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RT-TRAQ: An algorithm for real-time tracking of faint quasi-
periodic signals in noisy time series

Rishad Joardera,*, Begum Kasapa, Soheil Ghiasia

aDept. of Electrical and Computer Engineering, University of California Davis, Davis, CA 95616, 
USA

Abstract

We present an algorithm for live tracking of quasi-periodic faint signals in non-stationary, 

noisy, and phase-desynchronized time series measurements that commonly arise in embedded 

applications, such as wearable health monitoring. The first step of Rt-Traq is to continuously 

select fixed-length windows based on the rise or fall of data values in the stream. Subsequently, 

Rt-Traq calculates an averaged representative window, and its spectrum, whose frequency peaks 

reveal the underlying quasi-periodic signals. As each new data sample comes in, Rt-Traq 

incrementally updates the spectrum, to continuously track the signals through time. We develop 

several alternate implementations of the proposed algorithm. We evaluate their performance 

in tracking maternal and fetal heart rate using non-invasive photoplethysmography (PPG) data 

collected by a wearable device from animal experiments as well as a number of pregnant 

women who participated in our study. Our empirical results demonstrate improvements compared 

to competing approaches. We also analyze the memory requirement and complexity trade-offs 

between the implementations, which impact their demand on platform resources for real-time 

operation.
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1. Introduction

Many natural systems display irregular periodicity stemming from the internal mechanisms 

that drive them. The examples range from physiological systems like cardiovascular motion 

Sharma (2009), glucose-insulin regulatory system Rajagopal et al. (2020), cancer cells 

Cabello et al. (2019) to climate systems Snyder et al. (2011) like glacial-interglacial cycles. 

Analysis of irregular periodicity plays a major role in fields like motor fault detection 

Bonello & Pham (2012), predicting economic conditions, text encryption Tamba et al. 

(2019), etc. Systems like these are often affected by many internal and external disturbances, 

which force them to abruptly reset. This causes phase jumps within the periodic nature of 

these signals, often termed as quasi-periodicity. Nature is full of these noisy quasi-periodic 

signals.
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Quasi-periodic signals are very hard to analyze using regular frequency domain methods. 

This is because they are made up of periodic waves with unrelated phases. Given a 

long enough time-series, each phase will have its own complement. Taking the Fourier 

Transform, the complementary components will cancel each other out. This essentially 

vanishes the quasi-periodic signal from the frequency domain. Fourier analysis of quasi-

periodic waves requires special treatment.

There have been many studies focusing on quasi-periodic peak detection. They involve 

methods like phase rectification Bauer et al. (2006), wavelet transforms Gregoire et al. 

(2011), Hilbert transforms Benitez et al. (2001), K-means clustering Mehta et al. (2010), 

artificial neural network Pini et al. (2021), Markov models Coast et al. (1990), histogram 

Sezan (1990), time warping Makihara et al. (2011), fusing multiple data sources Kasap et al. 

(2021a) to stochastic resonance Deng et al. (2006).

There are many cases where quasi-periodic waves need to be monitored in real-time. Think 

of a nurse trying to place a probe on a patient’s body. The probe placement will have 

an impact on the signal quality, which would ultimately affect medical decision-making. 

Having a live feedback while placing the probe makes the whole process more robust. There 

are many use cases where a real-time quasi-periodic wave tracing can bring a lot of utility. 

This is especially true for wearable health technologies. However, none of the methods 

mentioned above allow for such a real-time analysis of data. We propose an algorithm that 

aims to address this research gap.

In this paper, we propose a real-time algorithm for generating spectrum peaks corresponding 

to quasi-periodic waves in a low-SNR environment. We also propose several alternate 

implementations for this algorithm. We implement a very simple spectrum peak tracking 

algorithm on top of this to test it out on real data. We show the effectiveness of this 

approach by tracking maternal and fetal heart rate using non-invasive photoplethysmography 

(PPG) data collected by a wearable device. We use two different datasets, one collected 

from animal trials and another from pregnant women who participated in our study. We 

believe, this method can serve as a pre-processing step for tracking quasi-periodic waves in 

real-time.

2. Motivating Example

Transabdominal Fetal pulse Oximetry (TFO) uses light to non-invasively determine fetal 

oxygen saturation in a pregnant patient Zourabian et al. (2000); Fong et al. (2020b, 2021). It 

does so by continuously shining pulsating near-infrared light through the maternal abdomen 

in a process known as Continuous Wave Near-Infrared Spectroscopy (CWNIRS). The 

resulting photoplethysmography (PPG) signal picks up the subtle changes in blood volumes 

caused by maternal and fetal pulsations. A TFO system usually requires two wavelengths of 

light at specific frequencies for best performance Fong et al. (2017). Such a system is shown 

in Fig. 1. The TFO probe houses both pulsating sources and a set of detectors. The detectors 

closer to the source pick up light reflected from shallower layers—mostly from the maternal 

body. The farther detectors capture light bouncing off of deeper layers. Their PPG signal is 

a mixture of signals coming from both the maternal and the fetal body. The TFO system 
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can interpret fetal oxygen saturation (S pO2) by analyzing the fetal component of the PPG 

signals Fong et al. (2020a); Kasap et al. (2021a).

