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The Antibody Repertoire of Colorectal
Cancer*□S

Seong Won Cha‡, Stefano Bonissone§, Seungjin Na¶, Pavel A. Pevzner¶,
and Vineet Bafna¶�

Immunotherapy is becoming increasingly important in the
fight against cancers, using and manipulating the body’s
immune response to treat tumors. Understanding the im-
mune repertoire—the collection of immunological pro-
teins—of treated and untreated cells is possible at the
genomic, but technically difficult at the protein level.
Standard protein databases do not include the highly di-
vergent sequences of somatic rearranged immunoglobu-
lin genes, and may lead to miss identifications in a mass
spectrometry search. We introduce a novel proteog-
enomic approach, AbScan, to identify these highly vari-
able antibody peptides, by developing a customized anti-
body database construction method using RNA-seq reads
aligned to immunoglobulin (Ig) genes.

AbScan starts by filtering transcript (RNA-seq) reads
that match the template for Ig genes. The retained reads
are used to construct a repertoire graph using the “split”
de Bruijn graph: a graph structure that improves on the
standard de Bruijn graph to capture the high diversity of Ig
genes in a compact manner. AbScan corrects for se-
quencing errors, and converts the graph to a format suit-
able for searching with MS/MS search tools. We used
AbScan to create an antibody database from 90 RNA-seq
colorectal tumor samples. Next, we used proteogenomic
analysis to search MS/MS spectra of matched colorectal
samples from the Clinical Proteomic Tumor Analysis Con-
sortium (CPTAC) against the AbScan generated database.
AbScan identified 1,940 distinct antibody peptides. Corre-
lating with previously identified Single Amino-Acid Vari-
ants (SAAVs) in the tumor samples, we identified 163 pairs
(antibody peptide, SAAV) with significant cooccurrence
pattern in the 90 samples. The presence of coexpressed
antibody and mutated peptides was correlated with sur-
vival time of the individuals. Our results suggest that
AbScan (https://github.com/csw407/AbScan.git) is an ef-
fective tool for a proteomic exploration of the immune

response in cancers. Molecular & Cellular Proteomics
16: 10.1074/mcp.RA117.000397, 2111–2124, 2017.

Cancer immunotherapy, which attempts to tackle cancer
using the body’s own immune response, has been very suc-
cessful in boosting the survival rates of patients with leukemia
and other blood cancers (1–3). This field of research is ex-
panding rapidly, and has been extended to include other
cancer subtypes, including solid tumors (4–6).

Immunotherapy is more specific than generic typical cancer
treatments targeting fast-growing cells directly. It can take the
form of cancer vaccines (neoantigens that stimulate an im-
mune response) (7, 8), monoclonal antibodies, which target
cancer cells expressing specific (neoantigenic) proteins (9) or
immune checkpoint inhibitors that activate suppressed im-
mune cells (10–12). The development of new forms of cancer
immunotherapy could be greatly helped by knowledge of the
cancer specific immune response, especially in understand-
ing the antibodies and neoantigens specific to cancer.

This is a challenge because of the millions of distinct anti-
bodies that are circulating in the blood. We still have only
limited knowledge of the antibody responses that target indi-
vidual disease-related antigens and epitopes. There are only a
few known examples in infectious disease (13) and autoim-
mune disease (14). On top of that, recent methods that char-
acterize the antibody repertoire use serum or plasma samples
as their source for antibody analysis. However, the antibodies
in these samples include the pool of all antibodies binding to
multiple antigens, as well as the antibodies produced by
numerous previous immune responses (15–19). Screening the
antibodies based on their binding to preselected antigens
may also not work, as all possible neoantigens existing in a
sample cannot be known, and some important antigens may
be post-translationally modified (20, 21) or cleaved (22).

Another approach to understanding the antibody repertoire
is by isolating the B-cells that respond to a target immuno-
genic antigen. Plasmablasts (23, 20), memory B cells (24–26),
and tissue infiltrating B cells (27–29) have been used to char-
acterize the functional antibody repertoire (30, 31). The
method works, but it requires a dedicated workflow to isolate
the B-cells and sequence the antibody clones. Here, we pro-
pose a more direct method for discovering antibody peptides
in tumor samples.
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Recently, we and others have developed pipelines for iden-
tifying mutated peptides expressed specifically in cancer (32–
34). In our approach, we mine a general transcript resource
(such as The Cancer Genome Atlas Project) to extract tran-
script sequences, identify novel mutations, and junctions, and
then encode them into a complex database. This database
is then searched via a proteogenomic approach, to identify
peptides that are seen only in tumor proteome samples.
Interestingly, our initial search of the Clinical Proteomic Tumor
Analysis Consortium (CPTAC)1 colorectal tumor samples
identified a number of antibody peptide sequences (32). sup-
plemental Fig. S1 shows the example of some antibody pep-
tides identified in the search. At the time, there were questions
regarding the provenance of the discovery, as we did not
expect to find antibody peptides in colon tissue. They could
be antibodies from tumor infiltrating lymphocytes (TIL), circu-
lating antibodies from blood contamination, encoding general
proteome variation, or even mis-identifications. Moreover, our
databases were not specifically designed to capture Ig re-
gions, so we were only identifying peptides from some of the
annotated Ig genes on the human reference.

