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Abstract—Collisional processes are critical in the understand-
ing of non-Maxwellian plasmas. The Landau form of the Fokker-
Planck equation is the gold standard for modeling collisions
in most plasmas, however O(N2) work complexity inhibits its
widespread use. We show that with advanced numerical methods
and GPU hardware this cost can be effectively mitigated. This
paper extends previous work on a conservative, high order accu-
rate, finite element discretization with adaptive mesh refinement
of the Landau operator, with extensions to GPU hardware and
implementations in both the CUDA and Kokkos programming
languages. This work focuses on the Landau kernels and on
NVIDIA hardware, however preliminary results on AMD and
Fujitsu/ARM hardware, as well as end-to-end performance of
a velocity space model of a plasma thermal quench, are also
presented. Both the fully implicit Landau time integrator and the
plasma thermal quench model are publicly available in PETSc
(Portable, Extensible, Toolkit for Scientific computing).

Index Terms—Plasma physics, Fokker-Planck-Landau collision
operator, runaway electrons, GPU, CUDA, Kokkos

I. INTRODUCTION

The Vlasov-Maxwell-Boltzmann system of equations is
the fundamental model of magnetized plasmas. It evolves
a distribution function for each species (one electron and
potentially many ions species) in phase space with up to
three configuration space dimensions plus three velocity space
dimensions. The Fokker-Planck (FP) equation is a computa-
tionally tractable expansion of the Boltzmann equation [1],
[2] that includes only grazing Coulomb collisions, which is
effective when collisional effects are dominated by small angle
deviations, as is common in most plasmas. The Landau form
of FP conserves density, momentum and energy and admits
unstructured finite element discretizations that conserve these
quantities exactly [3], [4], however it is an O(N2) work
complexity algorithm. Alternatively, a Rosenbluth potentials
formulation of FP is asymptotically less expensive with an
optimal solver, with two Laplacian solves per species per
nonlinear iteration, but conserves energy only asymptotically
[5]–[7]. This paper builds on previous work, that used vector
processing [8], with the use of GPUs and shows that the
Landau algorithm can be practical, given that velocity space
meshes are inherently not large, especially with mesh adap-
tivity and high order accurate discretizations.

Accurate FP collisions are critical in modeling many im-
portant processes in plasmas, such as the generation of highly

structured non-Maxwellian distributions during dynamical pro-
cesses, and methods that conserve energy with arbitrary accu-
racy are critical for long time simulations. One of the most
important dynamical processes to study is the rapid cooling of
the bulk of the distribution, a thermal quench. If the quench
occurs fast enough, the less collisional high energy tail of the
original distribution will not cool as fast, and can form a high
energy “bump” population on the tail of the distribution. This
type of distribution can lead to kinetic instabilities, and given
a high enough electric field, can be accelerated to runaway
conditions. A runaway electron event can cripple a fusion
reactor for months and thereby threaten the mission of reactor
scale experiments like ITER and the commercial viability of
fusion power.

Contemporary high performance hardware for scientific
computing falls into two broad categories: massively parallel
GPUs coupled with CPUs and manycore vector processors,
each coupled with distributed memory processing. GPUs are
characterized by hierarchical collaborative thread groups with
hierarchical shared memory. This architectural complexity
requires new programming models and languages. CUDA
became the dominant language to support GPUs and its
programming model is now supported by, for instance, HIP
and SYCL, as well as Kokkos. All of these languages imple-
ment the CUDA programming model, however Kokkos also
generates code for manycore vector processors by mapping its
league members to OpenMP threads, instead of CUDA blocks,
by mapping its thread team member’s vector threads to vector
lanes instead of a CUDA thread dimension, and using only
two levels of hierarchical parallelism. Kokkos thereby provides
a portable programming language for the primary classes of
today’s high performance computing hardware.

This paper proceeds with a derivation of the Landau opera-
tor and a Vlasov-Poisson-Landau thermal quench model in §II.
§III describes the numerical methods and software used in this
work. §IV presents the physics motivation and demonstrates
that our model generates the expected plasma dynamics. §V
examines the throughput performance of the plasma quench
model on an IBM/NVIDIA V100 node, with CUDA and
Kokkos-CUDA, an AMD EPYC/MI100 node (Kokkos-HIP),
and a Fujitsu A64FX node (Kokkos-OpenMP), and hardware
utilization on the V100. §VI concludes the report.
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II. BACKGROUND

The evolution of the phase space distribution or density
function f (~x,~v, t) of a plasma in an electromagnetic field is
effectively modeled with a Vlasov-Maxwell-Boltzmann sys-
tem of the form

df

dt
≡ ∂f

∂t
+
∂~x

∂t
· ∇xf +

∂~v

∂t
· ∇vf

=
∂f

∂t
+ ~v · ∇xf +

e

m

(
~E + ~v × ~B

)
· ∇vf = C

with charge e, mass m, electric field ~E, magnetic field ~B,
spatial coordinate ~x , velocity coordinate ~v and a collision term
C [9]. This equation is composed of the symplectic Vlasov-
Maxwell system df

dt = 0 and a metric, or diffusive, collision
operator C. For this presentation, assume B = 0 and ignore
configuration space. The collision operator is in velocity space
only. A source term is added for the plasma quench model, and
collisions are expanded for multiple species, resulting in, after
dropping the gradient subscripts, species α evolving according
to

∂fα
∂t

+
eα
mα

~E · ∇fα =
∑
β

Cαβ + Sα (t) . (1)

The Landau form of Fokker-Planck collisions for species α,
colliding with species β, is given by

Cαβ = ναβ
m0

mα
∇·
∫
Ω̄

dv̄ U(~v, v̄)·
(
m0

mα
f̄β∇fα −

m0

mβ
fα∇̄f̄β

)
(2)

with a collision frequency ναβ = e2
αe

2
β ln Λαβ/8πm

2
0ε

2
0, the

Coulomb logarithm ln Λαβ (=10 herein), an arbitrary reference
mass m0 , the vacuum permittivity ε0 and the effective charges
e of each species. Overbar terms are evaluated on the grid for
the domain Ω̄ of species β and v̄ ≡ ~̄v for clarity. The Landau
tensor U(~v, v̄) is a scaled projection matrix defined as

U(~v, v̄) =
1

|~v − v̄|3
(
|~v − v̄|2I− (~v − v̄)(~v − v̄)

)
. (3)

This system is nondimensionalized according to Appendix A.

