
UC Irvine
UC Irvine Previously Published Works

Title
Assessing health care interventions via an interrupted time series model: Study power and 
design considerations

Permalink
https://escholarship.org/uc/item/21n68797

Journal
Statistics in Medicine, 38(10)

ISSN
0277-6715

Authors
Cruz, Maricela
Gillen, Daniel L
Bender, Miriam
et al.

Publication Date
2019-05-10

DOI
10.1002/sim.8067
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/21n68797
https://escholarship.org/uc/item/21n68797#author
https://escholarship.org
http://www.cdlib.org/


Assessing health care interventions via an interrupted time 
series model: Study power and design considerations

Maricela Cruz1, Daniel L. Gillen1, Miriam Bender2, Hernando Ombao1,3

1Department of Statistics, University of California, Irvine, California

2Sue and Bill Gross School of Nursing, University of California, Irvine, California

3Statistics Program, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia

Abstract

The delivery and assessment of quality health care is complex with many interacting and 

interdependent components. In terms of research design and statistical analysis, this complexity 

and interdependency makes it difficult to assess the true impact of interventions designed to 

improve patient health care outcomes. Interrupted time series (ITS) is a quasi-experimental design 

developed for inferring the effectiveness of a health policy intervention while accounting for 

temporal dependence within a single system or unit. Current standardized ITS methods do not 

simultaneously analyze data for several units nor are there methods to test for the existence of a 

change point and to assess statistical power for study planning purposes in this context. To address 

this limitation, we propose the “Robust Multiple ITS” (R-MITS) model, appropriate for multiunit 

ITS data, that allows for inference regarding the estimation of a global change point across units in 

the presence of a potentially lagged (or anticipatory) treatment effect. Under the R-MITS model, 

one can formally test for the existence of a change point and estimate the time delay between the 

formal intervention implementation and the over-all-unit intervention effect. We conducted 

empirical simulation studies to assess the type one error rate of the testing procedure, power for 

detecting specified change-point alternatives, and accuracy of the proposed estimating 

methodology. R-MITS is illustrated by analyzing patient satisfaction data from a hospital that 

implemented and evaluated a new care delivery model in multiple units.

Keywords

change-point detection; complex interventions; patient satisfaction; power analysis; segmented 
regression; time series

1 ∣ INTRODUCTION

The delivery and assessment of quality health care is increasing in complexity. Now, more 

than ever, patients, providers, resources and contexts of care interact in dynamic ways to 

produce various measurable health outcomes that, oftentimes, do not align with 
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expectations.1 Assessing the impact of health interventions on patient health outcomes is 

therefore inherently difficult with regard to research design and statistical analysis.2,3 

Interrupted time series (ITS) designs borrow from traditional case-crossover designs and 

function as quasi-experimental methodology that allows each sampling unit to serve as its 

own control without stripping contextual and temporal factors from the analysis.4 Current 

standardized methods for analyzing ITS designs do not borrow information across units. 

This is a serious limitation because it does not take advantage of all available data that may 

provide information on the lag associated with a given intervention. A main contribution of 

the work presented here are the empirical power studies that illustrate the gain in efficiency 

obtained by borrowing information across units.

The methodology presented in this paper is motivated by our interest in estimating the 

lagged effect of an intervention on average patient satisfaction survey scores, recorded 

monthly at five clinical care units. A time series plot of patient satisfaction scores from 

January 2008 to December 2012 at two hospital units (the Stroke and Surgical units) is given 

in Figure 1. There seems to be a change in the mean functions of the Stroke and Surgical 

units around the middle of the time series, slightly before the formal implementation of the 

intervention on July 2010. The time series data are from a study aimed to assess the impact 

of a new nursing care delivery system on publicly recorded standardized quality and safety 

metrics.5 These metrics are a central area for improvement because the Center for Medicaid 

and Medicare Services (CMS) Value-Based Purchasing Program utilizes them for health 

systems′ care services reimbursement.6

The intervention was the implementation of Clinical Nurse Leader (CNL) integrated care 

delivery, a nursing model that embeds a master prepared nurse into the front lines of care.7 

The nurses, referred to as CNLs, have advanced competencies in clinical leadership, care 

environment management, and clinical outcomes management.7 The CNLs, conducting their 

master′s level microsystem change project, were introduced into their respective hospital 

units on January 2010, six months prior to the formal intervention implementation time. This 

may or may not have influenced the change point of the intervention effect. Namely, because 

of this early introduction, the estimated change point may have occurred up to 6 months 

prior to the formal intervention time point. We are therefore interested in estimating the time 

lag (or delay) between the onset of the intervention—ie, the change point—and the effect on 

patient satisfaction. Our model assumes a global change point rather than unit-specific 

change points (1) to pool information across hospital units and increase efficiency and (2) to 

reduce the impact of unit-specific high-leverage points around the CNL and formal 

intervention implementation time points. Importantly, we are interested in examining 

whether or not a change point actually exists, thereby deducing whether or not the 

intervention impacts patient satisfaction. Our interest is not solely on properly modeling the 

CNL intervention; we are also interested in future study designs, and so, focus on power.

The most utilized statistical methodology for analyzing ITS data in the health care literature 

is segmented regression.8-11 Segmented regression restricts the analysis to one health care 

outcome for one unit (group or cluster). In the context of assessing the above intervention, 

perhaps, a severe drawback of segmented regression is that it restricts the interruption to a 

pre-determined time point in the series or censors data by removing the set of time points for 
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which the intervention effects may not be realized. Additionally, segmented regression 

neglects the plausible differences in autocorrelation and variability between the pre- and 

post-intervention phases present in the data. The Robust-ITS model proposed by Cruz et al 

treats the change point as variable, appropriate for situations where the data warrants such 

treatment, and tests for differences in autocorrelation and variability pre– and post–change 

point.12 Nevertheless, Robust-ITS and segmented regression both neglect shared information 

across hospital units and inherently assume a change point exists.

Assessing the impact of an intervention with traditional segmented regression or Robust-ITS 

on these data requires a separate analysis for each individual. We expect many of the units to 

share several characteristics—ie, abide by the same regulations, have similar schedules, hire 

staff based on the same criteria, etc—because the units are housed within one hospital. 

Moreover, we expect the CNL “training” or education for each of the CNL students to 

include commonalities, such as course work and care delivery ideology. Assessing the 

intervention impact on multiple units via current segmented regression methods ignores 

shared characteristics across units, in particular, the similarity between characteristics 

influencing the change point.

Inherently assuming that a change point exists, as in segmented regression and Robust-ITS, 

may lead to erroneous results when there is no actual a change point. Change-point models 

will forcefully quantify a change in the outcome regardless of the presence of a true change 

point. This is a problem whether the change point is determined a priori or estimated over a 

set of possible change points. Assuming a change point exists, when it truly does not, will 

force a model to provide an estimate of an artificial difference in the outcome. To avoid 

incorrectly specifying an unnecessary change point and regression to the mean phenomena, 

we focus on formally testing for the existence of a change point.

