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The increasing frequency of flooding events in urban catchments related to an increase in impervious sur-
faces highlights the inadequacy of traditional urban drainage systems. Low Impact Development (LID)
techniques have proven to be a viable and effective alternative by reducing stormwater runoff and
increasing the infiltration and evapotranspiration capacity of urban areas. However, the lack of adequate
modeling tools represents a barrier in designing and constructing such systems. This paper investigates
the suitability of a mechanistic model, HYDRUS-1D, to correctly describe the hydraulic behavior of per-
meable pavement installed at the University of Calabria. Two different scenarios of describing the
hydraulic behavior of the permeable pavement system were analyzed: the first one uses a single-
porosity model for all layers of the permeable pavement; the second one uses a dual-porosity model
for the base and sub-base layers. Measured and modeled month-long hydrographs were compared using
the Nash-Sutcliffe efficiency (NSE) index. A Global Sensitivity Analysis (GSA) followed by a Monte Carlo
filtering highlighted the influence of the wear layer on the hydraulic behavior of the pavement and iden-
tified the ranges of parameters generating behavioral solutions. Reduced ranges were then used in the cal-
ibration procedure conducted with the metaheuristic Particle swarm optimization (PSO) algorithm for
the estimation of hydraulic parameters. The best fit value for the first scenario was NSE = 0.43; for the
second scenario, it was NSE = 0.81, indicating that the dual-porosity approach is more appropriate for
describing the variably-saturated flow in the base and sub-base layers. Estimated parameters were val-
idated using an independent, month-long set of measurements, resulting in NSE values of 0.43 and 0.86
for the first and second scenarios, respectively. The improvement in correspondence between measured
and modeled hydrographs confirmed the reliability of the combination of GSA and PSO in dealing with
highly dimensional optimization problems. Obtained results have demonstrated that PSO, due to its easi-
ness of implementation and effectiveness, can represent a new and viable alternative to traditional opti-
mization algorithms for the inverse estimation of unsaturated hydraulic properties. Finally, the results
confirmed the suitability and the accuracy of HYDRUS-1D in correctly describing the hydraulic behavior
of permeable pavements.

� 2016 Elsevier B.V. All rights reserved.
1. Introduction

Progressing urbanization, connected with the demographic
growth of the last decades, has led to an increase in impervious
surfaces in urban catchments at the expense of natural areas. This
long-term process has resulted in the alteration of the natural
hydrological cycle by reducing the infiltration and evaporation
capacity of urban catchments, increasing surface runoff, and reduc-
ing groundwater recharge. While some studies highlighted a
decrease of recharge as a result of an increase of impervious
surfaces, other studies identified an increase in recharge due to
the leakage of water from an urban infrastructure, such as sewer
and water supply systems. The effect of urbanization on ground-
water recharge is discussed in detail by Price (2011).

Another important factor is that the frequency of extreme rain-
fall events, characterized by high intensity and short duration, is
expected to increase in the near future as a consequence of climate
change (Kundzewicz et al., 2006; Min et al., 2011). For example, a
recent study of Wasko and Sharma (2015) identified a strong cor-
relation between intense precipitation peaks and high tempera-
tures. They concluded that the expected global warming could
lead to an increase of short-duration floods. The correlation
between atmospheric temperature and extreme rainfall intensities

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jhydrol.2016.07.030&domain=pdf
http://dx.doi.org/10.1016/j.jhydrol.2016.07.030
mailto:giusep.bru@gmail.com
http://dx.doi.org/10.1016/j.jhydrol.2016.07.030
http://www.sciencedirect.com/science/journal/00221694
http://www.elsevier.com/locate/jhydrol


G. Brunetti et al. / Journal of Hydrology 540 (2016) 1146–1161 1147
was also confirmed in other studies (e.g., Westra et al., 2014). This
will be accompanied by a more frequent occurrence of flooding
events in urban areas (Carbone et al., 2015b).

The traditional approach to urban drainage systems focuses on
collecting stormwater in piped networks and transporting it off-
site as quickly as possible. The increasing frequency of flooding
events proves that a new design paradigm for drainage systems
is needed. This approach must aim to restore the natural hydrolog-
ical cycle of urban catchments by increasing their evapotranspira-
tion and infiltration capacity. In recent years, Low Impact
Development (LID), an innovative approach to land development,
has gained increasing popularity. LID is a ‘green’ approach for
stormwater management that seeks to mimic the natural hydrol-
ogy of a site using decentralized micro-scale control measures
(Coffman, 2002). LID practices consist of bioretention cells, infiltra-
tion wells/trenches, stormwater wetlands, wet ponds, level spread-
ers, permeable pavements, swales, green roofs, vegetated filter/
buffer strips, sand filters, smaller culverts, and water harvesting
systems. Several studies have evaluated the benefits of LIDs. For
example, Newcomer et al. (2014) used a numerical model to
demonstrate the benefits of LIDs, in particular of an infiltration
trench, on recharge and local groundwater resources for future cli-
mate scenarios. In another paper, Berardi et al. (2014) demon-
strated how green roofs may contribute to the development of
more sustainable buildings and cities. Environmental benefits
included ecological preservation, mitigation of air and water pollu-
tion, enhancement of urban hydrology, a decrease of urban heat
island effects, a reduction of energy consumption, etc. Further-
more, green roofs were able to significantly reduce storm-water
runoff and retain rainfall volume with retention efficiencies rang-
ing from 40% to 80% (Bengtsson et al., 2004); bioretention cells
were shown to reduce average peak flows by at least 45% during
a series of rainfall events in Maryland and North Carolina (Davis,
2008). Even though the results of available studies are encourag-
ing, more research is needed to precisely assess the impact of LIDs
on the hydrological cycle.

Most impervious surfaces in urban catchments consist of roofs,
roads, parking lots and road shoulders. The development of any
large impervious surface commonly leads to multiple impacts on
stream systems. These impacts include higher peak stream flows,
which cause channel incision, bank erosion, and increased sedi-
ment transport (Trimble, 1997; Whipple et al., 1981). Another con-
sequence of these impervious surfaces is the reduction of
infiltration, which lowers groundwater recharge (Rose and Peters,
2001) and potentially also stream base flow (DeWalle et al.,
2000; Simmons and Reynolds, 1982). Permeable pavements repre-
sent one solution to the problem of increased stormwater runoff
and decreased stream water quality. They consist of a surface con-
crete layer, a filter layer made of sand and other materials, a stony
base, and sub-base layers. Permeable pavements offer great advan-
tages in terms of runoff reduction (Collins et al., 2008), water
retention, and water quality (Brattebo and Booth, 2003).

In spite of many well-known benefits of permeable pavements
and other LID practices, the transition to sustainable urban drai-
nage systems is very slow. One of the key limiting factors in the
widespread adoption of such systems is the lack of adequate ana-
lytical and modeling tools (Elliot and Trowsdale, 2007). The avail-
ability of an effective LID modeling software could encourage a
wider adoption of LID principles. Although several stormwater
models can be applied to the LID analysis (Elliot and Trowsdale,
2007), most of them do not incorporate accurate descriptions of
hydrological processes involved, which leads to inaccurate predic-
tions. Moreover, existing tools do not incorporate automatic
parameter optimization techniques and sensitivity analysis routi-
nes, which have proven to be fundamental when the model
includes multiple parameters. In recent years, researchers have
focused their attention on applying and developing physically-
based models for the LID analysis (Carbone et al., 2015a), however
more research is still needed in this direction.

For example, the HYDRUS software suite (Šimůnek et al., 2008)
has been widely used in the literature for the description of the
hydraulic behavior of green roofs (Hilten et al., 2008; Li and
Babcock, 2015; Newcomer et al., 2014; Palla et al., 2009), with
excellent agreement between numerical simulations and experi-
mental data. Newcomer et al. (2014) investigated the effects of
LIDs on recharge. In their study, the HYDRUS-2D software was
used to simulate flow from an infiltration trench and an irrigated
lawn installed at the San Francisco State University. While the
model was calibrated by comparing the simulated and measured
recharge, only few details were given about the calibration proce-
dure. The calibrated model was then used to simulate the behavior
of LIDs for future precipitation scenarios. Hilten et al. (2008) used
HYDRUS-1D to study the effectiveness of green roofs in mitigating
stormwater. Simulations were run using HYDRUS-1D for a 24-h
design storm to determine peak flow, retention, and detention time
for runoff. Li and Babcock (2015) used HYDRUS-2D to model the
hydrologic response of a pilot green roof system. The root-mean-
square error deviation (RMSD) between the modeled water con-
tents and field measurements ranged between 0.38 and 1.74%. This
suggests that the use of mechanistic models, such as HYDRUS, rep-
resents one of the most valuable alternatives to empirical and con-
ceptual models for the LID analysis.

