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Abstract

Objectives: To develop an automated method for quantifying percent breast density from chest 

computed tomography (CT) scans.

Methods: A naïve Bayesian classifier based on gray-level intensities and spatial relationships 

was developed on CT scans from 10 patients diagnosed with Hodgkin lymphoma (HL) and 

imaged as part of routine clinical care. The algorithm was validated on CT scans from 75 

additional HL patients. The classifier was developed and validated using a reference dataset with 

consensus manual segmentation of fibroglandular tissue. Accuracy was evaluated at the pixel-level 

to examine how well the algorithm identified pixels with fibroglandular tissue using true and false 

positive fractions (TPF and FPF, respectively). Quantitative estimates of the patient-level CT 

percent density were contrasted to each other using the concordance correlation coefficient, ρc, 

and to subjective ACR BI-RADS density assessments using Kendall’s τb.

Results: The pixel-level TPF for identifying pixels with fibroglandular tissue was 82.7% 

(interquartile range of patient-specific TPFs 65.5%-89.6%). The pixel-level FPF was 9.2% 

(interquartile range of patient-specific FPFs 2.5%-45.3%). Patient-level agreement of the 

algorithm’s automated density estimate with that obtained from the reference dataset was high, ρc 

=0.93 (95% CI 0.90-0.96) as was agreement with a radiologists’ subjective ACR-BI-RADS 

assessments, τb =0.77.

Conclusions: It is possible to obtain automated measurements of percent density from clinical 

CT scans.

Keywords

algorithm; Bayes theorem; breast density; risk

Fibroglandular tissue in the breast is most frequently visualized with mammography due to 

the widespread use of mammography as a screening test. Because it is denser than the fatty 

components of the breast, fibroglandular tissue appears as a white area on a mammogram. 

The amount of fibroglandular breast tissue seen on a mammogram, referred to as 

mammographic breast density, is an established major breast cancer risk factor; higher breast 

density is associated with an increased risk of breast cancer [1; 2]. Recent work suggests 

fibroglandular breast tissue is seen not only with mammography, but also with other imaging 

modalities including digital breast tomosynthesis [3], dual-energy x-ray imaging [4], 

magnetic resonance imaging [5], optical imaging modalities [6], and computed tomography 

(CT) [7].
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The ability to assess breast density from CT scans is particularly intriguing. CT has been 

used ubiquitously to diagnose, stage, and follow patients diagnosed with a variety of cancers 

including pediatric and young adult cancers. Clinical chest CT scans stored in institutional 

imaging archiving systems provide an opportunity to explore breast composition at young 

ages when assessing mammographic breast density is not feasible. With the multitude of 

scans available for analysis, it would be beneficial to have a method that automates 

quantifying breast density from CT scans.

There have been several computational methods proposed for quantifying breast density 

from CT scans. Most methods are semi-automated and require user-involvement to help 

select the breast region [8–11]. Segmentation of the breast is most frequently accomplished 

using one of several histogram thresholding methods to classify areas based on Hounsfield 

units [8; 12], but has also been attempted using fuzzy C means clustering [9]. Because 

distributions of CT gray level intensities for fibroglandular tissue and non-fibroglandular 

structures such as pectoral muscle substantially overlap, threshold-based methods may result 

in erroneous classification of fibroglandular tissue. Additionally, semi-automated methods 

such as methods requiring users to mark the breast area on individual CT slices are very 

time-consuming and subject to inter-rater variability.

Here we describe a fully automated approach that uses a supervised Bayesian probabilistic 

model. The algorithm sequentially identifies the lungs, heart, and pectoral muscle using CT 

intensities and spatial contextual information to isolate the breast region and then segment it 

into fibroglandular tissue and fat from three-dimensional chest CT data.

Materials and Methods

Datasets

This study used 85 chest CT scans obtained 1996-2012 during routine care of female 

patients diagnosed with Hodgkin lymphoma (HL) at a wide range of ages. Median age at the 

CT scan was 35 years (interquartile range (IQR) 30-43 years). Informed consent was waived 

by our institutional review board.

Scans were performed with a number of GE Medical System scanners routinely used at our 

institution. Imaging acquisition parameters varied; details are provided in the online 

supplementary material. The median number of breast slices per patient was 16 (range 7-23 

slices). The resolution of the cross-sectional slices was approximately 368 x 512 pixels. 

Pixel intensities for each scan were scaled to lie within the range of [0, 1].

