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Atlas of prostate cancer heritability in European
and African-American men pinpoints
tissue-specific regulation

Alexander Gusev et al.#

Although genome-wide association studies have identified over 100 risk loci that explain

B33% of familial risk for prostate cancer (PrCa), their functional effects on risk remain

largely unknown. Here we use genotype data from 59,089 men of European and African

American ancestries combined with cell-type-specific epigenetic data to build a genomic

atlas of single-nucleotide polymorphism (SNP) heritability in PrCa. We find significant

differences in heritability between variants in prostate-relevant epigenetic marks defined in

normal versus tumour tissue as well as between tissue and cell lines. The majority of SNP

heritability lies in regions marked by H3k27 acetylation in prostate adenoc7arcinoma cell line

(LNCaP) or by DNaseI hypersensitive sites in cancer cell lines. We find a high degree of

similarity between European and African American ancestries suggesting a similar genetic

architecture from common variation underlying PrCa risk. Our findings showcase the power

of integrating functional annotation with genetic data to understand the genetic basis of PrCa.
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F
amily history is a well-established risk factor for prostate
cancer (PrCa), which has an estimated heritability of
58%—one of the highest across common cancers1.

Genome-wide association studies (GWAS) have been
particularly successful in identifying over 100 risk loci that
capture B33% of the estimated familial risk2. Although most
of the GWAS PrCa variants overlap prostate-specific
regulatory elements (for example, androgen receptor-binding
sites (ARBS))2–8, a quantification of the contribution of
genetic variation from various chromatin marks to PrCa risk is
currently lacking.

Recent work form the ENCODE/ROADMAP consortia9 has
shown that a large fraction of the genome plays a role in at
least one biochemical event, in at least one tissue. Although this
functional atlas of the human genome has greatly enhanced
our understanding of regulatory elements, such functional
elements are often tissue specific10,11 making their
interpretability in the context of PrCa risk challenging. Existing
studies that have integrated PrCa GWAS findings with
tissue-specific functional annotations have relied only on the
GWAS significant variants (B100 in the most recent study) or
single-nucleotide polymorphisms (SNPs) tagging them2,7, thus
ignoring loci that do not reach genome-wide significance. Recent
methodological advances have shown that the entire polygenic
architecture of common traits can be interrogated using
variance components across all assayed SNPs (typed and/or
imputed) to increase power for detecting trait-specific functional
annotations12. In addition to offering superior performance
relative to methods that evaluate only GWAS SNPs, the
variance components methods also allow for comparison of
estimates across different studies and sample sizes. This is
because variance components yield an unbiased estimate (under
standard assumptions) of SNP heritability ðh2

gÞ—the variance in
trait explained by SNPs that reside within elements of a given
functional category12–15.

Here, we use targeted and genome-wide SNP array data from
59,089 male PrCa cases and controls of European (BPC3 (ref. 16)
and iCOGS (ref. 4), respectively, see Methods) and African
American (AAPC (ref. 17), see Methods) ancestry to dissect the
genetic risk of PrCa. We estimate the SNP heritability of previously
implicated regulatory annotations7,18 and perform a broad analysis
of 544 epigenetic marks from ENCODE/ROADMAP (ref. 9). Our
approach interrogates the entire common polygenic architecture of
PrCa while accounting for potential correlations between related
functional categories. First, we find that SNPs near ARBS assayed in
prostate tumour explain significantly more of the heritability of PrCa
than ARBS SNPs assayed in prostate normal tissue. Second, we
localize most of the heritability of PrCa to regions in the genome
marked by three functional categories: (i) H3K27ac histone
modifications in prostate adenocarcinoma cell lines (LNCaP;
typically marking active enhancers19); (ii) androgen receptors in
prostate tissue18; and (iii) DNase I hypersensitivity sites (DHS) in
cancer cell lines. We replicate the LNCaP H3K27ac and DHS results
across different ancestries and show that risk prediction from
genome-wide SNP data is significantly improved with a predictor
that incorporates the functional atlas as prior. Overall, our results
suggest a similar genetic architecture from common variation of
PrCa risk across men of European and African ancestry and
highlight H3k27ac histone mark in LNCaP and ARBS in prostate
tissue for follow-up studies of PrCa risk.

Results
Partitioning the genetic risk for prostate cancer. We analysed
multiple functional annotations and quantified the fraction of
variance in trait explained by SNPs that are localized within each

functional class. Our approach models the phenotype (PrCa) of a
set of individuals as being drawn from a multivariate normal
distribution with variance components estimated based on
genetic data (that is, SNPs) plus an environmental term
(see Methods)13,14. For each functional category i, a genetic
relationship matrix across all individuals is computed from all the
SNPs residing in the given functional category to serve as a
variance component. Multiple components are then jointly fitted
using the restricted maximum likelihood (REML) as implemented
in the GCTA software14 to estimate variance parameters s2

i

� �
for

each component. The SNP heritability for component i is then
estimated as h2

g;i ¼ s2
i =
P

j s
2
j , where the sum in the denominator

is across all fitted components including the environmental term.
Therefore, we view h2

g;ias an estimate of the variance in trait that
can be explained by all the SNPs in the corresponding functional
category with a linear model of the trait (that is, SNP
heritability)12. We expect functional categories that are enriched
with casual variants for PrCa to attain a higher estimated SNP
heritability as compared with functional categories depleted of
causal variants for PrCa. To focus our results on noncoding
variation and account for potential confounders because of
linkage disequilibrium (LD), we explicitly included coding and
coding-proximal regulatory variation as ‘background’ compo-
nents whenever we quantified the effect of each functional
annotation tested (see Methods).

