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Abstract

Arachidonic acid can be metabolized to prostaglandins and epoxyeicosatrienoic acids (EETs) by 

cyclooxygenase-2 (COX-2) and cytochrome P450 (CYP), respectively. While protective EETs are 

degraded by soluble epoxide hydrolase (sEH) very fast. We have reported that dual inhibition 

of COX-2 and sEH with specific inhibitor PTUPB shows anti-pulmonary fibrosis and renal 

protection. However, the effect of PTUPB on cecal ligation and puncture (CLP)-induced sepsis 

remains unclear. The current study aimed to investigate the protective effects of PTUPB against 

CLP-induced sepsis in mice and the underlying mechanisms. We found that COX-2 expressions 
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were increased, while CYPs expressions were decreased in the liver, lung, and kidney of 

mice undergone CLP. PTUPB treatment significantly improved the survival rate, reduced the 

clinical scores and systemic inflammatory response, alleviated liver and kidney dysfunction, and 

ameliorated the multiple-organ injury of the mice with sepsis. Besides, PTUPB treatment reduced 

the expression of hypoxia-inducible factor-1α in the liver, lung, and kidney of septic mice. 

Importantly, we found that PTUPB treatment suppressed the activation of NLRP3 inflammasome 

in the liver and lung of septic mice. Meanwhile, we found that PTUPB attenuated the oxidative 

stress, which contributed to the activation of NLRP3 inflammasome. Altogether, our data, for 

the first time, demonstrate that dual inhibition of COX-2 and sEH with PTUPB ameliorates the 

multiple organ dysfunction in septic mice.

Keywords

sepsis; dual COX-2 and sEH inhibitor; NLRP3 inflammasome; oxidative stress; multiple organ 
dysfunction

1. Introduction

Sepsis is one of the most disturbing disorders in modern intensive care units (ICU) 

worldwide [1]. Although it has profound progress in both clinical and basic research, the 

morbidity and mortality remain high, varying from 15% to 40% depending on the severity 

[2, 3]. However, the effective treatment of sepsis is limited in supportive care, and there is a 

lack of approved specific molecular therapies [4].

Sepsis is defined as a life-threatening organ dysfunction caused by a dysregulated host 

response to infection, which is defined by the Sepsis-3 taskforce [3]. Organ dysfunction is 

assessed by 2 points or more of the Sequential (Sepsis-related) Organ Failure Assessment 

(SOFA) score, which is directly associated with prognosis [3]. When microbes invade into 

the body, pathogen-associated molecular patterns (PAMPs) derived from the component of 

pathogens and damage-associated molecular patterns (DAMPS) derived from injured tissues 

are released [5]. The NLRs family pyrin domain containing 3 (NLRP3) inflammasome is 

activated when PAMPs or DAMPs are recognized through pattern recognition receptors 

(PRRs) [6]. Subsequently, NLRP3 forms an inflammasome complex, cleaves procaspase-1 

into the active caspase-1 form, results in the maturation and secretion of pro-inflammatory 

cytokines such as IL-1β and IL-18, and then aggravates inflammatory response [7]. 

Recently, NLRP3 inflammasome is the key mediator in mediating inflammatory responses 

after sepsis [8, 9]. The expression of TLR4, NLRP3, and caspase-1 proteins were 

significantly increased in tissues after CLP, accompanied by the increase of proinflammatory 

cytokines in the plasma [8]. Inhibiting NLRP3 inflammasome activation attenuates 

myocardial dysfunction in mice with sepsis [8, 10]. Considering the lack of effective 

therapies in sepsis, it may be a potential therapeutic target to suppress the NLRP3 

inflammasome activation.

The metabolites of arachidonic acid (ARA) play a vital role in inflammation [11]. In 

inflammatory conditions, ARA is released from membrane phospholipids by the enzyme 

phospholipase A2 (PLA2) and metabolized by cyclooxygenases (COXs), lipoxygenases 
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(LOXs), and cytochrome P450s (CYPs) to prostaglandins (PGs)/thromboxane, leukotrienes, 

and epoxy-/hydroxy-metabolites such as epoxyeicosatrienoic acids (EETs) and other EpFA, 

respectively [12]. Among them, COX-2 metabolites are involved in inflammatory disorders 