Ten CT scans (age at scan ranging from 22 to 42 years) were initially used to train the 

algorithm. The remaining 75 scans were used for validation.

A ground-truth reference dataset was created for each of the 85 scans. This dataset contained 

detailed annotations of the anatomical structures necessary to train the algorithm and all 

areas of fibroglandular tissue in the breast region. All labeling was determined by two 

individuals working together and reviewed by one of two breast imaging radiologists with 

16 and 9 years of experience including expertise evaluating CT scans. The dataset was 
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converted to a pixel-level reference dataset labeling whether individual pixels corresponded 

to fibroglandular tissue.

Among the 75 validation scans, 45 CT scans were acquired with 6 months of a 

mammogram. Blinded to clinical data, a single radiologist evaluated these 45 CT scans using 

the Breast Imaging Reporting and Data System of the American College of Radiology (ACR 

BI-RADS) breast density categories [13] reflecting how radiologists might interpret a scan 

in practice. In a different random order separated by a period of time, she also assessed 

breast density from the mammograms. A second radiologist independently assessed ACR 

BI-RADS breast density from both CT scans and mammograms to characterize inter-reader 

variability.

Method overview

The system (Figure 1) follows a hierarchical, tree-based approach. This approach, used in 

other applications to segment medical images [14], sequentially eliminates regions in 

separate phases using results of each phase to narrow down the search for the breast region. 

Fibroglandular tissue is ultimately identified by eliminating the fatty portion of the breast.

The analysis is performed slice-by-slice and classifies pixels into regions using a supervised 

naïve Bayes classifier. Different classifiers are used for individual phases, including a chest 

classifier in Phase 1, lung detector in Phase 2, pectoral muscle detector in Phase 3, and 

finally fibroglandular tissue detector in Phase 4.

Let xi denote the ith pixel. We represent the anatomical structure of interest as S and the 

remaining image area that does not include this structure as Ś. The set of features, f, which 

varies based on the phase, is used to segment pixels using the conditional probability model

p(xi ∈ S |f) = p(f |xi ∈ S)p(xi ∈ S)
p(f |xi ∈ S)p(xi ∈ S) + p(f |xi ∈ Ś)p(xi ∈ Ś) (1)

where p represents a probability density function. We use non-informative prior probabilities 

(p(xi ∈ S)) of 0.5. The maximum a posteriori parameter estimates are used to construct 

decision rules. In each phase pixels are assigned to the class with the highest posterior 

probability. Below we give further details specific to each phase.

Identification of the lungs, heart, and chest wall

After the background (air) is removed from the entire image, the system first segments and 

eliminates the lungs. f consists only of the gray level intensities, v, in Phase I. We assume a 

Gaussian distribution and derived maximum likelihood estimates from the training data for 

the mean, μ=0.12, and standard deviation, σ=0.10, of this distribution. In Phase 2 structures 

near the lung, including the chest wall, heart, and posterior chest area but excluding the 

pectoral muscle, are removed. This is accomplished by constructing a horizontal boundary 

that approximately separates the breast and pectoral muscle from the rest of the two-

dimensional image (Figure 2). Because lung and posterior chest size and position within the 

two-dimensional image vary, we determined placement of this boundary considering both 

factors. Let y1 and y2 be y-axis coordinates of the top-left and right corner pixels of the left 
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lung and y3 and y4 represent coordinates of the top-left and right corner pixels of the right 

lung. Similarly, y5, …, y8 are y-axis coordinates of the bottom left-most and right-most 

pixels in the left and right lungs, respectively. The horizontal boundary, B, is ¼ the 

approximate average vertical length of the lungs, B = 1
4

i = 5
8 yi

4 − i = 1
4 yi

4 . All pixels 

below B are removed from further consideration.

Elimination of the pectoral muscle

This task is relatively difficult because of substantial overlap of the pixel gray level intensity 

distributions of fibroglandular tissue and pectoral muscle (seen in Figures 2 and 3 where 

fibroglandular tissue and pectoral muscle look similar with respect to their intensities). In 

addition, fibroglandular tissue and pectoral muscle share boundaries complicating the 

classification task. To overcome this difficulty, our system uses information on the spatial 

relationship between fibroglandular tissue and pectoral muscle.