AbScan is a new tool for identifying all antibody (Ig) pep-
tides in a sample by searching mass spectral data sets
against RNA-seq data sets. AbScan is a proteogenomic tool
that scans transcript and genomic data, preferably, but not
exclusively from the same samples as the proteomic data; it
creates specialized antibody sequence databases that can
search tandem mass spectra. As the antibody sequences are
hypervariable, identifying and characterizing transcripts en-
coding Ig genes is a challenging endeavor. We devised a
special construct called the “split” de Bruijn (SdB) graph to
encode all Ig transcripts in a compact fashion, then show the
power of this approach compare with other methods. AbScan
also uses a customized pipeline to search these antibody
databases and identify expressed antibody peptides, while
controlling for false discoveries. We evaluated sensitivity and
specificity of AbScan by benchmarking it on simulated data
sets, pure antibody mixtures, normal colon tissues, and colo-
rectal cell-lines. We further applied AbScan to 90 colorectal
samples from the CPTAC project and demonstrated that the
antibody repertoire was characterized by significant cooccur-
rence pattern in 163 pairs of antibody peptides and Single
Amino-Acid Variant (SAAV) pairs, and the cooccurring pairs
were correlated with patient survival.

5. EXPERIMENTAL PROCEDURES

Experimental MS Data Sets, Sequence Databases, and Search
Parameters—We analyzed four spectral data sets, which have been
described in previous work.

● 90 colorectal tumor samples (https://cptac-data-portal.georgetown.
edu/cptac/s/S022) (35)

● 30 normal colon biopsies (https://cptac-data-portal.georgetown.
edu/cptac/s/S019) (35)

● Colon cancer cell-lines LIM1215, LIM1899, and LIM2405 (http://
proteomecentral.proteomexchange.org/cgi/GetDataset?ID�PXD000120,
PXD000120) (36), and

● Purified polyclonal antibody mixture (ftp://massive.ucsd.edu/
MSV000081401, MSV000081401) (37)

We searched each tandem mass spectra against three different
databases. These included

● Ensembl database version GRCh38 (38)
● The “split” de Bruijn (SdB) graph based database driven by the

method described in this paper, and
● A de Bruijn (dB) graph based database (34)
We used MS-GF� (version 1.1.0) (39) with the following parame-

ters: parent mass tolerance of 20 ppm, and allowed post-translational
modifications of fixed carbamidomethyl C and optional oxidized Me-
thionine. Common contaminants were excluded. ProteoWizard
(v3.0.3827) (40), and ReAdW (v1.1 and v4.3.1) (41) were used for the
peaklist-generating software. Number of missed and nonspecific
cleavages permitted was 1. Trypsin was used to generate peptides
for three colorectal data sets, and Trypsin, Asp-N, Chymotrypsin,
Elastase were used for the purified polyclonal antibody mixture data
set. A multistage FDR (See Experimental Procedures–“Multistage
search”) was applied to identify the PSMs from the SdB and dB driven
databases (See Supplemental Table 1).

Database Construction Using “split” de Bruijn (SdB) and de Bruijn
(dB) Graphs—AbScan constructs the “split” de Bruijn (SdB) graphs
for multiple RNA-seq data sets from tumors. A de Bruijn (dB) is
constructed for a fair comparison. Followings are the steps to gen-
erate a custom MS searchable database:

1 Read filtering. Filter out all RNA-seq reads not sampling an Ig
gene

2 SdB graph construction. Create a SdB graph based database
from filtered reads

3 Error correction. Identify and eliminate sequencing errors
4 FASTA database construction. The SdB graph is used to gen-

erate an MS searchable FASTA formatted database, as well as scripts
to identify the context of the peptide on the antibody sequence.

For comparing the performance of SdB graphs to dB graphs, we
used an implementation of dB graphs customized for the discovery of
antibody peptides (34).

Read Filter—All antibodies are a combination of relatively fixed
framework (FR), and hyper-variable complementarity determining re-
gions (CDR), with the order given by “FR1, CDR1, FR2, CDR2, FR3,
CDR3, FR4”. The typical lengths of CDRs in human are 15 to 30 nt for
CDR1 and CDR2, and 24 to 36 nt for CDR3 (42). On the other hand,
lengths of RNA-seq read in our data sets varied from 76 to 100 nt.
Therefore, we expect most RNA-seq reads to cover some part of a
framework region, and could use this to filter RNA-seq reads from Ig
genes. In addition, we employed keyword matching to recover non-
mapped Ig gene encoding reads by creating a list of k-mer sequences
from all Ig genes in the IMGT reference (43), and selecting all reads
that matched one of the k-mers.

An appropriate value of parameter k was determined by compari-
son with decoy data obtained by reversing the IMGT reference se-
quences. As k is made smaller, we can quantify the false matches by
the number of reads that match decoy k-mers. For any value of k, the
false discovery rate is given by

1 The abbreviations used are: TCGA, The Cancer Genome Atlas
Project; CPTAC, Clinical Proteomic Tumor Analysis Consortium; TIL,
Tumor Infiltrating Lymphocyte; Ig, Immunoglobulin; Sdb, “Split” de
Bruijn; dB, de Bruijn; FR, Framework Region; CDR, Complementarity
Determining Region; IMGT, The international ImMunoGeneTics infor-
mation system; COAD, Colon adenocarcinoma; DP, Digital Proteom-
ics; SAAV, Single Amino-Acid Variant.
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FDR�k� �
Number of reads matching decoy k � mer
Number of reads matching target k � mer

We selected the smallest value of k that resulted in a FDR below
1%, k � 19 was used for filtering (supplemental Fig. S2). Quality
filtering was applied additionally to trim the part of the poor quality
reads. We trimmed the 3� end of the reads if their quality threshold
were less than the threshold value (10). We excluded the read if the

trimmed part was longer than
2
3

of the read length or the overall quality

of the reads were below than the threshold value (25).
SdB Graph Construction—Typical de Bruijn (dB) graph construc-

tion is as follows: Given a set of reads, the dB graph for this set is
defined as follows: each k-mer from reads is a node in the graph.
Nodes u and v are connected by an edge, if there exists a (k � 1)-mer
in reads whose k-suffix is u and whose k-prefix is v. dB graphs are a
powerful construct because they help remove redundancy in read
coverage, and can be efficiently constructed without the need to
compare all pairs of reads to test for overlap (44–46). In the ideal
case, each of the Ig genes is a path in the graph, and each path in the
graph corresponds to a putative Ig gene. Errors can arise in dB graph
construction if two unrelated reads share the same k-mer (we denote
these as “false-positive” overlaps), or if reads from the same molecule
do not share a k-mer because of sequencing errors (false-negatives).

