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Abstract
Currently, emotion recognition based on electroencephalo-
grams (EEGs) has a wide range of applications. Although
many approaches have been proposed for automatic emotion
recognition with favorable performance, there are still several
challenges: (1) how to sufficiently model the long- and short-
term temporal feature discrepancies and redundant spatial in-
formation of EEGs and (2) how to alleviate the negative im-
pact of the ambiguity of emotion classes. To tackle these is-
sues, we propose the CSET-CCA, a novel framework for EEG-
based emotion recognition. The feature extractor of this model
combines the 1D convolutional neural network (CNN), chan-
nel Squeeze-and-Excitation (SE) module and transformer. It
can extract the temporal features of EEG signals from local
and global perspectives and select the critical channels in emo-
tion recognition. Moreover, to adaptively perceive the confu-
sion degrees of classes and increase the model’s attention on
confusing emotion classes, we design class confusion-aware
(CCA) attention. We evaluate the CSET-CCA with the SEED
and SEED-V datasets. The experimental results show that the
proposed approach outperforms state-of-the-art methods.
Keywords: EEG; emotion recognition; convolutional trans-
former; class confusion-aware attention

Introduction
Emotion is the physiological arousal state of an individ-
ual and the cognitive state that adapts to this arousal state
(Schachter & Singer, 1962). In recent years, studies on
automatic emotion recognition have attracted considerable
attention. Currently, there are two primary signal types
used in emotion recognition tasks: overt behavioral signals
and human physiological signals (Dzedzickis, Kaklauskas,
& Bucinskas, 2020). Emotion, as a complex cognitive pro-
cess, has been proven to be the result of the coordinated ac-
tion of the cerebral cortex and subcortical nerves (Malfliet
et al., 2017). Therefore, physiological signals represented by
electroencephalograms (EEGs) have an inherent advantage in
emotion recognition tasks.

To automate EEG-based emotion recognition, several ap-
proaches have been applied to achieve state-of-the-art perfor-
mance (R. Li, Wang, & Lu, 2021; Y. Li et al., 2020). How-
ever, there are still several challenges:

(1) Differences between local and global temporal fea-
tures and redundant spatial information are underuti-
lized. An EEG signal is a type of human physiological elec-
trical signal with high temporal resolution (Burle et al., 2015).
Previous studies have also focused on the extraction of tem-
poral features from EEGs, but these features tend to be con-
sidered from a single scale, local or global. For example,

EEG

Short-Term Temporal Continuity

Long-Term Temporal Similarity

(a) (b)

Figure 1: Spatio-temporal characteristics of emotional EEG
signals. (a) Short-term temporal continuity and long-term
temporal similarity of emotions. (b) An example of a topog-
raphy of brain activation under positive emotion.

convolutional neural networks (CNNs) (Ozdemir et al., 2021)
or long short-term memory (LSTM) networks (Feng et al.,
2022) have been used. In emotional EEG signals, there is
a strong relationship between adjacent temporal points, and
a high degree of continuity (Mitchell, 2021). Additionally,
there is a correlation between distant temporal points and sim-
ilar neural patterns and representations (Riberto et al., 2022).
Figure 1 (a) demonstrates the “short-term temporal continu-
ity” and “long-term temporal similarity” of emotions. In ad-
dition, from a spatial perspective, when the subject is in an
emotional state, distinct brain regions are activated at varying
levels. Figure 1 (b) shows an example of this phenomenon.
Multi-channel EEG signals often contain redundant spatial
information. The different channels have varying degrees
of significance according to their actual placement positions.
Therefore, we capture the long- and short-term temporal rela-
tionships via a convolutional transformer and identify the crit-
ical channels using the Squeeze-and-Excitation (SE) module
(Hu, Shen, & Sun, 2018).

(2) The ambiguity of emotion classes strongly influences
the model training and recognition results. Since emo-
tion is a highly subjective personal experience, it is com-
monly complicated and ambiguous (Berrios, 2019). This phe-
nomenon is also reflected in the emotion recognition task.
Specifically, there are still significant variances in feature dis-
tributions within the same emotion class, but these disparities
are quite minimal when compared to other classes (W. Li et
al., 2021). There are several emotion classes with high neural
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similarity, which often seriously influence the overall recog-
nition accuracy. One study by R. Li et al. (2021) showed that
the classification accuracy of disgust was only 71.51% in a
five-classification task, with 9.95%, 8.66% and 6.13% of the
samples being misidentified as happy, sad and fear, respec-
tively. We hope that the model will focus more on emotion
classes with higher confusion degrees. Therefore, we propose
class confusion-aware (CCA) attention. It can intelligently
perceive the degree of class confusion in a model’s outputs
and apply attentional weighting.