Among all LID practices, permeable pavements are those that
lack modeling tools able to describe their hydraulic behavior most.
The heterogeneity of materials that compose a permeable pave-
ment, together with the high infiltration rates (Brattebo and
Booth, 2003), which may lead to preferential flow and especially
in the base and sub-base layers, pose complex problems in the
numerical modeling of these systems. Very few modeling tools
exist in the literature for permeable pavements. One of them is
included in the Storm Water Management Model (SWMM)
(Gironás et al., 2010). However, results obtained by SWMM have
proven to be inaccurate, especially in the description of the effects
of base and sub-base layers on the infiltration processes (Zhang
and Guo, 2015). HYDRUS has also been used for the description
of variably-saturated flow in permeable pavements. Illgen et al.
(2007) used HYDRUS-2D for the numerical analysis of a permeable
pavement and calibrated the model against experimental data col-
lected at a laboratory test facility. The calibrated model was then
used to simulate different scenarios not investigated during the
laboratory campaign. The Illgen et al. (2007) study provided only
limited details about the calibration of soil hydraulic parameters
and their uncertainty and sensitivity. The occurrence of preferen-
tial flow in the permeable pavement was also not investigated.
Moreover, the model was used to simulate a laboratory test facility,
the behavior of which can differ from a field scale experimental
facility. On the other hand, Carbone et al. (2014) used HYDRUS-
1D to model a permeable pavement at the field scale. The
HYDRUS-1D model was calibrated against four different rainfall
events with optimal results. In this study, the permeable pavement
was modeled as a single homogeneous layer and the differences
between hydraulic properties of different layers were neglected.
Furthermore, the numerical simulations were event-based. In both
studies, calibration of soil hydraulic properties was carried out
manually without taking advantage of more recent global opti-
mization algorithms. This indicates that research in this direction
is limited, with only inconclusive results that need to be further
investigated.

The lack of studies that provide a comprehensive description of
the hydraulic behavior of a permeable pavement at the field scale
and that propose a general methodology for the estimation of its
hydraulic parameters suggests that research is particularly needed
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in the development and identification of accurate modeling tools
for the analysis of LID practices, especially for permeable pave-
ments. The aim of this study is to investigate the suitability of
the HYDRUS mechanistic model to correctly describe unsaturated
flow in typical permeable pavement, installed at the experimental
site of the University of Calabria. Multiple uniform and nonequilib-
rium flow models included in HYDRUS-1D, such as single- and
dual-porosity models, are used to describe the hydraulic behavior
of the permeable pavement. The problem is addressed in the fol-
lowing way. First, a Global Sensitivity Analysis (GSA) is carried
out to prioritize hydraulic parameters and identify those that are
non-influential. Results of the GSA, combined with a Monte Carlo
filtering approach, are used to investigate the parameter space
and identify behavioral regions. These regions are then used in
the calibration process conducted with the Particle Swarm Opti-
mization (PSO) algorithm. The use of PSO for the determination
of unsaturated hydraulic properties represents a new important
application of this method. Finally, the calibrated model is vali-
dated on an independent set of measurements.

2. Materials and methods

2.1. Site description

The University of Calabria is located in the south of Italy, in the
vicinity of Cosenza (39�180N 16�150E). The climate is Mediter-
ranean with a mean annual temperature of 15.5 �C and an average
annual precipitation of 881.2 mm. The permeable pavement is part
of the ‘‘Urban Hydraulic Park,” which also includes an extensive
green roof, a bioretention system, and a sedimentation tank con-
nected with a treatment unit. The permeable pavement has an area
of 154 m2, an average slope of 2%, and a total depth of the profile of
0.98 m. Fig. 1 shows a schematic of the permeable pavement, con-
sisting of 5 layers.

The surface wear layer consists of porous concrete blocks char-
acterized by high permeability. Base, sub-base and bedding layers
were constructed by following the suggestions of the Interlocking
Concrete Pavement Institute (ICPI), which recommends certain
ASTM stone gradations. The ASTM numbers and corresponding
gradations can be found in ASTM D 448, Standard Classification
for Sizes of Aggregate for Road and Bridge Construction. The ASTM
No. 57, used for the base layer, is characterized by a porosity of
about 30–35%. The ASTM No. 2 is used in the sub-base layer for
Fig. 1. A schematic of the
its stability and a high volumetric porosity of about 40%. The ASTM
No. 8 is used for the bedding layer and the protection layer and has
a porosity of about 20% of volume. The bedding layer is composed
of a mixture of sand, glass sand, and zeolite to improve the pollu-
tant removal efficiency of the permeable pavement for typical con-
taminants of stormwater runoff. A high permeability geotextile
with a fiber area weight of 60 g/m2 is placed at the interface
between the bedding layer and the base layer to prevent sand from
migrating into the bottom layers. An impervious membrane is
placed at the bottom of the profile to prevent water from percolat-
ing into deeper horizons. The protection layer which is composed
of coarse sand is placed between the sub-base layer and the imper-
vious membrane. The baseflow is collected in a horizontal drain,
which consists of a perforated PVC pipe, and is conducted to a
manhole for quantity and quality measurements.

A weather station located directly at the site measures precipi-
tation, wind velocity and direction, air humidity, air temperature,
atmospheric pressure, and global solar radiation. Rain data are
measured by a tipping bucket rain gauge with a resolution of
0.254 mm and an acquisition frequency of 1 min. Climatic data
are acquired with a frequency of 5 min. Data are processed and
stored in the SQL database.

Two flux meters, composed of a PVC pipe with a sharp-crested
weir and a pressure transducer, measure baseflow and runoff from
the permeable pavement. The pressure transducer (Ge Druck
PTX1830) measures the water level inside the PVC pipe and has
a range of measurement of 75 cm with an accuracy of 0.1% of the
full scale. The pressure transducers were calibrated in the labora-
tory by using a hydrostatic water column, linking the electric cur-
rent intensity with the water level inside the column. The
exponential head-discharge equations for the two PVC flux meters
were obtained by fitting the experimental data with a coefficient of
determination R2 = 0.999 for both devices. Runoff and baseflow
data were acquired with a time resolution of 1 min and stored in
the SQL database. No measurements of pressure heads or volumet-
ric water contents inside the pavement were taken.

Two month-long data sets were selected for further analysis
(Fig. 2). The first data set, which started on 2014-01-15 and ended
on 2014-02-15, was used for parameter optimization and sensitiv-
ity analysis. Total precipitation and total potential evapotranspira-
tion for the first data set were 274 mm and 43 mm, respectively.
The second data set, which started on 2014-03-01 and ended on
2014-03-31, was used for model validation. Total precipitation
permeable pavement.



Fig. 2. Precipitation and subsurface flow during the optimization (top) and validation (bottom) time periods.

Table 1
Conceptual models representing water flow in the permeable pavement.

Soil layer Scenario I Scenario II

Wear Single Porosity Single Porosity
Bedding Single Porosity Single Porosity
Base Single Porosity Dual Porosity – MIM
Sub-base Single Porosity Dual Porosity – MIM
Protection Single Porosity Single Porosity
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and total potential evapotranspiration for the second data set were
175 mm and 81 mm, respectively. The second data set was
selected so that it had significantly different meteorological data
than during the first period. The optimization set is characterized
by multiple rain events with few dry periods. The validation set
has fewer rain events, which are concentrated at the beginning
and end of the time period and separated by a relatively long dry
period between. Surface runoff was not observed during these time
periods.

Potential evaporation was calculated using the Penman-
Monteith equation (Allen et al., 1998). The permeable pavement
was installed in 2013 and has been constantly exposed to atmo-
spheric conditions and traffic since then that has altered the sur-
face roughness and color. For these reasons, an albedo of 0.25
was used as suggested by Levinson and Akbari (2002) for weath-
ered gray cement.