False edges in the dB graph can also arise because of repeated
k-mers. Specifically, a repeated substring of size greater than or equal
to k will lead to false edges in a k-mer based dB graph. The error
could be controlled by selecting larger values of k, but that would
result in a higher false-negative rate. We reasoned that the exact
match requirement in k-mer dB graph is restrictive. For example,
consider two reads that overlap over 40 bp. The probability that this
overlap contains k � 30 consecutive nucleotides with no error in both
reads is 65.5%. On the other hand, the probability that this overlap
contains 30 consecutive nucleotides with at most one error is 93.0%.
Therefore, allowing for an approximate match improves sensitivity
from 65.5% to 93.0%. See supplemental Method - “Analytical com-
parison of SdB and dB graphs” for a rigorous analysis.

An alternative approach is to do an error-correction before match-
ing. BayesHammer uses a Bayesian approach on 1-neighborhoods of
k-mers to correct reads, before constructing a k-mer dB graph (47). In
Ig genes, however, we use RNA data to identify variation, and the
variable coverage makes it difficult to distinguish sequencing errors
from true genetic variation. The SdB graph handles this problem of
nonuniform coverage through correction on local nodes like the IGdb,
Trinity and IDBA-tran (48, 49, 34).

On top of that, SdB graph applies a binning technique to solve the
approximate matching problem efficiently. To obtain 1-neighbor-
hoods of k-mers, we need the pairwise distance of every existing
k-mers observed from the reads, which may increase the computa-
tion time for large value of k. We divided the k-mers into two parts:
one (r-mer) for binning, and the other (l-mer) for 1-neighborhood
testing. The size of the bin decides the average number of nodes
required the pairwise distance computation. Note that the SdB graph
is a generalization of prior approaches with bin size of k (respectively,
0) corresponding to a standard dB graph (respectively, BayesHam-
mer like graph). In our tests, we did some empirical tests to choose r
and l and found the performance to be robust to difference choices.
Therefore, we worked with r � 10, l � 20, leaving the optimization of
parameters to future work. However, to allow for fair comparisons, we
tested the SdB graphs against dB graphs using a range of values
of k.

Given r, l, we build a SdB graph as follows
1 Each node initially corresponds to a distinct (r � l)-mer from the

read. Node u � (x, y), in which x is a length r of prefix of the node, and
y is a length l of suffix of the node.

2 Consider nodes u � (x, y), and v � (x�, y�). We connect u and v by
an edge, if the r � l - 1 suffix of u matches the prefix of v, and a read
matches the combined sequence. The weight of an edge (u, v) is the
number of reads that contain the combined sequence. The weight of
node u is the maximum of the sum of incoming or outgoing edge-
weights. This operation mimics a standard dB graph construction.

3 Consider nodes in order of decreasing weights, and repeat the
following until no node is left

(a) Pick node u � (x, y). For all nodes u� � (x�, y�), merge u with u�
(and remove from further consideration) if dh (x, x�) � 0, dh (y, y�) � 1
and u is the heaviest, in which dh (x, x�) is hamming distance between
x and x�. Merge any multiedges into a single edge of weight equal to
the sum of the weights of the merged edges. Note that the actual
implementation speeds this computation by hashing on the prefix
strings.

The construction of a SdB is illustrated in supplemental Fig. S3. A
(3, 3) SdB graph successfully compacted the data with no false-
positives or false-negatives except because of sequencing error. As
supplemental Fig. S3 shows, there are two distinct paths, corre-
sponding to the two genes. However, because of sequencing error,
we see a small branching in gene 1. This can be controlled by an error
correction procedure, described in the next section. In contrast, sup-
plemental Fig. S4 shows examples of dB graphs with the choice of
k � 4 and k � 5 using same reads. A 4-mer dB graph connected false
edges at node “GAAT”, producing false paths combining gene 1 and
2. On the other hand, a 5-mer dB graph failed to connect edges in
both genes, and neither gene could be represented by a single path.
In the Results section, we systematically compare the performance of
SdB graphs and dB graphs.

Error Correction—Sequencing errors also result in false overlaps.
An error toward the end of the read (within k nucleotides) leads to a
“tip” in the dB graph, whereas an error in the middle of the read leads
to a “bulge.” After its construction, the SdB graph can be viewed as
a regular (r � l)-mer graph; graph simplification methods, such as tip
clipping and bulge removing can be applied. For transcript assembly,
uniform coverage pruning may delete some true sequences, so we
use a proportional approach to rescue lower-abundance transcripts
similar to the one used by IGdb, Trinity and IDBA-tran (48, 49, 34).

Assuming for simplicity that sequencing errors are independent
and identically distributed with �s denoting the nucleotide error prob-
ability. The number of reads matching a specific k-mer is proportional
to (1 - �s)

k. On the other hand, the number of reads matching a k-mer

with a mismatch at a specific position is proportional to
1
3
� �s � (1 -

�s)
k�1. The expected ratio of read depths of the true edge to any false

edge is given by

�1 � �s�

1
3

� �s

The expression is usually � 1, for typical values of �s � 1%.
Therefore, sequencing errors can be overcome if the sequence cov-
erage is high enough.