A. Weak form

In this work, equation (1) is written in cylindrical coordi-
nates, ~v = (r, z), where the electric field is aligned with the
z coordinate. A full 3D model is supported in the library and
is required for extension to relativistic regimes [10], [11]. The
weak form of the evolution equation for species α, given a
test function ψ(~v) as derived in [4], can be expressed as

2π

∫
Ω

d~vrψ ·
(
∂fα
∂t

+

(
0,
eα
mα

Ez

)
· ∇fα

)
=

∑
β

(ψ, fα)D,αβ +
∑
β

(ψ, fα)K,αβ + (ψ, Sα) ,
(4)

where (·, ·)Ω is the L2 inner product in Ω and ~E = Ez ẑ. Using
integration by parts the inner products of the two parts of the
Landau collision integral for species α can be expressed as

(ψ, φ)D,αβ = −
∫
Ω

d~vr∇ψ · ναβ
m0

mα

m0

mα
D(fβ , ~v) · ∇φ (5)

(ψ, φ)K,αβ =

∫
Ω

d~vr∇ψ · ναβ
m0

mα

m0

mβ
K(fβ , ~v)φ. (6)

The tensor D and the vector K are defined as

D(f,~v) ≡
∫
Ω̄

dv̄r̄ UD(~v, v̄)f(v̄), (7)

K(f,~v) ≡
∫
Ω̄

dv̄r̄ UK(~v, v̄) · ∇̄f(v̄), (8)

where UD and UK are forms of the Landau tensor in
cylindrical coordinates. These tensors are much more complex
than (3) [4].

III. NUMERICAL METHODS

The Vlasov-Maxwell-Landau system can be discretized
with grid methods (Eulerian) or with particles (Lagrangian).
Particles are generally more efficient than grids for high
dimensional problems. For instance, with a second order
accurate grid method and an O(N

1
2 ) accurate particle method,

the complexity of the grid and particle methods cross-over
at 4D: halving the mesh spacing reduces the error by 4x
and requires 24 = 16 times more grid cells in 4D, and 16
times more particles reduces the error by 4x in any dimension.
The Landau operator presented here is entirely on a velocity
space grid, however it can be use in a particle method with
conservative particle-grid interpolation [12].

Implicit time integrators are useful in the advance of the
collision term, which requires a nonlinear solver. The full lin-
earization of the Landau operator is a dense matrix that would
be prohibitively expensive to build and solve. A practical
approximate linearization is to compute D(f,~v) and K(f,~v)
about the current state and applying standard finite element
methods to (5) and (6). A traditional Newton iteration is used
with this approximate Jacobian, which is fully recomputed in
each iteration. This quasi-Newton iteration converges linearly,
is robust and similar to the solver used in production in the
XGC code [13]. This matrix has the property, unusual for a
multiple degree-of-freedom Jacobian, that the species are not
coupled. With S species and a single species Jacobian A1, the
non-zero pattern of AS is IS×S ⊗A1. Thus, the multi-species
Landau Jacobian matrix is block diagonal.

In the remainder of this section, §III-A describes the trans-
formation of the natural implementation of Landau to an opti-
mal form, §III-B describes the mesh adaptivity methodology,
the code structure is described in §III-C, and the CUDA and
Kokkos implementations are discussed in §III-D.



A. Loop optimizations and CUDA algorithm
To simplify the derivation of the optimal loop organization

for the Landau kernel only the Kαβ term in the right hand side
of (4) is derived in detail. The Dαβ term is treated similarly.

Start by factoring ναβ , as ναβ = νe2
αe

2
β , and bring the sum

over β in (4) into (6), to form:

∑
β

(ψ, fα)K,αβ =

∫
Ω

d~vr∇ψ·νe2
α

m0

mα

∑
β

e2
β

m0

mβ
K(fβ , ~v) fα.

(9)
Next, move the β loop into the inner integral in the K(fβ , ~v)

term to form:

∑
β

e2
β

m0

mβ
K(fβ , ~v) =

∫
Ω̄

dv̄r̄ UK(~v, v̄) ·
∑
β

e2
β

m0

mβ
∇̄fβ(v̄).

(10)
From (9) and (10), the Kαβ term in (4) is expressed as:∑

β

(ψ, fα)K,αβ =

∫
Ω

d~vr∇ψ·

νe2
α

m0

mα

∫
Ω̄

dv̄r̄ UK(~v, v̄) ·
∑
β

e2
β

m0

mβ
∇̄fβ(v̄)

 fα.
(11)

Equation (11) a standard finite element weak form and only
the coefficient vector term in the bracket is unique to this
operator. Applying this processes to (5) results in a standard
finite element discretization of the Laplacian with a coefficient
tensor that is unique to this operator.

Algorithm 1 is CUDA pseudo code for the Landau Jacobian
matrix construction for one element e on one CUDA SM (or
one league member in the Kokkos version) with S species,
Nq integration points per element and N global integration
points. The Kokkos version is similar (§III-D).

Arrays of coordinates r and z, weights w, function values
f , and gradients df for each integration point are computed
on the GPU to allow for efficient processing in the inner
integral. The element Jacobian J for the given element and
finite element tablatures for the order of the element B and
E are also provided. The assembly of element matrix C into
the global matrix, with interpolation of constrained vertices
to unconstrained vertices that result from the mesh adaptivity
method, is not shown.