2.2. Theory

Water flow simulations were conducted using the HYDRUS-1D
software (Šimůnek et al., 2008). HYDRUS-1D is a one-dimensional
finite element model for simulating the movement of water, heat,
and multiple solutes in variably-saturated porous media. HYDRUS-
1D implements multiple uniform (single-porosity) and nonequilib-
rium (dual-porosity and dual-permeability) water flow models
(Šimůnek and van Genuchten, 2008). In this study, two different
conceptual models were used to represent flow in the permeable
pavement (Table 1).

Scenario I assumed that water flow in all five soil layers of the
permeable pavement can be described using the classical single-
porosity approach (SPM). Unsaturated water flow is then described
using the one-dimensional Richards equation:

@h
@z

¼ @

@z
KðhÞ @h

@z
þ 1

� �� �
ð1Þ

where h is the volumetric water content [–], h is the soil water pres-
sure head [L], K(h) is the unsaturated hydraulic conductivity [L T�1],
t is time [T], and z is the soil depth [L]. The soil hydraulic properties
are described by the van Genuchten – Mualem relation (van
Genuchten, 1980):

h ¼
hs�hr

ð1þðajhjÞnÞm þ hr if h 6 0

hs if h > 0

(
ð2Þ

Se ¼ h� hr
hs � hr

K ¼ KsS
L
e 1� 1� S

1
m
e

� �mh i2
if h 6 0

Ks if h > 0

8<
: ð3Þ
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m ¼ 1� 1
n

where hr [–] is the residual water content, hs [–] is the saturated
water content, Ks [L T�1] is the saturated hydraulic conductivity, n
is a pore-size distribution index [–], a is a parameter related to
the inverse of the air-entry pressure [L�1], L indicates the tortuosity
and is usually assumed to be 0.5 for many soils, and Se is the effec-
tive saturation [–]. In order to simplify the model (to lower the
number of unknown parameters), the residual water content of all
layers was fixed. In particular, the residual water content for the
wear and bedding layers was assumed to be 0.045 and 0.03, respec-
tively, while the residual water content for both the base and sub-
base layers was assumed to be 0.0, considering that they were com-
posed of crushed stones. Furthermore, considering that the bedding
layer and the protection layer had the same stone gradation, ASTM
No. 8, the same set of parameters was used for both. Despite of all
these considerations, this scenario still involves 16 parameters (hs,
a, n, and Ks for 4 soil layers).

Scenario II assumes a single-porosity model for the wear layer,
the bedding layer, and the protection layer, and a dual-porosity
model for the base and sub-base layers. This configuration was
selected in order to consider the occurrence of preferential flow
in the coarse layers of the pavement.

The base and sub-base layers are composed of crushed stones,
with particle size diameters ranging from 2.5 to 37 mm in the base
layer and from 20 to 75 mm in the sub-base layer. Crushed stones
were washed before installation in order to remove fine particles.
This narrowgradationprovides a high volumeof voids and increases
the water storage and infiltration capacities of these two layers.
From a physical point of view, the structure of the base and sub-
base materials closely resembles fractured aquifers (Barenblatt
et al., 1960). Fractured aquifers are represented by a blocky matrix
system intercepted by fractures. Open andwell-connected fractures
represent high permeability pathways that aremany orders ofmag-
nitude more permeable than the porous rock matrix. At the same
time, one of the characteristics of a fractured aquifer is that the frac-
tures occupy a much smaller volume than the pores of the rock
matrix. Traditionally, fractured porous media are thus represented
by two separate flow domains: the high permeability (mobile)
domain, the network of connected fractures characterized by advec-
tive flow, and the low permeability (immobile) domain, dominated
by diffusion. The rockmatrix also provides storage capacity because
of its significantly larger volume than the fracture system. Typical
breakthrough curves for a fractured aquifer are characterized by
early breakthrough and long tailing (Geiger et al., 2010). This is
due to the fact that the matrix has a delayed response to pressure
head changes that occur in the surrounding fractures. The resulting
pressure difference induces matrix-fracture interflow. This flow
takes place after initial fracture flow and before thematrix and frac-
ture pressures equilibrate (Bai et al., 1994). Several studies have
demonstrated the long tailing from permeable pavements in dis-
charge hydrographs (e.g., Brattebo and Booth, 2003; Fassman and
Blackbourn, 2010) and attributed this effect to the storage and flow
through the base and sub-base layers.

The classical approach to model water flow in fractured porous
media is the so-called ‘‘dual-porosity” or ‘‘mobile-immobile water”
(MIM) approach (Barenblatt et al., 1960; van Genuchten and
Wierenga, 1976; Warren and Root, 1963). This approach assumes
that flow occurs only in the mobile fracture domain, for which
an effective permeability must be known, while water in the
matrix domain is immobile. Both domains are connected by a sim-
ple first-order transfer function, which accounts for the exchange
of fluid across the boundary of the two domains.

In the dual-porosity approach, the liquid phase is divided into
two domains:
h ¼ hf þ hm ð4Þ
where subscript f refers to the (mobile) fracture system, and sub-
script m refers to the immobile matrix domain. The dual-porosity
water flow formulation is based on a modified Richards equation
for flow in fractures and a mass balance equation for moisture
dynamics in the matrix:

@hf
@z

¼ @

@z
KðhÞ @h

@z
þ 1

� �� �
� Cw ð5Þ

@hm
@t

¼ Cw ð6Þ

where Cw is the mass transfer between two domains, which is
assumed to be proportional to the difference in effective saturations
of the two regions (Šimůnek and van Genuchten, 2008; Simunek
et al., 2003):

Cw ¼ x � Sme � Sime
� �

ð7Þ

where x is a first-order coefficient [T�1]. Compared to assuming a
pressure head based driving force for the mass transfer, the dual-
porosity model based on (7) requires significantly less parameters
since one does not need to know the retention function (and corre-
sponding parameters) for the matrix region explicitly, but only its
residual and saturated water contents (Simunek et al., 2003). The
residual water content for the mobile domain of both the base
and sub-base layers is assumed to be 0.0 (Simunek et al., 2003).
The tortuosity factor, L, is again assumed to be 0.5 for all layers. Sce-
nario II thus includes 20 parameters (additionally also x and hs of
the immobile domain for the base and subbase layers).

2.2.1. Numerical domain and boundary conditions
The numerical domain representing the stratigraphy of the per-

meable pavement was divided in 5 layers. The bedding layer and
the protection layer had the same properties since they were con-
structed using the same ASTM No. 8 stone gradation. A relatively
fine, finite element mesh with a constant element size of 0.5 cm
was used in order to minimize mass balance errors and avoid
non-convergent runs during sensitivity analysis and parameter
optimization. An atmospheric boundary condition was applied at
the pavement surface using (a) precipitation and potential evapo-
ration fluxes, (b) a prescribed zero pressure head (saturation) dur-
ing ponding, and (c) equilibrium between the pavement surface
water content and atmospheric water vapor when atmospheric
evaporative demand could not be met by the wear layer. A seepage
face boundary condition was specified at the bottom of the protec-
tion layer. A seepage face boundary acts as a zero pressure head
boundary when the bottom boundary node is saturated and as a
no-flux boundary when it is unsaturated. The initial conditions
were specified in terms of the soil water pressure head and were
set to linearly increase with depth, from �90 cm at the top of the
flow domain (z = 0) to �0.5 cm at the bottom (z = �98). The surface
layers are assumed to be drier than the bottom layers since they
are directly exposed to evaporation.

2.2.2. Objective function
The Nash-Sutcliffe Efficiency (NSE) index (Nash and Sutcliffe,

1970) is used for evaluating the agreement between hydrographs:

NSE ¼ 1�
PT

i¼1 Qobs
i � Qmod

i

� �2

PT
i¼1 Qobs

i � Qobs
mean

� �2

2
64

3
75 ð8Þ

where Qi
obs is the ith measured value, Qi

mod is the ith simulated
value, and Qmean

obs is the mean value of observed data. The NSE coef-
ficient ranges between �1 and 1.0, is equal to 1 in case of a perfect



Table 2
Number of parameters and HYDRUS-1D runs for both scenarios.

Scenario Number of parameters Model runs

I 16 90,000
II 20 110,000
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agreement, and, generally, values between 0.0 and 1.0 are consid-
ered acceptable (Moriasi et al., 2007). The NSE has been used
because it is often reported to be the best measure for evaluating
the overall fit of a hydrograph (Sevat et al., 1991).