AbScan differentiates true mutations from sequencing errors using
the same idea. In ideal case, any genes conveying mutations are
regarded as separate genes and the graph maintains separate paths.
However, if two genes are separated only by a few polymorphisms,
then the graph may merge some nodes in paths. For SdB graphs, an
exact match requirement for the r-mer would result in a bulge where
one collection of r-mers carry the mutation, and the other collection
contain r-mers carrying the reference nucleotide. In the case of a true
mutation, these bulge would be well-supported by reads, and not
removed during error correction.
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FASTA Conversion—To use the SdB graph to construct a FASTA
database, we associated a sequence with each node. The sequence
of the source is the r-mer; the sequence associated with the sink is
the last nucleotide of its r-mer concatenated with its l-mer. For all
nonsource, nonsink nodes, the associated sequence is simply the last
nucleotide of the r-mer. The sequence of a path in the graph is the
concatenation of sequences associated with nodes on the path. A
compact FASTA database is constructed from the SdB graph by
enumerating the paths as described. The sequences in the path were
converted to the amino acid FASTA format to generate a database for
the MS/MS database search tools, using the SpliceDB tool (32) for
this conversion. 69.3MB of FASTA form amino acid database was
created, concentrating on the antibody sequence generated from
162.7GB of RNA-seq bam files.

Multistage Search—The antibody database adds some noise to the
search and it is possible that a PSM to a known peptide has a better
score against an antibody peptide, leading to false identification. As a
conservative strategy to avoid false identifications, we use a modified
multistage search (33). We first searched all spectra using MS-GF�
against a known protein database (Ensembl version GRCh38) (38). All
PSMs identified as a non-Ig known peptide from the spectrum level
1% FDR search of the Ensembl database were excluded from the
second search. Spectra that could not be matched were searched
using MS-GF� against the antibody database, using a target-decoy
strategy with 1% spectrum level FDR.

Comparison to rnaSPAdes—As transcriptome assembly is a well-
established research area, we built database using a popular tran-
scriptome assembly tool, rnaSPAdes (50) to compare with AbScan.
To make a fair comparison, we applied the identical read set for
assembly. SPAdes version 3.9.0 was used with options “-only-as-
sembler” and “-rna”. The output nucleotide sequence translated to
FASTA form amino acid sequence for MS/MS search.

Identifying Antibody Peptide Location—For all identified antibody
PSMs, we found the most likely position in the antibody structure. To
do this, we recovered the nucleotide sequence of the peptide from
the SdB graph, then compared it to sequences with the IMGT se-
quence to find the best matched position of each PSM to IMGT
reference sequences. Finally, we incorporated gaps to the position
using IMGT multiple sequence alignments to get a normalized posi-
tion. Fig. 1 shows the expected position of the peptides we identified
from the colorectal tumor MS/MS data and polyclonal antibody
MS/MS data. Each horizontal black line represents the distinct pep-
tide sequence. Peptides that do not map to IMGT reference se-
quences are not displayed.

Statistical Test for Antibody Enrichment—The two-stage search
resulted in PSM identifications with spectra matching “known pep-
tides” and antibody peptides (SdB database). If in some sample, the
MS/MS data was known to not contain any antibody peptide (e.g.
cell-line), then any PSM in the SdB database corresponds to a false
identification. The number of false identifications is expected to grow
linearly with the number of known peptide identifications. Therefore,
we considered the fraction

# of PSMs in SdB database
# of PSMs in known peptide database

for all MS/MS data, and considered the Null hypothesis that this
fraction was constant in all cases, colorectal tumor, colorectal normal,
and colorectal cell-lines. To calculate the p values, we applied Pear-
son’s �2 test in a 2 	 2 contingency table.

�2 � �
i�1

4
�Oi � Ei�

2

Ei

in which

�2 � Pearson’s cumulative test statistic,
Oi � Number of observation of type i
Ei � Theoretical frequency of type i
The p value was calculated from the �2 distribution table.
Antibody and SAAV Peptides Correlation Test—Consider a table,

where columns correspond to samples (each column is a different
sample), and rows correspond either to SAAV peptides (possible
antigens) or to antibody peptides. The cells mark the presence or
absence of the peptides in the specific sample. For any pair of
antibody and SAAV peptides, we used the Fisher’s exact test to
measure correlation of occurrence. As many pairs were used, we
used a target-decoy based approach to compute the false discovery
rate for any p value cut-off.

For each row, the columns were permuted independently so that
any correlation between two rows (an antibody peptide, SAAV pep-
tide pair) was just by chance, and a Fisher exact test was used to
compute the correlation among all pairs. Highly correlated pairs of
antibody and SAAV peptides were identified by applying a 5% FDR
threshold.

Measuring Immune Response—Measurement of the immune re-
sponse for each individual was accomplished by counting the number
of antibody PSMs. As the total number of spectra and their quality
were not identical for every sample, the antibody PSMs were normal-
ized by the total number of PSMs to the “known database” search.
Fig. 2(c) shows the distribution of the normalized immune response of
each individual in both tumor and normal samples. We simply took
the top 45% and bottom 45% group of individuals in terms of their
normalized immune response.

Survival Rate Comparison—We designed a method that takes a
collection of peptides, and samples, groups samples based on cooc-
currence of peptides, and tests if the individual groups have different
survival times. Specifically, we used the following strategy:

1 Represent each peptide p as a binary vector p over all samples
with pi � 1 (respectively, pi � 0) indicating the presence (respectively,
absence) of peptide p in sample i.

2 Cluster the peptide vectors into two groups (arbitrarily labeled �, �)
using 2-means clustering.

3 Assign score Si to each sample i using.
Si � (Number of “�” assigned peptides in sample i) � (Number

of “�” assigned peptides in sample i).
4 Pick two sets of samples: Bottom (45%) of all samples with the

lowest score, and top (45%) with the highest score.
5 Perform the Kaplan Meier log-rank test on the two groups of

samples to test for correlation with clinical outcome.
We performed this test using all antibody and mutated peptides

that significantly cooccurred in the samples exceeding a 5% FDR
threshold of correlation test. The test statistic could include some
unknown bias, and it wasn’t clear if they followed the �2 distribution
used to compute a p value. To test this, we set two groups of patients
in which each group included 45% of random samples without
replacement, and then we calculated the test statistics of two
groups of random patients by log-rank test. We repeated the proc-
ess 10,000 times to create the distribution of test statistics (sup-
plemental Fig. S5).