Critically, this formulation removes α terms from the
inner integration loop, which allows for a loop over one
species in the leading complexity term, resulting in a com-
plexity of O(NeNNqS), where Ne is the number of ele-
ments (N ≡ NeNq), or simply O(N2S). The complexity
of Transform&Assemble is O(NeN

2
bNqS), or O(NN2

b S),
where Nb is the number of vertices per element, which is equal
to Nq for the tensor elements used herein (e.g., Nq = 16).

B. Adaptive mesh refinement
The O(N2) complexity of Landau can be mitigated by first

adapting the grid to place points so as to represent the solution

Algorithm 1 Build one element Jacobian matrix C on one
SM with CUDA syntax

1: i← threadIdx.y {local integration point index}
2: gi← e ∗Nq + i {global integration point}
3: for j = threadIdx.x : blockDim.x : N do {Integral

over all integration points}
4: [UK,UD]← LandauTensor2D (r[gi], z[gi], r[j], z[j])

5: for β = 1 : S do
6: TK ← TK + e2

β
mo
mβ
df [:][β][j]

7: TD ← TD + e2
βf [β][j]

8: end for
9: GK ← GK + w[j]UK ·TK

10: GD ← GD + w[j]TDUD

11: end for
12: Reduce GK and GD across threads
13: for α = threadIdx.x : blockDim.x : S do
14: Ki [α]← νe2

α
mo
mα

GK

15: Di [α]← −νe2
α

(
mo
mα

)2

GD

16: end for
17: syncthreads
18: for α = threadIdx.x : blockDim.x : S do
19: KK [α] [i]← J (qi)

−1
Ki [α]w[gi] {to global basis}

20: DD [α] [i]← J (qi)
−1

Di [α]J (qi)
−1
w[gi]

21: end for
22: syncthreads {use all threads to assemble element matrix}

23: C← Transform&Assemble (0,KK,DD,B,E)

most efficiently as presented in [8]. The p4est library is used
in this work [14]–[16]. The Landau solver provides a high-
level parameterization of mesh adaptivity, with command line
options, to generate grids for Maxwellian distributions and
for common runaway electron distributions. Figure 3 shows
a typical mesh of a two species plasma with Maxwellian
distributions.

Fig. 1. Mesh for electron-deuterium plasma with Maxwellian distribution
in units of electron thermal velocity. Electron distribution on global domian
(left); detail with deuterium distribution (right). Visualization artifacts from
linear interpolation in Visit



C. Landau thermal quench code structure

Figure 2 sketches the Landau thermal quench code structure.
PETSc is composed of a core PDE solver stack, discretization
support (finite elements in this case), data (mesh) management,
unstructured mesh management, adaptive mesh support and
interfaces to device linear algebra packages that augment
PETSc’s build-in CPU linear algebra. Not all connections are
show here, such as Kokkos can be built with cuSparse or
Kokkos Kernels on NVIDIA, the solver stack interfaces with
the matrix and vector, and mesh classes. HIP and SYCL back-
ends are under development and mirror the CUDA back-end.
The Kokkos-HIP structure is not shown and it also mirrors the
Kokkos-CUDA structure. PETSc supports downloading and
building third party libraries automatically during a configu-
ration phase and integrating them with PETSc. P4est, Kokkos,
Kokkos Kernels, cuSparse, etc., are such libraries.

Fig. 2. Structure of the Landau thermal quench code as a PETSc example,
the abbreviated component graph in the PETSc library, third party libraries
and “device” languages

D. CUDA and Kokkos implementations of Landau

Two versions of this solver have been developed for the
CUDA programming model, one written in CUDA using
cuSparse, the other in Kokkos using Kokkos Kernels [17]. The
CUDA and Kokkos versions of the kernel are similar but there
are some differences. The Kokkos syntax is higher level than
CUDA. In particular, Kokkos provides variable length arrays
for the shared memory buffers, whereas the CUDA version
uses array sizes fixed at compile time. Kokkos provides a par-
allel reduction method, which supports reductions on general
C++ objects that are equipped with obvious methods like a
default constructor, a copy constructor and an add method.
The CUDA version parallelizes this inner integral manually
(see Algorithm 1). Each thread accumulates a small vector
and matrix for each species, and a warp shuffle efficiently
broadcasts the sum of these partial integrals to all threads. The
Kokkos version hides this machinery in the parallel reduction
method. Unlike CUDA, Kokkos is designed to be portable
across vendors [17].

As far as the impact of multiple back-ends in PETSc, the
vector interface for both back-ends is about 2,000 lines of code
and the matrix interfaces are about 10,000 and 2,000 lines of

code for the CUDA and Kokkos back-ends, respectively. As far
as the Landau code, the common CPU code, which includes a
CPU implementation of the Landau kernel, is about 2,500 lines
of code, and the each of the GPU back-ends is about 700 lines
of code. While maintaining three versions of the kernel (CPU,
CUDA and Kokkos) imposes some overhead, the availability
of several “platforms” for development is useful to provide
baseline performance of well optimized CUDA, and to allow
incremental development from simple C code on the CPU,
to Kokkos-CPU, to Kokkos-CUDA and finally to CUDA. For
further details on performance portability in PETSc see Mills
et al. [18].

E. Algorithm for the CUDA programming model

As developed in [8], the element and integration point loops
in the inner integral are merged and the data is packed into
vectors for efficient processing ( r, z, w, f and df in Algorithm
1). Here, the data is transposed into a structure of arrays for
GPU processing, from the arrays of structures used for vector
architectures. The outer loop over elements is parallelized in
the CUDA programming model by putting one element in each
“league” member in Kokkos and the (x) dimension of the block
grid in CUDA, and on one V100 SM or MI100 arithmetic
unit (simply referred to as an SM herein) in either case. The
integration points are similarly parallelized into Kokkos thread
teams and the (y) dimension of the CUDA thread block (see
Algorithm 1). The threads in Kokkos’ “ThreadVectorRange”,
and the (x) dimension of the CUDA thread block, compute
the parallel reduction. All threads on the SM participate in the
finite element assembly.

