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Constrained binary classification using ensemble learning: an 
application to cost-efficient targeted PrEP strategies

Wenjing Zheng*,a, Laura Balzerb, Mark van der Laana, Maya Petersena, and the SEARCH 
Collaboration
aDivision of Biostatistics, School of Public Health, University of Calfornia, Berkeley

bDept of Biostatistics, Havard T.H. Chan School of Public Health

Abstract

Binary classifications problems are ubiquitous in health and social sciences. In many cases, one 

wishes to balance two competing optimality considerations for a binary classifier. For instance, in 

resource-limited settings, an HIV prevention program based on offering Pre-Exposure Prophylaxis 

(PrEP) to select high-risk individuals must balance the sensitivity of the binary classifier in 

detecting future seroconverters (and hence offering them PrEP regimens) with the total number of 

PrEP regimens that is financially and logistically feasible for the program. In this article, we 

consider a general class of constrained binary classification problems wherein the objective 

function and the constraint are both monotonic with respect to a threshold. These include the 

minimization of the rate of positive predictions subject to a minimum sensitivity, the maximization 

of sensitivity subject to a maximum rate of positive predictions, and the Neyman-Pearson 

paradigm, which minimizes the type II error subject to an upper bound on the type I error. We 

propose an ensemble approach to these binary classification problems based on the Super Learner 

methodology. This approach linearly combines a user-supplied library of scoring algorithms, with 

combination weights and a discriminating threshold chosen to minimize the constrained optimality 

criterion. We then illustrate the application of the proposed classifier to develop an individualized 

PrEP targeting strategy in a resource-limited setting, with the goal of minimizing the number of 

PrEP offerings while achieving a minimum required sensitivity. This proof of concept data 

analysis uses baseline data from the ongoing Sustainable East Africa Research in Community 

Health study.

Keywords

Super Learner; constrained binary classification; Neyman-Pearson; sensitivity; Rate of Positive 
Predictions; PrEP; ensemble classification; cross-validation

1. Introduction

Binary classifications problems often arise in health and social science applications, wherein 

individuals classified into the ‘positive’ class are to receive an intervention of interest, which 
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caries with it an associated resource cost. Therefore, it is often desirable, especially in 

resource-limited settings, to strike a balance between capacity constraints and the sensitivity 

of the classification algorithm. For example, consider a targeted HIV prevention strategy that 

prescribes a Pre-Exposure Prophylaxis (PrEP) regimen to individuals with substantial risk of 

infection. Delivery of PrEP requires a meaningful resource expenditure per individual 

treated, including ongoing medication and monitoring costs [1]. WHO Guidelines advocate 

targeting PrEP to subpopulations known to be at high risk for HIV infection [2]. However, 

within a generalized epidemic, the optimal demographic subgroups to target may not be self-

evident, and simply offering PrEP to known high-risk subgroups, such as young women, or 

mobile populations, may be inefficient. In other words, a strategy that targets PrEP based on 

a more sophisticated use of individual characteristics may be able to reduce the resource 

spending per new HIV infection prevented. A natural question, therefore, is ‘how can 

individual characteristics be used to offer targeted PrEP in order to prevent as many new 

HIV infections as possible, given some fixed constraint on the total number of PrEP 

regimens offered?’. This questions translates into a binary classification problem that aims to 

maximize sensitivity, subject to a constraint on the Rate of Positive Predictions (RPP). 

Alternatively, one might ask ‘how should PrEP be targeted at the individual-level in order to 

minimize the number of PrEP regimens offered while preventing a desired percentage of 

new infections?’ This question translates into a binary classification problem that minimizes 

the RPP, subject to a sensitivity constraint.

These two problems are ubiquitous in devising cost-efficient intervention or prevention 

strategies. In fact, in many real-world applications, the cost of misclassification may be 

much higher in one class than the other, or one may wish to balance two competing 

optimality considerations for a binary classifier. To this end, we propose in this article a 

general group of Super Learner-based binary classifiers that aim to satisfy a wide class of 

performance-constrained optimality criteria. Super Learner [3] is an ensemble learning 

method in which a user-supplied library of algorithms are combined through a convex 

weighted combination, with the optimal weights selected to minimize a cross-validated 

empirical risk specified by the user. It can accommodate large classes of user-specified 

objective functions; standard implementations include optimizing the squared error loss or 

the log-likelihood loss. Theoretical results [4–6] exist to guarantee that the ensemble 

algorithm improves upon any of its constituent algorithms asymptotically. We first consider 

the binary classification problem of minimizing the Rate of Positive Predictions, subject to 

achieving a minimum sensitivity requirement. The proposed Super Learner-based binary 

classifier is characterized by combination weights and a discriminating threshold for 

classification that together aim to minimize a sensitivity-constrained RPP. Next, we describe 

how the proposed method can be adapted to the converse problem of maximizing a RPP-

constrained sensitivity. We then further extend the proposed Super Learner to a larger group 

of performance-constrained binary classification problems where the objective function and 

the constraint function are monotonic in the same direction with respect to the threshold 

function. This type of classification problem includes the Neyman-Pearson paradigm [7] 

which minimizes the type II error subject to an upper bound on the type I error.

As an illustration of the proposed method, we develop and evaluate a hypothetical HIV 

prevention strategy that uses a Super Learner-based binary classifier to offer PrEP to 
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selected individuals, with the goal of minimizing the number of PrEP offerings while 

achieving a minimum target sensitivity. We use baseline data from the Sustainable East 

Africa Research in Community Health (SEARCH, NCT01864603) study, an ongoing cluster 

randomized HIV “test and treat” trial in rural Kenya and Uganda, to illustrate the 

development and evaluation of this targeted PrEP algorithm. We compare its projected 

performance to standard subgroup-based PrEP strategies, which rely on broad demographic 

categories (e.g. young women, fishermen). In this example, classifiers are trained to predict 

baseline (prevalent) HIV status using individual-level demographics and other risk factor 

variables collected at baseline. We note that in real-world development of such a targeted 

PrEP algorithm, one would instead train the classifier to predict HIV seroconversions among 

baseline HIV uninfected individuals. In the SEARCH Study, the method was applied to 

interim seroconversion data from the intervention arm of the trial to develop an empirically 

evaluated classifier. This classifier is being used in the second phase of the study to offer 

PrEP to those who do not self-recommend or who are not in a serodiscordant relationship. 