[13]. A massive release of PGs and leukotrienes induced by bacterial flagellin results in 

the rapid death of mice [14]. On the contrary, four distinct EET regioisomers, namely 

5,6-, 8,9-, 11,12- and 14,15-EET, have been identified with anti-inflammation, cardio-

protection, and organ protection effects [15, 16]. However, EETs and the other EpFA 

have very short half-lives. They are readily metabolized by soluble epoxide hydrolase 

(sEH) to dihydroxyeicosatrienoic acids (DHETs) with no or less bioactivity [17]. In our 

previous studies, inhibition of sEH activity alleviated acute lung injury (ALI) induced 

by lipopolysaccharide (LPS) through suppressing the expression of triggering receptor 

expressed on myeloid cells-1 (TREM-1) [18, 19]. However, it remains unknown whether 

the metabolic pattern of ARA changes during sepsis and subsequently inhibiting both COX 

and sEH pathways of ARA protect against sepsis.

Cumulatively, these studies indicate that inhibition of either COX-2 or sEH is beneficial for 

inflammation and cardiovascular disease. Recently, we have synthesized a dual COX-2 and 

sEH inhibitor, 4-(5-phenyl-3-{3-[3-(4-trifluoromethyl-phenyl)-ureido]-propyl}S-pyrazol-1-

yl) benzenesulfonamide (PTUPB), which has anti-tumor, anti-fibrosis, and renal protection 

[16, 20–22]. More interestingly, the effect of PTUPB on inhibiting tumor growth and 

metastasis is more prominent compared with inhibitors that are selective on either pathway, 

either as a single agent or in a combination [16]. In this study, we hypothesized that 

concurrently inhibiting COX-2 and sEH by PTUPB would be efficacious in attenuating 

sepsis. Here, we demonstrated that PTUPB promoted the survival of septic mice by 

alleviating multiple-organ dysfunction.

2. Materials and Methods

2.1 Animals

Adult male C57BL/6 mice (20 ± 2 g) were purchased from Hunan SJA Laboratory Animal 

Co., Ltd (Hunan, China). The animals were housed in a specific pathogen-free environment, 

given free access to water and food, and exposed to a 12-h light/dark cycle. Mice were 

handled in accordance with the guidelines of the National Institutes of Health. All animal 

experiments were approved by the Ethics Committee of the School of Basic Medical 

Science, Central South University (No.2019-LW003, Changsha, China).

2.2 Establishment of sepsis model induced by cecal ligation and puncture (CLP)

Mice were randomly divided into the following groups (40 mice per group): the sham 

group, CLP group, and CLP + PTUPB group. CLP was performed according to a previous 

report [23]. Briefly, the mice were anesthetized with 1% pentobarbital sodium (80 mg/kg) 

by intraperitoneal injection, and then the abdomen was carefully shaved and cleaned with 

complex iodine. Next, a 0.5–1 cm longitudinal midline incision was made at the lower 

abdomen with a sterilized blade. The cecum was isolated and exteriorized out of the 

abdominal cavity gently. The cecum was ligated at the midpoint with a 4–0 silk suture 

with the strength of the blood supply obstructed. Next, a puncture was performed in a 
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through-and-through pattern puncture midway using used a 22G needle between the ligation 

and the tip of the cecum from mesenteric to antimesenteric side, avoiding vascular injury. 

After removing the needle, a small droplet of feces was extruded from both penetration 

holes, followed by relocating the cecum into the abdominal cavity. The abdominal cavity 

and incision were closed. Pre-warmed sterile saline (37 °C, 5 mL/100 g body weight) 

was injected subcutaneously for resuscitation. The whole operation was carried out on a 

sterilized board. Mid-grade sepsis was initiated with this procedure. For the sham group, 

the cecum was relocated into the abdominal cavity without ligation and puncture. PTUPB 

(5 mg/kg) or the corresponding solvent polyethylene glycol 400 (PEG 400) [22] was 

subcutaneously administered 72, 48, and 24 h before CLP for CLP + PTUPB group and CLP 

group respectively. Finally, the mice were returned to their cages with free access to food 

and water. After 24 h, the mice were sacrificed, and portions of tissues were immediately 

snap-frozen in liquid nitrogen and then stored at −80 °C for analysis.