1) CUDA language optimizations: The CUDA block size
is chosen to be 256 or less threads. The second (y) dimension
of the thread block is mapped to integration points; its size is
dictated by the order of the elements. The number of threads
in the other (x) dimension is chosen to be a power of two,
such that the total number of threads is less than or equal to
256. Q3 elements (cubic finite element quadrilaterals) have 16
integration points, which corresponds to a block dimension of
16x16. Each SM processes one element.

Coalescing global memory access is important to maximize
global memory throughput on the GPU. The 1D input arrays
are stored in a structure of array format for this purpose.
When accessing the 2D matrix of field values and derivatives,
threads are mapped to the leading dimension of the matrix
element to maximize coalesced access. The inner integral
of (11), lines 3-11 in Algorithm 1, is the most expensive
part of the computation. It is important to reduce redundant
memory access and use fast memories as much as possible.
The β terms of the integral are shared by all the integration
points within an element. All β terms can be prefetched into
shared memory. The Landau tensors UK and UD can be
pre-computed and stored in registers. The integration results
can also be accumulated in registers. As a result, the inner
integral loop accesses only registers and shared memory. The
partial integral results stored in registers of different threads
are accumulated into the final integral results using warp



shuffle instructions. Finally, shared memory is used to store the
accumulated D tensors and K vectors from the inner integral.

F. GPU assembly of sparse matrices

PETSc provides a compressed sparse row storage matrix
with an object-oriented interface, written in C, where data
is inserted with a “MatSetValues” method that takes a dense
2D matrix of values and the global row and column indices
to which the data is added. Recently a GPU coordinate
format (COO) matrix and a GPU version of the traditional
interface in CUDA and Kokkos have been added for GPU
assembly. The Landau solver uses the traditional interface,
which currently requires the matrix to be assembled once on
the CPU. Subsequent assemblies can then take place on the
GPU. The COO interface does not require this CPU assembly
stage. Both GPU assembly interfaces are works in progress.
The cost of the CPU step is amortized for the Landau solver
because a transient analysis would use the metadata for many
time steps.

GPU assembly requires that contention between elements
running in shared memory be resolved. Three basic approaches
to this, in increasing order of code complexity, are atomic
“fetch and add”, graph coloring to assemble several matri-
ces in parallel, summing them when complete, and domain
decomposition with some resolution process at the domain
boundaries. Only the atomics approach has been released in
PETSc.

G. Linear solver for multi-species Landau operator

The implicit time integration for the advance of the colli-
sion operator requires an algebraic solver. Direct solvers are
attractive because of their low constants in complexity and the
small sizes of these grids does not incur the cost of their sub-
optimal asymptotic scaling. Additionally, a shared memory, or
MPI serial, direct solver can be written with only a few kernel
launches relatively easily whereas fast iterative methods, like
multigrid [19], for unstructured problems are more complex,
although algebraic multigrid does work well mathematically
on these (elliptic) problems [20]. PETSc relies on third party
libraries, such as SuperLU and MUMPS [21], [22], for parallel
direct GPU solvers. The Landau matrices, however, are much
smaller than the regimes that these solvers target and they did
not perform well. In response we wrote a custom CUDA LU
factorization and solve for this project.

This CUDA band solver uses reverse Cuthill–McKee
(RCM) ordering [23], which naturally produced a block
diagonal matrix in multi-species problems and is designed
to minimize bandwidth. Band sparse matrix storage stores
the main diagonal and UBW diagonals directly above the
main diagonal and LBW diagonals directly below the main
diagonal. Jacobians are generally structurally symmetric so
that B ≡ UBW = LBW . The standard outer product form of
banded LU factorization is used (Algorithm 4.3.1 [24] ). This
algorithm computes, for each row i, a BxB outer product
update of a dense sub-matrix with A(i+ 1 :, i) ∗A(i, i+ 1 :).

Band solvers are attractive because of the simplicity of their
kernels. The band solver exploits the independent solves for
each species and uses the group synchronization function in
CUDA to allow for more than a single SM to process each
species’ matrix factorization. Kokkos does not provide a group
synchronization method and we have not implemented the
band solver in Kokkos.

H. Single grid vs single grid per species

The Landau grids in this paper uses a single grid with a
degree of freedom for each species. One can also use a grid
for each species, which has the advantage that each grid can
be scaled to resolve the distribution of each species efficiently.
The multiple grid approach can be viewed as a simple type
of mesh adaptivity and with it Cartesian grids can be used for
efficiency [13].

There are advantages and disadvantages to the single grid
vs the multiple grid approach. To understand the complexity
issues, consider a model where all species require some given
mesh to resolve a Maxwellian distribution. For instance, a
typical one-species grid with 20 cells is shown in Figure 3,
with a Maxwellian distribution and a typical domain size of
five thermal velocity (vth) units. With Q3 elements there are

Fig. 3. Maxwellian with 20 cells and domain size 5vth
(visualization artifacts from linear interpolation)

128 integration points in a radius of a bit over one thermal
radii, which resolves the total energy of the Maxwellian with
about five digits of accuracy. An equivalent Cartesian would
require 128 total cells, a 6.4x increase. This cost is a function
of the desired accuracy. High accuracy and large domain size
benefit more from mesh adaptivity.