RESULTS

Analytical Comparison of SdB and dB Graphs—We com-
pared the performance of SdB graphs versus dB graphs using
both analytical methods as well as empirical data from simu-
lations. Let ps denote the probability that a randomly chosen
pair of nucleotides is identical. Thus, the probability of a false
k-mer match is ps

k. To allow for fair comparisons, parameters
r, l, k were selected so that the probability of an (r, l) match
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among unrelated reads in a SdB graph is the same as
the probability of a k-mer match in dB graph. Specifically
(Supplementary Methods—“Analytical comparison of SdB
and dB graphs”),

ps
k � ps

�k�l � � �1 	 l
1 � ps

ps
� (Eq. 1)

k � r 	 l 	 logps �1 	 l
1 � ps

ps
� (Eq. 2)

For any r, l, we chose k to be the largest value satisfying
constraint 2. We also computed the probability of false over-
laps. (See Supplemental Methods–“Comparison between the
SdB and dB graph mathematically”). Using these calculations,
we can show that SdB graphs have significantly lower false
negative rates compared with dB graphs. For example, let

ps �
1
4
. When r � 10, l � 20, the choice of k � 27 equated the

false overlap rates for both methods at 5.55 � 10�17. However,
for an overlap of 40 bp, � � 0.01, we computed a false
negative rate of 13.9% for the dB graphs versus a rate of 2.2%
for the SdB graphs.

To test these theoretical results, data was simulated by
generating the 100, 000 overlapping regions, of length from
30 to 100, with uniform sequencing error rate �. Reads were
connected by a path in the dB graph, if there was at least one
k-mer consecutive sequence without an error. Similarly, they
were connected by a path in a SdB graph, if there was an (r �

l)-mer in which the first r nucleotides had no error and the
following l-mer had at most one mismatch. supplemental Fig.
S6 showed a complete concordance between theoretical and
simulated results. The sensitivity for all methods increases
with length of overlap and decreases with higher �. SdB
graphs consistently outperform dB graphs.

Comparison on Simulated Antibody Reads—To provide a
more direct comparison of the performance of SdB graphs
and dB graphs on Ig sequences, we employed a second
simulation, starting with a single IMGT reference antibody
sequence denoted by A. Note that an antibody (supplemental
Fig. S7) is a “Y” shape protein and consists of a variable
region and constant region. The variable region is formed by
selecting a gene from each of 3 sets V, D, and J which are
brought together by recombination and splicing. The com-
bined variable region itself can be divided into a framework
(FR) which is relatively constant, and three hypervariable com-
plementarity determining regions (CDRs; supplemental Fig.
S7) (42). In the simulation, A was created by joining known V,
D, and J regions (IGHV1-18*01, IGHD1-1*01, IGHJ1*01; (51);
supplemental Fig. S8). We generated a collection D of decoy
sequences in which each nucleotide was chosen uniformly at
random, except for the insertion (at a random position) of a
single substring of A. The insertions were of varying lengths
ranging from 20 to 26. The antibody reference A and decoy
gene sequence collection D were used as a template to

simulate reads, using the tool wgsim (https://github.com/lh3/
wgsim), with sequence error rate set at � � 1%. A dB graph
and a SdB graph was built using these reads to measure the
false positive and false negative results from these graphs.

Let G � (V, E) denote the dB or SdB graph, depending on
context, whereas the graph GA � (VA, EA) is constructed
solely using A. In the ideal scenario, G and GA should be
identical. Therefore (supplementary Methods), the false neg-
ative rate (denoted by F) can be estimated using

F �
�E � EA�

�EA�

The false positive rate was measured indirectly, using di-
vergence (denoted by D)

D �
�n�VA ��ni � 1� 	 �no � 1��

�EA�

in which ni is the in-degree and no is the out-degree of node
n�VA. The divergence provides a measure of false connec-
tions for the antibody sequence A.

Note that false positive edges can also arise because of
sequencing errors. However, most dB construction corrects
for such errors by choosing an appropriate threshold for cov-
erage, along with other methods (48, 49, 34). However, the
appropriate threshold is different for each value of coverage.
We chose a principled method for choosing coverage to
remove false positive edges because of sequencing errors for
both dB, and SdB. After coverage filtering, the false negative
rate and divergence was measured as a function of increased
coverage (Fig. S9). Supplemental Fig. S9 shows an explicit
tradeoff among false negatives, and divergence (false posi-
tives) for dB graph methods. At any specific fixed coverage
parameter (e.g. 10	), the false negative rate of the dB graph
increases with increasing values of k, even as divergence
decreases, making it difficult to simultaneously improve both
metrics. In contrast, SdB graphs show consistently lower
divergence and false negatives for all coverage values.

Read Filtering—Before we construct the split de Bruijn
graph, we need to collect the reads that encode Ig gene
transcripts (See Experimental Procedures - “Read filter”). We
tested the quality of read filtering by a partial alignment of
filtered reads to the reference antibody sequences. A virtual
antibody reference was set to represent the variable regions
of all antibodies. We adjusted the gap between this virtual
antibody and each individual antibody using the IMGT anti-
body reference with gap. The matching k-mer was used to
anchor the alignment, and the extent of the alignment was
determined simply by the length of read on each side of the
k-mer. The anchored position of the read was transferred to
virtual antibody position and used to estimate the overall
coverage. We counted the number of reads passing through
each unique position of the virtual antibody. supplemental Fig.
S10 describes a coverage because of the partial alignment of
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all filtered reads, and shows that the reads are filtered without
apparent bias except at the very end of the sequence.