2.2.3. Global sensitivity analysis
Most existing environmental models include a high number of

parameters. This aspect creates a major problem in their applica-
tion, as the parameter estimation becomes a high-dimensional
and mostly nonlinear problem. To solve this problem, several opti-
mization algorithms were developed (Beven and Binley, 1992;
Duan et al., 1992; Poli et al., 2007; Vrugt et al., 2003). Moreover,
environmental optimization studies are often affected by the equi-
finality problem (Beven, 2006) when multiple sets of parameters
can produce similar results. This problem is exacerbated when
the number of parameters is significant and only limited informa-
tion about their interactions and their effects on the output is
available. However, it is not always necessary to include all model
parameters in the optimization process because some of them
could be measured or estimated, and some may have negligible
effects on the output of the model for a particular application. A
sensitivity analysis (SA) can identify the most influential parame-
ters and their interactions and how these parameters affect the
output (Saltelli et al., 2005).

The principal steps of a SA are: Factors Prioritization (FP), Fac-
tors Fixing (FF), Variance Cutting (VC), and Factors Mapping (FM)
(Saltelli and Tarantola, 2004). The aim of FP is to identify factors
that one should measure in order to obtain the greatest reduction
in the uncertainty of the output. Conversely, FF identifies factors
that are non-influential. By applying these two settings, the mod-
eler is able to reduce the dimension of the optimization problem
and have a complete appreciation of the parameters’ influences
and interactions.

Most SAs performed in the literature of environmental sciences
are the so-called ‘one-at-a-time’ (OAT) sensitivity analyses, per-
formed by changing the value of parameters one-at-a-time while
keeping the others constant (Cheviron and Coquet, 2009; Houska
et al., 2013; Rezaei et al., 2015). However, when the model includes
interactions between parameters, results of the OAT analysis are
inaccurate because parameter interactions can be identified only
by changing multiple parameters simultaneously. For this reason,
when the property of a model is a priori unknown, a Global Sensi-
tivity Analysis (GSA) is always preferred (Saltelli and Annoni,
2010). Practitioners call this analysis a model-free setting.

One of the most widespread algorithms for the GSA is the
variance-based Sobol0 method (Sobol0, 2001). Variance-based
methods aim to quantify the amount of variance that each param-
eter contributes to the unconditional variance of the model output.
For the Sobol0 method, these amounts are represented by Sobol’s
sensitivity indices (SI’s). These indices give quantitative informa-
tion about the variance associated with a single parameter or
related to interactions of multiple parameters. For a more complete
explanation about the Sobol0 method, please refer to Sobol0 (2001).

Sobol’s sensitivity indices are expressed as follows:

First Order Si ¼ Vi

V
ð9Þ

Second Order Sij ¼ Vij

V
ð10Þ

Total ST ¼ Si þ
X
j–i

Sij þ � � � ð11Þ

where Vi is the variance associated with the ith parameter and V is
the total variance. The first-order index, Si, is denoted in the litera-
ture as the ‘‘main effect”. This index can be described as the fraction
of the model output variance that would disappear when parameter
Xi is fixed. When the model is additive, i.e., when it does not include
interactions between input factors, then the first-order index is suf-
ficient for decomposing the model’s variance. For additive models,
the following relation is valid:

X
i

Si ¼ 1 ð12Þ

Even when the model includes interactions between parame-
ters, the first-order index remains the measure to use for FP
(Saltelli and Tarantola, 2004). On the other hand, the total effect
index, ST, gives information about a non-additive part of the model.
A significant difference between ST and Si indicates an important
role of an interaction for the parameter considered. Essentially,
the total effect index, STi, gives a fraction of the total variance that
would be left when all factors but Xi were fixed. STi = 0 is a condi-
tion necessary and sufficient for Xi to be non-influential. Therefore,
Xi can be fixed at any value within its range of uncertainty without
affecting the output unconditional variance. The total effect is the
measure to use for FF.

Considering that environmental models are generally highly
nonlinear, it is almost impossible to calculate the variances using
analytical integrals. Hence, Monte Carlo integrals are often applied,
which are based on sampling the parameter space in q samples.
Obviously, the accuracy in the estimation of integrals becomes
more accurate as the number of samples increases, which also
increases the computational cost of the SA. For an accurate descrip-
tion of the calculation of Sobol’s indices please refer to Saltelli et al.
(2010).

Basically, the calculation of Sobol’s indices requires q � (2p + 1)
model evaluations, where p is the number of input factors. How-
ever, Saltelli (2002) introduced a method that requires only q � (p
+ 2) model evaluations. To sample the parameters’ space we used
Sobol’s quasi-random sampling technique (Sobol0, 2001).

One of the most important aspects of the GSA is the choice of
the number of samples, q. An increase in the number of samples
will increase the accuracy of Sobol’s indices. However, a high q
implies a higher number of model evaluations. The number of sam-
ples is case-sensitive; it depends on the structure of the model and
on the type of simulations performed. A convergence analysis of
Sobol’s indices is the recommended procedure for estimating q.
However, this approach is time consuming because it needs to
repeat the GSA several times by increasing the number of samples
until the variability of indices between two consecutive analyses is
below a threshold value for all parameters.

In a recent study, Nossent et al. (2011) gave a comprehensive
description of the influence of q on the accuracy of a GSA for an
environmental model that included 26 parameters. Nossent et al.
(2011) reported that for most parameters, less than 5000 samples
were sufficient to reach a stable solution. An extensive review of
the GSA in hydrological models is reported in Song et al. (2015).
Here, we report the number of model runs for each GSA performed,
together with the type of GSA, the number of parameters of the
model, and the objective function used. For the GSA based on
Sobol’s method, the number of model runs rarely exceeds
100,000. Due to considerations discussed above, a value of
q = 5000 was chosen in our study. Table 2 summarizes the charac-
teristics of the GSA for the two scenarios considered.
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In order to assess the accuracy of estimations of the sensitivity
indices, the bootstrap confidence intervals (BCIs) (Efron and
Tibshirani, 1986) were estimated. The basic idea of the bootstrap-
ping is that, in absence of any other information about the distribu-
tion, the sample contains all the available information about the
underlying distribution. In our particular case, we were interested
in computing the uncertainty of estimated sensitivity indices.
However, since their distribution is unknown it is not possible to
compute the confidence intervals analytically. The rationale of
the bootstrap method is to replace the unknown distribution with
its empirical distribution and to compute the sensitivity indices
using a Monte Carlo simulation approach where samples are gen-
erated by resampling the original sample used for the sensitivity
analysis. In our case, the q samples used for the model evaluation
were sampled 1000 times with replacement, whereby Sobol’s
indices were calculated for each resampling. In this way, 95% con-
fidence intervals are constructed by using the percentile method
and the moment method (Archer et al., 1997).

The sensitivity analysis was conducted using the programming
language Python and in particular, the Sensitivity Analysis Library
(SALib) (Usher et al., 2015). An elaborated script overwrites the
input file containing the parameters for different materials at each
iteration. The script then executes HYDRUS-1D, which usually runs
less than one second. If the HYDRUS-1D run is not finished after
15 s, it is considered non-convergent; the script then terminates
the process and attributes a large negative value to the objective
function. The same negative value is attributed when the length
of the modeled hydrograph is shorter than one month, which indi-
cates that the run was unsuccessful. Values of the objective func-
tion are stored in a one-dimensional array for the subsequent
computation of sensitivity indices. Table 3 reports the initial range
of all evaluated parameters in the two scenarios. The initial condi-
tions were not included in the GSA because their effects on the
hydrograph for a month-long simulation are assumed to be limited
to only the first few days.

2.2.4. Monte Carlo filtering
In the context of an optimization framework, results of the GSA

can be used to extract useful information about the problem struc-
ture. The GSA preliminarily identifies the subset of input factors
that drive most of the variation in the model output; to establish
their optimal values, these sensitive parameters can be further
investigated by using a Monte Carlo filtering approach. Filtering
Table 3
Ranges of parameters used in the GSA for both scenarios.