2.3 Clinical score

Twenty-four hours after the CLP, a clinical score was used to evaluate the presence and 

severity of sepsis [24], based on the following six symptoms or signs: periorbital exudates, 

lethargy, diarrhea, tremors, labored respiration, and piloerection. Each measure was scored 

1. The total scores of each mouse were collected for the analysis.

2.4 Liver and kidney function tests

Twenty-four hours after the CLP, blood samples were isolated by eyeball extirpation 

followed by centrifugation with 3000 revolutions per minute (rpm) for 10 min. 

Then, the serum was isolated for liver and kidney function tests with the automatic 

biochemical analyzer (Hitachi automatic biochemical analyzer 7000, Japan), including 

blood urea nitrogen (BUN), creatine (Cre), serum alanine aminotransferase (ALT), aspartate 

aminotransferase (AST), lactate dehydrogenase (LDH), albumin (ALB), and total protein 

(TP).

2.5 Measurement of the percentage of neutrophils

To measure the percentage of neutrophils, Wright’s stain was performed. The dyes of 

basic methylene blue and acid eosin were used. Neutrophils were discriminated based on 

the characteristics of different cells. First, 20 μL anticoagulated blood was placed on and 

spread over a glass slide thinly with the edge of another slide to produce a monolayer of 

cells. The prepared blood smear was then air-dried completely. Liquid A (Polysciences, 

Germany) was placed on the film, and liquid B (Polysciences, Germany) was added 1 min 

later. The slide was washed with distilled water after 10 min-staining and was air-dried 

thoroughly. One hundred leukocytes were counted under an oil microscope (Olympus, 

Japan), and then neutrophils were differentiated to calculate the percentage. Besides, the 

myeloperoxidase (MPO) activity in liver, lung, and kidney tissues was measured according 

to the manufacturer’s instruction (Jiancheng Bioengineering Institute, Nanjing, China).
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2.6 Enzyme-linked immunosorbent assay (ELISA)

The protein level of monocyte chemoattractant protein-1 (MCP-1) in serum was measured 

using an ELISA kit (Invitrogen, Thermo Fisher Scientific, Cat: BMS6005TEN USA) 

according to the manufacturer’s instructions. The concentrations of the MCP-1 were 

quantified by reference to a standard curve.

2.7 Hematoxylin-eosin (H&E) staining and organ injury score

H&E staining was performed as described in our previous study [25]. The left lung, liver 

median lobe, and the left kidney were isolated for histopathological analysis. After fixation 

in 4% paraformaldehyde overnight, samples were embedded in paraffin and sectioned in 

3 μm thick slices. After dehydration with a graded series, the slices were stained with 

hematoxylin and eosin. The liver injury score was measured according to the damage of 

hepatic lobular structure as follows: intact-1, intact with cell swelling-2, mild disruption-3, 

marked disruption-4. Lung injury score was measured according to five independent 

variables: hemorrhage, proteinaceous debris filling the airspace, neutrophils in the alveolar 

space, hyaline membranes, and septal thickening. A score of 0 represented no damage; l, 

<25% damage; 2, 25 to 50% damage; 3, 50 to 75% damage and 4, > 75% damage. Kidney 

injury score was measured according to the percentage of damaged tubules to the total 

number of tubules as follows: 1, <25% damage; 2, 25 to 50% damage; 3, 50 to 75% damage; 

4, 75 to 90% damage and 5, >90% damage. The score of 3 fields per slide was calculated, 

respectively. All scoring was performed by four pathologists in a blinded manner.

2.8 Total RNA extraction and real-time PCR

Mouse liver, lung, and kidney tissues were homogenized in Trizol solution (Takara, Japan) 

for RNA extraction according to the manufacturer’s protocol. The cDNA was generated 

by reverse transcription from RNA (1 μg) based on the Reverse Transcription System kit 

(Takara, Japan). Real-time PCR was implemented using SYBR Green (Takara, Japan) on 

the Bio-Rad real-time PCR system (CFX96 Touch™, Bio-Rad, USA). The primers of genes 

for need detected and housekeeping gene β-actin were synthesized by Invitrogen. Primer 

sequences used in this study are shown in Table 1. According to our previous study [22, 26], 

the relative gene expression was measured by the 2−ΔΔCT methods. The profile of CYPs was 

calculated using the 2−ΔCT method.