The PPG signals can be thought of as high-frequency carrier signals created by the 

pulsating light sources, which are then amplitude modulated by a number of quasi-periodic 

physiological systems. These usually include maternal respiration rates (RR), maternal heart 

rates (MHR), fetal heart rates (FHR), Mayer waves, and occasionally patient motion. The 

optical signal obtained from these physiological processes is quite noisy owing to the 

distances involved. This is especially true for the fetal component. After demodulation, a 

PPG signal essentially reduces to a set of very noisy quasi-periodic waves.

Proper probe placement is absolutely crucial to obtain a usable PPG in a TFO system. Fetal 

S pO2 determination methods are only effective as long as a strong fetal component is 

present in the PPG. To achieve this, the probe must be oriented in such a way that the optical 

path between the source & the detectors penetrates through the fetus. Owing to diverse 

body types and varied fetal orientations, proper placement of the TFO probe poses a strong 

challenge to physicians. A live monitoring system will increase robustness by eliminating 

the guesswork.

Moreover, maternal components of the PPG signal often interfere with the far weaker fetal 

component. This is where having multiple detectors come in handy. If placed correctly, 

the near-detector PPGs will consist of only the maternal components and almost no fetal 

parts. The near-detector PPG can then serve as a reference to denoise the far-detector PPG 

of any maternal interferences. Thus, proper probe placement also boosts signal separation 

algorithms.

The quasi-periodic FHR component of the PPG signal holds great importance in the TFO 

pipeline. Not only is the presence of a clean FHR peak a solid marker for a good probe 

placement, but the magnitude also directly factors into the fetal S aO2 calculations. However, 

the FHR peaks often get buried beneath the noise floor due to the optical distances involved. 

It is difficult to decipher an FHR peak from a regular spectrogram. The spectrogram of a 

90-second PPG signal crop, in Fig. 2, illustrates this problem. An online filtering algorithm 

that specializes in filtering noisy quasi-periodic signals is central to the performance of a 

real-time TFO system.

The ultimate goal of TFO is real-time patient monitoring. After the probe is placed, it will 

start producing a stream of noisy quasi-periodic PPG signals which need to be filtered and 

processed in real-time. The quality of the filtering algorithm directly affects the S pO2 

estimation. This processing needs to happen in real-time on the embedded system. Any 

offline algorithm working off of a data dump defeats the purpose of a TFO system.

3. Previous Work

Our work is a modification of the phase rectified signal averaging (PRSA) method Bauer et 

al. (2006). This section briefly explains the method and intuitions behind the original paper 

and its shortcomings in real-time application.
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The PRSA algorithm uncovers quasi-periodic waves by averaging phase-synchronized 

windows from the original signal. The averaged window is termed as the PRSA wave. 

There are three steps to calculating a PRSA wave. Step 1: Pick a set of anchor points from 

the long time series. A multitude of strategies can be used for picking anchor points. For 

example, if a point’s value is larger than one before it, that point can be chosen as an anchor. 

Another strategy could include picking points if the value is smaller. Both these strategies 

can be extended to using the mean value of M number of points before and after the point 

in question. Step 2: Crop windows of length (2×L+1) from the time series centered around 

each anchor point. We will call them PRSA windows. There will usually be quite a bit of 

overlap between the PRSA windows depending on the anchor points. The final PRSA wave 

will have the same length as each PRSA window. Step 3: Take a point-by-point average over 

all the PRSA windows. The average wave will then become the PRSA wave. The spectrum 

peaks of this PRSA wave reveal frequencies of the quasi-periodic waves.

A PRSA wave essentially summarizes the entire time series data into a single waveform. 

The intuition behind this can be understood by imagining the original signal as only 

a quasi-periodic sine wave. That is to say, the signal is composed of patches of phase-

desynchronized noisy sine waves. Given that the noise does not overpower the sinusoid, 

the maximum variation is expected near zero phase. This is true on both ascending and 

descending sides of zero phase. In other words, all the anchor point-picking strategies 

mentioned above would choose the majority of the points near zero phases. Based on the 

exact strategy employed, these points would lie either on the ascending or the descending 

side. This makes most of the windows somewhat phase synced with respect to the 

underlying sine wave. Averaging the phase-synchronized windows cancels out the additive 

noise, leaving only the sine wave behind.