Consider a plasma with ten species, electrons, a light ion
like deuterium and eight effective ionization states of a heavy
ion like tungsten. All with the same thermal temperature. This
case reflects, for instance, a plasma with impurities from the
wall of a tokamak. A single grid with electrons and tungsten
requires about 74 cells to provide similar resolution as the
single species grid with 20 cells. The deuterium is highly
resolved because its thermal velocity is bracketed by electron
and tungsten thermal velocities. All eight tungsten spices can
share a grid because they share one thermal velocity. The
thermal velocities of electrons, deuterium and tungsten are



well separated such that one 20-cell grid cannot resolve any
two species. Thus, this model requires three 20-cell grids or
one 74-cell grid.

Three quantities of interest in the complexity of the Lan-
dau operator are shown in Table I: the number of integra-
tion points (N ), the number of Landau tensor calculations
(IP (IP − 1) /2 if symmetry is exploited, which we do not),
and the number of equations in the solve. The number of

# grids N integration points # Landau tensors (N2) n

1 1,184 1.4M 8,050
3 960 0.9M 1,930

10 3,200 10.2M 1,930
TABLE I

COST FOR THE LANDAU OPERATOR WITH 10 SPECIES VS NUMBER OF
GRIDS: NUMBER OF INTEGRATION POINTS N , NUMBER OF LANDAU

TENSOR CALCULATIONS AND NUMBER OF EQUATIONS n

equations, or number non-constrained vertices in the (non-
conforming) adaptive mesh, is taken from runs of the code.
The 20-cell grid generates 193 vertices and the 74-cell grid
generates 805 vertices. Q3 elements have 16 integration points
in each element. Clearly, multiple grids with multiple species
per grid is optimal with much smaller number of equations to
solve than the single grid approach and much fewer Landau
tensor calculations than the 10-grid approach.

Generally speaking, low-resolution requirements allow for
the use of fewer cells. Large separation of thermal veloci-
ties and low-resolution requirements benefit from more grids
because one grid cannot resolve the disparate velocity scales
efficiently without excessive over resolution. Species with the
similar thermal velocities (say within 2x or more) can, and
should, share a grid. Clusters of thermal velocities, in the
spectrum of thermal velocities of a given problem, should
share a grid if multiple grids are supported.

IV. RUNAWAY ELECTRONS AND THERMAL QUENCH
PLASMAS

Effective collision operators are useful for understanding
the physics governing dynamic and/or highly structured dis-
tribution functions, typically driven by sources and external
forcing. The effect of a fast thermal quench on a current
carrying plasma has all of these characteristics, and is among
the most important problems in plasma physics. In a thermal
quench, the thermal energy of the electrons is rapidly lost due
to either a large source of cold electrons being introduced
as a source, or by some other means such as parallel heat
loss along open magnetic field lines, or some combination
thereof. For high temperature plasmas, the electron thermal
energy can easily be lost in a time on the order of or less
than a typical electron collision time. Under these conditions,
and with the introduction of cold impurities, possibly with
multiple ion charge states, the resulting distribution can be far
from Maxwellian and strongly time dynamic.

In particular, because the mean free path and average colli-
sion time increases with particle energy within the distribution,
a fast thermal collapse can cool the bulk plasma to low energy,

but leave behind the higher energy tail of the distribution
which would need more time to equilibrate. This higher energy
tail can become a seed population for further acceleration
and growth given an electric field to accelerate it. In plasmas
with high current, such as toroidal magnetically confined
plasmas, the resulting highly collisional low energy part of
the distribution will generate a large electric field which can
accelerate the higher energy seed to even higher energy. As
the collisionality of this seed reduces even further with its
increasing energy, a runaway condition can occur, accelerating
these electrons to GeV energies. The generation of runaway
electrons in tokamak plasmas is of great concern to fusion
energy scientists [25], but can also occur in natural conditions
such as lightning and solar flares.

A. Spitzer resistivity

A model for plasma resistivity is critical for both the thermal
quench model and for verification of any collision operator.
A classic expression for plasma resistivity, known as Spitzer
resistivity [26], is derived from a model similar to the FP-
Landau model that is also diffusive and effective for small
angle collision dominated plasmas. This expression for the
resistivity parallel to the electric field is given by

η =
4
√

2π

3

Ze2m
1/2
e ln Λ

(4πε0)
2

(kBTe)
3/2

F (Z),

F (Z) =
1 + 1.198Z + 0.222Z2

1 + 2.966Z + 0.753Z2
,

(12)

where Z is the effective ionization of nuclei, kB is Boltzmann’s
constant and Te is the electron temperature in kelvins [27].

B. Verification with Spitzer resistivity

An equilibrium plasma with a small applied electric field
Ez develops a current that asymptotes to a quasi-equilibrium.
This current can be computed with the integral Jz =∑
α

∫
Ω

dx2π~xrqα~xzfα(x), where qα it the charge of species

α. Computed resistivity is then defined as η = E/Jz . It has
been observed that this η is not sensitive to (modest) electric
field strength. Plasma resistivity is a collisional phenomenon
and the FP-Landau model should approximately converge to
Spitzer resistivity (12). We observe that this FP-Landau code
with a deuterium plasma converges to an effective plasma
resistivity that is about 1% lower than Spitzer resistivity (see
Appendix §B). This implies that the Spitzer model is in effect
“seeing” more collisions than the FP-Landau model.

As a qualitative verification test, Figure 4 plots the value
of η = E/J to the Spitzer η as a function of the effective
ionization Z. This data is with a 176-cell mesh of Q3 elements
and the solver for the Z = 128 case was not fully converged,
which probably accounts for the noticeable discrepancy in this
case.

