of cases in the stratum in the validation set divided by the number of cases in the validation
set, and the fold-specific NNT is the size of the stratum in the validation set divided by the
number of cases in the stratum in the validation set. We believe the average cross-validated
measures are more realistic assessments compared to the absolute sensitivity and NNT based
on entire population stratum, since they mimic a real-world implementation where one
learns, from a random sample, strata with highest risk of infection, and then subsequently
offer PrEP to others in the population within those strata.

The dataset consists of 44,762 adult (age 15 or older) residents from the 10 Eastern Ugandan
communities enumerated in the SEARCH baseline survey, with conclusive baseline HIV test
results. Of these, 1493 had a positive baseline HIV test (3.3% prevalence). In Table 1, we
describe the baseline HIV status per stratum of key baseline variables. We reiterate here that
since only baseline data is used in this example for illustration and proof of concept for the
proposed classifier, the reader must not interpret the subject matter-specific results in this
analysis as directly translatable to risk factors in seroconversion, nor the performance
assessments as indicative of actual results expected from such a targeted PrEP strategy.

4.3.1. Subgroup-based strategies—\We first considered more conventional subgroup-
based PrEP strategies. A subgroup-based strategy recommends PrEP to everyone in a broad
subgroup defined by specific strata of one or few demographic or risk factors. By contrast,
the proposed Super Learner-based strategy (results in section 4.3.2) provides individualized
PrEP recommendations based on a wide array of demographic and risk factor values on the
individual. In this illustration, we considered all the subgroups that can be defined by using
common demographic and risk factors variables fed into the Super Learner strategies. In the
Table 1, each row in the table represents a subgroup given by a stratum of a demographic or
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risk factor (examples of subgroups are all males, or all individuals aged 15-19). If we were
to recommend PrEP to all those in the subgroup, then the average sensitivity and NNT one
would achieve are depicted in the two right columns of the table.

Specifically, a strategy to offer PrEP to everyone in the population would have a sensitivity
of 100%, at the cost of 30 individuals offered PrEP per infection potentially prevented; this
should serve as a benchmark for the upper-bound cost of a PrEP prevention program. By
way of comparison, if we were to offer PrEP to all those employed in the farming sector, we
would achieve a sensitivity of 74% at the cost of 25.33 NNT. In general, a subgroup-based
strategy using any one stratum in this table would have a cost of 30 NNT or greater in order
to achieve a sensitivity of at least 80%. For an NNT less than 30, the highest sensitivity
achieved is less than 75%.

Based on the above observation, an ad-hoc data-adaptive approach to building a targeted
PrEP strategy might simply combine the most promising pre-specified subgroups; for
example those with a sensitivity above 60% and an NNT less than 30. In our example, such
an approach would offer PrEP to all women as well as men that are married and/or
employed in farming. This subgroup has a total of 38,321 individuals (85% of the total
population), with 1,457 positives. This strategy would have an average cross-validated
performance of 98% sensitivity with a cost of 26.86 NNT. This ad-hoc strategy illustrates
that the more variables we combine, the greater gain in capacity savings (less NNT for a
given sensitivity level).

4.3.2. Super Learner-based strategies—Now, we turn to the performance of the
proposed Super Learner-based PrEP strategy, calibrated to achieve at least 80% sensitivity
while minimizing the rate of positive prediction.

The empirical performance of the constrained RPP Super Learner using each of the models
considered in section 4.2.2, as assessed by the average cross-validated sensitivity and NNT,
is depicted in Figure 1. The empirical sensitivities were about 80-81%, above the nominal
80% and thus satisfying the required constraint, with a cost of only 17-18 NNT. In other
words, the proposed constrained RPP Super Learner-based strategies are less costly than the
subgroup-based strategies in Table 1 that could yield over 70% sensitivity, and are more
sensitive than subgroup-based strategies of similar cost.