While this does work decently well in an offline setup, the definition for static PRSA does 

not lend itself to an online setup. Firstly, the anchor points are not directly defined to be 

reusable between segments of overlapping data. For a real-time implementation, this would 

mean recalculating the anchor points each time a new piece of data is added. Secondly, the 

anchor points at the edges of data segments are discarded in static PRSA. This is because 

the windows associated with those anchors will be partially empty. This cuts down on the 

number of windows available for averaging for the PRSA wave and degrades performance. 

If we want to do an online implementation with some sort of running window, this will 

put limits on the size of the window. Quite a few modifications are required to achieve a 

real-time version of the PRSA algorithm.

4. Rt-Traq Algorithm: Noise Reduction through Judicious Averaging

We go into the overview of the Rt-Traq algorithm, several alternate implementations, and 

their respective system resource requirements in this section. We also discuss a simple peak 

tracker that is stacked on top of our Rt-Traq implementations, which allows us to evaluate 

our method on TFO signals.
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4.1. Core Components in Rt-Traq Wave Creation

4.1.1. Picking Anchor Points—The first step to generating an Rt-Traq wave is 

strategically picking anchor points from the time series data. In our implementation, we 

only consider the most recent data point as a new anchor point candidate. We pick the latest 

point as an anchor if the mean of the M most recent points is larger than the mean of the 

M points that appeared immediately before that. The M most recent points also include the 

anchor point candidate. In total, 2M points need to be compared each time a new sample 

comes in. For simplicity, we choose M as 1 for the rest of the paper (i.e., compare the most 

recent point with the second most recent point).

At the beginning of any data stream, the system will not have seen 2M data points to decide 

on an anchor. For this edge case, we assume the older data points as zeros.

4.1.2. Rt-Traq Windows—We define an Rt-Traq window as the array of an anchor point 

and the immediate L − 1 sample points appearing before it. This gives a total window length 

of L samples. Each anchor point is associated with an Rt-Traq window.

Judiciously choosing anchor points forces the corresponding windows to be in near phase-

sync with one another. This property will hold as long as L is chosen to be larger than the 

time period of all underlying periodic/quasi-periodic waves with the time series. Averaging 

over all windows amplifies the periodic/quasi-periodic components.

4.1.3. Data Buffer—Data Buffer stores the L the most recent data point. If the current 

anchor point candidate is chosen, its corresponding Rt-Traq window is ready and waiting to 

be processed in the Data Buffer.

The Data Buffer array also makes the process of picking anchors more memory efficient, 

since all the relevant points necessary to make the decision are already stored within the 

buffer. This statement remains true as long as M is chosen such that L ≥ 2M.

Data Buffer is implemented by using a ring buffer data structure. Each piece of new data 

from the stream overwrites the oldest piece of stored data.

4.1.4. Window Buffer—Once an anchor point is chosen, the array stored inside the Data 

Buffer gets passed on to the Window Buffer. Consequently, the Rt-Traq wave is calculated 

by taking a point-wise sum over all the windows stored in the Window Buffer. The Rt-Traq 

wave can be thought of as an average wave over the collection of the strategically picked, 

most recent windows from a long time-series.

In our implementations, each window is treated as a row and the Window Buffer as a stack 

of windows in a 2D matrix. Window Buffer’s dimensions are nW × L, where nW is the 

number of windows stored. The Rt-Traq wave is simply the column-wise sum over the 

Window Buffer of length L.

We propose three slightly alternate definitions for the Window Buffer, depending on which 

Rt-Traq windows get stored. We base our Rt-Traq implementation types based on these 

alternate definitions. These alternate styles are further discussed in the next section.
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4.1.5. Generation Rate—We define the rate at which the external system requests an 

Rt-Traq wave as the generation rate. For a generation rate of m, we must provide Rt-Traq 

waves once every m samples. The generation rate is always predetermined in any system. It 

is different from the rate at which windows occur.

4.1.6. Putting It All Together—An overview of Rt-Traq wave creation is illustrated in 

Fig. 6. Each new piece of data from the stream is handed off to the Data Buffer. Depending 

on the previously stored data, we place a judgment on the current anchor point candidate. If 

the point gets chosen as an anchor, the Window Buffer is updated using the Data Buffer. The 

Window Buffer provides an Rt-Traq wave each time the external system requests one.

4.2. Variations in Rt-Traq Wave Implementations

We created three main types of Rt-Traq based on alternate definitions of the Window Buffer. 

Two of which are further divided onto Active and Lazy based on when the Rt-Traq wave 

is calculated, as shown in Fig. 4. The implementation details for each type of Rt-Traq are 

detailed in this section.