In this paper, we develop the Robust Multiple ITS model (R-MITS), a novel extension of 

Robust-ITS, appropriate for multiple independent ITS. Furthermore, we present the 

supremum Wald test (SWT), able to test for the existence of a change point across units. 

Importantly, we provide empirical type one error, power, and accuracy studies assessing the 

operating characteristics of our developed methodology. The proposed method (a) borrows 

information across hospital units to increase efficiency, (b) estimates a global change point 

of an instituted intervention, (c) formally tests for the existence of a change point in the unit-

specific mean functions, and (d) allows for changes in the mean functions and 

autocorrelation structures across units.

We go on to describe our proposed R-MITS model and provide details on the estimation and 

inference procedures. In our model specification, we outline the SWT used to determine the 

necessity of a change point. Next, we present empirical simulations to assess the type one 

error, power for detecting specified change-point alternatives, and accuracy of the change-

point estimation procedure. We then analyze the impact of CNL integrated care delivery on 

patient satisfaction. Lastly, we present a summary of our developed methodology and briefly 

describe future work.
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2 ∣ THE ROBUST MULTIPLE ITS MODEL

Our proposed model tests for the existence—rather than merely assume—of a change point 

and adequately manages multiple units/time series. A noteworthy feature of our approach is 

the clear distinction between the time of intervention and the change point, as in Robust-ITS. 

Setting the change point to a pre-determined time may lead to incorrect measures of the 

intervention′s effect on the system; particularly when set to the intervention time, because 

that does not necessarily represent the reality that complex interventions may have varied 

effects and take time to manifest change. Prevalent approaches to overcoming this limitation 

are to remove, or censor, a specific set of time points from the analysis.8,9 R-MITS borrows 

information from all microsystems to estimate a global change point; ie, determines the time 

point at which the effect of the intervention initiates for the entire health system. Moreover, 

detecting differences in autocorrelation and variances pre- and post-intervention is critical in 

evaluating the effectiveness of an intervention. The R-MITS model allows for two 

completely different data dependency and variability structures to exist prior to the 

intervention and post-intervention within each unit.

To prelude model development, we plot the outcome against time to (a) illuminate the 

functional form of the longitudinal mean over time, (b) determine the presence of 

seasonality, and (c) further investigate the set of plausible change points and the necessity of 

a change point. If the functional form of the longitudinal mean is not linear, we transform 

the outcome to obtain a linear pattern, or apply a different segmented regression model 

appropriate for the pattern present within the ITS design. When needed, we account for 

seasonality via traditional statistical methods concisely described in the work of Bhaskaran 

et al.13 Although not used in the analyses here, variance stabilizing transforms can be 

applied on the outcomes of interest if necessary. In our ITS data, the longitudinal mean 

functions are relatively linear in time with no apparent seasonality. Thus, no transformations 

are applied on the outcomes of interest.

2.1 ∣ Description of R-MITS

Denote t* as the time point at which the intervention is introduced and τ as the time point at 

which the effect of the intervention initiates (the change point) for the outcome of interest. 

Sometimes, it may indeed be true that t* = τ, but this may not necessarily be true for all 

outcomes. Often, it is entirely possible that the time of effect of the intervention differs from 

the time of intervention introduction (ie, either τ > t* or τ < t*). If τ > t*, then the effect of 

the intervention on the outcome is not realized until after the formal intervention time point. 

As it might be the case, when a learning effect exists with regard to the intervention, thereby 

leading to a delay in the realization of the full intervention impact. When τ < t*, there is an 

anticipatory intervention effect on the outcome. This may be the case in our motivating 

study, where CNLs are introduced into units prior to the formal intervention start time. We 

propose a data adaptive procedure for estimating and determining the existence of τ, 

discussed in Section 2.1.3. Many change-point detection methods in time series exist, but 

often deal only with changes in the mean functions and variance (not the autocorrelation 

structure itself), and may not work well in shorter time series.14,15 The method proposed in 
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this paper can suitably manage changes in the autocorrelation structure, as well as in the 

mean functions and volatility.

Define yjt as the outcome of interest for hospital unit j at time t (where j = 1, … , J and t = 1, 

… , T). For example, yjt may be patient satisfaction for the Stroke unit at time t. The general 

regression is defined as

yjt = μjt + ϵjt, (1)

where μjt is the mean function and ϵjt is the stochastic process that models that fluctuations 

around the mean function. The mean component, μjt, characterizes the mean function of the 

response for unit j during the pre-intervention and post-intervention phases. The stochastic 

process, ϵjt, accounts for the variability and correlation of the outcome in the jth unit. In the 

following discussion, we define the mean functions and stochastic components for the R-

MITS model, and the estimation procedures.

2.1.1 ∣ The pre- and post-intervention mean function—The mean function of the 

outcome for hospital unit j at time t is

μjt =
βj0 + βj1 t, t < τ
(βj0 + δj) + (βj1 + Δj)t, t ≥ τ . (2)

The parameters in μjt are as follows: (1) βj0, the intercept of the mean function prior to the 

change point; (2) βj1, the slope of the outcome prior to the change point; (3) βj0 + δj, the 

intercept of the post-intervention phase; (4) βj1 + Δj, the slope of the post-intervention phase, 

for the outcome in unit j; and (5) τ, the global over-all-unit change point of the response. 

Thus, δj = Δj = 0 implies that there is no change in the mean structure before and after time 

τ. Health care specialists are primarily interested in testing for the intervention lag (delay in 

the effect of the intervention), and the differences in the outcome means between the pre– 

and post–change-point phases.

Remark 1. The metrics adopted by the health policy evaluation literature to assess the effect 

size of an intervention via ITS designs are the change in level and change in trend (or 

slopes). While the level change identifies the size of an intervention′s effect, the change in 

trend quantifies the impact of the intervention on the overall mean function. It is necessary 

to report both level change and change in trend to interpret the results of an ITS study 

accurately.16

Remark 2. The level change is interpreted as the change in the anchored intercept (anchored 

at the change point) and is therefore the jump between the projected mean function based on 

the pre–change-point phase and the estimated mean function post–change point. In our 

model, the unit-specific change in level is defined mathematically as δj + Δjτ and is 

graphically depicted in Figure 2. Trend change, or slope change, is denoted by Δj in the 

mean function, Equation (2).

Cruz et al. Page 5

Stat Med. Author manuscript; available in PMC 2021 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The mean function parameters are estimated simultaneously with the stochastic component 

parameters and change point, via maximizing the conditional likelihood given in Equation 

(4) of Section 2.1.3, with the autoregressive coefficients′ estimator accounting for the 

volatility of the shifted series. An algorithm on how to precisely estimate the parameters is 

provided in Section 2.1.3.