2.9 Western Blot

Total protein extraction and western blot were performed according to our previous study 

[27]. Briefly, mouse liver, lung, and kidney tissues were homogenized and lysed in cold 

RIPA buffer (Solarbio, cat: R0010 Beijing, China), which contained a protease inhibitor 

(Roche, Mannheim, cat: P0100 Germany). The protein concentration determined with 

Pierce™ BCA Protein Assay Kit (Thermo Fisher Scientific cat: 23229). The proteins 

were mixed with loading buffer and denatured at 100 °C for10 mins. Then the lysates 

were separated using an SDS-PAGE gel, and the proteins were transferred onto 0.45-

μm polyvinylidene difluoride (PVDF) membranes. The membranes were blocked with 

5% fat-free milk and were incubated overnight at 4°C with rabbit anti-COX-2 antibody 

(1:2000, Servicebio, cat: GB111037, Wuhan, China), goat anti-pro-IL-1β antibody (1:2000, 
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R&D, cat: AF-401-NA, USA), rabbit anti-NLRP3 antibody (1:2000, CST, cat: #15101, 

USA), mouse anti-HIF-1α antibody (1:2000, Immunoway, cat: sc-13515, China), rabbit 

anti-β-actin antibody (1:7500, Signalway, cat: #21338, China), rabbit anti-GAPDH antibody 

(1:2000, Servicebio, cat: GB11002, Wuhan, China), rabbit anti-β-tubulin antibody (1:2000, 

Servicebio cat: GB13017-2). Subsequently, the membranes were washed three times with 

TBST and were incubated for 1 h at room temperature with anti-rabbit (COX-2, NLRP3, 

β-actin, β-tubulin, and GAPDH, Signalway, cat: #L3012-2), anti-goat (pro-IL-1β, absin, 

cat: abs20005ss) or anti-mouse (HIF-1α, Signalway, cat: L3032-2) horseradish peroxidase-

conjugated secondary antibodies. The proteins were detected with a gel imaging system 

(Bio-Rad, Hercules, CA). The expression of proteins in the liver, lung, and kidney was 

respectively normalized to β-tubulin, β-actin, or GAPDH as a loading control.

2.10 Measurement of superoxide dismutase (SOD) and malondialdehyde (MDA)

The SOD activity and contents of MDA in liver, lung, and kidney tissues were measured 

according to their respective kits following the manufacturer’s instructions (Jiancheng 

Bioengineering Institute, Cat: A001-1-2, Cat: A003-4-1, Nanjing, China).

2.11 Statistical analysis

Statistical analysis was processed by SPSS 22.0 (IBM, Chicago, IL) or GraphPad Prism 7.0 

software (San Diego, CA, USA). Unpaired t-tests were used to compare the means of two 

groups. One-way ANOVA was used for comparison among the different groups. Tukey’s test 

was used as a post hoc test to make pair-wise comparisons. P-value < 0.05 was considered 

statistically significant.

3. Results

3.1 COX-2/CYP pathway of ARA metabolism dysregulation occurs during sepsis

Firstly, we studied the profile of ARA metabolism by COX-2 and CYP during CLP-induced 

sepsis. In mice, CYP2J5, CYP2J6, CYP2J9, CYP2C44, and CYP2C29 are in response to the 

synthesis of EETs. We found CYP2J5 was the most abundant in the liver, CYP2J6/2J9 

in the lung, and CYP2J5 in the kidney (Figure 1A–1C). While all of those enzymes 

were downregulated during CLP-induced sepsis (Figure 1D–1F). In contrast, the protein 

of COX-2 was upregulated in the liver, lung, and kidney by CLP (Figure 1G–1J). These 

results indicate a dysregulation of CYP/COX-2 pathways of ARA metabolism in mice with 

sepsis.

3.2 PTUPB improves the survival rate and health status of septic mice

After confirming that PTUPB had no deleterious effect on the liver, lung, and kidney 

morphology in healthy mice, we tested PTUPB in the CLP-induced sepsis mice. We found 

that the survival rate in the CLP+PTUPB group was higher than that in the CLP mice (40% 

vs. 15%) (Figure 2A). To further assess the health status of living mice, the clinical scores 

of the mice in the three groups were investigated 24 h after the surgery. The clinical score 

of survivors in the CLP+PTUPB group was 2.50 ± 1.96, which was significantly lower than 

that in the CLP group (4.44 ± 1.24) (Figure 2B). These results demonstrate that PTUPB 

increases survival and improves the health status of septic mice.
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3.3 PTUPB improves the liver and kidney functions in septic mice