Overall, our contributions can be summarized as follows:
(1) We propose a novel emotional EEG model named

CSET-CCA, which can be used to extract the long- and short-
term temporal features of EEG signals comprehensively and
select critical spatial information.

(2) We design the CCA attention mechanism to address the
ambiguity of emotion classes. It can adaptively perceive the
class confusion degree and focus more on confusing classes
through attentional weighting.

(3) The experimental results show that our model achieves
state-of-the-art performance, with the superior results espe-
cially on the confusing emotion classes.

Related Work
EEG-Based Emotion Recognition
Emotion recognition based on traditional machine learning
requires the human extraction of EEG features and the design
of classifiers. The commonly used features include power
spectral density (PSD), differential entropy (DE) and ratio-
nal asymmetry (RASM) (X. Li et al., 2022). In terms of
choosing classifiers, support vector machine (SVM) (Zhao et
al., 2019) and XGBoost (Xefteris et al., 2022), among oth-
ers, are widely used. However, machine learning methods
for processing raw data are limited (LeCun, Bengio, & Hin-
ton, 2015). Researchers have further attempted to decode
EEG signals using an end-to-end artificial neural network
(ANN). CNN and recurrent neural network (RNN), among
others, are being utilized increasingly frequently. For exam-
ple, Miao et al. (2023) proposed a multiband parallel spatio-
temporal 3D deep residual CNN learning framework for emo-
tion recognition. Y. Li et al. (2020) introduced the BiHDM,
which consists of four RNNs, to capture the information of
each hemispheric EEG electrode from horizontal and vertical
streams and achieved 93.12% accuracy on the SEED. Shen et
al. (2020) combined CNNs and RNNs to extract frequency,
temporal and spatial features of EEGs, and achieved 94.74%
accuracy on the SEED.

However, the size of the convolutional kernel—a large ker-
nel limits the extraction of deep information, whereas a small
kernel limits the perceptual field of view—tends to be the
limiting factor for CNNs (J. He et al., 2019). The RNN
represented by LSTM is limited by its own network struc-
ture, which cannot realize parallel computing (Zhang, 2020).
The emergence of an attention mechanism effectively allevi-
ates the problems mentioned above. Tao et al. (2020) used

a CNN incorporating channel-wise attention to extract more
discriminative spatial information and explored temporal re-
lationships via RNNs. A transformer based on a self-attention
mechanism has the inherent ability to perceive global depen-
dencies (Vaswani et al., 2017). Song et al. (2022) proposed
the EEG Conformer, a convolutional transformer model used
to extract EEG temporal features. However, this model ig-
nores spatial variations in brain activation, which is also cru-
cial for decoding EEG signals. We summarize the advantages
and disadvantages of these previous works. On this basis,
we design the CSET with the 1D temporal CNN, channel SE
module and transformer.

CCA Attention
The minimum class confusion (MCC) loss was proposed by
Y. Jin et al. (2020). This loss function is mainly applied in
the process of domain adaptation to solve the problem of poor
generalization performance for models trained on the source
domain and tested in the target domain. The MCC loss func-
tion measures the degree of confusion between classes in the
target domain and constructs the class confusion matrix from
it. Next, the model optimizes the class confusion matrix in
the target domain to achieve multiple domain adaptations. In-
spired by this, we intend to perceive the degree of confusion
for each emotion class and make specific optimizations for
confusing emotion classes. However, unlike the MCC loss,
the emotion recognition task is a supervised learning classifi-
cation task. Therefore, after constructing the class confusion
matrix, we achieve CCA attention by weighting the cross-
entropy (CE) loss.

Proposed Methods
Model Architecture
An overview of the CSET-CCA is shown in Figure 2 (a). In
our proposed model, the 1D CNN in the feature extractor is
used to extract short-term temporal features. The Channel
SE module is utilized to determine channel relevance and to
extract and aggregate spatial features. The transformer is used
to extract long-term temporal dependencies in EEGs. The
outputs from the FC layer are subsequently inputted into the
CCA Attention module.