The variance component model has previously been shown to
yield robust estimates under the assumption that causal variants
are typed and uniformly sampled from a given component13,20,21.
Here, we perform additional simulations using the UK10K
whole-genome sequence data to confirm the validity of this
model for our data, and to assess how representative SNP
estimates are of true underlying biology at common sequenced
variants. The simulation framework uses real genotype data
from the UK10K consortium to generate additive, polygenic
phenotypes with a given heritability and then performs
heritability estimation with the variance component model
(see Methods). Although the UK10K data contains a much
smaller set of individuals as the iCOGS data (3,047 versus 42,613
individuals, see Methods), it contains variation from whole-
genome sequencing; this allows us to evaluate model performance
by simulation when restricting to SNPs genotyped on the iCOGS
platform. We focused on the LNCaP: H3k27ac annotation (which
was most significant in our data, see below) to evaluate the
multiple component models. Over thousands of simulations, we
confirmed that the variance components approach correctly
recovered the causal contribution to trait from a given functional
category when causal variants were typed (Supplementary
Table 1, see Methods). Under both null and enriched scenarios
the estimates were unbiased and standard errors properly
calibrated (Supplementary Table 1). For common sequenced
variants not present on the iCOGS platform, relative estimates of
noncoding enrichment/depletion were conservative, with the
tagged effects distributed across the typed components
(Supplementary Table 2). Deviations from the standard
variance components model assumptions on the distribution of
effect-sizes and ancestry-specific effects in African Americans
yielded either well calibrated or conservative estimates of SNP
heritability in the focal LNCaP: H3k27ac category (see Methods,
Supplementary Tables 1–3).

Our primary functional analyses focus on the densely
genotyped iCOGS sample (21,678 cases and 20,935 controls),
whose large sample size allowed for highly accurate estimates of
component-specific h2

g. Although the iCOGS chip is custom built
to oversample risk loci, it provides a broad coverage of the
common variation genome wide4. To showcase the power of
the variance components approach, we estimated the total SNP
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heritability of PrCa at 0.28 (s.e. 0.01) in the iCOGS data (not
significantly different from the total SNP heritability estimate of
0.26 (s.e. 0.05) in the BPC3 data), a significant increase from the
variance explained only by the known GWAS variants h2

GWAS

� �
of

0.06 (s.e.m. 0.001) (see Methods; Supplementary Table 4).
Interestingly, the total SNP heritability in the African American
sample, which was genotyped on a different platform than iCOGS
(see Methods), was estimated at 0.32 (s.e. 0.06) indicating a
similar aggregate contribution of common variation to PrCa risk
across the two ethnicities despite higher overall risk in African
Americans22 (Supplementary Table 4).

Enrichment at androgen receptor-binding sites in tumours. We
first focused on SNPs localized in the ARBS: an epigenetic profile
causally implicated in prostate tumorigensis. In contrast to typical
assays that focus on cell lines, the ARBS were defined by chromatin
immunoprecipitation and high-throughput sequencing (ChIP-seq)
directly in primary human tissue (seven normal and 13 tumour
specimens)18. We observed that variants within 5 kb of tumour-
specific ARBS explained 17.0% of the genome-wide h2

g (s.e. 1.7%;
P¼ 2.6� 10� 16 by Z-test), whereas the variants near
normal-specific ARBS explained 0.0% of the h2

g (s.e. 0.9%;
P¼ 0.11 by Z-test) (Fig. 1). The difference between these two
groups was highly significant and demonstrates the importance of
assaying functional marks in both normal and tumour tissues. We
note that the 5 kb extension may also include other regulatory
variants near the tumour/normal-specific ARBS (but not
heritability from coding/untranslated region (UTR)/promoter
variants, which were explicitly modelled, see Methods). Smaller
flanking regions were also investigated but did not include enough
markers for the variance components model to converge. We also
quantified the proportion of SNP heritability explained directly by
all ARBS variants (both normal and tumour without 5 kb flanks) at
10.7% of h2

g; significantly different from the SNP heritability of
ARBS variants assayed in prostate adenocarcinoma cancer cell line
(LNCaP; 3.2% of h2

g) (P¼ 4.4� 10� 7 for difference by Z-test)
(Fig. 1). This difference is partially explained by the very low
number of SNPs within cell line ARBS making their aggregate
contribution small but not empowering us to place a strong bound
on the enrichment. Overall, these findings highlight the increased
complexity of ARBS in a sample of tissues as compared with the
single LNCaP cell line.

Identification of functional marks relevant to PrCa risk. Next,
we looked for marks that contribute to the heritability of PrCa

across a broad spectrum of functional annotations without prior
assumptions on relevance to disease. We investigated 544
epigenetic annotations spanning six major classes (DHS;
H3k4me1; H3k4me3; H3k9ac; H3k27ac; and computationally
predicted functional classes or ‘segmentations’23,24) averaging 101
cell types per class (see Methods). After accounting for multiple
testing, we identified 82 annotations that exhibited statistically
significant deviations in SNP heritability from what was expected
based on the proportion of the genome covered by that particular
annotation (see Fig. 2 and Supplementary Data).