However, as these seroconversions are interim primary outcomes of the ongoing SEARCH 

study, they will not be used in this example. We also employ in this example a second-level 

cross-validation evaluation scheme to assess and compare the performance (in terms of 

sensitivity and capacity savings) of different classifiers. This scheme seeks to mimic, to the 

extent possible, an intervention in which the classifier is trained on a random subsample of 

the population and applied to the remaining individuals. In this sense, we believe it to be a 

more pragmatic approach to evaluating the performance of a classifier developed with this 

objective than the standard area under the ROC curve [8].

1.1. Literature overview

A general solution to binary classification with performance constraints has been proposed 

by Bounsiar et al. [9] within the context of statistical hypothesis testing, and encompasses 

the problems considered in the current paper. While the solutions developed by Bounsiar et 

al. [9] have universal applicability, their implementations are, to the best of our 

understanding, with respect to specific classification or prediction algorithms, and therefore 

may not be immediately translatable to ensemble learning, which allows one to combine 

several algorithms, and may have a higher technical barrier for implementation.

Of the class of performance-constrained binary classification problems we consider here, the 

Neyman-Pearson paradigm is perhaps the most common one. The theoretical properties of 

single classifiers that solve the corresponding constrained optimization problem with biased 

versions of the empirical False Negative Rate and empirical False Positive Rate were studied 

by Cannon et al. [10] and Scott and Nowak [11]. Theoretical properties of an ensemble 

classifier based on convex-weighted majority vote of the constituent classifiers, with weights 

solving the corresponding convex optimization problem, were studied in Rigollet and Tong 

[12]. In the current paper, we show that the performance-constrained problems considered, 

including the Neyman-Pearson paradigm, can be recast as optimization of the objective 

function evaluated at an appropriate threshold, and therefore applicable beyond problems 

with convex objective and performance functions. We also approach the ensemble 

differently, by employing cross-validated versions of the objective functions and 
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performance constraints to reduce overfitting, and by developing both a scoring function and 

a discriminating threshold to obtain a final classifier, instead of combining base classifiers.

In applications in HIV treatment, the use of individualized rules to offer selective HIV viral 

load testing to detect treatment failure in resource-limited settings had been proposed by Liu 

et al. [13] and Petersen et al. [14], among others. Liu et al. [13] models the distribution of 

the risk score (based on a user-supplied scoring scheme) through a nonparametric or semi-

parametric approach, and seeks a tripartite rule that minimizes a user-specified weighted 

combination of False Negative Rate and False Positive Rate, subject to a RPP constraint. In 

this sense, this program aims to satisfy a different goal than the RPP-constrained sensitivity 

or the Neyman-Pearson paradigm. While this constrained optimality criterion does not fall 

into the class we study here, it is an optimization objective that is common to many 

applications. The synergy between this work and the current paper would be a promising 

direction of research.

Petersen et al. [14] proposed a Super Learner-based binary classifier to identify patients for 

selective viral load testing based on routinely collected data. This classifier first obtains risk 

prediction using the standard Super Learner which optimizes the log-likelihood loss 

(described in section 2.2.2). A second-level cross-validation scheme is used to evaluate the 

performance of classifiers (our proposed evaluation scheme models after this one). The 

general performance of a classifier is summarized using the cross-validated area under the 

ROC curve across a range of discriminating thresholds. For a given lower bound on 

sensitivity, the cross-validated ideal RPP of a classifier is obtained by first computing on 

each validation set the RPP under the largest threshold for which the sensitivity criterion is 

satisfied, and then averaging this ideal RPP across the validation sets. This is the ‘ideal’ RPP 

in that it uses the threshold one would have chosen if given the data-generating distribution 

of the evaluation data, not a threshold estimated from the learning data. The methods 

proposed in the current paper build upon and extend those in [14] in that the Super Learner 

weights are now optimized for the target constrained classification criterion, construction of 

the discriminating threshold is built into the classifier development, and the evaluation 

scheme assesses the empirical RPP under the score function–threshold duo.

1.2. Organization

This article is organized as follows. In section 2.1 we formulate the binary classification 

problem of minimizing RPP subject to a sensitivity constraint. In section 2.2 we propose a 

cross-validated objective function and the implementation of a Super Learner-based 

classifier that aims to optimize this objective function. In sections 3.1 and 3.2, we describe 

how the proposed formulation can be extended to the converse problem of maximizing 

sensitivity subject to a RPP constraint, and to a general class of binary classification problem 

with monotonic objective function and performance constraints. The corresponding Super 

Learner classifier is described in section 3.3. In section 4, we illustrate the development and 

evaluation of a targeted PrEP strategy based on the Super Learner classifier proposed in 

section 2. We conclude the article with a summary.
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2. Sensitivity-constrained minimization of the rate of positive predictions

2.1. Problem formulation

Consider the observed data structure O = (Y,W) ~ P0, with Y ∈ {0,1} a binary class of 

interest and W a set of covariates. For a score function ψ :  → [0,1], and a threshold c, the 

pair (ψ, c) defines a binary classification algorithm on W, wherein ψ(W) ≥ c is classified to 

the class Y = 1. Our goal is to learn a classification procedure that achieves a sensitivity of at 

least s0, for some user-specified s0 ∈ (0,1), with a minimal Rate of Positive Predictions.

The sensitivity of (ψ, c) under a data-generating distribution P is given by

(1)

Note that s(P;ψ, c) is monotonically non-increasing in c. In particular, for every ψ, we can 

define a unique sensitivity threshold for ψ under P as:

(2)

In other words, c(P,ψ) is the largest threshold for ψ under distribution P at which the 

sensitivity is at least s0.