Short-Term Temporal 1D CNN: Inspired by the work of
EEGNet (Lawhern et al., 2018), we separate temporal and
spatial convolutions. The raw EEG signals are fed into the
model, and the 1D convolutional kernel extracts short-term
features in the temporal dimension. This process involves
three 1D CNN layers in total to enhance the model’s capac-
ity to capture short-term features. The number of kernels in
the last convolutional layer is k, and the resulting feature is
X ∈ Rt×k×c, where c is the number of channels and t is the
temporal feature.

Channel SE and Spatial Feature Aggregation: To ex-
tract more discriminative spatial features from EEGs, the
model initially selects critical channels and assigns them
higher weights through the SE module. The SE module con-
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Figure 2: Overview diagram of our proposed model with a schematic diagram of the CCA attention module. (a) The model
structure diagram of the CSET-CCA. There are three primary components in the feature extractor: a short-term temporal 1D
CNN, a channel SE and spatial feature aggregation, and a long-term temporal transformer. In the end, the classification results
are fed into the CCA attention. (b) Schematic diagram of the CCA attention module.

sists of two primary phases, squeezing and excitation. In the
squeezing process, to extract the relationships between chan-
nels, features in each channel are initially squeezed into a
global feature. This process is implemented by global aver-
age pooling to obtain the output z ∈ R1×1×c. The importance
of each channel is predicted by two fully connected (FC) lay-
ers during the excitation process. The obtained s ∈ R1×1×c is
the weight matrix of the channels. The computation of s is
shown below:

s = σ(W2δ(W1z)) (1)

where δ and σ represent the ReLU and Sigmoid activation
function, respectively, the W1 ∈ R c

r ×c, W2 ∈ Rc× c
r and r is

the reduction ratio. Weighting is achieved via multiplying the
weight s by the original feature map X along the channel di-
mension. This in turn results in a feature map X̃ ∈ Rt×k×c

with the same dimensional size that has been weighted ac-
cording to each channel’s importance. To further determine
the significance of the critical channels, max pooling is used
in the channel dimension. Only the elements with the largest
values in the pooling window are retained. Eventually, to fa-
cilitate the input of features into the transformer, spatial fea-
ture aggregation is achieved via 1D spatial convolution.

Long-Term Temporal Transformer: Due to the coher-
ence of neural activities, global temporal dependence is also
crucial for decoding EEG signals. Therefore, we input all

temporal features as tokens into the transformer. The trans-
former consists of N transformer encoders. Initially, the
model carries out a layer norm operation, which serves to en-
sure the stability of the sample feature distribution and avoid
vanishing gradients. The multi-head mechanism can effec-
tively improve the diversity of extracted representations, and
each head is an independent representation subspace. In each
head, we perform three linear transforms of feature maps, to
obtain three copies of the query (Q), key (K) and value (V).
In Scaled Dot-Product Attention, we use the obtained Q and
K to carry out the dot product operation to calculate the sim-
ilarity between every two tokens. The obtained similarity is
divided by the scale factor

√
dk to avoid gradient vanishing,

where dk is the dimension of the key. After normalization by
Softmax, the weight matrix is acquired. Finally, the weight
matrix is multiplied by V to complete the process of weight-
ing. The computation of the process is shown below:

Attention(Q,K,V ) = So f tmax(
QKT
√

dk
)V (2)

After that, we need to fuse the outputs obtained from each
head. The model combines the outputs of each head together,
and it subsequently performs a linear transform and residual
addition (K. He et al., 2016). The calculations are shown
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below:

MultiHead(Q,K,V ) =Concat(head1, ...,headh)W O (3)

where, W O ∈ Rhdv×dmodel , h represents the number of heads,
dv represents the dimensions of V, and dmodel represents the
dimension of the model outputs. To further increase the
model’s fitting ability, the layer norm, MLP block, and resid-
ual addition processes are added later. The operation process
of one transformer encoder is as described above. This pro-
cedure needs to be repeated a total of N times.

CCA Attention
The confusion degrees of emotion classes largely influence
the model training process. To adaptively perceive confusing
emotion classes, we apply CCA attention to the output results
of the classifier. The structure of the CCA module is shown in
Figure 2 (b). This module combines the degree of uncertainty
of the samples with the correlation between classes. On this
basis the class confusion matrix is constructed, and the class
confusion weights are determined. The final weighting to the
cross-entropy loss function realizes the CCA attention.