We first focused on 17 functional marks measured in the
prostate, of which 14 were statistically significant (Supplementary
Table 5). The single most significant enrichment was observed for
H3k27ac marks in LNCaP (P¼ 1� 10� 32 by Z-test), which
localized 22% of the total h2

g to the 2.9% of genotyped SNPs
within the annotation. This was followed by variants in DHS
marks in LNCaP (P¼ 2� 10� 18 by Z-test; 16.7% of h2

g localized
in 3.1% of genome). The DHS annotations allowed us to compare
estimates across three major prostate cell lines: LNCaP; normal
prostate epithelial (PrEC); and immortalized prostate epithelial
(RWPE1) (overlapping by 25–50% with ARBS, Supplementary
Fig. 1). We observed heritability explained by LNCaP DHS to be
nominally significantly higher than PrEC (P¼ 0.01 by Z-test);
and both LNCaP and PrEC to be significantly higher than
RWPE1 (P¼ 1.5� 10� 9, P¼ 1.2� 10� 5, respectively, by Z-test)
(Fig. 3). More broadly, 10 out of 16 DHS marks measured in
cancer cell lines were observed as significant, with colorectal
cancer as the next most significant cancer (P¼ 6.0� 10� 10 by
Z-test; 9.4% of heritability localized in 2.0% of genome;
Supplementary Data). H3k27ac in LNCaP remained the most
significantly enriched mark across all 544 annotations (presented
in detail in the Supplementary Data). The most depleted
categories were repressed regions computationally predicted by
Segway-chromHMM in HepG2 cells (P¼ 1.3� 10� 19 by Z-test;
51.9% of h2

g from 74.3% of SNPs; Supplementary Data), with
similar levels of depletion in repressed regions from other cell
types. These regions are typically associated with decreased gene
expression and repressive histone marks23–25, further
emphasizing the importance of active regulation.

As H3k27ac typically marks active enhancers, we further
evaluated variants with respect to their enhancer or
‘super’-enhancer status (large clusters of enhancers that are
enriched for genes involved in cell identity26) (see Methods). We
did not observe differences in average heritability explained by
SNPs within the two marks across 49 cell lines (see Methods),
with an average of 1.51 (1.47)-fold increase over random SNPs for
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Figure 1 | Functional partitioning for variants within ARBS for PrCa. Bars graphs detailing %SNP heritability estimates from two models of PrCa relevant

functional annotations. (a) Joint comparison of variants within 5 kb of tumour-only and normal-only regions in the ARBS in prostate tissue (P¼ 2.1� 10� 19

for difference by Z-test). (b) Estimates from ARBS in prostate tissue (no longer using a 5 kb flank) and ARBS in LNCaP cell lines7 (P¼4.4� 10� 7 for

difference). The null ð% h2
g ¼ % SNPsÞ is labelled by the dashed lines. Error bars show analytical standard error of estimate.
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enhancers (super enhancers) (Fig. 4). Surprisingly, we observed
an individually significant difference only in LNCaP, with 4.9
(1.7)-fold enrichment at enhancers (super enhancers), in contrast
to previous hypotheses26 (Fig. 4).

Genomic functional atlas of prostate cancer SNP heritability.
Although the results above showcase the power of the variance
component approach in finding epigenetic marks relevant for
PrCa, such marks often overlap making the causal mark
difficult to identify (Supplementary Fig. 1). To account for the
correlation among marks we grouped the 82 marginally
significant annotations into 15 biologically relevant, non-over-
lapping groups organized by mark and cell line, and partitioned
h2

g across all groups in a joint model (see Methods, Table 1, Fig. 5
and Supplementary Table 6). Five components were nominally
significant in the joint model at Po0.05; out of the five
components three remained significant after accounting for 15
tests: H3k27ac marks in LNCaP (P¼ 2.5� 10� 20 by Z-test);
DHS marks in other cancer cell types (P¼ 3.9� 10� 5 by
Z-test); and repressed segmentations (P¼ 2.1� 10� 20 by Z-test).
To further refine our model, we restricted to the significant
annotations (and the background components accounting for LD
to coding regions) and re-evaluated them jointly, referred to as
the ‘selected’ model. This selected model localized 51.0% of the h2

g
within 12.1% of SNPs (LNCaP: H3K27acþARBSþDHS cancer),
whereas coding regions only explained 3.3% (s.e. 1.4%) of h2

g
within 1.8% of SNPs (Supplementary Table 7). The localization

was even stronger with imputed data, where 86% of the h2
g was

localized to 8.6% of SNPs (Table 1 and Supplementary Tables 8
and 9). Estimates from imputed markers were more representa-
tive of underlying enrichment in our simulations (see Methods,
Supplementary Table 2) but may include the effects of nearby
markers12 and so we consider them as an upper bound. None of
the estimates changed significantly after adjusting for known
GWAS associations2 (79 of which were typed in this data),
underscoring the polygenic nature of this effect.

Having inferred the selected model, we re-analysed each of the
82 marginally significant categories jointly with the selected
model (see Methods). Only three marks remained significant: two
H3k27ac annotations in the colon crypt and one H3k27ac
annotation in pancreas (Supplementary Data). This implies that
the marginal enrichment of the 82 annotations was primarily
driven by the overlap with functional marks in the selected
model. For example, the H3K4me1 mark in penis foreskin
keratinocytes that was previously highly significant (24.6% h2

g,
P¼ 3.0� 10� 16 by Z-test, Fig. 1) was no longer enriched after
conditioning on the selected model (7.1% h2

g, P¼ 0.29 by Z-test,
Supplementary Data). The reduction to a small number of
categories in the selected model with limited loss in signal further
emphasizes the extent to which the selected model has localized
the functional sources of enrichment. Focusing on the two most
enriched categories in the selected model, we found that SNPs
present in both the prostate tissue ARBS and LNCaP H3k27ac
marks yielded significantly higher average heritability per SNP
than either mark individually (Supplementary Table 10).
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In contrast, the variants specific to ARBS or H3k27ac were
comparable in SNP heritability.