2.1.2 ∣ Stochastic properties pre- and post-intervention—The stochastic 

component in Equation (1), ϵjt, captures the autocorrelation structure of the outcome 

variable across time for unit j and may change as a result of the intervention; the ϵjt are zero-

mean random fluctuations around the mean function of unit j. One goal of the CNL 

intervention is to increase the consistency of care delivery and hence patient assessment 

outcomes, (ie, decreasing variability of the outcomes). We therefore include separate 

stochastic components for the pre- and post–change-point phases, to allow for a change in 

outcome variability.

Due to the impact of the intervention, the stochastic process pre-intervention might differ 

from the stochastic process post-intervention. That is, ϵjt for t ∈ {1, … , τ − 1} may be a 

different stochastic process than ϵjt for t ∈ {τ, … , T}. Note that the length of the time series 

is denoted by T. Hence, the autocorrelation and variance might differ pre- and post–change 

point. Here, the stationarity requirement is satisfied if the variance, mean function, and 

autocorrelation are constant within each stochastic process, not constant across all time 

points.

In order to fit stationary AR or ARMA processes to the stochastic components, one should 

first confirm that there are no striking signs of nonstationarity. That is, the mean and 

variance of the residuals (obtained from modeling and removing the mean function as in the 

previous section) must be relatively constant. If the mean function is not misspecified, then 

the residuals should be fluctuating around zero without trend. Moreover, the residuals should 

be stationary within each of the pre- and post-intervention phases.17 Our analysis of patient 

satisfaction suggests that it is reasonable to assume stationarity within each phase, and 

hence, we proceed with the assumption of stationarity.

In this work, we use the AR(1) process to model the stochastic component, ϵ j = Y j − μ j, 

where Yj = [yj2, … , yjT]′ and μ j = [μj2, …, μjT ]′ for unit j. Note that yj1 is not included in 

Yj and μj1 is not included in μ j, because we condition on the first observation. The AR(1) 

coefficient is estimated by maximizing the conditional likelihood with the denominator of 

the estimator averaging the volatility of the shifted AR(1) series. We therefore condition on 

the first observation yj1. Since the mean function μ j is not known (we only have its 

estimate, μ j), the stochastic component is not directly observed. Hence, we use the residuals 

Rj = Y j − μ j ≡ [rj2, …, rjT ]′ in place of ϵ j. The residuals are modeled as

rjt =
ϕj1rj, t − 1 + ejt, 1, 1 < t ≤ τ − 1
ϕj2rj, t − 1 + ejt, 2 τ − 1 < t ≤ T . (3)
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To ensure causality in the time series sense, ϕj1 and ϕj2 must lie in the interval (−1, 1) for all 

j. Note that the autoregressive coefficient prior to the change point, ϕj1, is the correlation 

between time point t and t + 1 (the adjacent correlation or autocorrelation) where t and t + 1 

belong to the pre–change-point phase (t, and t + 1 ∈ {1, … , τ − 1}), and ϕj1
∣ ℎ ∣  is the 

correlation between two time points h units away (say t and t + h, both in the pre–change-

point phase) of the outcome. The autoregressive coefficient post–change point, ϕj2, has a 

similar interpretation. The zero-mean random fluctuations of model (3) are white noise, 

ejt, i ∼iid N(0, σjw, i2 ) for i ∈ {1, 2}. The variance of the distribution of the response at any time 

point t is σji2 =
σjw, i2

1 − ϕji2
 for i ∈ {1, 2}.

The variance and autoregressive coefficients in the AR(1) setting can be estimated by 

maximizing the conditional likelihood provided in Equation (4) of Section 2.1.3, with the 

autoregressive coefficients′ estimator accounting for the volatility of the shifted series. The 

structure of the variance-covariance matrix and the estimators of the autoregressive 

coefficients and white noise standard deviations are given in the Appendix.

To determine whether the stochastic process differs as a result of the change point for each 

unit, one can test the hypothesis that vj ≡ ϕj2 − ϕj1 equals zero. This can be tested by either 

estimating vj directly or by conducting an F-test for nested models. The F-test for nested 

models for the AR(1) scenario is described by Cruz et al.12

2.1.3 ∣ Estimation of the change point and model parameters—In this paper, we 

propose a conditional likelihood procedure for estimating the global change point. The set of 

possible change points is established by the researcher. We estimate the change point and 

therefore all of the parameters, both from the mean functions and stochastic components, 

simultaneously by obtaining the generalized least squares (GLS) estimates. Then, we test for 

the existence of a change in the mean functions—ie, we test the null hypothesis that there is 

no change in any of the mean functions versus the alternative that there is a change in at least 

one of the mean functions—at each possible change point by applying the SWT, described 

in Section 2.1.4.

Define the length of the time series as T, the number of units as J, the vector of mean 

function parameters as θj = [βj0, βj1, δj, Δj]′, and Σj as the variance-covariance matrix of the 

response in unit j. The structure of the variance-covariance matrices is included in the 

Appendix.

Let q be a candidate change point in the set of possible change points Q, where Q = {t* − m, 

… , t*, … t* + k} for positive integer values of m and k set by the researcher. Recall the 

response vector for unit j is Yj = [yj2, … , yjT]′. Note that yj1 is not included in Yj because 

we model the zero-mean random fluctuations around the mean functions as AR(1) 

processes. For each candidate change point q ∈ Q, we derive the conditional likelihood 

function, conditional on the first observations,

Cruz et al. Page 7

Stat Med. Author manuscript; available in PMC 2021 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



L(θ1, Σ1, …, θJ, ΣJ ∣ q, Y 1, …, Y J)

≡ ∏
j = 1

J 1
2π

T − 1
∣ Σj ∣−

1
2 exp − 1

2(Y j − X(q)jθj)′(Σj)−1(Y j − X(q)jθj) ,
(4)

where

X(q)j
(T − 1) × 4

≡

1 2 0 0
⋮ ⋮ ⋮ ⋮
1 q − 1 0 0
1 q 1 q
⋮ ⋮ ⋮ ⋮
1 T 1 T

.

We iteratively estimate θj
4 × 1

 and Σj(T−1)×(T−1) for all j, as in Algorithm 1.

Define

L(q) = max
(θ1, Σ1, …, θJ, ΣJ)

L(θ1, Σ1, …, θJ, ΣJ ∣ q, Y1, …, YJ),

then the estimated change point is

τ = arg max
q ∈ Q

L(q) .