Probability Rescaling: The output of deep neural net-
works (DNNs) is not a probability distribution, and DNNs
tend to make overconfident predictions (Guo et al., 2017). To
alleviate the negative impact of this problem when modeling
the class confusion, we apply temperature rescaling. Suppose
the output of the classifier is Zi j ∈ Rb×n, where b is the batch
size and n represents the number of classes. Ẑi j to denote the
probability of the j-th class being assigned to the i-th sample.
Its calculation is shown below:

Ẑi j =
exp(Yi j/T )

∑
b
j′=1exp(Yi j′/T )

(4)

where T is the hyperparameter of temperature rescaling, and
when T = 1, the above equation becomes a Softmax function.

Class Correlation: A preliminary estimate of the correla-
tion between the j-th class and the j′-th class is shown below:

C j j′ = Ẑ⊤
· j Ẑ· j′ (5)

Uncertainty Weighting: The confusion degrees of emo-
tion classes are quantified differently for each sample. When
the prediction results of a sample are distributed relatively
evenly, the classifier is ignorant of this sample. When there
are specific peaks in the prediction results of a sample, the
classifier has difficulty in choosing among these confusing
classes. Obviously, these samples that cause the classifier
to produce cross-class ambiguity are more reflective of class
confusion. We define the uncertainty of a sample with the
concept of entropy in information theory. The uncertainty of
the i-th sample is:

H(Ẑi·) =−
n

∑
j=1

Ẑi jlogẐi j (6)

The result of calculating the uncertainty of a sample through
the entropy function is not a probability distribution. There-
fore, we apply the Softmax function to the result. In turn, we
construct a matrix U ∈ Rb×b representing the contribution of
each sample to class confusion. U is a diagonal matrix, where
Uii is the contribution of the i-th sample to class confusion. Its
calculation is shown below:

Uii =
b(1+ exp(−H(Ẑi·)))

∑
b
i′=1(1+ exp(−H(Ẑi′·)))

(7)

Class Confusion Matrix: After calculating the sample un-
certainty, we can update the preliminary estimate of the class
correlation matrix to class confusion matrix C ∈Rn×n, where
the confusion between the j-th class and the j′-th class is cal-
culated as follows:

C j j′ = Ẑ⊤
· jUẐ· j′ (8)

To ensure the stability of the class confusion degree and avoid
the problem of serious class imbalance within a batch. We
perform a class normalization operation. The calculation is
shown below:

C̃ j j′ =
C j j′

∑
n
j′′=1C j j′′

(9)

Weighting the CE Loss: C̃ j j′ defines the cross-class con-
fusion between class j and class j′. Afterwards, the average
confusion degree of all classes within a batch is calculated
based on C̃. The confusion degree within a class ( j = j′) is
ignored in the calculation. The weight matrix after Softmax
normalization is W ∈ R1×n. It is assumed that Y and Ŷ are
the true label and the predicted value, respectively. The loss
within a batch is computed as shown below:

Loss =−1
b

b

∑
i=1

n

∑
j=1

WjYi jlog(Ỹi j) (10)

Eventually, the class confusion weight matrix is weighted to
the CE loss function, as shown in Equation (10). In this way,
intelligent awareness and attention to confusing classes are
realized.

Experiments
Datasets and Settings
We evaluate the performance of the model on the SEED
(Zheng & Lu, 2015) and SEED-V (Zhao et al., 2019) datasets.
Both datasets use video materials to induce the corresponding
emotions of the subjects, and the number of electrode chan-
nels is 62 for both datasets. The SEED dataset records the
emotional EEG data of 15 subjects. Each subject needed to
participate in 3 sessions, and each session included 15 trials.
The emotion classes included positive, negative and neutral.
There are 16 subjects in the SEED-V dataset. Similarly, each
subject included 3 sessions, each session consisted of 15 tri-
als, and the emotion classes were happy, disgust, sad, neutral
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and fear. The EEG signals were sliced into 4-second seg-
ments without overlapping windows as a way to increase the
number of samples. In addition, our experiment followed a
subject-dependent setting. We use the same divisions of the
training and testing sets as Zheng and Lu (2015) and Zhao et
al. (2019) for the SEED and SEED-V datasets, respectively.