4.2.1. Constant Window Count Rt-Traq—In this variation, we always store a 

constant W number of L-length windows in the Window Buffer. As such, the Window 

Buffer always has a fixed size, shown in Fig. 5(a). Whenever a new window is added, the 

oldest one is discarded. Window Buffer is internally implemented as another ring buffer. In 

our implementation, each online window is stored as a row. The Window Buffer dimensions 

are W × L. The Window Buffer is initialized as all zeros. The Rt-Traq wave is simply 

defined as the column-wise sum of the Window Buffer.

The Constant Window Count Rt-Traq wave can be computed both lazily or actively.

Active Implementation: Rt-Traq wave is updated each time a new Rt-Traq window 

is available. This involves a point-by-point addition and subtraction of the latest and 

discarded window respectively with the previous Rt-Traq wave. The Rt-Traq wave is 

saved and is available for whenever it is requested.

Lazy Implementation: Rt-Traq wave is calculated only when externally requested 

by taking a column-wise sum of the Window Buffer.

4.2.2. Constant Sample Count Rt-Traq—In this implementation, we only store the 

Rt-Traq windows which occurred within the most recent n samples in the Window Buffer. 

Any windows which occurred before that are removed from the Window Buffer during 

updates. The Window Buffer is implemented as a linked list, with each window being stored 

as an individual array within the linked list. This is illustrated in Fig. 5(b). We also save 

an extra element documenting the sample number for when each window occurred. The 

algorithm uses this information to discard windows that occurred more than n samples ago 

during each update. In our implementation, the latest window is appended at the end of 

the linked list. In other words, the first element on the list contains the oldest window. The 

length of the linked list is not fixed. Some parts of the signal might contain more windows 

than others. Some intervals of the signal might not even contain any windows whatsoever. In 

cases like these, the Rt-Traq wave is just defined as all zeroes. Situations like these occur at 
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the beginning of the data stream when there are not enough samples to get the first window. 

It might also happen during long stretches of monotonic rise/fall, when the anchor picker 

cannot choose any anchors. This implementation follows the definition of the original PRSA 

more closely.

Calculating the Constant Sample Count Rt-Traq wave is a 2-step process. In the first step, 

we update the linked list by discarding older windows. To do this, we traverse down the 

list and determine the last window which needs discarding using their timing information. 

Because of how the linked list is set up, any window preceding this on the list will also be 

discarded. The second step involves taking the column-wise sum of the Window Buffer to 

update the Rt-Traq wave. These two steps combined generate the new Window Buffer for 

the following updates and produce the current Rt-Traq wave. The Constant Sample Count 

Rt-Traq wave can be computed both lazily or actively.

Active Implementation: The active implementation updates its Rt-Traq wave with 

each new sample. During each update, the active implementation looks at the timing 

information only on the oldest window (In our case, the first). If it is old enough, the 

window is discarded. If the current Data Buffer gets chosen as a window, it is also 

added at the end of the Window Buffer. Using these two windows, The Rt-Traq wave 

is immediately updated and stored when the external system requests it.

Lazy Implementation: In the lazy implementation, both update steps are only 

calculated when an Rt-Traq wave is requested externally.

4.2.3. Decaying Average Rt-Traq—Using a decaying average equation, the Rt-Traq 

wave is directly calculated and stored in the Window Buffer for this style of implementation. 

The Rt-Traq wave gets updated each time a new Rt-Traq window becomes available. The 

decay equation we used is given as,

RtTraqwave = new_window + α × RtTraqwave

Where, 0 < α < 1 is the decay factor. A large decay factor fades out the older windows faster. 

The impact of the ith most recent window is damped by a factor of αi–1. This method is 

much more memory efficient compared to the rest. Decaying Average Rt-Traq can only be 

implemented actively, as the Rt-Traq wave needs to be updated with each new window. The 

update itself is a very simple weighted sum.

4.3. System Resource Requirements for Rt-Traq

We looked at three theoretical system resource requirements for each style of Rt-Traq 

implementation. For the theoretical calculations, we define a few key parameters. We 

assume that data is always sampled at f Hz. We are required to provide a new Rt-Traq 

wave externally at the generation rate, m. That is to say, the external system requests an 

Rt-Traq wave once every m samples or once every f /m seconds. Each time a new Rt-Traq 

wave is created internally, we call this an update. For the Lazy implementations, the update 

frequency and the generation rate are essentially the same things. For the active ones, 

however, updates occur fortuitously whenever a new window is available. This distinguishes 
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the update rate from the generation rate. We make the assumption that a single anchor point 

is expected to appear in every two samples. This leads to an expected anchor point rate 

of f /2 per second. The complexity for each individual update, memory requirements and 

expected update frequency are shown in Table 1 under these assumptions.

The lazy implementations have update complexity, but it boasts a lower update frequency. 

This is thanks to the m in the denominator in 1. For most practical use cases, we do not 

require a new Rt-Traq wave for every new sample. It is perfectly fine for the generation rate 

to be in the range of once every hundred or even a thousand samples. Such large values 

of m favor the lazy implementations over their active counterparts from a computational 

perspective.