MS-MS Based Discovery of Antibody Peptides—We used
four mass spectrometry data-sets. To test the algorithms, a
data-set of spectra acquired from a purified polyclonal anti-
body mixture (antibody purified) was used (37). To test for
antibody peptides in tumor samples, we used a collection of
MS/MS spectra from 90 distinct colorectal tumor samples
from the CPTAC project (35) (colorectal tumor). As negative
control, we used spectra acquired from 30 normal colon
biopsies (35) (colorectal normal). As a second control, we
used spectra from colon cancer cell-lines LIM1215, LIM1899,
and LIM2405 (denoted as colon cell-lines) (36).

SdB and dB graphs were designed and implemented, using
162.7GB RNA-seq reads of 90 individuals downloaded from
The Cancer Genome Atlas (TCGA) repository (52). The two
approaches resulted in a 69.3MB and 107.8MB FASTA-for-
matted amino acid database. A multistage search (See Ex-
perimental Procedures Multistage Search) using known pro-
teins and SdB graphs (respectively, known proteins and dB
graphs) was conducted to identify peptide spectrum matches
(PSMs). A summary of the results of those searches is pre-
sented in Table I. The list of identified spectra and other
details are presented in supplemental Table S1 - “Link to the
list of PSM and spectrum image.”

Note that the antibody-purified data set presents an inter-
esting challenge, as the SdB graph was constructed from
RNA of completely different individuals. Even so, our search
identified 16,404 antibody PSMs (3167 peptides) out of
116,018 total spectra (PSM identification rate 14%). Fig. 1A
shows that the identified peptides cover the entire space of
the antibody. Table I also allows for a comparison of the SdB
graph and dB graph databases, as both use the same read
set as their inputs. At identical FDR cut-off (1%), SdB graphs
identify 3.3	 as many PSMs as the dB for the colorectal
tumor, and 1.7	 as many PSMs for antibody purified data-
set, consistent with simulation results. On the other hand, the
number of PSMs identified in the colorectal normal, and cell-
line colorectal samples are similar, validating the proposition
that SdB graphs can filter out erroneous PSMs at the same
rate as dB graphs. Therefore, SdB graphs reduce both false
positives and false negatives in the real data, identifying more
true PSMs without increasing false PSMs.

In the sample matched colorectal tumor spectra, 54,909
PSMs (1,940 peptides) were identified. We asked if these

large numbers of antibody peptides originated from tumor
infiltrating lymphocytes, or from other sources. For example,
these immunoglobulin identifications could simply corre-
spond to floating antibodies from blood contamination, or
they could be misidentified (modified) peptides. In the first
case, we would expect to see similar numbers of antibody
peptides in colorectal tumor and colorectal normal data set. In
the second case, we would expect to see similar numbers of
antibody peptides in colorectal cancer, and colon cell-lines
(Fig. 2A).

We normalized PSM counts to the number of PSMs in the
Known DB before comparing across samples (Fig. 2B). The
normalized PSM count in the colorectal normal data-set was
only 4.69% of the colorectal tumor counts (p value 
 0.0001;
See Experimental Procedures, Statistical Test for Antibody
Enrichment). The normalized PSM count in colon cell-lines
was 0 consistent with the observation that TILs were the
source of the antibody peptides observed in the colorectal
tumor. Although it is likely that the actual numbers would
depend on experimental handling of tumor interstitial fluid
(TIF), the tumor and normal cells were processed in an iden-
tical fashion, and would have similar biases in terms of TIF
handling. We additionally tested the samples for presence of
biomarkers, and identified 113 PSMs matching CD38 in tumor
samples compared with 1 PSM in normal samples. Similarly,
we observed CD74 predominantly in tumor samples (684
PSMs versus 34 PSMs). These represent significant enrich-
ment even after accounting for the 3x larger number of tumor
samples. CD38 is a glycoprotein found on the surface of many
immune cells including CD4�, CD8�, B-lymphocytes and
natural killer cells (53, 54), whereas CD74 has been reported
to possibly reflect an intratumoral immune response with TIL
association (55).

The assembly of RNA-seq reads is a well-established
research area of genomics (44, 48, 49). However, genome
assembly tools are designed to be general, and may not do
a good job of assembling Ig genes. As the reconstruction of
Ig genes from the RNA-seq reads was a key part of our
pipeline, we asked if the use of the RNA assembly tools
could provide better results. To test this, a popular tran-
scriptome assembly tool, rnaSPAdes (50), was used to as-
semble RNA-seq reads from one colorectal tumor sample.
We searched the MS/MS data from the same sample against
databases constructed using rnaSPAdes and SdB graphs. The
number of spectra identified using the SdB graph method was
2450, compared with 528 using rnaSPAdes, suggesting that
general purpose transcript assembly tools were not suitable
for studying the antibody repertoire at the protein level.

SAAV Discovery—We used the SAAV peptides from the
results of previous studies (33, 34), but with additional filter-
ing. We remove all peptides in which the mutation has a mass
difference of one. We also enumerate all reference peptides
with common modifications that shared some sequence tag
with the mutated peptide and scored them to see if a refer-

TABLE I
Number of identified PSM (peptides)

Data set Sdb Graph DB DB graph DB Ensembl DB

Cell line 0 (0) 0 (0) 117,679 (14,527)
Normal 711 (113) 700 (96) 1,705,785 (85,956)
Tumor 54,909 (1940) 16,364 (1088) 5,573,094 (129,886)
IG purified 16,404 (3029) 9,576 (2338) 989 (246)
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ence peptide could better explain the data. The final list of
mutated peptides is presented in supplemental Table S3, and
the annotated mass spectra are in MassIVE, and link is pro-
vided in supplemental Table S1. The filtered list contains 677
SAAV peptides.