The parameters of the model are set as follows. In the 1D
CNN, the number of kernels in the last convolutional layer k
is 60 (which is also the size of a token in transformer). In the
channel SE, reduction ratio r is set to 0.5. In the transformer,
the number of encoders N and the number of heads h are set
to 6 and 10, respectively. In the CCA, we set the tempera-
ture rescaling T to 2.5. The model was implemented on the
PyTorch framework and trained using a Tesla T4 GPU. We
trained the model using Adam optimizer, with the learning
rate and batch size of 0.0001 and 256, respectively.

Baselines
The baselines used for comparison are shown below.

(1) SVM (Zheng & Lu, 2015; Zhao et al., 2019): Machine
learning method using DE features with the SVM classifier.
(2) BDAE (Zhao et al., 2019): Extraction of high-level rep-
resentations for emotion recognition via bimodal deep auto-
encoder. (3) R2G-STNN (Y. Li et al., 2019): Extracting spa-
tial relationships within and between brain regions and dy-
namic temporal information, respectively. (4) BiHDM (Y. Li
et al., 2020): This method explores the discrepancy between
left and right hemisphere features, and capture temporal in-
formation from two directions via the RNNs. (5) RGNN
(Zhong, Wang, & Miao, 2020): The regularized GNN ex-
plores the topology of EEG signal channels using two regu-
larizers. (6) 4D-CRNN (Shen et al., 2020): A model combin-
ing a CNN and an RNN is used to extract spatial, spectral and
temporal domain features of EEG signals. (7) MD-AGCN
(R. Li et al., 2021): This model is an adaptive GCN model
that fuses frequency domain features and temporal domain
features. (8) PGCN (M. Jin et al., 2023): A graph convo-
lution model that incorporates local, mesoscopic and global
features at different scales.

Classification Results
We compare the proposed CSET-CCA model with baselines
on the SEED and SEED-V datasets.

Table 1 shows the accuracy (ACC) and standard deviation
(STD) of these models on the SEED and SEED-V datasets.
Compared with that of the baseline models, the ACC of our
model is further improved. CSET-CCA achieves state-of-the-
art performance. On the SEED dataset, an ACC of 95.18%
and an STD of 5.35% are achieved. The CSET-CCA simul-
taneously considers long- and short-term temporal features,
spatial features and the degrees of class confusion, which en-
ables our model to adequately capture valuable information
in EEG signals. CSET-CCA still achieves the best result on
the SEED-V dataset, with an ACC of 82.06% and an STD of
8.42%. The similarity between emotion classes in the five-
classification task is further improved. However, CCA atten-

Table 1: Comparison of classification performance on the
SEED and SEED-V datasets.

Models SEED SEED-V
ACC ± STD (%) ACC ± STD (%)

SVM 83.99 ± 9.72 69.50 ± 10.28
BDAE - 79.70 ± 4.76

R2G-STNN 93.38 ± 5.96 -
BiHDM 93.12 ± 6.06 -
RGNN 94.24 ± 5.95 -

4D-CRNN 94.74 ± 2.32 -
MD-AGCN 94.81 ± 4.52 80.77 ± 6.61

PGCN - 81.69 ± 10.57
CSET-CCA 95.18 ± 5.35 82.06 ± 8.42
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Figure 3: Confusion matrices of the CSET-CCA. Each col-
umn represents the predicted classes that our model outputs
and each row represents the true classes. (a) Confusion ma-
trix on the SEED. (b) Confusion matrix on the SEED-V.

tion can adaptively perceive the confusion degrees of classes
and pay more attention to confusing emotion classes, which
further improves the performance of the model.

Figure 3 shows the confusion matrix of the model on these
two datasets. On the SEED dataset, our model outperforms
the recognition of positive and neutral emotions (96.07% and
95.34%, respectively) than that of negative (94.12%). The
proportions of samples that are misclassified as negative or
neutral are relatively high, at 3.53% and 2.59%, respectively.
For the SEED-V dataset, our model has a relatively low
recognition accuracy of 78.25% for the disgust emotion, but
this accuracy is still higher than that of the baseline model
MD-AGCN (71.51%). This result is also superior consider-
ing that disgust is a confusing emotion class and that only
7.11% and 3.55% of samples are misidentified as fear and
happy, respectively. Additionally, the accuracies of the other
classes still remain high (85.96% for fear, 81.19% for sad,
81.52% for neutral and 84.08% for happy). This is attributed
to the strong representation ability of the CSET and the adap-
tive perception of confusing classes by CCA attention.