From a memory perspective, Decaying Average Rt-Traq shows better performance. Since 

this implementation stores a single window, which also doubles as the Rt-Traq wave. This is 

the premier choice when onboard memory is limited.

4.4. Peak Tracking Add-on

We attach a simple spectrum peak-tracker to the output of our Rt-Traq wave generator to 

evaluate the effectiveness of our method on the dataset. The evaluation pipeline is shown 

in 6. With new data coming in, Rt-Traq algorithm creates a new wave at the generation 

rate (once every m samples). The peak-tracker locks on to a frequency peak and traces it 

throughout the Rt-Traq waves.

Initially, the spectrum needs to stabilize before we can start tracking peaks. At the beginning 

of any data stream, there is very little data for the Rt-Traq to generate a proper wave. The 

Rt-Traq spectrums created at this stage are often misleading. We wait L number of samples 

before locking on a peak.

Once stabilized, the frequency peak is updated with each new Rt-Traq wave. During each 

update, we constrict the search to a small band around the current peak. This is based on 

the assumption that the frequency peaks should not stray too far between samples. We also 

assume that the frequency peaks would shift smoothly. In other words, the derivatives should 

be continuous with respect to time. To ensure this, we assign twice as much weight to 

whichever direction the frequency peak is currently moving. So if a frequency peak is rising, 

the system assumes that it more like to rise or stay fixed in the next step. It places a lower 

bet on the peak falling. This allows the Rt-Traq to lock onto a single frequency peak and 

smoothly track through the data stream.

5. Experiments

5.1. Experimental Setup for Transabdominal Fetal Pulse Oximetry

We test out our algorithms on two separate PPG datasets collected from a handheld TFO 

system. The first one is obtained from 5 pregnant-sheep studies with multiple experiments. 

The procedures employed during animal studies followed a strict protocol approved by 

UC Davis Institutional Animal Care and Use Committee (IACUC) Vali et al. (2021). The 

second dataset is collected from pregnant women who volunteered for the study Kasap 
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et al. (2021b). The protocol used during the human patient studies is approved by UC 

Davis Institutional Review Board (IRB). This study has had 9 volunteers signing up so 

far, with some patients coming in for second visits and some never showing up. The TFO 

system contains a total of five detectors placed at varying distances from the near-infrared 

light sources, each collecting PPG data at 8kHz Fong et al. (2020b). The animal studies 

also include ground truth FHR & MHR values, which are recorded using hemodynamics. 

The human patient studies also include ground truth FHR & MHR via Doppler ultrasound 

transducers. For this paper, we chose the first two experiments of the last 3 sheep from 

the first study and every available patient from the second study. The total length of the 

downsampled data for each experiment is given in Table 2 and Table 3 for the animal and 

human experiments, respectively.

5.2. Performance Metric

The purpose of the experiments was to evaluate the performance of Rt-Traq in strengthening 

up the quasi-periodic waves beyond the noise floor in real-time. To achieve this, we apply 

Rt-Traq to the demodulated PPG data continuously and obtain a set of Rt-Traq waves. We 

attempt to lock in and track FHR & MHR using our peak detector through time. Comparing 

them against the known ground truth FHR (and MHR when available) allows us to judge the 

validity of our real-time spectrum cleaning technique.

We use mean absolute error (MAE) as our performance metric. The frequency peaks are 

calculated and compared against the ground truth every second. We calculate the error for 

each experiment individually, as well as an overall error rate for each dataset. We limit 

ourselves to only two implementations in this paper. The Constant Window Count and 

Decaying Average. MAE is used to compare the quality of each implementation.

For the sheep studies, we use both MHR & FHR. For the human patient studies, the MHR 

was unavailable for a few of the visits. Even for the visits where it was available, the MHR 

was missing for some parts of the experiment due to technical issues. So we ignored the 

ground truth MHRs for the human dataset and focused mainly on the FHR.

5.3. Generating Rt-Traq Data

We generated Rt-Traq data using only a single detector demodulated signal for simplicity. 

For the choice of detector, we ignored the three closest detectors, as they often times did 

not contain any FHR traces. The farthest detector was ignored for its low SNR. This leaves 

the fourth-closest detector as the best choice overall. For the modulation frequency, we 

picked the demodulated PPG signal for the 850nm wavelength source. This is because 

larger wavelengths theoretically provide better penetration depth. We did not attempt any 

multi-detector fusion techniques.

We fed offline data to our implementation one at a time to mimic a real-time setup with a 

generation rate of m = 80 (i.e., one Rt-Traq wave generated per 80 samples or per second). 