Algorithm 1 Estimating θj and Σj iteratively

1: for j ∈ {1, …, J} do
2: set ζ = 1

3: set θj
0 to OLS estimates

4: from residuals Rj0 calculate ϕj1
0 , ϕj2

0 , σj1
0 , and σjw, 2

0 and generate Σj
0

5: while ζ > tol do
6: set i to the iteration

7: calculate θj
i based on Σj

i − 1

8: use residuals Rji to estimate ϕj1
i , ϕj2

i , σjw, 1
i , and σjw, 2

i

9: obtain Σj
i ,

10: set ζ to the Euclidean distance between[ϕj1
i − 1, ϕj2

i − 1] and [ϕj1
i , ϕj2

i ]
11: end while
12: end for
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The estimates of θ1, … , θJ are the GLS estimates obtained, after the desired tolerance level 

is reached, conditional on τ . The GLS estimates of θj and Σj for all j given τ  are

{θ1, Σ1}, …, {θJ, ΣJ} = arg max
[{θ1, Σ1}, …, {θJ, ΣJ}]

L(θ1, Σ1, …, θJ, ΣJ ∣ τ, Y1, …, YJ) .

The presence of τ does not restrict the model to a fixed interruption with an instantaneous 

effect. In fact, τ allows the design matrix and estimates to transform based on the 

information the data provides. Importantly, the inclusion of an over-all-unit change point 

allows us to utilize information from all available units to determine when the intervention 

begins to affect the outcome globally. This flexibility of the model can be helpful in 

minimizing misleading results from an assumed change point.

2.1.4 ∣ Multivariate Wald test for the existence of a change point—The change 

point is estimated by maximizing the conditional likelihood over the set Q and, thus, 

concurrently estimates all other model parameters at each possible change point. Since we 

test for the existence of a change point at each q ∈ Q, multiple testing bias exists if one 

utilizes standard critical values. As such, it is necessary to apply a correction to control the 

familywise type one error rate. To this end, we calculate the multivariate Wald test statistic 

for every q ∈ Q. We apply the Benjamini-Hochberg method to adjust for the total number of 

tests conducted—the total number of tests is equal to the cardinality of Q. The Benjamini-

Hochberg method controls the false discovery rate; control of the false discovery rate weakly 

implies control of the familywise type one error rate for an α = 0.05 level.18 In this case, a 

binary decision of whether a change point exists or not corresponds to a rejection of the null 

hypothesis for any one of the tests conducted.

We focus on determining the existence of a change point across the unit-specific mean 

functions, ie, for each q ∈ Q, we test

H0 :δj = Δj = 0 ∀j, j = 1, …, J (no change point)
vs Ha :δj ≠ 0 and/or Δj ≠ 0, for some j, j = 1, …, J, (a change point at q) .

Even though our model assumes a global change point to pool information across units for 

efficiency, a rejection of the null hypothesis for our Wald test implies a change point in at 

least one of the hospital units. A rejection does not imply that a change point exists across 

all units and is the same in all hospital units. Moreover, we do not restrict the impact of the 

change point at each unit—ie, we allow the change in level and change in slope to differ 

across units as in R-MITS. We borrow information across units for the estimation of the 

global change point, but we do not force the impact on the outcome to be the same in each 

unit. Clearly, if one wanted to establish the existence of a change point for a particular unit, 

enough data would have to be gathered within that single unit to detect and estimate (with 

high enough precision) the unit-specific change point.

The hypotheses can be written in terms of full and reduced mean function models. Define 

the full and reduced mean function models as
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μjt1 = βj, 0 + βj, 1 t + (δj + Δj t)I(t ≥ q), (5)

μjt0 = βj, 0 + βj, 1 t, (6)

respectively. The full model, appropriate under the alternative hypothesis, is essentially the 

model of Equation (2) and models a change in the mean functions at q. The reduced model, 

appropriate under the null hypothesis, assumes the same mean functions across the entire 

observational period. Based on our model specification, testing the above hypotheses is 

equivalent to testing

H0 :

δ1
Δ1
⋮

δJ
ΔJ

=

0
0
⋮
0
0

vs Ha :

δ1
Δ1
⋮

δJ
ΔJ

≠

0
0
⋮
0
0

. Let C =

0 0 1 0
0 0 0 1 0

⋱

0 0 0 1 0
0 0 0 1

,

β
1

= [β1, 0
1 β1, 1

1 δ1 Δ1⋯βJ, 0
1 βJ, 1

1 δJ ΔJ]′ and β
0

= [β1, 0
0 β1, 1

0 ⋯βJ, 0
0 βJ, 1

0 ]′. Then, the hypotheses 

can be written as

H0 :C β 1 = 0 vs Ha :C β 1 ≠ 0 ,

The multivariate Wald test statistic is given by

W = Cβ
1

C V β
0

C′
−1

Cβ
1 ′

∼⋅
H0

χ2J
2 , (7)

where V(β
0
) is the block diagonal estimator of the variance covariance matrix of β

0
. We 

specify V(β
0
) in the Appendix. Note that we allow δj and Δj to differ for each j, ie, for each 

unit.

We calculate the multivariate Wald statistic for each q ∈ Q. Then, we apply the Benjamini-

Hochberg procedure to obtain corrected critical values. The Bejamini-Hochberg procedure is 

fully described by Benjamini and Hochberg.18 If any of the multivariate Wald tests provide 

significant results, when compared to the corrected critical values, we conclude that a 

change point exists for at least one of the units. The resulting “supremum Wald test” (SWT) 

is appropriate for detecting a change in any of the mean functions over a set of possible 

change points. Our test accounts for the heterogeneity of the mean functions and 

autocorrelation structures across units. In the following sections, we illustrate that the SWT 

has empirically high power under specified change-point alternatives.
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3 ∣ EMPIRICAL TYPE ONE ERROR AND POWER SIMULATIONS

Prior to analyzing the outcome of interest, we conduct simulations to (1) examine the type 

one error rate and (2) determine the power and accuracy of our proposed methodology to 

detect a global change point in the mean functions of the response. These simulations 

examine the operating characteristics of our proposed SWT under various conditions. We 

continue to test

H0 :δj = Δj = 0 ∀j, j = 1, …, J (no change point)
vs Ha :δj ≠ 0 and/or Δj ≠ 0, for some j, j = 1, …, J, (a change point at q)

with q ∈ Q (the set of possible change points specified by the researcher). The full and 

reduced models of these simulations are those of Equations (5) and (6), respectively. We 

have additionally examined the scenario with standardized quadratic time (and standardized 

linear time) in the mean functions of the reduced and full models. We focused on 

standardized time, as opposed to untransformed time, to avoid collinearity between the two 

time terms. These simulations are omitted for brevity, though we note that we obtain similar 

results as those discussed in the following sections. In both sets of simulations, we assume 

an autocorrelation structure that remains constant over the entire duration of the 

observational period, since the focus is on testing for the existence of a change point in the 

mean functions.

The outcome of interest is recorded for 60 time periods, in five units, with adjacent 

correlation estimates smaller than ϕ = 0.1, and the set of possible change points equal to {25, 

… , 34}. Thus, we chose parameters similar to these values for our simulations. We consider 

two values of the time series length, T ∈ {60, 120}, two values of the adjacent correlation, ϕ 
∈ {0.1, 0.6}, and three values for the total number of units, J ∈ {1, 3, 5}. When the length of 

the time series is T = 60, we allow the set of possible change points to be Q60 = {25, … , 

34}, as with the patient satisfaction data. In this situation, we conduct 10 total tests, since 

there are 10 elements in Q60. When the length of the time series is T = 120 we allow the set 

of possible change points to be Q120 = {50, … , 69}; a total of 20 tests are conducted for 

Q120.