Parameter Scenario I Scenario II
Initial range

hs1 [–] 0.2–0.5 0.2–0.5
a1 [1/cm] 0.001–0.3 0.001–0.3
n1 [–] 1.1–4.5 1.1–4.5
Ks1 [cm/min] 1.0–20.0 1.0–20.0
hs2 [–] 0.2–0.5 0.2–0.5
a2 [1/cm] 0.001–0.3 0.001–0.3
n2 [–] 1.1–4.5 1.1–4.5
Ks2 [cm/min] 1.0–20.0 1.0–20.0
hs3 [–] 0.01–0.40 0.001–0.1
a3 [1/cm] 0.001–0.3 0.001–0.3
n3 [–] 1.1–4.5 1.1–4.5
Ks3 [cm/min] 1.0–100.0 1.0–100.0
hs,im3 [–] – 0.15–0.4
x3 [1/min] – 0.00001–0.009
hs4 [–] 0.01–0.4 0.001–0.1
a4 [1/cm] 0.001–0.3 0.001–0.3
n4 [–] 1.1–4.5 1.1–4.5
Ks4 [cm/min] 1.0–100.0 1.0–100.0
hs,im4 [–] – 0.15–0.4
x4 [1/min] – 0.00001–0.009
techniques are used to explore the parameter space pertaining to
the single or multiple optima. This is particularly relevant when
dealing with mechanistic models that almost always contain ill-
defined parameters and are thus referred to as over-
parameterized models (Draper and Smith, 1981).

The Monte Carlo filtering is often coupled with the regionalized
sensitivity analysis (RSA) (Hornberger and Spear, 1981). The RSA
generally requires two tasks: (a) a qualitative description of the
system behavior and (b) a binary classification of the model output
that divides solutions into two behavioral and non-behavioral
groups. However, the main drawback of the RSA is that no
higher-order analysis is performed and thus interactions between
parameters are not investigated. In the GSA, a complete description
of main effects and interactions is given. The GSA has been com-
bined effectively with the GLUE analysis (Beven and Binley,
1992) in the context of the parameter optimization (Ratto et al.,
2001). In Ratto et al. (2001), the sample generated for the GLUE
analysis is also used for the computation of variance-based sensi-
tivity indices.

In this study, the GSA is coupled with a basic Monte Carlo filter-
ing. The aim of this step is to identify behavioral regions in the
parameter space and to reduce the uncertainty in the following
parameter estimation step by using the same sample and runs of
the GSA. For each parameter set used in the GSA, a value of the
objective function is calculated. Potential solutions are divided into
two groups: behavioral, solutions with NSE > 0.0, and non-behav-
ioral, solutions with NSE 6 0.0. Two different types of analysis were
performed on the filtered sample: (a) Kernel density estimation
and (b) correlation analysis.

2.2.5. Kernel Density Estimation (KDE)
The KDE plots have been used to identify regions with a high

density of behavioral solutions. The KDE is a non-parametric esti-
mator of the probability density function (PDF) of a random vari-
able (Silverman, 1981). A kernel is a special type of PDF with an
added property that it must be even. The KDE bi-variate plots have
been used because they give a smooth qualitative representation of
PDFs in a bi-dimensional space. The uni-variate KDE has also been
computed for each parameter. The KDE plots have been calculated
using a Gaussian kernel and the Scott procedure for the determina-
tion of a bandwidth (Scott, 1992).

2.2.6. Correlation analysis
The correlation analysis helps to identify particular interaction

structures between parameters. Detecting high values of correla-
tion coefficients suggests a way to reduce the input factor space.
In particular, when the coefficient is positive, the couple of param-
eters acts in the model as a quotient/difference, and when it is neg-
ative, the parameters act as a product/sum.

2.2.7. Particle swarm optimization
Inverse modeling is a procedure to estimate unknown parame-

ters of the model from experimental data. One of the major reasons
to apply inverse modeling is to estimate parameters that cannot be
directly measured for various reasons. Numerous applications of
inverse modeling for the estimation of soil hydraulic properties
exist in the literature (Abbaspour et al., 2004; Hopmans et al.,
2002; Vrugt et al., 2008, 2004). The gradient methods
(Marquardt, 1963) have been used most widely among hydrolo-
gists and soil scientists. However, these methods are sensitive to
the initial values of optimized parameters, and the algorithm often
remains trapped in local minima, especially when the response
surface exhibits a multimodal behavior. These considerations
inspired researchers to develop and use global optimization tech-
niques such as the annealing-simplex method (Pan and Wu,
1998), genetic algorithms (Ines and Droogers, 2002), shuffled com-



Table 4
Parameters used in the PSO optimization.

N c1 c2 w

69 �0.267 3.395 �0.444

Table 5
First-order (S1) and total (ST) effect indices (in decreasing order) with their bootstrap
confidence intervals (BCI) for parameters of Scenario I.

Parameter S1 S1 (BCI) Parameter ST ST (BCI)

n1 [–] 0.298 0.054 n1 [–] 0.745 0.042
a1 [1/cm] 0.102 0.040 a1 [1/cm] 0.508 0.032
Ks1 [cm/min] 0.051 0.040 Ks1 [cm/min] 0.421 0.032
hs3 [–] 0.023 0.024 hs1 [–] 0.247 0.025
a4 [1/cm] 0.020 0.023 n4 [–] 0.224 0.146
a2 [1/cm] 0.017 0.022 Ks3 [cm/min] 0.210 0.127
n3 [–] 0.014 0.029 n3 [–] 0.194 0.035
Ks4 [cm/min] 0.009 0.025 a3 [1/cm] 0.181 0.024
n4 [–] 0.009 0.035 a2 [1/cm] 0.176 0.024
hs1 [–] 0.009 0.028 n2 [–] 0.176 0.028
n2 [–] 0.007 0.023 a4 [1/cm] 0.170 0.033
Ks3 [cm/min] 0.004 0.022 hs3 [–] 0.167 0.031
hs4 [–] 0.001 0.022 hs2 [–] 0.151 0.030
a3 [1/cm] �0.001 0.024 Ks2 [cm/min] 0.138 0.023
hs2 [–] �0.004 0.019 Ks4 [cm/min] 0.138 0.038
Ks2 [cm/min] �0.005 0.016 hs4 [–] 0.136 0.022
Sum 0.563 >1.0
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plex methods (Vrugt et al., 2003), and ant-colony optimization
(Abbaspour et al., 2001), among many others.

In this paper, a global search method based on Particle Swarm
Optimization (PSO) (Kennedy and Eberhart, 1995) is used. PSO
has been used in multiple studies involving inverse modeling with
complex environmental models (Gill et al., 2006; Jiang et al., 2010;
Zambrano-Bigiarini and Rojas, 2013). However, so far it has not
been used for the determination of unsaturated hydraulic proper-
ties. PSO is a relatively new algorithm for evolutionary computa-
tion methodology, but its performance has proven to be
comparable to various other, more established methodologies
(Kennedy and Spears, 1998; Shi et al., 1999). One of the main
advantages of PSO is the easiness of its implementation (Liang
et al., 2006). PSO is characterized by an algorithm based on a
social-psychological metaphor involving individuals that interact
with each other in a social world. PSO was inspired by the behavior
of schools of fish or flocks of birds as they seek food or other
resources. In PSO, collections of ‘‘particles” explore the search
space, looking for a global or near-global optimum. Particles in
PSO keep track of their best positions thus far obtained in the
search space and the best positions obtained by their neighboring
particles. The global best position is what all particles tend to fol-
low. A detailed description of the PSO algorithm is given in Shi and
Eberhart (1998).

The most important parameters in the PSO are: c1, c2, and w. c1
and c2 are constant parameters known as the cognitive and social
parameters, respectively, and w is the inertia-weight, which plays
a key role in the optimization process by providing balance
between exploration and exploitation. A large w facilitates a global
search while a small one facilitates a local search. The w parameter
is very similar to the ‘‘temperature” parameter in the simulated
annealing algorithm. While several strategies have been used in
the literature for the inertia weight, in this study, a constant value
of w has been used (Shi and Eberhart, 1998).

In PSO, each particle is influenced by its r nearest neighbors.
The arrangement of neighbors that influence a particle is called
the topology of the swarm. Different types of neighborhoods are
reported in the literature (Akat and Gazi, 2008). In this study, the
all topology is used, in which the neighborhood encompasses the
entire swarm. The PSO parameters used in this study for both sce-
narios are reported in Table 4 and are as suggested by Pedersen
(2010).