Consider an objective function for ψ, denoted r(P;ψ, c), that is monotonically non-

increasing in c. In this section, we take r to be the Rate of Positive Predictions:

For a fixed data-generating P0, our goal is a binary classification algorithm (ψ, c) that 

satisfies the sensitivity-constrained minimization

(3)

Using the sensitivity threshold defined in (2), we can define a sensitivity-constrained 
objective function as

(4)

In words, this is the RPP of a classification procedure that combines the score function ψ 
with its sensitivity threshold under P0. Our optimal binary classifier is thus given by (ψ0, 
c(P0,ψ0)), where the optimal score function is
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(5)

It is easy to see that the constrained minimization problem in (3) can be solved by (ψ0, 
c(P0,ψ0)). Indeed, firstly, we know that (ψ0, c(P0,ψ0)) satisfies the sensitivity constraint of 

(3). Secondly, suppose (ψ′, c′) also satisfies the sensitivity constraint. Since for fixed P0 and 

ψ, s is a non-increasing function in c, the definition of c(P0,ψ′) given in (2) implies that 

c(P0,ψ′) ≥ c′. Since r is non-increasing in c, this inequality implies that r(P0;ψ′, c′) ≥ 

r(P0;ψ′, c(P0,ψ′)) ≡ r(P0;ψ′). By definition of ψ0 as a solution of (5), we know that r(P0;ψ
′) ≥ r(P0;ψ0). Therefore r(P0;ψ′, c′) ≥ r(P0;ψ′) ≥ r(P0;ψ0) ≡ r(P0;ψ0, c(P0,ψ0)). In other 

words, (ψ0, c(P0,ψ0)) achieves the minimum of r(P;ψ, c) under the constraint.

Consequently, we can solve the constrained minimization problem in (3) by minimizing the 

sensitivity-constrained objective function in (5). The latter problem seeks a score function ψ 
that minimizes the objective function when evaluated at its sensitivity threshold, compared 

to other score functions at their respective sensitivity thresholds. The formulation in (5) is 

more amenable to application under the existing Super Learner framework, and to 

asymptotic studies of a cross-validated sensitivity-constrained objective function. We will 

devote our attention to estimating this optimal classifier (ψ0, c(P0,ψ0)).

2.2. Super Learner classifier to minimize the sensitivity-constrained RPP

In this section, we consider a Super Learner-based classifier that estimates the unknown 

optimal classifier defined in (5). Let ℳ denote the set of all distributions for O, including the 

true unknown P0, and  denote the outcome space of W. A scoring procedure Ψ : ℳ → 
[0,1] inputs a distribution P and outputs a score function ψ = Ψ(P) :  →[0,1]. In most 

applications, it is often difficult to specify precisely how a large number of risk factors W 
interact to influence the outcome of interest. Therefore, we use a nonparametric model for 

ℳ. In such cases, an ensemble learning method such as Super Learner would allow one to 

invoke a wide array of scoring procedures, both parametric and nonparametric.

For a measurable function f (O) of the data, and a distribution P, we will use the notation P f 
≡ EP( f (O)).

2.2.1. Cross-validated sensitivity-constrained RPP—We described an objective 

function (4) for our classification problem, and appointed its minimizer (5) to be our 

unknown optimal binary classifier. Therefore, estimating this objective function is central to 

our tasks of assessing the performance of candidate algorithms and selecting the optimal 

among them. To provide protection against overfitting, we will accomplish these tasks using 

cross-validation.

Consider a split of a sample of n independent and identically distributed (i.i.d.) copies of O 
into a validation set and a training set. This can be represented by a random vector B ∈ {v, 
t}n, indicating whether each of the n observations is in the validation set (v) or the training 

set (t). We use Pn to denote the empirical distribution of the n i.i.d. observations,  the 
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empirical distribution of the validation set, and  the empirical distribution of the training 

set. Note that in our notation for B, we suppressed the fact that B depends on n. The 

particular choice of cross-validation procedure is characterized by the outcome space and 

distribution for B. For instance, in an M-fold cross-validation, the distribution would place 

weight 1/M to each of the M vectors corresponding to each of the M folds.

We define the empirical cross-validated sensitivity-constrained RPP of Ψ as

(6)

In words, for a sample spilt B, we obtain the constrained objective  as 

follows:

1. Fit Ψ on the training set  to obtain a score function 

.

2. Obtain the sensitivity threshold  of this score function under 

the empirical distribution of the validation set. That is, we apply ψn,B to obtain 

scores for the validation set observations, and find the largest threshold c for 

which the sensitivity constraint is satisfied, i.e. 

. This can be implemented using 

the quantile function on the observations in the validation set with Y = 1.

3. The constrained objective  is given by the 

, i.e. the proportion of the observations in the 

validation set whose score under ψn,B surpasses the corresponding threshold 

cn,B.

Note that this empirical cross-validated sensitivity-constrained RPP in (6) is an estimator for 

the oracle cross-validated sensitivity-constrained RPP

(7)

In words, if we knew P0, we would fit Ψ on the training set to obtain the score function 

ψn,B, and then determine the sensitivity-constrained threshold and corresponding RPP for 

this score function ψn,B under the true P0. This is the true conditional sensitivity-constrained 

RPP of the procedure Ψ, conditional on being fitted on the training sets under the specified 

cross-validation procedure on a sample of size n.

2.2.2. Super Learner: a general overview—Super Learner is a generalized stacking 

learning method that finds the best convex combination of a given set of constituent 
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procedures for a user-specified optimality criteria. Suppose we have J constituent scoring 

procedures Ψ1, … ,ΨJ. A constituent procedure may be a pre-specified parametric 

regression model, as well as machine learning approaches such as neural networks and 

random forests. It can also be augmented with a screening algorithm (e.g. only using 

variables that pass a correlation criterion).

For α in the (J−1)-simplex ΔJ, we define

Each Ψα is thus an algorithm that takes J independent variables, which are the scores from 

the J constituent algorithms, and combines them through the linear combination given by α.

To apply the framework from the previous section, we can consider a representation  of 

ΔJ by partition into K(n) many grids with size converging to 0 (e.g. size 1/nq for q > 0). As 

discussed in van der Laan et al. [3], minimization over  would produce 

asymptotically equivalent procedures.

Consider an M-fold sample split, with  and  denoting the m-th empirical 

distributions of the validation and training sets, respectively. Standard implementations of 

Super Learner [15] use the minus log-likelihood loss or a squared error loss as optimality 

criteria. Specifically, they produce predictor Ψαn, where αn minimizes 

, with  being the minus log-likelihood loss

(8)

or the squared-error loss . A Super Learner that maximizes the area 

under the ROC curve is presented in LeDell et al. [16].

2.2.3. Super Learner classifier for the proposed problem—Now we are ready to 

present a Super Learner for the binary classification problem under consideration. The goal 

is to find the optimal weight α, and a corresponding threshold c.