The generation rate is matched to the ground truth FHR & MHR sampling rates. This allows 

for a one-to-one comparison. This way, we were able to mimic a real-time scenario from 

offline data for evaluation purposes.
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Some pre-processing steps were applied to the demodulated data for ease of evaluation. 

We downsampled the original 8kHz PPG signals to 80Hz for ease of computation. We 

also highpassed the signals at 0.1 Hz. We always normalize the spectrum magnitude to be 

between 0 and 1. These steps are not necessarily required, but it makes the results easier to 

visualize.

For visualization, we stitch the individual Rt-Traq wave spectrums vertically to create a 

spectrogram. If the Rt-Traq is able to uncover any quasi-periodic or periodic waves hidden 

within the time series, they appear as bright vertical streaks on the spectrogram. Usually 

the Respiration Rate (RR), MHR & FHR would appear as bright vertical streaks in the 

spectrogram. These spectrograms can be passed on to any peak tracker to trace the quasi-

periodic waves.

5.4. Peak Tracking Specifications for TFO

We configured our peak tracking add-on to track FHR as well as MHR & RR for a TFO 

setup. This is because the Rt-Traq spectrums generated for this dataset contain harmonics 

for both RR and MHR. The RR harmonics, especially, are very strong. It can confuse both 

the MHR & FHR tracker. Usually, the FHR is pretty faint. Even the MHR harmonics can 

confuse the FHR tracker. This is where tracking all signals come in handy. The traces from 

RR & MHR can be used to determine the harmonics, which in turn are fed back into the 

trackers. These are used as the avoid ranges. The search range is set to 0.2Hz for all setups. 

This means the Rt-Traq only searches in a 0.4 Hz frequency band centered around the 

current guess. The avoid ranges are set as a 0.2 Hz frequency band centered around the RR 

& MHR harmonics. This gives the MHR & FHR tracker a better context.

5.5. Case Study: Fetal Heart Rate Tracking in Sheep

5.5.1. Tuning the Parameters—Before going into the performance, we need to 

determine the operational parameters best suited for this type of analysis. Parameter tuning 

is relatively simple in Rt-Traq since we only have to worry about two parameters.

• Number of averaged windows – known as W, n or α depending on the 

implementation.

• Window length L - which determines the size of the Rt-Traq wave and in turn the 

spectral resolution in all the implementations. A small L leads to lower frequency 

resolutions and difficulties in determining spectrum peaks. While a larger L 

provides an improved frequency resolution at the cost of time resolution as well 

as increased complexity & memory requirements.

The product of these two parameters determines the length of the time series data being 

averaged in each Rt-Traq wave. A smaller value results in a low-latency yet noisy system. 

Such a system would show a faster response to real-time change at the cost of being weaker 

at reinforcing the quasi-periodic components. A larger value creates a system that is much 

slower to respond to live events yet very strong at reinforcing the underlying quasi-periodic 

signals. For any given application, the designer should choose the minimum L that satisfies 

the frequency error constraints while providing minimal latency and clean spectrum peaks.
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For evaluation, we set one parameter as a constant and sweep over the second one. We 

measure the MHR & FHR MAEs over each sheep round individually. These two errors serve 

as our metric for picking the optical parameters.

Parameter Tuning for Constant Window Count Rt-Traq: We first set L = 1028 

and sweep over a range of values of W. As shown in Fig. 7, the lowest MAEs are 

obtained at W = 30. We then set W = 30 and sweep over a range of values for L. 

From Fig. 8, the best results are produced by L in the range of 1200 to 1500. For the 

rest of this paper, we assume W = 30 & L = 1280.

Parameter Tuning for Decaying Average Rt-Traq: We use the same values of L as 

obtained from Constant Window Count Rt-Traq and plot the MHR & FHR MAEs for 

different values of α in Fig. 9. The lowest errors occur for an α around 0.4. For the 

rest of the paper, we assume α = 0.4.

5.5.2. Applying Rt-Traq to the Animal Dataset—Rt-Traq algorithm generates a 

series of L-length Rt-Traq waves, with each wave showing strong peaks for the underlying 

quasi-periodic signals. The time domain and frequency domain of one such wave is shown 

in Fig. 11. This one is created using the constant window count Rt-Traq with optimal 

parameters for this problem. Unlike the regular spectrum in Fig. 2, the Rt-Traq spectrum 

actually shows large peaks corresponding to the FHR & MHR.

The difference in spectrum between the raw PPG signal and the Rt-Traq filtered wave is 

better visualized in the spectrogram plots in Fig. 12. The quasi-periodic frequency peaks 

uncovered by the algorithm in each Rt-Traq wave are easy to trace throughout time in the 

filtered spectrogram. Whereas for the raw signal, the FHR is pretty much absent and the 

MHR is only present for a fraction of the periods. These strong peaks allow the algorithms 

to follow these frequencies much more easily throughout the experiment.