A modified version of the PySwarm Python Library was used for
the PSO analysis. Similar to the GSA, a Python script has been writ-
ten for the optimization process. The script overwrites the input
file of HYDRUS-1D containing the hydraulic parameters for the dif-
ferent layers, runs the executable module, and retrieves the value
of the objective function. A large negative value of NSE is attributed
to non-convergent runs, as defined above.
3. Results and discussion

3.1. Sensitivity analysis – Scenario I

As discussed above, the basic outcome of Sobol’s SA are the
first-order (S1) and total (ST) sensitivity indices. Table 5 presents
these two indices and their relative bootstrap confidence intervals
(BCI). In the left part of Table 5 (S1), it can be seen that only two
parameters exhibit a significant direct influence on the output’s
variance, the pore-size distribution index n1 and the air-entry pres-
sure parameter a1. The third most influential parameter, the satu-
rated hydraulic conductivity Ks1, has the effect, which is only half
of the second most influential parameter, a1. Ten parameters have
a first-order index lower than 1%, which indicates that their main
effect on the output variance is negligible. Table 5 also shows that
the sum of all first-order indices is less than 1, which means that
the model is non-additive. Only 56% of variance is attributable to
the first-order effects, which indicates that interactions between
parameters play a fundamental role.

The right part of Table 5 (ST) shows that almost 75% of variance
in simulated outflow is caused by n1, either by the variation of the
parameter itself (30%) or by interactions with other parameters.
Together with a1 (51%) and Ks1 (42%), it is the most influential
parameter for simulated flow. It can be noted that the saturated
hydraulic conductivity, Ks1, has a relatively low main effect but a
relatively high total effect. That indicates that this parameter has
a limited direct effect on the variance of the objective function,
but it has an effect in interactions with other parameters.

The effect of the sub-base layer on the output is less significant,
while the wear layer strongly conditions the output. That behavior
is in agreement with results reported in the literature. Illgen et al.
(2007), in his laboratory campaign, confirmed that the wear layer
has the major influence on the infiltration capacity of the perme-
able pavement, while the base and sub-base layers have a minor
impact and act as a storage tank. The total index is always greater
than zero, which implies that all parameters influence the output
variance either directly or by their interactions, and thus no
parameter can be fixed without affecting the uncertainty of the
output.

Scatter plots for the plain Monte Carlo runs for the two most
sensitive parameters, a1 and n1, are displayed in Fig. 3. The scatter
plots show that there is no clear pattern of factors driving bad solu-
tions. Particular trends in the solutions were further identified by
the regression lines. They indicate that there is a trend for param-
eter a1, with admissible solutions in the left part of the plot. On the
other hand, the distribution of values for parameter n1 is flat, and
thus no conclusions can be made about the position of a denser
region of behavioral solutions in the high-dimensional space.
3.2. Monte Carlo filtering – Scenario I

AMonte Carlo Filtering procedure was applied to the runs of the
GSA. The threshold value of NSE = 0.0 produced a filtered sample
composed of 1452 behavioral solutions. Fig. 4 shows the univariate
and bivariate KDE plots and the correlation plots for the wear layer.



Fig. 3. Scatter plots for pair relations a1-NSE (left) and n1-NSE (right) for Scenario I. The red line is a regression line. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 4. Bivariate KDE plots (below diagonal), univariate KDE plots (diagonal), and correlation plots (above diagonal) for Scenario I.
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The maximum Pearson correlation coefficient (in absolute val-
ues) was 0.42 between parameters a1 and n1. It is also evident from
Fig. 4 that a moderate negative correlation is present for parame-
ters hs1-a1, and a positive correlation for parameters hs1- n1, while
for the other parameters, the correlation is negligible. The univari-
ate KDEs for parameters hs1, n1, and Ks1 indicate a platykurtic dis-
tribution of behavioral solutions characterized by multimodality.
Parameter a1 exhibits a leptokurtic distribution, for which a denser
region of good solutions is clearly identifiable in the range of
0.001–0.1.
This behavior is more clear in the bivariate KDE plots. The
bivariate KDE for a1-n1 highlights the presence of a denser region
for values of n1 in the range 2.5–4.5, a behavior that was not evi-
dent from the univariate KDE. The comparison between univariate
and bivariate plots reveals that the latter gives a much more com-
prehensive description of the response surface. This aspect is exac-
erbated when the model is governed by interactions between
parameters, which is clearly highlighted by Sobol’s indices. In such
a case, the high-dimensional inspection of the parameter space
provides significant information.
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The saturated hydraulic conductivity, Ks1, for which the univari-
ate KDE indicates a multimodal behavior, exhibits a denser region
in the range of 10.0–20.0; this region is clearly identifiable in the
bivariate plot of K1- n1.
3.3. Sensitivity analysis – Scenario II

Results of the GSA for Scenario II are reported in Table 6. Also
for Scenario II, parameters a1 and n1 exhibit the highest main
effects on the output’s variance (about 35%). For Scenario II, the dif-
ferences are even more evident than for Scenario I. Parameters n1
and a1 have a first-order index of 30% and 5%, respectively, while
all remaining parameters remain well under 5%. Nine parameters
have a first-order index lower than 1%. The main effects represent
53% of the output variance, which clearly indicates both that the
model output is again (similarly as for Scenario I) partially driven
by interactions between parameters, and that the model is non-
additive.

The right part of Table 6 (ST) shows that the output variance is
largely influenced by n1, either directly (30%) or by interactions
with other parameters (64%). Similar to Scenario I, parameters a1
Table 6
First-order (S1) and total (ST) effect indices (in decreasing order) with their bootstrap
confidence intervals (BCI) for parameter of Scenario II.

Parameter S1 S1 (BCI) Parameter ST ST (BCI)

n1 [–] 0.302 0.026 n1 [–] 0.640 0.023
a1 [1/cm] 0.054 0.029 a1 [1/cm] 0.387 0.027
hs3 [–] 0.030 0.045 n3 [–] 0.383 0.020
n3 [–] 0.026 0.024 hs3 [–] 0.294 0.027
Ks3 [cm/min] 0.018 0.022 a3 [1/cm] 0.291 0.022
a4 [1/cm] 0.018 0.020 hs1 [–] 0.271 0.019
hs2 [–] 0.017 0.018 a4 [1/cm] 0.269 0.019
hs4 [–] 0.014 0.022 Ks1 [cm/min] 0.259 0.018
a3 [1/cm] 0.013 0.025 n4 [–] 0.256 0.013
Ks2 [cm/min] 0.012 0.026 a2 [1/cm] 0.229 0.017
Ks4 [cm/min] 0.011 0.031 Ks3 [cm/min] 0.222 0.017
hs1 [–] 0.007 0.023 n2 [–] 0.217 0.022
hs,im3 [–] 0.006 0.017 hs4 [–] 0.201 0.017
a2 [1/cm] 0.005 0.016 Ks2 [cm/min] 0.195 0.023
Ks1 [cm/min] 0.001 0.022 Ks4 [cm/min] 0.186 0.021
x4 [1/min] �0.001 0.027 hs2 [–] 0.185 0.018
n2 [–] �0.001 0.026 hs,im3 [–] 0.149 0.016
x3 [1/min] �0.003 0.021 x3 [1/min] 0.143 0.016
hs,im4 [–] �0.004 0.020 hs,im4 [–] 0.138 0.013
n4 [–] �0.006 0.017 x4 [1/min] 0.125 0.020
Sum 0.534 >1.0

Fig. 5. The average total index, ST, for d
and n1 are the most influential parameters, and the model’s output
is mainly driven by the wear layer. Four of the first eight most
influential parameters are related to the wear layer. The main dif-
ference between Scenarios I and II is the influence of the base and
sub-base layers on the model’s output. This is evident from Fig. 5,
in which the average ST for each layer is reported for both scenar-
ios. For both scenarios, modeling results are most sensitive to the
wear layer, which strongly influences the output’s variance. How-
ever in Scenario II, the influence of the wear layer is partially
reduced and redistributed to other layers. It is evident that the
adoption of the dual-porosity model for the unsaturated hydraulic
properties significantly affects the influence of the base and sub-
base layers on the model’s output. The dynamics of sensitivity
indices between the two scenarios suggest that the physical
description of unsaturated flow in the sub-base layer is an impor-
tant element in numerical simulations.

Similar to scenario I, all parameters influence the model’s out-
put, either by the variation of the parameters themselves or by
their mutual interactions. The condition for FF is never achieved
for all parameters.