5291



Table 2: Ablation study on the SEED dataset.

Models ACC±STD(%) Variations(%)
1D CNN-removed 94.73 ± 4.96 -0.45

channel SE-removed 93.81 ± 5.76 -1.37
transformer-removed 86.59 ± 6.22 -8.59

CCA-removed 93.64 ± 4.89 -1.54
CSET-CCA 95.18 ± 5.35 0.00

Ablation Study
We verify the contribution of each module through an abla-
tion study. The experiments are based on the SEED dataset.
The results are shown in Table 2.

(1) When the 1D CNN is removed, the model’s abil-
ity to extract short-term temporal features decreases. How-
ever, since the captured long-term temporal dependencies
also contain short-term features, the accuracy decreases by
only 0.45% and can still reach 94.73%.

(2) When the channel SE module is removed, the model
treats all channels indiscriminately and the spatial informa-
tion is underutilized, with an accuracy of 93.81%, and a de-
crease of 1.37%.

(3) When the transformer is removed, the model is con-
strained by the limited perceptual field of the CNNs, which is
unable to effectively model long-term temporal relationships,
with an accuracy of only 86.59%, and a decrease of 8.59%.

(4) When the CCA attention is removed, the model’s recog-
nition accuracy for the confusing emotion classes decreases,
with an overall accuracy of 93.64%, a decrease of 1.54%.

In summary, the long-term temporal dependence extracted
by the transformer contributes the most to the model. This
is mainly due to the high temporal resolution of EEG signals
and the powerful global perception of the transformer. The
CCA attention and channel SE also favorably contribute to
the final results.

Visualization
To identify the critical channels for emotion recognition, we
calculate the average weights learned by the channel SE mod-
ule. Then, all of the channel weights are sorted, and the ten
channels—C5, PO8, T8, FP2, AF3, FC5, C1, C6, Oz and
F6—with the highest weights are chosen. Fig 4 shows the
top 10 channel weights and the topological map of their elec-
trode distributions. Most of these channels are concentrated
on the frontal, temporal and occipital lobes of the brain. Ac-
cording to the study by Phan et al. (2002), emotions mainly
activate prefrontal and temporal lobe sites, and evoked ma-
terials based on visual stimuli activate the occipital cortex.
Our experimental results are generally consistent with neuro-
science studies. Therefore, the channel SE module effectively
selects the critical channels in emotion recognition.

In addition, to verify the effectiveness of the CCA atten-
tion, we also visualize the average class confusion matrix and
class confusion weights constructed on the SEED dataset, as
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Figure 4: Top 10 channels (62 in total) selected by the SE
module and the topological map of the distribution of these
channels (in red).
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Figure 5: Average class confusion matrix and class confusion
weights constructed on the SEED dataset.

shown in Figure 5. The nondiagonal elements in the class
confusion matrix represent cross-class confusion, and it can
be seen that there is a relatively high degree of class confusion
between negative and neutral emotions. For the correspond-
ing class confusion weights, neutral is assigned the highest
confusion weight of 0.3512. With a value of 0.3362, negative
emotion is the second highest. The lowest value for positive
emotion is 0.3126. This result suggests that the model high-
lights the importance of neutral emotion during the training
process. In conclusion, CCA attention is effective in perceiv-
ing the confusion degrees of classes and making the model
more attentive to confusing emotion classes.

Conclusion
In this paper, we propose the CSET-CCA, a novel emotion
recognition model. It can effectively extract long- and short-
term temporal features and discriminative spatial informa-
tion from EEG signals. It also takes the ambiguity of emo-
tion classes into consideration. The CCA attention mecha-
nism achieves adaptive perception and weighting of confus-
ing emotion classes. The experimental results show that our
model can achieve the best classification performance. An
ablation experiment and visualization also validate the effec-
tiveness of each module. Due to the limitations of the cur-
rent work, our model does not perform well enough in cross-
subject scenarios. In our future work, we will further attempt
to optimize our model and improve its generalization perfor-
mance to make it more valuable in practical applications.
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