The proposed Super Learner scoring function, which optimizes the constrained criterion in 

(3), is given by Ψαn, where αn minimizes the empirical cross-validated objective function in 

(6):

(9)
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In words, for each α, we implement the function rn(Pn,Ψα) as follows:

1. At m-th fold, fit each Ψj on the training set to obtain a score function 

, and then use α to combine these to produce an ensemble 

score function .

2. Then use the validation set  to obtain the sensitivity threshold 

 and the corresponding sensitivity-constrained RPP 

 for this combined score function.

3. The desired rn(Pn,Ψα) is given by the average of such fold-specified sensitivity 

constrained RPPs across the M folds.

To obtain the desired optimal αn, we can use a nonlinear optimization algorithm such as the 

nloptr package in in R [17].

To complete the classifier, we now require a threshold. The score function Ψαn is one that 

has minimal (cross-validated) RPP at its sensitivity threshold. Therefore, we now focus our 

efforts on estimating its sensitivity threshold. Following analogous procedure, consider the 

empirical cross-validated sensitivity of a classification procedure based on a scoring 

procedure Ψ and threshold c:

(10)

This is an estimator of the oracle cross-validated sensitivity

This latter is the true conditional sensitivity of Ψ under threshold c, conditional on the 

training sets used to fit the scoring procedure. The sensitivity threshold for Ψαn can then be 

estimated by finding a threshold that satisfies the constraint on the empirical cross-validated 

sensitivity:

(11)

The final classifier is given by the pair (Ψαn (Pn), cn), where the score function 

 is obtained by using αn to combine the constituent score functions 

fitted on the full dataset. It classifies a given W as I (Ψαn (Pn)(W) ≥ cn).

2.2.4. Case-control sampling in applications with rare outcomes—In the HIV 

example considered in this paper, as well as in other applications, the outcomes of interest 
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may be rare. In such cases, irrespective of the objective function considered, instead of using 

the full sample, the Super Learner can use a case-control subsample [18, 19] that consists of 

all the H cases in the full sample plus a random sample of (C−1)×H controls, for a user-

specified C. Each observation in the subsample will be weighted by the inverse of its 

probability of being sampled from the learning data: cases will have weights 1, controls will 

have weights given by the number of controls in the full data divided by the number of 

controls in the subsample. Subsequently, the algorithm fits on the training set, as well as the 

fold-specific evaluations of the constraint and objective function, will use weighted 

observations. Moreover, we can implement the Super Learner using a M-fold sample split 

that is stratified by outcome case, and thus ensuring that the validation sets have similar 

number of cases.

3. More general performance-constrained binary classification problems

In section 2, we considered a Super Learner-based binary classifier that minimizes the RPP 

subject to achieving a minimum sensitivity. In this section, we first consider the converse to 

this problem: maximizing the sensitivity subject to an upper bound on the RPP. We then 

unify these two under a larger class of constrained binary classification problems.

3.1. RPP-constrained maximization of sensitivity

Suppose our goal now is to learn a classification procedure that can achieve maximal 

sensitivity subject to an upper bound s0 on the RPP, for some user-specified s0 ∈ (0,1). To 

keep the language and notations parallel, we will formulate this problem in terms of 

minimizing the False Negative Rate (FNR), subject to a minimum Rate of Negative 

Predictions (RNP).

The RNP of a classifier (ψ, c) under a data-generating distribution P is given by

(12)

This is the cumulative distribution of ψ(W), and hence is monotonically non-decreasing in c. 

In particular, for every ψ, we can define a unique RNP threshold for ψ under P as:

(13)

In other words, c(P,ψ) is the smallest threshold for ψ under distribution P at which the RNP 

is at least s0.

Consider the objective function for ψ, denoted r(P;ψ, c), to be the False Negative Rate:

Like s(P;ψ, c), r(P;ψ, c) is also non-decreasing in c.
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For a fixed data-generating P0, our goal is a binary classification algorithm (ψ, c) that 

satisfies the RNP-constrained minimization

(14)

Using the RNP threshold defined in (13), we can define a RNP-constrained objective 
function as

(15)

In words, this is the FNR of a classification procedure that combines the score function ψ 
with its RNP threshold under P0. Our optimal binary classifier is thus given by (ψ0, 
c(P0,ψ0)), where

(16)

It is easy to see that the constrained minimization problem in (14) can be solved by (ψ0, 
c(P0,ψ0)). Indeed, firstly, we know that (ψ0, c(P0,ψ0)) satisfies the RNP constraint of (16). 

Secondly, suppose (ψ′, c′) also satisfies the RNP constraint. Since for fixed P0 and ψ, s is a 

non-decreasing function in c, the definition of c(P0,ψ′) given in (13) implies that c(P0,ψ′) ≤ 
c′. Since r is non-decreasing in c, this inequality implies that r(P0;ψ′, c′) ≥ r(P0;ψ′, c(P0,ψ
′)) ≡ r(P0;ψ′). By definition of ψ0 as a solution of (16), we know that r(P0;ψ′) ≥ r(P0;ψ0). 

Therefore r(P0;ψ′, c′) ≥ r(P0;ψ′) ≥ r(P0;ψ0) ≡ r(P0;ψ0, c(P0,ψ0)). In other words, (ψ0, 
c(P0,ψ0)) achieves the minimum of r(P;ψ, c) under the constraint.

3.2. A general class of performance-constrained binary classification problems

The two constrained binary classification problems we considered in section 2 and 3.1 can 

be generalized to a larger class of constrained binary classification problems where the 

objective function and the constraint are monotonic with respect to the threshold.

Specifically, for a binary classifier characterized by a score function ψ and a threshold c, we 

wish to minimize an objective function r(P0;ψ, c) that is monotonic in c, subject to a 

constraint s̃(P0;ψ, c) ≥ 0, where the constraint function s̃(P0;ψ, c) is also monotonic in c. 

Suppose the constraint function s̃ is monotonic in c in the same direction of the objective 

function r — that is, either both are non-decreasing in c or both are non-increasing in c. 