Scatter plots for the plain Monte Carlo runs for the two most
sensitive parameters, a1 and n1, are displayed in Fig. 6. It can be
seen that there is again no clear pattern of factors driving bad solu-
tions. The regression lines indicate that there is a slight trend,
which is higher for parameter a1, to have admissible solutions in
the left part of the plot. The optimum appears flat, however.
3.4. Monte Carlo filtering – Scenario II

A Monte Carlo Filtering procedure was again applied to the runs
of the GSA. The filtered sample now consisted of 28,107 behavioral
solutions. The filtered sample of behavioral solutions for Scenario II
was considerably larger than for Scenario I. This indicates that the
implementation of the dual-porosity model leads to higher values
of the objective function.

Fig. 7 shows the univariate and bivariate KDE plots as well as
the correlation plots for parameters of the wear layer. It is evident
that no clear correlation exists between various parameters
(Fig. 7), except for a negative correlation trend between parame-
ters a1 and n1, but only with a small magnitude. The maximum cor-
relation coefficient, in absolute values, was �0.531 between
parameters a4 and n4.

The univariate KDE for parameters hs1-Ks1 indicates a platykur-
tic distribution of behavioral solutions without a clear identifica-
tion of a denser region across the parameter space. On the other
hand, for parameters a1 and n1, the univariate KDEs indicate a more
ifferent layers for both scenarios.



Fig. 6. Scatter plots for pair relations a1-NSE (left) and n1-NSE (right) for Scenario II. The red line is a regression line. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 7. Bivariate KDE plots (below diagonal), univariate KDE plots (diagonal), and correlation plots (above diagonal) for Scenario II.
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leptokurtic distributions, especially for n1, for which a denser
region of solutions between 1.1 and 2.8 is identifiable.

The bivariate KDEs give a better description of the location of
behavioral regions in the bidimensional parameter space than the
univariate KDEs. The bivariate KDE for the two most sensitive
parameters, a1 and n1, indicate the presence of a denser region in
the range of n1 = (1.1, 2.8), and a1 = (0.01, 0.15). The bivariate plots,
hs1- a1 and hs1- n1, indicate the presence of a denser region in the
range of hs1 = (0.25, 0.40), a region that was not clearly indicated
by the univariate plot for hs1. The saturated hydraulic conductivity,
Ks1, exhibits a multimodal behavior characterized by several
potential regions of interest. A potential behavioral region may be
identified in the range of Ks1 = (7.0, 15.0).

3.5. Particle swarm optimization

The results and conclusions from the coupled GSA-Monte Carlo
filtering analysis were used to reduce the ranges of parameters for
the PSO. The reduction was applied only for parameters that exhib-
ited well identifiable behavioral regions in multivariate plots. The
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original ranges were kept for parameters that displayed high mul-
timodality, in order to avoid the convergence of PSO to the local
optimum. Table 7 reports the new ranges for all parameters.

Fig. 8 compares measured and modeled hydrographs for the
two scenarios. The PSO for Scenarios I and II resulted in NSE values
of 0.43 and 0.81, respectively. Both NSE values of the objective
function are higher than zero and thus admissible (Moriasi et al.,
2007). However, the implementation of the dual-porosity model
for the base and sub-base layers in Scenario II provides a more
accurate description of the hydraulic behavior of the permeable
pavement. In particular, the dual-porosity model is able to accu-
rately reproduce the fast hydraulic response of the permeable
Table 7
Reduced ranges of optimized parameters for the optimization process.

Parameter Scenario I Scenario II
Reduced range

hs1 [–] 0.2–0.5 0.2–0.4
a1 [1/cm] 0.001–0.1 0.001–0.15
n1 [–] 3.0–4.5 1.1–2.8
Ks1 [cm/min] 10.0–20.0 1.5–20.0
hs2 [–] 0.25–0.5 0.2–0.4
a2 [1/cm] 0.2–0.3 0.1–0.2
n2 [–] 1.1–4.5 1.1–4.5
Ks2 [cm/min] 1.0–20.0 3.0–20.0
hs3 [–] 0.20–0.40 0.001–0.05
a3 [1/cm] 0.001–0.05 0.001–0.05
n3 [–] 1.1–4.5 1.5–4.5
Ks3 [cm/min] 1.0–100.0 20.–100.0
hs,im3 [–] – 0.2–0.4
x3 [1/min] – 0.00001–0.009
hs4 [–] 0.01–0.2 0.001–0.05
a4 [1/cm] 0.15–0.3 0.15–0.3
n4 [–] 2.0–4.0 1.5–3.5
Ks4 [cm/min] 1.0–100.0 1.0–100.0
hs,im4 [–] – 0.15–0.3
x4 [1/min] – 0.00001–0.009

Fig. 8. Comparison between the modeled and measured hydrographs
pavement and the long-tailing behavior of the measured hydro-
graph. The modeled hydrograph for Scenario I appears less accu-
rate in reproducing the dynamics of the observed hydrograph,
especially the fast response of the pavements to precipitation.

Optimized parameters for the two scenarios are reported in
Table 8. Significant differences emerge between the two scenarios
in terms of estimated values of the saturated water contents, hs1
and a1; differences between estimated values of the saturated
hydraulic conductivities, Ks1 and n1, are less pronounced. For layer
2, while estimated values of saturated water contents are very sim-
ilar, huge differences arise between estimated pore-size distribu-
tion indices, n2, which for Scenario I is less than half of its value
for Scenario II. Also, Ks2 is considerably lower for Scenario II than
for Scenario I. Estimated values of dual-porosity parameters con-
firm the assumptions made about the fractured nature of the base
and subbase layers. While the saturated water content for the
mobile domain is very low, the porous matrix possesses a high
storage capacity as indicated by the large value of the immobile
saturated water content. In particular, the overall porosity of the
base layer is about 40% and 30% for the subbase layer. The result
for the base layer is slightly higher than the prescriptions of ICPI,
which recommends a porosity of 30–35%. The estimated porosity
for the subbase layer is 30%, which is lower than the prescribed
porosity of about 40%. This difference can be related to the simpli-
fications made in the mobile-immobile dual porosity model for the
description of preferential flow and uncertainties related to the
effective graduation of the stone material used. However, the sig-
nificant increase in the accuracy between the single-porosity
model and the dual-porosity model suggests that the hydraulic
behavior of the base and subbase layers is strongly affected by fast
preferential flows in interconnected fractures and the accumula-
tion of water in the rock matrix. This behavior is in agreement with
results reported in the literature. For example, Illgen et al. (2007)
reported that the water contents in the base and sub-base layers
for Scenarios I (top) and II (bottom) for the optimization process.



Table 8
Optimized soil hydraulic parameters for both scenarios.

Layer hr hs a N Ks L hr,im hs,im x

Scenario I
Wear 0.045 0.2 0.002 3.0 10 0.5 – – –
Bedding 0.03 0.3 0.3 4.47 20 0.5 – – –
Base 0 0.2 0.023 2.85 68.7 0.5 – – –
Sub-base 0 0.01 0.27 2.41 96.7 0.5 – – –
Protection 0.03 0.3 0.3 4.47 20 0.5 – – –

Scenario II
Wear 0.045 0.287 0.03 2.67 7.33 0.5 – – –
Bedding 0.03 0.298 0.113 3.04 3.87 0.5 – – –
Base 0 0.044 0.021 4.33 93.2 0.5 0 0.35 0.00017
Sub-base 0 0.001 0.247 2.17 56.3 0.5 0 0.29 0.0013
Protection 0.03 0.298 0.113 3.04 3.87 0.5 – – –

Table 9
Confidence intervals (CI) for optimized parameters for both scenarios.
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only marginally increased during rainfall events, and that the
lower layers act as a storage tank.