Allowing for images with different resolutions when utilizing information on spatial 

relationships within an image, we first calculate the height of the entire chest area (removing 

the background) by taking the difference, h, between the y-axis coordinates of the two pixels 

on the boundary of the chest with the highest and lowest y-axis coordinates. Define distance 

offset, ď, as the Euclidean distance between a pixel and the nearest pixel on the boundary 

with the lungs. Conceptually, small values suggest pixels belonging to pectoral muscle while 

large values suggest pixels belonging to the breast (Figure 3a). The algorithm uses this 

distance offset relative to the chest area height, d=ď/h, to segment pectoral muscle where 

both h and ď were estimated for each patient (Figure 3b).

The feature vector f now consists of two features, the gray level intensity, v, and the relative 

distance offset, d. We assume these features are statistically independent and both have a 

Gaussian distribution; thus, the joint posterior probability is p(xi ∈ S|f = (v, d)) = p(xi ∈ S | f 
= (v)) × p(xi ∈ S | f = (d)). From the training data, the maximum likelihood estimates of the 

mean and standard deviation of the distribution of d were μ=0.024 and σ=0.022, 

respectively; for the distribution of v in this phase they were μ=0.78 and σ=0.28, 

respectively.

Segmenting fibroglandular tissue and estimating CT breast density

After Phases 1-3, the remaining area is comprised predominantly of breast tissue. The 

leftmost and rightmost pixels of the breast on the horizontal axis are identified and the 

difference between these points taken as the width of the breast region. The middle 5% of 

this length, corresponding to the sternum, is removed from the breast region.

Lastly, the outer edges of the breast image appear hyper-intense with a bright thin region 

along the breasts’ outer boundary. This skin region is eliminated by using morphological 

erosion with a filter with a diameter of 5 pixels along each axis (or a 5x5 filter).
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The final phase identifies fibroglandular tissue in the defined breast region and separates it 

from the fatty part of the breast. In this phase, the feature set f consists only of the gray level 

intensities, v.

With fgt equal to the number of pixels identified as fibroglandular tissue, non-fgt equal to 

the number of breast pixels not identified as fibroglandular tissue, and T equal to the total 

number of breast region pixels (i.e. T = fgt + non-fgt), percent density is estimated as D = 

fgt/T.

Statistical Methods

Pixel-level accuracy of fibroglandular tissue segmentation in the validation dataset was 

evaluated by comparing assessments from the algorithm and labeled reference dataset within 

the breast region identified by the algorithm. True positive pixels were pixels identified as 

fibroglandular tissue by both the algorithm and the reference dataset and false positive pixels 

were pixels identified as fibroglandular tissue by the algorithm but not the reference dataset. 

We quantified pixel-level accuracy using true and false positive fractions (TPF and FPF, 

respectively) together with 95% confidence intervals reflecting the correlation between 

multiple pixels in the same patient [15].

Agreement between the algorithm’s CT percent density and the reference dataset’s CT 

percent density was evaluated using the concordance correlation coefficient (ρc, [16]) and 

Bland-Altman plots [17], Kendall’s τb was used to evaluate correlation of the categorical 

subjective BI-RADS assessments and the continuous algorithm’s density measurements, and 

a weighted kappa with quadratic weights [18] was used to assess inter-reader variability for 

categorical ACR BI-RADS assessments.

Results

The algorithm was able to automatically remove the lungs, heart, and muscles in all 75 

testing patients satisfactorily as illustrated in Figures 4 and 5.

Pixel-level accuracy

The pixel-level TPF for identifying pixels with fibroglandular tissue was 82.7% (IQR of 

patient-specific TPFs 65.5%-89.6%). The pixel-level FPF was 9.2% (IQR of patient-specific 

FPFs 2.5%-45.3%). Overall accuracy was 87.1%.

Agreement in quantitative density estimates

There was very good agreement between percent density estimated from the algorithm and 

percent density estimated from the reference labeled dataset, ρc =0.93 (95% CI 0.90-0.96). 

Median percent density estimated from the algorithm was 23% (IQR 14%-45%) and median 

percent density estimated from the reference labeled dataset was 18% (IQR 8%-38%).

The algorithm tended to overestimate percent density particularly in cases with small values 

corresponding to breasts with little-to-no fibroglandular tissue. The largest differences were 

seen in pre-pubescent females with thin breast regions where the algorithm incorrectly 

identified pectoral muscle as fibroglandular tissue. Figure 5 shows differences between 
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density estimated from the algorithm and density estimated from the reference dataset. In 

cases where the reference breast density was greater than 5% (Figure 5(b)), the average ratio 

of the algorithm’s density measurement relative to the reference data density measurement 

was 1.2.