Replication of genomic functional atlas across ancestries. We
evaluated replication of our model using two separate
genome-wide SNP data sets of PrCa, one of European ancestry
(BPC3; 6,953 samples) and one of African ancestry (AAPC; 9,522
samples) for PrCa (see Methods). To account for the smaller
sample size, we focused on the eight-component selected model,
only retaining significant components and three coding-proximal
classes (coding, UTR, promoter)12. Because of platform
differences between the populations, we used post-QC imputed
variants in each data set, which are most reflective of underlying
enrichment in our simulations (see Methods). We replicated the
significant deviation in h2

g at H3k27ac and the repressed loci
across both BPC3 and AAPC (Supplementary Tables 11 and 12).
However, cancer DHS was only significant in the BPC3 data and
ARBS not significant in either (though the estimates were not
significantly different from the iCOGS estimate). The enrichment

did not change after restricting to very high-quality imputed
markers (Supplementary Table 13). Although the relatively small
validation sample size did not provide enough power to test
differences between the ancestries, the mean SNP heritability for
variants within each mark were remarkably similar (r¼ 0.90
between AAPC and BPC3 across eight components), suggesting a
similar pattern of aggregate contribution to risk coming from
common variants marked by epigenetic classes across European
and African American ancestries (though individual risk variants
themselves may differ).

H3k27ac mark in LNCaP is specific to PrCa. As a negative
control, we evaluated the selected model with imputed
SNPs across 11 common non-cancer diseases from the Wellcome
Trust Case Control Consortium (WTCCC) (see Methods,
Supplementary Table 14) where we observed two main
differences: the LNCaP H3k27ac annotation was no longer
significantly enriched (1.1% h2

g with 2.6% of SNPs); and the
repressed regions were much less depleted from the null (28.1%
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h2
g with 87.8% of SNPs) compared with the 0.3% of h2

g observed in
iCOGS imputed data (P¼ 2.2� 10� 4 for difference by Z-test).
Interestingly, although ARBS were significantly enriched in all 11
traits, the enrichment was no longer significant after excluding
autoimmune traits. Overall, these differences indicate that the
LNCaP H3k27ac mark is uniquely informative for PrCa, whereas
variants near the ARBS and DHS cancer elements (which overlap
other DHS annotations by 56%; Supplementary Fig. 2) may play a
generally important role across other common diseases12.

Genomic functional atlas improves polygenic risk prediction.
To validate our SNP heritability genomic atlas, we compared the
accuracy of predicting case/control status from genetic data with
or without the functional atlas. We evaluated three distinct
prediction models in the iCOGS sample: (i) a genetic risk score
(GRS) from the genome-wide significant SNPs; (ii) the single
best linear unbiased predictor (BLUP) using a single variance
component from all SNPs; and (iii) the weighted sum of
individual BLUPs from each epigenetic category in the selected
model (multi-BLUP; see Methods). Evaluated by cross-validation,
the GRS yielded an R2¼ 0.029 with true phenotype, whereas the
single BLUP yielded an R2¼ 0.065 and the multi-BLUP had an
R2¼ 0.071 (Supplementary Table 15). In a joint model with all
three predictors, the multi-BLUP was highly significant (P¼ 5.3
� 10� 31 from multiple regression). When we constructed the
GRS from SNPs recently discovered in a much larger PrCa
GWAS (ref. 2), the resulting prediction R2 increased to 0.084.
However, including the single BLUP or the multi-BLUP as an
additional predictor still increased the prediction R2 to 0.096
(joint P¼ 6.7� 10� 4 from multiple regression) and 0.098 (joint
P¼ 1.3� 10� 23 from multiple regression), respectively
(Supplementary Table 15). The consistent statistical significance
and increased prediction accuracy confirms the validity of the
selected model in this data and in larger GWAS.

Discussion
Using large-scale genotype data from over 59,089 men of
European and African American ancestries jointly with epigenetic
annotations, we identified highly significant differences in SNP
heritability ðh2

gÞ of PrCa across variants from different epigenetic

classes, tissue types and cell lines. Focusing on marks measured
in prostate, we observed significantly higher h2

g around
tumour-specific ARBS; ARBS measured in primary tissue relative
to cell line; and DHS measured in PrCa cell line relative to
prostate epithelial cell line. The enrichment at tumour-specific
ARBS was consistent with recent findings showing that these sites
were enriched for nearby genes highly expressed in tumours18.
These analyses are comprehensive and cover most commonly
studied prostate cell lines except for vertebral cancer of
the prostate, which were not well represented in the ENCODE/
ROADMAP. A search across 544 diverse functional annotations
restricted most of the h2

g to a small fraction of the genome
marked by prostate regulatory elements. Consistent with previous
findings in common disease, functionally repressed regions were
significantly depleted in heritability, highlighting the role of active
regulation in PrCa susceptibility. Subsequent model selection
localized the enrichment from 82 individually significant
annotations to six that remained significant in a joint model. In
particular, the abundance of enrichment in H3k27ac marks
(active enhancers) relative to H3k4me1/H3k4me3 (poised
enhancers/promoters) underscores their role in PrCa, though
further enrichment in super enhancers was not observed.
The enrichment within LNCaP: H3K27ac and depletion at
repressed regions was replicated across different ancestries and
yielded significant improvements in polygenic risk prediction.