Some examples of frequency tracking using Rt-Traq waves and the peak tracker are shown 

in Fig. 10. The plots also show the ground truth values for both FHR & MHR. The accuracy 

for each experiment, using each implementation, is illustrated in Table 4.

5.6. Case Study: Fetal Heart Rate Tracking in Human Patients

For the human dataset, we used a similar empirical approach to pick the best operational 

parameters for this dataset. The results for both methods are tabulated in 5.

6. Results & Discussion

We compare the effectiveness of our online algorithm with an existing offline algorithm 

described in Kasap et al. (2021b). The mean absolute errors for both methods are shown 

in Table 5 for different human patient experiments. Despite being real-time, our method 

performs relatively well in comparison. Even outperforming the offline method in some 

patients.

The existence of multiple quasi-periodic signals leads to poor performance in some datasets. 

The Rt-Traq spectrum was able to pick up RR & its harmonics, MHR & its 2nd harmonic, 
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and FHR. This sometimes caused our spectrum peak tracker to lock on to a different signal. 

This is especially true during patches when the original signal peak disappeared from the 

spectrogram. These multiple peaks can be seen in Fig. 12. Having a view of the entire 

dataset can allow algorithms to easily bypass these pitfalls. But being real-time, locking onto 

a wrong peak carried the error forward, leading to large overall errors.

Multiple frequency peaks crossing each other confuses the spectrum peak detection 

algorithm. We see this behavior in Animal C, Experiment 2. This is shown in Fig. 13. 

Here, close to the end of the signal, the FHR crosses paths with the second harmonic of 

MHR. This causes the Rt-Traq to start following the MHR harmonic instead of the FHR. 

For this case as well, having a larger scope of view would as opposed to making a real-time 

decision would lead to better results.

Both Rt-Traq implementations show very similar results despite having different 

computational and memory requirements. On one hand, we have the Lazy Constant Window 

Count Rt-Traq with a lower computational complexity but a higher memory requirement. On 

the other hand, we have the Decaying Average with a higher computational complexity but 

a lower memory requirement. This means we can choose whichever implementation fits the 

platform requirements better without having to worry about performance.

The Rt-Traq spectrum generation essentially depends on only two operational parameters. 

The window length and the duration of the crop used for calculation. The low number of 

parameters makes it much easier to apply Rt-Traq spectrum generation to a wide range of 

problems without much tuning.

We tested a few different anchor point-picking strategies. This included different values 

of M, swapping the increasing condition for a decreasing condition in picking anchors, 

and weighted means. They did not provide any significant improvements. Still, anchor 

point-picking strategies specialized for a given problem is something that could be explored.

Data fusion may provide more reliable results for datasets with information from multiple 

channels. For example, in the TFO dataset, FHR traces can sometimes be present third-

closest TFO detector. FHR traces are always present in the farthest detector. The Rt-Traq 

wave for both channels and both wavelengths can be merged to get a better estimate.

In this paper, we show a few different Rt-Traq implementations with similar performances 

which can trace quasi-periodic waves in real-time data. A more sophisticated filtering 

approach can be applied on top of Rt-Traq spectrum to be passed downstream for specific 

applications. For a frequency finding problem, even the peak tracker described here can be 

modified and extended to meet specific scenarios.

7. Conclusion

In this paper, we propose Rt-Traq, an algorithm capable of extracting and following quasi-

periodic waves from real-time data. We showed the effectiveness of the Rt-Traq spectrum in 

continuously discovering FHR & MHR peaks in both animal and human PPG data. We also 

give designers the choice between a few alternative approaches to make necessary trade-offs 
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between system memory and computational requirements. Our algorithm can be included as 

a part of any embedded system’s data processing pipeline, that is used in the live monitoring 

of quasi-periodic signals.
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Fig. 1: 
A High-level overview of Transabdominal Fetal Pulse Oximetry system Fong et al. (2020a)
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Fig. 2: 
Time series plot & spectrum of a 90-second crop of demodulated PPG data (Animal A, 

Experiment 1). The ground truth Fetal Heart Rate (FHR) is provided by a hemodynamic 

monitor. Without any spectrum clean-up techniques, the FHR peak is very faint and 

surrounded by noisy peaks in the PPG spectrum. Isolating and monitoring the FHR peak 

from this spectrum in real-time poses a challenge
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Fig. 3: 
The core components of Rt-Traq Wave generation from a real-time data stream. Incoming 

data is fed to a ring buffer called the Data Buffer. The latest data point becomes the anchor 

point candidate and its corresponding window is saved in the Data Buffer. An anchor 

point-picking strategy gives the verdict using the Data Buffer. If chosen as an anchor point, 

the current window is stored in a secondary buffer, the Window Buffer. Rt-Traq wave is 

generated by averaging all the windows in the Window Buffer
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Fig. 4: 
Styles of Rt-Traq Implementations
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Fig. 5: 
Three alternate definitions of the Window Buffer. In Constant Window Count Rt-Traq, the 