Then, we can define c(P0,ψ) ≡ max{c : s̃(P0;ψ, c) ≥ 0}, in the non-increasing case, and 

c(P0;ψ) ≡ min{c : s̃(P0;ψ, c) ≥ 0}, in the non-decreasing case. In the two problems we 

considered previously, the RPP and the minimal sensitivity requirement correspond to non-

increasing objective and constraint, and the FNR and the minimal RNP requirement 

corresponds to a non-decreasing objective and constraint.
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The constrained binary classification problem of

can thus be solved by (ψ0, c(P0,ψ0)) where

Indeed, if a pair (ψ′, c′) satisfies the constraint, then either c′ ≤ c(P0,ψ′) and r(P0;ψ′, c′) ≥ 

r (P0;ψ′, c(P0,ψ′)) in the non-increasing case, or c′ ≥ c(P0,ψ′) and r(P0;ψ′, c′) ≥ r (P0;ψ′, 
c(P0,ψ′)) in the non-decreasing case. Hence, in both cases, r(P0;ψ′, c′) ≥ r (P0;ψ′, c(P0,ψ
′)) ≥ r (P0;ψ0, c(P0,ψ0)), by definition of ψ0.

This group of classification problems includes most constraint and objective functions that 

are the traditional performance metrics, and addresses many applications where one must 

balance competing performance criteria. In particular, it includes the commonly known 

Neyman-Pearson criterion, which aims to minimize type II error (i.e. minimize False 

Negative Rate) with an upper bound on type I error (i.e. lower bound on True Negative 

Rate).

3.3. Super Learner

Once the parallel formulation to the problem considered in section 2 is established, the 

corresponding Super Learner-based classifier can be obtained in a similar manner. We will 

not repeat the entire description here, but only highlight the relevant modifications.

The empirical cross-validated objective value rn(Pn,Ψα) of each potential weight α is 

obtained as follows. At fold m, fit each constituent algorithm Ψj on the training set to 

produce the combined score function . To compute the 

threshold  of this score function under the empirical distribution of the 

validation set, we apply  to obtain scores for the validation set observations, and 

either find the largest threshold c, in the case of non-increasing objective and constraint, or 

find the smallest threshold c, in the case of non-decreasing objective and constraint, among 

those satisfying the constraint, i.e. among the set { }. The 

corresponding constrained objective value of Ψα on this fold is thus 

, i.e. the objective function evaluated at the score 

function  and its corresponding constraint threshold . The 

desired cross-validated objective value of Ψα is thus given by the average of such fold-

specific objective values:
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The Super Learner weights αn is the weight vector that minimizes rn(Pn,Ψα). In the RNP-

constrained minimization of FNR considered in section 3.1, the threshold for the fold m 

would be the smallest c such that , and the corresponding 

objective value on this fold is the .

Correspondingly, the empirical cross-validated constraint function s̃ of a classification 

procedure based on scoring procedure Ψ and threshold c is

Consequently, the threshold for our score function Ψαn can be estimated by finding a 

threshold that satisfies the empirical cross-validated constraint:

in the non-increasing and the non-decreasing cases, respectively.

The final classifier is given by the pair (Ψαn (Pn), cn), where the score function 

 is obtained by using αn to combine the constituent scoring 

procedures fitted on the full dataset. It classifies a given W as I (Ψαn (Pn)(W) ≥ cn).

The comments in section 2.2.4 on case control sampling in applications with rare outcomes 

naturally apply here.

Note that our proposed method focuses on how to combine a given set of constituent scoring 

procedures and how to find a discriminating threshold to satisfy the constrained optimality 

criterion of interest. We have not discussed how each of these constituent scoring procedures 

should be fitted. Standard fits for these procedures are not tailored for the desired 

constrained optimality criterion. One can derive for each constituent procedure the optimal 

fit for the target criterion under consideration, but it may make certain algorithms difficult to 

implement and raise the technical barrier for the use of these classification tools. Using the 

standard fits for the constituent procedures could be a practical tradeoff, at the expense of 

potentially shortchanging performance compared to using fits tailored for the target 

criterion. In the summary section we will discuss future work to investigate this tradeoff.
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4. Application to an individualized targeted PrEP strategy

4.1. Background

We now consider an example from HIV prevention. Pre-exposure prophylaxis (PrEP) is an 

HIV prevention method in which uninfected individuals follow a regimen of antiretroviral 

medication to reduce their risk of infection. As of September 2015, the World Health 

Organization recommends that individuals with high risk of HIV infection be offered PrEP 

as part of a comprehensive prevention strategy [2]. The success of this prevention tool relies 

on consistent use of the medication and regular monitoring, leading to considerable resource 

expenditure associated with each PrEP regimen. Therefore, for long-term sustainability, 

prevention programs need strategies for identifying high risk individuals for PrEP eligibility 

that optimize population level impact within resource constraints. In regions with 

generalized epidemics, offering PrEP to known demographic risk groups may be neither 

optimally effective nor optimally efficient. The highest risk subgroups, such as individuals in 

a serodiscordant relationship, may represent only a minority of total new infections in the 

general population, while broader demographic groups, such as young women, that include a 

larger proportion of new infections may have too low an incidence to form the basis of a 

cost-efficient targeting strategy. Flexible machine learning methods for building individual 

risk scores that appropriately tradeoff sensitivity and constrained roll out therefore have the 

potential to improve the impact and sustainability of PrEP as an HIV prevention tool.

In this example, we consider a hypothetical PrEP-based prevention program in Eastern 

Uganda. The goal of this program is to offer PrEP to select HIV uninfected individuals in the 

target population in order to prevent 80% of new infections, while keeping the number of 

such offerings to a minimum. To this end, we would like an algorithm that uses individual-

level data to identify prospective seroconverters with a sensitivity of at least 80% while 

minimizing the number of positive predictions. To further illustrate strategy development, 

we consider an implementation scenario where, while the algorithm training has at its 

disposal a large array of variables, at the program rollout only a limited number of variables 

can be collected at real-time on the prospective individuals. Consequently, the constrained 

optimality criterion will also be used to select a small subset of the variables to be used in 

the implemented algorithm. We will compare the performance of the targeted Super Learner-

based strategy to a conventional subgroup-based strategy wherein one offers PrEP to 

everyone in a pre-specified subgroup defined by strata of demographic factors. In this 

example, we could also use a standard implementation of the Super Learner with a minus 

log-likelihood loss function, as carried out in [14] for predicting viral load failure among 

HIV patients on treatment (more detail in section 1.1). This standard implementation is not 

designed to optimize the constrained criterion under consideration, but it is still of interest 

for our application. It will be included in our example for comparison.