We choose to compare two values of the time series length to illustrate the possible gain in 

efficiency longer time series provide with regard to power. We illustrate the gain that may 

come from doubling the length of the time series. The length of the time series can be 

increased in two ways: (1) increase the observational period, say, from 5 years to 10 years 

and/or (2) increase the resolution of recordings, ie, record patient satisfaction bimonthly, as 

opposed to monthly. The two values of ϕ examined are larger adjacent correlation values 

than what we estimate for the patient satisfaction data. The largest unit-specific adjacent 

correlation estimates obtained for the patient satisfaction data (when information is not 

borrowed across units) is 0.09, and so, 0.1 is an upper bound for the adjacent correlation in 

our setting. The value ϕ = 0.6 represents an upper bound for the correlation between 

repeated measurements in the literature. The estimated adjacent correlations for patient 

satisfaction are smaller than either 0.1 and 0.6. Our simulation results are conservative 

because power decreases for ITS designs as the adjacent correlation increases.19
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Importantly, we conduct type one error and power simulations for the SWT with one, three, 

and five units. We examine the case with a single unit, J = 1, to illustrate the performance of 

our SWT in the traditional ITS analysis setting. We explore the value J = 3 to depict the 

healthy gain in efficiency that borrowing information across a small number of units yields. 

Lastly, we consider J = 5 because patient satisfaction is recorded at five units. Our aim is to 

highlight the improvement in power that borrowing information across units can provide.

3.1 ∣ Empirical type one error for SWT

We provide the empirical type one error rates when testing for the existence of a change 

point via the SWT. Four different scenarios are considered for one unit, three units, and five 

units. We generate 10 000 time series for each scenario under the reduced model—ie, from 

one overall regime where there is no change point present in either the mean functions or 

stochastic processes.

For the case when there is only one unit, we set the mean function parameters to 

β = [65, 0.5]′. When there are three units or five units, the mean function parameters vary 

slightly across individual units. The white noise standard deviation, σw, is always set to 3.38, 

regardless of the number of units in the simulation. The value σw = 3.38 is approximately 

the average of the single-unit estimates of the white noise standard deviation for patient 

satisfaction. The response standard deviation, σ, is 4.23 when ϕ = 0.6 and 3.40 when ϕ = 0.1 

for all individual units. The mean function parameter values mimic results obtained from the 

patient satisfaction data.

The empirical type one error rates for each scenario are provided in Table 1. As expected, 

the empirical type one error rate is smaller for the longer time series and for smaller values 

of the adjacent correlation. Larger values of adjacent correlation imply a smaller number of 

effective independent statistical information. The larger adjacent correlation quantity 

corresponds to higher type one error rates exclusively. In the scenario with the shorter time 

series and high adjacent correlation value, it is more difficult to control the familywise type 

one error rate, even as we increase the number of units. The lack of type one error rate 

control in short time series with high correlation values is exacerbated in the simulations 

with quadratic time in the mean functions. In fact, for that particular setting, the type one 

error rate becomes worse as the number of units increases. This is primarily attributable to 

the increased dependency in an already short time series that reduces the information in the 

time series. Because of this, we recommend our proposed procedure when the length of the 

time series is at least 120 time points in cases with complex mean functions and/or hight 

correlation values. For all other scenarios considered, the type one error rate is well 

controlled, though slightly conservative because of the Benjamini-Hochberg multiplicity 

correction.

3.2 ∣ Empirical power for SWT

We conduct simulation-based power calculations when testing for the existence of a change 

point via the SWT. Time series are generated under the alternative model appropriate in our 

setting, ie, generated with a global change point in the mean functions. The change point is 

set at the middle of the time series; cases with the change point at the boundary or close to 
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the boundary have been considered and yield similar, yet slightly less powerful, results. We 

focus on providing power as a function of the slope change. Simulation-based power 

calculations with power as a function of the autoregressive coefficient for ITS designs are 

provided in the work of Zhang et al.19

Power is examined as a function of the slope change, with a change in baseline intercept (δj) 

set to zero. Note that estimates of δj obtained from the patient satisfaction data are not 

statistically different from zero. The range of values for the change in slope, {0, 0.01, … , 

0.24, 0.25, 0.30, … , 0.40, 0.45}, encompass the estimated quantities of the change in slope 

for the patient satisfaction data. Similarly to the type one error simulations, the white noise 

standard deviation is set to 3.38 for all units, yielding a response standard deviation of 4.23 

when ϕ = 0.6 and 3.40 when ϕ = 0.1.

Simulated power curves are provided in Figure 3, with each subfigure corresponding to a 

separate data generation regime. As expected, power increases as the slope change and 

length of the time series increases, and power decreases for the larger adjacent correlation 

value. Power is consistently higher for the larger number of units across the four scenarios, 

thereby illustrating that the SWT gains power as the number of units increases by borrowing 

information across units. Analyzing multiple time series data (or data from multiple hospital 

units) jointly results in higher power.

3.2.1 ∣ Accurate estimation of the change point—The power simulation results, 

provided in Figure 3, suggest that the SWT has reasonable power to detect an existing global 

change point and that power increases as the number of units increase. We are not simply 

interested in power by itself. We are also interested in whether R-MITS will provide the 

correct global change point estimate when our SWT concludes that a change point exists. 

Figure 4 illustrates the proportion of simulations that correctly estimate the true change point 

as a function of the slope change for one, three, and five units. Similar to the empirical 

power, the proportion of correctly estimated change points increases as the number of units 

and the length of the time series increases. We also calculated the proportion of simulations 

that exactly estimate the true change point for change points not in the middle of the time 

series—ie, with a change point on the boundary or near the boundary—and obtained 

comparable results.

4 ∣ MULTIUNIT ANALYSIS OF THE CNL INTERVENTION

We assess the impact of the CNL integrated care delivery intervention on average patient 

satisfaction at five hospital units. Average patient satisfaction is the mean of patient 

satisfaction survey scores for seven indicators, shown for the Stroke and Surgical units in 

Figure 1. The seven patient satisfaction indicators are as follows: effective nurse 

communication, nurses treated me with courtesy/respect, responsiveness of hospital staff, 

effective physician communication, staff did everything to help control your pain, effective 

communication about medicines, and discharge information provided. We refer to the 

average patient satisfaction scores simply as patient satisfaction.
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We are interested in estimating the time lag (or delay) between the onset of the intervention 

and the effect on patient satisfaction. In practice, the change point may occur either before or 

after the official intervention time. An intervention intended to improve care quality 

requiring a training over several months or weeks (such as the CNL intervention) may 

already produce a change in the outcome, even before the official start of intervention, if the 

trainees execute their training as they learn.