C. Vlasov-Maxwell-Landau thermal quench

The thermal quench model begins like the Spitzer resistivity
test (§IV-B), but when a quasi-equilibrium current is detected



Fig. 4. Calculated η = E/J and Spitzer ηz as a function of Z

it switches to computing E ← ηJ with Spitzer η, leaving
the plasma in a quasi-equilibrium. A pulse of cold ions is
then injected with the source term in (4), which lowers the
temperature and thereby increases η via Spitzer resistivity.
The electron temperature Te in (12) is computed similarly
to Jz in §IV-B. This in turn increases E, which accelerates
energetic electrons and increases the kinetic part of the total
current J , but at a slower time scale. The increase in E,
combined with reduced friction on high energy electrons from
mid-velocity electrons that have been depleted by the quench,
can accelerate fast electrons even further. As a fast electron
population separates from the slow electrons they are subject
to less friction and can continue to accelerate forming a
population of seed runaway electrons.

Figure 5 shows profiles of normalized charge density ne,
current J , electric field E, and electron temperature Te, as a
function of time in electron-electron collision time units, from
a numerical experiment where the initial E = 0.5Ec. Ec is
the Conner-Hastie critical electric field strength for runaway
electrons [28], [29]. The electron density is conserved exactly
and thus with sufficiently accurate time integration the profile
ne is the prescribed sinusoidal source function. The total mass
injected by the model is five times the initial density, which
is observed to high accuracy. The collapse of the temperature,
and its gradual rise from electric field heating, is observed.
This test shows that this model is able to qualitatively produce
the expected dynamics of a thermal quench, however this
model is not complete enough to generate seed runaway
electrons without an unrealistically high electric field.

V. PERFORMANCE EXPERIMENTS

Kinetic applications commonly use operator split time in-
tegrators, where the simplectic Vlasov system and the metric
collisions are alternately advanced. Each configuration space
point advances the collision operator – independently – which
provides significant task parallelism in a real application. An
application would run thousands or more of these vertex solves
in a collision advance step on each GPU.

To mimic an application, these experiments use one “node”
of a given machine with many MPI processes asynchronously
launching jobs on the GPUs. Running on a whole node applies
pressure on the entire memory system as would occur in an
application. An MPI harness code (the Landau ex2.c example
in PETSc) runs the same simulation on each MPI rank. A
flat MPI model provides asynchronous dispatch without any
explicit asynchronous code. NVIDIA’s Multi-Process Service
(MPS) system aids in scheduling the GPU with input from
multiple streams from MPI processes. In this context, the
most important figure of merit is throughput: Newton itera-
tions per second. This metric factors out the specifics of the
time integrator and non-linear solver tolerance, etc., which
is application dependent. Throughput is defined as the total
number of Newton iterations times the number of instances of
the problem run in parallel (MPI processes), divided by the
simulation time after setup costs that are amortized in a long
running simulation.

The test problem is similar to the deuterium plasma in §III-B
and §IV-C, but with an additional eight species of Tungsten
with different ionization states, which is typical of a production
run with impurities from the wall of the tokamak, and with
80 Q3 elements, run for 100 time steps.

A. IBM POWER9 / NVIDIA V100
The CUDA and Kokkos-CUDA back-ends are tested with

one Summit node: two IBM POWER9 processors with six
NVIDIA V100 GPUs. Each POWER9 has 21 cores (7 cores
per GPU) and each core has four hardware threads. MPS and
CUDA-11 were not compatible on Summit at the time of this
writing and thus the Summit results use CUDA-10; These IBM
experiments use CUDA v10.1 and gcc v6.4 with -O3 (see
Appendix §B data and reproducibility description).

Tables II and III report the throughput on one Summit node
with the CUDA and Kokkos-CUDA back-ends, with respect
to the number of cores per GPU and number of processes per
core.

TABLE II
CUDA-10, V100 NEWTON ITERATIONS / SEC

cores/GPU 1 2 3 5 7
process/core

1 849 1,683 2,487 4,044 5,504
2 1,102 2,142 3,177 5,094 6,838
3 1,096 2,189 3,252 5,239 7,005

TABLE III
KOKKOS-CUDA-10, V100 ITERATIONS / SEC

cores/GPU 1 2 3 5 7
process/core

1 792 1,542 2,265 3,511 4,849
2 996 1,974 2,904 4,641 6,013
3 1,010 2,044 2,982 4,805 6,193

The fastest throughput for all back-ends use all seven cores
per GPU and two or three hardware threads per core, with



Fig. 5. Profiles of thermal quench model with cold plasma injection

a modest but consistent gain in using a second and usually
a third hardware thread. This data shows that CUDA is
about 15% faster than Kokkos-CUDA. Given that Kokkos is a
portable language, this performance penalty is not unexpected
nor unreasonable.

1) Hardware utilization of the V100: The matrix con-
struction is split into the assembly of the Jacobian and the
assembly of a scaled mass matrix as dictated by the time
integrator. The finite element mass matrix is the identity
in weak forms and is added to the Jacobian in all time
integrators. The mass matrix replaces all of Algorithm 1 with
C ← Transform&Assemble (w[gip]s,0,0,B,0), where s
is a shift determined by the time integrator. The analysis of
the hardware utilization in the GPU kernel is divided into
the analysis of the Jacobian matrix and the mass matrix
construction.

The NVIDIA Nsight Compute tool is used to gather all the
hardware metrics with a single process. To collect meaningful
hardware metrics the hardware resource must be fully utilized,
which requires a 320-cell version of the test problem used in
§V. About 8% of the total matrix construction time is from
the mass and thus about 92% is in the Jacobian in these tests.

For V100, the DFMA peak is 7.8 TFlop/s and DRAM peak
is 890 GB/s. So the arithmetic intensity (AI) roofline turning
point is at 8.8. The Jacobian kernel is primarily compute bound
with an AI of 15.8 and the FP64 pipe utilization is measured
to be 66.4%. The kernel achieved 4.15 TFlop/s. This is 53%
of the peak DFMA throughput on V100, which corresponds
to the roofline percentage. The roofline percentage is lower
than the FP64 pipe utilization because only 64% of the FP64
instructions were DFMA instructions. The rest are DMUL and
DADD.