Antibody Peptide-SAAV Peptide Correlation—We asked if
the antibody peptides discovered in the colorectal tumor data
set could be targeting specific neo-antigens. The neo-anti-
gens are possibly mutated peptides that are recognized by
TILs and antibodies. Many somatically mutated peptides had
been detected in the colorectal tumor data in the original
seminal study (35) and our own group’s re-analysis (34). sup-
plemental Table S4 shows the occurrence of mutated nonref-
erence peptides, and all antibody peptides in each of the 90

samples. As peptides that are polymorphic in the population
could still be somatic in individuals, and some polymorphisms
are known to be functionally deleterious, we used all mutated
nonreference peptides.

For every antibody peptide-SAAV peptide pair in this table,
a calculation was made to determine the significance of cooc-
currence using the Fisher exact test. Because many pairs
were to be tested, a target-decoy approach was used to
compute the false discovery rate for significant pairs. The
decoy statistics were computed by permuting the occurrence
of each peptide in the sample. Fig. 3 shows the distribution of
p values computed from the target and the decoy table. At a
nominal p value threshold of 0.00025, we see 163 pairs that

(B)

(A)

FIG. 1. Relative locations of identified antibody peptides. Each horizontal black line represents a distinct peptide sequence. Trypsin was
applied for the colorectal tumor MS/MS spectra assessment, and four different enzymes were applied for polyclonal antibody MS/MS spectra
assessment. Both spectra sets were searched against the same antibody database constructed using tumor RNA-seq reads driven by TCGA.
A, Antibody PSMs from colorectal tumor MS/MS data. B, Antibody PSMs from polyclonal antibody MS/MS data.
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exceed this threshold, versus 5 decoy pairs, suggesting a
small false discovery rate of � 5%.

One example of these cooccurring pairs is the the antibody
peptide NTLYLQMDSLR, and SAAV peptide AAQAQGQ-
SCEYSLMVGYQCGQVF(Q3R). The antibody peptide NTL-
YLQMDSLR belongs to variable region of IGHV3–64D*06 and
the mutated peptide pep � AAQAQGQSCEYSLMVGYQCG-
QVF(Q3R) belongs to the gene FBLN1 reported to be down-
regulated in colorectal cancer cells (56). Among 90 samples,
both peptides are expressed in 26 samples, and neither is
found in 42 samples, giving a Fisher exact test p value of
2.59 	 10�6. supplemental Fig. S11 shows examples of pep-
tide spectrum matches of these peptides. The mutation in
peptide pep is a known polymorphism (dbSNP rsID136730).
However, the mutation is very low frequency in normal pop-
ulation surveys 0.14% in ExAC, and 0.04% in 1000 Genomes
project (57) compared with its occurrence in 34 out of 90
samples. It is also known that nonsomatic, self-peptides can
elicit an immune response against tumor cells (58). Therefore,
the functional relevance of pep cannot be rejected based
solely on its classification as (non)somatic. Finally, it is impor-
tant to assert that cooccurrence does not indicate cooccur-
rence only between the specific antibody peptide and the
SAAV, but rather between the antibody carrying NTLYLQMD-
SLR and some peptide in the mutated version of FBLN1
product. In fact, we see another antibody peptide LSCAAS-

GFSFR in the FR1/CDR1 region that also cooccurs with
pep (p value: 9.93 	 10�5). Therefore, we did not filter anti-
body peptides by their location (CDR/FR) before testing for
correlation.

We also used both cooccurrence and coabsence to test
correlation. Although “absence” of a peptide may be because
of experimental protocol, coabsence is also indicative of a
correlation. As an extreme example, the pair of antibody pep-
tides NGPSVFPLAPSSK and mutated peptide AGRPVI-
CATQMLESMIK were observed in 29 samples and 28 sam-
ples, respectively. If they had no correlation, then over the 90
samples, we would expect 9 samples to carry them both, just
by chance. Instead we see zero (p value: 1.44 � 10�6). This
suggests that the existence of this mutated peptide (perhaps
indirectly) reduced the affinity to this specific antibody leading
to a negative correlation, and the effect was independent of
the event that we missed identifying the peptides.

Correlation Between Antibody Expression and Survival Sta-
tus—The antibody peptide repertoire might provide a snap-
shot of the immune response to cancer. We anticipated that
the patients with higher immune response could have a dif-
ferent clinical outcome than those with lower immune re-
sponse because of the role of TILs in mediating response to
cancer (59–61).

We first measured the immune response of an individual as
the fraction of identified peptides that came from the antibody

FIG. 2. Comparison of identified antibody PSMs per experiment and sample. A, The source of antibody peptides in different samples.
PSMs that match nonreference peptides are either mutations or antibody peptides. Antibody peptides should not be observed in cell-lines.
However, floating antibodies could be observed in normal colorectal samples. Antibodies from Tumor infiltrating lymphocytes should only be
observed in tumor samples. B, Occurrence of antibody peptides in tumor, normal, and tumor derived cell-lines are significantly different for
MS/MS spectra of tumor, normal, and cell-line colorectal samples. Each spectra set was searched against the Ensembl GRCh38 protein
database (38) and a custom antibody database. The number of PSMs identified as antibody peptides were 54K (colorectal tumor), 711
(colorectal normal), and 0 (Cell-lines). The PSM counts were normalized against the number of PSMs to known peptides (5.5 M in colorectal
tumor, 1.7 M in colorectal normal, and 0.1 M in Cell-lines). The normalized ratios suggest that a significantly larger fraction of the colorectal tumor
PSMs are antibody peptides, compared with the other two data-sets (Pearson’s �2 p value 
 10�4). C, The distribution of the number of
samples carrying a normalized fraction of antibody peptides. COAD samples carry a higher fraction of antibody peptides.