Agreement with subjective BI-RADS assessments

For the 45 patients with mammograms within six months of CT scans, there was very good 

within-reader agreement between subjective density assessments made on the chest CTs and 

mammograms (Table 1 and Figure 6).

In these patients, median CT density from the algorithm was 20% (IQR 7%-40%). Figure 

6A shows the automated CT density estimate plotted against the radiologist’s subjective 

ACR BI-RADS assessment. There was good correlation between quantitative CT density 

estimates and radiologist’s assessment, although the ranges of the quantitative values overlap 

particularly for the middle ACR BI-RADS categories.

We explored two additional ways of estimating CT density from the algorithm’s 

segmentation results. First, we limited the number of slices contributing to the estimate by 

identifying the slice with the maximum CT density and taking five slices above and below it 

for a total of 11 breast slices. For patients with less than 11 breast slices, we used all slices 

(Figure 6B). Second, we explored using only the slice with the maximum CT density 

(Figure 6C). The range of quantitative values within ACR BI-RADS categories overlap 

slightly less for the limited slices approach although differences are small. τb was 0.77 in all 

three instances. As noted above, Figure 6D and Table 1 show that there is some variation 

between readers in subjective assessments as well.

Discussion

The computational algorithm we describe here is a novel method for automatically 

quantifying breast density from chest CT scans obtained as part of standard clinical care for 

patients for whom the breast was not the imaging test’s focus. Using a naïve Bayesian 

classifier with CT intensities and spatial constraints, we successfully detected the breast 

region and estimated the percent of the breast that contained fibroglandular tissue without 

any user-involvement.

Glandular and fibrous tissues are two of several structural components of the breast. With 

the ubiquitous use of mammography for breast cancer screening and diagnosis, most of the 

work studying the association between fibroglandular tissue and breast cancer risk has 

assessed fibroglandular tissue in the breast from mammography images. The more 

fibroglandular tissue seen on a mammographic image, the greater the risk of breast cancer 

regardless of a women’s age or menopausal status [2; 19]. This relationship holds when 

mammographic density is assessed qualitatively using a subjective classification system such 

as BI-RADS or quantitatively using a continuous measurement, such as the percentage of 

the mammogram with radiodense fibroglandular tissue [2; 20].
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Both mammography and CT use x-rays to generate images. CT breast density is simply 

another way to measure the same structural components from a different imaging test. While 

it seems reasonable to infer that breast density assessed on CT scans is a risk factor for 

breast cancer, studies explicitly evaluating this association are limited. To our knowledge 

there is one relevant case-control study. Kuchiki, Hosoya, and Fukao assess the relationship 

between volume of fibroglandular tissue measured from chest CTs and breast cancer risk 

[21]. They found that women with breast cancer had significantly higher fibroglandular 

tissue volumes than age-matched women without breast cancer. As with mammographic 

breast density, this relationship held regardless of menopausal status. In their study, however, 

the breast region was manually identified.

Automated image analysis of CT scans for assessing breast density has multiple benefits. 

First, in the last decade there have been several studies studying breast-tissue composition in 

young women in order to understand how breast density develops [4; 22; 23]. These studies 

have been hampered by relatively small sample sizes resulting from the need to conduct 

prospective studies using breast imaging modalities other than mammography (to avoid 

radiation exposure). In contrast, CT is often used as a diagnostic and treatment planning tool 

in pediatric and young adult patients; digitally stored images provide a rich repository for 

retrospective analyses. Second, by automating the process, large numbers of images can be 

analyzed with minimal time commitments from radiologists [24; 25]. Third, as with any 

automated image analysis application, there is potential for the subjectivity and resulting 

variability (arising from both intra- and inter-reader variability) associated with reader-

involvement to be reduced [24; 25].

There are several limitations of our study worth noting. As described above, the algorithm 

did not do as well in younger females where the breast region was thin. The training set 

consisted of images of females 22-42 years old. To understand how the algorithm worked in 

a broader population, we did not restrict the age range of the testing set. However, we 

suspect there is little interest in quantifying breast density of pre-pubescent females and do 

not view the difficulty the algorithm had in these few cases as a major limitation. Second, 

the presented results suggest a tendency for the algorithm to slightly overestimate percent 

density. Our primary focus was on characterizing the algorithm’s accuracy identifying 

fibroglandular tissue. Consequently, we compared the percent of fibroglandular tissue 

identified by the algorithm and the reference dataset relative to the total breast region 

defined by the algorithm. While useful for looking at pixel-level accuracy, this may 

contribute to the differences observed in patient-level percent density. Third, the 

distributions of the quantitative CT density measurement overlapped across the radiologist’s 

subjective ACR BI-RADS categories.