With most GWAS associations falling outside coding regions,
our analyses offer an important resource for prioritizing potential
loci and focusing future studies on the most heritable genomic
regions27. The marginal analyses provide a ranking of 544
common functional assays, while the selected model localizes
heritability to only those functional classes that are independently
enriched. Emerging functional categories may further refine this
signal or reveal other relevant epigenetic marks, though little
enrichment beyond the selected model was observed in the
comprehensive sampling of functional data analysed here. In
general, the variance component model offers an opportunity to
evaluate biological hypotheses in silico and without strictly relying
on individually significant SNPs. However, as with any analysis of
array-based data, the h2

g estimates will not include the
contribution of SNPs that are untyped or poorly tagged, such

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms10979

Table 1 | Partitioning of heritability across functional classes in prostate cancer.

Functional category %SNPs Full Model Selected model

iCOGS genotyped iCOGS imputed BPC3 imputed AAPC imputed

% h2
g s.e.m. % h2

g s.e.m. % h2
g s.e.m. % h2

g s.e.m.

Coding 1.8 3.0 1.3 0.9 2.9 0.2 10.1 3.3 11.1
UTR 1.9 1.6 1.4 3.0 3.1 21.0 11.3 5.9 11.2
Promoter 3.4 *7.8 1.8 8.9 4.1 0.0 12.7 0.0 14.7
LNCaP: H3k27ac 3.2 **22.3 2.1 **27.0 3.8 *30.3 12.1 *28.9 12.7
ARBS 1.0 *3.3 1.1 *9.1 3.3 1.1 12.1 15.2 12.1
LNCaP: FOXA1 1.5 1.5 1.3
LNCaP: H3k4me1 2.0 1.3 1.4
LNCaP: DHS 2.9 5.4 1.6
DHS prostate 1.8 2.6 1.4
DHS cancer 4.7 **14.1 2.3 **49.6 6.3 *47.4 21.4 46.6 22.4
H3k4me1 (other) 16.3 19.6 3.5
H3k27ac (other) 7.3 4.1 2.4
DHS (other) 1.8 0.2 1.3
repressed 48.7 **11.0 4.1 **0.3 7.0 **0.0 23.8 **0.0 24.5
all other 1.7 0.7 1.2 0.2 2.7 0.0 9.2 0.0 7.6

ARBS, androgen receptor-binding sites; DHS, DNase I hypersensitivity sites; SNP, single-nucleotide polymorphism; UTR, untranslated region.
Full model denotes a 15-variance components model while ‘selected’ model denotes a model restricted to the five components attaining significance in the ‘full’ model (and three components for
background). * (**) denotes significant deviation at Po0.05 (Po0.05/15) of fraction of SNP heritability ð% h2

g Þ from null model of % h2
g ¼ % SNPs (by Z-test; see Supplementary Table 6 for

P values).
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as rare variants or other contributors to the missing heritability.
Future analyses of whole-genome sequencing, additional
functional annotations, and larger sample sizes can yield
important insights into functional mechanisms that are still not
localized. Overall, our results suggest similar patterns of
functional enrichment across men of European and African
American ancestry and highlight ARBS, H3k27ac marks in
LNCaP cell lines and DHS in cancer cell lines for follow-up
studies of PrCa risk.

Methods
Epigenetic annotations. Sample collection and processing for functional anno-
tations was made publically available by the ENCODE/ROADMAP consortia28.

DHS, H3k4me1, H3k4me3, H3k9ac annotations and genome segmentations20,29,
enhancers and super enhancers26 and PrCa-specific annotations7,18 were assay and
processed as detailed in the original studies. Tumour-only and normal-only ARBS
were defined in seven normal and 13 tumour specimens in the original study18.
All annotations curated for this paper (ENCODE/ROADMAP; Pomerantz et al.;
and Hazelett et al.) are available at https://data.broadinstitute.org/alkesgroup/
ANNOTATIONS/PRCA/. The full list of individual annotations with web-links to
the corresponding boundary definitions is provided in the Supplementary Data.
Some functional marks are listed multiple times due to multiple independent assays
or laboratory protocols.

ARBS ChIP-seq in human tissue specimens. The ARBS assay was performed as
described in REF (ref. 18) and summarized here. Fourteen subjects of European
American ancestry were selected for ChIP analysis. Their chromatin was incubated
overnight with 6 mg antibody AR (N-20, Santa Cruz Biotechnology, Dallas, TX)
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Figure 5 | Partitioning of heritability across functional classes in prostate cancer. Visual representation of heritability enrichment in three studies

a,b: iCOGS; c: AAPC; d: BPC3 (shown numerically in Table 1). Each subplot corresponds to an analysis of the listed joint model, with coloured slices

representing the functional annotations evaluated. Volume of each interior (light coloured) pie-chart slice represents the %SNP for the functional

annotation, which is equal to the expected % h2
g under the null of no enrichment. Volume of each shaded pie-chart slice represents the actual % h2

g

inferred by the model. Slices extending outside/inside the middle pie correspond to enrichment/depletion in SNP heritability, as indicated by the dotted

lines. Colour coding is consistent across all subpanels. * (**) denotes significant deviation at Po0.05 (Po0.05/15) of fraction of SNP heritability (% h2
g

from null model of % h2
g ¼ % SNPs by Z-test; see Supplementary Table 6 for P values).
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bound to protein A and protein G beads (Life Technologies, Carlsbad, CA). A
fraction of the sample was not exposed to antibody to be used as control (input).
The samples were de-crosslinked, treated with RNase and proteinase K, and DNA
was extracted. The samples were then re-sheared to 100–300 base pairs using the
Covaris ultra-sonicator, and concentrations of the ChIP DNA were quantified by
Qubit Fluorometer (Life Technologies). DNA sequencing libraries were prepared
using the ThruPLEX-FD Prep Kit (Rubicon Genomics, Ann Arbor, MI). Libraries
were sequenced using 50-base pair reads on the Illumina platform (Illumina, San
Diego, CA) at Dana-Farber Cancer Institute. AR binding sites were generated using
Model-Based Analysis of ChIP-seq 2 (MACS2), with a qvalue (false discovery rate,
FDR) threshold of 0.01.