4.2. Methods

4.2.1. Data, target population and outcome of interest—In this example, we will 

use baseline data from the SEARCH study to illustrate the development and demonstrate 

applicability of such an targeted PrEP algorithm. The SEARCH study is a cluster-

randomized trial that includes 32 communities of roughly 5000 adults (age ≥ 15) each, in 
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rural Uganda and Kenya. The first phase of this study tests a community-level intervention 

that consists of annual community-based HIV and multi-disease testing, with immediate 

linkage to care, antiretroviral therapy (ART) eligibility for all HIV-infected individuals, and 

streamlined ART delivery using a patient-centered model. At baseline, the population of 

each community was enumerated through a door-to-door household census, and basic 

demographics (age, sex, marital status and occupation) were collected on all household 

members. Then, baseline HIV testing and other baseline data collection were performed 

during a community health campaign and subsequent home-based tracking for those that did 

not attend the campaign. We refer to Chamie et al. [20, 21] for a detailed exposition on the 

census and the community-based HIV and multi-disease testing campaign. In this example, 

we use baseline data from 10 communities in Eastern Uganda.

Our target population is adult community residents with a conclusive baseline HIV test 

result from these 10 communities. Our classifier will be trained to predict the baseline 

prevalent HIV status with the goal of achieving at least 80% sensitivity while minimizing the 

number of positive predictions. Importantly, this baseline data analysis is intended solely as 

a proof of concept; in designing a classifier for use in the actual targeted PrEP strategy 

deployed in the second phase of the SEARCH study, we instead trained the classifier to 

predict seroconversion outcomes among baseline HIV uninfected individuals. However, as 

these seroconversions are interim primary outcomes of the ongoing SEARCH study, this 

seroconversion analysis is not described here. We chose Eastern Uganda as an illustration of 

the method because it has the lowest baseline HIV prevalence, and is thus more comparable 

to a seroconversion outcome, which is expected to be rare.

4.2.2. Candidate predictors and models—In this example, we consider an 

implementation scenario where only a limited number of risk factors can be collected on the 

prospective individuals during the rollout of the program. Therefore, as part of the algorithm 

development the investigator must decide which subsets of the variables should be used. 

Suppose also that variables within the same domain can often be found in the same data 

source. Therefore to minimize the number of data sources needed at the program rollout, one 

would group the variables by domain:

• Demographics: age, gender, occupation, marital status, polygamy, educational 

attainment, and circumcision (for males).

• Mobility: number of months a resident had lived outside the community in the 

past year, number of nights spent in one’s residence in the past month.

• Reproductive Health: pregnancy in the past 12 months (females), whether self 

or partner is currently using contraception.

• Drinking: whether drink alcohol, frequency of binge drinking (defined as 6 or 

more drinks at once), number of days in a months drink alcohol, number of 

drinks in a typical day.

• Depression: Patient Health Questionnaire-2 score [22], Generalized Anxiety-2 

score [23].
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• Work Productivity: days worked in the past month, hours worked in a normal 

day in the past week.

From here onward, by a ‘Model’ we mean a combination of risk factor variables from these 

domains. For instance the model Demographics.Mobility would use the variables under the 

domains Demographics and Mobility. We will be considering models that combine 

Demographics with each one of the other domains. These make up a total of 6 models under 

consideration.

4.2.3. Building the Super Learner-based classification algorithm—For each of 

the models considered, we apply the Super Learner classifier described in section 2 to 

classify the baseline HIV status, with the goal of minimizing the Rate of Positive Predictions 

while achieving a sensitivity of at least 80%. The constituent algorithms consist of 

screening-scoring pairs. The scoring algorithms include Lasso regression [24], main term 

logistic regression, generalized additive model [25, 26], random forest [27], Bayes logistic 

regression [28], and recursive partitioning regression [29]. We will use the standard fits of 

these algorithms as implemented in R. Each of these candidate scoring algorithms is 

augmented with screening algorithms that either use a) all the variables, b) only the top 10% 

most correlated variables, or c) only variables with a T-test p-value of less than 0.1. We 

implement a Super Learner-based classifier that constructs a score function through a linear 

combination of the constituent algorithms, with weights minimizing the sensitivity-

constrained RPP, and uses as its threshold the cross-validated sensitivity threshold in (11). 

The optimal weights are computed using an algorithm for finding global optima in the 

nloptr package ([17]) in R. Besides the proposed Super Learner, we can also use a standard 

implementation of the Super Learner prediction (with weights minimizing the standard risk 

associated with minus log-likelihood loss), coupled with the cross-validated sensitivity 

threshold in (11). We will call the former the constrained RPP Super Learner, and the latter 

the log-likelihood Super Learner. We will apply both Super Learner-based classifiers in this 

example for comparison.

As we described in section 2.2.4, to mitigate the low prevalence outcome, the Super Learner 

uses a case-control subsample from the input data that consists of all the H baseline HIV 

positive cases and a random sample (with replacement) of (C−1)×H controls, with C = 10. 

Each of these observations are inversely weighted by the probability of being sampled from 

the input dataset. We implement the Super Learner using a 10-fold sample split that is 

stratified by outcome case. This stratification means that each validation set will have 

approximately the same number of cases.

4.2.4. Performance assessment—We assess the performance of each classifier in terms 

of empirical sensitivity, as measured by the true positive rate, and the number needed to treat 

(NNT), as measured by the total number of positive predictions divided by the total number 

of cases identified. If a case consisted of a seroconversion (rather than, as here, a prevalent 

HIV case), NNT conveys the number of individuals offered PrEP per infection potentially 

prevented. Actual infections prevented would of course also depend on uptake and 

adherence to PrEP among those individuals to whom it was offered. NNT allows for 

capacity-spendings comparison across individual-based and subgroup-based strategies. The 
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empirical sensitivity and NNT are assessed through the average of 10 repetitions of a 10-fold 

split of the baseline target population into a learning dataset and an evaluation dataset. 