We further contrast the performance of the constrained RPP Super Learner proposed in this
paper with the standard log-likelihood Super Learner. The performance of the log-likelihood
Super Learner-based classifier is depicted in Figure 2. The cross-validated sensitivity
threshold again ensured that the sensitivity constraint is achieved in a new dataset. However,
as this Super Learner predictor was optimized for the log-likelihood loss, not the RPP, the
resulting classifier tends to overshoot the required sensitivity level, resulting in a higher
NNT than that achieved by the constrained RPP Super Leaner.

We have seen in section 4.3.1 that a composite subgroup strategy (all women as well as men
who are married and/or employed in farming) could yield a classifier that achieves 98%
sensitivity with about 27 NNT. We also saw in Figure 2 that an individual strategy using a
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log-likelihood Super Learner classifier could achieve a 98% sensitivity with about 29 NNT.
Let us now consider the proposed constrained RPP Super Learner classifier calibrated to
achieve at least 98% sensitivity. Its performance is depicted in Figure 3. To achieve 98%
empirical sensitivity, such strategy would use about 25 NNT. To translate these performance
metrics into implementation logistics, in a population with about 1500 cases, a strategy with
98% sensitivity at 25 NNT would result in 1500 x.98 x25 = 36,750 individuals offered PrEP
in the population, and one at 27 NNT would result in about 39,690 individuals offered PrEP.
In this case, an NNT difference of merely 2 points results in 3,000 more PrEP regimens
being offered.

4.3.3. Interpretation—From this data analysis, we saw that, at least for rare outcome
applications, principled individual-based strategies were generally more sensitive and less
costly (for a given sensitivity level) than strategies based on pre-specified demographic
subgroups. Composite subgroup-based strategies that use several predictor strata yielded
larger gains in sensitivity and capacity savings than single subgroup-based strategies alone.
However, such approaches remained more costly (i.e. required higher NNT for a given
sensitivity) than an approach that used the proposed constrained RPP Super Learner to build
a flexible individual based targeting strategy. In short, in this application at least, the use of a
state-of the art machine learning approach (Super Learner) that employs an optimality
criteria specifically aligned with the implementation objective of optimizing efficient and
effective PrEP offerings can result in substantial performance improvements.

5. Summary

In this article, we proposed a Super Learner-based classifier for a class of constrained binary
classification problems. As an illustration, we developed and evaluated a hypothetical HIV
prevention strategy that uses this Super Learner-based binary classifier to offer PrEP on an
individual basis, with the goal of minimizing the number of PrEP offerings while achieving
the required proportion of new infections prevented.

Super Learner is an ensemble machine learning algorithm that combines its constituent
algorithms linearly using weights that minimize a cross-validated user-supplied objective
function. The constrained binary classification problems under consideration are the ones
where the objective and constraint functions have the same monotonicity with respect to the
discriminating threshold. As specific examples, we examined the minimization of the rate of
positive predictions subject to a lower bound on the sensitivity, and the maximization of the
sensitivity subject to an upper bound on the rate of positive predictions. To construct these
classifiers, we first expressed the constrained optimization problem as the minimization of a
constrained objective function. Then, we obtained a Super Learner score function with
weights minimizing the cross-validated version of said function; the discriminating threshold
of the corresponding binary classifier is one that satisfies the cross-validated version of the
constraint.