The mass kernel has an lower AI of 1.8. This is expected
because the mass kernel only performs finite element assembly
and sparse matrix assembly, which is mainly memory copy
operations with very little computation. Thus it looks like
the Jacobian without the inner integral and with a simpler

TABLE IV
ROOFLINE DATA FOR JACOBIAN AND MASS OPERATOR

AI % roofline Bottleneck (utilization)

Jacobian 15.8 53% FP64 pipe (66.4%)
Mass 1.8 17% L1 cache (27%)

inner loop in the finite element assembly. The 17% roofline
percentage comes from the 17% DRAM utilization. However,
DRAM is not the leading bottleneck for this kernel. The kernel
has a L1 hit rate of 77%. As a result, most of the memory
traffic is from L1. The L1 utilization is higher than the DRAM
utilization at 27%, but it is still low. The mass kernel is L1
latency bound.

The main reason for the low L1 utilization is load imbal-
ance in memory traffic between different threads. Elements
with constrained faces, from mesh adaptivity, interpolate each
matrix value associated with a constrained degree of freedom
to four degrees of freedom in the global matrix with the Q3
elements used here. The elements in these meshes have 0− 2
constrained faces. Such imbalance leads to a subset of threads
in a warp accessing a partial cache line, which is inefficient
on the GPU. Furthermore, the imbalance caused some threads
to exit early, which reduces the achieved occupancy. Both of
those effects lead to a low L1 utilization.

B. AMD EPYC / MI100 with Kokkos-HIP

This section present preliminary data from an AMD EPYC /
MI100 node. Data from the Kokkos-HIP back-end is generated
with one node of Spock: a 64-core AMD EPYC 7662 “Rome”
CPU, with two hardware threads per physical core, and four
AMD MI100 GPUs. We use gcc-7.5.0 and rocm-4.1.0 for these
experiments (Appendix B). Table V reports the number of
Newton iterations per second on four MI100 GPUs and up to
eight cores per GPU, with one and two processes per core,
with Kokkos-HIP. This data shows a speedup of 4x with eight



TABLE V
HIP, MI100 NEWTON ITERATIONS / SEC

cores/GPU 1 2 4 8
process/core

1 88 169 281 353
2 154 272 341 241

cores, with good initial speedup, however performance rolls
over with 16 processes per GPU.

C. A64FX with Kokkos-OpenMP

This section experiments with one node of the Fugaku
machine, with one Fujitsu A64FX processor, using up to 32 of
the available 48 cores partitioned into 4-32 MPI processes. The
GNU compiler v8.2 is used, which corresponds to OpenMP
v4.5 (-Ofast -march=armv8.2-a+sve -msve-vector-bits=512,
Appendix B). Table VI shows the matrix construction and
total simulation times of a 10-time step version of the model
problem, as a function of the number of MPI processes and
number of OpenMP threads per process, with the Kokkos-
OpenMP back-end.

TABLE VI
JACOBIAN CONSTRUCTION AND TOTAL TIME (SEC) ON ONE FUGAKU
NODE AND TOTAL SOLVE TIME OF THE 32 CORE CASE (DIAGONAL)

#processes threads/processes 8 4 2 1 Total

4 (19.3) 38.1 75.3 150 25.1
8 (38.1) 45.9
16 (75.5) 87.0
32 (150) 169.4

This data shows excellent thread scaling in that times are
inversely proportional to the number of threads with four pro-
cesses (top row) and the throughput (#processes/time ≈ 5) is
almost constant with 32 cores (diagonal). The total time is not
as ideal (right column, linear in #processes would be perfect),
indicating that the rest of the solver is not thread scaling
perfectly. This data, with 208 Jacobian matrix constructions,
delivers a throughput of 39 Newton iterations/second in the
four process, eight threads per process case.

D. Comparative performance

Table VII reports timings for the single process per GPU
case from Tables II, III and V and the 4 process, 8 threads per
process case in Table VI. The maximum value measured by
any process is reported. The Fugaku data is normalized from
a 10-time step test data.

The Landau matrix construction and the LU factorization
and solve are the major components to the total cost. The
Landau matrix construction includes GPU kernel work and
some meta-data processing on the CPU. The CPU algebraic
solver, PETSc’s LU solver, is identical for all platforms.

On Summit, about 20% of the time is spent on the GPU
(‘Kernel’) and this kernel time is about 80% of the total
matrix construction time (‘Landau’). This explains why using

TABLE VII
COMPONENT TIMES – V100/POWER9, MI100/EPYC AND FUGAKU

Device Total Landau (Kernel) factor solve

CUDA 14.3 3.3 2.9 8.4 0.8
Kokkos-CUDA 15.4 4.1 3.2 8.7 0.8
Kokkos-HIP 23.1 10.9 10.2 5.9 0.5
Fugaku (normalized) 250.7 215.1 209.5 16.1 1.5

more processes per GPU improved performance significantly
on Summit, as seen in Tables II and III. The Spock GPU
kernel is under-performing relative to Summit, which results
in a higher percent of the Landau time being in the Kernel,
and the EPYC processor is about 2x faster than the Power9 as
reflected in the (CPU) factorization and solve times. Fugaku
is also under-performing relative to Summit, about 95% of the
run time is in the Landau kernel (§V-C).

1) Comparative Spock performance: The Spock data shows
that the kernel is under-performing relative to the V100. The
AMD MI100 GPU has a peak performance of up to 11.5
TFLOPS and the V100 has a peak of about 7.8 TFLOPS.
Normalizing the data with respect to theoretical peak, the
Kokkos-CUDA Landau kernel time in Table VII of about 3
seconds is about 5x faster than the MI100.