Specifically, we split the sample into 10 folds; on each fold, we use the learning dataset to 

learn the Super Learner classifier (characterized by weights αn and threshold cn, with ‘full 

data’ Pn being the learning dataset), and then apply it to classify the individuals in the 

evaluation set and obtain the fold-specific sensitivity and NNT measures of the classifier. We 

then average each performance measure across the 10 folds to obtain the cross-validated 

sensitivity and the cross-validated NNT of this classifier under the 10-fold split. Lastly, we 

repeat this 10-fold splitting and cross-validation evaluation scheme 10 times, and then 

average the resulting cross-validated sensitivity and cross-validated NNT. We call these the 

average cross-validated sensitivity (aCV-sensitivity) and the average cross-validated 
NNT (aCV-NNT), respectively. They would assess the average sensitivity and NNT of a 

strategy where we use a random subset of individuals in the population to train the classifier 

and apply the learned strategy to an independent sample from the same population.

These average cross-validated sensitivity and NNT measures can also be applied to evaluate 

the performance of subgroup-based strategies, wherein one only recommends PrEP to 

individuals in a pre-defined subgroup prescribed by baseline variable strata. In these cases, 

as there is no algorithm fitting in the learning set, the fold-specific sensitivity is the number 

of cases in the stratum in the validation set divided by the number of cases in the validation 

set, and the fold-specific NNT is the size of the stratum in the validation set divided by the 

number of cases in the stratum in the validation set. We believe the average cross-validated 

measures are more realistic assessments compared to the absolute sensitivity and NNT based 

on entire population stratum, since they mimic a real-world implementation where one 

learns, from a random sample, strata with highest risk of infection, and then subsequently 

offer PrEP to others in the population within those strata.

4.3. Results

The dataset consists of 44,762 adult (age 15 or older) residents from the 10 Eastern Ugandan 

communities enumerated in the SEARCH baseline survey, with conclusive baseline HIV test 

results. Of these, 1493 had a positive baseline HIV test (3.3% prevalence). In Table 1, we 

describe the baseline HIV status per stratum of key baseline variables. We reiterate here that 

since only baseline data is used in this example for illustration and proof of concept for the 

proposed classifier, the reader must not interpret the subject matter-specific results in this 

analysis as directly translatable to risk factors in seroconversion, nor the performance 

assessments as indicative of actual results expected from such a targeted PrEP strategy.

4.3.1. Subgroup-based strategies—We first considered more conventional subgroup-

based PrEP strategies. A subgroup-based strategy recommends PrEP to everyone in a broad 

subgroup defined by specific strata of one or few demographic or risk factors. By contrast, 

the proposed Super Learner-based strategy (results in section 4.3.2) provides individualized 

PrEP recommendations based on a wide array of demographic and risk factor values on the 

individual. In this illustration, we considered all the subgroups that can be defined by using 

common demographic and risk factors variables fed into the Super Learner strategies. In the 

Table 1, each row in the table represents a subgroup given by a stratum of a demographic or 
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risk factor (examples of subgroups are all males, or all individuals aged 15–19). If we were 

to recommend PrEP to all those in the subgroup, then the average sensitivity and NNT one 

would achieve are depicted in the two right columns of the table.

Specifically, a strategy to offer PrEP to everyone in the population would have a sensitivity 

of 100%, at the cost of 30 individuals offered PrEP per infection potentially prevented; this 

should serve as a benchmark for the upper-bound cost of a PrEP prevention program. By 

way of comparison, if we were to offer PrEP to all those employed in the farming sector, we 

would achieve a sensitivity of 74% at the cost of 25.33 NNT. In general, a subgroup-based 

strategy using any one stratum in this table would have a cost of 30 NNT or greater in order 

to achieve a sensitivity of at least 80%. For an NNT less than 30, the highest sensitivity 

achieved is less than 75%.

Based on the above observation, an ad-hoc data-adaptive approach to building a targeted 

PrEP strategy might simply combine the most promising pre-specified subgroups; for 

example those with a sensitivity above 60% and an NNT less than 30. In our example, such 

an approach would offer PrEP to all women as well as men that are married and/or 

employed in farming. This subgroup has a total of 38,321 individuals (85% of the total 

population), with 1,457 positives. This strategy would have an average cross-validated 

performance of 98% sensitivity with a cost of 26.86 NNT. This ad-hoc strategy illustrates 

that the more variables we combine, the greater gain in capacity savings (less NNT for a 

given sensitivity level).

4.3.2. Super Learner-based strategies—Now, we turn to the performance of the 

proposed Super Learner-based PrEP strategy, calibrated to achieve at least 80% sensitivity 

while minimizing the rate of positive prediction.

The empirical performance of the constrained RPP Super Learner using each of the models 

considered in section 4.2.2, as assessed by the average cross-validated sensitivity and NNT, 

is depicted in Figure 1. The empirical sensitivities were about 80–81%, above the nominal 

80% and thus satisfying the required constraint, with a cost of only 17–18 NNT. In other 

words, the proposed constrained RPP Super Learner-based strategies are less costly than the 

subgroup-based strategies in Table 1 that could yield over 70% sensitivity, and are more 

sensitive than subgroup-based strategies of similar cost.

We further contrast the performance of the constrained RPP Super Learner proposed in this 

paper with the standard log-likelihood Super Learner. The performance of the log-likelihood 

Super Learner-based classifier is depicted in Figure 2. The cross-validated sensitivity 

threshold again ensured that the sensitivity constraint is achieved in a new dataset. However, 

as this Super Learner predictor was optimized for the log-likelihood loss, not the RPP, the 

resulting classifier tends to overshoot the required sensitivity level, resulting in a higher 

NNT than that achieved by the constrained RPP Super Leaner.

We have seen in section 4.3.1 that a composite subgroup strategy (all women as well as men 

who are married and/or employed in farming) could yield a classifier that achieves 98% 

sensitivity with about 27 NNT. We also saw in Figure 2 that an individual strategy using a 

Zheng et al. Page 18

Stat Med. Author manuscript; available in PMC 2019 January 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



log-likelihood Super Learner classifier could achieve a 98% sensitivity with about 29 NNT. 

Let us now consider the proposed constrained RPP Super Learner classifier calibrated to 

achieve at least 98% sensitivity. Its performance is depicted in Figure 3. To achieve 98% 

empirical sensitivity, such strategy would use about 25 NNT. To translate these performance 

metrics into implementation logistics, in a population with about 1500 cases, a strategy with 

98% sensitivity at 25 NNT would result in 1500×.98×25 = 36,750 individuals offered PrEP 

in the population, and one at 27 NNT would result in about 39,690 individuals offered PrEP. 