In our targeted PrEP example, we used baseline data from the SEARCH study and trained
the classifiers to predict baseline (prevalent) HIV status using individual-level demographics
and other risk factor variables collected at baseline. The performance of this and other
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standard subgroup-based classifiers was assessed in terms of sensitivity and NNT. These
measures were obtained under a 10-fold sample-split evaluation scheme, wherein the
classifiers were trained in the learning set, and their sensitivity and NNT were evaluated
based on their performance in classifying the evaluation set. Averaging these performance
measures across the 10 folds, we obtained a cross-validated sensitivity and NNT of each
strategy. We conducted 10 repetitions of such 10-fold sample split evaluation to obtain as
our final performance assessment an average cross-validated sensitivity and NNT for each
classifier. For this application, we believe this empirical performance assessment to be a
more pragmatic evaluation scheme than the standard area under the ROC curve, as deriving
an appropriate threshold is part of the classifier development. In the results of this data
analysis, we saw that Super Learner-based classifiers are generally more sensitive and less
costly than subgroup-based strategies. Moreover, a Super Learner-based classifier that
targets the desired constrained RPP may outperform (in terms of the desired capacity
savings optimization), or at least perform as well as, a Super Learner-based classifier that
targets the log-likelihood loss. In summary, such individualized classifiers targeting the
desired optimality criterion offer great promise to applications in a heterogeneous population
in which the desired strategy must balance complex logistics and scientific needs that may
not be fully captured by standard loss functions.

In addition to using the empirical objective and constraint metrics described here as an
evaluation scheme, we could also adopt an inferential approach, in which the oracle cross-
validated sensitivity-constrained RPP (7) of a scoring procedure ¥ is considered a (data-
adaptive) target parameter of interest (see Hubbard et al. [30] on data-adaptive target
parameters). One can use a non-parametric MLE estimator (6) for this target parameter, and
use bootstrap to obtain a confidence interval. However, bootstrap procedures may be
prohibitively time-consuming when using machine learning algorithms on large datasets.
Alternatively, we note that conditional on a fitted score function, this target parameter is
path-wise differentiable and thus its efficient influence curve can be derived, providing basis
for influence curve-based confidence intervals. This approach has been proposed in LeDell
et al. [31] with the area under the ROC as performance metric and target parameter. Besides
the nonparametric MLE estimator, for finite sample gain, we can also use Targeted
Maximum Likelihood Estimator [32] or its cross-validated version [33] to estimate this
target parameter. The latter may help reduce second order terms in the linear expansion, as
the target parameter is not linear in Ay. This research topic is currently under development
and will be presented in a separate work.

A limitation in the implementation of the proposed Super Learner classifiers is that we have
not extended our constrained optimality criterion, which guided our selection of the Super
Learner weights, to the fitting of the constituent algorithms themselves. We used the default
implementation in each constituent algorithm, which aims to estimate the true conditional
outcome probability, and then combined the fitted predictors in a way that optimizes the
proposed constrained criterion. This was a practical consideration, in an effort to allow for
the inclusion of ready-to-use algorithms in the most general settings. In a future work, we
will evaluate analytically how far the optimal yy is to the true conditional outcome
probability. We will also investigate in which cases and to what extent, using parametric
constituent algorithms that are each fitted to satisfy the constrained optimality criterion
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would be more advantageous than using more data-adaptive constituent algorithms that are

ea

ch fitted to estimate the true conditional outcome probability, in the implementation of the

proposed Super Learner classifier.
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Super Learner-based targeted PrEP.
Super Learner classifier: minimize sensitivity—constrained RPP
threshold to achieve at least 80% sensitivity
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Figure 1.

Empirical performance of a Super Learner classifier that minimizes RPP under the nominal
constraint of achieiving at least 80% sensitivity. Performance measures are given by average
cross-validated sensitivity, and average cross-validated number needed to treat (NNT).
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Super Learner—-based targeted PrEP.
Super Learner classifier: minimize loglikelihood
threshold to achieve at least 80% sensitivity
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Figure 2.
Empirical performance of a Super Learner predictor that minimizes the minus log-

likelihood, coupled with a cross-validated 80% sensitivity threshold. Performance measures
are given by average cross-validated sensitivity, and average cross-validated number needed
to treat (NNT).
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Super Learner—based targeted PrEP.
Super Learner classifier: minimize sensitivity—constrained RPP
threshold to achieve at least 98% sensitivity
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Figure 3.

Empirical performance of a Super Learner classifier that minimizes RPP under the nominal
constraint of achieiving at least 98% sensitivity. Performance measures are given by average
cross-validated sensitivity, and average cross-validated number needed to treat (NNT).
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