FIG. 3. Peptide correlation test. We
tested the correlation between the anti-
body peptides and mutated peptides. For
every pair of peptides, we counted the
number of samples cooccurring with
these peptides and then we applied
Fisher exact test to calculate the p value.
For example, the peptide pairs of NTL-
YLQMDSLR (antibody) and AAQAQG-
QSCEYSLMVGYQCGQVF(Q3R) (SAAV
peptide) cooccurred in 26 samples, and
there was a coabsence in 42 samples. It
was revealed that 68 of the 90 samples
shared the cooccurrence of this pair with
a p value of 2.60 	 10�6. We drew the
histogram of p values of all pairs in sup-
plemental Table S4. We also drew the
histogram of the p values from the decoy
table generated by the random permuta-
tion of values. A 5% FDR threshold was
applied to collect the high correlated pairs.
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repertoire, and identified a subset of individuals as high-
responders and low-responders (See Experimental Proce-
dures, Measuring immune response, and Fig. 2C). We used
the days-to-death values to get the Kaplan-Meier survival
estimator for the two groups. Next, we used a log-rank test to
compute a p value for the difference between the two curves.
The p value was 0.75, indicating that we could not reject the
Null hypothesis (supplemental Fig. S13).

We also considered the possibility that some, but not all
peptides mediate a positive clinical outcome. Further, these
peptides would be expressed in multiple individuals with sim-
ilar outcomes. To test this hypothesis, we designed a method
that takes any group of peptides, and clusters samples based
on coexpression, but without knowledge of the clinical out-
come in the individuals (See Experimental Procedures, Sur-
vival Rate Comparison). For a given collection of peptides, we
tested the null hypothesis that there is no correlation among
sample grouping and the clinical outcome.

We computed an empirical null distribution by choosing
random subsets of individuals, and performing the log-rank
test against clinical outcome. supplemental Fig. S5 shows
that the test statistic under null hypothesis closely follows the
theoretical �2 distribution.

In contrast, when we tested sample grouping using the
correlated antibody, SAAV peptide pairs (See Experimental
Procedures, Antibody and SAAV Peptides Correlation Test),
we observed a significant differential response with p value:
0.032 (Fig. 4A). We also tested this method using two other
groups of peptides. When we used all antibody peptides we
also obtained a differential response with p value 0.040 (Fig.
4B). However, testing with all mutated peptides, we did not
observe significant differential response, obtaining a p value of
0.522 (Fig. 4C). The small number of samples implies that our
study is not fully powered and the results need to be replicated
in larger cohorts. Nevertheless, they do show that antibody
expression could be correlated with the clinical outcomes.

Discussion and Future Study—Understanding the immune
response to cancer is key to cancer immunotherapy. Current
approaches use serum or plasma samples and specifically
focus on isolating differentiated B cells for analyzing antibod-
ies. However, the serum antibody repertoire may contain a
larger pool of antibody sequences, not just the ones respond-
ing to tumor neo-antigens. In this paper, we mined spectra
acquired from isolated (colorectal) tumor cells, and identified
a large number of antibody peptides. Our results suggest that
infiltrating lymphocytes in the tumors generate antibodies in

FIG. 4. Kaplan-Meier survival estimator. For any subset of pep-
tides, we bi-partioned peptides based on coexpression in samples.
Next, we scored each sample based on the homogeneity of peptides
from a single partition in that sample (Methods). The highest and
lowest scoring samples (45% each) were grouped, and were tested
to determine the clinical outcome. The Kaplan-Meier survival

estimator and log-rank test were applied to test the difference of the
clinical outcome of two groups. When testing with cooccurring mu-
tated peptide/antibody peptide pairs, we observed a significant cor-
relation with survival (Plot (A): p value � 0.032). In contrast, the
correlation was reduced when testing with only antibody peptides
(Plot (B): p value � 0.040), and there was no-correlation when testing
with mutated peptides. (Plot (C): p value � 0.522).
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response to the tumor. They also suggest that somatic coding
mutations in the tumor genome act as neoantigens triggering
antibody generation. We observed recurrence of antibody and
mutated peptide sequences that cannot be explained as
chance events, and showed a positive association between
clinical outcome (survival time), and the antibody response.
Together, the results underscore the need for systematic
analysis of the tumor antibody repertoire.

The identification of antibody peptides using tandem mass
spectrometry is technically challenging. In the ideal case, the
spectra should be searched against transcript data from dif-
ferentiated B-cells from the same individual. However, that
data may not always be available. Moreover, it is not known if
circulating B cells have the same antibody repertoire as the
tumor infiltrating lymphocytes. In this paper, we used RNA-
seq data, not from isolated B cells, but from the same tissue
that the proteome was extracted. Nevertheless, we managed
to get significant coverage of antibody peptides. We identified
a large number of peptides even when we used MS data from
unmatched samples. Future research will focus on the differ-
ences among different sequencing approaches, such as
IG-seq, and RNA-seq.

The hyper-variability of antibody sequences makes it chal-
lenging to construct databases that can be searched with MS
spectra. We proposed a new structure, called the SdB graph,
and showed improved performance in compressing and cre-
ating MS-searchable databases relative the dB graphs. The
SdB graphs are later converted into Fasta formatted data-
bases that can be used for search with any tool. The software
for developing SdB graph should be generally applicable for
any hypervariable region, and is available for download. These
techniques described here can be further improved and those
will be the focus of future research.

We found that the SdB graph database generated from
RNA-seq of TCGA tumor samples was also helpful in identi-
fying antibodies from completely different samples. This
raises the possibility that multiple RNA-seq samples from a
specific tumor type could be used as a universal database,
reducing the need for matched RNA and protein samples for
decoding the immune repertoire. This will be explored in
future work. At the end, we also hope that our preliminary
results spurs a further investigation of the clinical outcome
based on immune system response, and the development of
diagnostic tools and therapies that can emerge from an anal-
ysis of the tumor immune repertoire.
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