Inference on the global change point and time lag between the onset of the intervention and 

the intervention′s effect is included in Table 2. In addition, Table 2 provides the (a) global 

change-point estimate, (b) SWT p-value, (c) time point of CNL integration into their 

respective hospital units, (d) formal intervention implementation time, and (e) lag between 

formal intervention implementation and estimated change point. The SWT concludes that a 

change point exists over the set of possible change points for patient satisfaction in at least 

one of the units at the α = 0.05 level. The p-value associated with the test for the existence 

of a change point is 0.003, which is less than the respective Benjamini-Hochberg corrected 

critical value of 0.005. R-MITS estimates a preemptive effect of the CNL integrated care 

delivery intervention on patient satisfaction. The global change point is estimated to occur 

on May 2010, while the formal intervention implementation occurs on July 2010. Estimating 

an anticipatory effect (from the expected and a priori specified change point) is not feasible 

with standard segmented time series regression. Segmented regression methodology requires 

clearly separated pre- and post-intervention phases, often with an assumed change point 

greater than or equal to the formal intervention implementation time point.

Although the CNL integrated care delivery is officially implemented on July 2010, it was 

unofficially being practiced prior to July 2010. Nurses put into practice the new concepts 

they learned from their “training.” It is completely realistic that many of the CNLs 

implemented their training prior to July 2010, particularly, if they believed it would be 

beneficial. Thus, the anticipatory effect of the CNL integrated care delivery intervention (of 

2 months, provided in the “Lag” column of Table 2) is consistent with the integration of the 

CNLs on January 2010. In fact, the estimated global change point for patient satisfaction 

occurs 4 months after the CNLs introduction into their respective units. The CNL care 

delivery intervention requires a restructuring of patient care and care delivery, likely to 

manifest itself to patients after a time lag from the CNLs introduction. This time lag and the 

behavioral component of the intervention may explain why the global change point occurs 4 

months after the CNLs integration into the hospital units and 2 months prior to the formal 

intervention time point.

Estimates of the R-MITS mean function parameters are provided in Tables 3 and 4, and 

estimates of the stochastic process parameters are included in Table 5. Estimates and 95% 

confidence intervals of the two standardized effect sizes used in the health care literature, 

change in level and change in trend/slope,16 are provided in Table 4. The level and trend 

change are not statistically significant for any unit. The estimated level change tends to be 

positive for the majority of hospital units, indicating an initial drop of the outcome level, as 

in Figure 2. This may be due to the adjustment period associated with the intervention. 

Moreover, it may occur as an artifact of the regression itself, particularly for a bounded 

outcome such as patient satisfaction.
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Trend (slope) change is negative for patient satisfaction, suggesting a decrease in the slope 

of patient satisfaction post–change point. Due to the nature of patient satisfaction as a 

percentage—and thus as a bounded outcome—the change in slope must be interpreted with 

caution. Patient satisfaction cannot continue to grow at a rapid rate because the mean patient 

satisfaction function at the estimated change point is already relatively close to 100, the 

maximum patient satisfaction value. This is evident in Figure 5, in which the estimated mean 

functions for all hospital units are plotted, particularly for the Stroke, Surgical, and Mother/

Baby units.

The estimated volatility of patient satisfaction, given by the “Standard Deviation” column of 

Table 5, is smaller post-change point for 3 out of the 5 units, and the adjacent correlation is 

larger post-intervention in 4 out of the 5 units. The Medical Surgical and Mother/baby units 

estimated standard deviations increase post-estimated change point, increasing from 4.84 

and 2.97 to 5.06 and 3.72, respectively; while in the Stroke, Surgical, and Cardiac units, the 

estimated standard deviation decreases from 3.15, 4.37, and 5.28 to 3.01, 2.35, and 3.76, 

respectively. After the estimated change point, the patient satisfaction scores are observed to 

be less volatile for the Stroke, Surgical, and Cardiac units and, hence, may be more 

predictable. The adjacent correlation estimates mainly move from negative to positive post-

estimated change point, indicating a more stationary patient satisfaction score post-

intervention. These are positive results of the CNL intervention. It is important for hospitals 

to have patients that are generally satisfied over patients who range from extremely satisfied 

to extremely dissatisfied. Patient satisfaction scores that are more dependent, closely related, 

and less volatile result in a more predictable outcome.

4.1 ∣ Doubly robust ITS

R-MITS pools information across units to estimate a global change point, thereby increasing 

efficiency and reducing the impact of misleading influential points. Reducing the effect of 

influential points is desirable in our patient satisfaction data, for which the change point 

search space consists of only a few time points. We illustrate the gravity of influential points 

on the estimated change point for the single-unit analyses of patient satisfaction at the 

Medical Surgery and Cardiac units. To model patient satisfaction for a single unit, we 

implement the Robust-ITS model. The estimated mean functions and change point estimates 

are included in Figure 6 for two cases. The plots on the left of Figure 6 correspond to single-

unit analyses including all observations, while the plots on the right pertain to the single-unit 

analyses without observation t = 25 (January 2010). When all the observations are included, 

Robust-ITS estimates the change point to be February 2010 for both the Medical Surgical 

and Cardiac units. However, for the analyses without January 2010, the estimated change 

points are October 2010 and April 2010 for the Medical Surgical and Cardiac units, 

respectively. One single time point has the ability to perturb the estimated change point by 6 

months in the Medical Surgical unit and by 2 months in the Cardiac unit. Our proposed R-

MITS model guards against these influential points by borrowing information across 

hospital units. Pooling data across hospital units in the estimation of a global change point 

automatically reduces the impact of spurious influential points, resulting in robust mean 

function estimates.
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5 ∣ CONCLUSION AND FUTURE WORK

Our proposed R-MITS model is appropriate for multiple time series, able to estimate a 

global change point rather than assume it a priori, and can model differences in both the 

mean functions and stochastic components. R-MITS borrows information across units to 

estimate a global change point and to estimate the mean functions and stochastic processes 

separately for each unit. The proposed model does not assume that the impact of the global 

change point on the outcome is equivalent for all units. That is, although R-MITS borrows 

information across units to estimate an over-all-unit change point, the level change and trend 

change are allowed to vary for each unit. R-MITS further allows the autocorrelation and 

variability during pre- and during post-intervention to differ across units.

Importantly, our proposed SWT formally tests for the existence of a change point in at least 

one of the mean functions, rather than merely assuming and requiring a change. Now, 

researchers will be able to formally test whether an intervention is associated with a change 

in the mean functions of a health outcome. Erroneous inference regarding the response′s 

mean functions may result from incorrectly assuming—both the existence and placement—

of the change point. Assuming a change point when no change point truly exists forces the 

estimation of an artificial change. Our SWT will test for the existence of a change in the 

response over a pre-determined set of possible change points. As demonstrated by our 

simulation studies, the operating characteristics of R-MITS and the SWT are well behaved 

with regard to power and type one error. Moreover, the empirical power of the SWT and 

accuracy of the change point estimates—and so the accuracy of the estimated time delay 

between an intervention and the intervention′s effect on an outcome—increase as the 

number of units increases.