In this case, an NNT difference of merely 2 points results in 3,000 more PrEP regimens 

being offered.

4.3.3. Interpretation—From this data analysis, we saw that, at least for rare outcome 

applications, principled individual-based strategies were generally more sensitive and less 

costly (for a given sensitivity level) than strategies based on pre-specified demographic 

subgroups. Composite subgroup-based strategies that use several predictor strata yielded 

larger gains in sensitivity and capacity savings than single subgroup-based strategies alone. 

However, such approaches remained more costly (i.e. required higher NNT for a given 

sensitivity) than an approach that used the proposed constrained RPP Super Learner to build 

a flexible individual based targeting strategy. In short, in this application at least, the use of a 

state-of the art machine learning approach (Super Learner) that employs an optimality 

criteria specifically aligned with the implementation objective of optimizing efficient and 

effective PrEP offerings can result in substantial performance improvements.

5. Summary

In this article, we proposed a Super Learner-based classifier for a class of constrained binary 

classification problems. As an illustration, we developed and evaluated a hypothetical HIV 

prevention strategy that uses this Super Learner-based binary classifier to offer PrEP on an 

individual basis, with the goal of minimizing the number of PrEP offerings while achieving 

the required proportion of new infections prevented.

Super Learner is an ensemble machine learning algorithm that combines its constituent 

algorithms linearly using weights that minimize a cross-validated user-supplied objective 

function. The constrained binary classification problems under consideration are the ones 

where the objective and constraint functions have the same monotonicity with respect to the 

discriminating threshold. As specific examples, we examined the minimization of the rate of 

positive predictions subject to a lower bound on the sensitivity, and the maximization of the 

sensitivity subject to an upper bound on the rate of positive predictions. To construct these 

classifiers, we first expressed the constrained optimization problem as the minimization of a 

constrained objective function. Then, we obtained a Super Learner score function with 

weights minimizing the cross-validated version of said function; the discriminating threshold 

of the corresponding binary classifier is one that satisfies the cross-validated version of the 

constraint.

In our targeted PrEP example, we used baseline data from the SEARCH study and trained 

the classifiers to predict baseline (prevalent) HIV status using individual-level demographics 

and other risk factor variables collected at baseline. The performance of this and other 
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standard subgroup-based classifiers was assessed in terms of sensitivity and NNT. These 

measures were obtained under a 10-fold sample-split evaluation scheme, wherein the 

classifiers were trained in the learning set, and their sensitivity and NNT were evaluated 

based on their performance in classifying the evaluation set. Averaging these performance 

measures across the 10 folds, we obtained a cross-validated sensitivity and NNT of each 

strategy. We conducted 10 repetitions of such 10-fold sample split evaluation to obtain as 

our final performance assessment an average cross-validated sensitivity and NNT for each 

classifier. For this application, we believe this empirical performance assessment to be a 

more pragmatic evaluation scheme than the standard area under the ROC curve, as deriving 

an appropriate threshold is part of the classifier development. In the results of this data 

analysis, we saw that Super Learner-based classifiers are generally more sensitive and less 

costly than subgroup-based strategies. Moreover, a Super Learner-based classifier that 

targets the desired constrained RPP may outperform (in terms of the desired capacity 

savings optimization), or at least perform as well as, a Super Learner-based classifier that 

targets the log-likelihood loss. In summary, such individualized classifiers targeting the 

desired optimality criterion offer great promise to applications in a heterogeneous population 

in which the desired strategy must balance complex logistics and scientific needs that may 

not be fully captured by standard loss functions.

In addition to using the empirical objective and constraint metrics described here as an 

evaluation scheme, we could also adopt an inferential approach, in which the oracle cross-

validated sensitivity-constrained RPP (7) of a scoring procedure Ψ is considered a (data-

adaptive) target parameter of interest (see Hubbard et al. [30] on data-adaptive target 

parameters). One can use a non-parametric MLE estimator (6) for this target parameter, and 

use bootstrap to obtain a confidence interval. However, bootstrap procedures may be 

prohibitively time-consuming when using machine learning algorithms on large datasets. 

Alternatively, we note that conditional on a fitted score function, this target parameter is 

path-wise differentiable and thus its efficient influence curve can be derived, providing basis 

for influence curve-based confidence intervals. This approach has been proposed in LeDell 

et al. [31] with the area under the ROC as performance metric and target parameter. Besides 

the nonparametric MLE estimator, for finite sample gain, we can also use Targeted 

Maximum Likelihood Estimator [32] or its cross-validated version [33] to estimate this 

target parameter. The latter may help reduce second order terms in the linear expansion, as 

the target parameter is not linear in P0. This research topic is currently under development 

and will be presented in a separate work.

A limitation in the implementation of the proposed Super Learner classifiers is that we have 

not extended our constrained optimality criterion, which guided our selection of the Super 

Learner weights, to the fitting of the constituent algorithms themselves. We used the default 

implementation in each constituent algorithm, which aims to estimate the true conditional 

outcome probability, and then combined the fitted predictors in a way that optimizes the 

proposed constrained criterion. This was a practical consideration, in an effort to allow for 

the inclusion of ready-to-use algorithms in the most general settings. In a future work, we 

will evaluate analytically how far the optimal ψ0 is to the true conditional outcome 

probability. We will also investigate in which cases and to what extent, using parametric 

constituent algorithms that are each fitted to satisfy the constrained optimality criterion 
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would be more advantageous than using more data-adaptive constituent algorithms that are 

each fitted to estimate the true conditional outcome probability, in the implementation of the 

proposed Super Learner classifier.
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Figure 1. 
Empirical performance of a Super Learner classifier that minimizes RPP under the nominal 

constraint of achieiving at least 80% sensitivity. Performance measures are given by average 

cross-validated sensitivity, and average cross-validated number needed to treat (NNT).
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Figure 2. 
Empirical performance of a Super Learner predictor that minimizes the minus log-

likelihood, coupled with a cross-validated 80% sensitivity threshold. Performance measures 

are given by average cross-validated sensitivity, and average cross-validated number needed 

to treat (NNT).
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Figure 3. 
Empirical performance of a Super Learner classifier that minimizes RPP under the nominal 

constraint of achieiving at least 98% sensitivity. Performance measures are given by average 

cross-validated sensitivity, and average cross-validated number needed to treat (NNT).
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