Clinically, blood BUN and Cre are the two main biomarkers of kidney function, while high 

levels of serum ALT, AST, and LDH reveal liver function disorders. Our data demonstrated 

that the levels of BUN and creatine in the CLP group were significantly higher than those 

in the sham group, which were significantly decreased by PTUPB treatment (Figure 3A–

3B). We also found that CLP increased serum ALT, AST, and LDH (Figure 3C–3E), but 

decreased ALB and TP levels (Figure 3F–3G), which were partially reversed by PTUPB 

(Figure 3C–3G). These results indicate that PTUPB improves the liver and kidney function 

in septic mice.

3.4 PTUPB attenuates the injury of multiple organs in septic mice

Furthermore, we investigated the effects of PTUPB on tissue injury induced by sepsis 

using H&E staining and organ injury scores. We found that CLP-induced remarkable 

injuries in liver, lung, and kidney tissue, which were characterized by structure disorder 

of hepatic lobular, diffuse vacuolation of hepatocyte (Figure 4A), significant thickening of 

the alveolar walls, the collapse of the alveolar (Figure 4C), glomerular structure disorder, the 

tubular cell swelling and infiltration of inflammatory cells (Figure 4E), respectively. These 

pathological changes were all alleviated by PTUPB pretreatment, which was confirmed 

by the corresponding tissue injury score (Figure 4). These results indicate that PTUPB 

attenuates multiple tissue injuries in septic mice.

3.5 PTUPB reduces the systemic inflammatory response in septic mice

Sepsis is characterized by the activation of innate immune cells, an increase of pro-

inflammatory cytokines, and chemokines. Here, we examined the percentage of neutrophils 

in the blood, MPO activity, and the expression of TNF-α and MCP-1. We found that PTUPB 

treatment decreased the percentage of neutrophils and MPO activity in the liver, lung, and 

kidney (Figure 5A–5B). Levels of MCP-1 in serum (Figure 5C), as well as mRNA of Mcp-1 
and Tnf-α in the liver, lung, and kidney (Figure 5D–5E), were also suppressed by PTUPB 

treatment. These data indicate that PTUPB reduces the systemic inflammatory response in 

septic mice.

3.6 PTUPB inhibits the NLRP3 inflammasome activation in septic mice

The NLRP3 inflammasome is an intracellular multiprotein complex that mainly controls the 

maturation and release of IL-1β family [28]. IL-1β is one of the inflammatory cytokines 

that contribute to the development of sepsis [29]. We found that PTUPB reduced the protein 

expression of both NLRP3 and pro-IL-1β in the liver, lung, and kidney induced by CLP 

(Figure 6A–6F). These results indicate that PTUPB inhibits the NLRP3 inflammasome 

activation in septic mice.

3.7 PTUPB attenuates oxidative stress in septic mice

Multiple organ dysfunction secondary to sepsis is associated with a surge of pro-oxidants 

and reduced antioxidant activity. MDA is one of the end products of lipid peroxidation, 

which was increased in the liver, lung, and kidney of mice with sepsis, while PTUPB 

reduced the MDA content in the lung and kidney, rather than in the liver (Figure 7A). 
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The activity of SOD, an antioxidant, was not changed in the liver by sepsis. The activity 

of SOD in the lung was decreased, whereas it was increased in the kidney by sepsis. 

PTUPB treatment promoted the SOD activity in both lung and kidney compared with CLP 

(Figure 7B). We further observed that PTUPB significantly increased the mRNA of heme 
oxygenase-1 (Ho-1) (Figure 7C). These results indicate that PTUPB attenuates oxidative 

stress in septic mice.

3.8 PTUPB suppresses the expression of HIF-1α in septic mice

Hypoxia-inducible factor-1α (HIF-1α) exerts a significant role in the regulation of hypoxic 

stress and inflammation. Results showed that PTUPB reduced the HIF-1α protein and 

mRNA expression in the liver, lung, and kidney of the CLP-treated mice (Figure 8A–8E).