There are a few potential sources of this under-performance.
This data was collected soon after the publication embargo
was lifted on Spock and ROCm may have been under active
development. The MI100 has 120 compute units as compared
to 80 on the V100 and thus needs more work to be fully
occupied. Unlike the V100, the MI100 does not have hardware
support for double precision atomic-adds in global memory
(§II [30]), which is used in GPU finite element matrix as-
sembly. Stone et. al. developed algorithms to reduce the use
of atomics in finite element residual calculations [30], which
is similar to finite element matrix assembly, and observed
significantly more speedup on the MI100 than the V100
with their algorithms indicating that atomics are a significant
source of MI100 under-performance relative to the V100.
Additionally, Multiple processes should be able to saturate the
GPU, however Table V shows throughput rolling over with 16
processes per MI100. This indicates that the AMD equivalent
to MPS is not functioning well. Note, we have informally
observed a throughput speedup, on a typical high throughput
case in Table II, of about 3x with the use of MPS.

2) Comparative Fugaku performance: Using Top500 data
to normalize the nodes, a V100 is about 2x more powerful
than an A64FX node/processor. Scaling the Fugaku data up
by 1.5, only 32 of the 48 cores are used, the throughput,
normalized with the V100, is about 117 iterations/second.
Comparing this to the peak of about 1,000 iterations/second
per V100, from Table III, indicates that the A64FX is under-
performing by about a factor of 8.5. The A64FX has 8 vector
lanes, suggesting a lack of effective auto vectorization from
the Kokkos v3.4 back-end and the GNU compilers.



E. Performance summary

Table VIII summarizes the throughput and the relative
normalized performance analysis of the Landau kernel from
the four cases investigated in §V-A – §V-D.

TABLE VIII
THROUGHPUT, NEWTON ITERATIONS (N/SEC),

NORMALIZED PERFORMANCE RELATIVE TO SUMMIT / CUDA,
FOR EACH MACHINE / LANGUAGE

Machine / language N/sec hardware
(GPUs + cores)

kernel
(% CUDA)

Summit / CUDA 7,005 6 V100 + 42 P9 100
Summit / Kokkos-CUDA 6,193 6 V100 + 42 P9 90
Spock / Kokkos-HIP 353 4 MI100 + 32 EPYC 20
Fugaku / Kokkos-OMP 39 NA + 32 A64FX 12

VI. CONCLUSION

This paper shows that the Landau collision operator can be
practical for plasma physics applications with the effective
utilization of GPUs. The focus of this work has been on
ameliorating the O(N2) complexity of the Landau kernel,
however end-to-end performance of a plasma thermal quench
model demonstrates the potential practical use of this operator.
We have shown 66% FP64 pipe utilization on the V100 with
the CUDA back-end and have measured comparable overall
performance with Kokkos-CUDA.

A ramification of this optimization is that the compute time
of the high throughput runs of the entire collision advance
is dominated by lower order complexity terms. In particular,
the linear solves and vector operations need attention. Though
a custom GPU LU solver is available in PETSc, it is no
faster than the CPU solver reported here (see repository
data, Appendix B). A custom GPU iterative solver is under
development to address this problem. The solver and vector
operations would benefit from the batching of multiple spatial
points, to augment or replace the existing asynchronous (MPI)
thread dispatch, to reduce the number of kernel launches. This
batching of spatial vertices in the collision advances is also
under development.

Other potential areas of future work includes integration
with global plasma models to investigate runaway electron
physics, adding support for multiple grids for groups of species
with similar thermal velocities, as is done by Hager et al. for
each species [13], and continuing to improve the entire solver
stack in PETSc for GPUs.

Artifacts and reproducibility instructions are publicly avail-
able (see Appendix B).
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APPENDIX A
NONDIMENSIONAL VARIABLES

The Vlasov-Maxwell-Landau system is nondimensionalized
with a thermal temperature of electrons Te, a reference velocity
v0 = (8kTe/meπ)

1
2 and by defining a velocity coordinate

~x = ~v/v0. The distribution function variable is noramalized
with f̃α = fαv

3
0/n0 with a number density n0 (eg, 1020 for

a typical fusion plasma). Nondimensionalize time, t̃ = t/t0,
with a reference time scale

t0 =
8πm2

0ε
2
0v

3
0

e4 ln Λeen0
, and define ~̃E =

t0
v0

~E, ν̃αβ =
t0n0

v3
0

ναβ .

(13)
Further, d~x = v−3

0 d~v, U(~x, x̄) = v0U( ~v, v̄) and ∂
∂~x = v0

∂
∂~v .

Note, ν̃ee = 1. Any physical velocity space moment is given
by
∫
~vnfd ~v = n0v

n
0

∫
~xnFd~x. Rewriting the equation in

these dimensionless coordinates results in

∂f̃α

∂t̃
+

eα
mα

~̃E · ∇f̃α =∑
β

ν̃αβ
m0

mα
∇ ·
∫
Ω̄

dx̄ U(~x, x̄) ·
(
m0

mα

˜̄fβ∇f̃α −
m0

mβ
f̃α∇̄ ˜̄fβ

)
+ Sα (t) .

Observe that this nondimensionalized form does not change
the equations, only the units.

APPENDIX B
ARTIFACT DESCRIPTION AND REPRODUCIBILITY

The entire time integrator and solver for the
Landau operator is publicly available in the PETSc
library (https://www.mcs.anl.gov/petsc git clone
https://gitlab.com/petsc/petsc.git ). The
thermal quench model used in these experiments is as an
example in PETSc (ex2.c in the Landau tutorials).

PETSc output files with performance data and
provenance information, the python scripts that
generated most of tables, build instructions for
each platform and reproducibility instructions and
verification data can be found with git clone
https://gitlab.com/markadams4/landau_ipdps22.
This repository also include data with a batched GPU LU
solver and details of timing breakdown for all of the test
cases that is not included in this report.