The R-MITS model and the SWT provide researchers with insight to re-address hypothesis 

generation for future study design. The methodology better informs researchers of the likely 

lag that may be realistic for a similar intervention. We note that, in our application example, 

nurses finishing their masters′ thesis project (in a program that trained them to implement 

the CNL intervention) were introduced into their respective hospital units 6 months prior to 

the formal intervention. The nurses′ integration potentially changed practice as soon as they 

were introduced. In fact, the estimated change point occurs between the introduction of the 

nurses to the hospital unit and the formal intervention. A primary utility of R-MITS is that, 

through exploration of the change point, we are able to observe this and provide direction for 

future study planning.

R-MITS estimates the global change point via a grid search over a pre-determined set of 

possible change points. Researchers must specify the set of possible change points with care 

since, as with traditional ITS designs, we must be cautious of competing intervention effects. 

The set of possible change points must adequately capture the time points during which the 

intervention of interest plausibly impacted the outcome, yet simultaneously exclude time 

periods affected by another intervention. This is to avoid the risk of competing interventions. 

Parsing out the effect of competing interventions is a concern in general with ITS designs. 

Ideally, the entire observational period (both the pre- and post-intervention phases) of an ITS 
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design should be solely affected by the intervention of interest. Although theoretically 

simple, in practice, this requires careful consideration and expertise.

Identification of a change point via our proposed procedure relies upon detection of a 

difference in either the mean level of the response and/or the slope of the response, 

comparing the pre- and post-intervention effect periods across units. As such, if no change 

point in the time series truly exists, this would indicate that there is no difference in the 

mean function of the response over time. Most researchers would consider this absence of a 

difference in the mean function to be the absence of an intervention effect. One could argue 

that, if the pre-intervention slope was positive (indicating improvement in outcomes) and if 

the slope remained constant during the post intervention, then this could have been solely 

attributable to the intervention. In this case, the counterfactual may have revealed a decline 

(or an increase) in the slope if the intervention had not been instituted. Of course, such a 

counterfactual could never be observed in practice but certainly should be considered in 

theory.

Currently, the SWT focuses on changes solely in the mean functions. We are currently 

working on extensions of the SWT to accurately detect changes that are both the mean 

functions and stochastic components, to better handle the nuances of the autocorrelation 

structures across units. In addition, we are considering more efficient multiple testing 

corrections that utilize information obtained in the autocorrelation structure. We plan on 

developing the theory needed for our SWT (and its future derivatives) to guarantee 

consistency.

It is paramount to note that the current status of the R-MITS model is for continuous-valued 

outcomes only. We will soon expand this class of models to handle counts and rates data (eg, 

infection rates and counts of accidental falls). Lastly, R-MITS does not provide inference on 

the overall population of hospital units—the population of hospital units that gives rise to the 

units we observe. Particularly, R-MITS does not account for heterogeneity of change points 

across units for situations where the data warrants such treatment. We will develop an ITS 

mixed effects model as an alternative to R-MITS, able to detect unit-specific change points 

and borrow information across units while allowing for change point heterogeneity.
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APPENDIX A

A.1 ∣ Estimators of the mean function parameters

The GLS estimators for the mean function parameters of θ1, … , θJ given q ∈ Q, obtained in 

step (6) of Algorithm 1 of Section 2.1.3, are

θj =

β j0
β j1
δ j
Δj

= X(q)j′Σj
−1X(q)j

−1
X(q)j′Σj

−1, Y j ,

where X(q)j ≡

1 2 0 0
⋮ ⋮ ⋮ ⋮
1 q − 1 0 0
1 q 1 q
⋮ ⋮ ⋮ ⋮
1 T 1 T

,

and Σj given in the subsequent section. Hence, for unit j, the estimator of (a) the intercept 

pre–change point is β j0; (b) the slope pre–change point is β j1; (c) the change in level (post–

change-point intercept anchored at τ) is δ j + Δjτ ; and the change in slope is Δj.

A.2 ∣ Estimators of the AR(1) processes parameters

In steps (4) and (7) of the iterative estimation process, provided in Section 2.1.3, the 

residuals, rjt = yjt − μjt, are modeled as AR(1) processes

rjt =
ϕj1 rj, t − 1 + ejt, 1, 1 < t < q,
ϕj2 rj, t − 1 + ejt, 2, q ≤ t ≤ T ,

with ejt, i ∼iid N(0, σjw, i2 ) for i ∈ {1, 2}. Recall, to ensure causality in the time series sense, ϕj1 

and ϕj2 must lie in the interval (−1, 1) for all j. The variance-covariance matrix, Σj, is 

therefore equal to
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σjw, 1
2

1 − ϕj1
2

1 ϕj1 ⋯ ϕj1
q − 2

ϕj1 1 ⋯ ϕj1
q − 3

⋮ ⋮ ⋱ ⋮

ϕj1
q − 2 ϕj1

q − 2 ⋯ 1

0

0
σjw, 2

2

1 − ϕj2
2

1 ϕj2 ⋯ ϕj2
T − q

ϕj2 1 ⋯ ϕj2
T − q − 1

⋮ ⋮ ⋱ ⋮

ϕj2
T − q ϕj2

T − q − 1 ⋯ 1

and completely determined by ϕj1, ϕj2, σjw,1, and σjw,2. We therefore only provide the 

estimators of ϕj1, ϕj2, σjw,1, and σjw,2, conditional on q ∈ Q. Define

r(1a) = 1
q − 2 ∑

t = 1

q − 2
rt, r(1b) = 2

q − 1 ∑
t = 2

q − 1
rt,

r(2a) = 1
T − q − 1 ∑

t = q − 1

T − 1
rt, r(2b) = 1

T − q − 1 ∑
t = q

T
rt,

σr1
2 =

∑t = 2
q − 1(rt − r(1b))2 + ∑t = 2

q − 1(rt − 1 − r(1a))2

2 ,

and σr2
2 =

∑t = q
T (rt − r(2b))2 + ∑t = q

T (rt − 1 − r(2a))2
2 .

The estimators of ϕj1, ϕj2, σjw,1, σjw,2, σj,1, and σj,2, conditional on q, are

•

ϕj1 =
∑t = 2

q − 1(rt − r(1b))(rt − 1 − r(1a))
σr1

2

•

ϕj2 =
∑t = q

T (rt − r(2b))(rt − 1 − r(2a))
σr2

2

•
σjw, 1

2 = 1
q − 2 ∑q − 1

t = 2[(rt − r(1b)) − ϕj1(rt − 1 − r(1a))]2

•
σjw, 2

2 = 1
T − q + 1 ∑T

t = q[(rt − r(2b)) − ϕj2(rt − 1 − r(2a))]2
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•
σj, 1 =

σjw, 1
1 − (ϕj1)2

•
σj, 2 =

σjw, 2
1 − (ϕj2)2

.