4. Discussion

We previously reported that an sEH inhibitor attenuated LPS-induced ALI and bleomycin-

induced pulmonary fibrosis [18, 19, 30]. Further, the results of our present study illustrated 

that ARA metabolic pathways were dysregulated in sepsis, which is characterized by an 

increase of COX-2 and reduction of CYPs. Thus, it is a reasonable therapeutic strategy to 

restore the balance of ARA metabolism by inhibiting COX-2 activity and increasing the 

level of EETs via sEH inhibition. Thus, we employed a COX-2 and sEH dual inhibitor 

PTUPB in CLP-induced sepsis in mice. We found that PTUPB improved the survival 

and partially reversed multiple organs (the lung, kidney, and liver) injuries in septic mice. 

The protective role of PTUPB may be mediated by inhibiting the NLRP3 inflammasome 

activation and expression of pro-inflammatory cytokines, as well as increasing SOD activity 

and stimulating the HIF-1α pathway.

ARA was first found in the 1970s, and it can be metabolized by COXs, LOXs, and CYPs. 

Bitto et al. demonstrated that a dual inhibitor of COX-2 and 5-LOX protected mice from 

sepsis induced by CLP through inhibiting the inflammatory response [31]. Here, our study 

indicated that restoring the imbalance of COX/CYP pathways may be a potential therapeutic 

approach. It has been known that COX-2 metabolites, as well as EETs and other EpFA, 

participate in many inflammatory disorders [13, 32]. EI-Achakar et al. reported that the 

expression of COX-2 was TLR4-dependent in sepsis [33]. After binding with TLR4 on 

the membrane of macrophages, LPS activates the MyD88-TAK1-NF-κB/MAPK signaling 

cascades and TRIF pathway, associated with the upregulation of expression of COX-2 

[34, 35]. Some studies suggest that COX-2 inhibition attenuates sepsis and sepsis-related 

organ dysfunction [36, 37]. However, there is also contrary evidence. For example, COX-2 

protects against early onset of gut origin sepsis through promoting enterocyte migration 

and decreasing epithelial permeability of the ileum [38, 39]. Our results suggested that 

the regulation of both the COX-2 and CYP pathways of ARA attenuated multiple-organ 

dysfunction and mortality of septic mice. Particularly in the CLP model, an inflammatory 

response is needed to control bacterial infection. The results here illustrate the earlier 

hypothesis of Schmeltzer’s work that the downregulation of COX-2 and other enzymes 

by EETs resulted more in encouraging the resolution of inflammation than in blocking 

inflammation [40].
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It has long been recognized that infections cause damage not only because of the 

virulence of the microorganisms but also the host response [41]. The local infection 

will extend to the entire body mainly through the circulation of innate immune cells 

and inflammatory cytokines with auto-amplified activation property, which is called 

“cytokines storm” [42]. Among the cytokines, IL-1β production is critically regulated 

by NLRP3 inflammasomes [43]. NLRP3 inflammasomes consist of NLRP3 proteins, 

adapter protein apoptosis-associated speck-like protein (ASC), and procaspase-1 [44]. When 

PAMPs released by pathogens or DAMPs released by damage host cells bind to PRRs 

expressed in innate immune cells, the NLRP3, ASC, and pro-caspase-1 were assembled 

into a complex. Then activated caspase-1 promotes the secretion of IL-1β and IL-18, 

resulting in the excessive inflammatory response [45]. Increasing evidence demonstrate 

that CYP-derived epoxylipids, such as EETs, exhibit anti-inflammatory properties [18, 

46, 47]. Our previous study has shown that sEH inhibition, approaching to elevate the 

levels of these lipid mediators, can attenuate LPS-induced ALI in mice by suppressing 

inflammation [18]. Genetic deletion of sEH protects against myocardial injury by inhibiting 

the activation of NLRP3 inflammasome [47]. In the present study, we found that dual 

inhibition of COX-2/sEH by PTUPB significantly inhibited CLP-induced NLRP3 and pro-

IL-1β expression in mice with sepsis. The above results indicated that PTUPB could inhibit 

the activation of NLRP3 inflammasome.