The 13 tumours used in this study were androgen dependent and not exposed
to androgen deprivation therapies. All of the tumours were specimens obtained
from radical prostatectomies, derived from men with early stage disease. These
samples were not selected based on any specific features; therefore, we would
expect that the distribution of risk variants would be similar to a random sampling
of PrCa cases. Large-scale genetic surveys have shown that somatically acquired
alterations in primary localized prostate tumours (the type of tumour evaluated in
this study) are infrequent. Based on these previous results, we believe that
somatically acquired genetic events in regions related to androgen biology are not
common and, therefore, do not influence our results.

Patient material. Informed consent was obtained from all subjects and all studies
were approved by local Research Ethics Committees and/or Institutional Review
Boards.

Data quality control. Quality control is crucial for accurate heritability estimation,
where many small artifacts can add up to large biases. All data sets went through a
stringent QC process with the following exclusion criteria: minor allele frequency
(MAF)o1%; fraction of missing/uncalled SNPs45%; Hardy–Weinberg
equilibrium P valueo0.01; case–control missingness P valueo0.05; imputation
INFO score40.30. In addition, close relatives were pruned such that no pair of
individuals had genetic relatedness (GRM) coefficients40.05. The top 10 principal
components and a coded study label were always included as fixed-effects. All
analysed samples, cases and controls, were males.

iCOGS data. The iCOGS consortium genotyped balanced cases and controls on a
custom targeted array4. After quality control, 42,613 samples and 153,621
genotyped SNPs remained. Imputation was performed to the 1000 Genomes
reference panel using HAPI-UR (ref. 30) for phasing and IMPUTE2 (ref. 31) for
imputation. Overall, 1,910,827 imputed and genotyped SNPs passed QC. Because
of computational restrictions, the heritability estimation was carried out in two
equally sized halves of the ICOGS, with total effects computed by inverse-variance
meta-analysis. We partitioned the genotyped SNP heritability by MAF but
observed no trend and only slight enrichment of % h2

g at high-frequency variants
(Supplementary Table 16).

BPC3 data. The National Cancer Institute Breast & Prostate Cancer Cohort
Consortium (BPC3) consortium genotyped individuals on the Illumina Human-
Hap610 quad array32. After quality control, 6,953 samples and 4,004,229 genotyped
and imputed SNPs remained. Age was available for all samples and additionally
included as a covariate.

AAPC data. The AAPC consortium genotyped individuals of African ancestry on
the Illumina Human1M array2,33,34. After quality control, 9,522 samples and
10,468,389 genotyped and imputed SNPs remained.

WTCCC data. The Wellcome Trust Case Control Consortium Genotyping
genotyped cases for 11 traits as well as shared controls on multiple Illumina and
Affymetrix arrays35–37. The phenotypes analysed here were ankylosing spondylitis
(AS); bipolar disorder (BD); coronary artery disease (CAD); Crohn’s disease (CD);
hypertension (HT); multiple sclerosis (MS); rheumatoid arthritis (RA);
schizophrenia (SP); type 1 diabetes (T1D); type 2 diabetes (T2D); and ulcerative
colitis (UC). After quality control, a total of 47,053 samples and 4–5 million
genotyped and imputed SNPs remained. Reported h2

g values were estimated for
each phenotype separately and meta-analysed using inverse-variance weighting.

UK10K data. The UK10K whole-genome sequence data from ALSPAC and
TWINSUK (http://www.uk10k.org) was used only for simulation, and so stringent
quality control was not applied. After relatedness filtering, 3,047 samples and
15,691,225 non-singleton variants were retained.

Heritability estimation of individual annotations. We estimated the SNP
heritability ðh2

gÞ captured by functional categories in a joint variance
component model using GCTA as described in REF (ref. 20). Briefly, this model
assumes the phenotype is drawn from a multivariate normal distribution with

variance-covariance modelled by components computed from the SNPs and a
normal residual. For each functional category (for example, DHS) i¼ 1..M where
M is the total number of categories in the model, a GRM across all pairs of
individuals is computed restricting to SNPs within the functional category.
Variance components for all GRMs in the model are then fitted using REML as
implemented in GCTA to estimate a variance parameter s2

i

� �
used to compute

% h2
i ¼ s2

i =
PM

j¼1 s
2
j . The h2

i corresponds to the fraction of trait variance that
can be explained by the BLUP restricted to SNPs in the corresponding functional
category (or annotation). For a given functional annotation, SNPs were categorized
into a hierarchy of seven non-overlapping components: (1) coding; (2) UTR; (3)
promoter (functional annotation of interest); (4) DHS; (5) intron; and (6)
intergenic. SNPs belonging to multiple categories were partitioned explicitly into
the first category in this list. The coding and coding-proximal components were
included to ensure that the annotation heritability was not inflated by SNPs that
were in high LD with coding variation. A genetic relatedness matrix was computed
for each component by first standardizing the corresponding SNPs and then
computing a SNP covariance over all pairs of samples. Component-specific s2 and
errors were fitted iteratively using the Average Information algorithm38. The
analytical standard error for % h2

i was estimated by transforming the GCTA-
inferred s2

i and error covariance matrix using the delta method. As in REF (ref. 20)
statistical significance was evaluated by comparing the % h2

g explained by the
category and it’s standard error to the %SNPs in the category using a Z-test
(comparing nested models using a likelihood ratio test yielded similar results).
Total h2

g estimates were computed as h2
g ¼

PM
j¼1 s

2
j =
PMþ 1

j¼1 s2
j after transforming

to the liability scale assuming a prevalence of 0.14 and using the study-specific case/
control ratio.