Window Buffer holds a constant W number of windows and is implemented as W × L fixed 

size 2D matrix (a). The Window Buffer holds any windows appearing in the n-most recent 

data samples in Constant Sample Count Rt-Traq. Implemented as a linked list of L-length 

arrays(b). In Decaying Average Rt-Traq, the Window Buffer stores a decayed average of all 

past windows in an L-length 1D array, which directly acts as the Rt-Traq wave(c).
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Fig. 6: 
Overview of the Rt-Traq system used in evaluation
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Fig. 7: 
Effects of the parameter W on FHR & MHR MAEs for a fixed L=1024 in Constant Window 

Count Rt-Traq
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Fig. 8: 
Effects of the parameter L on FHR & MHR MAEs for a fixed W=30 in Constant Window 

Count Rt-Traq
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Fig. 9: 
Effects of the parameter α on FHR & MHR MAEs for a fixed L=1080 in Decaying Average 

Rt-Traq
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Fig. 10: 
Some examples of MHR & FHR tracking on the waves generated via Constant Window 

Count Rt-Traq for animal and human patient studies, showing the effectiveness of our 

spectrum cleanup technique.

Joarder et al. Page 24

Smart Health (Amst). Author manuscript; available in PMC 2023 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 11: 
An Rt-Traq wave generated using Constant Window Count, which is able to reinforce and 

clearly show the FHR & MHR peaks in its spectrum. A series of Rt-Traq waves generated 

per second allows us to trace the frequency peaks over time. This Rt-Traq wave was 

generated with the optimal parameters, W = 30 & L = 1280.
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Fig. 12: 
(a) Raw signal Spectrogram using a 50% overlap Tukey window vs. (b) Constant Window 

Count Rt-Traq Spectrogram created with W = 30 and L = 1280 for animal A, experiment 

1. The FHR peaks are non-existent on the original spectrogram. The MHR is faintly visible 

but vanishes for a period of time. The Rt-Traq spectrum brings out the MHR & FHR very 

cleanly.
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Fig. 13: 
The peaks of FHR & MHR’s 2nd harmonic crossing over each other at a certain point in 

time and confusing the peak tracker. This causes the tracker to follow the wrong peak after 

the crossover
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Table 1:

System Resource Requirements of Rt-Traq Wave Generation

Update Complexity Memory Expected Updates/Second

Lazy Active Lazy Active Lazy Active

Constant Window Count O(W × L) O(L) (W + 1) × L (W + 1) × L f/m f/2

Constant Sample Count O(n × L) O(L) / O(1) (worst/best) (n + 1) × L max(n, m) (worst) f/m f

Decaying Average O(L) L f/2
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Table 2:

Dataset length for each of the animal experiments (after downsampling to 80Hz)

Experiment Data Length

Animal A Experiment 1 82160

Animal A Experiment 2 147600

Animal B Experiment 1 199520

Animal B Experiment 2 192640

Animal C Experiment 1 250000

Animal C Experiment 2 193920
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Table 3:

Dataset length for each of the human patient experiments (after downsampling to 80Hz)

Patient Data Length

P1 V1 92240

P1 V2 82400

P3 V1 128480

P4 V1 100960

P5 V1 126880

P7 V1 113280

P8 V1 95520

P9 V1 68960

P9 V2 76160
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Table 4:

Performance evaluation using MAE(in bpm) for the three types of Rt-Traq on the animal dataset

Constant Window Count Decaying Average

MHR FHR MHR FHR

Animal A Experiment 1 1.8 12 2.4 14.4

Animal A Experiment 2 1.8 10.8 1.2 13.2

Animal B Experiment 1 1.2 13.8 1.2 13.8

Animal B Experiment 2 1.2 20.4 0.6 14.4

Animal C Experiment 1 0.6 4.2 1.2 3.6

Animal C Experiment 2 0.6 26.4 1.2 24.0

Per Experiment Average 1.2 14.4 1.2 13.8
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Table 5:

FHR prediction error comparison between our real-time method with an existing offline method for the 

Transabdominal Fetal pulse Oximetry human patient study

Existing Offline Method(MAE in bpm) Our Online Method(MAE in bpm)

Constant Window Count Decaying Average

P1 V1 20.4 13.2 15

P1 V2 6.0 26.4 23.4

P2 V1 5.4 11.4 18.6

P3 V1 13.8 17.4 18.6

P4 V1 4.8 14.4 18.6

P5 V1 10.2 22.2 19.2

P7 V1 5.4 16.2 13.2

P8 V1 9.6 30.6 27.6

P9 V1 12.0 11.4 18.0
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