Excessive pro-inflammatory cytokines and mitochondrial dysfunction induce oxidative 

stress, which is characterized by an imbalance between antioxidant defense effectiveness 

and the speed of ROS generation, causing a net overload oxidants [48]. ROS attack proteins 

and membrane lipids to produce harmful intermediary molecules such as MDA and the 

4-hydroxy-2-nonenal (4-HNE). Another study also indicates that ROS promotes NLRP3 

activation [49]. SOD is considered to be a potent antioxidant that catalyzes the dismutation 

of the superoxide anion into hydrogen peroxide (H2O2). Here, we found that COX-2/sEH 

dual inhibitor PTUPB reduced the MDA content and increased SOD activity in mice with 

sepsis. Moreover, HO-1 is strongly up-regulated to protect cells from oxidative injury 

and inflammatory responses [50]. Numerous studies have demonstrated that HO-1 is up-

regulated in sepsis [51, 52]. In cigarette smoke-induced lung injury, EETs have been found 

to increase the expression of HO-1 [53]. As expected, we found that PTUPB significantly 

increased the mRNA of HO-1. According to our study, we speculated that PTUPB could 

protect against sepsis by resolving the cytokine storm and oxidative stress.

There are also some limitations to our study. First, we did not measure whether the LOX 

pathway of ARA metabolism changes after PTUPB treatment. In our other study, while we 

found that the level of LOX remained constant in the lung after LPS challenged (results 

were not presented here). Though Jun Yang et al. found that sEH inhibitor decreased LOX 

metabolites in asthma mice [54], the changes of LOX pathways remain to be determined in 

sepsis. Secondly, the levels of PGs and EETs after PTUPB administration were not assessed 

directly. We previously found that PTUPB inhibited COX-2 derived PGF2α, PGD2, and 

PGJ2. What’s more, the levels of 12,13-DiHOME on the sEH pathway in PDX BL0269 

tumor tissues were also decreased [16], suggesting that PTUPB can effectively inhibit the 

COX-2 and sEH in pathological conditions. This will be done along with the monitoring 

of oxylipins in later studies with more animals. Moreover, there is a lack of experiments 
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in vitro in our study. Though we have demonstrated that pro-inflammatory cytokines were 

dramatically suppressed by PTUPB in inflammatory macrophages [55], the more detailed 

mechanisms should be elucidated in future studies.

In conclusion, the present study suggests that inhibiting COX-2 and sEH of ARA 

metabolism by PTUPB would be efficacious in attenuating sepsis through resolving the 

cytokine storm and oxidative stress. Therefore, we demonstrate here targeting the ARA 

metabolic disorders may be a promising therapeutic approach to sepsis.
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Figure 1. 
COX-2/CYP pathway of ARA metabolic dysregulation occurs in the liver, lungs, and 

kidneys during sepsis. CYP2J5 was the most abundant isoform in mouse liver and kidney 

tissue, while CYP 2J6 and CYP 2J9 were abundant in the lung tissues (the basic expression 

of CYP isoforms was calculated using the formula 2−△CT, A-C, n=5–7). The CYP2J5, 

CYP2J6, CYP2C44, and CYP2C29 mRNA in liver, CYP2J9, and CYP2J6 mRNA in the 

lung, CYP2J5 and CYP2J6 mRNA in kidney were robustly suppressed at 24 h after CLP 

(the fold change of the CLP group relative to the sham group was calculated using the 

formula 2−△△CT, D-F, n=5–7). The western blot results manifested that COX-2 protein was 

increased in the liver, lung, and kidney at 24 h after CLP (representative blots, G-H, n=5–8). 

Data are expressed as the mean ± SD. * P < 0.05, ** P < 0.01, and *** P < 0.001.
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Figure 2. 
PTUPB improves the survival rate and health status of septic mice. PTUPB (5 mg/kg/day) 

was administered to mice for 3 consecutive days before CLP, the mortality of the mice was 

monitored every 6 h, and the percent survival rate was expressed as a Kaplan-Meier survival 

curve (A, n=20 per group). *** P < 0.001. Clinical score was used to evaluate the health 

status of surviving mice (B, n=7–9). Data are expressed as the mean ± SD. * P < 0.05, ** P 
< 0.01, and *** P < 0.001.
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Figure 3. 
PTUPB improves the liver and kidney dysfunction in septic mice. Levels of serum 

creatine (Cre) and blood urea nitrogen (BUN), alanine aminotransferase (ALT), aspartate 

aminotransferase (AST), lactate dehydrogenase (LDH), albumin (ALB) and total protein 

(TP) were detected (A-G, n=5–8). Data are expressed as the mean ± SD. * P < 0.05, ** P < 