Hierarchical joint models. For specific models of interest, we extended the
individual annotation model described above to test intersecting and non-inter-
secting components. This allowed us to evaluate precisely which sub-annotations of
overlapping components were likely to be causal. For the tumour/normal model,
we expanded each tumour/normal mark by 5 kb in both directions from the center
to capture nearby genes and other regulatory regions so that tumour (normal)
covered 3.3% (1.4%) of the SNPs, respectively. We estimated h2

g from the joint
hierarchical model: (1) coding; (2) UTR; (3) promoter; (4) normal-only; (5)
tumour-only; (6) DHS; (7) intron; and (8) Other. When comparing ARBS from
tissue and ARBS LNCaP from cell line, only 59 SNPs (0.03%) overlapped between
the two categories, and so we tested two separate models: (1) coding; (2) UTR; (3)
promoter; (4) (ARBS tissue/ARBS LNCaP); (5) DHS; (6) intron; and (7) other. For
comparisons between LNCAP, PREC and RWPE1 using DHS we tested each pair
of cell lines using the joint model: (1) coding; (2) UTR; (3) promoter; (4) DHS
particular to one cell line; (5) DHS common to both cell lines; (6) DHS particular
to other cell line; (7) DHS other cell lines; (8) Intron; and (9) Other. For com-
parisons between enhancers and super enhancers, we used the 86 cell-type-specific
annotations from REF (ref. 26), testing each enhancer or super enhancer separately
in the following joint model: (1) coding; (2) UTR; (3) promoter, (4) (enhancer/
super enhancer for cell-type of interest); (5) DHS; (6) intron; (7) other. Of these, 49
cell types yielded model convergence for both the enhancer and corresponding
super enhancer and were used to estimate means and correlation. The order and
grouping of marginally significant annotations into epigenetic mark and cell type
(for example, in Table 1) are listed in the Supplementary Data. For each of the 82
individually significant annotations, we re-evaluated them jointly with the selected
model in the following hierarchical joint model: (1) coding; (2) UTR; (3) promoter;
(4) LNCaP:H3k27ac; (5) ARBS; (6) DHS cancer; (7) (functional annotation of
interest); (8) DHS; (9) intron; and (10) other. Only functional annotations that
converged were reported in the Supplementary Data.

Accuracy of h2
g estimates from typed variants in simulations. The variance

component model has previously been shown to yield robust estimates under the
assumption that causal variants are typed and uniformly sampled from a given
functional category13,20,21. Here, we perform simulations using the UK10K whole-
genome sequence data to confirm the validity of this model for our annotations,
and to assess how representative SNP estimates are of true underlying biology at
common sequenced variants. Overall, the simulations involve using real markers to
generate additive, polygenic phenotypes with a given heritability and then
estimating the heritability with the variance component model. We evaluated the
UK10K data for three types of SNPs: (i) common sequenced variants (7,534,538
SNPs); (ii) UK10K SNPs typed by the iCOGS platform (178,509; 95% of iCOGS
SNPs); and (iii) UK10K SNPs typed and imputed by the iCOGS platform
(1,655,723; 87% of the iCOGS imputed SNPs). We focused on the LNCaP:H3k27ac
annotation (which was most significant in our data) to evaluate the main joint
model. All phenotypes were simulated by drawing 5,000 causal variants randomly
from the specified categories and sampling causal effect-sizes from a normal
distribution such that SNPs either explain equal variance (the model assumption)
or variance in proportion to their MAF. The phenotype was then generated as the
dot product of genotype and effect-size with random noise added to fix heritability
at 50%. Phenotypes were simulated thousands of times until the standard error
over simulations was low enough to evaluate unbiasedness.
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We confirmed that estimates of h2
g from a polygenic trait were accurate under

the model where causal variants are typed (Supplementary Table S1). Under the
null, the LNCaP H3k27ac component is expected to explain 3.22% of the
SNP heritability, and the model estimated 3.50% (0.22%) and 3.68% (0.21%)
under a low-frequency and high-frequency disease architecture, respectively
(Supplementary Table S1). None of the estimates were significantly different from
the truth given the number of components tested. Under a scenario where LNCaP
H3k27ac explains 50% of the h2

g, the model estimated 51.13% (0.40%) and 46.98%
(0.35%) under a low-frequency and high-frequency disease architecture,
respectively (Supplementary Table S1). Although the high-frequency architecture
(where common variants explain more variance in trait than rare variants)
represents a substantial model misspecification, our simulations show that this does
not introduce substantial bias and is likely to slightly underestimate the SNP
heritability at the focal chromatin mark. In all cases, the empirical standard
deviation over 500 simulations was similar to the average analytical s.e.m.
computed by GCTA (REML algorithm), thus showing that that analytical standard
error is well calibrated (Supplementary Table S1). We note that the standard error
is inversely related to the sample size39,40, and is therefore much higher in these
simulations than in the iCOGS data which is 14-fold larger.