Both scenarios exhibit low values of porosity for the base and
sub-base layers. For scenario II, the total porosity is divided
between the mobile and immobile domains. Flow is restricted only
to highly conductive and interconnected fractures, which represent
a relatively small part of the domain, while the immobile domain
provides the storage capacity. While Scenario II assumes overlap-
ping and interacting continua, Scenario I assumes a single contin-
uum approach for all layers. When the optimized value of
porosity is very low, such as for the sub-base layer, it is necessary
to interpret the optimized values differently than for typical
Richards’ type flow. In such case, especially for flow in crushed
stones, the model tends to approximate a combination of film flow
and fingering that likely occur in this layer. This hydraulic behavior
is similar to the one reported, for example, by Hodnet and Bell
(1990) for unsaturated flow in a medium composed largely of chalk
cobbles. In their study, Tokunaga and Wan (1997) analyzed the
influence of film flow on unsaturated flow in fractures. High veloc-
ities of film flow measured in their study suggested that film flow
contributed significantly to preferential flow in fractured rocks.
Our model, based on a macroscopic description of this fast unsatu-
rated flow, shares some similarities with the active fracture model
proposed by Liu et al. (1998). This approach divides the pore space
into two parts, active and inactive. Flow and transport occurs only
within the active pore space, with the inactive part simply
bypassed. Liu et al. (1998) further assumed that van Genuchten
(1980) relations are approximately valid for the active pore space.
In a separate study, Liu et al. (2003) reports values of porosity
between 0.01 and 0.03 for the pore space used with the active frac-
ture model.
Parameter Scenario I Scenario II

Value CI Value CI

hs1 [–] 0.2 0.057 0.287 0.007
a1 [1/cm] 0.002 0.0006 0.029 0.0008
n1 [–] 3 0.783 2.67 0.058
Ks1 [cm/min] 10 4.4 7.33 0.272
hs2 [–] 0.3 0.072 0.29 0.009
a2 [1/cm] 0.3 0.062 0.11 0.002
n2 [–] 4.47 1.08 3.04 0.052
Ks2 [cm/min] 20 6.5 3.87 0.084
hs3 [–] 0.2 0.048 0.044 0.001
a3 [1/cm] 0.023 0.003 0.021 0.0005
n3 [–] 2.85 0.537 4.33 0.139
Ks3 [cm/min] 68.73 19.7 93.2 3.172
hs,im3 [–] – – 0.35 0
x3 [1/min] – – 0.00017 0.000003
hs4 [–] 0.01 0.002 0.001 0.00003
a4 [1/cm] 0.27 0.018 0.247 0.004
n4 [–] 2.41 0.121 2.17 0.039
Ks4 [cm/min] 96.7 9.2 56.3 1.051
hs,im4 [–] – – 0.288 0
x4 [1/min] – – 0.0013 0.00002
3.6. Confidence regions

Since parameter estimation involves a variety of possible errors,
including measurement errors, model errors, and numerical errors,
an uncertainty analysis of the optimized parameters constitutes an
important part of parameter estimation. In order to evaluate the
uncertainty associated with the estimated parameters, a confi-
dence region around the best solutions optimized with PSO were
calculated using HYDRUS-1D. HYDRUS-1D uses the linear approx-
imation method to identify the confidence region around esti-
mated parameters b, resulting in ellipsoid contours centered at b.

Although restrictive and only approximately valid for nonlinear
problems, an uncertainty analysis provides a means to compare
confidence intervals between parameters, thereby indicating
which parameters should be independently measured or esti-
mated. Confidence intervals have been calculated using the Stu-
dent’s t distribution with a confidence level of 95%. It is evident
from Table 9 that confidence intervals are narrower for Scenario
II, and that the most uncertain parameters are the saturated
hydraulic conductivities for different layers.
3.7. Model validation

In order to evaluate the reliability of the estimated parameters,
the model has been validated on another independent set of exper-
imental data. Fig. 9 shows a comparison between measured and
modeled hydrographs for the two scenarios during the validation
period.

The value of the objective functions are NSE = 0.43 for Scenario I
and NSE = 0.86 for Scenario II. For Scenario I, the value of the objec-
tive function remains the same, which confirms the reliability of
the calibrated model. Although the simulated hydrograph provides
an overall sufficiently accurate description of the hydraulic behav-
ior of the pavement, it is less accurate during rainfall events, which
may be a time period of main interest. For Scenario II, the value of
the objective function actually increased and reached the value
NSE = 0.86, which is very high and reflects the accuracy of the mod-
eled hydrograph. Also the description of the hydraulic behavior of
the pavement during rainfall events is optimal. This capability of
the calibrated model is important when dealing with the analysis
of combined traditional drainage systems and LID techniques. A
correct description of the hydrograph during precipitation gives
information about the lag time and the intensity of peak flow,



Fig. 9. Comparison between the modeled and measured hydrograph for the two scenarios for the validation period.

Fig. 10. Comparison between the modeled and measured outflows for the two
scenarios for the validation period.
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which are fundamental for both a comprehensive hydraulic analy-
sis of drainage systems, and for the evaluation of benefits of LIDs
implementation. The initial part of the hydrograph appears to be
underestimated, which may be related to the influence of the
unknown initial conditions. The model was not able to reproduce
outflow induced by the precipitation event on March 15. This
may be related to an overestimation of potential evaporation cal-
culated using a literature value of albedo, which could result in
an overestimation of the storage capacity of the pavement at the
beginning of the precipitation event, which had a total volume of
6 mm. As a result, the model predicted that the pavement retained
all the precipitation volume. A better characterization of evapora-
tion could help in increasing the accuracy of the model, which is
already high.

Fig. 10 directly compares the measured outflows with those cal-
culated by the two modeling scenarios. The red1 bisector line rep-
resents conditions when modeled and measured outflows are
perfectly matched. Linear regression lines are reported for both sce-
narios. Since the Scenario I tends to overestimate the outflow fluxes,
the difference between the bisector and the linear regression line
(gray) for scenario I is substantial. On the other hand, Scenario II
tends to only slightly underestimate the outflow fluxes, and thus
the slopes of the bisector and the linear regression line (black) for
Scenario II are similar. The simulated hydrographs for both scenarios
tend to introduce some bias in the estimation of peak flows. This
aspect is related to the choice of the NSE as the objective function
for the optimization. The NSE is focused on the general behavior of
the hydrograph rather than on particular components such as peak
flows. A multi-objective optimization that would include an objec-
tive function targeted to peak flow estimates could represent a more
appropriate approach if estimates of peak flows were the main goal
of calibration. However, even of great interest, the multi-objective
1 For interpretation of color in Fig. 10, the reader is referred to the web version o
this article.
f

optimization is out of the scope of this paper. Overall, the validation
process demonstrated the reliability of the calibrated models for
both scenarios.
4. Conclusions

In this paper, we investigated the suitability of the mechanistic
model, HYDRUS-1D, to correctly describe the hydraulic behavior of
a permeable pavement installed at the University of Calabria. We
considered two different scenarios in describing the system. In Sce-
nario I, we assumed that flow on all layers can be described using a
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single-porosity model, while in Scenario II, we assumed that a
dual-porosity mobile-immobile model is needed to describe flow
in the base and subbase layers. The widely used Nash-Sutcliffe effi-
ciency index was used to assess the models. A Global Sensitivity
Analysis, coupled with a Monte Carlo filtering procedure, was car-
ried out before the model calibration. Sensitivity analysis results
suggested that the model is non-additive and mainly driven by
parameter interactions in both scenarios. The first-order effects
only accounted for 56% of output variance for Scenario I and 53%
for Scenario II. Sensitivity analysis also revealed that the wear layer
mainly influenced the hydraulic behavior of the pavement. A sub-
sequent Monte Carlo filtering procedure was applied to the runs
performed during the sensitivity analysis in order to identify the
behavioral regions and to reduce parameter uncertainty. Both uni-
variate and bivariate Kernel Density Estimation plots were used to
inspect the response surfaces and identify the behavioral regions.
This analysis revealed the high multimodality of the response sur-
faces, which suggested the use of a global optimization algorithm
for parameter estimation. Correlation coefficients of the filtered
sample were also computed, indicating a general low correlation
between parameters. Based on the results of the Monte Carlo filter-
ing, a heuristic global optimization method based on the Particle
Swarm algorithm was used for parameter estimation. The cali-
brated model for Scenario I exhibited an optimum NSE = 0.43,
while for Scenario II, it reached NSE = 0.81. The optimized parame-
ters were then validated against an independent set of experimen-
tal data, resulting in NSE = 0.43 for Scenario I and NSE = 0.86 for
Scenario II. The results of optimization and validation clearly indi-
cated that the implementation of the dual-porosity model for the
base and subbase layers produced more accurate results than the
single-porosity model and described much better the hydraulic
behavior of pervious pavement. Results also confirmed the validity
of the assumption that the hydraulic behavior of the base and sub-
base layers was similar to the behavior of a fractured rock, which is
characterized by the highly permeable interconnected fractures
and the highly storative rock matrix. The main advantage in using
a simple, dual-porosity, mobile-immobile model with a saturation-
based mass transfer is that this model requires only two additional
parameters compared to the single-porosity model. Further signif-
icant improvements could be obtained by characterizing the
hydraulic properties of the wear layer in the laboratory, as sug-
gested by the sensitivity analysis.
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