A.3 ∣ Covariance matrix of the full model mean function parameters for the 

SWT

The supremum Wald statistic of Section 2.1.4 depends on V0(β
0
), the block diagonal 

estimator of the variance covariance matrix of β
0
. Each block of V0(β

0
) corresponds to 

V0(β
0
), the estimated variance-covariance matrix of the mean function parameters for unit j. 

Note that

V β j
0

= X1′ (Σj)−1X1 −1,

with X1 as the design matrix of the full model (model of Equation (6)) and the variance-

covariance matrix under the reduced model (model of Equation (5)) as Σj. Since the aim of 

the SWT is to test the existence of a change point in the mean, we assume an autocorrelation 

structure that remains constant over the entire duration of the observational period. Thus, for 

unit j,

Σj =
(σjw)2

1 − (ϕj)2

1 ϕj ⋯ (ϕj)T − 2

ϕj 1 ⋯ (ϕj)T − 3

⋮ ⋮ ⋱ ⋮

(ϕj)T − 2 (ϕj)T − 3 ⋯ 1

,

where ϕj and (σjw)2 are estimated under the reduced model.
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FIGURE 1. 
Plots the time series of observed average patient satisfaction for the Stroke and Surgical 

units. CNL, Clinical Nurse Leader
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FIGURE 2. 
An example of a segmented regression model fit for the Stroke unit. The plot depicts (1) the 

segmented regression lines fit to the pre- and post–change-point phases, (2) the projection of 

the mean at the change point based on the pre–change-point regression, and (3) the change 

in level as defined here. The plot contains data from January 2010 to September 2010, 

instead of the entire observational period, to clearly illustrate the level change
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FIGURE 3. 
Empirical power, over 10 000 iterations, for various number of units and for 4 regimes. The 

empirical power increases as the number of units and the length of time series increases, and 

the power increases as the adjacent correlation decreases
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FIGURE 4. 
The proportion of estimated change points exactly equal to the true change point, over 10 

000 iterations, for various number of units and for 4 regimes. Similar to the empirical power, 

the proportion of correctly estimated change points increases as the number of units and the 

length of time series increases
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FIGURE 5. 
Plots the time series of observed average patient satisfaction for all hospital units, along with 

the estimated change point, estimated mean functions, and formal intervention time
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FIGURE 6. 
Plots the time series of observed average patient satisfaction, along with the estimated 

change point, estimated mean functions, and formal intervention time for the Medical 

Surgery and cardiac units with and without observation t = 25 (January 2010), obtained by 

using Robust-ITS to conduct the unit-specific analyses. Note that the analysis with t = 25 is 
on the left and the analysis without t = 25 is on the right. CNL, Clinical Nurse Leader
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TABLE 1

The empirical type one error rate: the proportion of iterations for which we rejected the null hypothesis of no 

change point. The larger adjacent correlation quantity corresponds to higher type one error rates exclusively. 

The type one error rates are reasonable for almost all of the scenarios and stay reasonable as the number of 

units increases. However, it is slightly difficult to control the type one error rate at the desired α = 0.05 level 

with the smaller time series and high adjacent correlation value

Adjacent
Correlation

Time Series of Length 60 Time Series of Length 120

One Unit Three Units Five Units One Unit Three Units Five Units

ϕ = 0.1 0.0295 0.0291 0.0342 0.0274 0.0265 0.0263

ϕ = 0.6 0.0460 0.0704 0.1003 0.0299 0.0318 0.0436
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TABLE 2

Provides the estimated global change point, its p-value, the month Clinical Nurse Leaders were integrated into 

their respective units, the formal intervention time point, and the intervention lag. The Benjamini-Hochberg 

corrected p-value cut-off is 0.005. We conclude that there is a change point in patient satisfaction at the α = 

0.05 level, because 0.0003 < 0.005.

CNL
Introduction*

Estimated
Change Point τ P-value

+ Formal Intervention
Implementation

Lag**

January 2010 May 2010 0.0003 July 2010 −2

+
The p-value for the supremum Wald test, ie, the p-value for the existence of a change point.

*
All clinical nurse leaders were integrated into their respective hospital units on January 2010.

**
The intervention lag is the difference between the estimated change point and the formal intervention introduction time point

Stat Med. Author manuscript; available in PMC 2021 March 15.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Cruz et al. Page 30

TABLE 3

The unit-specific pre–change-point intercepts and slopes

Hospital Unit Intercept Pre–Change Point βj0 Slope Pre–Change Point βj1
Estimate 95% CI p-val Estimate 95% CI p-val

Stroke 64.32 (46.34, 82.31) 0 0.56 (−0.52, 1.64) 0.3

Surgical 72.8 (47.72, 97.88) 0 0.36 (−1.05, 1.77) 0.61

Cardiac 64.17 (37.08, 91.27) 0 0.31 (−1.3, 1.92) 0.7

Medical Surgical 70.19 (41.77, 98.61) 0 0.19 (−1.53, 1.91) 0.83

Mother/baby 77.1 (63.1, 91.09) 0 0.28 (−0.58, 1.15) 0.52
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TABLE 4

The unit-specific change in levels and change in slopes

Hospital Unit Change in Level −δj − Δjτ Change in Slope Δj
Estimate 95% CI p-val Estimate 95% CI p-val

Stroke 6.91 (−14.65, 28.46) 0.52 −0.35 (−1.59, 0.89) 0.58

Surgical 6.17 (−20.22, 32.56) 0.64 −0.21 (−1.87, 1.45) 0.8

Cardiac −0.15 (−34.36, 34.06) 0.99 −0.22 (−2.25, 1.82) 0.83

Medical Surgical 0.3 (−40.57, 41.18) 0.99 −0.14 (−2.53, 2.24) 0.9

Mother/baby 3.73 (−22.1, 29.56) 0.77 −0.25 (−1.72, 1.23) 0.74
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TABLE 5

Estimates of the stochastic component parameters: the adjacent correlations and response standard deviations 

pre– and post–change points. All the adjacent correlations are relatively small and tend to switch from 

negative to positive post-intervention. The response standard deviations tend to decrease post-intervention

Hospital Unit Pre–Change Point Post–Change Point

Adjacent
Correlation

ϕj1

Standard
Deviation

σj1

Adjacent
Correlation

ϕj2

Standard
Deviation

σj2

Stroke −0.06 3.15 −0.35 3.01

Surgical −0.02 4.37 0.19 2.35

Cardiac −0.16 5.28 0.10 3.76

Medical Surgical −0.03 4.84 0.09 5.06

Mother/baby −0.27 2.97 0.08 3.72
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