0.01, and *** P < 0.001.
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Figure 4. 
PTUPB attenuates tissue injuries of the liver, lung, and kidney in septic mice. Twenty-four 

hours after CLP, liver, lung, and kidney tissue histopathology of the mouse was stained with 

H&E in C57BL/6 mice (A, C, and E). The inflammation injury score was evaluated by four 

pathologists in a blinded manner (B, n = 6–7), (D, n = 6–7), and (F, n = 6–8). Data are 

expressed as the mean ± SD. ** P < 0.01 and *** P < 0.001.
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Figure 5. 
PTUPB reduces the systemic levels of inflammatory factors in septic mice. C57BL/6 mice 

were subcutaneously injected with PTUPB for three consecutive days before CLP. Twenty-

four hours after CLP, the percentage of neutrophils in blood (A, n=4). The MPO activity in 

the liver, lung, and kidney was detected by MPO Kit (B, n=5–8). The mRNA expressions 

of Mcp-1 and Tnf-α in the liver, lung, and kidney were detected by real-time PCR (C, E, 

n=5–7). MCP-1 protein content in serum (D, n=6) was detected by an ELISA kit. Data are 

expressed as the mean ± SD. * P < 0.05, ** P < 0.01, and *** P < 0.001.
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Figure 6. 
PTUPB inhibits the NLRP3 inflammasome activation in the liver, lung, and kidney of septic 

mice. The protein expressions of NLRP3 and pro-IL-1β in the liver (representative blots, 

A-B), lung (representative blots, C-D), and kidney (representative blots, E-F) were detected 

by western blot (n=5–8). G-H: The analysis results of the blot. Data are expressed as the 

mean ± SD. * P < 0.05, ** P < 0.01, and *** P < 0.001.

Zhang et al. Page 19

Biomed Pharmacother. Author manuscript; available in PMC 2022 February 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. 
PTUPB decreases oxidative stress of the liver, lung, and kidney in septic mice. C57BL/6 

mice were subcutaneously injected with PTUPB for three consecutive days before CLP. The 

content of MDA and the SOD activity in the liver, lung, and kidney were detected 24 h 

after CLP (A-B, n=5–9). The mRNA expression of HO-1 in the liver, lung, and kidney was 

detected by real-time PCR (C, n=5–7). Data are expressed as the mean ± SD. * P < 0.05, ** 

P < 0.01, and *** P < 0.001.
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Figure 8. 
PTUPB suppresses HIF-1α expression in the liver, lung, and kidney of septic mice. The 

protein expression of HIF-1α in the liver, lung, and kidney was detected by western blot 

(representative blots, A-D, n=5–8). The mRNA expression of Hif-1α in the liver, lung, and 

kidney was detected by real-time PCR (E, sham, n=5 CLP, n=8, CLP+PTUPB, n=7). Data 

are expressed as the mean ± SD. * P < 0.05, ** P < 0.01, and *** P < 0.001.
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Table 1.

Primer sequences used to quantitate gene expression in this study

Gene Forward primer (5′–3′) Reverse primer (5′–3′)

Cyp2j5 TGATGGGTTCATCAGCAGGC CTTGGCTCATCTGGGTTCCAAT

Cyp2j6 GGTGCCCTTGTTGTTAGCAC GGCTAACAAGGAGCCGGTAG

Cyp2j9 AGTCAGTCACCGCCTTTGTG GTCTCATTGCACGCACTCTC

Cyp2c29 CCATGGTTGCAGGTAAACCACAT TCTGTCCCTGCACCAAAGAG

Cyp2c44 CAAGGTACCCCGAGTGAAGAA CACGGCATCTGTATAGGGCA

Ho-1 GTGACAGAAGAGGCTAAGACCG ACAGGAAGCTGAGAGTGAGGAC

Hif-1α CCACCCGCTCTTCTGTCTA TGGTTTGTGAGTGAGGGT

Mcp-1 GTCCCTGTCATGCTTCTGG GCGTTAACTGCATCTGGCT

pro-IL-1β CAGGCAGGCAGTATCACTCA AGCTCATATGGGTCCGACAG

Tnf-α AGCCCCCAGTCTGTATCCTT CTCCCTTTGCAGAACTCAGG

β-actin TTCCAGCCTTCCTTCTTG GGAGCCAGAGCA GTAATC
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