Although we used assessments from an experienced breast imaging radiologist also trained 

in CT body imaging for comparison, we expect variability just as there is variability in ACR 

BI-RADS density assessments obtained from reading mammograms [26]. Here we found 

good, but not perfect, agreement between subjective readings performed by different 

radiologists. Fourth, the algorithm assumes a consistent range of intensities across scans. If 

this is not the case, we recommend using an available method for contrast correction [27]. 

Finally, we used data from a single institution with all scans obtained from GE scanners to 
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train and validate the algorithm. The scanner models and imaging acquisition parameters 

varied reflecting scans obtained in clinical practice allowing our results to have some degree 

of generalizability. However, we leave studying reproducibility of the algorithm for future 

work.

In conclusion, our algorithm performed well at identifying breast regions from chest CT 

scans with no user-input. Importantly, it estimated percent breast density with a high degree 

of accuracy in most cases.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Illustration of the different phases for segmenting chest CT scans.
The system identifies and segments each structure in a different phase while passing 

contextual information to the next phase. BG = background; C = chest; L = lungs; C(−L) = 

chest region after eliminating the lungs; H = heart; C(−H, −L, −M) = chest region after 

eliminating the heart, lungs, and muscle; B = breast; P = pectoral muscle; FT = fatty 

component of the breast; and FGT = fibroglandular tissue.
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Figure 2. Construction of the horizontal boundary marking the anterior chest area.
The horizontal boundary (green dashed line) is drawn at approximately ¼ of the total 

vertical length of the lungs.

Qureshi et al. Page 13

J Med Syst. Author manuscript; available in PMC 2020 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
(a) The distance offset feature. The Euclidian distance between pixel x and y is dx, while 

the Euclidian distance between pixels a and b is da. Both y and b are lung boundary pixels. 

Since dx is larger than da, a has a higher chance of belonging to pectoral muscle than x. The 

dashed line indicates the proposed boundary of pectoral muscle. Although fibroglandular 

breast tissue may share a boundary with pectoral muscle, and the gray level intensity of pixel 

x may be similar to the gray level intensity of pectoral muscle pixels, the chance of pixel x 
belonging to pectoral muscle is still conceptually low because of the higher value for dx. (b) 

Qureshi et al. Page 14

J Med Syst. Author manuscript; available in PMC 2020 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Lungs and pectoral muscle segmentation. The dashed yellow line indicates the boundary 

of the lungs. The dotted red line indicates boundary of pectoral muscle.
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Figure 4. Sample output from the algorithm.
Fibroglandular tissue is depicted in blue and fatty tissue in yellow.
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Figure 5. Agreement of percent breast density estimate between the algorithm and reference 
standard.
(a) Scatter plot of the percent density estimates from the algorithm and the reference 

standard data, (b) For images with percent density > 5% in the reference standard data, 

shown is the Bland-Altman plot of the ratio of the algorithm’s breast density measurements 

relative to the breast density measurements from the reference data. The black dashed line 

corresponds to where there is no difference between the two measurements (i.e. ratio = 1).
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Figure 6. Agreement of algorithm’s categorical percent breast density estimate with radiologist’s 
subjective ACR BI-RADS assessment.
Shown in (a) – (c) are automated CT density measurements constructed three different ways: 

(a) using all slices in the identied breast region, (b) limiting the calculation to the slice with 

the highest density and the 10 neighboring slices, and (c) limiting the calculation to the slice 

with the highest density, (d) Inter-reader variability using subjective ACR BI-RADS 

assessments of chest CT scans.
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Table 1.

Agreement between subjective breast density assessments from chest CT and mammography using ACR BI-

RADS breast density categories.

Kappa* 95% CI

Intraobserver variability (chest CT-mammography)

 Reader 1 0.87 (0.76, 0.91)

 Reader 2 0.82 (0.71, 0.90)

Interobserver variability

 Mammography 0.85 (0.72, 0.92)

 Chest CT 0.88 (0.81, 0.98)

*
Estimated using a weighted kappa with quadratic weights to give more weight to differences that are further apart.
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