Lastly, we performed the real data partitioned analysis in subsets of individuals
to evaluate biasedness and power to detect significant enrichment. We confirmed
that no significant differences were observed between estimates from the entire
study compared with those averaged across subsets of the study (Supplementary
Fig. 3). As such, we can confidently report estimates and bounds on the enrichment
observed in the entire study that will hold for larger studies. Furthermore, all but
one of the significant components from the main model remained significant in
smaller samples (ARBS), making it unlikely that they were affected by winner’s
curse. Recent work has quantified the theoretical relationship between estimation
error and effective sample size for individual components39,40.

Causal variants not tagged on the iCOGS genotyping platform. We used the
sequenced UK10K common variants to evaluate how well the iCOGS genotyped and
imputed SNPs captured underlying heritability by simulating phenotypes using causal
variants from sequencing and estimating heritability from the iCOGS SNPs (that is,
hiding variants that were not genotyped or imputed, Supplementary Table S2). 83% of
common UK10K SNPs lie within 100 kb of an iCOGS SNP, so some common var-
iation is likely to be partially tagged by the chip. If the imputed and/or genotyped
SNPs served as a good proxy for the common sequence variation, then we would
expect their estimates of % h2

g to match the simulated fractions. When no functional
category was enriched with causal variants, small but significant differences were
observed for genotyped coding variants (4.75% h2

g estimated as compared with
simulated 0.67%) and imputed intergenic variants (56.09% h2

g as compared with
50.52% simulated) but not the focal LNCaP:H3k27ac category. Similar deviations were
observed for the disease architecture where common variants explain more variance
in trait than rare variants (Supplementary Table S2). When causal variants where
enriched within LNCaP:H3k27ac category, deviations between simulated and esti-
mated SNP heritability were larger (Supplementary Table S2). Most of this deviation
was due to a significant underestimate at LNCaP:H3k27ac, which was simulated to
explain 50% of h2

g but explained only 12.55% (s.e.m.0.92%) and 30.92% (s.e.m. 1.09%)
from genotyped and imputed SNPs, respectively. This heritability was distributed
across all the remaining components, particularly in intergenic SNPs for the geno-
typed estimate and DHS SNPs for the imputed estimate, which tend to be nearby.

Overall, our simulations showed that the model is highly accurate when all causal
variants are typed. When considering enrichment from untyped causal variants, the
imputed estimate was consistently closer to the truth than the genotyped estimate.
Most importantly, the estimate from the focal category (LNCaP H3k27ac in our
simulations) was shown to be highly conservative both in the null and in the enriched
scenario and unlikely to be biased due to tagging of untyped markers. We note that
previous work has shown estimates from imputed SNPs (but not genotyped SNPs)
may be contaminated by markers very close to an enriched annotation12; as such we
focused our results on the densely genotyped iCOGS variants which are expected to be
conservative, and primarily used imputed data for validation across data sets.

Estimates of h2
g from African American samples. To assess potential biases in

estimating h2
g from an admixed population, we performed separate simulations in

the AAPC data where causal variants were specifically sampled from varying FST

bins. This framework evaluated the potential bias resulting from markers that had
drifted to different frequencies in the two populations. The FST was estimated out-
of-sample in the HapMap CEU European and YRI Yoruba populations. We tested
the null six-component model (Coding, UTR, Promoter, DHS, Intron, Other) and
observed no significant deviations from the null under any class of differentiated
SNPs (Supplementary Table S3). However, we note that total h2

g was simulated at
0.50 but was inferred at 0.38–0.66 across increasing quintiles of causal FST

(Supplementary Table 3), indicating that even with well-calibrated estimates of
enrichment the total estimate may be biased upwards if the causal SNPs are highly
differentiated (observed in this simulation when mean causal FST4¼ 0.35).

Genetic prediction. We sought to validate the utility of our functional atlas by
applying it to genetic prediction. The aim of genetic prediction is to use training

individuals with genetics (for example, SNPs) and diagnosed phenotype to accurately
predict the phenotype into individuals with only genetic data available41,42. Here, we
focus on correlation of predicted phenotype with true phenotype (R2), as it has a
natural relationship to SNP heritability12,42. Intuitively, better localization of the true
effect-sizes will reduce noise in training the predictor and increase accuracy. If the
functional atlas identified regions with increased heritability, this information should
significantly improve the prediction. We evaluated three standard models of risk
prediction: GRS; BLUP (ref. 43); and multi-component BLUP (ref. 14). The GRS was
computed as a sum over SNPs of the log odds-ratios from the training sample41. The
set of SNPs used was either the genome-wide significant markers in the training set
(restricted to one per 1 MB locus) or the genome-wide significant markers identified
in a recent large GWAS of PrCa2. In contrast to the GRS, the BLUP used all markers
in the data to form the prediction. The standard BLUP was estimated using GCTA
over all SNPs. The multi-component BLUP was estimated using the components in
the selected model (jointly) to compute a single score equal to the sum of the
predictions from each component weighted by their component-specific h2

g. This is
analogous to specifying a different prior on the effect-size variance in each
component. All predictions were carried out by cross-validation in the full iCOGS
data, removing 1,000 individuals in each fold. Prediction R2 was then computed from
a regression of phenotype on the predictor score with 10 PCs included as covariates
to account for ancestry, subsequently subtracting the R2¼ 0.021 from a model with
PCs only. P values were estimated for each of the coefficients in the multiple
regression of phenotype B GRSþ single-BLUPþmulti-BLUPþ PCs. To ensure
that prediction across data sets was independent, we carefully removed all iCOGS
individuals with a GRM value of 40.05 to any individual in the BPC3 when
computing BLUP coefficients. We separately analysed the predictor in 26,000 iCOGS
samples that had age at diagnosis, but did not observe significant differences before/
after including age as a covariate.
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